WO2015131320A1 - 一种天线及无线终端 - Google Patents

一种天线及无线终端 Download PDF

Info

Publication number
WO2015131320A1
WO2015131320A1 PCT/CN2014/072815 CN2014072815W WO2015131320A1 WO 2015131320 A1 WO2015131320 A1 WO 2015131320A1 CN 2014072815 W CN2014072815 W CN 2014072815W WO 2015131320 A1 WO2015131320 A1 WO 2015131320A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiator
antenna
gap
electrically connected
antenna according
Prior art date
Application number
PCT/CN2014/072815
Other languages
English (en)
French (fr)
Inventor
柳青
王定杰
兰尧
Original Assignee
华为终端有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为终端有限公司 filed Critical 华为终端有限公司
Priority to PCT/CN2014/072815 priority Critical patent/WO2015131320A1/zh
Priority to CN201480001770.6A priority patent/CN104412449B/zh
Publication of WO2015131320A1 publication Critical patent/WO2015131320A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/20Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements characterised by the operating wavebands
    • H01Q5/25Ultra-wideband [UWB] systems, e.g. multiple resonance systems; Pulse systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/30Combinations of separate antenna units operating in different wavebands and connected to a common feeder system

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to an antenna and a wireless terminal.
  • BACKGROUND With the development of communication technologies, applications of various wireless terminal products are becoming more and more popular. When the public enjoys the convenience brought by the wireless communication of the wireless terminal, the portability of the wireless terminal is also higher and higher, and with the frequent activities of the user traveling, the user has the antenna bandwidth in the wireless terminal product.
  • Demand is also increasing, requiring antennas to support multiple frequency bands in the global market, such as from North America to Europe to Japan, with frequency bands covering 700 ⁇ 960MHz, 1400 ⁇ 1500MHz, 1710 ⁇ 2700MHz.
  • the present invention provides an antenna and a wireless terminal having the same, which is designed for an ultra-wideband antenna to meet the large bandwidth requirements of the wireless terminal.
  • an antenna includes: a substrate, a first radiator, a second radiator, and a feeding point; wherein the first radiator and the second radiator are disposed on the same substrate Plane
  • the feed point is located in the first gap and is electrically connected to the first radiator and the second radiator, respectively.
  • the antenna further includes a communication interface; the communication interface is disposed at an edge of the substrate;
  • the communication interface is electrically connected to the first radiator and electrically connected to the second radiator.
  • the substrate is a printed circuit board PCB, and the communication interface is a USB interface;
  • the communication interface is electrically connected to the first radiator, and is electrically connected to the second radiator, specifically: the USB interface is electrically connected to the first radiator through a USB data line, and the USB The interface is electrically connected to the second radiator through a USB data line.
  • the feeding point is located at one end of the first gap.
  • a width of the first gap is from an end of the first gap to the first gap to the first gap The other end is getting bigger.
  • the feeding point is located in a middle portion of the first gap.
  • the antenna further includes a loading component disposed in the first gap, and the loading component is electrically connected to the first radiator and the second radiator, respectively.
  • the loading component is a capacitive component or an inductive component.
  • the second radiator includes a first sub-radiator and a second sub-radiator, the first sub-radiator and the A second gap is formed between the second sub-radiators.
  • the first radiator has at least one opening into the slot of the first gap.
  • the USB interface passes through a USB data line
  • the first radiator is electrically connected, specifically:
  • the USB data line includes a PCB trace and a metal line in the same layer as the first radiator;
  • One end of the PCB trace is electrically connected to the USB interface, and the other end is electrically connected to the metal line; the metal line is electrically connected to the first radiator, and the metal line is located in the first gap The outer side of one end of the feed point is set.
  • the USB interface is electrically connected to the first radiator through a USB data line, specifically:
  • the USB data line is connected across the first gap, and a portion of the USB data line opposite to the first gap is located directly above the feed point.
  • a wireless terminal including any of the antennas provided in the first aspect.
  • the first radiator and the second radiator are disposed on the same plane of the substrate, and the first radiator and the second radiator are formed. a first gap, and separating the first radiator and the second radiator through the first gap; the antenna passes through the feeding point to the first radiator and The second radiator is configured to feed the current signal.
  • the first radiator and the second radiator disposed on the substrate the first radiator extends outward from the end connected to the feeding point to distribute the inductor and the capacitor, and the second radiation
  • the body extends outwardly from the end connected to the feed point to distribute the inductance and capacitance, and the ratio of the distributed inductance of the first radiator to the distributed inductance of the second radiator is constant, so the impedance and reactance of the antenna input are Constant in a large bandwidth, because in the antenna design, as long as the parameters of an antenna (such as: radiation pattern, input impedance, polarization characteristics, phase center, etc.), one parameter or several parameters are in the working frequency band.
  • the antenna is considered to be an ultra-wideband antenna, and the impedance and reactance of the antenna provided by the present invention are constant over a large bandwidth. Therefore, the antenna has an ultra-wideband characteristic and is an ultra-wideband antenna. .
  • the antenna provided by the present invention has ultra-wideband characteristics and is designed for an ultra-wideband antenna to meet the large bandwidth requirement of a wireless terminal.
  • FIG. 1 is a schematic structural diagram of a wireless terminal according to an embodiment of the present invention.
  • FIG. 2 is a schematic structural diagram of an antenna according to an embodiment of the present invention.
  • FIG. 3 is a structural diagram of an antenna according to another embodiment of the present invention.
  • FIG. 4 is a structural diagram of an antenna according to another embodiment of the present invention.
  • FIG. 5 is a structural diagram of an antenna according to another embodiment of the present invention.
  • FIG. 6 is a structural diagram of an antenna according to another embodiment of the present invention.
  • FIG. 7 is a structural diagram of an antenna according to another embodiment of the present invention.
  • FIG. 8 is a structural diagram of an antenna according to another embodiment of the present invention.
  • the technical solutions in the embodiments of the present invention are clearly and completely described in the following with reference to the accompanying drawings in the embodiments of the present invention. It is obvious that the described embodiments are only a part of the embodiments of the present invention, and not all of the embodiments. example. All other embodiments obtained by those skilled in the art based on the embodiments of the present invention without creative efforts are within the scope of the present invention.
  • FIG. 1 is a schematic structural diagram of a wireless terminal according to an embodiment of the present invention, where the wireless terminal has at least one antenna A;
  • the above-mentioned antenna provided by the embodiment satisfies the design requirement of the ultra-wideband antenna, and the above antenna is an ultra-wideband antenna, and thus the wireless terminal having the above antenna satisfies a large bandwidth requirement.
  • the above antenna will be described below with reference to the drawings.
  • FIG. 2 is a structural diagram of an antenna according to an embodiment of the present invention.
  • the antenna A provided by this embodiment of the present invention includes: a substrate 1, a first radiator 2, a second radiator 3, and a feeding point 5.
  • the first radiator 2 and the second radiator 3 are disposed on the same plane of the substrate 1, and a first gap 4 is formed between the first radiator 2 and the second radiator 3.
  • the substrate 1 may specifically be a printed circuit board PCB board. Of course, the substrate 1 may also be other boards, such as a plastic board and a fiberglass board. The material of the substrate 1 is not limited.
  • a first gap 4 is formed between the first radiator 2 and the second radiator 3, specifically: the first radiator 2 and the second radiator 3 are separated by the first gap 4.
  • the feed point 5 is disposed in the first gap 4 and is electrically connected to the first radiator 2 and the second radiator 3, respectively.
  • the antenna A feeds a current signal to the first radiator 2 and the second radiator 3 through the feed point 5.
  • the first radiator 2 extends the distributed inductance and the distributed capacitance outward from a position electrically connected to the feed point 5, and the second radiator 3 extends the distributed inductance and the distributed capacitance outward from a position connected to the feed point 5.
  • the distributed inductance and distributed capacitance of the first radiator 2 are constant with respect to the distributed inductance and distributed capacitance of the second radiator 3. Therefore, since the distributed inductance and the distributed capacitance of the first radiator 2 are constant, the ratio of the distributed inductance and the distributed capacitance of the second radiator 3 is constant, so that the impedance and reactance of the antenna input are constant in a large bandwidth.
  • the parameters of the antenna such as: radiation pattern, input impedance, polarization characteristics, phase center, etc.
  • one of the parameters or several parameters remain constant or within the allowable range in the operating frequency band.
  • the fluctuation occurs within the antenna, which can be considered as an ultra-wideband antenna.
  • the impedance and reactance of the antenna A provided by the present invention are constant over a large bandwidth. Therefore, the antenna A has an ultra-wideband characteristic and is an ultra-wideband antenna.
  • the antenna A provided by the present invention has ultra-wideband characteristics and is designed for an ultra-wideband antenna to meet the large bandwidth requirement of a wireless terminal.
  • the antenna A further includes a communication interface 6.
  • the communication interface 6 may specifically be a USB interface.
  • the communication interface 6 is disposed at the edge of the substrate 1 , and the position of the communication interface 6 at the edge of the substrate 1 may be: the communication interface 6 is located at the second radiator 3 away from the first radiator 2 One side.
  • the communication interface 6 is electrically connected to the first radiator 2 and is electrically connected to the second radiator 3.
  • the electrical connection between the communication interface 6 and the first radiator 2 may be: the USB interface is electrically connected to the first radiator 2 through the USB data line; and the communication interface 6 is electrically connected to the second radiator 3 Specifically, the USB interface is electrically connected to the second radiator 3 through the USB data line.
  • the USB interface is electrically connected to the first radiator 2 through the USB data line, specifically: the USB data line is connected to the first gap 4, and the portion of the USB data line opposite to the first gap 4 is located at the feeding point 5 Above. Since the antenna A is in use, the feed point 5 is the maximum current in the antenna A, and the portion of the USB data line opposite to the first gap 4 is located directly above the feed point 5, so that the signal current in the USB data line is fed. The electromagnetic influence at the entry point 5 is small, which in turn reduces the influence of the signal current in the USB data line on the antenna performance.
  • the USB interface is electrically connected to the first radiator 2 through a USB data line, specifically: the USB data line includes a PCB trace 8 and is located above the first radiator 2 and the second radiator 3
  • the metal wire 7, the metal wire 7 of the USB data line is bridged over the first gap 4, and the portion of the metal wire 7 opposite to the first gap 4 is located directly above the feed point 5.
  • the present invention forms a first gap 4 between the first radiator 2 and the second radiator 3; the feed point 5 is disposed in the first gap 4, and is respectively associated with the first radiator 2 is electrically connected to the second radiator 3. Due to the distributed inductance and distributed capacitance of the first radiator 2, the ratio of the distributed inductance and the distributed capacitance of the second radiator 3 is constant, so that the impedance and reactance of the input of the antenna A are constant within a large bandwidth, thereby
  • the above antenna A has an ultra-wideband characteristic and is an ultra-wideband antenna. Therefore, the antenna A provided by the present invention has an ultra-wideband characteristic and is designed for an ultra-wideband antenna, and can satisfy a large bandwidth requirement of a wireless terminal.
  • FIG. 3 is a structural diagram of an antenna according to another embodiment of the present invention.
  • the USB interface is electrically connected to the first radiator 2 through a USB data line, specifically For:
  • the USB data line includes a PCB trace 8 and a metal line 7 in the same layer as the first radiator 2.
  • PCB trace 8 One end of the PCB trace 8 is electrically connected to the USB interface, and the other end is electrically connected to the metal line 7.
  • the metal wire 7 is electrically connected to the first radiator 2, and the metal wire 7 is located at the end of the first gap 4 where the feed point 5 is disposed.
  • the metal wire 7 is in the same layer as the first radiator 2, that is, the metal wire 7 is located on the same plane as the first radiator 2 and the second radiator 3, and can be directly connected to the first radiator during the preparation of the antenna A. 2 and the second radiator 3 are formed by one patterning process, thereby charging the preparation cost of the antenna A.
  • the feed point 5 is the current in the antenna A
  • the metal line 7 is located outside the 5th end of the feed point of the first gap 4, and the signal current in the metal line 7 is at the feed point 5.
  • the electromagnetic influence is small, which in turn reduces the influence of the signal current in the metal line 7 on the performance of the antenna A.
  • the feeding point 5 of the antenna A is located at one end of the first gap 4.
  • the distributed capacitance is a distribution parameter formed by a non-capacitance form, and a capacitance formed by the first radiator 2 and the second radiator 3 in the first gap 4, by which the resonance frequency of the antenna A can be adjusted. Therefore, when the feed point 5 is disposed at one end of the first gap 4, the antenna A can also be adjusted by adjusting the width of the first gap 4, such as:
  • FIG. 4 is a structural diagram of an antenna according to another embodiment of the present invention.
  • the width of the first gap 4 gradually increases from one end of the feeding point 5 to the other end.
  • the width ⁇ of the first gap 4 is set in a gradual manner, and the distributed capacitance formed by the first radiator 2 and the second radiator 3 in the first gap 4 can be adjusted, and then the antenna A is matched by the distributed capacitance, thereby adjusting the antenna A. Bandwidth.
  • the width of the first gap 4 may be gradually reduced from one end of the feeding point 5 to the other end, and the first radiator 2 and the second radiator 3 may also be The distributed capacitance formed by a gap 4 is adjusted, and then the antenna A is matched by the distributed capacitance, thereby adjusting the bandwidth of the antenna A.
  • FIG. 5 is a structural diagram of an antenna according to another embodiment of the present invention.
  • the feed point 5 of the antenna A may be disposed in the middle of the first gap 4.
  • the feed point 5 is arranged in the middle of the first gap 4, and the return loss sl l of different frequency bands of the antenna A can be adjusted, so that the key improvement can be performed for certain frequency bands.
  • FIG. 6 is a structural diagram of an antenna according to another embodiment of the present invention.
  • the antenna A further includes a loading component 9 disposed in the first gap 4, and the loading component 9 is electrically connected to the first radiator 2 and the second radiator 3, respectively.
  • the loading element 9 is arranged in the first gap 4, and the current distribution in the first radiator 2 or the second radiator 3 in the antenna can be changed.
  • the setting of the loading element 9 can improve the electrical characteristics of the antenna and adjust the matching state of the antenna A. , thereby adjusting the bandwidth of antenna A matching.
  • the loading element 9 described above may be a capacitive element or an inductive element.
  • FIG. 7 is a structural diagram of an antenna according to another embodiment of the present invention.
  • the second radiator 3 of the antenna A includes a first sub-radiator 31 and a second sub-radiator 32, and the first sub-radiator 31 and the second sub-radiator 32.
  • a second gap 33 is formed therebetween.
  • the first sub-radiator 31 and the second sub-radiator 32 also form a distributed capacitance at the second gap 33 to match the antenna A, thereby realizing the adjustment of the bandwidth of the antenna A.
  • FIG. 8 is a structural diagram of an antenna according to another embodiment of the present invention.
  • the first radiator 2 of the antenna A has at least one opening that faces the first gap 4, as shown by the two slots 21 in Fig. 8.
  • the arrangement of the slot 21 on the first radiator 2 is extended in the first radiator 2 The path of the current reduces the resonant frequency of the first radiator 2, so that the resonant frequency of the antenna A can be shifted to the low frequency.
  • another embodiment of the present invention provides a wireless terminal, where the wireless terminal includes at least one antenna A. Since the antenna A provided in each of the above embodiments is an ultra-wideband antenna, the wireless terminal having the antenna A has a large communication bandwidth and satisfies the large bandwidth requirement of the wireless terminal.

Landscapes

  • Support Of Aerials (AREA)
  • Details Of Aerials (AREA)

Abstract

本发明涉及通讯技术领域,公开一种天线以及无线终端,天线包括基板、第一辐射体、第二辐射体、馈入点;所述第一辐射体和第二辐射体设置于所述基板的同一面;所述第一辐射体和第二辐射体之间形成第一间隙;所述馈入点位于所述第一间隙内,且分别与所述第一辐射体和第二辐射体点连接。上述天线中,第一辐射体延伸的分布电感电容,与第二辐射体延伸的分布电感电容之比为常数,因此上述天线输入的阻抗、电抗在大带宽内为常数,上述天线具备超宽带特性,为超宽带天线。因此,本发明提供的天线具有超宽带特性,为超宽带天线设计,能够满足具有无线终端的大带宽需求。

Description

一种天线及无线终端
技术领域
本发明涉及通讯技术领域, 特别涉及一种天线及无线终端。 背景技术 随着通信技术的发展, 各种无线终端产品的应用越来越普及。 大众在享受无线终端的 无线通信带来的各种便利之时, 对无线终端的便携性要求也越来越高, 且随着用户出差旅 游等活动的频繁, 用户对无线终端产品中天线带宽的需求也越来越高, 需要天线支持全球 市场的多个频段的应用, 如从北美到欧洲再到日本等, 频段覆盖从 700~960MHz , 1400~1500MHz, 1710~2700MHz。
因此, 如何提供一种满足无线终端大带宽需求的天线成为本例与技术人员亟需解决的 技术问题之一。 发明内容 本发明提供了一种天线及具有该天线的无线终端, 该天线为超宽带天线设计, 满足无 线终端的大带宽需求。
第一方面, 提供一种天线, 所述天线包括: 基板、 第一辐射体、 第二辐射体、 馈入点; 所述第一辐射体和所述第二辐射体设置于所述基板的同一平面;
所述第一辐射体和所述第二辐射体之间形成第一间隙;
所述馈入点位于所述第一间隙内 , 且分别与所述第一辐射体和所述第二辐射体电连 接。
结合上述第一方面, 在第一种可能的实现方式中, 所述天线还包括通讯接口; 所述通讯接口设置于所述基板的边缘;
所述通讯接口与所述第一辐射体电连接 , 且与所述第二辐射体电连接。
结合上述第一方面的第一种可能的实现方式, 在第二种可能的实现方式中, 所述基板 为印刷电路板 PCB , 所述通讯接口为 USB接口;
所述通讯接口与所述第一辐射体电连接, 且与所述第二辐射体电连接, 具体为: 所述 USB接口通过 USB数据线与所述第一辐射体电连接 ,且所述 USB接口通过 USB 数据线与所述第二辐射体电连接。
结合上述第一方面、 第一种可能的实现方式、 第二种可能的实现方式, 在第三种可能 的实现方式中, 所述馈入点位于所述第一间隙的一端。 结合第一方面的第三种可能的实现方式, 在第四种可能的实现方式中, 所述第一间隙 的宽度从所述第一间隙设置所述馈入点的一端向所述第一间隙的另一端逐渐变大。
结合第一方面、 第一种可能的实现方式、 第二种可能的实现方式, 在第五种可能的实 现方式中, 所述馈入点位于所述第一间隙的中部。
结合第一方面、 第一种可能的实现方式、 第二种可能的实现方式、 第三种可能的实现 方式、 第四种可能的实现方式、 第五种可能的实现方式, 在第六种可能的实现方式中, 所 述天线还包括设置于所述第一间隙内的加载元件, 所述加载元件分别与所述第一辐射体和 第二辐射体电连接。
结合第一方面的第六种可能的实现方式, 在第七种可能的实现方式中, 所述加载元件 为电容元件或者电感元件。
结合第一方面、 第一种可能的实现方式、 第二种可能的实现方式、 第三种可能的实现 方式、 第四种可能的实现方式、 第五种可能的实现方式、 第六种可能的实现方式、 第七种 可能的实现方式, 在第八种可能的实现方式中, 所述第二辐射体包括第一子辐射体和第二 子辐射体, 所述第一子辐射体与所述第二子辐射体之间形成第二间隙。
结合第一方面、 第一种可能的实现方式、 第二种可能的实现方式、 第三种可能的实现 方式、 第四种可能的实现方式、 第五种可能的实现方式、 第六种可能的实现方式、 第七种 可能的实现方式、 第八种可能的实现方式, 在第九种可能的实现方式中, 所述第一辐射体 具有至少一个开口朝向所述第一间隙的开槽。
结合第一方面的第三种可能的实现方式, 在第十种可能的实现方式中, 当所述馈入点 设置于所述第一间隙的一端时,所述 USB接口通过 USB数据线与所述第一辐射体电连接 , 具体为:
所述 USB数据线包括 PCB走线和与所述第一辐射体同层的金属线;
所述 PCB走线的一端与所述 USB接口电连接, 另一端与所述金属线电连接; 所述金属线与所述第一辐射体电连接, 且所述金属线位于所述第一间隙设置所述馈入 点的一端的外侧。
结合第一方面的第二种可能的实现方式, 在第十一种可能的实现方式中, 所述 USB 接口通过 USB数据线与所述第一辐射体电连接, 具体为:
所述 USB数据线跨接于所述第一间隙, 且所述 USB数据线与所述第一间隙相对的部 位位于所述馈入点的正上方。
第二方面, 提供一种无线终端, 包括第一方面提供的任意一种天线。
根据第一方面提供的天线以及第二方面提供的无线终端, 上述天线中, 基板的同一平 面上设置有第一辐射体和第二辐射体, 且第一辐射体和第二辐射体之间形成第一间隙, 并 通过第一间隙将第一辐射体和第二辐射体分隔; 上述天线通过馈入点向第一辐射体以及第 二辐射体馈入电流信号; 上述天线中, 基板上设置的第一辐射体和第二辐射体中, 第一辐 射体从其与馈入点连接的一端向外延伸分布电感电容, 第二辐射体从其与馈入点连接的一 端向外延伸分布电感电容, 且第一辐射体延伸的分布电感电容与第二辐射体延伸的分布电 感电容之比为常数, 因此上述天线输入的阻抗、 电抗在大带宽内为常数, 由于在天线设计 中, 只要一种天线的参数中 (如: 辐射方向图、 输入阻抗、 极化特性、 相位中心等), 其 中一个参数或者几个参数在工作频段内保持为常数或者在允许的范围内变化, 可以认为该 天线是超宽带天线, 本发明提供的上述天线的阻抗以及电抗在大带宽内为常数, 因此, 上 述天线具备超宽带特性, 为超宽带天线。
因此, 本发明提供的天线具有超宽带特性, 为超宽带天线设计, 能够满足具有无线终 端的大带宽需求。 附图说明 为了更清楚地说明本发明实施例中的技术方案, 下面将对实施例中所需要使用的附图 作筒单地介绍, 显而易见地, 下面描述中的附图仅仅是本发明的一些实施例, 对于本领域 普通技术人员来讲, 在不付出创造性劳动性的前提下, 还可以根据这些附图获得其他的附 图。
图 1为本发明实施例提供的一种无线终端的结构示意图;
图 2为本发明实施例提供的一种天线的结构示意图;
图 3为本发明另一实施例提供的一种天线的结构图;
图 4为本发明另一实施例提供的一种天线的结构图;
图 5为本发明另一实施例提供的一种天线的结构图;
图 6为本发明另一实施例提供的一种天线的结构图;
图 7为本发明另一实施例提供的一种天线的结构图;
图 8为本发明另一实施例提供的一种天线的结构图。 具体实施方式 下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案进行清楚、 完整地 描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而不是全部的实施例。 基于本 发明中的实施例, 本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实 施例, 都属于本发明保护的范围。
本发明实施例提供了一种天线、 以及一种无线终端。 如图 1所示, 图 1为本发明实施 例提供的一种无线终端的结构示意图, 该无线终端具有至少一个上述天线 A; 由于本发明 实施例提供的上述天线满足超宽带天线的设计要求, 上述天线为超宽带天线, 因此具有上 述天线的无线终端满足大带宽需求。 下面结合附图对上述天线进行描述。
请参考图 2, 图 2为本发明实施例提供的一种天线的结构图。
本发明该实施例提供的天线 A包括: 基板 1、 第一辐射体 2、 第二辐射体 3、馈入点 5。 第一辐射体 2和第二辐射体 3设置于基板 1的同一平面, 且第一辐射体 2和第二辐射 体 3之间形成第一间隙 4。
其中, 基板 1具体可以为印刷电路板 PCB板, 当然, 基板 1还可以为其他板, 如塑料 板以及玻璃纤维板等, 本发明对基板 1的材料不作限定。
其中, 第一辐射体 2和第二辐射体 3之间形成第一间隙 4, 具体为: 通过第一间隙 4 将第一辐射体 2和第二辐射体 3分隔。
馈入点 5设置于第一间隙 4内, 且分别与第一辐射体 2和第二辐射体 3电连接。
天线 A通过馈入点 5向第一辐射体 2以及第二辐射体 3馈入电流信号。 第一辐射体 2 从与馈入点 5电连接的位置向外延伸分布电感和分布电容, 第二辐射体 3从与馈入点 5连 接的位置向外延伸分布电感和分布电容。 第一辐射体 2延伸的分布电感和分布电容, 与第 二辐射体 3延伸的分布电感和分布电容之比为常数。 因此, 由于第一辐射体 2延伸的分布 电感和分布电容, 与第二辐射体 3延伸的分布电感和分布电容之比为常数, 使得上述天线 输入的阻抗、 电抗在大带宽内为常数。
在天线的设计过程中, 只要天线的参数中 (如: 辐射方向图、 输入阻抗、 极化特性、 相位中心等), 其中一个参数或者几个参数在工作频段内保持为常数或者在允许的范围内 发生波动, 可以认为该天线是超宽带天线。 本发明提供的上述天线 A的阻抗以及电抗在大 带宽内为常数, 因此, 上述天线 A具备超宽带特性, 为超宽带天线。
因此, 本发明提供的天线 A具有超宽带特性, 为超宽带天线设计, 能够满足具有无线 终端的大带宽需求。
如图 2所示, 在本发明另一实施例中, 上述天线 A还包括通讯接口 6。
其中, 通讯接口 6具体可以为 USB接口。
在本发明另一实施例中, 通讯接口 6设置于基板 1的边缘, 通讯接口 6设置于基板 1 的边缘的位置具体可以为: 通讯接口 6位于第二辐射体 3远离第一辐射体 2的一侧。
通讯接口 6与第一辐射体 2电连接, 且与第二辐射体 3电连接。
在本发明另一实施例中, 通讯接口 6与第一辐射体 2电连接具体可以为: USB接口通 过 USB数据线与第一辐射体 2电连接; 通讯接口 6与第二辐射体 3电连接具体可以为: USB接口通过 USB数据线与第二辐射体 3电连接。
其中, USB接口通过 USB数据线与第一辐射体 2电连接, 具体为: USB数据线跨接 于第一间隙 4, 且 USB数据线与第一间隙 4相对的部位位于馈入点 5的正上方。 由于天线 A使用过程中, 馈入点 5处为天线 A中电流最大处, USB数据线与第一间 隙 4相对的部位位于馈入点 5的正上方,使 USB数据线内的信号电流对馈入点 5处的电磁 影响较小, 进而减小 USB数据线内的信号电流对天线性能的影响。
本发明一种具体实施例中, USB接口通过 USB数据线与第一辐射体 2电连接, 具体 为: USB数据线包括 PCB走线 8和位于第一辐射体 2和第二辐射体 3上方的金属线 7, USB数据线的金属线 7跨接于第一间隙 4上,金属线 7与第一间隙 4相对的部位位于馈入 点 5的正上方。
本发明通过在所述第一辐射体 2和第二辐射体 3之间形成第一间隙 4; 所述馈入点 5 设置于所述第一间隙 4内, 且分别与所述第一辐射体 2和第二辐射体 3电连接。 由于第一 辐射体 2延伸的分布电感和分布电容, 与第二辐射体 3延伸的分布电感和分布电容之比为 常数, 使得上述天线 A输入的阻抗、 电抗在大带宽内为常数, 从而, 上述天线 A具备超宽 带特性, 为超宽带天线。 因此, 本发明提供的天线 A具有超宽带特性, 为超宽带天线设计, 能够满足具有无线终端的大带宽需求。
图 3为本发明另一实施例提供的一种天线的结构图.
如图 3所示, 本发明另一实施例中, 当天线 A具有的馈入点 5设置于第一间隙 4的一 端时, 上述 USB接口通过 USB数据线与第一辐射体 2电连接, 具体为:
USB数据线包括 PCB走线 8和与第一辐射体 2同层的金属线 7。
PCB走线 8的一端与 USB接口电连接, 另一端与金属线 7电连接。
金属线 7与第一辐射体 2电连接, 且金属线 7位于第一间隙 4设置馈入点 5的一端的 夕卜^则。
金属线 7与第一辐射体 2同层, 即金属线 7与第一辐射体 2和第二辐射体 3位于基板 1的同一平面上, 在天线 A制备过程中可直接与上述第一辐射体 2和第二辐射体 3通过一 次构图工艺形成, 进而筒化天线 A的制备成本。
由于天线 A使用过程中,馈入点 5处为天线 A中电流最大处,金属线 7位于第一间隙 4设置馈入点 5—端的外侧, 金属线 7内的信号电流对馈入点 5处的电磁影响较小, 进而 减小金属线 7内的信号电流对天线 A性能的影响。
如图 1、 图 2所示, 本发明另一实施例中, 天线 A的馈入点 5位于第一间隙 4的一端。 分布电容是由非电容形态形成的一种分布参数, 第一辐射体 2与第二辐射体 3在第一 间隙 4形成的电容, 通过此电容可调节天线 A的谐振频率。 因此, 当馈入点 5设置于第一 间隙 4的一端时, 还可以通过调节第一间隙 4的宽度来对天线 A进行调节, 如:
请参考图 4, 图 4为本发明另一实施例提供的一种天线结构图。
如图 4所示, 本发明另一实施例中, 第一间隙 4的宽度自设置馈入点 5的一端向另一 端逐渐变大。 第一间隙 4的宽度釆用渐变的方式设置, 可调节第一辐射体 2和第二辐射体 3在第一 间隙 4形成的分布电容, 进而通过分布电容对天线 A进行匹配, 进而调节天线 A的带宽。
当然, 本发明另一实施例中, 上述第一间隙 4的宽度还可以自设置馈入点 5的一端向 另一端逐渐变小, 也能对第一辐射体 2和第二辐射体 3在第一间隙 4形成的分布电容进行 调节, 进而通过分布电容对天线 A进行匹配, 进而调节天线 A的带宽。
图 5为本发明另一实施例提供的一种天线的结构图。
如图 5所示, 本发明另一实施例中, 上述天线 A的馈入点 5还可以设置于第一间隙 4 的中部。
馈入点 5设置在第一间隙 4的中部, 可调节天线 A不同频段的回波损耗 sl l , 从而可 针对某些频段进行重点改善。
请参考图 6, 图 6为本发明另一实施例提供的一种天线的结构图。
如图 6所示,本发明另一实施例中,天线 A还包括设置于第一间隙 4内的加载元件 9, 加载元件 9分别与第一辐射体 2和第二辐射体 3电连接。
在第一间隙 4内设置加载元件 9, 可以改变天线中第一辐射体 2和或第二辐射体 3中 的电流分布, 加载元件 9的设置能够改善天线的电特性, 调节天线 A的匹配状态, 从而调 节天线 A匹配的带宽。
上述加载元件 9可以为电容元件、 或者电感元件。
请参考图 7, 图 7为本发明另一实施例提供的一种天线的结构图。
如图 7所示, 本发明另一实施例中, 天线 A的第二辐射体 3包括第一子辐射体 31和 第二子辐射体 32, 第一子辐射体 31与第二子辐射体 32之间形成第二间隙 33。
第一子辐射体 31和第二子辐射体 32在第二间隙 33处也形成分布电容, 以对天线 A 进行匹配, 进而实现对天线 A带宽的调节。
请参考图 8 , 图 8为本发明另一实施例提供的一种天线的结构图。
如图 8所示, 本发明另一实施例中, 天线 A的第一辐射体 2具有至少一个开口朝向第 一间隙 4的开槽, 如图 8中所示的两个开槽 21。
天线 A设计中, 第一辐射体 2内的电流路径越长其谐振频率越低, 上述实施例提供的 天线 A中, 第一辐射体 2上开槽 21的设置延长了第一辐射体 2内电流的路径, 降低第一 辐射体 2对应的谐振频率, 从而可使天线 A的谐振频率往低频偏移。
如图 1所示, 本发明另一实施例中提供了一种无线终端, 该无线终端包括至少一个上 述天线 A。 由于上述各实施例中提供的天线 A为超宽带天线,具有上述天线 A的无线终端 的通信带宽大, 满足无线终端的大带宽需求。
显然, 本领域的技术人员可以对本发明实施例进行各种改动和变型而不脱离本发明的 精神和范围。 这样, 倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范 围之内, 则本发明也意图包含这些改动和变型在内。

Claims

权 利 要 求
1、 一种天线, 其特征在于, 所述天线包括: 基板、 第一辐射体、 第二辐射体、 馈入 所述第一辐射体和所述第二辐射体设置于所述基板的同一平面;
所述第一辐射体和所述第二辐射体之间形成第一间隙;
所述馈入点位于所述第一间隙内 , 且分别与所述第一辐射体和所述第二辐射体电连 接。
2、 根据权利要求 1所述的天线, 其特征在于, 所述天线还包括通讯接口; 所述通讯接口设置于所述基板的边缘;
所述通讯接口与所述第一辐射体电连接 , 且与所述第二辐射体电连接。
3、 根据权利要求 2所述的天线, 其特征在于, 所述基板为印刷电路板 PCB, 所述通 讯接口为 USB接口;
所述通讯接口与所述第一辐射体电连接, 且与所述第二辐射体电连接, 具体为: 所述 USB接口通过 USB数据线与所述第一辐射体电连接 ,且所述 USB接口通过 USB 数据线与所述第二辐射体电连接。
4、根据权利要求 1-3任一所述的天线, 其特征在于, 所述馈入点位于所述第一间隙的 一端。
5、 根据权利要求 4 所述的天线, 其特征在于, 所述第一间隙的宽度从所述第一间隙 设置所述馈入点的一端向所述第一间隙的另一端逐渐变大。
6、 根据权利要求 1~3 任一所述的天线, 其特征在于, 所述馈入点位于所述第一间隙 的中部。
7、根据权利要求 1-6任一所述的天线, 其特征在于, 所述天线还包括设置于所述第一 间隙内的加载元件, 所述加载元件分别与所述第一辐射体和第二辐射体电连接。
8、 根据权利要求 7 所述的天线, 其特征在于, 所述加载元件为电容元件或者电感元 件。
9、根据权利要求 1-8任一所述的天线, 其特征在于, 所述第二辐射体包括第一子辐射 体和第二子辐射体, 所述第一子辐射体与所述第二子辐射体之间形成第二间隙。
10、 根据权利要求 1-9任一所述的天线, 其特征在于, 所述第一辐射体具有至少一个 开口朝向所述第一间隙的开槽。
11、 根据权利要求 3所述的天线, 其特征在于, 当所述馈入点位于所述第一间隙的一 端时, 所述 USB接口通过 USB数据线与所述第一辐射体电连接, 具体为:
所述 USB数据线包括 PCB走线和与所述第一辐射体同层的金属线; 所述 PCB走线的一端与所述 USB接口电连接, 另一端与所述金属线电连接; 所述金属线与所述第一辐射体电连接, 且所述金属线位于所述第一间隙设置所述馈入 点的一端的外侧。
12、 根据权利要求 3所述的天线, 其特征在于, 所述 USB接口通过 USB数据线与所 述第一辐射体电连接, 具体为:
所述 USB数据线跨接于所述第一间隙, 且所述 USB数据线与所述第一间隙相对的部 位位于所述馈入点的正上方。
13、 一种无线终端, 其特征在于, 包括如权利要求 1~12任一项所述的天线。
PCT/CN2014/072815 2014-03-03 2014-03-03 一种天线及无线终端 WO2015131320A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2014/072815 WO2015131320A1 (zh) 2014-03-03 2014-03-03 一种天线及无线终端
CN201480001770.6A CN104412449B (zh) 2014-03-03 2014-03-03 一种天线及无线终端

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/072815 WO2015131320A1 (zh) 2014-03-03 2014-03-03 一种天线及无线终端

Publications (1)

Publication Number Publication Date
WO2015131320A1 true WO2015131320A1 (zh) 2015-09-11

Family

ID=52648746

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/072815 WO2015131320A1 (zh) 2014-03-03 2014-03-03 一种天线及无线终端

Country Status (2)

Country Link
CN (1) CN104412449B (zh)
WO (1) WO2015131320A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106410375A (zh) * 2015-07-30 2017-02-15 中兴通讯股份有限公司 天线的带宽调试处理方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101217214A (zh) * 2007-01-05 2008-07-09 启碁科技股份有限公司 立体式的宽频天线及其相关无线通讯装置
CN101997160A (zh) * 2009-08-18 2011-03-30 深圳富泰宏精密工业有限公司 双频天线及应用该双频天线的无线通信装置
CN103078179A (zh) * 2012-11-30 2013-05-01 苏州安洁科技股份有限公司 一种高效射频天线装置
CN103427156A (zh) * 2012-05-14 2013-12-04 鸿富锦精密工业(深圳)有限公司 宽频天线

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0897760A (ja) * 1994-09-27 1996-04-12 Mitsubishi Electric Corp 携帯無線機用アンテナ装置
CN101304112A (zh) * 2007-05-09 2008-11-12 光宝科技股份有限公司 超宽频天线与应用其的即插即用装置
CN102576936A (zh) * 2009-05-26 2012-07-11 斯凯克罗斯公司 用于减少通信设备中的近场辐射和特殊吸收比率(sar)值的方法
CN201813550U (zh) * 2010-02-05 2011-04-27 华为终端有限公司 一种usb无线上网卡
CN102802281B (zh) * 2011-05-31 2018-04-17 深圳光启智慧科技有限公司 无线上网卡
CN102354807B (zh) * 2011-06-24 2016-03-09 电子科技大学 宽带无线数据卡天线

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101217214A (zh) * 2007-01-05 2008-07-09 启碁科技股份有限公司 立体式的宽频天线及其相关无线通讯装置
CN101997160A (zh) * 2009-08-18 2011-03-30 深圳富泰宏精密工业有限公司 双频天线及应用该双频天线的无线通信装置
CN103427156A (zh) * 2012-05-14 2013-12-04 鸿富锦精密工业(深圳)有限公司 宽频天线
CN103078179A (zh) * 2012-11-30 2013-05-01 苏州安洁科技股份有限公司 一种高效射频天线装置

Also Published As

Publication number Publication date
CN104412449A (zh) 2015-03-11
CN104412449B (zh) 2016-10-12

Similar Documents

Publication Publication Date Title
US10720695B2 (en) Near field communication antenna modules for devices with metal frame
TWI487198B (zh) 多頻天線
US9450302B2 (en) Antenna module
EP3057177B1 (en) Adjustable antenna and terminal
US8004473B2 (en) Antenna device with an isolating unit
US9190721B2 (en) Antenna device
TWI538305B (zh) 具多饋電路之天線
US8031123B2 (en) Antenna and radio communication apparatus
TWI484768B (zh) 無線通訊裝置及訊號饋入方法
WO2011116575A1 (zh) 一种无线设备
TWI538308B (zh) 可調式天線
TWI589060B (zh) antenna
US20150061949A1 (en) Broadband antenna with adjustable resonant frequency band
TWI671947B (zh) 天線結構
JP5969821B2 (ja) アンテナ装置
US9178271B2 (en) Electronic devices
CN109309279B (zh) 天线结构
KR101448258B1 (ko) 주파수 가변이 가능한 내장형 안테나
US9231307B2 (en) Monopole antenna
TWI532252B (zh) 具有電纜接地區域的天線結構
JP2009111959A (ja) 平行2線アンテナおよび無線通信機器
JP6865072B2 (ja) アンテナ装置及びアンテナ装置を備えた電子機器
WO2015131320A1 (zh) 一种天线及无线终端
US20180049313A1 (en) Coupler for proximity wireless communication
KR101708570B1 (ko) 삼중 대역 그라운드 방사 안테나

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14884825

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14884825

Country of ref document: EP

Kind code of ref document: A1