WO2015132842A1 - Flame retardant for lithium ion secondary batteries, electrolyte solution for lithium ion secondary batteries, lithium ion secondary battery, and power supply or device system utilizing lithium ion secondary battery - Google Patents

Flame retardant for lithium ion secondary batteries, electrolyte solution for lithium ion secondary batteries, lithium ion secondary battery, and power supply or device system utilizing lithium ion secondary battery Download PDF

Info

Publication number
WO2015132842A1
WO2015132842A1 PCT/JP2014/055214 JP2014055214W WO2015132842A1 WO 2015132842 A1 WO2015132842 A1 WO 2015132842A1 JP 2014055214 W JP2014055214 W JP 2014055214W WO 2015132842 A1 WO2015132842 A1 WO 2015132842A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium ion
ion secondary
secondary battery
battery
flame retardant
Prior art date
Application number
PCT/JP2014/055214
Other languages
French (fr)
Japanese (ja)
Inventor
西村 勝憲
繁貴 坪内
渉平 鈴木
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2014/055214 priority Critical patent/WO2015132842A1/en
Publication of WO2015132842A1 publication Critical patent/WO2015132842A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a flame retardant for a lithium ion secondary battery, an electrolyte for a lithium ion secondary battery, a lithium ion secondary battery, and a power source or an equipment system using the lithium ion secondary battery.
  • Lithium ion secondary batteries have high energy density and are attracting attention as batteries for electric vehicles and power storage.
  • electric vehicles there are zero-emission electric vehicles that are not equipped with an engine, hybrid electric vehicles that are equipped with both an engine and a secondary battery, and plug-in hybrid electric vehicles that are directly charged from system power.
  • it is expected to be used as a stationary power storage system that stores power and supplies power in an emergency when the power system is cut off.
  • lithium ion batteries having high energy density are expected.
  • the safety design of batteries becomes more and more difficult, and more advanced technology is required.
  • One of them is the electrolyte combustion suppression technology.
  • the electrolyte used in the lithium ion battery does not completely determine the safety of the battery, but because it is flammable, it suppresses the combustion reaction of the electrolyte and improves the safety of the battery. There is a desire to want.
  • Patent Document 1 and Patent Document 2 disclose a technique for making a battery safe with an electrolytic solution to which a phosphite is added.
  • the electrolyte contained in the lithium ion secondary battery contains a combustible component, the electrolyte may burn.
  • trimethyl phosphite described in Patent Documents 1 and 2 as a flame retardant for the electrolytic solution, trimethyl phosphite causes a transfer reaction in the electrolytic solution, so that the safety of the lithium ion secondary battery can be ensured. difficult.
  • This invention is improving the safety
  • the safety of the lithium ion secondary battery can be improved. Problems, configurations, and effects other than those described above will be clarified by the following description of embodiments.
  • the cross-sectional structure of the lithium ion secondary battery of this invention is shown. 1 shows a battery system of the present invention.
  • FIG. 1 schematically shows the internal structure of the lithium ion secondary battery 101.
  • the lithium ion secondary battery 101 is a general term for an electrochemical device that can store and use electrical energy by occluding and releasing ions to and from an electrode in a non-aqueous electrolyte.
  • a lithium ion secondary battery will be described as a representative example.
  • an electrode group including a positive electrode 107, a negative electrode 108, and a separator 109 inserted between both electrodes is housed in a battery container 102 in a sealed state.
  • a lid 103 is provided on the upper part of the battery container 102, and the lid 103 has a positive external terminal 104, a negative external terminal 105, and a liquid inlet 106.
  • the lid 103 is put on the battery container 102, and the outer periphery of the lid 103 is welded to be integrated with the battery container 102.
  • other methods such as caulking and bonding can be employed in addition to welding.
  • the positive electrode 107 includes a positive electrode mixture layer and a positive electrode current collector.
  • the positive electrode mixture layer is composed of a positive electrode active material, and if necessary, a conductive agent and a binder.
  • Illustrative examples of the positive electrode active material include LiCoO 2 , LiNiO 2 , and LiMn 2 O 4 .
  • the particle size of the positive electrode active material is specified to be equal to or less than the thickness of the positive electrode mixture layer.
  • the coarse particles are removed in advance by sieving classification, wind classification or the like, and particles having a thickness of the positive electrode mixture layer or less are prepared.
  • the positive electrode active material is a powder
  • a binder for bonding the particles of the powder is necessary to form a positive electrode.
  • the positive electrode active material is an oxide
  • the conductivity of the oxide is generally low, so carbon powder is added to increase the conductivity between the oxide particles.
  • the positive electrode active material, the conductive agent and the binder are blended so that the mixing ratio (weight percentage display) of the positive electrode active material is 80 to 95% by weight, the conductive agent is 3 to 15% by weight, and the binder is 1 to 10% by weight. .
  • the mixing ratio of the conductive agent is 5% by weight or more. This is because the resistance of the entire positive electrode is reduced and the ohmic loss is reduced even when a large current is passed.
  • the mixing ratio of the positive electrode active material is desirably in the high range of 85 to 95% by weight.
  • the conductive agent known materials such as carbon black such as graphite, amorphous carbon, graphitizable carbon, and Denka black, activated carbon, carbon fiber, and carbon nanotube can be used.
  • the conductive fiber include vapor-grown carbon, fiber produced by carbonizing pitch (by-products such as petroleum, coal, coal tar, etc.) as a raw material at high temperature, carbon fiber produced from acrylic fiber (polyacrylonitrile), and the like. .
  • it is a material that does not oxidize and dissolve at the charge / discharge potential of the positive electrode (usually 2.5 to 4.3 V), and has a lower electrical resistance than the positive electrode active material, such as a corrosion-resistant metal such as titanium or gold.
  • a fiber made of carbide such as SiC or WC, or a nitride such as Si 3 N 4 or BN may be used.
  • a manufacturing method an existing manufacturing method such as a melting method or a chemical vapor deposition method can be used.
  • an aluminum foil having a thickness of 10 to 100 ⁇ m, an aluminum perforated foil having a thickness of 10 to 100 ⁇ m and a hole diameter of 0.1 to 10 mm, an expanded metal, a foam metal plate, etc. are used.
  • stainless steel, titanium and the like are also applicable.
  • any current collector can be used without being limited by the material, shape, manufacturing method and the like.
  • the positive electrode 107 For the application of the positive electrode 107, a known production method such as a doctor blade method, a dipping method, or a spray method can be adopted, and there is no limitation on the means.
  • a known production method such as a doctor blade method, a dipping method, or a spray method can be adopted, and there is no limitation on the means.
  • the organic solvent is dried, and the positive electrode is pressure-formed by a roll press, whereby the positive electrode 107 can be manufactured.
  • the negative electrode 108 includes a negative electrode mixture layer and a negative electrode current collector.
  • the negative electrode mixture layer is mainly composed of a negative electrode active material and a binder, and a conductive agent may be added as necessary. A method for manufacturing the negative electrode will be described.
  • the negative electrode active material is, for example, a carbon material having a graphene structure. That is, natural graphite, artificial graphite, mesophase carbon, expanded graphite, carbon fiber, vapor grown carbon fiber, pitch-based carbonaceous material, needle coke, petroleum coke that can occlude and release lithium ions electrochemically, Uses carbonaceous materials such as polyacrylonitrile-based carbon fiber and carbon black, or amorphous carbon materials synthesized by thermal decomposition of 5-membered or 6-membered cyclic hydrocarbons or cyclic oxygen-containing organic compounds. Is possible.
  • a conductive polymer material made of polyacene, polyparaphenylene, polyaniline, or polyacetylene can also be used for the negative electrode 108. These materials can be combined with a carbon material having a graphene structure such as graphite, graphitizable carbon, and non-graphitizable carbon.
  • Examples of the negative electrode active material that can be used in an embodiment of the present invention include aluminum, silicon, and tin that are alloyed with lithium, and further, from graphite or amorphous carbon that can electrochemically occlude and release lithium ions. There are also carbonaceous materials. In this invention, there is no restriction
  • a slurry is prepared by adding a solvent to a mixture composed of the negative electrode active material prepared above and the binder according to one embodiment of the present invention, and sufficiently kneading or dispersing the mixture.
  • the solvent can be arbitrarily selected as long as it is an organic solvent, water or the like and does not alter the binder of the present invention.
  • the mixing ratio of the negative electrode active material and the binder is preferably in the range of 80:20 to 99: 1 by weight.
  • the weight composition has a value of a negative electrode active material ratio smaller than 99: 1.
  • Conductive agent is added to the negative electrode as necessary. For example, when charging or discharging a large current, it is desirable to add a small amount of a conductive agent to reduce the resistance of the negative electrode.
  • a conductive agent known materials such as graphite, amorphous carbon, graphitizable carbon, carbon black, activated carbon, carbon fiber, and carbon nanotube can be used.
  • the conductive fiber include vapor-grown carbon, fiber produced by carbonizing pitch (by-products such as petroleum, coal, coal tar, etc.) as a raw material at high temperature, carbon fiber produced from acrylic fiber (polyacrylonitrile), and the like. .
  • the above slurry is applied to the negative electrode current collector, and the negative electrode 108 is manufactured by evaporating the solvent and drying.
  • the negative electrode current collector a copper foil having a thickness of 10 to 100 ⁇ m, a copper perforated foil having a thickness of 10 to 100 ⁇ m and a hole diameter of 0.1 to 10 mm, an expanded metal, a foam metal plate, etc. are used.
  • stainless steel, titanium, and the like are also applicable.
  • any current collector can be used without being limited by the material, shape, manufacturing method and the like.
  • the negative electrode 108 For the application of the negative electrode 108, a known production method such as a doctor blade method, a dipping method, or a spray method can be adopted, and there is no limitation on the means.
  • the solvent is dried, and the negative electrode is pressure-formed by a roll press, whereby the negative electrode 108 can be manufactured.
  • At least one of the positive electrode 107 and the negative electrode 108 is alternately stacked, and a separator 109 is inserted between the positive electrode 107 and the negative electrode 108 to prevent a short circuit between the positive electrode 107 and the negative electrode 108.
  • the positive electrode 107, the negative electrode 108, and the separator 109 constitute an electrode group. It is possible to use a polyolefin polymer sheet made of polyethylene, polypropylene, or the like, or a separator 109 having a multilayer structure in which a polyolefin polymer and a fluorine polymer sheet typified by tetrafluoropolyethylene are welded.
  • a mixture of ceramics and a binder may be formed in a thin layer on the surface of the separator 109 so that the separator 109 does not contract when the battery temperature increases. Since these separators 109 need to allow lithium ions to pass therethrough during charge and discharge of the battery, they are generally used for the lithium ion secondary battery 101 if the pore diameter is 0.01 to 10 ⁇ m and the porosity is 20 to 90%. Is possible.
  • the separator 109 is also inserted between the electrode disposed at the end of the electrode group and the battery container 102 so that the positive electrode 107 and the negative electrode 108 are not short-circuited through the battery container 102. Electrolytic solution 113 is held on the surfaces of separator 109, positive electrode 107, and negative electrode 108 and inside the pores.
  • the upper part of the electrode group is electrically connected to an external terminal via a lead wire.
  • the positive electrode 107 is connected to the positive electrode external terminal 104 via the positive electrode lead wire 110.
  • the negative electrode 108 is connected to the negative electrode external terminal 105 through the negative electrode lead wire 111.
  • the positive electrode lead wire 110 and the negative electrode lead wire 111 can take any shape such as a wire shape or a plate shape. Any material can be used for the positive electrode lead 110 and the negative electrode lead 111 as long as it has a structure capable of reducing ohmic loss when a current is passed and does not react with the electrolytic solution 113.
  • an insulating sealing material 112 is inserted between the positive electrode external terminal 104 or the negative electrode external terminal 105 and the battery container 102 so that both terminals are not short-circuited.
  • the insulating sealing material 112 can be selected from a fluororesin, a thermosetting resin, a glass hermetic seal, and the like, and any material that does not react with the electrolytic solution 113 and has excellent airtightness can be used.
  • a positive temperature coefficient is provided in the middle of the positive electrode lead wire 110 or the negative electrode lead wire 111, or at the connection portion between the positive electrode lead wire 110 and the positive electrode external terminal 104, or at the connection portion between the negative electrode lead wire 111 and the negative electrode external terminal 105.
  • PTC positive temperature coefficient
  • the positive electrode lead wire 110 and the negative electrode lead wire 111 can have any shape such as a foil shape or a plate shape.
  • the structure of the electrode group can be various shapes such as a stack of strip-shaped electrodes shown in FIG. 1, or a wound shape in an arbitrary shape such as a cylindrical shape or a flat shape.
  • the shape of the battery container may be selected from shapes such as a cylindrical shape, a flat oval shape, and a square shape according to the shape of the electrode group.
  • the material of the battery container 102 is selected from materials that are corrosion resistant to the non-aqueous electrolyte, such as aluminum, stainless steel, and nickel-plated steel.
  • the material is altered by corrosion of the battery container or alloying with lithium ions in the portion in contact with the nonaqueous electrolyte. Select the lead wire material to prevent this from occurring.
  • the lid 103 is brought into close contact with the battery container 102 and the whole battery is sealed.
  • sealing the battery such as welding and caulking.
  • Electrolytic solution 113 As a typical example of the electrolytic solution 113 that can be used in the present invention, a solvent in which dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, and the like are mixed in ethylene carbonate, lithium hexafluorophosphate (LiPF 6 ), or lithium borofluoride as an electrolyte is used. There is a solution in which (LiBF 4 ) is dissolved.
  • other types of electrolytes can be used without being limited by the type of solvent or electrolyte and the mixing ratio of the solvents.
  • the electrolyte can also be used in a state of being contained in an ion conductive polymer such as polyvinylidene fluoride and polyethylene oxide. In this case, the separator becomes unnecessary.
  • Solvents that can be used for the electrolytic solution 113 are propylene carbonate, ethylene carbonate, butylene carbonate, vinylene carbonate, ⁇ -butyrolactone, dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, 1,2-dimethoxyethane, 2-methyltetrahydrofuran, Dimethyl sulfoxide, 1,3-dioxolane, formamide, dimethylformamide, methyl propionate, ethyl propionate, phosphoric acid triester, trimethoxymethane, dioxolane, diethyl ether, sulfolane, 3-methyl-2-oxazolidinone, tetrahydrofuran, There are non-aqueous solvents such as 1,2-diethoxyethane, chloroethylene carbonate, chloropropylene carbonate and the like. Other solvents may be used as long as they do not decompose on the positive electrode 107 or the negative electrode 108 incorporated in
  • the electrolyte LiPF 6, LiBF 4, LiClO 4, LiCF 3 SO 3, LiCF 3 CO 2, LiAsF 6, LiSbF 6 or imide lithium salts represented by lithium trifluoromethane sulfonimide in Formula, LiNSO 2 F
  • lithium salts such as Li (NSO 2 ) 2 .
  • LiB (CN) 4 can also be used.
  • a non-aqueous electrolytic solution obtained by dissolving these salts in the above-described solvent can be used as a battery electrolytic solution.
  • Other electrolytes may be used as long as they do not decompose on the positive electrode 107 or the negative electrode 108 incorporated in the battery of the present invention.
  • an ionic liquid is selected and electrolyzed on the condition that it does not react with the flame retardant of the present invention (formula 1 described later) or does not react with the phosphorus compound contained in the flame retardant. It can be used instead of liquid.
  • 1-ethyl-3-methylimidazole tetrafluoroborate EMI-BF 4
  • lithium salt LiN SO 2 CF 3 ) 2
  • LiTFSI lithium salt LiN (SO 2 CF 3 ) 2
  • triglyme and tetraglyme mixed complex
  • cyclic quaternary ammonium cation N—
  • a combination that does not decompose at the positive electrode and the negative electrode is selected from the methyl-N-propylpyrrolidinium and imide anions (exemplified by bis (fluorsulfonyl) imide) and used for the lithium ion battery of the present invention.
  • the flame retardant of the present invention is dissolved in these ionic liquids.
  • an ion conductive polymer such as ethylene oxide, acrylonitrile, polyvinylidene fluoride, methyl methacrylate, or hexafluoropropylene polyethylene oxide can be used as the electrolyte.
  • ethylene oxide, acrylonitrile, polyvinylidene fluoride, methyl methacrylate, or hexafluoropropylene polyethylene oxide can be used as the electrolyte.
  • These can be impregnated with the flame retardant or electrolytic solution of the present invention and used as a gel electrolyte.
  • the liquid injection port 106 of the lithium ion battery shown in FIG. 1 is installed on the upper surface of the lid 103. It is also possible to add a safety mechanism to the liquid injection port 106. As a safety mechanism, a pressure valve for releasing the pressure inside the battery container may be provided.
  • the flame retardant for lithium ion secondary battery in one embodiment of the present invention is a flame retardant for lithium ion secondary battery containing a compound having phosphorus as a ligand, and any of Cu, Ag, Fe, Ru, and Pt A flame retardant for a lithium ion secondary battery containing at least one of them and a halogen element.
  • a flame retardant for a lithium ion secondary battery containing a compound of (formula 1) or a compound of (formula 2) having the following phosphorus as a ligand is held or added to the battery.
  • R 1 , R 2 and R 3 in (Formula 1) and (Formula 2) are each directly bonded to a P atom and may be the same or different from each other, and may be the same or different from each other, a linear or branched alkyl group or alkoxy group It is.
  • X in the corners (Formula 1) and (Formula 2) is a halogen element.
  • M in (Formula 1) is at least one of Cu, Ag, Fe, Ru, and Pt.
  • a flame retardant for a lithium ion battery it may be composed of only the above compound (Formula 1) or (Formula 2), but may contain other materials. Only one of the compound of (Formula 1) or the compound of (Formula 2) may be included in the flame retardant for lithium ion batteries, and the compound of (Formula 1) and (Formula 2) may be included in the flame retardant for lithium ion batteries. ) May be included.
  • the flame retardant for a lithium ion battery may contain one or more compounds of (Formula 1), or may contain one or more compounds of (Formula 2).
  • R 1 , R 2 , and R 3 are preferably CH 3 O.
  • the molecular weight of the flame-retardant gas R 1 R 2 R 3 P generated after decomposition of (Formula 1) is minimized, that is, trimethyl phosphite, (CH 3 O) 3 P is generated, so the P content Is the maximum. Therefore, oxygen in the vicinity of the electrolytic solution 113 can be captured and the oxygen concentration can be effectively reduced. Furthermore, when the flame retardant captures oxygen, the amount of heat generated by the combustion of R 1 , R 2 , and R 3 can be minimized, so that the combustion heat of the electrolytic solution 113 can be reduced.
  • the amount of the flame retardant for the lithium ion secondary battery is 10 with respect to the weight of the electrolytic solution. If it is set to not less than 100% by weight, particularly not less than 20% by weight, oxygen desorption from the positive electrode 107 (generally 200 to 300 ° C.) is effectively suppressed and thermal runaway of the battery is avoided. It becomes possible. Since the weight energy density of the battery decreases as the amount of the flame retardant added increases, the weight energy density of the battery does not significantly decrease if the amount added is 20 wt% or more and 40 wt% or less with respect to the weight of the electrolyte.
  • the purpose of suppressing thermal runaway of the battery can be achieved. If the addition amount is 40 wt% or more and 100 wt% or less, the battery temperature becomes close to the shutdown temperature (130 to 135 ° C.) of the polyolefin separator, and the temperature rise of the battery can be suppressed more effectively. Become.
  • polyfluorinated ethylene particles and (CH 3 O) 3 PCuI powder were mixed, and a pellet-shaped porous plate containing a flame retardant was prepared using a tablet molding machine. Before attaching the battery lid to the can, it was placed on the electrode group and the battery lid was attached to the can. No difference was found in the maximum battery temperature (Table 1) described later. Since this method prevents the (CH 3 O) 3 PCul powder from being unevenly distributed due to gravity by tilting the battery, it is effective when the battery is placed horizontally. If an insulating sheet is laid on the electrode, an electron conductive material such as porous carbon or porous metal (foamed nickel) can be used.
  • an electron conductive material such as porous carbon or porous metal (foamed nickel) can be used.
  • the flame retardant in one embodiment of the present invention may be applied to the separator surface or held in a part of the pores.
  • LiNi 1/3 Mn 1/3 Co 1/3 O 2 was used as the positive electrode active material
  • PVDF polyvinylidene fluoride
  • carbon black was used as the conductive agent.
  • a binder previously dissolved in 1-methyl-2-pyrrolidone (hereinafter referred to as NMP) was used.
  • the weight composition of the positive electrode active material was 85%, the weight composition of the binder was 8%, and the weight composition of the conductive agent was 7%.
  • NMP 1-methyl-2-pyrrolidone
  • a negative electrode active material graphite powder having an average particle diameter of 10 ⁇ m in which the graphite layer interval d 002 obtained from the (002) plane X-ray diffraction peak is in the range of 0.35 to 0.36 nm, carbon black as a conductive agent, and as a binder Polyvinylidene fluoride was used.
  • the binder 1-methyl-2-pyrrolidone was used as a polyvinylidene fluoride solvent.
  • the weight composition of the negative electrode active material, the conductive agent, and the binder was 93: 2: 5.
  • the slurry was applied to a negative electrode current collector made of a copper foil having a thickness of 10 ⁇ m, and the solvent was evaporated to dry the negative electrode 108.
  • a blade coater was used for coating the negative electrode 108.
  • An electrolytic solution 113 in which LiPF 6 was dissolved in a 1: 1: 1 volume mixed solvent of ethylene carbonate, dimethyl carbonate, and ethyl methyl carbonate to a concentration of 1 mol / liter was used.
  • an electrolytic solution 113 composed of an electrolyte and a non-aqueous solvent was dropped from the liquid inlet 106 and filled with 70 ml of the electrolytic solution 113.
  • the amount of the electrolyte is equivalent to 50 to 100% of the total volume of the positive electrode, negative electrode, and separator, the surface of the electrode and separator and the pores are sufficiently distributed, resulting in good battery characteristics. Can be obtained.
  • the compound in the flame retardant for lithium ion batteries used in this example is (CH 3 O) 3 PCuI described in the column of Example 1 in Table 1.
  • halogen X was iodine.
  • the purity of the compound was 98% or more
  • (CH 3 O) 3 PCuI powder was passed through a sieve in an argon glove box so that the particle size range was 1 ⁇ m to 50 ⁇ m.
  • the addition amount of the flame retardant for lithium ion battery of the present invention was a weight ratio with respect to the weight of the electrolyte described later, and the values are shown in Table 1.
  • six types of batteries having different addition amounts with respect to the weight of the electrolytic solution were manufactured using the compounds shown in Table 1 (Formula 1).
  • Respective batteries are designated as B11, B12, B13, B14, B15, and B16.
  • the rated capacity is 10 Ah.
  • Initial aging was performed to obtain the rated capacity. The condition is that charging is first performed at a charging current of 5 A until the battery voltage reaches 4.2 V, and after reaching 4.2 V, charging is performed until the current decreases to 0.1 A while maintaining 4.2 V. Continued. Next, after 30 minutes of rest, discharging was performed at a discharge current of 5 A until the battery voltage reached 2.5V. This was repeated three times to obtain a capacity of 9.97-9.98 Ah.
  • each battery was recharged to the same capacity to a charge depth of 100%. From that state, a ⁇ 3 mm iron nail was pierced on the side of the battery. The moving speed of the nail was 1 mm / second. Using a thermocouple affixed to the side of the battery, the nail started to pierce the battery container, and the time change of the side temperature of the battery was measured. The maximum value of the battery temperature in the course of this test is shown in the “maximum temperature” column of Table 1. Regarding the batteries of this example, none of the batteries burst or ignited. The maximum temperature of the battery of this example tended to decrease as the amount of (CH 3 O) 3 PCuI increased. That is, it was shown that the amount of trimethyl phosphite released increases, and has an effect of suppressing the temperature rise of the battery.
  • Example 1 a battery B51 that does not use the flame retardant for lithium ion secondary battery of the present invention was produced. Initial aging was performed under the same conditions as in Example 1. Thereafter, a nail penetration test was performed under the same conditions. When the flame retardant for lithium ion secondary battery of the present invention was not used, the maximum temperature of the battery increased.
  • the flame retardant for lithium ion secondary batteries of the present invention is considered to function by the following mechanism.
  • the positive electrode 107 and the negative electrode 108 are short-circuited, and the temperature rises locally. At that time, oxygen is desorbed from the positive electrode 107.
  • (CH 3 O) 3 PCuI decomposes into trimethyl phosphite and CuI depending on the temperature. Trimethyl phosphite reacts with oxygen desorbed from the positive electrode 107 to capture oxygen.
  • trimethyl phosphite is directly oxidized by oxygen desorbed from the positive electrode 107. Therefore, by any reaction route, oxygen desorbed from the positive electrode 107 is removed from the inside of the battery, so that it is possible to prevent the combustion reaction of the flammable carbonate.
  • the compound of (Formula 1) in Example 1 was changed to the compound of (Formula 2) to produce 5 types of batteries.
  • the compound is [(CH 3 O) 5 ] PFeI.
  • a material having a higher ratio of trimethyl phosphite per unit weight is used.
  • Example 1 The initial aging was performed under the same conditions as in Example 1. Thereafter, the battery was charged to 4.2 V and a nail penetration test was conducted. The maximum battery temperature during the nail penetration test is shown in Table 1.
  • Example 1 the maximum temperature of the battery decreased as the amount of the flame retardant for the lithium ion secondary battery increased. Compared with Example 1, even in the same addition amount, a lower temperature was obtained in this Example. This is probably because the ratio of trimethyl phosphite contained per unit weight of [(CH 3 O) 3 P] 5 FeI is high.
  • Example 1 Compared with Example 1, the maximum temperature of the battery tended to decrease when bromine was replaced by iodine, chlorine by bromine, and chlorine by fluorine. This is presumably because the proportion of trimethyl phosphite contained in the compound per unit weight increases as the halogen atomic weight decreases.
  • Example 2 Compared with Example 2, the maximum temperature of the battery tended to decrease when bromine was replaced by iodine, chlorine by bromine, and fluorine by chlorine. This is presumably because the proportion of trimethyl phosphite contained in the compound per unit weight increases as the halogen atomic weight decreases. Moreover, compared with Example 3, since the compound of the present Example contained trimethyl phosphite at a higher ratio, the temperature was lower. This result is similar to the difference between Example 1 and Example 2.
  • FIG. 2 shows the battery system of the present invention in which the lithium ion secondary batteries 201a and 201b are connected in series.
  • Each of the lithium ion secondary batteries 201 a and 201 b has an electrode group having the same specifications including a positive electrode 207, a negative electrode 208, and a separator 209, and is housed in a battery container 202.
  • a battery lid 203 having a positive external terminal 204 and a negative external terminal 205 is provided on the upper part of the battery container 202.
  • An insulating seal member 212 is inserted between each external terminal and the battery lid 203 so that the external terminals are not short-circuited.
  • components corresponding to the positive electrode lead wire 110 and the negative electrode lead wire 111 in FIG. 1 are omitted, but the internal structure of the lithium ion secondary batteries 201a and 201b is the same as that in FIG.
  • the negative external terminal 205 of the lithium ion secondary battery 201 a is connected to the negative input terminal of the charging controller 216 by the power cable 213.
  • the positive external terminal 204 of the lithium ion secondary battery 201a is connected to the negative external terminal 205 of the lithium ion secondary battery 201b via the power cable 214.
  • the positive external terminal 204 of the lithium ion secondary battery 201 b is connected to the positive input terminal of the charging controller 216 by the power cable 215.
  • the two lithium ion secondary batteries 201a and 201b can be charged or discharged.
  • the lithium ion secondary batteries are connected in series as shown in FIG. 2, but they may be connected in parallel. Moreover, the number of batteries is arbitrary.
  • the charge / discharge controller 216 exchanges power with an externally installed device (hereinafter referred to as an external device) 219 via the power cable 217 and the power cable 218.
  • the external device 219 includes various electric devices such as an external power source and a regenerative motor for supplying power to the charge / discharge controller 216, and an inverter, a converter, and a load that supply power from the system.
  • An inverter or the like may be provided in accordance with the type of AC or DC that the external device 219 supports. As these devices, known devices can be arbitrarily applied.
  • a power generator 222 that simulates the operating conditions of a wind power generator was installed as a device that generates renewable energy, and was connected to the charge / discharge controller 216 via the power cable 220 and the power cable 221.
  • the charge / discharge controller 216 shifts to the charge mode, supplies power to the external device 219, and charges surplus power to the lithium ion secondary battery 201a and the lithium ion battery secondary 201b.
  • the charge / discharge controller 216 operates to discharge the lithium ion secondary battery 201a and the lithium ion secondary battery 201b.
  • the power generation device 222 can be replaced with another power generation device, that is, any device such as a solar cell, a geothermal power generation device, a fuel cell, or a gas turbine generator.
  • the charge / discharge controller 216 stores a program that can be automatically operated so as to perform the above-described operation.
  • the lithium ion secondary battery 201a and the lithium ion secondary battery 201b are normally charged so that a rated capacity can be obtained. For example, constant voltage charging with the voltage of each battery held at 4.2 V can be performed for 0.5 to 2 hours at a charging current of 1 hour rate. Since the charging conditions are determined by the design of the material and amount of use of the lithium ion battery, the conditions are optimal for each battery specification.
  • the charge / discharge controller 216 After charging the lithium ion secondary battery 201a and the lithium ion secondary battery 201b, the charge / discharge controller 216 is switched to the discharge mode to discharge each battery. Normally, the discharge was stopped when the battery voltage reached a certain lower limit, and the lower limit was set to 2.5 V in this example.
  • the external device 219 supplies power during charging and consumes power during discharging.
  • charging is performed at a 2-hour rate, and discharging is performed at a 1-hour rate.
  • the initial discharge capacity was determined.
  • a capacity of 99.5 to 100% of the designed capacity 50Ah of each lithium ion secondary battery 201a, 201b was obtained.
  • the charge / discharge cycle test described below was conducted under the condition of the environmental temperature of 20 to 30 ° C.
  • charging is performed at a current of 2 hours (25 A), and when the depth of charge reaches 50% (25 Ah charged state), a 5 second pulse is charged in the charging direction and a 5 second pulse is discharged in the discharging direction.
  • a pulse test was performed to simulate the acceptance of power from the power generation device 222 and the supply of power to the external device 219. The magnitude of the current pulse was 150A for both.
  • the remaining capacity 25Ah was charged with a current (25A) at a rate of 2 hours until the voltage of each battery reached 4.2V, and after constant voltage charging for 1 hour at that voltage, the charging was terminated. . Thereafter, the voltage of each battery was discharged to 2.5 V at a current of 1 hour rate (50 A).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)

Abstract

To improve the safety of a lithium ion secondary battery. A flame retardant for lithium ion secondary batteries, which contains a compound that has phosphorus as a ligand, and wherein one or more elements selected from among Cu, Ag, Fe, Ru and Pt and a halogen element are contained in the compound and the halogen element is, for example, fluorine. In cases where an electrolyte solution for lithium ion secondary batteries contains this flame retardant for lithium ion secondary batteries, the amount of the compound added is 10% by weight or more relative to the weight of the electrolyte solution for lithium ion secondary batteries.

Description

リチウムイオン二次電池用難燃剤、リチウムイオン二次電池用電解液、リチウムイオン二次電池、リチウムイオン二次電池を利用した電源または機器システムFlame retardant for lithium ion secondary battery, electrolyte solution for lithium ion secondary battery, lithium ion secondary battery, power supply or equipment system using lithium ion secondary battery
 本発明は、リチウムイオン二次電池用難燃剤、リチウムイオン二次電池用電解液、リチウムイオン二次電池、およびリチウムイオン二次電池を利用した電源または機器システムに関する。 The present invention relates to a flame retardant for a lithium ion secondary battery, an electrolyte for a lithium ion secondary battery, a lithium ion secondary battery, and a power source or an equipment system using the lithium ion secondary battery.
 リチウムイオン二次電池(またはリチウム二次電池と呼ばれる。)は、高いエネルギー密度を有し、電気自動車用や電力貯蔵用の電池として注目されている。特に、電気自動車では、エンジンを搭載しないゼロエミッション電気自動車、エンジンと二次電池の両方を搭載したハイブリッド電気自動車、さらには系統電力から直接充電させるプラグインハイブリッド電気自動車がある。また、電力を貯蔵し、電力系統が遮断された非常時に電力を供給する定置式電力貯蔵システムとしての用途も期待されている。 Lithium ion secondary batteries (or called lithium secondary batteries) have high energy density and are attracting attention as batteries for electric vehicles and power storage. In particular, as electric vehicles, there are zero-emission electric vehicles that are not equipped with an engine, hybrid electric vehicles that are equipped with both an engine and a secondary battery, and plug-in hybrid electric vehicles that are directly charged from system power. In addition, it is expected to be used as a stationary power storage system that stores power and supplies power in an emergency when the power system is cut off.
 このような多様な用途に対し、高いエネルギー密度を有するリチウムイオン電池が期待されている。その半面、エネルギー密度の増大によって、電池の安全設計がますます難しくなり、より高度な技術が要求されている。その一つが、電解液の燃焼抑制技術である。リチウムイオン電池に用いられている電解液が、電池の安全性をすべて決定付けている訳でないが、それが可燃性であるゆえに、電解液の燃焼反応を抑制して、電池の安全性を高めたいという要望がある。 For such various uses, lithium ion batteries having high energy density are expected. On the other hand, with the increase in energy density, the safety design of batteries becomes more and more difficult, and more advanced technology is required. One of them is the electrolyte combustion suppression technology. The electrolyte used in the lithium ion battery does not completely determine the safety of the battery, but because it is flammable, it suppresses the combustion reaction of the electrolyte and improves the safety of the battery. There is a desire to want.
 電解液を難燃化する添加剤として亜リン酸トリメチルがあり、以下のような技術が公開されている。特許文献1と特許文献2は、亜リン酸エステルを添加した電解液により電池を安全にする技術を開示している。 There is trimethyl phosphite as an additive for making the electrolyte solution flame-retardant, and the following technologies are disclosed. Patent Document 1 and Patent Document 2 disclose a technique for making a battery safe with an electrolytic solution to which a phosphite is added.
特開2010-282906号公報JP 2010-282906 A 特開2011-165606号公報JP 2011-165606 A
 リチウムイオン二次電池に含まれる電解液は可燃性成分を含むため、電解液が燃焼することがある。電解液の難燃剤として特許文献1および2に記載の亜リン酸トリメチルがあるが、亜リン酸トリメチルは電解液中で転移反応を起こすため、リチウムイオン二次電池の安全性を確保することが難しい。本発明は、リチウムイオン二次電池の安全性を向上させることである。 Since the electrolyte contained in the lithium ion secondary battery contains a combustible component, the electrolyte may burn. Although there is trimethyl phosphite described in Patent Documents 1 and 2 as a flame retardant for the electrolytic solution, trimethyl phosphite causes a transfer reaction in the electrolytic solution, so that the safety of the lithium ion secondary battery can be ensured. difficult. This invention is improving the safety | security of a lithium ion secondary battery.
 リンを配位子とした化合物を含むリチウムイオン二次電池用難燃剤であって、化合物にCu、Ag、Fe、Ru、Ptのいずれか一つ以上およびハロゲン元素が含まれるリチウムイオン二次電池用難燃剤。 A flame retardant for a lithium ion secondary battery containing a compound having phosphorus as a ligand, wherein the compound contains one or more of Cu, Ag, Fe, Ru, Pt and a halogen element Flame retardant.
 本発明により、リチウムイオン二次電池の安全性を向上できる。上記した以外の課題、構成及び効果は以下の実施形態の説明により明らかにされる。 According to the present invention, the safety of the lithium ion secondary battery can be improved. Problems, configurations, and effects other than those described above will be clarified by the following description of embodiments.
本発明のリチウムイオン二次電池の断面構造を示す。The cross-sectional structure of the lithium ion secondary battery of this invention is shown. 本発明の電池システムを示す。1 shows a battery system of the present invention.
 以下、図面等を用いて、本発明の実施形態について説明する。以下の説明は本発明の内容の具体例を示すものであり、本発明がこれらの説明に限定されるものではなく、本明細書に開示される技術的思想の範囲内において当業者による様々な変更および修正が可能である。また、本発明を説明するための全図において、同一の機能を有するものは、同一の符号を付け、その繰り返しの説明は省略する場合がある。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The following description shows specific examples of the contents of the present invention, and the present invention is not limited to these descriptions. Various modifications by those skilled in the art are within the scope of the technical idea disclosed in this specification. Changes and modifications are possible. In all the drawings for explaining the present invention, components having the same function are denoted by the same reference numerals, and repeated description thereof may be omitted.
 <リチウムイオン二次電池の構造>
 図1は、リチウムイオン二次電池101の内部構造を模式的に示している。リチウムイオン二次電池101とは、非水電解質中における電極へのイオンの吸蔵・放出により、電気エネルギーを貯蔵・利用可能とする電気化学デバイスの総称である。本実施例では、リチウムイオン二次電池を代表例として説明する。
<Structure of lithium ion secondary battery>
FIG. 1 schematically shows the internal structure of the lithium ion secondary battery 101. The lithium ion secondary battery 101 is a general term for an electrochemical device that can store and use electrical energy by occluding and releasing ions to and from an electrode in a non-aqueous electrolyte. In this example, a lithium ion secondary battery will be described as a representative example.
 図1のリチウムイオン二次電池101において、正極107、負極108、および両電極の間に挿入されたセパレータ109からなる電極群を、電池容器102に密閉状態にて収納されている。電池容器102の上部に蓋103があり、その蓋103に正極外部端子104、負極外部端子105、注液口106を有する。電池容器102に電極群を収納した後に、蓋103を電池容器102に被せ、蓋103の外周を溶接して電池容器102と一体になっている。電池容器102への蓋103の取り付けには、溶接の他に、かしめ、接着などの他の方法を採ることができる。 In the lithium ion secondary battery 101 of FIG. 1, an electrode group including a positive electrode 107, a negative electrode 108, and a separator 109 inserted between both electrodes is housed in a battery container 102 in a sealed state. A lid 103 is provided on the upper part of the battery container 102, and the lid 103 has a positive external terminal 104, a negative external terminal 105, and a liquid inlet 106. After the electrode group is stored in the battery container 102, the lid 103 is put on the battery container 102, and the outer periphery of the lid 103 is welded to be integrated with the battery container 102. For attachment of the lid 103 to the battery container 102, other methods such as caulking and bonding can be employed in addition to welding.
 <正極107の作製>
 正極107は、正極合剤層、正極集電体から構成される。正極合剤層は、正極活物質、必要に応じて導電剤、バインダから構成される。その正極活物質を例示すると、LiCoO2、LiNiO2、LiMn24が代表例である。他に、LiMnO3、LiMn23、LiMnO2、Li4Mn512、LiMn2-xx2(ただし、M=Co、Ni、Fe、Cr、Zn、Taであって、x=0.01~0.2)、Li2Mn3MO8(ただし、M=Fe、Co、Ni、Cu、Zn)、  Li1-xAxMn24(ただし、A=Mg、Ba、B、Al、Fe、Co、Ni、Cr、Zn、Caであって、x=0.01~0.1)、LiNi1-xMxO2(ただし、M=Co、Fe、Ga、x=0.01~0.2)、LiFeO2、Fe2(SO43、LiCo1-xx2(ただし、M=Ni、Fe、Mnであって、x=0.01~0.2)、LiNi1-xx2(ただし、M=Mn、Fe、Co、Al、Ga、Ca、Mgであって、x=0.01~0.2)、Fe(MoO43、FeF3、LiFePO4、LiMnPO4などを列挙することができる。本発明は正極材料に何ら制約を受けないので、これらの材料に限定されない。
<Preparation of Positive Electrode 107>
The positive electrode 107 includes a positive electrode mixture layer and a positive electrode current collector. The positive electrode mixture layer is composed of a positive electrode active material, and if necessary, a conductive agent and a binder. Illustrative examples of the positive electrode active material include LiCoO 2 , LiNiO 2 , and LiMn 2 O 4 . In addition, LiMnO 3 , LiMn 2 O 3 , LiMnO 2 , Li 4 Mn 5 O 12 , LiMn 2−x M x O 2 (where M = Co, Ni, Fe, Cr, Zn, Ta, = 0.01-0.2), Li 2 Mn 3 MO 8 (where M = Fe, Co, Ni, Cu, Zn), Li 1-x AxMn 2 O 4 (where A = Mg, Ba, B) , Al, Fe, Co, Ni, Cr, Zn, Ca, where x = 0.01 to 0.1), LiNi 1-x MxO 2 (where M = Co, Fe, Ga, x = 0. 01 to 0.2), LiFeO 2 , Fe 2 (SO 4 ) 3 , LiCo 1-x M x O 2 (where M = Ni, Fe, Mn, and x = 0.01 to 0.2) , LiNi 1-x M x O 2 (where M = Mn, Fe, Co, Al, Ga, Ca, Mg, x = 0.01 to 0.2), Fe ( MoO 4 ) 3 , FeF 3 , LiFePO 4 , LiMnPO 4 and the like can be listed. Since the present invention is not limited to the positive electrode material, it is not limited to these materials.
 正極活物質の粒径は、正極合剤層の厚さ以下になるように規定される。正極活物質粉末中に正極合剤層厚さ以上のサイズを有する粗粒がある場合、予めふるい分級、風流分級などにより粗粒を除去し、正極合剤層厚さ以下の粒子を作製する。 The particle size of the positive electrode active material is specified to be equal to or less than the thickness of the positive electrode mixture layer. When there are coarse particles having a size equal to or larger than the thickness of the positive electrode mixture layer in the positive electrode active material powder, the coarse particles are removed in advance by sieving classification, wind classification or the like, and particles having a thickness of the positive electrode mixture layer or less are prepared.
 正極活物質は粉体であるので、正極にするために粉体の粒子同士を結合させるためのバインダが必要である。また、正極活物質が酸化物であるとき、一般に酸化物の導電性が低いので、炭素粉末を加えて酸化物粒子間の導電性を高める。 Since the positive electrode active material is a powder, a binder for bonding the particles of the powder is necessary to form a positive electrode. In addition, when the positive electrode active material is an oxide, the conductivity of the oxide is generally low, so carbon powder is added to increase the conductivity between the oxide particles.
 正極活物質の混合比(重量百分率表示)は80~95重量%、導電剤は3~15重量%、バインダは1~10重量%になるように、正極活物質と導電剤とバインダを配合する。導電性を十分に発揮させ、大電流の充放電を可能にするために、導電剤の混合比を5重量%以上にすることが望ましい。正極全体の抵抗が小さくなり、大電流を流してもオーム損失が小さくなるからである。逆に、電池のエネルギー密度を高める場合は、正極活物質の混合比を85~95重量%の高い範囲にすることが望ましい。 The positive electrode active material, the conductive agent and the binder are blended so that the mixing ratio (weight percentage display) of the positive electrode active material is 80 to 95% by weight, the conductive agent is 3 to 15% by weight, and the binder is 1 to 10% by weight. . In order to sufficiently exhibit electrical conductivity and enable charging / discharging of a large current, it is desirable that the mixing ratio of the conductive agent is 5% by weight or more. This is because the resistance of the entire positive electrode is reduced and the ohmic loss is reduced even when a large current is passed. Conversely, when increasing the energy density of the battery, the mixing ratio of the positive electrode active material is desirably in the high range of 85 to 95% by weight.
 導電剤には、黒鉛、非晶質炭素、易黒鉛化炭素、デンカブラックなどのカーボンブラック、活性炭、炭素繊維、カーボンナノチューブなどの公知の材料を用いることができる。導電性繊維は、気相成長炭素、またはピッチ(石油、石炭、コールタールなどの副生成物)を原料に高温で炭化して製造した繊維、アクリル繊維(Polyacrylonitrile)から製造した炭素繊維などがある。また、正極の充放電電位(通常は2.5~4.3Vである。)にて酸化溶解しない材料であり、正極活物質よりも電気抵抗の低い金属材料、例えばチタン、金等の耐食性金属、SiCやWCなどのカーバイド、Si34、BNなどの窒化物からなる繊維を用いても良い。製造方法は溶融法、化学気相成長法など既存の製法を利用することができる。 As the conductive agent, known materials such as carbon black such as graphite, amorphous carbon, graphitizable carbon, and Denka black, activated carbon, carbon fiber, and carbon nanotube can be used. Examples of the conductive fiber include vapor-grown carbon, fiber produced by carbonizing pitch (by-products such as petroleum, coal, coal tar, etc.) as a raw material at high temperature, carbon fiber produced from acrylic fiber (polyacrylonitrile), and the like. . In addition, it is a material that does not oxidize and dissolve at the charge / discharge potential of the positive electrode (usually 2.5 to 4.3 V), and has a lower electrical resistance than the positive electrode active material, such as a corrosion-resistant metal such as titanium or gold. Alternatively, a fiber made of carbide such as SiC or WC, or a nitride such as Si 3 N 4 or BN may be used. As a manufacturing method, an existing manufacturing method such as a melting method or a chemical vapor deposition method can be used.
 正極集電体には、厚さが10~100μmのアルミニウム箔、厚さが10~100μm、孔径0.1~10mmのアルミニウム製穿孔箔、エキスパンドメタル、発泡金属板などが用いられ、材質もアルミニウムの他に、ステンレス鋼、チタンなども適用可能である。本発明では、材質、形状、製造方法などに制限されることなく、任意の集電体を使用することができる。 For the positive electrode current collector, an aluminum foil having a thickness of 10 to 100 μm, an aluminum perforated foil having a thickness of 10 to 100 μm and a hole diameter of 0.1 to 10 mm, an expanded metal, a foam metal plate, etc. are used. In addition, stainless steel, titanium and the like are also applicable. In the present invention, any current collector can be used without being limited by the material, shape, manufacturing method and the like.
 正極107の塗布には、ドクターブレード法、ディッピング法、スプレー法などの既知の製法を採ることができ、手段に制限はない。また、スラリを集電体へ付着させた後、有機溶媒を乾燥し、ロールプレスによって正極を加圧成形することにより、正極107を作製することができる。また、塗布から乾燥までを複数回おこなうことにより、複数の合剤層を集電体に積層化させることも可能である。 For the application of the positive electrode 107, a known production method such as a doctor blade method, a dipping method, or a spray method can be adopted, and there is no limitation on the means. In addition, after the slurry is attached to the current collector, the organic solvent is dried, and the positive electrode is pressure-formed by a roll press, whereby the positive electrode 107 can be manufactured. Moreover, it is also possible to laminate a plurality of mixture layers on a current collector by performing a plurality of times from application to drying.
 <負極108の作製>
 負極108は、負極合剤層、負極集電体から構成される。負極合剤層は、主に負極活物質とバインダから構成され、必要に応じて導電剤が添加される場合がある。負極の作製方法を説明する。
<Preparation of negative electrode 108>
The negative electrode 108 includes a negative electrode mixture layer and a negative electrode current collector. The negative electrode mixture layer is mainly composed of a negative electrode active material and a binder, and a conductive agent may be added as necessary. A method for manufacturing the negative electrode will be described.
 負極活物質は、例えば、グラフェン構造を有する炭素材料である。すなわち、リチウムイオンを電気化学的に吸蔵・放出可能な天然黒鉛、人造黒鉛、メソフェ-ズ炭素、膨張黒鉛、炭素繊維、気相成長法炭素繊維、ピッチ系炭素質材料、ニードルコークス、石油コークス、ポリアクリロニトリル系炭素繊維、カーボンブラックのなどの炭素質材料、あるいは5員環または6員環の環式炭化水素または環式含酸素有機化合物を熱分解によって合成した非晶質炭素材料、などが利用可能である。黒鉛、易黒鉛化炭素、難黒鉛化炭素等の材料の混合負極、または前記炭素材料に前記金属または前記合金の混合負極または複合負極であっても、本発明を実施する上で障害はない。本発明では負極活物質に特に制限がなく、上述の材料以外でも利用可能である。 The negative electrode active material is, for example, a carbon material having a graphene structure. That is, natural graphite, artificial graphite, mesophase carbon, expanded graphite, carbon fiber, vapor grown carbon fiber, pitch-based carbonaceous material, needle coke, petroleum coke that can occlude and release lithium ions electrochemically, Uses carbonaceous materials such as polyacrylonitrile-based carbon fiber and carbon black, or amorphous carbon materials synthesized by thermal decomposition of 5-membered or 6-membered cyclic hydrocarbons or cyclic oxygen-containing organic compounds. Is possible. Even if it is a mixed negative electrode of a material such as graphite, graphitizable carbon, non-graphitizable carbon, or a mixed negative electrode or a composite negative electrode of the metal or the alloy as the carbon material, there is no obstacle to carrying out the present invention. In this invention, there is no restriction | limiting in particular in a negative electrode active material, It can utilize other than the above-mentioned material.
 ポリアセン、ポリパラフェニレン、ポリアニリン、ポリアセチレンからなる導電性高分子材料も、負極108に用いることができる。これらの材料と黒鉛、易黒鉛化炭素、難黒鉛化炭素等のグラフェン構造を有する炭素材料と組み合わせることができる。 A conductive polymer material made of polyacene, polyparaphenylene, polyaniline, or polyacetylene can also be used for the negative electrode 108. These materials can be combined with a carbon material having a graphene structure such as graphite, graphitizable carbon, and non-graphitizable carbon.
 本発明の一実施形態で使用可能な負極活物質は、リチウムと合金化するアルミニウム、シリコン、スズなどがあり、さらに、リチウムイオンを電気化学的に吸蔵・放出可能な黒鉛や非晶質炭素からなる炭素質材料などもある。本発明では負極活物質に特に制限がなく、上述の材料以外でも利用可能である。 Examples of the negative electrode active material that can be used in an embodiment of the present invention include aluminum, silicon, and tin that are alloyed with lithium, and further, from graphite or amorphous carbon that can electrochemically occlude and release lithium ions. There are also carbonaceous materials. In this invention, there is no restriction | limiting in particular in a negative electrode active material, It can utilize other than the above-mentioned material.
 上述で作製した負極活物質と本発明の一実施形態に係るバインダからなる混合物に溶媒を添加し、十分に混練または分散させて、スラリを調製する。溶媒は、有機溶媒、水などであって、本発明のバインダを変質させないものであれば、任意に選択することができる。 A slurry is prepared by adding a solvent to a mixture composed of the negative electrode active material prepared above and the binder according to one embodiment of the present invention, and sufficiently kneading or dispersing the mixture. The solvent can be arbitrarily selected as long as it is an organic solvent, water or the like and does not alter the binder of the present invention.
 負極活物質とバインダの混合比は、重量比率で80:20~99:1の範囲が好適である。導電性を十分に発揮させ、大電流の充放電を可能にするために、上記重量組成は99:1に対し負極活物質比率の小さい値になるようにすることが望ましい。逆に、電池のエネルギー密度を高めるために、90:10よりも大きな負極活物質比率になるように、配合することが好適である。 The mixing ratio of the negative electrode active material and the binder is preferably in the range of 80:20 to 99: 1 by weight. In order to sufficiently exhibit electrical conductivity and enable charging / discharging of a large current, it is desirable that the weight composition has a value of a negative electrode active material ratio smaller than 99: 1. On the contrary, in order to increase the energy density of the battery, it is preferable to blend so as to have a negative electrode active material ratio larger than 90:10.
 導電剤は必要に応じて負極に添加される。例えば、大電流の充電または放電を行う場合に、少量の導電剤を添加して、負極の抵抗を下げることが望ましい。導電剤には、黒鉛、非晶質炭素、易黒鉛化炭素、カーボンブラック、活性炭、炭素繊維、カーボンナノチューブなどの公知の材料を用いることができる。導電性繊維は、気相成長炭素、またはピッチ(石油、石炭、コールタールなどの副生成物)を原料に高温で炭化して製造した繊維、アクリル繊維(Polyacrylonitrile)から製造した炭素繊維などがある。 Conductive agent is added to the negative electrode as necessary. For example, when charging or discharging a large current, it is desirable to add a small amount of a conductive agent to reduce the resistance of the negative electrode. As the conductive agent, known materials such as graphite, amorphous carbon, graphitizable carbon, carbon black, activated carbon, carbon fiber, and carbon nanotube can be used. Examples of the conductive fiber include vapor-grown carbon, fiber produced by carbonizing pitch (by-products such as petroleum, coal, coal tar, etc.) as a raw material at high temperature, carbon fiber produced from acrylic fiber (polyacrylonitrile), and the like. .
 上述のスラリは、負極集電体に塗布し、溶媒を蒸発させて乾燥することによって、負極108を製造する。負極集電体には、厚さが10~100μmの銅箔、厚さが10~100μm、孔径0.1~10mmの銅製穿孔箔、エキスパンドメタル、発泡金属板などが用いられ、材質も銅の他に、ステンレス鋼、チタンなども適用可能である。本発明では、材質、形状、製造方法などに制限されることなく、任意の集電体を使用することができる。 The above slurry is applied to the negative electrode current collector, and the negative electrode 108 is manufactured by evaporating the solvent and drying. For the negative electrode current collector, a copper foil having a thickness of 10 to 100 μm, a copper perforated foil having a thickness of 10 to 100 μm and a hole diameter of 0.1 to 10 mm, an expanded metal, a foam metal plate, etc. are used. In addition, stainless steel, titanium, and the like are also applicable. In the present invention, any current collector can be used without being limited by the material, shape, manufacturing method and the like.
 負極108の塗布には、ドクターブレード法、ディッピング法、スプレー法などの既知の製法を採ることができ、手段に制限はない。また、負極スラリを集電体へ付着させた後、溶媒を乾燥し、ロールプレスによって負極を加圧成形することにより、負極108を作製することができる。また、塗布から乾燥までを複数回おこなうことにより、複数の負極合剤層を集電体に積層化させることも可能である。 For the application of the negative electrode 108, a known production method such as a doctor blade method, a dipping method, or a spray method can be adopted, and there is no limitation on the means. In addition, after the negative electrode slurry is attached to the current collector, the solvent is dried, and the negative electrode is pressure-formed by a roll press, whereby the negative electrode 108 can be manufactured. Moreover, it is also possible to laminate | stack a several negative mix layer on a collector by performing from application | coating to drying in multiple times.
 <電池の作製>
 正極107または負極108の少なくとも一個以上を交互に重ね合わせて、正極107と負極108の間にセパレータ109を挿入し、正極107と負極108の短絡を防止する。正極107、負極108、セパレータ109で電極群が構成される。ポリエチレン、ポリプロピレンなどからなるポリオレフィン系高分子シート、あるいはポリオレフィン系高分子と4フッ化ポリエチレンを代表とするフッ素系高分子シートを溶着させた多層構造のセパレータ109などを使用することが可能である。電池温度が高くなったときにセパレータ109が収縮しないように、セパレータ109の表面にセラミックスとバインダの混合物を薄層状に形成しても良い。これらのセパレータ109は、電池の充放電時にリチウムイオンを透過させる必要があるため、一般に細孔径が0.01~10μm、気孔率が20~90%であれば、リチウムイオン二次電池101に使用可能である。
<Production of battery>
At least one of the positive electrode 107 and the negative electrode 108 is alternately stacked, and a separator 109 is inserted between the positive electrode 107 and the negative electrode 108 to prevent a short circuit between the positive electrode 107 and the negative electrode 108. The positive electrode 107, the negative electrode 108, and the separator 109 constitute an electrode group. It is possible to use a polyolefin polymer sheet made of polyethylene, polypropylene, or the like, or a separator 109 having a multilayer structure in which a polyolefin polymer and a fluorine polymer sheet typified by tetrafluoropolyethylene are welded. A mixture of ceramics and a binder may be formed in a thin layer on the surface of the separator 109 so that the separator 109 does not contract when the battery temperature increases. Since these separators 109 need to allow lithium ions to pass therethrough during charge and discharge of the battery, they are generally used for the lithium ion secondary battery 101 if the pore diameter is 0.01 to 10 μm and the porosity is 20 to 90%. Is possible.
 セパレータ109は、電極群の末端に配置されている電極と電池容器102の間にも挿入し、正極107と負極108が電池容器102を通じて短絡しないようにしている。セパレータ109と正極107、負極108の表面および細孔内部に、電解液113が保持されている。 The separator 109 is also inserted between the electrode disposed at the end of the electrode group and the battery container 102 so that the positive electrode 107 and the negative electrode 108 are not short-circuited through the battery container 102. Electrolytic solution 113 is held on the surfaces of separator 109, positive electrode 107, and negative electrode 108 and inside the pores.
 電極群の上部には、リード線を介して外部端子に電気的に接続されている。正極107は正極リード線110を介して正極外部端子104に接続されている。負極108は負極リード線111を介して負極外部端子105に接続されている。なお、正極リード線110と負極リード線111は、ワイヤ状、板状などの任意の形状を採ることができる。電流を流したときにオーム損失を小さくすることのできる構造であり、かつ電解液113と反応しない材質であれば、正極リード線110、負極リード線111の形状、材質は任意である。 The upper part of the electrode group is electrically connected to an external terminal via a lead wire. The positive electrode 107 is connected to the positive electrode external terminal 104 via the positive electrode lead wire 110. The negative electrode 108 is connected to the negative electrode external terminal 105 through the negative electrode lead wire 111. The positive electrode lead wire 110 and the negative electrode lead wire 111 can take any shape such as a wire shape or a plate shape. Any material can be used for the positive electrode lead 110 and the negative electrode lead 111 as long as it has a structure capable of reducing ohmic loss when a current is passed and does not react with the electrolytic solution 113.
 また、正極外部端子104または負極外部端子105と、電池容器102の間には絶縁性シール材料112を挿入し、両端子が短絡しないようにしている。絶縁性シール材料112にはフッ素樹脂、熱硬化性樹脂、ガラスハーメチックシールなどから選択することができ、電解液113と反応せず、かつ気密性に優れた任意の材質を使用することができる。 Further, an insulating sealing material 112 is inserted between the positive electrode external terminal 104 or the negative electrode external terminal 105 and the battery container 102 so that both terminals are not short-circuited. The insulating sealing material 112 can be selected from a fluororesin, a thermosetting resin, a glass hermetic seal, and the like, and any material that does not react with the electrolytic solution 113 and has excellent airtightness can be used.
 正極リード線110または負極リード線111の途中、あるいは正極リード線110と正極外部端子104の接続部、または負極リード線111と負極外部端子105の接続部に、正温度係数(PTC;Positive temperature coefficient)抵抗素子を利用した電流遮断機構を設けると、電池内部の温度が高くなったときに、リチウムイオン電池101の充放電を停止させ、電池を保護することが可能となる。なお、正極リード線110、負極リード線111は箔状、板状など、任意の形状にすることができる。 A positive temperature coefficient (PTC) is provided in the middle of the positive electrode lead wire 110 or the negative electrode lead wire 111, or at the connection portion between the positive electrode lead wire 110 and the positive electrode external terminal 104, or at the connection portion between the negative electrode lead wire 111 and the negative electrode external terminal 105. ) When a current interruption mechanism using a resistance element is provided, when the temperature inside the battery becomes high, charging / discharging of the lithium ion battery 101 can be stopped to protect the battery. Note that the positive electrode lead wire 110 and the negative electrode lead wire 111 can have any shape such as a foil shape or a plate shape.
 電極群の構造は、図1に示した短冊状電極の積層したもの、あるいは円筒状、扁平状などの任意の形状に捲回したものなど、種々の形状にすることができる。電池容器の形状は、電極群の形状に合わせ、円筒型、偏平長円形状、角型などの形状を選択してもよい。 The structure of the electrode group can be various shapes such as a stack of strip-shaped electrodes shown in FIG. 1, or a wound shape in an arbitrary shape such as a cylindrical shape or a flat shape. The shape of the battery container may be selected from shapes such as a cylindrical shape, a flat oval shape, and a square shape according to the shape of the electrode group.
 電池容器102の材質は、アルミニウム、ステンレス鋼、ニッケルメッキ鋼製など、非水電解質に対し耐食性のある材料から選択される。また、電池容器102を正極リード線110または負極リード線111に電気的に接続する場合は、非水電解質と接触している部分において、電池容器の腐食やリチウムイオンとの合金化による材料の変質が起こらないように、リード線の材料を選定する。 The material of the battery container 102 is selected from materials that are corrosion resistant to the non-aqueous electrolyte, such as aluminum, stainless steel, and nickel-plated steel. When the battery container 102 is electrically connected to the positive electrode lead wire 110 or the negative electrode lead wire 111, the material is altered by corrosion of the battery container or alloying with lithium ions in the portion in contact with the nonaqueous electrolyte. Select the lead wire material to prevent this from occurring.
 その後、蓋103を電池容器102に密着させ、電池全体を密閉する。電池を密閉する方法には、溶接、かしめなど公知の技術がある。 Thereafter, the lid 103 is brought into close contact with the battery container 102 and the whole battery is sealed. There are known techniques for sealing the battery, such as welding and caulking.
 <電解液113の作製>
 本発明で使用可能な電解液113の代表例として、エチレンカーボネートにジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネートなどを混合した溶媒に、電解質として六フッ化リン酸リチウム(LiPF6)、あるいはホウフッ化リチウム(LiBF4)を溶解させた溶液がある。本発明では、溶媒や電解質の種類、溶媒の混合比に制限されることなく、他の電解液も利用可能である。電解質は、ポリフッ化ビニリデン、ポリエチレンオキサイドなどのイオン伝導性高分子に含有させた状態で使用することも可能である。この場合は前記セパレータが不要となる。
<Preparation of Electrolytic Solution 113>
As a typical example of the electrolytic solution 113 that can be used in the present invention, a solvent in which dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, and the like are mixed in ethylene carbonate, lithium hexafluorophosphate (LiPF 6 ), or lithium borofluoride as an electrolyte is used. There is a solution in which (LiBF 4 ) is dissolved. In the present invention, other types of electrolytes can be used without being limited by the type of solvent or electrolyte and the mixing ratio of the solvents. The electrolyte can also be used in a state of being contained in an ion conductive polymer such as polyvinylidene fluoride and polyethylene oxide. In this case, the separator becomes unnecessary.
 なお、電解液113に使用可能な溶媒は、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、ビニレンカーボネート、γ-ブチロラクトン、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート、1、2-ジメトキシエタン、2-メチルテトラヒドロフラン、ジメチルスルフォキシド、1、3-ジオキソラン、ホルムアミド、ジメチルホルムアミド、プロピオン酸メチル、プロピオン酸エチル、リン酸トリエステル、トリメトキシメタン、ジオキソラン、ジエチルエーテル、スルホラン、3-メチル-2-オキサゾリジノン、テトラヒドロフラン、1、2-ジエトキシエタン、クロルエチレンカーボネート、クロルプロピレンカーボネートなどの非水溶媒がある。本発明の電池に内蔵される正極107あるいは負極108上で分解しなければ、これ以外の溶媒を用いても良い。 Solvents that can be used for the electrolytic solution 113 are propylene carbonate, ethylene carbonate, butylene carbonate, vinylene carbonate, γ-butyrolactone, dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, 1,2-dimethoxyethane, 2-methyltetrahydrofuran, Dimethyl sulfoxide, 1,3-dioxolane, formamide, dimethylformamide, methyl propionate, ethyl propionate, phosphoric acid triester, trimethoxymethane, dioxolane, diethyl ether, sulfolane, 3-methyl-2-oxazolidinone, tetrahydrofuran, There are non-aqueous solvents such as 1,2-diethoxyethane, chloroethylene carbonate, chloropropylene carbonate and the like. Other solvents may be used as long as they do not decompose on the positive electrode 107 or the negative electrode 108 incorporated in the battery of the present invention.
 また、電解質には、化学式でLiPF6、LiBF4、LiClO4、LiCF3SO3、LiCF3CO2、LiAsF6、LiSbF6あるいはリチウムトリフルオロメタンスルホンイミドで代表されるリチウムのイミド塩、LiNSO2F、Li(NSO22などの多種類のリチウム塩がある。さらに、LiB(CN)4を使用することも可能である。これらの塩を、上述の溶媒に溶解してできた非水電解液を電池用電解液として使用することができる。本発明の電池に内蔵される正極107あるいは負極108上で分解しなければ、これ以外の電解質を用いても良い。 Further, the electrolyte, LiPF 6, LiBF 4, LiClO 4, LiCF 3 SO 3, LiCF 3 CO 2, LiAsF 6, LiSbF 6 or imide lithium salts represented by lithium trifluoromethane sulfonimide in Formula, LiNSO 2 F There are many types of lithium salts such as Li (NSO 2 ) 2 . Furthermore, LiB (CN) 4 can also be used. A non-aqueous electrolytic solution obtained by dissolving these salts in the above-described solvent can be used as a battery electrolytic solution. Other electrolytes may be used as long as they do not decompose on the positive electrode 107 or the negative electrode 108 incorporated in the battery of the present invention.
 前述の電解液113は、本発明の難燃剤(後述の式1)と反応しないこと、または難燃剤に含まれるリン系化合物と反応しないことを条件に、イオン性液体を選定し、それを電解液の替わりに用いることができる。例えば、1-ethyl-3-methylimidazolium tetrafluoroborate(EMI-BF4)、リチウム塩LiN(SO2CF32(LiTFSI)とトリグライムとテトラグライム)の混合錯体、環状四級アンモニウム系陽イオン(N-methyl-N-propylpyrrolidiniumが例示される。)とイミド系陰イオン(bis(fluorosulfonyl)imideが例示される。)より正極と負極にて分解しない組み合わせを選択して、本発明のリチウムイオン電池に用いることができる。これらのイオン性液体に、本発明の難燃剤を溶解させる。 As the above-mentioned electrolyte solution 113, an ionic liquid is selected and electrolyzed on the condition that it does not react with the flame retardant of the present invention (formula 1 described later) or does not react with the phosphorus compound contained in the flame retardant. It can be used instead of liquid. For example, 1-ethyl-3-methylimidazole tetrafluoroborate (EMI-BF 4 ), lithium salt LiN (SO 2 CF 3 ) 2 (LiTFSI), triglyme and tetraglyme) mixed complex, cyclic quaternary ammonium cation (N— A combination that does not decompose at the positive electrode and the negative electrode is selected from the methyl-N-propylpyrrolidinium and imide anions (exemplified by bis (fluorsulfonyl) imide) and used for the lithium ion battery of the present invention. be able to. The flame retardant of the present invention is dissolved in these ionic liquids.
 固体高分子電解質(ポリマー電解質)を用いる場合には、エチレンオキシド、アクリロニトリル、ポリフッ化ビニリデン、メタクリル酸メチル、ヘキサフルオロプロピレンのポリエチレンオキサイドなどのイオン導電性ポリマを電解質に用いることができる。これらに本発明の難燃剤または電解液を含浸させて、ゲル電解質として用いることができる。これらの固体高分子電解質を用いた場合、セパレータ109を省略することができる利点がある。 When a solid polymer electrolyte (polymer electrolyte) is used, an ion conductive polymer such as ethylene oxide, acrylonitrile, polyvinylidene fluoride, methyl methacrylate, or hexafluoropropylene polyethylene oxide can be used as the electrolyte. These can be impregnated with the flame retardant or electrolytic solution of the present invention and used as a gel electrolyte. When these solid polymer electrolytes are used, there is an advantage that the separator 109 can be omitted.
 電解液113の注入方法は、蓋103を電池容器102から取り外して電極群に直接、添加する方法、あるいは蓋103に設置した注液口106から添加する方法がある。図1に示したリチウムイオン電池の注液口106は、蓋103の上面に設置している。注液口106に安全機構を付与することも可能である。その安全機構として、電池容器内部の圧力を解放するための圧力弁を設けても良い。 There are two methods for injecting the electrolytic solution 113: a method in which the lid 103 is removed from the battery container 102 and added directly to the electrode group, or a method in which the electrolytic solution 113 is added from the liquid injection port 106 installed in the lid 103. The liquid injection port 106 of the lithium ion battery shown in FIG. 1 is installed on the upper surface of the lid 103. It is also possible to add a safety mechanism to the liquid injection port 106. As a safety mechanism, a pressure valve for releasing the pressure inside the battery container may be provided.
 <難燃剤の使用方法>
 本発明の一実施形態におけるリチウムイオン二次電池用難燃剤はリンを配位子とした化合物含むリチウムイオン二次電池用難燃剤であって、化合物にCu、Ag、Fe、Ru、Ptのいずれか一つ以上およびハロゲン元素が含まれるリチウムイオン二次電池用難燃剤である。本発明の一実施形態として、以下のリンを配位子とした(式1)の化合物または(式2)の化合物を含むリチウムイオン二次電池用難燃剤が電池に保持または添加されている。下記の化合物がリチウムイオン二次電池に含まれることにより、リン系化合物の転移反応を抑制し、長期間にわたって電解液の難燃化を維持できる。
 R123P-M-X…(式1)
 (R123P)5-Fe-X…(式2)
<How to use flame retardant>
The flame retardant for lithium ion secondary battery in one embodiment of the present invention is a flame retardant for lithium ion secondary battery containing a compound having phosphorus as a ligand, and any of Cu, Ag, Fe, Ru, and Pt A flame retardant for a lithium ion secondary battery containing at least one of them and a halogen element. As one embodiment of the present invention, a flame retardant for a lithium ion secondary battery containing a compound of (formula 1) or a compound of (formula 2) having the following phosphorus as a ligand is held or added to the battery. By including the following compound in the lithium ion secondary battery, it is possible to suppress the transfer reaction of the phosphorus compound and maintain the flame retardancy of the electrolyte over a long period of time.
R 1 R 2 R 3 PMX (Formula 1)
(R 1 R 2 R 3 P) 5 —Fe—X (Formula 2)
 (式1)および(式2)のR1、R2、R3は、それぞれがP原子に直接、結合し、互いに同一でも異なっていてもよい直鎖状または分岐状のアルキル基またはアルコキシ基である。角(式1)および(式2)のXはハロゲン元素である。(式1)のMは、Cu、Ag、Fe、Ru、Ptのいずれか一種以上である。 R 1 , R 2 and R 3 in (Formula 1) and (Formula 2) are each directly bonded to a P atom and may be the same or different from each other, and may be the same or different from each other, a linear or branched alkyl group or alkoxy group It is. X in the corners (Formula 1) and (Formula 2) is a halogen element. M in (Formula 1) is at least one of Cu, Ag, Fe, Ru, and Pt.
 リチウムイオン電池用難燃剤として、上記の化合物(式1)または(式2)のみで構成されていてもよいが、他の材料が含まれていても良い。リチウムイオン電池用難燃剤に(式1)の化合物または(式2)の化合物のいずれか一方のみ含まれていてもよいし、リチウムイオン電池用難燃剤に(式1)の化合物および(式2)の化合物の両方が含まれていても良い。リチウムイオン電池用難燃剤に一種または複数種の(式1)の化合物が含まれていてもよいし、一種または複数種の(式2)の化合物が含まれていてもよい。 As a flame retardant for a lithium ion battery, it may be composed of only the above compound (Formula 1) or (Formula 2), but may contain other materials. Only one of the compound of (Formula 1) or the compound of (Formula 2) may be included in the flame retardant for lithium ion batteries, and the compound of (Formula 1) and (Formula 2) may be included in the flame retardant for lithium ion batteries. ) May be included. The flame retardant for a lithium ion battery may contain one or more compounds of (Formula 1), or may contain one or more compounds of (Formula 2).
 (式1)および(式2)において、R1、R2、R3はCH3Oであることが望ましい。(式1)が分解した後に発生する難燃性ガスR123Pの分子量が最小となる、すなわち亜リン酸トリメチル、(CH3O)3Pが発生するので、Pの含有量が最大となる。よって、電解液113付近の酸素を捕捉し、酸素濃度を効果的に減少させることができる。さらに、難燃剤が酸素を捕捉する際に、R1、R2、R3の燃焼による発熱量を最小にすることができるので、電解液113の燃焼熱を低減できる。 In (Formula 1) and (Formula 2), R 1 , R 2 , and R 3 are preferably CH 3 O. The molecular weight of the flame-retardant gas R 1 R 2 R 3 P generated after decomposition of (Formula 1) is minimized, that is, trimethyl phosphite, (CH 3 O) 3 P is generated, so the P content Is the maximum. Therefore, oxygen in the vicinity of the electrolytic solution 113 can be captured and the oxygen concentration can be effectively reduced. Furthermore, when the flame retardant captures oxygen, the amount of heat generated by the combustion of R 1 , R 2 , and R 3 can be minimized, so that the combustion heat of the electrolytic solution 113 can be reduced.
 リチウムイオン二次電池に電解液113が用いられ、リチウムイオン二次電池用難燃剤が電解液113に添加される場合、リチウムイオン二次電池用難燃剤の添加量は電解液重量に対して10重量%以上100重量%以下、特に20重量%以上にすれば、正極107からの酸素脱離(一般的に200~300℃である。)を効果的に抑止し、電池の熱暴走を回避することが可能となる。難燃剤の添加量が多いほど、電池の重量エネルギー密度が低下するので、電解液重量に対して20重量%以上40重量%以下の添加量にすれば、電池の重量エネルギー密度を大きく低下させずに、電池の熱暴走抑制の目的を達することができる。添加量を40重量%以上100重量%以下にすれば、電池温度がポリオレフィン系セパレータのシャットダウン温度(130~135℃)に近くになり、より効果的に電池の温度上昇を抑制することが可能になる。 When the electrolytic solution 113 is used for the lithium ion secondary battery and the flame retardant for the lithium ion secondary battery is added to the electrolytic solution 113, the amount of the flame retardant for the lithium ion secondary battery is 10 with respect to the weight of the electrolytic solution. If it is set to not less than 100% by weight, particularly not less than 20% by weight, oxygen desorption from the positive electrode 107 (generally 200 to 300 ° C.) is effectively suppressed and thermal runaway of the battery is avoided. It becomes possible. Since the weight energy density of the battery decreases as the amount of the flame retardant added increases, the weight energy density of the battery does not significantly decrease if the amount added is 20 wt% or more and 40 wt% or less with respect to the weight of the electrolyte. In addition, the purpose of suppressing thermal runaway of the battery can be achieved. If the addition amount is 40 wt% or more and 100 wt% or less, the battery temperature becomes close to the shutdown temperature (130 to 135 ° C.) of the polyolefin separator, and the temperature rise of the battery can be suppressed more effectively. Become.
 亜リン酸トリメチルを放出する上記のリチウムイオン二次電池用難燃剤を電池に保持させることにより、リチウムイオン二次電池の温度が上昇したとき、あるいは、正極107から酸素が脱離したときに、リチウムイオン二次電池の安全性を向上できる。 By holding the flame retardant for lithium ion secondary battery that releases trimethyl phosphite in the battery, when the temperature of the lithium ion secondary battery rises or when oxygen is desorbed from the positive electrode 107, The safety of the lithium ion secondary battery can be improved.
 リチウムイオン二次電池用難燃剤をリチウムイオン二次電池に保持させる方法として、リチウムイオン電池用難燃剤を電解液113に添加する方法以外に、リチウムイオン二次電池用難燃剤を含む多孔質材料の形態で、電極群の上に難燃剤を設置することが可能である。 As a method for retaining the flame retardant for lithium ion secondary battery in the lithium ion secondary battery, in addition to the method for adding the flame retardant for lithium ion battery to the electrolytic solution 113, a porous material containing the flame retardant for lithium ion secondary battery In this form, it is possible to install a flame retardant on the electrode group.
 一例として、ポリフッ化エチレン粒子と(CH3O)3PCuI粉末を混合し、錠剤成型機を用いて、ペレット状の難燃剤入り多孔質板を作製した。電池蓋を缶に取り付ける前に、それを電極群の上に設置し、電池蓋を缶に取り付けた。後述の電池最高温度(表1)に差は認められなかった。本方法は、電池が傾斜することによって、(CH3O)3PCuI粉末が重力によって偏在することを防止するので、電池を横置きにする場合は有効である。電極上に絶縁シートを敷けば、多孔質炭素、多孔質金属(発泡ニッケル)などの電子伝導性材料を用いることも可能である。 As an example, polyfluorinated ethylene particles and (CH 3 O) 3 PCuI powder were mixed, and a pellet-shaped porous plate containing a flame retardant was prepared using a tablet molding machine. Before attaching the battery lid to the can, it was placed on the electrode group and the battery lid was attached to the can. No difference was found in the maximum battery temperature (Table 1) described later. Since this method prevents the (CH 3 O) 3 PCul powder from being unevenly distributed due to gravity by tilting the battery, it is effective when the battery is placed horizontally. If an insulating sheet is laid on the electrode, an electron conductive material such as porous carbon or porous metal (foamed nickel) can be used.
 本発明の一実施形態における難燃剤をセパレータ表面に塗布あるいは細孔の一部に保持させても良い。 The flame retardant in one embodiment of the present invention may be applied to the separator surface or held in a part of the pores.
 本実施例では、正極活物質としてLiNi1/3Mn1/3Co1/32、バインダとしてポリフッ化ビニリデン(PVDF)、導電剤としてカーボンブラックを用いた。バインダは予め1-メチル-2-ピロリドン(以下ではNMPと記す。)に溶解されているものを用いた。正極活物質の重量組成を85%、バインダの重量組成を8%、導電剤の重量組成を7%とした。正極活物質、バインダのNMP溶液、導電剤の混合物を攪拌、混合しながら、NMPを添加し、なめらかな流動性を有するスラリを調製した。そのスラリを10μmの厚さをもつアルミニウム箔からなる正極集電体に塗布し、溶媒を蒸発させて乾燥することによって、正極107を製造した。正極107の塗布には、ブレードコーターを用いた。 In this example, LiNi 1/3 Mn 1/3 Co 1/3 O 2 was used as the positive electrode active material, polyvinylidene fluoride (PVDF) was used as the binder, and carbon black was used as the conductive agent. A binder previously dissolved in 1-methyl-2-pyrrolidone (hereinafter referred to as NMP) was used. The weight composition of the positive electrode active material was 85%, the weight composition of the binder was 8%, and the weight composition of the conductive agent was 7%. While stirring and mixing the mixture of the positive electrode active material, the binder NMP solution and the conductive agent, NMP was added to prepare a slurry having smooth fluidity. The slurry was applied to a positive electrode current collector made of an aluminum foil having a thickness of 10 μm, and the solvent was evaporated and dried to manufacture the positive electrode 107. A blade coater was used to apply the positive electrode 107.
 負極活物質として(002)面のX線回折ピークから求めたグラファイト層間隔d002が、0.35~0.36nmの範囲にある平均粒径10μmの黒鉛粉末、導電剤としてカーボンブラック、バインダとしてポリフッ化ビニリデンを用いた。バインダにポリフッ化ビニリデンの溶媒に1-メチル-2-ピロリドンを用いた。負極活物質と導電剤とバインダの重量組成を93:2:5とした。そのスラリを10μmの厚さをもつ銅箔からなる負極集電体に塗布し、溶媒を蒸発させて乾燥することによって、負極108を製造した。負極108の塗布には、ブレードコーターを用いた。 As a negative electrode active material, graphite powder having an average particle diameter of 10 μm in which the graphite layer interval d 002 obtained from the (002) plane X-ray diffraction peak is in the range of 0.35 to 0.36 nm, carbon black as a conductive agent, and as a binder Polyvinylidene fluoride was used. As the binder, 1-methyl-2-pyrrolidone was used as a polyvinylidene fluoride solvent. The weight composition of the negative electrode active material, the conductive agent, and the binder was 93: 2: 5. The slurry was applied to a negative electrode current collector made of a copper foil having a thickness of 10 μm, and the solvent was evaporated to dry the negative electrode 108. A blade coater was used for coating the negative electrode 108.
 炭酸エチレンと炭酸ジメチルと炭酸エチルメチルの1:1:1の等体積の混合溶媒に、1モル/リットルの濃度になるように、LiPF6を溶解させた電解液113を用いた。電極群を電池容器102に収納し密閉した後に、電解質と非水溶媒からなる電解液113を注液口106より滴下し、70mlの電解液113を充填した。電解液の容積は、正極と負極とセパレータの体積の合計に対して、50~100%の体積に相当する量を添加すると、電極とセパレータの表面と細孔に十分に行き渡り、良好な電池特性が得られるようになる。 An electrolytic solution 113 in which LiPF 6 was dissolved in a 1: 1: 1 volume mixed solvent of ethylene carbonate, dimethyl carbonate, and ethyl methyl carbonate to a concentration of 1 mol / liter was used. After the electrode group was housed in the battery container 102 and sealed, an electrolytic solution 113 composed of an electrolyte and a non-aqueous solvent was dropped from the liquid inlet 106 and filled with 70 ml of the electrolytic solution 113. When the amount of the electrolyte is equivalent to 50 to 100% of the total volume of the positive electrode, negative electrode, and separator, the surface of the electrode and separator and the pores are sufficiently distributed, resulting in good battery characteristics. Can be obtained.
 本実施例にて用いたリチウムイオン電池用難燃剤中の化合物は、表1の実施例1の欄に記載した(CH3O)3PCuIである。(式1)の構造において、ハロゲンXはヨウ素とした。化合物の純度は98%以上とし、粒径範囲が1μmから50μmの範囲になるように、アルゴングローブボックス内で篩に(CH3O)3PCuI粉末を通した。これらの粉末は、電解液を充填した後に、注液口106から電極群の上方に充填した。 The compound in the flame retardant for lithium ion batteries used in this example is (CH 3 O) 3 PCuI described in the column of Example 1 in Table 1. In the structure of (Formula 1), halogen X was iodine. The purity of the compound was 98% or more, and (CH 3 O) 3 PCuI powder was passed through a sieve in an argon glove box so that the particle size range was 1 μm to 50 μm. These powders were filled above the electrode group from the liquid injection port 106 after being filled with the electrolytic solution.
 本発明のリチウムイオン電池用難燃剤の添加量は、後述の電解液重量に対する重量比率とし、その値は表1に示した。本実施例では、表1に示した化合物(式1)を用いて、電解液重量に対する添加量の異なる6種類の電池を製作した。それぞれの電池をB11、B12、B13、B14、B15、B16とする。 The addition amount of the flame retardant for lithium ion battery of the present invention was a weight ratio with respect to the weight of the electrolyte described later, and the values are shown in Table 1. In this example, six types of batteries having different addition amounts with respect to the weight of the electrolytic solution were manufactured using the compounds shown in Table 1 (Formula 1). Respective batteries are designated as B11, B12, B13, B14, B15, and B16.
 <電池の初期エージング>
 定格容量は10Ahである。定格容量を得るために、初期エージングを行った。その条件は、まず5Aの充電電流にて電池電圧が4.2Vに達するまで充電を行い、4.2Vに達した後には4.2Vを維持しながら電流が0.1Aに減少するまで充電を継続した。次いで30分の休止を経た後、5Aの放電電流にて電池電圧が2.5Vに達するまで放電を行った。これを3回繰り返して、9.97~9.98Ahの容量を得た。
<Initial battery aging>
The rated capacity is 10 Ah. Initial aging was performed to obtain the rated capacity. The condition is that charging is first performed at a charging current of 5 A until the battery voltage reaches 4.2 V, and after reaching 4.2 V, charging is performed until the current decreases to 0.1 A while maintaining 4.2 V. Continued. Next, after 30 minutes of rest, discharging was performed at a discharge current of 5 A until the battery voltage reached 2.5V. This was repeated three times to obtain a capacity of 9.97-9.98 Ah.
 <電池の安全性試験>
 初期容量を得た後、それと同じ容量まで各電池を再充電し、充電深度100%にした。その状態から、電池の側面にφ3mmの鉄釘を突き刺した。釘の移動速度は1mm/秒とした。電池の側面に貼り付けた熱電対を用いて、電池容器に釘が刺さり始めて電池の側面温度の時間変化を計測した。本試験の過程での電池温度の最高値を、表1の「最高温度」の欄に記載した。本実施例の電池については、いずれの電池も破裂・発火がなかった。本実施例の電池の最高温度は、(CH3O)3PCuIの添加量が増加するにつれて、下降する傾向があった。すなわち、亜リン酸トリメチルの放出量が増大して、電池の温度上昇を抑制する効果があることが示された。
<Battery safety test>
After obtaining the initial capacity, each battery was recharged to the same capacity to a charge depth of 100%. From that state, a φ3 mm iron nail was pierced on the side of the battery. The moving speed of the nail was 1 mm / second. Using a thermocouple affixed to the side of the battery, the nail started to pierce the battery container, and the time change of the side temperature of the battery was measured. The maximum value of the battery temperature in the course of this test is shown in the “maximum temperature” column of Table 1. Regarding the batteries of this example, none of the batteries burst or ignited. The maximum temperature of the battery of this example tended to decrease as the amount of (CH 3 O) 3 PCuI increased. That is, it was shown that the amount of trimethyl phosphite released increases, and has an effect of suppressing the temperature rise of the battery.
比較例1Comparative Example 1
 実施例1の電池において、本発明のリチウムイオン二次電池用難燃剤を用いない電池B51を製作した。実施例1と同じ条件で初期エージングをした。その後、同一条件にて釘刺し試験を実施した。本発明のリチウムイオン二次電池用難燃剤を使わないと、電池の最高温度が高くなった。 In the battery of Example 1, a battery B51 that does not use the flame retardant for lithium ion secondary battery of the present invention was produced. Initial aging was performed under the same conditions as in Example 1. Thereafter, a nail penetration test was performed under the same conditions. When the flame retardant for lithium ion secondary battery of the present invention was not used, the maximum temperature of the battery increased.
 本発明のリチウムイオン二次電池用難燃剤は、以下のメカニズムにより機能していると考えられる。充電状態の電池に釘を刺すことにより、正極107と負極108が短絡され、局所的に温度が上昇する。その際に、正極107から酸素が脱離する。リチウムイオン電池用難燃剤として(CH3O)3PCuIを用いた場合、温度によって、(CH3O)3PCuIが亜リン酸トリメチルとCuIに分解する。亜リン酸トリメチルは、正極107から脱離した酸素と反応し、酸素を捕捉する。あるいは、別の反応ルートとして、正極107から脱離した酸素により、直接的に亜リン酸トリメチルが酸化される。したがって、いずれの反応ルートによっても、正極107から脱離した酸素が電池内部から除去されるので、可燃性の炭酸エステルの燃焼反応を防止することが可能になる。 The flame retardant for lithium ion secondary batteries of the present invention is considered to function by the following mechanism. By inserting a nail into a charged battery, the positive electrode 107 and the negative electrode 108 are short-circuited, and the temperature rises locally. At that time, oxygen is desorbed from the positive electrode 107. When (CH 3 O) 3 PCuI is used as a flame retardant for lithium ion batteries, (CH 3 O) 3 PCuI decomposes into trimethyl phosphite and CuI depending on the temperature. Trimethyl phosphite reacts with oxygen desorbed from the positive electrode 107 to capture oxygen. Alternatively, as another reaction route, trimethyl phosphite is directly oxidized by oxygen desorbed from the positive electrode 107. Therefore, by any reaction route, oxygen desorbed from the positive electrode 107 is removed from the inside of the battery, so that it is possible to prevent the combustion reaction of the flammable carbonate.
 B11、B12、B13、B14、B15、B16の最高温度の結果からわかるように、リチウムイオン二次電池用難燃剤の添加量を電解液重量に対して10重量%以上とすることにより、亜リン酸トリメチルの放出量が充分となり、最高温度を低く抑えることができる。 As can be seen from the results of the maximum temperatures of B11, B12, B13, B14, B15, and B16, by adding the amount of the flame retardant for the lithium ion secondary battery to 10% by weight or more with respect to the electrolyte weight, The amount of trimethyl acid released is sufficient, and the maximum temperature can be kept low.
 本実施例では、実施例1における(式1)化合物を、(式2)の化合物に変更し、5種類の電池を製作した。化合物は〔(CH3O)5〕PFeIである。実施例1の化合物と比較すると、単位重量当たりの亜リン酸トリメチルの比率が多い材料が用いられている。 In this example, the compound of (Formula 1) in Example 1 was changed to the compound of (Formula 2) to produce 5 types of batteries. The compound is [(CH 3 O) 5 ] PFeI. Compared with the compound of Example 1, a material having a higher ratio of trimethyl phosphite per unit weight is used.
 実施例1と同じ条件で初期エージングを実施した。その後、4.2Vまで充電し、釘刺し試験を行った。釘刺し試験時の電池の最高温度を表1に示した。 The initial aging was performed under the same conditions as in Example 1. Thereafter, the battery was charged to 4.2 V and a nail penetration test was conducted. The maximum battery temperature during the nail penetration test is shown in Table 1.
 実施例1と同様に、リチウムイオン二次電池用難燃剤の添加量が増加するにつれて、電池の最高温度は低下した。実施例1と比較すると、同じ添加量であっても、本実施例の方が低い温度が得られた。〔(CH3O)3P〕5FeIの単位重量当りに含まれる亜リン酸トリメチルの比率が高いためと考えられる。 As in Example 1, the maximum temperature of the battery decreased as the amount of the flame retardant for the lithium ion secondary battery increased. Compared with Example 1, even in the same addition amount, a lower temperature was obtained in this Example. This is probably because the ratio of trimethyl phosphite contained per unit weight of [(CH 3 O) 3 P] 5 FeI is high.
 本実施例では、実施例1の化合物のヨウ素を、フッ素、塩素または臭素にそれぞれ変更した化合物を合成した。これらを40重量%ずつ電池に添加し、3種類の電池を製作した。実施例1と同じ条件で初期エージングを実施した。その後、4.2Vまで充電し、釘刺し試験を行った。釘刺し試験時の電池の最高温度を表1に示した。 In this example, compounds in which the iodine of the compound of Example 1 was changed to fluorine, chlorine or bromine were synthesized. These were added to the battery by 40% by weight to produce three types of batteries. Initial aging was performed under the same conditions as in Example 1. Thereafter, the battery was charged to 4.2 V and a nail penetration test was conducted. The maximum battery temperature during the nail penetration test is shown in Table 1.
 実施例1と比較すると、ヨウ素より臭素が、臭素より塩素が、塩素よりフッ素に変更した方が、電池の最高温度が低下する傾向があった。ハロゲンの原子量が小さくなるほど、単位重量当りの化合物中に含まれる亜リン酸トリメチルの比率が増大するためと考えられる。 Compared with Example 1, the maximum temperature of the battery tended to decrease when bromine was replaced by iodine, chlorine by bromine, and chlorine by fluorine. This is presumably because the proportion of trimethyl phosphite contained in the compound per unit weight increases as the halogen atomic weight decreases.
 本実施例では、実施例2の化合物のヨウ素を、フッ素、塩素または臭素にそれぞれ変更した化合物を合成した。これらを20重量%ずつ電池に添加し、3種類の電池を製作した。実施例2と同じ条件で初期エージングを実施した。その後、4.2Vまで充電し、釘刺し試験を行った。釘刺し試験時の電池の最高温度を表1に示した。 In this example, compounds in which the iodine of the compound of Example 2 was changed to fluorine, chlorine or bromine were synthesized. These were added to the battery by 20% by weight to produce three types of batteries. Initial aging was performed under the same conditions as in Example 2. Thereafter, the battery was charged to 4.2 V and a nail penetration test was conducted. The maximum battery temperature during the nail penetration test is shown in Table 1.
 実施例2と比較すると、ヨウ素より臭素が、臭素より塩素が、塩素よりフッ素に変更した方が、電池の最高温度が低下する傾向があった。ハロゲンの原子量が小さくなるほど、単位重量当りの化合物中に含まれる亜リン酸トリメチルの比率が増大するためと考えられる。また、実施例3と比較すると、本実施例の化合物の方がより高い比率で亜リン酸トリメチルを含有しているため、より低い温度になった。この結果は、実施例1と実施例2の差に類似している。 Compared with Example 2, the maximum temperature of the battery tended to decrease when bromine was replaced by iodine, chlorine by bromine, and fluorine by chlorine. This is presumably because the proportion of trimethyl phosphite contained in the compound per unit weight increases as the halogen atomic weight decreases. Moreover, compared with Example 3, since the compound of the present Example contained trimethyl phosphite at a higher ratio, the temperature was lower. This result is similar to the difference between Example 1 and Example 2.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 実施例2の電池B23のサイズを5倍に増加させ、50Ahの角型リチウムイオン二次電池、2個を製作した。図2はそのリチウムイオン二次電池201a、201bを直列に接続した本発明の電池システムを示す。 The size of the battery B23 of Example 2 was increased by a factor of 5 to produce two 50Ah prismatic lithium ion secondary batteries. FIG. 2 shows the battery system of the present invention in which the lithium ion secondary batteries 201a and 201b are connected in series.
 各リチウムイオン二次電池201a、201bは、正極207、負極208、セパレータ209からなる同一仕様の電極群を有し、電池容器202に収納されている。電池容器202の上部に、正極外部端子204、負極外部端子205を備えた電池蓋203を設けている。各外部端子と電池蓋203の間には絶縁シール部材212を挿入し、外部端子同士が短絡しないようにしている。なお、図2では図1の正極リード線110と負極リード線111に相当する部品が省略されているが、リチウムイオン二次電池201a、201bの内部の構造は図1と同様である。 Each of the lithium ion secondary batteries 201 a and 201 b has an electrode group having the same specifications including a positive electrode 207, a negative electrode 208, and a separator 209, and is housed in a battery container 202. A battery lid 203 having a positive external terminal 204 and a negative external terminal 205 is provided on the upper part of the battery container 202. An insulating seal member 212 is inserted between each external terminal and the battery lid 203 so that the external terminals are not short-circuited. In FIG. 2, components corresponding to the positive electrode lead wire 110 and the negative electrode lead wire 111 in FIG. 1 are omitted, but the internal structure of the lithium ion secondary batteries 201a and 201b is the same as that in FIG.
 リチウムイオン二次電池201aの負極外部端子205は、電力ケーブル213により充電制御器216の負極入力ターミナルに接続されている。リチウムイオン二次電池201aの正極外部端子204は、電力ケーブル214を介して、リチウムイオン二次電池201bの負極外部端子205に連結されている。リチウムイオン二次電池201bの正極外部端子204は、電力ケーブル215により充電制御器216の正極入力ターミナルに接続されている。このような配線構成によって、2個のリチウムイオン二次電池201a、201bを充電または放電させることができる。リチウムイオン二次電池は、図2に示したように、直列で接続されているが、並列に接続されても良い。また、電池の個数は任意である。 The negative external terminal 205 of the lithium ion secondary battery 201 a is connected to the negative input terminal of the charging controller 216 by the power cable 213. The positive external terminal 204 of the lithium ion secondary battery 201a is connected to the negative external terminal 205 of the lithium ion secondary battery 201b via the power cable 214. The positive external terminal 204 of the lithium ion secondary battery 201 b is connected to the positive input terminal of the charging controller 216 by the power cable 215. With such a wiring configuration, the two lithium ion secondary batteries 201a and 201b can be charged or discharged. The lithium ion secondary batteries are connected in series as shown in FIG. 2, but they may be connected in parallel. Moreover, the number of batteries is arbitrary.
 充放電制御器216は、電力ケーブル217、電力ケーブル218を介して、外部に設置した機器(以下では外部機器と称する。)219との間で電力の授受を行う。外部機器219は、充放電制御器216に給電するための外部電源や回生モータ等の各種電気機器、ならびに本システムが電力を供給するインバータ、コンバータおよび負荷が含まれている。外部機器219が対応する交流、直流の種類に応じて、インバータ等を設ければ良い。これらの機器類は、公知のものを任意に適用することができる。 The charge / discharge controller 216 exchanges power with an externally installed device (hereinafter referred to as an external device) 219 via the power cable 217 and the power cable 218. The external device 219 includes various electric devices such as an external power source and a regenerative motor for supplying power to the charge / discharge controller 216, and an inverter, a converter, and a load that supply power from the system. An inverter or the like may be provided in accordance with the type of AC or DC that the external device 219 supports. As these devices, known devices can be arbitrarily applied.
 また、再生可能エネルギーを生み出す機器として風力発電機の動作条件を模擬した発電装置222を設置し、電力ケーブル220、電力ケーブル221を介して充放電制御器216に接続した。発電装置222が発電するときには、充放電制御器216が充電モードに移行し、外部機器219に給電するとともに、余剰電力をリチウムイオン二次電池201aとリチウムイオン電池二次201bに充電する。また、風力発電機を模擬した発電量が外部機器219の要求電力よりも少ないときには、リチウムイオン電池二次201aとリチウムイオン二次電池201bを放電させるように充放電制御器216が動作する。なお、発電装置222は他の発電装置、すなわち太陽電池、地熱発電装置、燃料電池、ガスタービン発電機などの任意の装置に置換することができる。充放電制御器216は上述の動作をするように自動運転可能なプログラムを記憶させておく。 Also, a power generator 222 that simulates the operating conditions of a wind power generator was installed as a device that generates renewable energy, and was connected to the charge / discharge controller 216 via the power cable 220 and the power cable 221. When the power generation device 222 generates power, the charge / discharge controller 216 shifts to the charge mode, supplies power to the external device 219, and charges surplus power to the lithium ion secondary battery 201a and the lithium ion battery secondary 201b. Further, when the power generation amount simulating the wind power generator is smaller than the required power of the external device 219, the charge / discharge controller 216 operates to discharge the lithium ion secondary battery 201a and the lithium ion secondary battery 201b. The power generation device 222 can be replaced with another power generation device, that is, any device such as a solar cell, a geothermal power generation device, a fuel cell, or a gas turbine generator. The charge / discharge controller 216 stores a program that can be automatically operated so as to perform the above-described operation.
 リチウムイオン二次電池201a、リチウムイオン二次電池201bを定格容量が得られる通常の充電を行う。例えば、1時間率の充電電流にて、それぞれの電池の電圧を4.2Vに保持した定電圧充電を0.5~2時間、実行することができる。充電条件は、リチウムイオン電池の材料の種類、使用量などの設計で決まるので、電池の仕様ごとに最適な条件とする。 The lithium ion secondary battery 201a and the lithium ion secondary battery 201b are normally charged so that a rated capacity can be obtained. For example, constant voltage charging with the voltage of each battery held at 4.2 V can be performed for 0.5 to 2 hours at a charging current of 1 hour rate. Since the charging conditions are determined by the design of the material and amount of use of the lithium ion battery, the conditions are optimal for each battery specification.
 リチウムイオン二次電池201a、リチウムイオン二次電池201bを充電した後には、充放電制御器216を放電モードに切り替えて、各電池を放電させる。通常は、電池の電圧が一定の下限値に到達したときに放電を停止させ、本実施例では下限値を2.5Vとした。 After charging the lithium ion secondary battery 201a and the lithium ion secondary battery 201b, the charge / discharge controller 216 is switched to the discharge mode to discharge each battery. Normally, the discharge was stopped when the battery voltage reached a certain lower limit, and the lower limit was set to 2.5 V in this example.
 以上で説明したシステムの構成にて、外部機器219は充電時に電力を供給し、放電時に電力を消費させた。本実施例では、2時間率の充電を行い、1時間率の放電を行い。初期の放電容量を求めた。その結果、各リチウムイオン二次電池201a、201bの設計容量50Ahの99.5~100%の容量を得た。 With the system configuration described above, the external device 219 supplies power during charging and consumes power during discharging. In this embodiment, charging is performed at a 2-hour rate, and discharging is performed at a 1-hour rate. The initial discharge capacity was determined. As a result, a capacity of 99.5 to 100% of the designed capacity 50Ah of each lithium ion secondary battery 201a, 201b was obtained.
 その後、環境温度20~30℃の条件で、以下で述べる充放電サイクル試験を行った。まず、2時間率の電流(25A)にて充電を行い、充電深度50%(25Ah充電した状態)になった時点で、充電方向に5秒のパルスを、放電方向に5秒のパルスを電池201a、201bに与え、発電装置222からの電力の受け入れと外部機器219への電力供給を模擬するパルス試験を行った。なお、電流パルスの大きさは、ともに150Aとした。続けて、残りの容量25Ahを2時間率の電流(25A)で各電池の電圧が4.2Vに達するまで充電し、その電圧で1時間の定電圧充電を継続した後に、充電を終了させた。その後、1時間率の電流(50A)にて各電池の電圧が2.5Vまで放電した。 Thereafter, the charge / discharge cycle test described below was conducted under the condition of the environmental temperature of 20 to 30 ° C. First, charging is performed at a current of 2 hours (25 A), and when the depth of charge reaches 50% (25 Ah charged state), a 5 second pulse is charged in the charging direction and a 5 second pulse is discharged in the discharging direction. A pulse test was performed to simulate the acceptance of power from the power generation device 222 and the supply of power to the external device 219. The magnitude of the current pulse was 150A for both. Subsequently, the remaining capacity 25Ah was charged with a current (25A) at a rate of 2 hours until the voltage of each battery reached 4.2V, and after constant voltage charging for 1 hour at that voltage, the charging was terminated. . Thereafter, the voltage of each battery was discharged to 2.5 V at a current of 1 hour rate (50 A).
 このような一連の充放電サイクル試験を500回繰り返したところ、初期の放電容量に対し、97~98%の容量を得た。電力受け入れと電力供給の電流パルスを電池に与えても、システムの性能はほとんど低下しないことがわかった。 Such a series of charge / discharge cycle tests was repeated 500 times, and a capacity of 97 to 98% of the initial discharge capacity was obtained. It was found that the performance of the system was hardly degraded when the battery was given a current pulse of power acceptance and power supply.
 次に、リチウムイオン二次電池201aのみを予め定格容量まで充電し、リチウムイオン二次電池201bは放電した状態で、システムを組み立てた。この状態で、リチウムイオン二次電池201bを定格容量まで充電したところ、リチウムイオン二次電池201aは過充電状態になったが、電池温度は140℃以下のままで、セパレータのシャットダウン機構が働いて、充電が停止した。この過程で、リチウムイオン二次電池201aに破裂、発火はなかった。 Next, only the lithium ion secondary battery 201a was charged in advance to the rated capacity, and the system was assembled with the lithium ion secondary battery 201b discharged. In this state, when the lithium ion secondary battery 201b was charged to the rated capacity, the lithium ion secondary battery 201a was overcharged, but the battery temperature remained at 140 ° C. or lower and the separator shutdown mechanism worked. , Charging stopped. During this process, the lithium ion secondary battery 201a did not rupture or ignite.
101、201a、201b リチウムイオン二次電池
102、202 電池容器
103 蓋
104、204 正極外部端子
105,205 負極外部端子
106、206 注液口
107、207 正極
108、208 負極
109、209 セパレータ
110 正極リード線
111 負極リード線
112、212 絶縁性シール材料
113 電解液
213、214、215、217、218、220、221 電力ケーブル
216 充放電制御器
219 外部機器
222 発電装置
101, 201a, 201b Lithium ion secondary battery 102, 202 Battery container 103 Lid 104, 204 Positive external terminal 105, 205 Negative external terminal 106, 206 Injection port 107, 207 Positive electrode 108, 208 Negative electrode 109, 209 Separator 110 Positive electrode lead Wire 111 Negative electrode lead wire 112, 212 Insulating sealing material 113 Electrolytic solution 213, 214, 215, 217, 218, 220, 221 Power cable 216 Charge / discharge controller 219 External device 222 Power generation device

Claims (6)

  1.  リンを配位子とした化合物を含むリチウムイオン二次電池用難燃剤であって、
     前記化合物にCu、Ag、Fe、Ru、Ptのいずれか一つ以上およびハロゲン元素が含まれるリチウムイオン二次電池用難燃剤。
    A flame retardant for a lithium ion secondary battery containing a compound having phosphorus as a ligand,
    A flame retardant for a lithium ion secondary battery, wherein the compound contains one or more of Cu, Ag, Fe, Ru, Pt and a halogen element.
  2.  請求項1において、
     前記化合物は下記の(式1)または(式2)で表されるリチウムイオン二次電池用難燃剤。
     (R123)P-M-X…(式1)
     〔(R123)P〕5-Fe-X…(式2)
     (式1)および(式2)のR1、R2、R3は、互いに同一でも異なっていてもよい直鎖状または分岐状のアルキル基またはアルコキシ基を示す。
     (式1)および(式2)において、Xはハロゲン元素である。
     (式1)において、Mは、Cu、Ag、Fe、Ru、Ptのいずれか一つ以上である。
    In claim 1,
    The said compound is a flame retardant for lithium ion secondary batteries represented by the following (Formula 1) or (Formula 2).
    (R 1 R 2 R 3 ) PMX (Formula 1)
    [(R 1 R 2 R 3 ) P] 5 —Fe—X (Formula 2)
    R 1 , R 2 and R 3 in (Formula 1) and (Formula 2) represent a linear or branched alkyl group or alkoxy group which may be the same or different from each other.
    In (Formula 1) and (Formula 2), X is a halogen element.
    In (Formula 1), M is one or more of Cu, Ag, Fe, Ru, and Pt.
  3.  請求項1乃至2のいずれかにおいて、
     前記ハロゲン元素はフッ素であるリチウムイオン二次電池用難燃剤。
    In any one of Claims 1 thru | or 2.
    The flame retardant for a lithium ion secondary battery, wherein the halogen element is fluorine.
  4.  請求項1乃至2のいずれかのリチウムイオン二次電池用難燃剤を含むリチウムイオン二次電池用電解液であって、
     前記化合物の添加量は前記リチウムイオン二次電池用電解液重量に対して10重量%以上であるリチウムイオン電池用電解液。
    An electrolyte solution for a lithium ion secondary battery comprising the flame retardant for a lithium ion secondary battery according to claim 1,
    The amount of the compound added is 10% by weight or more based on the weight of the electrolyte solution for lithium ion secondary batteries.
  5.  請求項1乃至3のいずれかのリチウムイオン二次電池用難燃剤を有するリチウムイオン二次電池であって、
     前記リチウムイオン二次電池は多孔質材料を有し、
     前記リチウムイオン二次電池用難燃剤は前記多孔質材料に保持されるリチウムイオン二次電池。
    A lithium ion secondary battery comprising the flame retardant for a lithium ion secondary battery according to any one of claims 1 to 3,
    The lithium ion secondary battery has a porous material,
    The flame retardant for a lithium ion secondary battery is a lithium ion secondary battery held in the porous material.
  6.  請求項5のリチウムイオン二次電池を有する電池システム。 A battery system having the lithium ion secondary battery according to claim 5.
PCT/JP2014/055214 2014-03-03 2014-03-03 Flame retardant for lithium ion secondary batteries, electrolyte solution for lithium ion secondary batteries, lithium ion secondary battery, and power supply or device system utilizing lithium ion secondary battery WO2015132842A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/055214 WO2015132842A1 (en) 2014-03-03 2014-03-03 Flame retardant for lithium ion secondary batteries, electrolyte solution for lithium ion secondary batteries, lithium ion secondary battery, and power supply or device system utilizing lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/055214 WO2015132842A1 (en) 2014-03-03 2014-03-03 Flame retardant for lithium ion secondary batteries, electrolyte solution for lithium ion secondary batteries, lithium ion secondary battery, and power supply or device system utilizing lithium ion secondary battery

Publications (1)

Publication Number Publication Date
WO2015132842A1 true WO2015132842A1 (en) 2015-09-11

Family

ID=54054687

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/055214 WO2015132842A1 (en) 2014-03-03 2014-03-03 Flame retardant for lithium ion secondary batteries, electrolyte solution for lithium ion secondary batteries, lithium ion secondary battery, and power supply or device system utilizing lithium ion secondary battery

Country Status (1)

Country Link
WO (1) WO2015132842A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004014351A (en) * 2002-06-07 2004-01-15 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JP2008251259A (en) * 2007-03-29 2008-10-16 Sanyo Electric Co Ltd Nonaqueous electrolyte, and nonaqueous electrolyte secondary battery including the nonaqueous electrolyte
WO2012029420A1 (en) * 2010-09-02 2012-03-08 日本電気株式会社 Secondary battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004014351A (en) * 2002-06-07 2004-01-15 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JP2008251259A (en) * 2007-03-29 2008-10-16 Sanyo Electric Co Ltd Nonaqueous electrolyte, and nonaqueous electrolyte secondary battery including the nonaqueous electrolyte
WO2012029420A1 (en) * 2010-09-02 2012-03-08 日本電気株式会社 Secondary battery

Similar Documents

Publication Publication Date Title
JP7232359B2 (en) SO2-based electrolyte for rechargeable battery cells and rechargeable battery cells
JP5630189B2 (en) Lithium ion battery
JP6253411B2 (en) Lithium secondary battery
JP5872055B2 (en) Lithium secondary battery pack, electronic device using the same, charging system and charging method
US9214701B2 (en) Lithium-ion rechargeable battery
JP5949605B2 (en) Nonaqueous electrolyte secondary battery and power storage device
JP2019114323A (en) Lithium secondary battery
JP6755182B2 (en) Lithium ion secondary battery
JP2014160568A (en) Lithium ion secondary battery, and secondary battery system arranged by use thereof
JP2014164801A (en) Nonaqueous electrolyte, nonaqueous electrolyte secondary battery using the same, and secondary battery system with nonaqueous electrolyte secondary battery
JP6396136B2 (en) Lithium secondary battery
JP2016045987A (en) Electrolytic solution for lithium ion secondary battery, and lithium ion secondary battery
JP6064082B2 (en) Electrolyte solution for lithium ion secondary battery and lithium ion secondary battery using the same
JP5966896B2 (en) Lithium ion secondary battery, secondary battery system using the same, and non-aqueous electrolyte for lithium ion secondary battery
JP2015191721A (en) Secondary battery and battery module
JP2015082356A (en) Electrolytic solution for lithium ion secondary batteries, lithium ion secondary battery arranged by use thereof, and charge-discharge device arranged by use of lithium ion secondary battery
JP2015046233A (en) Lithium ion secondary battery, and secondary battery system using the same
JP2014160608A (en) Lithium ion battery
JP5867293B2 (en) Lithium ion secondary battery separator, lithium ion secondary battery using the same, and secondary battery system using the lithium ion secondary battery
JP6572149B2 (en) Lithium ion secondary battery and power storage device
JP5954217B2 (en) Lithium ion battery
JP6115370B2 (en) ELECTROLYTE SOLUTION FOR LITHIUM ION SECONDARY BATTERY, METHOD FOR PRODUCING ELECTROLYTE SOLUTION FOR LITHIUM ION SECONDARY BATTERY, LITHIUM ION SECONDARY BATTERY USING THE ELECTROLYTE SOLUTION, AND POWER SUPPLY DEVICE USING LITHIUM ION SECONDARY BATTERY
JP2015046234A (en) Lithium ion secondary battery, and secondary battery system using the same
WO2015132842A1 (en) Flame retardant for lithium ion secondary batteries, electrolyte solution for lithium ion secondary batteries, lithium ion secondary battery, and power supply or device system utilizing lithium ion secondary battery
KR102129499B1 (en) Lithium secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14884932

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14884932

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP