WO2015132433A1 - Molecular nanocapsules for the selective separation of fullerenes - Google Patents

Molecular nanocapsules for the selective separation of fullerenes Download PDF

Info

Publication number
WO2015132433A1
WO2015132433A1 PCT/ES2015/070128 ES2015070128W WO2015132433A1 WO 2015132433 A1 WO2015132433 A1 WO 2015132433A1 ES 2015070128 W ES2015070128 W ES 2015070128W WO 2015132433 A1 WO2015132433 A1 WO 2015132433A1
Authority
WO
WIPO (PCT)
Prior art keywords
nanocapsule
fulerenes
hydrogen
barf
solvent
Prior art date
Application number
PCT/ES2015/070128
Other languages
Spanish (es)
French (fr)
Inventor
Xavi RIBAS SALAMAÑA
Miquel Costas Salgueiro
Cristina GARCÍA SIMÓN
Anna Company Casadevall
Laura GÓMEZ MARTÍN
Original Assignee
Universitat De Girona
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universitat De Girona filed Critical Universitat De Girona
Publication of WO2015132433A1 publication Critical patent/WO2015132433A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/22Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains four or more hetero rings

Definitions

  • the present invention relates to molecular nanocapsules formed by self-assembly and based on complexes and metalloporphyrins and their use for purification and / or selective separation of fulerenes.
  • the fulerenes are nanometric molecules ( ⁇ 1 nm in diameter) with applications in a wide range of fields from the science of materials to their use in drugs.
  • Today, the derivatives of fulerene are the reference type n materials for the construction of organic photovoltaic devices.
  • the search for molecular receptors for fulerenes, essentially for C60, began in the 90s to be able to have minimum quantities that allowed characterizing the properties of the material. From the point of view of molecular recognition, fulerenes are very peculiar host molecules.
  • the subsequent release of the host is achieved in several ways: a) acid-base treatment to achieve the opening of the capsule and the precipitation of the fulerene, b) the use of non-invasive external physical stimuli (irradiation with light) a room temperature and c) displacing the fulerene with a substrate with greater affinity towards the host.
  • C60 there are selective host-host systems for C60, such as cyclodextrins or calix [8] arenes. In these systems the release of fulerene is difficult due to its high stability (Atwood, J.L .; Koutsantonis, G.A. and Raston, C. IL Nature, 368, 229 (1994)).
  • the dimeric cyclic systems of Aida et al. which contain two porphyrin units, are capable of extracting fulerenes greater than C76 from mixtures of fulerenes.
  • the authors demonstrate the obtaining of mixtures enriched with "higher fullerens" (for example of mixtures C102-C1 10) and without a trace of the majority C60 and C70 (Shoji, Y .; Tashiro, K .; Aida, TJ Am. Chem. Soc, 126, 6570-6571 (2004)).
  • Mendoza et al. Has developed a supramolecular system based on cyclotriveratrylene receptors that contain three 4-ureidopyrimidinone (UPy) units and self-assemble using hydrogen bridge bonds. The authors have shown that this system is capable of encapsulating preferably C84 ahead of C70 and well ahead of C60 due to the different association constants.
  • the release of the fulerenes is carried out by treatment with trifluoroacetic acid of solutions of the host-host system in THF (tetrahydrofuran), causing precipitation of the fulerenes in question.
  • THF tetrahydrofuran
  • the present invention relates to the synthesis of molecular nanocapsules based on self-assembly by means of coordination chemistry of metal macrocyclic compounds with tetracarboxylated (metallo) porphyrins, and their use as sponges of fulerenes of different dimensions.
  • the nanocapsules obtained are tetragonal prismatic in nature with a large interior space capable of encapsulating a molecule of fulerene of different dimensions.
  • the possibility of varying the design within the same family of nanocapsules makes it possible to have a technology to encapsulate and selectively release and will release fulerenes of a certain size.
  • the nanocapsules of the present invention have advantages in different aspects of the separation and purification of fulerenes.
  • nanocapsules are highly modular and in a simple way, the use of different metals in the porfihna is understood as an element that will allow and modify the affinity of the fulerenes for the capsules. Finally, the octacathonic nature of the nanocapsules and the use of different counterions constitute elements of system versatility that must allow the use of the capsules in different solvents.
  • a first aspect of the present invention relates to a nanocapsule formed by two parallel tetracarboxylated (metallo) porphyrins of general formula (I) linked by four metal macrocyclic compounds of general formula (II) through an M-carboxylate bond , and counterions (X) in a suitable number to compensate for the octacathic charge of the nanocapsule.
  • ⁇ ' is selected from the list comprising 2H, Zn, Cu, FeCI, Ir, Pd, Pt, Ag, AuCI, Ni, Ru, Al, Pb, SnCI 2 , InCI, SbCI, TiO, ZrCI 2 , CrCI and VO; preferably IW is 2H, Zn, Cu, FeCI, Ir, Pt, Ag, AuCI, Ni, Ru, Al, Pb, SnCI 2 , InCI, SbCI, TiO, ZrCI 2 , CrCI and VO;
  • M is a metal that is selected from the list comprising Pd, Cu, Pt, Ni and Zn;
  • each Ri and each R 4 independently represent a hydrogen or a halogen
  • each R 2 and each R 3 independently represent a hydrogen or a (C1-C7) alkyl group
  • n has a value of 1, 2 or 3.
  • halogens is meant in the present invention a bromine, chlorine, iodine or fluorine atom. Preferably it is fluorine.
  • alkyl refers in the present invention to aliphatic, linear or branched chains, having 1 to 7 carbon atoms, for example, methyl, ethyl, n-propyl, i-propyl, n-butyl, t- butyl, s-butyl, n-pentyl, etc. Preferably it has 1 to 4 carbon atoms, more preferably methyl, ethyl, n-propyl, i-propyl or t-butyl and even more preferably it is methyl.
  • fullerene in the present invention a molecular form of carbon, with a number of carbons equal to or greater than 20 and which can be classified by the number of carbons in: small fulerenes, below C6o; standard bellows, which would be Cm and C70; and fulerenos large, greater than C 7 o.
  • fulerenos we also refer to endofulerenes and functionalized fulerenes.
  • Endofulerenes are fulerenes that contain encapsulated metal particles or other molecules, can have the following formula: M " m @ C n ; where M" is a particle, preferably La, Se, Ce, N, Sc 3 N, Lu 3 N, Gd 3 N, C2SC4, m is the number of particles and can have a value between 1 and 5; and n is the carbon number of the fulerene, preferably it has the values 60 ⁇ n ⁇ 84.
  • the functionalized fulerenes can be for example, PCBM-C 6 or ([6,6] -phenyl-C 6 i-butyrate methyl) PCBM-C 70 ([6,6] - methyl phenyl-C 7 i-butyrate).
  • the counterion (X) of the nanocapsule is selected from CF3SO3 “ , CF3CO2 “ , CI “ , Br, CI0 4 “ , PF 6 “ , SbF 6 “ , BF 4 “ , N0 3 “ , BPh 4 “ , S0 2” , P0 4 3 “ or BARF “ . More preferably X is CF3SO3 “ , BARF “ or any combination thereof; where Ph is phenyl and BARF " is [B [3,5- (CF 3 ) 2C6H 3 ] 4 ] " .
  • the number of counterions to be used will be adequate to compensate for the octacathionic charge of the nanocapsule, for example, in the case of being monoanionic, the total number of counterions to neutralize the nanocapsule is eight, four if they are dianionic, or any possible combination of same.
  • each R1 independently represents hydrogen or fluorine, preferably all R1 of the nanocapsule is hydrogen.
  • each R 2 independently represents a hydrogen or an alkyl group (Ci-C 4 ), even more preferably all R 2 of the nanocapsule are methyl.
  • each R 3 independently represents a hydrogen or a (C1-C4) alkyl group, more preferably all R 3 of the nanocapsule are methyl.
  • each R 4 independently represents hydrogen or fluorine, preferably all R 4 of the nanocapsule is hydrogen.
  • M is Pd or Cu and M 'is Zn or Pd.
  • R1 is hydrogen
  • R 2 and R3 are methyl
  • R 4 is hydrogen
  • M is Pd
  • IW is Zn
  • n is 2
  • X is CF3SO3 " or BARF.
  • R1 is hydrogen
  • R2 and R3 are methyl
  • R4 is hydrogen
  • M is Cu
  • Pd IW n
  • X is CF3SO3 ".
  • Another aspect of the present invention relates to the use of the nanocapsule of the present invention, for the separation and / or purification of fulerenes.
  • the nanocapsule is useful for the separation and / or purification of fulerenes of size between C60 and C84, both included.
  • n is 1 in the metal macrocyclic compounds of general formula (II)
  • the nanocapsule is useful for the separation and / or purification of fulerenes of a size smaller than C60.
  • n is 3 in the metal macrocyclic compounds of general formula (II)
  • the nanocapsule is useful for the separation and / or purification of fulerenes of a size greater than C84.
  • Another aspect of the present invention relates to the possibility of encapsulating the various liquid phase fulerenes (mixture of solvents where nanocapsule and fulerenes are dissolved), or alternatively with one of the solid phase components.
  • the present invention demonstrates the ability of nanocapsules to encapsulate fulerenes of different sizes. It has been demonstrated by high-resolution mass spectrometry and, in some cases, by X-ray crystallography the encapsulation of C60, C70, C76, C78, C84 from mixtures of sooty soles ("Fullerene extract”: purchased at SES Research, with a C60 content of 70%, C70 of 28%, higher fullerenes of 2%. "Fullerene soot”: Aldrich, C60 is 5.32%, that of C70 is 1.54%, and that of higher fullerens ( > C70) less than 0.14%)
  • Another aspect of the present invention relates to a method of encapsulation of rubber bellows of size between C60 and C84, both included, comprising the following steps:
  • M ' is selected from the list comprising 2H, Zn, Pd, Cu, FeCI, Ir, Pt, Ag, AuCI, Ni, Ru, Al, Pb, SnCI 2 , InCI, SbCI, TiO, ZrCI 2 , CrCI , VO;
  • M, Ri, R 2 , R3 and R 4 are defined above and n is 2;
  • a solvent selected from acetonitrile, CH2CI2, acetone, methanol or any combination thereof;
  • step (b) add the dissolved nanocapsules from step (a) or the undissolved nanocapsules, leaving the nanocapsules in suspension, to the fulerenes dissolved in toluene, 1,2-dichlorobenzene, carbon disulfide or any combination thereof; or
  • step (b) alternatively to step (b) add to the dissolved nanocapsules in step (a) the solid-state, undissolved, the fulerenes, with said fulerenes being suspended;
  • the proportion of the solvent of the fulerene of step (b) / solvent of the nanocapsule of step (a) is between 9/1 to 4/1 and the temperature at which the above steps are carried out is between 0 ° C and 50 ° C, preferably the temperature is 20-30 ° C, and more preferably 25 ° C.
  • the dissolved nanocapsules of step (a) are added to the dissolved fulerenes, that is to say in a liquid state.
  • the rubber steels to be encapsulated are selected from C60, C70, C76, C78, C84 or any of their mixtures.
  • the proportion of the solvent of the fulerene of step (b) / nanocapsule solvent of step (a) is 4/1. More preferably the solvent of step (a) is acetonitrile, and / or the solvent of step (b) is toluene.
  • M ' is Zn
  • M is Pd
  • Ri and R 4 are H
  • R 2 and R 3 are methyl
  • X is BARF " of the nanocapsule of step (a).
  • I is Pd
  • M is Cu
  • R1 and R 4 are H
  • R 2 and R 3 are methyl
  • X is CF 3 SO 3 " of the nanocapsule of step (a).
  • the extraction of the encapsulated fulerenes is carried out exclusively with solid-state host-host system washes with different solvents, whereby the frelerenes released are obtained directly in solution while the remaining solid residue It consists mostly of empty nanocapsule, which is prepared without any additional operation for another encapsulation cycle.
  • the recycling process has been shown to be effective using an encapsulated C60 sample, and has been tested up to 5 times so that the integrity of the nanocapsule is not affected.
  • Another aspect of the present invention relates to the controlled release of encapsulated fulerenes.
  • a preferred embodiment relates to a method for the separation of C60 from a mixture of fulerenes, comprising:
  • step (b) wash three times (preferably a minimum of approximately 0.3 ml_ per wash) the encapsulated fulerenes of step (a) with a mixture of 1,2-dichlorobenzene: CS2 in a ratio of 1: 1 to 0: 1 and where Encapsulated fulerenes are supported on a filtration column (preferably celite ®).
  • a filtration column preferably celite ®
  • a method for the selective and sequential separation of C60 and C70 from a mixture of rubber bellows comprises separating the fulerene of size C60 by steps (a) and (b) of the method described above, in this way C60 (dissolved) is completely released. in the solvent mixture) while C70 remains encapsulated and in a solid state; and c.
  • the precipitate obtained in step (b) is suspended in toluene and treated with triflic acid.
  • the C70 dissolves in the medium and recovers completely and the remaining solid can be treated for the recovery of the nanocapsules and their reuse.
  • Another aspect of the present invention relates to the recycling of the nanocapsule, since once the washes have been carried out for the extraction of the encapsulated fulerene, the nanocapsule can be reused after at least 5 cycles of extraction by washing.
  • the above-described methods of encapsulation and separation of C60 and, optionally of C70 may comprise an additional step in which the solid comprising the nanocapsule and fulerene is dried and NEt 3 is added. (Et is ethyl) and subsequently dissolved with CH 3 CN, and thus the nanocapsule is recovered for later use.
  • the nanocapsule family of the present invention has a very high affinity for encapsulation of fulerenes and that a methodology for selective extraction has been developed with the possibility of reusing the nanocapsule for additional extraction cycles.
  • Fig. 1 Graphical representation of the nanocapsules of the invention, (a) represents the compound of general formula (I) (3) and the compound of general formula (II) (2) without the metals M; (b) represents the synthesis of two compounds of general formula (I) (3) with four compounds of general formula (I) (1-2), to form the nanocapsule (4); (c) represents a structural scheme of a nanocapsule where n is 2.
  • Fig. 2 High-resolution ESI-MS mass spectrometry analysis of the precipitate obtained after five cycles of extraction of the C60 from C6o @ 5- sample (BARF) 8 by washing with 1,2-dichlorobenzene: CS2 (1: one ).
  • Fig. 3 ESI-MS of the mixture formed after adding fullerene soot to nanocapsule 5- (BARF) 8
  • Fig. 4 Analysis by ESI-MS showing the highest affinity of C70 with respect to C60 (10 times higher).
  • Fig. 5 Differentiated separation of fulerenes according to the excess of "fullerene extract” with respect to capsule 5- (BARF) 8 . Enrichment of C84 using large excesses of "fullerene extract”.
  • H2pp 0.55 g of S2pp (0.99 mmol) was added to a 250 ml flask and dissolved with 50 absolute ethanol. Then 0.237 g of NaBH 4 (13.22 mmol) are added slowly. The reaction mixture was stirred for 16 h, 5 ml of 1 M HCI was added, and the solution was stirred an additional 45 minutes. After this time, the ethanol was removed under reduced pressure, and 20 ml of water is added to the reaction mixture. The H2pp product, which remains in the aqueous phase, is extracted with CH 3 CI (3x25 ml). The organic phases are mixed, dried with anhydrous MgSO4 and filtered. Finally the solution is dried under vacuum pressure. The product was obtained as a white solid.
  • Me2pp 0.66 g of H2pp (1.2 mmol) was added to a 100 ml flask and mixed with 10 ml of formaldehyde, 8 ml of formic acid and 10 ml of water. The resulting mixture is heated at reflux for 12 h. After this time, the reaction mixture was cooled to room temperature and the solvent was removed under reduced pressure. Then 25 ml of 30% NaOH are added. The product was extracted with CHCI3 (3x25 ml). The organic phases were combined, dried with anhydrous MgSO4 and filtered. The remaining solution is dried under vacuum pressure, and the product obtained is purified by recrystallization with acetone. (Yield: 39.6%).
  • Pd-1 (AcO) 2 (CF 3 SO 3 ) 2 Pd-1 (AcO) 2 (CF 3 SO 3 ) 2 is obtained from Pd-1 » (AcO). 0.04 g of Pd-1 » (AcO) (0.04 mmol) was dissolved in 25 ml of CH 3 CN. An excess of NaCF 3 S0 3 (1 to 4.2 equivalents) is added and the mixture is stirred vigorously for 6 h. The reaction mixture was concentrated to a volume of 2-3 ml under reduced pressure, filtered through Celite® and recrystallized by slow diffusion of diethyl ether. A yellow crystalline solid is obtained. (Yield: 90, 1%).
  • Cu-1 (CF 3 SO 3 ) 4 to a suspension of Me2pp ligand in CH 3 CN (40 mg, 0.06 mmol, 1.5 mL), a solution of Cu (CF 3 SO 3 ) 2 was added in CH 3 CN (45.0 mg, 0.12 mmol, 1 mL). After stirring 30 minutes, the solution was filtered through Celite® and recrystallized by diffusion of diethyl ether.
  • BARF 8 0.02 g of 5 » (CF 3 S0 3 ) 8 (3.2 ⁇ ) dissolve in 10 ml of CH2CI2. An excess of NaBArF salt (1 to 10 equivalents) is added and the mixture is stirred vigorously for 16 h. The reaction mixture is filtered and the product is obtained by precipitation with diethyl ether. The purple powder was washed several times with diethyl ether to remove excess NaBArF. (Yield: 38%).
  • the characterization of the hostless nanocapsules was performed by high resolution mass spectrometry (HR-ESI-MS), by X-ray diffraction and by NMR studies and infrared FT-IR spectroscopy.
  • the prismatic tetragonal nanocapsule (5- (BARF) 8 ) is capable of encapsulating leaflets of different sizes, mainly CQO, C 7 O, C 7 6, C 7 8 and C8 4 .
  • the encapsulation is carried out by mixing the box dissolved in acetonitrile and equimolar amounts of fulerenes dissolved in toluene (25 ° C, acetonitrile: toluene 1: 4).
  • encapsulation is also effective by suspending 5- (BARF) 8 in a solid state within a tollene solution in toluene, or by suspending fullerene in a solution of 5- (BARF) 8 in acetonitrile.
  • these fulerenes can be released from inside the nanocavity by washing with different organic solvents. This extraction is quick and simple, and is based on the difference in solubility of the fulerenes and the nanocapsule.
  • This extraction is quick and simple, and is based on the difference in solubility of the fulerenes and the nanocapsule.
  • the release of the C60 fulerene from the inside of the nanocapsule from a pure sample of the C60-nanocapsule complex is performed by loading the sample (10 mg) of C6o @ 5- (BARF) 8 in a solid state on a column using Celite® as a solid filter support. . Three consecutive 1 mL washes of the mixture 1, 2- dichlorobenzene / CS2 (1: 1) completely release the C60 from inside the capsule, leaving all the C60 in the filtrate and the empty capsule in solid state 5- (BARF) 8 loaded in the column. Analysis of the solid sample remaining in the column by HRMS certifies that it consists of an empty box in a purity> 95%.
  • the nanocapsule 5- (BARF) 8 is capable of encapsulating the different fulerenes present in the soot resulting from the production of fulerenes (fullerene extract), from C60 to C84.
  • the encapsulation of fulerenes has been tested with "fullerene extract” (purchased from SES Research, with a content of C60 70%, C70 28%, large fulerene (higher fullerenes) 2%).
  • Encapsulation of the fulerenes at room temperature is quantitative (1: 1 stoichiometry) in seconds and at room temperature. Its encapsulation has been verified by high resolution mass spectrometry, by NMR studies (the nanocapsule and its adduct with the encapsulated fulerene are diamagnetic) and FT-IR spectroscopy. The encapsulation of C60 and C70 has also been contrasted by preliminary X-ray studies with synchrotron light. The higher proportion of C70 than of encapsulated C60 when its concentration is 4 times lower, clearly suggests a higher affinity for C70.
  • the release of the encapsulated fulerene mixture (in the experiment where the ratio 5- (BARF) 8 : "fullerene extract” by weight is 1: 3) is performed as follows: 5 mg of the nanocapsule with fulerenes, fulerenes @ 5- (BARF) 8 , is loaded in a solid state on a column with celite® as a solid support, and 3 washes of 1 mL of the mixture 1, 2-dichlorobenzene: CS2 1: 1 are performed, allowing the C60 to be released exclusively in a pure way, leaving on the column the solid residue consisting of empty capsule 5- (BARF) 8 and capsule with equal or greater than C70 fulerenes. Later washed with CS2 exclusively allow to extract up to 10% of the C70 encapsulated in a pure way.
  • the release of the rest of higher fullerenes can be done in two ways: a) the use of excess triflic acid (CF3SO3H, 20 equivalents with respect to the capsule) added on a suspension of fulerenes @ 5- (BARF) 8 (where the C60 has been previously released) at room temperature leads to irreversible disassembly of the nanocapsule and immediate release of the fulerene mix; b) the use of 3 equivalents of CF3SO3H allows to extract the fulerenos equal or larger than C70, due to a destabilization of the capsule without disassembling it.
  • the addition of 3 eq of NEt 3 (triethylamine) as a base to neutralize the triflic acid used is essential to recover the capsule completely (HRMS certified).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)

Abstract

The invention relates to molecular nanocapsules formed by self-assembly and based on tetracarboxlated (metallo)porphyrins and metal macrocyclic compounds, joined by M-carboxylate binding, and counter-ions, as well as to the use thereof for the selective separation and/or purification of fullerenes.

Description

Nanocápsulas moleculares para la separación selectiva de fulerenos  Molecular nanocapsules for selective separation of fulerenes
DESCRIPCIÓN DESCRIPTION
La presente invención se refiere a nanocápsulas moleculares formadas por autoensamblaje y basadas en complejos y metaloporfirinas y su uso para la purificación y/o la separación selectiva de fulerenos. The present invention relates to molecular nanocapsules formed by self-assembly and based on complexes and metalloporphyrins and their use for purification and / or selective separation of fulerenes.
ESTADO DE LA TÉCNICA STATE OF THE TECHNIQUE
Los fulerenos son moléculas nanométricas (~ 1 nm de diámetro) con aplicaciones en una amplia gama de campos desde la ciencia de los materiales a su uso en fármacos. Hoy en día, los derivados de fulereno son los materiales de tipo n de referencia para la construcción de dispositivos fotovoltaicos orgánicos. La búsqueda de receptores moleculares para fulerenos, esencialmente para C60, se inició en los años 90 para poder disponer de cantidades mínimas que permitieran caracterizar las propiedades del material. Desde el punto de vista de reconocimiento molecular, los fulerenos son unas moléculas huésped muy peculiares. Su inusual forma (aproximadamente esférica, maxim izando la relación de superficie/volumen) y su naturaleza química (polienos no polarizados) restringen los tipos de fuerzas no covalentes que pueden ser utilizados para su asociación a fuerzas de dispersión (π-π y de van der Waals). The fulerenes are nanometric molecules (~ 1 nm in diameter) with applications in a wide range of fields from the science of materials to their use in drugs. Today, the derivatives of fulerene are the reference type n materials for the construction of organic photovoltaic devices. The search for molecular receptors for fulerenes, essentially for C60, began in the 90s to be able to have minimum quantities that allowed characterizing the properties of the material. From the point of view of molecular recognition, fulerenes are very peculiar host molecules. Its unusual shape (approximately spherical, maximizing the surface / volume ratio) and its chemical nature (non-polarized polyenes) restrict the types of non-covalent forces that can be used for their association with dispersion forces (π-π and van der Waals).
La separación y purificación de fulerenos a partir de mezclas con otras formas alotrópicas del carbono es un problema sin resolver. Existe un gran interés en superar las tediosas y dificultosas extracciones cromatográficas que actualmente se utilizan para conseguir separar los fulerenos más comunes de manera pura. Entre ellos, el C60 y el C70 son los más conocidos y estudiados precisamente por su mayor disponibilidad, aunque su coste continúa siendo alto o muy alto por la necesidad de grandes cantidades de disolventes usados en los procesos cromatográficos de purificación. Además, la separación y purificación de fulerenos de mayor envergadura, mayores de C70 (conocidos como "higher fullerenes") es hoy en día el mayor problema para el estudio de sus propiedades. Para la separación y purificación de "higher fullerenes" los métodos cromatográficos clásicos son inasumibles debido a su poca solubilidad y a los múltiples ciclos cromatográficos necesarios, razones por las cuales el estudio de estos compuestos está claramente subdesarrollado. The separation and purification of fulerenes from mixtures with other allotropic forms of carbon is an unsolved problem. There is a great interest in overcoming the tedious and difficult chromatographic extractions that are currently used to separate the most common fulerenes purely. Among them, C60 and C70 are the best known and studied precisely because of their greater availability, although their cost remains high or very high due to the need for large amounts of solvents used in chromatographic purification processes. In addition, the separation and purification of larger bellows, larger than C70 (known as "higher fullerenes") is today the biggest problem for the study of its properties. For the separation and purification of "higher fullerenes" the classical chromatographic methods are unacceptable due to their low solubility and the many necessary chromatographic cycles, reasons for which the study of these compounds is clearly underdeveloped.
Como alternativa a las extracciones cromatográficas en los últimos años se han utilizado dos tipos de estrategias para la encapsulación de fulerenos: a) el uso de moléculas hospedador de naturaleza completamente orgánica y con grupos apolares (anillos aromáticos) de dimensiones adecuadas para la encapsulación de fulerenos, y b) el uso de hospedadores que contienen metales de transición. As an alternative to chromatographic extractions in recent years, two types of strategies have been used for encapsulation of fulerenes: a) the use of host molecules of a completely organic nature and with apolar groups (aromatic rings) of suitable dimensions for encapsulation of fulerenes , and b) the use of hosts containing transition metals.
En ambas aproximaciones, la liberación posterior del huésped se consigue de diversas formas: a) tratamiento ácido-base para conseguir la apertura de la cápsula y la precipitación del fulereno, b) el uso de estímulos físicos externos (irradiación con luz) no invasivos a temperatura ambiente y c) desplazando el fulereno con un sustrato con mayor afinidad hacia el hospedador. In both approaches, the subsequent release of the host is achieved in several ways: a) acid-base treatment to achieve the opening of the capsule and the precipitation of the fulerene, b) the use of non-invasive external physical stimuli (irradiation with light) a room temperature and c) displacing the fulerene with a substrate with greater affinity towards the host.
Existen sistemas huésped-hospedador selectivos para C60, como son las cyclodextrinas o calix[8]arenos. En estos sistemas la liberación del fulereno es difícil por su elevada estabilidad (Atwood, J.L.; Koutsantonis, G.A. and Raston, C. IL Nature,368, 229 (1994)). There are selective host-host systems for C60, such as cyclodextrins or calix [8] arenes. In these systems the release of fulerene is difficult due to its high stability (Atwood, J.L .; Koutsantonis, G.A. and Raston, C. IL Nature, 368, 229 (1994)).
Existen algunas excepciones, como son los calix[5]arenos dobles desarrollados por Fukazawa et al., capaces de extraer C94 y C96 de mezclas de fulerenos. Estos sistemas hospedador-huésped tratados a temperaturas superiores a 100°C permiten la liberación de los fulerenos mencionados debido a un cambio conformacional del hospedador. Sin embargo, estos hospedadores no se pueden reutilizar para la misma aplicación (Haino, T.; Fukunaga, C; Fukazawa, Y. Org. Lett., 8, 3545-3548 (2006)). Por otro lado, los sistemas cíclicos diméricos de Aida et al., los cuales contienen dos unidades porfirínicas, son capaces de extraer fulerenos mayores a C76 de mezclas de fulerenos. Mediante uso de huéspedes más selectivos para estos sistemas, como la 4,4'-bipiridina, los autores demuestran la obtención de mezclas enriquecidas con "higher fullerens" (por ejemplo de mezclas C102-C1 10) y sin rastro de los mayoritarios C60 y C70. (Shoji, Y.; Tashiro, K.; Aida, T. J. Am. Chem. Soc, 126, 6570-6571 (2004)). There are some exceptions, such as the calix [5] double sands developed by Fukazawa et al., Capable of extracting C94 and C96 from mixtures of fulerenes. These host-host systems treated at temperatures above 100 ° C allow the release of the aforementioned fulerenes due to a conformational change of the host. However, these hosts cannot be reused for the same application (Haino, T .; Fukunaga, C; Fukazawa, Y. Org. Lett., 8, 3545-3548 (2006)). On the other hand, the dimeric cyclic systems of Aida et al., Which contain two porphyrin units, are capable of extracting fulerenes greater than C76 from mixtures of fulerenes. Through the use of more selective hosts for these systems, such as 4,4'-bipyridine, the authors demonstrate the obtaining of mixtures enriched with "higher fullerens" (for example of mixtures C102-C1 10) and without a trace of the majority C60 and C70 (Shoji, Y .; Tashiro, K .; Aida, TJ Am. Chem. Soc, 126, 6570-6571 (2004)).
Además, Mendoza et al ha desarrollado un sistema supramolecular basado en receptores ciclotriveratrileno que contienen tres unidades 4-ureidopirimidinona (UPy) y que se autoensamblan mediante enlaces por puente de hidrógeno. Los autores han demostrado que este sistema es capaz de encapsular preferentemente C84 por delante de C70 y muy por delante de C60 debido a las diferentes constantes de asociación. La liberación de los fulerenos se realiza mediante tratamiento con ácido trifluoroacético de disoluciones del sistema hospedador-huésped en THF (tetrahidrofurano), causando la precipitación de los fulerenos en cuestión. (Huerta, E.; Metselaar, G.A.; Fragoso, A.; Santos, E.; Bo, C. and de Mendoza, J. Angew. Chem. Int. Ed., 46, 202 -205 (2007); Huerta, E.; Cequier, E. and de Mendoza, J. Chem. Commun., 5017-5018 (2007)). Una estrategia similar ha sido desarrollada por Zhang et al. (Zhang, C; Wang, Q.; Long, H. and Zhang, W. J. Am. Chem. Soc, 133, 51 (201 1 )). In addition, Mendoza et al. Has developed a supramolecular system based on cyclotriveratrylene receptors that contain three 4-ureidopyrimidinone (UPy) units and self-assemble using hydrogen bridge bonds. The authors have shown that this system is capable of encapsulating preferably C84 ahead of C70 and well ahead of C60 due to the different association constants. The release of the fulerenes is carried out by treatment with trifluoroacetic acid of solutions of the host-host system in THF (tetrahydrofuran), causing precipitation of the fulerenes in question. (Huerta, E .; Metselaar, GA; Fragoso, A .; Santos, E .; Bo, C. and de Mendoza, J. Angew. Chem. Int. Ed., 46, 202-205 (2007); Huerta, E .; Cequier, E. and de Mendoza, J. Chem. Commun., 5017-5018 (2007)). A similar strategy has been developed by Zhang et al. (Zhang, C; Wang, Q .; Long, H. and Zhang, W. J. Am. Chem. Soc, 133, 51 (201 1)).
Por tanto, existe un gran interés en desarrollar hospedadores capaces para encapsular y liberar selectivamente y de manera controlada fulerenos de diferente tamaño. Therefore, there is great interest in developing hosts capable of encapsulating and releasing selectively and differently controlled fulerenes of different sizes.
DESCRIPCIÓN DE LA INVENCIÓN DESCRIPTION OF THE INVENTION
La presente invención se refiere a la síntesis de nanocápsulas moleculares basadas en el autoensamblaje mediante química de coordinación de compuestos macrocíclicos metálicos con (metalo)porfirinas tetracarboxiladas, y su uso como esponjas de fulerenos de diferentes dimensiones. Las nanocápsulas que se obtienen son de naturaleza tetragonal prismática con un espacio interior de grandes dimensiones capaz de encapsular una molécula de fulereno de diferentes dimensiones. La posibilidad de variar el diseño dentro de la misma familia de nanocápsulas permite disponer de una tecnología para encapsular y liberar selectivamente y a voluntad fulerenos de un tamaño determinado. The present invention relates to the synthesis of molecular nanocapsules based on self-assembly by means of coordination chemistry of metal macrocyclic compounds with tetracarboxylated (metallo) porphyrins, and their use as sponges of fulerenes of different dimensions. The The nanocapsules obtained are tetragonal prismatic in nature with a large interior space capable of encapsulating a molecule of fulerene of different dimensions. The possibility of varying the design within the same family of nanocapsules makes it possible to have a technology to encapsulate and selectively release and will release fulerenes of a certain size.
Las nanocápsulas de la presente invención presentan ventajas en diferentes aspectos de la separación y purificación de fulerenos. El uso de un ligando con n=2 proporciona la capacidad de absorber en su interior desde C60 hasta C84. El uso de un ligando con n=1 se prevé efectivo para la absorción de fulerenos de pequeño tamaño (<C60), mientras que ligandos con n=3 serían efectivos para la absorción de fulerenos de mayor tamaño (>C84). The nanocapsules of the present invention have advantages in different aspects of the separation and purification of fulerenes. The use of a ligand with n = 2 provides the ability to absorb inside it from C60 to C84. The use of a ligand with n = 1 is expected to be effective for the absorption of small-size fulerenes (<C60), while ligands with n = 3 would be effective for the absorption of larger-sized fulerenes (> C84).
La naturaleza de estas nanocápsulas es altamente modular y de manera simple, el uso de diferentes metales en la porfihna se entiende como un elemento que va a permitir y modificar la afinidad de los fulerenos por las cápsulas. Finalmente, la naturaleza octacatiónica de las nanocápsulas y el uso de diferentes contraiones constituyen elementos de versatilidad del sistema que ha de permitir el uso de las cápsulas en diferentes disolventes. The nature of these nanocapsules is highly modular and in a simple way, the use of different metals in the porfihna is understood as an element that will allow and modify the affinity of the fulerenes for the capsules. Finally, the octacathonic nature of the nanocapsules and the use of different counterions constitute elements of system versatility that must allow the use of the capsules in different solvents.
Por tanto, un primer aspecto de la presente invención se refiere a una nanocápsula formada por dos (metalo)porfirinas tetracarboxiladas paralelas de fórmula general (I) unidas por cuatro compuestos macrocíclicos metálicos de fórmula general (II) a través de un enlace M-carboxilato, y contraiones (X) en un número adecuado para compensar la carga octacatiónica de la nanocápsula. Therefore, a first aspect of the present invention relates to a nanocapsule formed by two parallel tetracarboxylated (metallo) porphyrins of general formula (I) linked by four metal macrocyclic compounds of general formula (II) through an M-carboxylate bond , and counterions (X) in a suitable number to compensate for the octacathic charge of the nanocapsule.
Figure imgf000006_0001
Figure imgf000006_0001
(l) (II) donde: Μ' se selecciona de la lista que comprende 2H, Zn, Cu, FeCI, Ir, Pd, Pt, Ag, AuCI, Ni, Ru, Al, Pb, SnCI2, InCI, SbCI, TiO, ZrCI2, CrCI y VO; preferiblemente IW es 2H, Zn, Cu, FeCI, Ir, Pt, Ag, AuCI, Ni, Ru, Al, Pb, SnCI2, InCI, SbCI, TiO, ZrCI2, CrCI y VO; (l) (II) where: Μ 'is selected from the list comprising 2H, Zn, Cu, FeCI, Ir, Pd, Pt, Ag, AuCI, Ni, Ru, Al, Pb, SnCI 2 , InCI, SbCI, TiO, ZrCI 2 , CrCI and VO; preferably IW is 2H, Zn, Cu, FeCI, Ir, Pt, Ag, AuCI, Ni, Ru, Al, Pb, SnCI 2 , InCI, SbCI, TiO, ZrCI 2 , CrCI and VO;
M es un metal que se selecciona de la lista que comprende Pd, Cu, Pt, Ni y Zn;  M is a metal that is selected from the list comprising Pd, Cu, Pt, Ni and Zn;
cada Ri y cada R4 representan de manera independiente un hidrógeno o un halógeno; each Ri and each R 4 independently represent a hydrogen or a halogen;
cada R2 y cada R3 representan de manera independiente un hidrógeno o un grupo alquilo (C1-C7); each R 2 and each R 3 independently represent a hydrogen or a (C1-C7) alkyl group;
n tiene un valor de 1 , 2 ó 3.  n has a value of 1, 2 or 3.
Por "halógenos" se entiende en la presente invención a un átomo de bromo, cloro, yodo o flúor. Preferiblemente es flúor. By "halogens" is meant in the present invention a bromine, chlorine, iodine or fluorine atom. Preferably it is fluorine.
El término "alquilo" se refiere en la presente invención a cadenas alifáticas, lineales o ramificadas, que tienen de 1 a 7 átomos de carbono, por ejemplo, metilo, etilo, n-propilo, i-propilo, n-butilo, t-butilo, s-butilo, n-pentilo, etc. Preferiblemente tiene de 1 a 4 átomos de carbono, más preferiblemente metilo, etilo, n-propilo, i-propilo o t-butilo y aún más preferiblemente es metilo. The term "alkyl" refers in the present invention to aliphatic, linear or branched chains, having 1 to 7 carbon atoms, for example, methyl, ethyl, n-propyl, i-propyl, n-butyl, t- butyl, s-butyl, n-pentyl, etc. Preferably it has 1 to 4 carbon atoms, more preferably methyl, ethyl, n-propyl, i-propyl or t-butyl and even more preferably it is methyl.
Por "fulereno" se entiende en la presente invención a una forma molecular del carbono, con un número de carbonos igual o superior a 20 y que puede clasificarse por el número de carbonos en: fulerenos pequeños, por debajo de C6o; fulerenos estándar, que serían Cm y C70; y fulerenos grandes, mayores de C7o. Como fulerenos también nos referimos a los endofulerenos y los fulerenos funcionalizados. Los endofulerenos son fulerenos que contienen partículas metálicas encapsuladas u otras moléculas, puede tener la siguiente fórmula: M"m@Cn; donde M" es una partícula, preferiblemente La, Se, Ce, N, Sc3N, Lu3N, Gd3N, C2SC4, m es el número de partículas y puede tener un valor de entre 1 y 5; y n es el número de carbonos del fulereno, preferiblemente tiene los valores 60 < n < 84. Por otro lado, los fulerenos funcionalizados pueden ser por ejemplo, PCBM-C6o ([6,6]-phenil-C6i-butirato de metilo) PCBM-C70 ([6,6]- phenil-C7i-butirato de metilo). By "fulerene" is meant in the present invention a molecular form of carbon, with a number of carbons equal to or greater than 20 and which can be classified by the number of carbons in: small fulerenes, below C6o; standard bellows, which would be Cm and C70; and fulerenos large, greater than C 7 o. As fulerenos we also refer to endofulerenes and functionalized fulerenes. Endofulerenes are fulerenes that contain encapsulated metal particles or other molecules, can have the following formula: M " m @ C n ; where M" is a particle, preferably La, Se, Ce, N, Sc 3 N, Lu 3 N, Gd 3 N, C2SC4, m is the number of particles and can have a value between 1 and 5; and n is the carbon number of the fulerene, preferably it has the values 60 <n <84. On the other hand, the functionalized fulerenes can be for example, PCBM-C 6 or ([6,6] -phenyl-C 6 i-butyrate methyl) PCBM-C 70 ([6,6] - methyl phenyl-C 7 i-butyrate).
En una realización preferida, el contraion (X) de la nanocápsula se selecciona de entre CF3SO3", CF3CO2", CI", Br , CI04 ", PF6 ", SbF6 ", BF4 ", N03 ", BPh4 ", S0 2", P04 3" o BARF". Más preferiblemente X es CF3SO3", BARF" o cualquiera de sus combinaciones; donde Ph es fenilo y BARF" es [B[3,5-(CF3)2C6H3]4]". El número de contraiones a utilizar será el adecuado para compensar la carga octacatiónica de la nanocápsula, por ejemplo, en el caso de ser monoanionícos el total de contraiones para neutralizar la nanocápsula es de ocho, cuatro si son dianionicos, o cualquier combinación posible de los mismos. In a preferred embodiment, the counterion (X) of the nanocapsule is selected from CF3SO3 " , CF3CO2 " , CI " , Br, CI0 4 " , PF 6 " , SbF 6 " , BF 4 " , N0 3 " , BPh 4 " , S0 2" , P0 4 3 " or BARF " . More preferably X is CF3SO3 " , BARF " or any combination thereof; where Ph is phenyl and BARF " is [B [3,5- (CF 3 ) 2C6H 3 ] 4 ] " . The number of counterions to be used will be adequate to compensate for the octacathionic charge of the nanocapsule, for example, in the case of being monoanionic, the total number of counterions to neutralize the nanocapsule is eight, four if they are dianionic, or any possible combination of same.
En otra realización preferida, cada R1 representa de manera independiente hidrógeno o flúor, preferiblemente todos los R1 de la nanocápsula son hidrógeno. In another preferred embodiment, each R1 independently represents hydrogen or fluorine, preferably all R1 of the nanocapsule is hydrogen.
En otra realización preferida, cada R2 representa de manera independiente un hidrógeno o un grupo alquilo (Ci-C4), aún más preferiblemente todos los R2 de la nanocápsula son metilo. En otra realización preferida, cada R3 representa de manera independiente un hidrógeno o un grupo alquilo (C1-C4), más preferiblemente todos los R3 de la nanocápsula son metilo. In another preferred embodiment, each R 2 independently represents a hydrogen or an alkyl group (Ci-C 4 ), even more preferably all R 2 of the nanocapsule are methyl. In another preferred embodiment, each R 3 independently represents a hydrogen or a (C1-C4) alkyl group, more preferably all R 3 of the nanocapsule are methyl.
En otra realización preferida, cada R4 representa de manera independiente hidrógeno o flúor, preferiblemente todos los R4 de la nanocápsula son hidrógeno. In another preferred embodiment, each R 4 independently represents hydrogen or fluorine, preferably all R 4 of the nanocapsule is hydrogen.
En otra realización preferida, M es Pd o Cu y M' es Zn o Pd. In another preferred embodiment, M is Pd or Cu and M 'is Zn or Pd.
En otra realización preferida, R1 es hidrógeno, R2 y R3 son metilo, R4 es hidrógeno, M es Pd, IW es Zn, n es 2 y X es CF3SO3" o BARF. In another preferred embodiment, R1 is hydrogen, R 2 and R3 are methyl, R 4 is hydrogen, M is Pd, IW is Zn, n is 2 and X is CF3SO3 " or BARF.
En otra realización preferida, R1 es hidrógeno, R2 y R3 son metilo, R4 es hidrógeno, M es Cu, IW es Pd, n es 2 y X es CF3SO3". In another preferred embodiment, R1 is hydrogen, R2 and R3 are methyl, R4 is hydrogen, M is Cu, Pd IW, n is 2 and X is CF3SO3 ".
Otro aspecto de la presente invención se refiere al uso de la nanocápsula de la presente invención, para la separación y/o purificación de fulerenos. Another aspect of the present invention relates to the use of the nanocapsule of the present invention, for the separation and / or purification of fulerenes.
Cuando n es 2 en los compuestos macrocíclicos metálicos de fórmula general (II), la nanocápsula es útil para la separación y/o purificación de fulerenos de tamaño entre C60 y C84, ambos incluidos. Cuando n es 1 en los compuestos macrocíclicos metálicos de fórmula general (II), la nanocápsula es útil para la separación y/o purificación de fulerenos de un tamaño menor a C60. Y cuando n es 3 en los compuestos macrocíclicos metálicos de fórmula general (II), la nanocápsula es útil para la separación y/o purificación de fulerenos de un tamaño mayor a C84. When n is 2 in the metal macrocyclic compounds of general formula (II), the nanocapsule is useful for the separation and / or purification of fulerenes of size between C60 and C84, both included. When n is 1 in the metal macrocyclic compounds of general formula (II), the nanocapsule is useful for the separation and / or purification of fulerenes of a size smaller than C60. And when n is 3 in the metal macrocyclic compounds of general formula (II), the nanocapsule is useful for the separation and / or purification of fulerenes of a size greater than C84.
Otro aspecto de la presente invención se refiere a la posibilidad de encapsular los distintos fulerenos en fase líquida (mezcla de disolventes donde nanocápsula y fulerenos están disueltos), o alternativamente con uno de los componentes en fase sólida. Por ejemplo, suspensión de la nanocápsula (estado sólido) en disolución de fulerenos en, por ejemplo, tolueno, o bien suspensión de fulerenos (estado sólido) en disolución de nanocápsula en, por ejemplo, acetonitrilo. Another aspect of the present invention relates to the possibility of encapsulating the various liquid phase fulerenes (mixture of solvents where nanocapsule and fulerenes are dissolved), or alternatively with one of the solid phase components. For example, nanocapsule suspension (solid state) in solution of fulerenes in, for example, toluene, or suspension of fulerenes (solid state) in nanocapsule solution in, for example, acetonitrile.
En la presente invención se demuestra la capacidad de las nanocápsulas de encapsular fulerenos de diferente tamaño. Se ha demostrado por espectrometría de masas de alta resolución y, en algunos casos, por cristalografía de Rayos X la encapsulacion de C60, C70, C76, C78, C84 a partir de mezclas de hollín de fulerenos ("Fullerene extract": comprado en SES Research, con un contenido de C60 del 70%, C70 del 28%, higher fullerenes del 2%. "Fullerene soot": Aldrich, C60 es del 5.32%, el del C70 del 1 .54%, y el de higher fullerens (>C70) menor del 0.14%)  The present invention demonstrates the ability of nanocapsules to encapsulate fulerenes of different sizes. It has been demonstrated by high-resolution mass spectrometry and, in some cases, by X-ray crystallography the encapsulation of C60, C70, C76, C78, C84 from mixtures of sooty soles ("Fullerene extract": purchased at SES Research, with a C60 content of 70%, C70 of 28%, higher fullerenes of 2%. "Fullerene soot": Aldrich, C60 is 5.32%, that of C70 is 1.54%, and that of higher fullerens ( > C70) less than 0.14%)
Por tanto, otro aspecto más de la presente invención se refiere a un método de encapsulacion de fulerenos de tamaño entre C60 y C84, ambos incluidos, que comprende los siguientes pasos: Therefore, another aspect of the present invention relates to a method of encapsulation of rubber bellows of size between C60 and C84, both included, comprising the following steps:
a. disolver una nanocápsula formada por dos (metalo)porfirinas tetracarboxiladas paralelas de fórmula general (I) unidas por cuatro compuestos macrocíclicos metálicos de fórmula general (II) a través de un enlace M-carboxilato, y contraiones (x) en un número adecuado para compensar la carga octacatiónica de la nanocápsula: to. dissolve a nanocapsule formed by two parallel tetracarboxylated (metallo) porphyrins of general formula (I) joined by four metal macrocyclic compounds of general formula (II) through an M-carboxylate bond, and counterions (x) in a suitable number to compensate The octacathic charge of the nanocapsule:
Figure imgf000010_0001
Figure imgf000010_0001
donde: M' se selecciona de la lista que comprende 2H, Zn, Pd, Cu, FeCI, Ir, Pt, Ag, AuCI, Ni, Ru, Al, Pb, SnCI2, InCI, SbCI, TiO, ZrCI2, CrCI, VO; where: M 'is selected from the list comprising 2H, Zn, Pd, Cu, FeCI, Ir, Pt, Ag, AuCI, Ni, Ru, Al, Pb, SnCI 2 , InCI, SbCI, TiO, ZrCI 2 , CrCI , VO;
M, R-i , R2, R3 y R4 están definidos anteriormente y n es 2; M, Ri, R 2 , R3 and R 4 are defined above and n is 2;
con un disolvente seleccionado de entre acetonitrilo, CH2CI2, acetona, metanol o cualquiera de sus combinaciones;  with a solvent selected from acetonitrile, CH2CI2, acetone, methanol or any combination thereof;
b. añadir las nanocápsulas disueltas del paso (a) o las nanocápculas sin disolver, quedando las nanocápsulas en suspensión, a los fulerenos disueltos en tolueno, 1 ,2-diclorobenzeno, disulfuro de carbono o cualquiera de sus combinaciones; o b. add the dissolved nanocapsules from step (a) or the undissolved nanocapsules, leaving the nanocapsules in suspension, to the fulerenes dissolved in toluene, 1,2-dichlorobenzene, carbon disulfide or any combination thereof; or
b'. de manera alternativa al paso (b) añadir a las nanocápsulas disueltas en el paso (a) los fulerenos en estado sólido, sin disolver, quedando dichos fulerenos en suspensión; b '. alternatively to step (b) add to the dissolved nanocapsules in step (a) the solid-state, undissolved, the fulerenes, with said fulerenes being suspended;
donde la proporción del disolvente del fulereno del paso (b)/disolvente de la nanocápsula del paso (a) es entre 9/1 a 4/1 y la temperatura a la que se llevan a cabo los pasos anteriores es de entre 0°C y 50°C, preferiblemente la temperatura es de 20-30°C, y más preferiblemente 25°C. En una realización preferida del método de encapsulación, las nanocápsulas disueltas del paso (a) se añaden a los fulerenos disueltos, es decir en estado líquido. where the proportion of the solvent of the fulerene of step (b) / solvent of the nanocapsule of step (a) is between 9/1 to 4/1 and the temperature at which the above steps are carried out is between 0 ° C and 50 ° C, preferably the temperature is 20-30 ° C, and more preferably 25 ° C. In a preferred embodiment of the encapsulation method, the dissolved nanocapsules of step (a) are added to the dissolved fulerenes, that is to say in a liquid state.
En otra realización preferida, los fulerenos a encapsular se seleccionan de entre C60, C70, C76, C78, C84 o cualquiera de sus mezclas. In another preferred embodiment, the rubber steels to be encapsulated are selected from C60, C70, C76, C78, C84 or any of their mixtures.
En una realización más preferida la proporción del disolvente del fulereno del paso (b)/disolvente de la nanocápsula del paso (a) es de 4/1. Más preferiblemente el disolvente del paso (a) es acetonitrilo, y/o el disolvente del paso (b) es tolueno. In a more preferred embodiment the proportion of the solvent of the fulerene of step (b) / nanocapsule solvent of step (a) is 4/1. More preferably the solvent of step (a) is acetonitrile, and / or the solvent of step (b) is toluene.
En una realización preferida del método de encapsulación de la presente invención, M' es Zn, M es Pd, Ri y R4 son H, R2 y R3 son metilo y X es BARF" de la nanocápsula del paso (a). In a preferred embodiment of the encapsulation method of the present invention, M 'is Zn, M is Pd, Ri and R 4 are H, R 2 and R 3 are methyl and X is BARF " of the nanocapsule of step (a).
En otra realización preferida del método de encapsulación de la presente invención, I es Pd, M es Cu, R1 y R4 son H, R2 y R3 son metilo y X es CF3SO3" de la nanocápsula del paso (a). In another preferred embodiment of the encapsulation method of the present invention, I is Pd, M is Cu, R1 and R 4 are H, R 2 and R 3 are methyl and X is CF 3 SO 3 " of the nanocapsule of step (a).
Después de la encapsulación, y en segundo lugar, la extracción de los fulerenos encapsulados se realiza exclusivamente con lavados del sistema hospedador-huésped en estado sólido con distintos disolventes, por lo que los fulerenos liberados se obtienen directamente en solución mientras que el residuo sólido restante consiste mayoritariamente en nanocápsula vacía, la cual está preparada sin ninguna operación adicional para otro ciclo de encapsulación. Se ha demostrado que el proceso de reciclaje es efectivo usando una muestra de C60 encapsulado, y se ha ensayado hasta 5 veces de manera que la integridad de la nanocápsula no se ve afectada. After the encapsulation, and secondly, the extraction of the encapsulated fulerenes is carried out exclusively with solid-state host-host system washes with different solvents, whereby the frelerenes released are obtained directly in solution while the remaining solid residue It consists mostly of empty nanocapsule, which is prepared without any additional operation for another encapsulation cycle. The recycling process has been shown to be effective using an encapsulated C60 sample, and has been tested up to 5 times so that the integrity of the nanocapsule is not affected.
Por tanto, otro aspecto de la presente invención se refiere a la liberación controlada de los fulerenos encapsulados. Una realización preferida se refiere a un método para la separación de C60 de una mezcla de fulerenos, que comprende: Therefore, another aspect of the present invention relates to the controlled release of encapsulated fulerenes. A preferred embodiment relates to a method for the separation of C60 from a mixture of fulerenes, comprising:
a. encapsular dichos fulerenos mediante el método de encapsulación de la invención descrito anteriormente; y  to. encapsulating said fulerenes by the encapsulation method of the invention described above; Y
b. lavar tres veces (preferiblemente un mínimo de 0,3 ml_ aproximadamente por cada lavado) los fulerenos encapsulados del paso (a) con una mezcla de 1 ,2-diclorobenzeneo:CS2 en una proporción de 1 : 1 a 0: 1 y donde los fulerenos encapsulados están soportados en una columna de filtración (preferiblemente celite ®).  b. wash three times (preferably a minimum of approximately 0.3 ml_ per wash) the encapsulated fulerenes of step (a) with a mixture of 1,2-dichlorobenzene: CS2 in a ratio of 1: 1 to 0: 1 and where Encapsulated fulerenes are supported on a filtration column (preferably celite ®).
En otra realización preferida con mezclas de C60 y C70, se puede realizar la liberación selectiva con lavados del compuesto hospedador-huésped en fase sólida con disolventes orgánicos de distinta polaridad. In another preferred embodiment with mixtures of C60 and C70, selective release with washing of the host-host compound in solid phase with organic solvents of different polarity can be performed.
Más preferiblemente, un método para la separación selectiva y secuencialmente C60 y C70 de una mezcla de fulerenos comprende separar el fulereno de tamaño C60 mediante los pasos (a) y (b) del método descrito anteriormente, de esta forma se libera totalmente C60 (disuelto en la mezcla de disolventes) mientras que C70 permanece encapsulado y en estado sólido; y c. el precipitado obtenido en la etapa (b) se suspende en tolueno y se trata con ácido tríflico. El C70 se disuelve en el medio y se recupera íntegramente y el sólido restante se puede tratar para la recuperación de las nanocápsulas y su reutilización. More preferably, a method for the selective and sequential separation of C60 and C70 from a mixture of rubber bellows comprises separating the fulerene of size C60 by steps (a) and (b) of the method described above, in this way C60 (dissolved) is completely released. in the solvent mixture) while C70 remains encapsulated and in a solid state; and c. The precipitate obtained in step (b) is suspended in toluene and treated with triflic acid. The C70 dissolves in the medium and recovers completely and the remaining solid can be treated for the recovery of the nanocapsules and their reuse.
Otro aspecto de la presente invención se refiere al reciclaje de la nanocápsula, ya que una vez realizados los lavados para la extracción del fulereno encapsulado, la nanocápsula se puede volver a reutilizar después de al menos 5 ciclos de extracción mediante lavados. Another aspect of the present invention relates to the recycling of the nanocapsule, since once the washes have been carried out for the extraction of the encapsulated fulerene, the nanocapsule can be reused after at least 5 cycles of extraction by washing.
Por tanto, los métodos anteriormente descritos de encapsulado y separación de C60 y, opcionalmente de C70, pueden comprender un paso adicional en el que el sólido que comprende la nanocápsula y fulereno se seca y se le añade NEt3 (Et es etilo) y posteriormente se disuelve con CH3CN, y de esta forma se recupera la nanocápsula para uso posteriores. Therefore, the above-described methods of encapsulation and separation of C60 and, optionally of C70, may comprise an additional step in which the solid comprising the nanocapsule and fulerene is dried and NEt 3 is added. (Et is ethyl) and subsequently dissolved with CH 3 CN, and thus the nanocapsule is recovered for later use.
Por lo tanto, se ha demostrado que la familia de nanocápsulas de la presente invención presenta una altísima afinidad para la encapsulación de fulerenos y que se ha desarrollado una metodología para la extracción selectiva con la posibilidad de reutilización de la nanocápsula para ciclos de extracción adicionales. Therefore, it has been shown that the nanocapsule family of the present invention has a very high affinity for encapsulation of fulerenes and that a methodology for selective extraction has been developed with the possibility of reusing the nanocapsule for additional extraction cycles.
A lo largo de la descripción y las reivindicaciones la palabra "comprende" y sus variantes no pretenden excluir otras características técnicas, aditivos, componentes o pasos. Para los expertos en la materia, otros objetos, ventajas y características de la invención se desprenderán en parte de la descripción y en parte de la práctica de la invención. Los siguientes ejemplos y figuras se proporcionan a modo de ilustración, y no se pretende que sean limitativos de la presente invención. Throughout the description and the claims the word "comprises" and its variants are not intended to exclude other technical characteristics, additives, components or steps. For those skilled in the art, other objects, advantages and features of the invention will be derived partly from the description and partly from the practice of the invention. The following examples and figures are provided by way of illustration, and are not intended to be limiting of the present invention.
BREVE DESCRIPCIÓN DE LAS FIGURAS BRIEF DESCRIPTION OF THE FIGURES
Fig. 1 : Representación gráfica de las nanocápsulas de la invención, (a) representa el compuesto de fórmula general (I) (3) y el compuesto de fórmula general (II) (2) sin los metales M; (b) representa la síntesis de dos compuestos de fórmula general (I) (3) con cuatro compuestos de fórmula general (I) (1 -2), para formar la nanocápsula (4); (c) representa un esquema estructural de una nanocápsula donde n es 2. Fig. 1: Graphical representation of the nanocapsules of the invention, (a) represents the compound of general formula (I) (3) and the compound of general formula (II) (2) without the metals M; (b) represents the synthesis of two compounds of general formula (I) (3) with four compounds of general formula (I) (1-2), to form the nanocapsule (4); (c) represents a structural scheme of a nanocapsule where n is 2.
Fig. 2: Análisis por espectrometría de masas ESI-MS de alta resolución del precipitado obtenido después de cinco ciclos de extracción del C60 de muestra de C6o@5-(BARF)8 mediante lavados con 1 ,2-diclorobenzeno:CS2 (1 : 1 ). Fig. 2: High-resolution ESI-MS mass spectrometry analysis of the precipitate obtained after five cycles of extraction of the C60 from C6o @ 5- sample (BARF) 8 by washing with 1,2-dichlorobenzene: CS2 (1: one ).
Fig. 3: ESI-MS de la mezcla formada después de añadir fullerene soot a la nanocápsula 5-(BARF)8 Fig. 4: Análisis por ESI-MS mostrando la mayor afinidad de C70 con respecto a C60 (10 veces superior). Fig. 3: ESI-MS of the mixture formed after adding fullerene soot to nanocapsule 5- (BARF) 8 Fig. 4: Analysis by ESI-MS showing the highest affinity of C70 with respect to C60 (10 times higher).
Fig. 5: Separación diferenciada de fulerenos en función del exceso de "fullerene extract" con respecto a la cápsula 5-(BARF)8. Enriquecimiento de C84 usando grandes excesos de "fullerene extract". Fig. 5: Differentiated separation of fulerenes according to the excess of "fullerene extract" with respect to capsule 5- (BARF) 8 . Enrichment of C84 using large excesses of "fullerene extract".
EJEMPLOS EXAMPLES
Ejemplo 1 : Síntesis de las nanocáosulas de la invención Example 1: Synthesis of the nanocáosulas of the invention
Síntesis del ligando Me2pp (y de sus sintones S2pp y H2pp) S2pp: 1 ,02 g de bifenilo 4,4 '-dicarbaldehído ( 0,48 mmol ) se disuelven en 200 mi de THF . Se prepara otra solución de 0,51 g de dietilentriamina (0,49 mmoles) en 100 mi de THF. Usando un embudo de adición compensada, la solución de dialdehído se añade gota a gota a la solución dietilentriamina. La mezcla se agitó durante 10 h. Se observa la formación de un polvo blanco, y el sólido se separa por filtración. (Rendimiento: 64,6 %) . 1H-NMR (400 MHz, CDCI3) δ ppm: 8,31 (s, 4H, N=CH), 7,56-7,54 (d, J= 8,32 Hz, 8H, arom), 7,41 -7,38 (d, J= 8,32 Hz, 8H, arom), 3,80-3,78 (m, 8H, CH2), 3,00-2,98 (m, 8H, CH2), 2, 14 (s, 2H, NH). FT-IR v (cm"1): 1372 (C-N st), 1643 (C=N st), 1650-2000, 2879, 2945 (C-H st, sp2), 3027 (=CH st), 3062 (arC-H st), 3300 (NH st). ESI-MS (m/z): 555,3 ({S2pp+(H+)}), 281 ,7 ({S2pp+(H+)2). Synthesis of the Me2pp ligand (and its syntheses S2pp and H2pp) S2pp: 1.2 g of biphenyl 4,4'-medicarbaldehyde (0.48 mmol) are dissolved in 200 ml of THF. Another solution of 0.51 g of diethylenetriamine (0.49 mmol) in 100 ml of THF is prepared. Using a compensated addition funnel, the dialdehyde solution is added dropwise to the diethylenetriamine solution. The mixture was stirred for 10 h. The formation of a white powder is observed, and the solid is filtered off. (Yield: 64.6%). 1 H-NMR (400 MHz, CDCI 3 ) δ ppm: 8.31 (s, 4H, N = CH), 7.56-7.54 (d, J = 8.32 Hz, 8H, arom), 7 , 41 -7.38 (d, J = 8.32 Hz, 8H, arom), 3.80-3.78 (m, 8H, CH 2 ), 3.00-2.98 (m, 8H, CH 2 ), 2, 14 (s, 2H, NH). FT-IR v (cm "1 ): 1372 (CN st), 1643 (C = N st), 1650-2000, 2879, 2945 (CH st, sp 2 ), 3027 (= CH st), 3062 (arC- H st), 3300 (NH st) ESI-MS (m / z): 555.3 ({S2pp + (H + )}), 281, 7 ({S2pp + (H + ) 2 ).
Figure imgf000015_0001
Figure imgf000015_0001
H2pp: 0,55 g de S2pp ( 0,99 mmoles ) se añadió a un matraz de 250 mi y se disolvió con 50 de etanol absoluto . A continuación se añaden 0,237 g de NaBH4 (13,22 mmol) lentamente. La mezcla de reacción se agitó durante 16 h, se añaden 5 mi de HCI 1 M, y la solución se agitó 45 minutos adicionales. Después de este tiempo, el etanol se eliminó a presión reducida, y 20 mi de agua se añaden a la mezcla de reacción. El producto H2pp, que permanece en la fase acuosa, se extrae con CH3CI (3x25 mi). Las fases orgánicas se mezclan, se secó con MgS04 anhidro y se filtró. Finalmente la solución se seca bajo presión de vacío. El producto se obtuvo en forma de un sólido blanco. (Rendimiento: 78, 1 %). 1H-NMR (400 MHz, CDCI3) δ ppm: 7,48-7,46 (d, J= 8,24 Hz, 8H, arom), 7,36-7,34 (d, J =8,20 Hz, 8H, arom), 3,8 (s, 8H, CH2), 2,90-2,82 (m, 16H, CH2), 1 ,68 (broad band, NH). FT-IR v (cm"1): 1 103 (C-N st), 1496, 1437 (CH2 δ), 1650-2000, 2876, 2922 (C-H st, sp2), 3294 (NH st). H2pp: 0.55 g of S2pp (0.99 mmol) was added to a 250 ml flask and dissolved with 50 absolute ethanol. Then 0.237 g of NaBH 4 (13.22 mmol) are added slowly. The reaction mixture was stirred for 16 h, 5 ml of 1 M HCI was added, and the solution was stirred an additional 45 minutes. After this time, the ethanol was removed under reduced pressure, and 20 ml of water is added to the reaction mixture. The H2pp product, which remains in the aqueous phase, is extracted with CH 3 CI (3x25 ml). The organic phases are mixed, dried with anhydrous MgSO4 and filtered. Finally the solution is dried under vacuum pressure. The product was obtained as a white solid. (Yield: 78, 1%). 1 H-NMR (400 MHz, CDCI 3 ) δ ppm: 7.48-7.46 (d, J = 8.24 Hz, 8H, arom), 7.36-7.34 (d, J = 8, 20 Hz, 8H, arom), 3.8 (s, 8H, CH 2 ), 2.90-2.82 (m, 16H, CH 2 ), 1, 68 (broad band, NH). FT-IR v (cm "1 ): 1 103 (CN st), 1496, 1437 (CH 2 δ), 1650-2000, 2876, 2922 (CH st, sp 2 ), 3294 (NH st).
Figure imgf000016_0001
Figure imgf000016_0001
Me2pp: 0,66 g de H2pp (1 ,2 mmoles) se añadió a un matraz de 100 mi y se mezcla con 10 mi de formaldehído, 8 mi de ácido fórmico y 10 mi de agua. La mezcla resultante se calienta a reflujo durante 12 h. Después de este tiempo, la mezcla de reacción se enfrió a temperatura ambiente y el disolvente se eliminó a presión reducida. A continuación se añaden 25 mi de NaOH al 30 %. El producto se extrajo con CHCI3 (3x25 mi). Las fases orgánicas se combinaron, se secaron con MgS04 anhidro y se filtró. La solución restante se seca bajo presión de vacío, y el producto obtenido se purificó por recristalización con acetona. (Rendimiento: 39,6 %). 1H-NMR (400 MHz, CDCI3) δ ppm: 7,39 (d, J= 8,24 Hz, 8H, arom), 7,29 (d, J= 8,24 Hz, 8H, arom), 3,47 (d, J= 20,06 Hz, 8H, CH2), 2,57-2,49 (m, 16H, CH2), 2,28 (s, 6H, CH3), 2,22 ((s, 12H, CH3). FT-IR v (cm"1): 1462 (C-N st), 1650-2000, 2780 (C-H st, sp3), 2935 (arC-H st), 2967 (C- H st, sp2). ESI-MS (m/z): 647,4 ({Me2pp+H}+). Me2pp: 0.66 g of H2pp (1.2 mmol) was added to a 100 ml flask and mixed with 10 ml of formaldehyde, 8 ml of formic acid and 10 ml of water. The resulting mixture is heated at reflux for 12 h. After this time, the reaction mixture was cooled to room temperature and the solvent was removed under reduced pressure. Then 25 ml of 30% NaOH are added. The product was extracted with CHCI3 (3x25 ml). The organic phases were combined, dried with anhydrous MgSO4 and filtered. The remaining solution is dried under vacuum pressure, and the product obtained is purified by recrystallization with acetone. (Yield: 39.6%). 1 H-NMR (400 MHz, CDCI 3 ) δ ppm: 7.39 (d, J = 8.24 Hz, 8H, arom), 7.29 (d, J = 8.24 Hz, 8H, arom), 3.47 (d, J = 20.06 Hz, 8H, CH 2 ), 2.57-2.49 (m, 16H, CH 2 ), 2.28 (s, 6H, CH 3 ), 2.22 ((s, 12H, CH 3 ). FT-IR v (cm "1 ): 1462 (CN st), 1650-2000, 2780 (CH st, sp 3 ), 2935 (arC-H st), 2967 (C - H st, sp 2 ) ESI-MS (m / z): 647.4 ({Me2pp + H} + ).
Figure imgf000017_0001
Figure imgf000017_0001
Clip Molecular (Pd-1 ) (FRAGMENTO 1 -2 de la Fig.1 con M = Pd). Pd- 1»(AcO)4 (donde AcO es acetato) En un matraz de fondo redondo de 0,03 g de ligando Me2pp (0,05 mmoles), 0,021 g de Pd(AcO)2 (0, 1 mmoles) y 10 mi de CH3CN anhidro se mezclaron. La mezcla se calienta a temperatura de reflujo, bajo atmósfera de nitrógeno, durante 18 h. El disolvente de la solución obtenida es concentrado a un volumen de 2 mi, bajo presión reducida, se filtró a través de Celite © y se recristaliza por difusión lenta de éter dietílico. [Pd2(Me2pp)(AcO)2](AcO)2 se obtiene como un sólido cristalino amarillo. (Rendimiento: 81 ,7%).1H-NMR (400 MHz, CD3CN) δ ppm: 8.37 (d, J=8 Hz, 9.3 H, arom), 8.15 (d, J=8 Hz, 8 H, arom), 7.94 (d, J=8 Hz, 1 .3 H, arom), 4.06 (d, J=13 Hz, 5.1 H, -CH2-), 3.68 (m, 4.8 H, -CH2-), 3.34 (s, 12 H, N-CH3), 3.31 (s, 2.2 H, N-CH3), 3.25 (m, 4.8 H, -CH2-), 3.1 1 (d, J=13 Hz, 4.8 H, -CH2-), 2.38 (d, J= 14 Hz, 4.7 H, -CH2-), 2.30 (d, 4.8H, -CH2-), 2.07 (s, 6 H, AcO), 2.05 (s, 0.9H, AcO), 1 .70 (s, 7.2 H, AcO), 1 .50 (s, 0.9 H, N-CH3), 1 .41 (S, 6 H, N-CH3). ESI- MS (m/z): 1307.3 ({[Pd2(Me2pp)(AcO)2](AcO)i }1 +), 489.1 ({[Pd2(Me2pp)(AcO)2]}2+).
Figure imgf000018_0001
Molecular Clip (Pd-1) (FRAGMENT 1 -2 of Fig. 1 with M = Pd). Pd-1 » (AcO) 4 (where AcO is acetate) In a round bottom flask of 0.03 g of Me2pp ligand (0.05 mmol), 0.021 g of Pd (AcO) 2 (0.1 mmol) and 10 ml of anhydrous CH 3 CN were mixed. The mixture is heated at reflux temperature, under nitrogen atmosphere, for 18 h. The solvent of the solution obtained is concentrated to a volume of 2 ml, under reduced pressure, filtered through Celite® and recrystallized by slow diffusion of diethyl ether. [Pd 2 (Me2pp) (AcO) 2] (AcO) 2 is obtained as a yellow crystalline solid. (Yield: 81.7%). 1 H-NMR (400 MHz, CD 3 CN) δ ppm: 8.37 (d, J = 8 Hz, 9.3 H, arom), 8.15 (d, J = 8 Hz, 8 H, arom), 7.94 (d, J = 8 Hz, 1 .3 H, arom), 4.06 (d, J = 13 Hz, 5.1 H, -CH 2 -), 3.68 (m, 4.8 H, -CH 2 -), 3.34 (s, 12 H, N-CH 3 ), 3.31 (s, 2.2 H, N-CH 3 ), 3.25 (m, 4.8 H, -CH 2 -), 3.1 1 (d, J = 13 Hz, 4.8 H, -CH 2 -) , 2.38 (d, J = 14 Hz, 4.7 H, -CH 2 -), 2.30 (d, 4.8H, -CH 2 -), 2.07 (s, 6 H, AcO), 2.05 (s, 0.9H, AcO ), 1.70 (s, 7.2 H, AcO), 1.50 (s, 0.9 H, N-CH3), 1.41 (S, 6 H, N-CH 3 ). ESI-MS (m / z): 1307.3 ({[Pd 2 (Me2pp) (AcO) 2 ] (AcO) i} 1 + ), 489.1 ({[Pd 2 (Me2pp) (AcO) 2 ]} 2+ ) .
Figure imgf000018_0001
Pd-1 (AcO)2(CF3SO3)2: Pd-1 (AcO)2(CF3SO3)2 se obtiene a partir de Pd- 1 »(AcO) . 0,04 g de Pd-1 »(AcO) (0,04 mmoles) se disolvió en 25 mi de CH3CN. Se añade un exceso de NaCF3S03 (1 a 4,2 equivalentes) y la mezcla se agitó vigorosamente durante 6 h. La mezcla de reacción se concentró a un volumen de 2-3 mi bajo presión reducida, se filtró a través de Celite© y se recristalizo por difusión lenta de éter dietílico. Se obtiene un sólido cristalino amarillo. (Rendimiento: 90, 1 %). Pd-1 (AcO) 2 (CF 3 SO 3 ) 2 : Pd-1 (AcO) 2 (CF 3 SO 3 ) 2 is obtained from Pd-1 » (AcO). 0.04 g of Pd-1 » (AcO) (0.04 mmol) was dissolved in 25 ml of CH 3 CN. An excess of NaCF 3 S0 3 (1 to 4.2 equivalents) is added and the mixture is stirred vigorously for 6 h. The reaction mixture was concentrated to a volume of 2-3 ml under reduced pressure, filtered through Celite® and recrystallized by slow diffusion of diethyl ether. A yellow crystalline solid is obtained. (Yield: 90, 1%).
Clip Molecular (Cu-1) (FRAGMENTO 1 -2 de la Fig.1 con M = Cu). Cu- 1 (CF3SO3)4: a una suspensión de ligando Me2pp en CH3CN (40 mg, 0,06 mmoles, 1 ,5 mi), se añadió una solución de Cu(CF3SO3)2 en CH3CN (45,0 mg, 0, 12 mmol, 1 mi). Después de agitar 30 minutos, la solución se filtró a través de Celite © y se recristalizo por difusión de éter dietílico. Se obtuvo un sólido cristalino de color rojo oscuro (rendimiento: 94,7%).ESI-MS (m/z): 1221 .2 ({(Cu- 1 ) (CF3SO3)6}1 +), 535.0 ({(Cu-1 ) (CF3SO3)5}2+), 307.7 ({(Cu-1 ) (CF3SO3)4}3+).
Figure imgf000019_0001
Molecular Clip (Cu-1) (FRAGMENT 1 -2 of Fig. 1 with M = Cu). Cu-1 (CF 3 SO 3 ) 4 : to a suspension of Me2pp ligand in CH 3 CN (40 mg, 0.06 mmol, 1.5 mL), a solution of Cu (CF 3 SO 3 ) 2 was added in CH 3 CN (45.0 mg, 0.12 mmol, 1 mL). After stirring 30 minutes, the solution was filtered through Celite® and recrystallized by diffusion of diethyl ether. A dark red crystalline solid was obtained (yield: 94.7%) ESI-MS (m / z): 1221 .2 ({(Cu-1) (CF 3 SO 3 ) 6 } 1 + ), 535.0 ({(Cu-1) (CF 3 SO 3 ) 5 } 2+ ), 307.7 ({(Cu-1) (CF 3 SO 3 ) 4 } 3+ ).
Figure imgf000019_0001
Síntesis de la nanocápsula molecular 4»(CF3S03)8 (Fig 1 , donde M = Cu y M '= Pd, que consiste en dos (metalo)porfilinas de fórmula (I) donde todos los R4 son hidrógeno y M' es Pd unidas a cuatro macrocíclos de fórmula (II) (Cu-1 anterior) a través de enlaces M-carboxilato y ocho contraiones CF3SO3) Synthesis of molecular nanocapsule 4 » (CF 3 S0 3 ) 8 (Fig 1, where M = Cu and M '= Pd, consisting of two (metallo) porphillins of formula (I) where all R 4 are hydrogen and M 'is Pd linked to four macrocycles of formula (II) (Cu-1 above) through M-carboxylate bonds and eight CF3SO3 counterions)
A una suspensión de 5, 10, 15,20-tetraquis(4-carboxifenil)-porfirina-Pd" en DMF (6,53 mg, 0,029 mmol, 1 ml_) se añadió una solución de trietilamina en DMF (4 μΙ_ en 0,5 ml_). Simultáneamente, clip molecular Cu-1 se disolvió en DMF (20 mg, 0,014 mmoles, 1 ,5 ml_) y se añadió gota a gota a la solución de metaloporfirina. Después de agitar durante la noche la solución se filtró a través de Celite © y se recristalizó por difusión éter. Se obtuvo un sólido cristalino de color rojo oscuro (rendimiento: 62,9%). To a suspension of 5, 10, 15,20-tetrakis (4-carboxyphenyl) -porphyrin-Pd "in DMF (6.53 mg, 0.029 mmol, 1 ml_) was added a solution of triethylamine in DMF (4 μΙ_ in 0 , 5 ml_) Simultaneously, molecular clip Cu-1 was dissolved in DMF (20 mg, 0.014 mmol, 1.5 ml_) and added dropwise to the metalloporphyrin solution After stirring overnight the solution was filtered through Celite® and ether was recrystallized by diffusion, a dark red crystalline solid was obtained (yield: 62.9%).
ESI-MS (m/z): 2886.4 ({4-(CF3S03)6}2+), 1875.9 ({4 (CF3S03)5}3+), 1368.4 ({4 (CF3S03)4} +), 1064.8 ({4 (CF3S03)3}5+), 862.9 ({4 (CF3S03)2}6+), 718.3 ({4 (CF3S03)}7+), 609.9 ({4}8+). ESI-MS (m / z): 2886.4 ({4- (CF 3 S0 3 ) 6 } 2+ ), 1875.9 ({4 (CF 3 S0 3 ) 5 } 3+ ), 1368.4 ({4 (CF 3 S0 3 ) 4 } + ), 1064.8 ({4 (CF 3 S0 3 ) 3 } 5+ ), 862.9 ({4 (CF 3 S0 3 ) 2 } 6+ ), 718.3 ({4 (CF 3 S0 3 )} 7+ ), 609.9 ({4} 8+ ).
Síntesis de cápsula molecular 5-(CF3S03)8. (Fig.1 nanocápsula donde M=Pd y M'=Zn, que consiste en dos (metalo)porfilinas de fórmula (I) donde todos los R4 son hidrógeno y M' es Zn unidas por cuatro macrocíclos de fórmula (II) (Pd- 1 anterior) y ocho contraiones CF3S03) Synthesis of molecular capsule 5- (CF 3 S0 3 ) 8. (Fig. 1 nanocapsule where M = Pd and M '= Zn, consisting of two (metallo) porphillins of formula (I) where all R 4 are hydrogen and M' is Zn joined by four macrocycles of formula (II) ( Pd-1 above) and eight CF 3 S0 3 counterions)
5 (CF3S03)8: 10,56 mg de 5, 10, 15,20-tetraquis(4-carboxifenil)-porfirina-Zn" (2, 0,01 mmol) se pesaron en un matraz de 10 ml_, a continuación se añade 1 mi¬ de DMF. 10 μΙ de trietilentriamina disueltos en 0,5 mi de DMF se añaden a la solución de metaloporfirina. Finalmente 30 mg de Pd-1»(AcO)2(CF3S03)2 (0,02 mmol) complejo disuelto en 2,5 mi de DMF se añaden a la mezcla. La solución obtenida se calienta a 105 °C bajo reflujo, durante 16 h. Después de que el tiempo de reacción, la mezcla se enfrió a temperatura ambiente, se filtró a través de Celite © y se recristalizó por difusión de dietil éter. (Rendimiento: 67, 1 %). 1H-NMR (400 MHz, CD3CN) δ ppm: 8.60 (dd, 8 H, arom-porph), 8.58 (s, 16H, pyrrole ring), 8.35 (dd, J=8 Hz, 8H, arom-porph), 8.30 (d, J= 8.5 Hz, 325 (CF 3 S0 3 ) 8 : 10.56 mg of 5, 10, 15,20-tetrakis (4-carboxyphenyl) -porphyrin-Zn "(2, 0.01 mmol) were weighed into a 10 ml flask, then add 1 ml of DMF ¬. 10 μΙ of triethylenetetramine dissolved in 0.5 ml of DMF are added to the metalloporphyrin solution. Finally 30 mg of Pd-1 » (AcO) 2 (CF 3 S0 3 ) 2 (0.02 mmol) complex dissolved in 2.5 ml of DMF are added to the mixture. The solution obtained is heated at 105 ° C under reflux for 16 h. After the reaction time, the mixture was cooled to room temperature, filtered through Celite® and recrystallized by diffusion of diethyl ether. (Yield: 67, 1%). 1 H-NMR (400 MHz, CD 3 CN) δ ppm: 8.60 (dd, 8 H, arom-porph), 8.58 (s, 16H, pyrrole ring), 8.35 (dd, J = 8 Hz, 8H, arom- porph), 8.30 (d, J = 8.5 Hz, 32
H, arom-clip), 8.15 (d, J= 8.5 Hz, 32 H, arom-clip), 8.10 (dd, J=8 Hz, 8H, arom- porph), 7.98 (dd, J=8 Hz, 8H, arom-porph), 4.07 (d, J=13 Hz, 16 H, -CH2-), 3.70 (m, 16H, -CH2-), 3.60 (s, 48 H, N-CH3), 3.38 (m, 16 H, -CH2-), 3.15 (d, J=13 Hz, 16 H, -CH2-), 2.49 (dd, J=13.5, 16 H, -CH2-), 2.39 (dd, J=13.5, 16 H, -CH2-),H, arom-clip), 8.15 (d, J = 8.5 Hz, 32 H, arom-clip), 8.10 (dd, J = 8 Hz, 8H, arom-porph), 7.98 (dd, J = 8 Hz, 8H , arom-porph), 4.07 (d, J = 13 Hz, 16 H, -CH 2 -), 3.70 (m, 16H, -CH 2 -), 3.60 (s, 48 H, N-CH 3 ), 3.38 (m, 16 H, -CH 2 -), 3.15 (d, J = 13 Hz, 16 H, -CH 2 -), 2.49 (dd, J = 13.5, 16 H, -CH 2 -), 2.39 (dd , J = 13.5, 16 H, -CH 2 -),
I .58 (s, 24 H, N-CH3). ESI-MS (m/z): 1433.5({5-((CF3S03)3) } +), 1 1 17.3 ({5 (CF3S03)3}5+), 906.7 ({5 (CF3S03)2}6+), 755.5 ({5 (CF3S03)}7+), 642.2 ({3 (CF3S03)}8+). I .58 (s, 24 H, N-CH 3 ). ESI-MS (m / z): 1433.5 ({5 - ((CF 3 S0 3 ) 3 )} + ), 1 1 17.3 ({5 (CF 3 S0 3 ) 3 } 5+ ), 906.7 ({5 ( CF 3 S0 3 ) 2 } 6+ ), 755.5 ({5 (CF 3 S0 3 )} 7+ ), 642.2 ({3 (CF 3 S0 3 )} 8+ ).
Síntesis de cápsula molecular 5-(BARF)8. (Fig.1 nanocápsula donde M=Pd y M'=Zn, que consiste en dos (metalo)porfilinas de fórmula (I) donde todos los R4 son hidrógeno y M' es Zn unidas por cuatro macrocíclos de fórmula (II) (Pd-1 anterior) y ocho contraiones BARF") Synthesis of molecular capsule 5- (BARF) 8 . (Fig. 1 nanocapsule where M = Pd and M '= Zn, consisting of two (metallo) porphillins of formula (I) where all R 4 are hydrogen and M' is Zn joined by four macrocycles of formula (II) ( Pd-1 above) and eight BARF counterions " )
5 (BARF)8: 0,02 g de 5»(CF3S03)8 (3,2 μηποΐβε) se disuelven en 10 mi de CH2CI2 . Se añade un exceso de sal NaBArF (1 a 10 equivalentes) y la mezcla se agitó vigorosamente durante 16 h. La mezcla de reacción se filtra y el producto se obtuvo por precipitación con éter dietílico. El polvo de color púrpura se lavó varias veces con éter dietílico para eliminar el exceso de NaBArF. (Rendimiento: 38%). 1H-NMR (400 MHz, CD3CN) δ ppm: 8.60 (dd, 8 H, arom- porph), 8.58 (s, 16H, pyrrole ring), 8.35 (dd, J=8 Hz, 8H, arom-porph), 8.30 (d, J= 8.5 Hz, 32 H, arom-clip), 8.15 (d, J= 8.5 Hz, 32 H, arom-clip), 8.10 (dd, J=8 Hz, 8H, arom-porph), 7.98 (dd, J=8 Hz, 8H, arom-porph), 7.68 (m, 96 H, NaBARF), 4.07 (d, J=13 Hz, 16 H, -CH2-), 3.70 (m, 16H, -CH2-), 3.60 (s, 48 H, N-CH3), 3.38 (m, 16 H, -CH2-), 3.15 (d, J=13 Hz, 16 H, -CH2-), 2.49 (dd, J=13.5, 16 H, -CH2-), 2.39 (dd, J=13.5, 16 H, -CH2-), 1 .58 (s, 24 H, N-CH3). ESI-MS (m/z): 2147.99 ({5-(BARF)4}4 ), 1545.74 ({5 (BARF)3} ), 1 144.24 ({5 (BARF)2}6+), 857.48 ({5 (BARF)}7+), 642.42 ({5 (BARF)}8+). 5 (BARF) 8 : 0.02 g of 5 » (CF 3 S0 3 ) 8 (3.2 μηποΐβε) dissolve in 10 ml of CH2CI2. An excess of NaBArF salt (1 to 10 equivalents) is added and the mixture is stirred vigorously for 16 h. The reaction mixture is filtered and the product is obtained by precipitation with diethyl ether. The purple powder was washed several times with diethyl ether to remove excess NaBArF. (Yield: 38%). 1 H-NMR (400 MHz, CD 3 CN) δ ppm: 8.60 (dd, 8 H, arom-porph), 8.58 (s, 16H, pyrrole ring), 8.35 (dd, J = 8 Hz, 8H, arom- porph), 8.30 (d, J = 8.5 Hz, 32 H, arom-clip), 8.15 (d, J = 8.5 Hz, 32 H, arom-clip), 8.10 (dd, J = 8 Hz, 8H, arom- porph), 7.98 (dd, J = 8 Hz, 8H, arom-porph), 7.68 (m, 96 H, NaBARF), 4.07 (d, J = 13 Hz, 16 H, -CH 2 -), 3.70 (m , 16H, -CH 2 -), 3.60 (s, 48 H, N-CH 3 ), 3.38 (m, 16 H, -CH 2 -), 3.15 (d, J = 13 Hz, 16 H, -CH 2 -), 2.49 (dd, J = 13.5, 16 H, -CH 2 -), 2.39 (dd, J = 13.5, 16 H, -CH 2 -), 1.58 (s, 24 H, N-CH 3 ). ESI-MS (m / z): 2147.99 ({5- (BARF) 4 } 4 ), 1545.74 ({5 (BARF) 3 }), 1 144.24 ({5 (BARF) 2 } 6+ ), 857.48 ({ 5 (BARF)} 7+ ), 642.42 ({5 (BARF)} 8+ ).
La caracterización de las nanocápsulas sin huésped se realizó mediante espectrometría de masas de alta resolución (HR-ESI-MS), por difracción de rayos X y por estudios de RMN y espectroscopia infraroja FT-IR. The characterization of the hostless nanocapsules was performed by high resolution mass spectrometry (HR-ESI-MS), by X-ray diffraction and by NMR studies and infrared FT-IR spectroscopy.
Ejemplo 2: Encapsulación y Liberación de Fulerenos usando nanocápsulas Example 2: Encapsulation and Release of Fulerenes using nanocapsules
La nanocápsula tetragonal prismática (5-(BARF)8) es capaz de encapsular fulerenos de diferentes tamaños, principalmente CQO, C7O, C76, C78 y C84. La encapsulación se realiza mezclando la caja disuelta en acetonitrilo y cantidades equimolares de fulerenos disueltos en tolueno (25°C, acetonitrilo:tolueno 1 :4). Alternativamente, la encapsulación también es efectiva suspendiendo 5-(BARF)8 en estado sólido dentro de una disolución de fulereno en tolueno, o bién suspendiendo fullereno en una disolución de 5-(BARF)8 en acetonitrilo. Además estos fulerenos pueden ser liberados del interior de la nanocavidad mediante lavados con diferentes disolventes orgánicos. Esta extracción es rápida y sencilla, y se basa en la diferencia de solubilidad que presentan los fulerenos y la nanocápsula. Al lavar la nanocaja con un disolvente en el que los fulerenos son altamente solubles pero la nanocápsula no, conseguimos que esta permanezca en suspensión y solubilizamos solamente los fulerenos. La solución que contiene los fulerenos se separa por filtración del sólido y finalmente los fulerenos extraídos se precipitan mediante la adición de acetonitrilo, y se separan por centrifugación. The prismatic tetragonal nanocapsule (5- (BARF) 8 ) is capable of encapsulating leaflets of different sizes, mainly CQO, C 7 O, C 7 6, C 7 8 and C8 4 . The encapsulation is carried out by mixing the box dissolved in acetonitrile and equimolar amounts of fulerenes dissolved in toluene (25 ° C, acetonitrile: toluene 1: 4). Alternatively, encapsulation is also effective by suspending 5- (BARF) 8 in a solid state within a tollene solution in toluene, or by suspending fullerene in a solution of 5- (BARF) 8 in acetonitrile. In addition, these fulerenes can be released from inside the nanocavity by washing with different organic solvents. This extraction is quick and simple, and is based on the difference in solubility of the fulerenes and the nanocapsule. By washing the nanobox with a solvent in which the fulerenes are highly soluble but the nanocapsule is not, we get it to remain in suspension and only solubilize the fulerenes. The solution containing the fulerenes is separated by filtration of the solid and finally the extracted fulerenes are precipitated by the addition of acetonitrile, and separated by centrifugation.
Preparación de C6o@5-(BARF)8. 2.5 mg de nanocápsula 5 (BARF)8 (0.2 μίτιοΐβε, 1 equiv.) se disolvieron en 100 μΙ de CH3CN. A continuación, 1 equiv. de C6o se añadió junto con 400 μΙ de tolueno. La mezcla se agitó a temperatura ambiente durante 5 minutos. Después del tiempo de reacción, la mezcla se filtra a través de algodón y se recristalizó por difusión de dietil éter. 1H-NMR (400 MHz, CD3CN) δ ppm: 8.64 (dd, 8 H, arom-porph), 8.55 (s, 16H, anillo pirrol), 8.35 (dd, J=8 Hz, 8H, arom-porph), 8.30 (d, J= 8.5 Hz, 32 H, arom-clip),Preparation of C6o @ 5- (BARF) 8 . 2.5 mg of nanocapsule 5 (BARF) 8 (0.2 μίτιοΐβε, 1 equiv.) Was dissolved in 100 μΙ of CH 3 CN. Then 1 equiv. of C6o was added together with 400 μΙ of toluene. The mixture was stirred at room temperature for 5 minutes. After the reaction time, the mixture is filtered through cotton and recrystallized by diffusion of diethyl ether. 1 H-NMR (400 MHz, CD 3 CN) δ ppm: 8.64 (dd, 8 H, arom-porph), 8.55 (s, 16H, ring pyrrole), 8.35 (dd, J = 8 Hz, 8H, arom-porph), 8.30 (d, J = 8.5 Hz, 32 H, arom-clip),
8.14 (d, J= 8.5 Hz, 32 H, arom-clip), 8.04 (dd, J=8 Hz, 8H, arom-porph), 7.99 (dd, J=8 Hz, 8H, arom-porph), 7.68 (m, 96 H, NaBARF), 4.07 (d, J=13 Hz, 16 H, -CH2-), 3.70 (m, 16H, -CH2-), 3.60 (s, 48 H, N-CH3), 3.38 (m, 16 H, -CH2-),8.14 (d, J = 8.5 Hz, 32 H, arom-clip), 8.04 (dd, J = 8 Hz, 8H, arom-porph), 7.99 (dd, J = 8 Hz, 8H, arom-porph), 7.68 (m, 96 H, NaBARF), 4.07 (d, J = 13 Hz, 16 H, -CH 2 -), 3.70 (m, 16H, -CH 2 -), 3.60 (s, 48 H, N-CH 3 ), 3.38 (m, 16 H, -CH 2 -),
3.15 (d, J=13 Hz, 16 H, -CH2-), 2.49 (dd, J=13.5, 16 H, -CH2-), 2.39 (dd, J=13.5, 16 H, -CH2-), 1 .58 (s, 24 H, N-CH3). ESI-MS (m/z): 2328.14 ({C6o@5-(BARF)4} +), 1689.89 ({C60@5 (BARF)3}5+), 1264.40 ({C6o@5 (BARF)2}6+), 960.48 ({C60@5 (BARF)}7+), 732.54 ({C60@5 (BARF)}8+). 3.15 (d, J = 13 Hz, 16 H, -CH 2 -), 2.49 (dd, J = 13.5, 16 H, -CH 2 -), 2.39 (dd, J = 13.5, 16 H, -CH 2 - ), 1.58 (s, 24 H, N-CH 3 ). ESI-MS (m / z): 2328.14 ({C 6 or @ 5- (BARF) 4 } + ), 1689.89 ({C 60 @ 5 (BARF) 3 } 5+ ), 1264.40 ({C 6 or @ 5 (BARF) 2 } 6+ ), 960.48 ({C 60 @ 5 (BARF)} 7+ ), 732.54 ({C 60 @ 5 (BARF)} 8+ ).
Preparación de C70@5 (BARF)8. 2.5 mg de nanocápsula 5 (BARF)8 (0.2 μίτιοΐβε, 1 equiv.) se disolvieron en 100 μΙ de CH3CN. A continuación, 1 equiv. de C o se añadió junto con 400 μΙ de tolueno. La mezcla se agitó a temperatura ambiente durante 5 minutos. Después del tiempo de reacción, la mezcla se filtra a través de algodón y se recristalizó por difusión de dietil éter. 1H-NMR (400 MHz, CD3CN) δ ppm: 8.66 (dd, 8 H, arom-porph), 8.48 (s, 16H, anillo pirrol), 8.33 (d, J= 8.5 Hz, 32 H, arom-clip), 8.14 (d, J= 8.5 Hz, 32 H, arom-clip), 8.00 (m, 8H, arom-porph), 7.68 (m, 96 H, NaBARF), 4.07 (d, J=13 Hz, 16 H, - CH2-), 3.70 (m, 16H, -CH2-), 3.60 (s, 48 H, N-CH3), 3.38 (m, 16 H, -CH2-), 3.15 (d, J=13 Hz, 16 H, -CH2-), 2.49 (dd, J=13.5, 16 H, -CH2-), 2.39 (dd, J=13.5, 16 H, -CH2-), 1 .58 (s, 24 H, N-CH3). ESI-MS (m/z): 2358.19 ({C70@5-(BARF)4} +), 1713.97 ({C70@5 (BARF)3}5+), 1284.42 ({C70@5 (BARF)2}6+), 977.62 ({C70@5 (BARF)}7+), 747.53 ({C70@5 (BARF)}8+). Preparation of C 70 @ 5 (BARF) 8 . 2.5 mg of nanocapsule 5 (BARF) 8 (0.2 μίτιοΐβε, 1 equiv.) Was dissolved in 100 μΙ of CH 3 CN. Then 1 equiv. of C o was added together with 400 μΙ of toluene. The mixture was stirred at room temperature for 5 minutes. After the reaction time, the mixture is filtered through cotton and recrystallized by diffusion of diethyl ether. 1 H-NMR (400 MHz, CD 3 CN) δ ppm: 8.66 (dd, 8 H, arom-porph), 8.48 (s, 16H, pyrrole ring), 8.33 (d, J = 8.5 Hz, 32 H, arom -clip), 8.14 (d, J = 8.5 Hz, 32 H, arom-clip), 8.00 (m, 8H, arom-porph), 7.68 (m, 96 H, NaBARF), 4.07 (d, J = 13 Hz , 16 H, - CH 2 -), 3.70 (m, 16H, -CH 2 -), 3.60 (s, 48 H, N-CH 3 ), 3.38 (m, 16 H, -CH 2 -), 3.15 ( d, J = 13 Hz, 16 H, -CH 2 -), 2.49 (dd, J = 13.5, 16 H, -CH 2 -), 2.39 (dd, J = 13.5, 16 H, -CH 2 -), 1.58 (s, 24 H, N-CH 3 ). ESI-MS (m / z): 2358.19 ({C 70 @ 5- (BARF) 4 } + ), 1713.97 ({C 70 @ 5 (BARF) 3 } 5+ ), 1284.42 ({C 70 @ 5 (BARF ) 2 } 6+ ), 977.62 ({C 70 @ 5 (BARF)} 7+ ), 747.53 ({C 70 @ 5 (BARF)} 8+ ).
La liberación del fulereno C60 del interior de la nanocápsula de una muestra pura de complejo C60-nanocápsula se realiza cargando la muestra (10 mg) de C6o@5-(BARF)8 en estado sólido en una columna usando como soporte sólido filtrante Celite®. Tres lavados consecutivos de 1 mL de la mezcla 1 ,2- diclorobenzene/CS2 (1 :1 ) liberan completamente el C60 del interior de la cápsula, dejando todo el C60 en el filtrado y la cápsula vacía en estado sólido 5-(BARF)8 cargada en la columna. Análisis de la muestra sólida restante en la columna por HRMS certifican que consiste en caja vacía en una pureza > 95%. Seguidamente la cápsula 5-(BARF)8 cargada en la columna se redisuelve en CH3CN y se vuelve a cargar con C60 disuelto en tolueno (mezcla CH3CN/tolueno 1/4). Una vez cargado con C60, el compuesto C60@5-(BARF)8 se precipita con éter dietílico y se vuelve a cargar en la misma columna de cromatografía (celite® como soporte sólido) utilizada para el primer lavado. Se repite el mismo procedimiento hasta 5 veces y se certifica por HRMS la integridad de 5-(BARF)8 después de cada lavado. A finalizar los 5 ciclos se recupera más del 54% de 5-(BARF)8. Las pérdidas de caja observadas son debidas mayoritariamente al proceso de disolución de 5-(BARF)8 una vez vaciado de C60 y de precipitación de C60@5-(BARF)8 con dietil éter, y no a la descomposición del compuesto. Se demuestra pues que la caja funciona como una esponja de C60 reciclable. (Fig. 2) The release of the C60 fulerene from the inside of the nanocapsule from a pure sample of the C60-nanocapsule complex is performed by loading the sample (10 mg) of C6o @ 5- (BARF) 8 in a solid state on a column using Celite® as a solid filter support. . Three consecutive 1 mL washes of the mixture 1, 2- dichlorobenzene / CS2 (1: 1) completely release the C60 from inside the capsule, leaving all the C60 in the filtrate and the empty capsule in solid state 5- (BARF) 8 loaded in the column. Analysis of the solid sample remaining in the column by HRMS certifies that it consists of an empty box in a purity> 95%. Then the 5- (BARF) 8 capsule loaded in the column is redissolved in CH3CN and recharged with C60 dissolved in toluene (CH3CN / 1/4 toluene mixture). Once loaded with C60, compound C60 @ 5- (BARF) 8 is precipitated with diethyl ether and reloaded on the same chromatography column (celite® as solid support) used for the first wash. The same procedure is repeated up to 5 times and the integrity of 5- (BARF) 8 is certified by HRMS after each wash. At the end of the 5 cycles, more than 54% of 5- (BARF) 8 is recovered. The cash losses observed are mainly due to the dissolution process of 5- (BARF) 8 after emptying of C60 and precipitation of C60 @ 5- (BARF) 8 with diethyl ether, and not the decomposition of the compound. It is shown that the box works like a recyclable C60 sponge. (Fig. 2)
La nanocápsula 5-(BARF)8 es capaz de encapsular los diferentes fulerenos presentes en el hollín resultante de la producción de fulerenos (fullerene extract), desde C60 hasta C84. La encapsulación de fulerenos se ha ensayado con "fullerene extract" (comprado en SES Research, con un contenido de C60 70%, C70 28%, fulereno grandes (higher fullerenes) 2%). Usando una relación de 1 :3 en peso de nanocápsula 5-(BARF)8 y "fullerene soot" comercial (Aldrich) (C60 es del 5.32%, el del C70 del 1 .54%, y el de "higher fullerenes" (>C70) menor del 0.14%, siendo el resto carbono amorfo, nanotubos de carbono y grafito, para los cuales la nanocápsula es totalmente inefectiva), ésta es capaz de encapsular C60, C70, C74, C76 y C84 exclusivamente, tal y como se ha determinado por espectrometría de masas de alta resolución. (Fig. 3) The nanocapsule 5- (BARF) 8 is capable of encapsulating the different fulerenes present in the soot resulting from the production of fulerenes (fullerene extract), from C60 to C84. The encapsulation of fulerenes has been tested with "fullerene extract" (purchased from SES Research, with a content of C60 70%, C70 28%, large fulerene (higher fullerenes) 2%). Using a ratio of 1: 3 by weight of nanocapsule 5- (BARF) 8 and commercial "fullerene soot" (Aldrich) (C60 is 5.32%, that of C70 is 1.54%, and that of "higher fullerenes" ( > C70) less than 0.14%, the remainder being amorphous carbon, carbon nanotubes and graphite, for which the nanocapsule is totally ineffective), it is capable of encapsulating C60, C70, C74, C76 and C84 exclusively, as is determined by high resolution mass spectrometry. (Fig. 3)
La encapsulación de los fulerenos a temperatura ambiente es cuantitativa (estequiometria 1 : 1 ) en segundos y a temperatura ambiente. Su encapsulación se ha verificado por espectrometría de masas de alta resolución, por estudios de RMN (la nanocápsula y su aducto con el fulereno encapsulado son diamagnéticas) y espectroscopia FT-IR. Se ha contrastado también la encapsulación de C60 y C70 mediante estudios preliminares de Rayos X con luz de sincrotrón. La mayor proporción de C70 que de C60 encapsulado cuando su concentración es 4 veces inferior, claramente sugiere una mayor afinidad para C70. El mismo razonamiento se puede realizar en relación a C84, C76 y C72, ya que sus porcentajes són extermadamente pequeños en el "fullerene extract" y sin embargo se observan claramente como encapsulados en la Fig. 3 Se ha determinado por HRMS que la afinidad de C70 es 10 veces superior a la de C60 (Fig 4). Encapsulation of the fulerenes at room temperature is quantitative (1: 1 stoichiometry) in seconds and at room temperature. Its encapsulation has been verified by high resolution mass spectrometry, by NMR studies (the nanocapsule and its adduct with the encapsulated fulerene are diamagnetic) and FT-IR spectroscopy. The encapsulation of C60 and C70 has also been contrasted by preliminary X-ray studies with synchrotron light. The higher proportion of C70 than of encapsulated C60 when its concentration is 4 times lower, clearly suggests a higher affinity for C70. The same reasoning can be done in relation to C84, C76 and C72, since their percentages are extremely small in the "fullerene extract" and yet they are clearly seen as encapsulated in Fig. 3 It has been determined by HRMS that the affinity of C70 is 10 times higher than that of C60 (Fig 4).
Si bién no se ha podido calcular debido a la falta de disponibilidad de muestra pura de C72, C76 y C84, se razona que estos fulerenos tienen aún mayor afinidad que el C70.  If it has not been possible to calculate due to the lack of availability of pure sample of C72, C76 and C84, it is reasoned that these fulerenes have even greater affinity than the C70.
Esto nos posibilita una separación diferenciada de fulerenos en función del exceso de "fullerene extract" con respecto a la cápsula 5-(BARF)8. Así pues se observa claramente que cuando la relación 5-(BARF)8 : "fullerene extract" en peso es de 1 :3 se encapsula básicamente C60 y C70, mientras que con grandes excesos (relaciones de 1/300) se encapsula muy poca cantidad de C60 en relación a C70, y también se observa que claramente la relación C70/C84 disminuye, indicando un enriquecimiento de C84 como fulereno con mayor afinidad (Fig. 5). This allows us a differentiated separation of fulerenes depending on the excess of "fullerene extract" with respect to the capsule 5- (BARF) 8 . Thus, it is clearly observed that when the ratio 5- (BARF) 8 : "fullerene extract" in weight is 1: 3, basically C60 and C70 are encapsulated, while with very large excesses (1/300 ratios), very little is encapsulated amount of C60 in relation to C70, and it is also observed that clearly the C70 / C84 ratio decreases, indicating an enrichment of C84 as a fulerene with greater affinity (Fig. 5).
La liberación de la mezcla de fulerenos encapsulados (en el experimento donde la relación 5-(BARF)8 : "fullerene extract" en peso es de 1 :3) se realiza de la siguiente forma: 5 mg de la nanocápsula con fulerenos, fulerenos@5-(BARF)8, se carga en estado sólido en una columna con celite® como soporte sólido, y se realizan 3 lavados de 1 mL de la mezcla 1 ,2-diclorobenzene:CS2 1 : 1 , consiguiendo liberar exclusivamente el C60 de manera pura, dejando en la columna el residuo sólido que consiste en cápsula vacía 5-(BARF)8 y cápsula con fulerenos ¡guales o superiores al C70. Posteriores lavados con CS2 exclusivamente permiten extraer hasta un 10% del C70 encapsulado de manera pura. The release of the encapsulated fulerene mixture (in the experiment where the ratio 5- (BARF) 8 : "fullerene extract" by weight is 1: 3) is performed as follows: 5 mg of the nanocapsule with fulerenes, fulerenes @ 5- (BARF) 8 , is loaded in a solid state on a column with celite® as a solid support, and 3 washes of 1 mL of the mixture 1, 2-dichlorobenzene: CS2 1: 1 are performed, allowing the C60 to be released exclusively in a pure way, leaving on the column the solid residue consisting of empty capsule 5- (BARF) 8 and capsule with equal or greater than C70 fulerenes. Later washed with CS2 exclusively allow to extract up to 10% of the C70 encapsulated in a pure way.
La liberación del resto de higher fullerenes se puede realizar de dos formas: a) el uso de exceso de ácido tríflico (CF3SO3H, 20 equivalentes con respecto a la cápsula) añadido sobre una suspensión de fulerenos@5-(BARF)8 (donde el C60 se ha liberado previamente) a temperatura ambiente conduce al desensamblaje irreversible de la nanocápsula y liberación inmediata de la mezcla de fulerenos; b) el uso de 3 equivalentes de CF3SO3H permite extraer los fulerenos ¡guales o de mayor tamaño que C70, debido a una desestabilización de la cápsula sin llegar a desensamblarla. La adición de 3 eq de NEt3 (trietilamina) como base para neutralizar el ácido tríflico usado es esencial para volver a recuperar la cápsula íntegramente (certificado por HRMS). The release of the rest of higher fullerenes can be done in two ways: a) the use of excess triflic acid (CF3SO3H, 20 equivalents with respect to the capsule) added on a suspension of fulerenes @ 5- (BARF) 8 (where the C60 has been previously released) at room temperature leads to irreversible disassembly of the nanocapsule and immediate release of the fulerene mix; b) the use of 3 equivalents of CF3SO3H allows to extract the fulerenos equal or larger than C70, due to a destabilization of the capsule without disassembling it. The addition of 3 eq of NEt 3 (triethylamine) as a base to neutralize the triflic acid used is essential to recover the capsule completely (HRMS certified).
Estos ensayos demuestran que la nanocápsula desarrollada es capaz de modelar la dimensión de su espacio interior para hospedar a huéspedes de distinto tamaño (desde C60 a C84), gracias a la capacidad de torsión a nivel de los ocho enlaces de coordinación metal-carboxilato y a la ligera flexibilidad inherente a la subestructura porfirínica. These tests demonstrate that the developed nanocapsule is capable of modeling the dimension of its interior space to accommodate guests of different sizes (from C60 to C84), thanks to the torsion capacity at the level of the eight metal-carboxylate coordination bonds and the slight flexibility inherent in the porphyrinic substructure.

Claims

REIVINDICACIONES Nanocápsula formada por dos (metalo)porfirinas tetracarboxiladas paralelas de fórmula general (I) unidas por cuatro compuestos macrocíclicos metálicos de fórmula general (II) a través de un enlace M-carboxilato, y contraiones (X): CLAIMS Nanocapsule formed by two parallel (metal) tetracarboxylated porphyrins of general formula (I) linked by four metal macrocyclic compounds of general formula (II) through an M-carboxylate bond, and counterions (X):
Figure imgf000026_0001
donde: M' se selecciona de la lista que comprende 2H, Zn, Pd, Cu, FeCI, Ir,
Figure imgf000026_0001
where: M 'is selected from the list comprising 2H, Zn, Pd, Cu, FeCI, Ir,
Pt, Ag, AuCI, Ni, Ru, Al, Pb, SnCI2, InCI, SbCI, TiO, ZrCI2, CrCI, VO; Pt, Ag, AuCI, Ni, Ru, Al, Pb, SnCI 2 , InCI, SbCI, TiO, ZrCI 2 , CrCI, VO;
M es un metal que se selecciona de la lista que comprende Pd, Cu, Pt, Ni y M is a metal that is selected from the list comprising Pd, Cu, Pt, Ni and
Zn; Zn;
cada Ri y cada R4 representan de manera independiente un hidrógeno o un halógeno; each Ri and each R 4 independently represent a hydrogen or a halogen;
cada R2 y cada R3 representan de manera independiente un hidrógeno o un grupo alquilo (C1-C7); each R 2 and each R 3 independently represent a hydrogen or a (C1-C7) alkyl group;
n tiene un valor de entre 1 y 3. n has a value between 1 and 3.
2. Nanocápsula según la reivindicación 1 , donde M' se puede seleccionar de la lista que comprende 2H, Zn, Cu, FeCI, Ir, Pt, Ag, AuCI, Ni, Ru, Al, Pb, SnCI2, InCI, SbCI, TiO, ZrCI2, CrCI, VO. 2. Nanocapsule according to claim 1, wherein M 'can be selected from the list comprising 2H, Zn, Cu, FeCI, Ir, Pt, Ag, AuCI, Ni, Ru, Al, Pb, SnCI 2 , InCI, SbCI, TiO, ZrCI 2 , CrCI, VO.
3. Nanocápsula según cualquiera de las reivindicaciones 1 o 2, donde n es 2 o 3. 3. Nanocapsule according to any one of claims 1 or 2, wherein n is 2 or 3.
4. Nanocápsula según cualquiera de las reivindicaciones 1 a 3, donde X se selecciona de entre CF3SO3 ", CF3CO2 ", CI", Br", CIO ", PF6 ", SbF6 ", BF ", NO3 " , BPh4 ", SO 2", PO 3" o BARF". 4. Nanocapsule according to any one of claims 1 to 3, wherein X is selected from CF 3 SO 3 " , CF 3 CO 2 " , CI " , Br " , CIO " , PF 6 " , SbF 6 " , BF " , NO 3 " , BPh 4 " , SO 2 " , PO 3" or BARF " .
5. Nanocápsula según cualquiera de las reivindicaciones 1 a 4, donde X es CF3SO3 " o BARF" y dicha nanocápsula está formada por ocho contraiones. 5. Nanocapsule according to any one of claims 1 to 4, wherein X is CF 3 SO 3 " or BARF " and said nanocapsule is formed by eight counterions.
6. Nanocápsula según cualquiera de las reivindicaciones 1 a 5, donde cada Ri representa de manera independiente hidrógeno o flúor. 6. Nanocapsule according to any one of claims 1 to 5, wherein each Ri independently represents hydrogen or fluorine.
7. Nanocápsula según cualquiera de las reivindicaciones 1 a 6, donde todos los Ri son hidrógeno. 7. Nanocapsule according to any one of claims 1 to 6, wherein all the Ri are hydrogen.
8. Nanocápsula según cualquiera de las reivindicaciones 1 a 7, donde cada R2 representa de manera independiente un hidrógeno o un grupo alquilo (d- C4). 8. Nanocapsule according to any one of claims 1 to 7, wherein each R 2 independently represents a hydrogen or an alkyl group (d-C 4 ).
9. Nanocápsula según cualquiera de las reivindicaciones 1 a 8, donde todos los R2 son metilo. 9. Nanocapsule according to any one of claims 1 to 8, wherein all R 2 are methyl.
10. Nanocápsula según cualquiera de las reivindicaciones 1 a 9, donde cada R3 representa de manera independiente un hidrógeno o un grupo alquilo (d- C4). 10. Nanocapsule according to any one of claims 1 to 9, wherein each R 3 independently represents a hydrogen or an alkyl group (d-C 4 ).
1 1 . Nanocápsula según cualquiera de las reivindicaciones 1 a 10, donde todos los R3 son metilo. eleven . Nanocapsule according to any one of claims 1 to 10, wherein all R 3 are methyl.
12. Nanocápsula según cualquiera de las reivindicaciones 1 a 1 1 , donde cada R4 representa de manera independiente hidrógeno o flúor. 12. Nanocapsule according to any of claims 1 to 1 1, wherein each R 4 independently represents hydrogen or fluorine.
13. Nanocápsula según cualquiera de las reivindicaciones 1 a 12, donde todos los R4 son hidrógeno. 13. Nanocapsule according to any of claims 1 to 12, wherein all R 4 are hydrogen.
14. Nanocápsula según cualquiera de las reivindicaciones 1 a 13, donde M es Pd o Cu y IW es Zn o Pd. 14. Nanocapsule according to any one of claims 1 to 13, wherein M is Pd or Cu and IW is Zn or Pd.
15. Nanocápsula según cualquiera de las reivindicaciones 1 a 14, donde n es 2. 15. Nanocapsule according to any of claims 1 to 14, wherein n is 2.
16. Nanocápsula según cualquiera de las reivindicaciones 1 a 15, donde Ri es hidrógeno, R2 y R3 son metilo, R4 es hidrógeno, M es Pd, I es Zn, n es 2 y
Figure imgf000028_0001
16. Nanocapsule according to any one of claims 1 to 15, wherein Ri is hydrogen, R 2 and R 3 are methyl, R 4 is hydrogen, M is Pd, I is Zn, n is 2 and
Figure imgf000028_0001
17. Nanocápsula según cualquiera de las reivindicaciones 1 a 15, donde R1 es hidrógeno, R2 y R3 son metilo, R4 es hidrógeno, M es Cu, I es Pd, n es 2 y
Figure imgf000028_0002
17. Nanocapsule according to any one of claims 1 to 15, wherein R 1 is hydrogen, R 2 and R 3 are methyl, R 4 is hydrogen, M is Cu, I is Pd, n is 2 and
Figure imgf000028_0002
18. Uso de la nanocápsula según cualquiera de las reivindicaciones 1 a 17, para la separación y/o purificación de fulerenos. 18. Use of the nanocapsule according to any of claims 1 to 17, for the separation and / or purification of fulerenes.
19. Uso de la nanocápsula según cualquiera de las reivindicaciones 1 a 17, para la separación y/o purificación de fulerenos de tamaño entre C60 y C84, ambos incluidos, cuando n es 2. 19. Use of the nanocapsule according to any of claims 1 to 17, for the separation and / or purification of fulerenes of size between C60 and C84, both included, when n is 2.
20. Uso de la nanocápsula según cualquiera de las reivindicaciones 1 a 14, para la separación y/o purificación de fulerenos de un tamaño menor a C60, cuando n es 1 . 20. Use of the nanocapsule according to any of claims 1 to 14, for the separation and / or purification of fulerenes of a size smaller than C60, when n is 1.
21 . Uso de la nanocápsula según cualquiera de las reivindicaciones 1 a 14, para la separación y/o purificación de fulerenos de un tamaño mayor a C84, cuando n es 3. twenty-one . Use of the nanocapsule according to any of claims 1 to 14, for the separation and / or purification of fulerenes of a size greater than C84, when n is 3.
22. Método de encapsulacion de fulerenos de tamaño entre C60 y C84, ambos incluidos, que comprende los siguientes pasos: 22. Method of encapsulation of fulerenes of size between C60 and C84, both included, comprising the following steps:
a. disolver una nanocápsula formada por dos (metalo)porfirinas tetracarboxiladas paralelas de fórmula general (I) unidas por cuatro compuestos macrocíclicos metálicos de fórmula general (II) a través de enlace M-carboxilato, y contraiones (X):  to. dissolve a nanocapsule formed by two parallel (metal) tetracarboxylated porphyrins of general formula (I) joined by four metal macrocyclic compounds of general formula (II) via M-carboxylate bond, and counterions (X):
Figure imgf000029_0001
donde: Μ', M, R-i , R2, R3 y R4 están definidos en las reivindicaciones 1 a 17; y n es 2;
Figure imgf000029_0001
wherein: Μ ', M, Ri, R 2 , R 3 and R 4 are defined in claims 1 to 17; and n is 2;
con un disolvente seleccionado de entre acetonitrilo, CH2CI2, acetona, metanol o cualquiera de sus combinaciones; y  with a solvent selected from acetonitrile, CH2CI2, acetone, methanol or any combination thereof; Y
b. añadir las nanocápsulas disueltas del paso (a) o las nanocápculas sin disolver a los fulerenos disueltos en tolueno, 1 ,2-diclorobenzeno, disufuro de carbono o cualquiera de sus combinaciones; o b'. añadir a las nanocápsulas disueltas en el paso (a) a los fulerenos en estado sólido, sin disolver; b. add the dissolved nanocapsules from step (a) or the undissolved nanocapsules to the fulerenes dissolved in toluene, 1,2-dichlorobenzene, carbon disulfide or any combination thereof; or b '. add to the nanocapsules dissolved in step (a) to the solid-state fulerenes, without dissolving;
donde la proporción del disolvente del fulereno del paso (b)/disolvente de la nanocápsula del paso (a) es entre 9/1 a 4/1 y la temperatura a la que se llevan a cabo los pasos anteriores es de entre 0°C y 50°C.  where the proportion of the solvent of the fulerene of step (b) / solvent of the nanocapsule of step (a) is between 9/1 to 4/1 and the temperature at which the above steps are carried out is between 0 ° C and 50 ° C.
23. Método según la reivindicación 22, donde los fulerenos a encapsular se seleccionan de entre C60, C70, C76, C78, C84 o cualquiera de sus mezclas. 23. Method according to claim 22, wherein the rubber steels to be encapsulated are selected from C60, C70, C76, C78, C84 or any of their mixtures.
24. Método según cualquiera de las reivindicaciones 22 o 23, donde el disolvente del paso (a) es acetonitrilo. 24. Method according to any of claims 22 or 23, wherein the solvent of step (a) is acetonitrile.
25. Método según cualquiera de las reivindicaciones 22 a 24, donde el disolvente del paso (b) es tolueno. 25. Method according to any of claims 22 to 24, wherein the solvent of step (b) is toluene.
26. Método según cualquiera de las reivindicaciones 22 a 25, donde la proporción del disolvente del fulereno del paso (b)/disolvente de la nanocápsula del paso (a) es de 4/1 . 26. Method according to any of claims 22 to 25, wherein the proportion of the solvent of the fulerene of step (b) / nanocapsule solvent of step (a) is 4/1.
27. Método según cualquiera de las reivindicaciones 22 a 26, donde la temperatura es de 20-30°C, preferiblemente 25°C. 27. Method according to any of claims 22 to 26, wherein the temperature is 20-30 ° C, preferably 25 ° C.
28. Método según cualquiera de las reivindicaciones 22 a 27, donde M' es Zn, M es Pd, Ri y R4 son H, R2 y R3 son metilo y X es BARF" de la nanocápsula del paso (a). 28. Method according to any of claims 22 to 27, wherein M 'is Zn, M is Pd, Ri and R 4 are H, R 2 and R 3 are methyl and X is BARF " of the nanocapsule of step (a).
29. Método según cualquiera de las reivindicaciones 22 a 27, donde M' es Pd, M es Cu, R1 y R4 son H, R2 y R3 son metilo y X es CF3SO3" de la nanocápsula del paso (a). 29. Method according to any of claims 22 to 27, wherein M 'is Pd, M is Cu, R1 and R 4 are H, R 2 and R3 are methyl and X is CF3SO3 " of the nanocapsule of step (a).
30. Método para la separación de C60 de un mezcla de fulerenos, que comprende: 30. Method for the separation of C60 from a mixture of fulerenes, comprising:
a. encapsular dichos fulerenos mediante el método descrito en las reivindicaciones 22 a 29; y  to. encapsulating said fulerenes by the method described in claims 22 to 29; Y
b. lavar tres veces los fulerenos encapsulados del paso (a) con una mezcla de 1 ,2-diclorobenzeneo:CS2 en una proporción de 1 : 1 a 0: 1 y donde los fulerenos encapsulados están soportados en una columna de filtración.  b. wash the encapsulated fulerenes of step (a) three times with a mixture of 1,2-dichlorobenzene: CS2 in a ratio of 1: 1 to 0: 1 and where the encapsulated fulerenes are supported on a filtration column.
31 . Método para la separación selectiva y secuencialmente C60 y C70 de una mezcla de fulerenos que comprende: separar el fulereno de tamaño C60 mediante los pasos (a) y (b) del método descrito en la reivindicación 30; y c. el precipitado obtenido en la etapa (b) se suspende en tolueno y se trata con ácido tríflico. 31. A method for the selective and sequential separation of C60 and C70 from a mixture of rubber carriers comprising: separating the C60 size fulerene by means of steps (a) and (b) of the method described in claim 30; and c. The precipitate obtained in step (b) is suspended in toluene and treated with triflic acid.
32. Método según cualquiera de las reivindicaciones 22 a 31 , que además comprende un paso en el que el sólido que comprende fulereno nanocápsulado se seca y se le añade NEt3 y posteriormente se disuelve con CH3CN para la recuperación de la nanocápsula. 32. A method according to any one of claims 22 to 31, further comprising a step in which the solid comprising nanocapsulated fulerene is dried and NEt 3 is added and subsequently dissolved with CH 3 CN for recovery of the nanocapsule.
PCT/ES2015/070128 2014-03-07 2015-02-25 Molecular nanocapsules for the selective separation of fullerenes WO2015132433A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP201430315 2014-03-07
ES201430315A ES2547720B1 (en) 2014-03-07 2014-03-07 MOLECULAR NANOCAPULES FOR THE SELECTIVE SEPARATION OF FULERENS

Publications (1)

Publication Number Publication Date
WO2015132433A1 true WO2015132433A1 (en) 2015-09-11

Family

ID=54054611

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2015/070128 WO2015132433A1 (en) 2014-03-07 2015-02-25 Molecular nanocapsules for the selective separation of fullerenes

Country Status (2)

Country Link
ES (1) ES2547720B1 (en)
WO (1) WO2015132433A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108459159A (en) * 2018-02-11 2018-08-28 莎穆(上海)生物科技有限公司 Supramolecular self assembly mediates the new method of mesh nano gold enhancing immuno-chromatographic test paper strip sensitivity

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013063368A1 (en) * 2011-10-26 2013-05-02 The Regents Of The University Of Colorado, A Body Corporate Fullerene separation through use of organic cages

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013063368A1 (en) * 2011-10-26 2013-05-02 The Regents Of The University Of Colorado, A Body Corporate Fullerene separation through use of organic cages

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
BOIOCCHI, M. ET AL.: "Linear recognition of carboxylates by ditopic macrocyclic complexes''.", NEW JOURNAL OF CHEMISTRY 2007, vol. 31, no. Issue 27, 2 January 2007 (2007-01-02), pages 352 - 356 *
GARCÍA-SIMÓN, C. ET AL.: "Self-Assembled Tetragonal Prismatic Molecular Cage Highly Selective for Anionic pi Guests''.", CHEMISTRY: A EUROPEAN JOURNAL, vol. 19, no. Issue 4, 2013, pages 1445 - 1456 *
HE, W. ET AL.: "Construction of a Square-Planar Molecular Box: Self-Assembly of Palladium(II) Complexes of 3,6,9,16,19,22-Hexaazatricyclo[22.2.2.211,14]triacon-11,13,24,26(1),27,29-hexaene through Hydrogen-Bonding Interactions''.", INORGANIC CHEMISTRY 2001, vol. 40, no. Issue 27, 15 November 2001 (2001-11-15), pages 7065 - 7071 *
SATAKE, A. ET AL.: "Dynamic supramolecular porphyrin systems''.", TETRAHEDRON, vol. 61, no. Issue 1, 2005, pages 13 - 41, XP027860623, ISSN: 0040-4020 *
SHIRAKAWA, M. ET AL.: "Molecular programming of organogelators which can accept [60]fullerene by encapsulation''.", TETRAHEDRON, vol. 62, no. 9, 2006, pages 2016 - 2024., XP025001597, ISSN: 0040-4020 *
SHOJI, Y. ET AL.: "Selective Extraction of Higher Fullerenes Using Cyclic Dimers of Zinc Porphyrins''.", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY 2004, vol. 126, no. Issue 21, pages 6570 - 6571 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108459159A (en) * 2018-02-11 2018-08-28 莎穆(上海)生物科技有限公司 Supramolecular self assembly mediates the new method of mesh nano gold enhancing immuno-chromatographic test paper strip sensitivity

Also Published As

Publication number Publication date
ES2547720A1 (en) 2015-10-08
ES2547720B1 (en) 2016-09-08

Similar Documents

Publication Publication Date Title
Beuerle et al. Covalent organic frameworks and cage compounds: design and applications of polymeric and discrete organic scaffolds
Chen et al. Pd (II) coordination sphere engineering: pyridine cages, quinoline bowls, and heteroleptic pills binding one or two fullerenes
García-Simón et al. Metallosupramolecular receptors for fullerene binding and release
Lankshear et al. Strategic anion templation
Chang et al. Self-assembled perylene bisimide-cored trigonal prism as an electron-deficient host for C60 and C70 driven by “like dissolves like”
de la Torre et al. A voyage into the synthesis and photophysics of homo-and heterobinuclear ensembles of phthalocyanines and porphyrins
US10125016B2 (en) Nanoporous carbohydrate frameworks and the sequestration and detection of molecules using the same
Li et al. Pillararene-based molecular-scale porous materials
Chapman et al. Templation and encapsulation in supramolecular chemistry
Saudan et al. Dendrimers with a cyclam core. Absorption spectra, multiple luminescence, and effect of protonation
JP2001122877A (en) Cucurbituril derivative, method for preparing the same, and use
Wychowaniec et al. Hierarchical porous metal–organic gels and derived materials: from fundamentals to potential applications
Hammer et al. The polar side of polyphenylene dendrimers
Ma et al. Triptycene-derived calixarenes, heterocalixarenes and analogues
McHale et al. Dual lanthanide role in the designed synthesis of hollow metal coordination (Prussian Blue analogue) nanocages with large internal cavity and mesoporous cage
Xiao et al. Porphyrin-cucurbituril organic molecular porous material: Structure and iodine adsorption properties
WO2016162810A1 (en) Luminescent conjugated microporous polymer with lewis acidic &#39;boron&#39; sites on the pore surface: ratiometric sensing and capture of f&#39; ion
Sarkar et al. A two-component hydrogelator from citrazinic acid and melamine: synthesis, intriguing role of reaction parameters and iodine adsorption study
Wang et al. Self-assembly of tetrameric and hexameric terpyridine-based macrocycles using Cd (II), Zn (II), and Fe (II)
Gambhir et al. High adsorption capacity of an sp2/sp3-N-rich polymeric network: from molecular iodine capture to catalysis
McVey et al. Supramolecules
Pachisia et al. Molecular assemblies offering hydrogen-bonding cavities: influence of macrocyclic cavity and hydrogen bonding on dye adsorption
WO2015132433A1 (en) Molecular nanocapsules for the selective separation of fullerenes
Prajapati et al. Water-soluble Pd6L3 molecular bowl for separation of phenanthrene from a mixture of isomeric aromatic hydrocarbons
JP5648963B2 (en) Pore network complex, guest molecule inclusion network complex, and method for separating guest molecule

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15758793

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15758793

Country of ref document: EP

Kind code of ref document: A1