WO2015130119A1 - Methanol dehydrogenase variant exhibiting increased reduction activity - Google Patents

Methanol dehydrogenase variant exhibiting increased reduction activity Download PDF

Info

Publication number
WO2015130119A1
WO2015130119A1 PCT/KR2015/001912 KR2015001912W WO2015130119A1 WO 2015130119 A1 WO2015130119 A1 WO 2015130119A1 KR 2015001912 W KR2015001912 W KR 2015001912W WO 2015130119 A1 WO2015130119 A1 WO 2015130119A1
Authority
WO
WIPO (PCT)
Prior art keywords
mdh
variant
methanol
seq
formaldehyde
Prior art date
Application number
PCT/KR2015/001912
Other languages
French (fr)
Korean (ko)
Inventor
성봉현
이지연
손정훈
이승구
Original Assignee
한국생명공학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국생명공학연구원 filed Critical 한국생명공학연구원
Publication of WO2015130119A1 publication Critical patent/WO2015130119A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0006Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • C12Y101/01244Methanol dehydrogenase (1.1.1.244)

Definitions

  • the present invention relates to a mutant methanol dehydrogenase which exhibits increased reducing activity, and more particularly, to a mutant methanol dehydrogenase (MDH) derived from Bacillus metanoliqus and having an increased reducing activity.
  • a polynucleotide encoding an enzyme, an expression vector comprising the polynucleotide, a transformant into which the expression vector is introduced, a method of culturing the transformant to produce the mutated methanol dehydrogenase, the mutant methanol dehydrogenase It relates to a method for producing methanol from formaldehyde and the use of the mutated methanol dehydrogenase for producing methanol from the formaldehyde.
  • Formaldehyde is an organic compound that is used in a variety of industrial and biomedical applications. 50% of the total production is used to make condensation product resin, and thermosetting resin and thermoplastic resin, polyacetal, etc., and 40% is used as fiber, leather, paint solvent, etc. as a synthetic intermediate. About 1.5% of the remaining production is made of 35% aqueous solution (formalin) and used as a disinfectant, sample preservative and preservative. It has a large market, accounting for 1.2% of the United States and Canada's GDP, and the annual total production of formaldehyde in 2010 amounts to 29 million tons. However, despite these widely used substances, there are many restrictions on their use due to the toxicity of formaldehyde to humans.
  • Methanol on the other hand, is becoming increasingly valuable as it is recognized as the next-generation alternative fuel for petroleum resources. Although it is superior to existing gasoline or diesel oil in terms of performance and environmental pollution, it is not widely distributed due to economic feasibility. However, the situation is changing with rising oil prices and tightening greenhouse gas emission regulations in accordance with the Kyoto Protocol. China selected methanol as an alternative fuel for automobiles in 2006, and commercialization of MTO (Methanol to Olefin) and MTP (Methanol to Propylene) facilities is underway. In addition, the United States has been actively researching alternative energy using methanol by promising to reduce gasoline consumption by 20% and increase alternative fuel supply over the next 10 years. In order to use hydrogen energy, which is attracting attention as an energy source with less environmental pollution, a medium for supplying hydrogen to a fuel cell is required.Methanol has a high hydrogen conversion efficiency, safety, and low temperature operation characteristics. The use is also expanding.
  • MDH methanol dehydrogenase
  • Bacillus methanolicus which belongs to the Gram-positive bacteria, belongs to the NAD (P) + dependent group, and is known to exist mainly in the cytoplasm rather than the periplasm. It is also known to exhibit activity in a single subunit.
  • the MDH is used for the industrial production of methanol, and studies are being actively conducted to further increase the production yield of methanol.
  • WO 85/01063 discloses NDA dependent MDH which can form a conjugate with NADH dependent MDH to increase methanol reducing activity
  • US Pat. No. 6280972 discloses an activation which can increase the reducing activity of MDH. I am disclosed.
  • the research on the mutant MDH to increase the reducing activity of the MDH itself is actively progressed, but there was a disadvantage that the level of increase of the reducing activity is weak.
  • the present inventors have diligently researched to develop a mutant MDH capable of increasing methanol productivity by increasing the reducing activity exhibited by the conventional MDH.
  • the mutant MDH obtained by causing a random mutation in MDH derived from Bacillus metanolicus was studied. It was confirmed that exhibits up to twice the reducing activity of the conventional MDH, to complete the present invention.
  • One object of the present invention is to provide mutated methanol dehydrogenase (MDH) to have enhanced reducing activity.
  • MDH mutated methanol dehydrogenase
  • Another object of the present invention is to provide a polynucleotide encoding the variant MDH.
  • Still another object of the present invention is to provide an expression vector comprising the polynucleotide.
  • Still another object of the present invention is to provide a transformant into which the expression vector is introduced.
  • Still another object of the present invention is to provide a method of preparing a variant MDH comprising culturing the transformant and recovering the variant MDH therefrom.
  • Another object of the present invention is to provide the use of the mutated methanol dehydrogenase for producing methanol from the formaldehyde.
  • the mutated MDH of the present invention when used, since the reducing activity is improved compared to the conventional MDH, the production yield of methanol can be increased, and thus it can be widely used for the production of more effective methanol.
  • 1 is a graph showing a result of comparing the growth rate of the E. coli BL21 (DE3) strain cultured in a medium containing formaldehyde of various concentrations (0, 1, 2, 3, 4 or 5mM) over time .
  • Figure 2 is a graph showing the change in proliferation level with the cultivation time of the strain expressing wild-type or mutant MDH cultured in a medium containing formaldehyde, vector represents a positive control group, WT represents a negative control group, mt1 represents variant 1, mt2 represents variant 2, and mt3 represents variant 3.
  • Figure 3 is an electrophoresis picture showing the change in the expression of mutant MDH expressed from each variant prepared in Example 5-1, U represents a culture without the addition of IPTG, I is the solid content of the culture to which the IPTG is added S represents the water-soluble content of the culture to which IPTG was added.
  • Figure 4 is a graph showing the change in reducing activity with the passage of the reaction time of each variant purified in Example 5-3.
  • the present inventors conducted various studies to develop a mutant MDH that increased the reducing activity of MDH itself, the mutant MDH obtained by causing a random mutation in MDH derived from Bacillus methanolicus shows an increased reducing activity It was confirmed. Specifically, three variants of MDH derived from MDH of Bacillus methanolicus were obtained, one with three amino acids substituted, the other with six amino acids substituted, and the last one with 18 amino acids substituted. It is. As a result of culturing the mutant strains expressing the three mutant MDHs in a medium containing formaldehyde, it was confirmed that the less the number of amino acid substitutions, the improved resistance to toxicity caused by formaldehyde. The analysis was attributed to the reducing activity.
  • the variant MDH provided by the present invention may be utilized to increase the productivity of methanol.
  • the present invention is a variant introduced into the wild-type methanol dehydrogenase (MDH) consisting of the amino acid sequence of SEQ ID NO: 1, mutated methanol dehydrogenation, the reduction activity is increased than the MDH Provide enzymes.
  • MDH wild-type methanol dehydrogenase
  • methanol dehydrogenase (MDH) of the present invention is also referred to as methanol dehydrogenase, and the oxidation activity and formaldehyde to form formaldehyde by oxidizing methanol to release two electrons to form two electrons
  • binding to means an enzyme capable of reversibly showing the reducing activity to produce methanol.
  • NADH may be used as the electron donor or acceptor.
  • GenBank of NCBI GenBank Accession No. AAA25380.1, AAA88366.1, WP_003599114.1, etc.
  • the MDH may be interpreted as an MDH derived from Bacillus methanolicus, the MDH is not particularly limited to this, preferably a wild type MDH having a amino acid sequence of SEQ ID NO: 1 or a poly of SEQ ID NO: 2 Wild type MDH with an amino acid sequence expressed from nucleotides.
  • MDH methanol dehydrogenase
  • the variant MDH is not particularly limited, but may be MDH consisting of an amino acid sequence substituted with one or a plurality of amino acids in the wild type MDH having the amino acid sequence of SEQ ID NO: 1, preferably SEQ ID NO: L40P, S42G, I53T, D72E, D80G, V81A, F82L, K83E, K83I, L107S, V132A, K165E, I198T, T207K, T210A, F213V, F213S, E233G, L259S, H261R, V281A, F289L at the amino acid sequence of 1 , K344R, A352T, F356S, Q371R and the like can be MDH consisting of an amino acid sequence comprising a single or a combination of substituted amino acids, more preferably amino acids that can be expressed from the polynucleotide of SEQ ID NO: 12 to 19 MDH consisting of a sequence or amino acid sequence of SEQ ID NO: 1
  • the variant MDH may include a polypeptide having a sequence in which at least one amino acid residue is different from the aforementioned amino acid sequence.
  • Amino acid exchanges in proteins and polypeptides that do not alter the activity of the enzyme as a whole are known in the art.
  • the most commonly occurring exchanges are amino acid residues Ala / Ser, Val / Ile, Asp / Glu, Thr / Ser, Ala / Gly, Ala / Thr, Ser / Asn, Ala / Val, Ser / Gly, Thy / Phe, Ala / Exchange between Pro, Lys / Arg, Asp / Asn, Leu / Ile, Leu / Val, Ala / Glu, Asp / Gly.
  • the protein may include a protein having increased structural stability or increased protein activity against heat, pH, etc. of the protein by variation or modification on the amino acid sequence.
  • mutant MDH may be prepared by a chemical peptide synthesis method known in the art, or the gene encoding the domain may be amplified by PCR (polymerase chain reaction) or synthesized by a known method and cloned into an expression vector for expression. Can be prepared.
  • a random mutation is induced in a polynucleotide (SEQ ID NO: 2) encoding a wild type MDH derived from Bacillus methanolicus (Bacillus methanolicus), to obtain each of the mutated polynucleotides, This was introduced into E. coli to obtain each transformant, and then the transformant obtained was inoculated in a medium containing formaldehyde and cultured to obtain a transformant resistant to formaldehyde (Example 2).
  • the mutant MDH provided by the present invention is a novel protein showing better reducing activity than the wild type MDH, and it can be seen that the use of the mutant MDH can increase the productivity of methanol.
  • the present invention provides a polynucleotide encoding the variant MDH, a variant MDH expression vector comprising the polynucleotide, a transformant having the expression vector introduced and the transformant It provides a method for producing the variant MDH using.
  • the polynucleotide provided in the present invention includes a nucleotide sequence encoding the mutated MDH provided in the present invention, preferably may be a polynucleotide comprising a nucleotide sequence of SEQ ID NO: 5, 6, 7 or 18.
  • the polynucleotide may be mutated by one or more bases by substitution, deletion, insertion, or a combination thereof so long as the mutant MDH expressed therefrom can exhibit better reducing activity than the wild type MDH.
  • synthesis methods well known in the art may be used, for example, those described in Engels and Uhlmann, Angew Chem Int Ed Eng., 37: 73-127, 1988. , Triester, phosphite, phosphoramidite and H-phosphate methods, PCR and other autoprimer methods, oligonucleotide synthesis on a solid support, and the like.
  • expression vector refers to a gene construct which is a recombinant vector capable of expressing a peptide of interest in a host cell of interest, and which contains essential regulatory elements operably linked to express the gene insert.
  • the expression vector includes expression control elements such as initiation codon, termination codon, promoter, operator, etc.
  • the initiation codon and termination codon are generally considered to be part of the nucleotide sequence encoding the polypeptide and when the gene construct is administered, Must be functional and must be in coding sequence and in frame.
  • the promoter of the vector may be constitutive or inducible.
  • operably linked refers to a state in which a nucleic acid expression control sequence and a nucleic acid sequence encoding a protein or RNA of interest are functionally linked to perform a general function.
  • a promoter and a nucleic acid sequence encoding a protein or RNA may be operably linked to affect expression of the coding sequence.
  • Operative linkage with expression vectors can be prepared using genetic recombination techniques well known in the art, and site-specific DNA cleavage and ligation can employ enzymes commonly known in the art.
  • the expression vector may include a signal sequence for the release of the fusion polypeptide to facilitate the separation of the protein from the cell culture.
  • Specific initiation signals may also be required for efficient translation of inserted nucleic acid sequences. These signals include ATG start codons and contiguous sequences.
  • an exogenous translational control signal must be provided that can include an ATG start codon. These exogenous translational control signals and initiation codons can be various natural and synthetic sources. Expression efficiency can be increased by the introduction of appropriate transcriptional or translation enhancing factors.
  • the expression vector may further include a protein tag that can be removed using an endopeptidase, in order to facilitate the detection of the fusion protein.
  • the term "tag” refers to a molecule that exhibits quantifiable activity or properties, and refers to a polypeptide fluorescent substance such as a chemical fluorescent substance such as fluorescein, fluorescent protein (GFP) or related proteins. It may be a fluorescent molecule including; It may be an epitope tag such as a Myc tag, a flag tag, a histidine tag, a leucine tag, an IgG tag, a straptavidin tag, or the like. In particular, when an epitope tag is used, a peptide tag preferably consisting of 6 or more amino acid residues, more preferably 8 to 50 amino acid residues, may be used.
  • the expression vector may include a nucleotide sequence encoding a variant MDH provided in the present invention described above, wherein the vector used is not particularly limited as long as it can produce a variant MDH of the present invention.
  • plasmid DNA, phage DNA and the like more preferably commercially developed plasmids (pUC18, pBAD, pIDTSAMRT-AMP, etc.), E.
  • coli derived plasmids (pYG601BR322, pBR325, pUC118, pUC119, etc.), Bacillus Subtilis derived plasmids (pUB110, pTP5, etc.), yeast-derived plasmids (YEp13, YEp24, YCp50, etc.), phage DNA (Charon4A, Charon21A, EMBL3, EMBL4, ⁇ gt10, ⁇ gt11, ⁇ ZAP, etc.), animal viral vectors (retrovirus) (retrovirus), adenovirus (adenovirus), vaccinia virus (vaccinia virus, etc.), insect virus vectors (baculovirus, etc.). Since the expression vector is expressed differently depending on the host cell expression amount and formula, it is preferable to select the host cell most suitable for the purpose.
  • the transformant provided by the present invention may be prepared by introducing the expression vector provided by the present invention into a host and transforming the same, and expressing a polynucleotide included in the expression vector to produce a mutant MDH of the present invention.
  • the transformation can be carried out by a variety of methods, as long as it can produce a mutant MDH of the present invention exhibiting the effect of improving a variety of cellular activities to a high level, CaCl 2 precipitation method, CaCl 2 Hanahan method, the electroporation method, calcium phosphate precipitation method, plasma fusion method, stirring method using silicon carbide fiber, agrobacterial mediated trait which improved efficiency by using reducing material called DMSO (dimethyl sulfoxide) in precipitation method Conversion methods, transformation methods with PEG, dextran sulfate, lipofectamine and dry / inhibition mediated transformation methods and the like can be used.
  • DMSO dimethyl sulfoxide
  • the host used in the preparation of the transformant can also produce the fusion protein of the present invention
  • bacterial cells such as E. coli , Streptomyces, Salmonella typhimurium
  • Yeast cells such as Saccharomyces cerevisiae and ski-irradiated caromyces pombe
  • Fungal cells such as Pchia pastoris
  • Insect cells such as Drozophila and Spodoptera Sf9 cells
  • Animal cells such as CHO, COS, NSO, 293, bow melanoma cells; Or plant cells.
  • E. coli BL21 (DE3) strain was used as a host.
  • the transformant may be used in the method for producing the mutant MDH provided by the present invention.
  • the method of producing a mutant MDH provided by the present invention comprises the steps of (a) culturing the transformant to obtain a culture; And, (b) recovering the variant MDH of the present invention from the culture.
  • culture means a method of growing microorganisms under appropriately artificially controlled environmental conditions.
  • the method of culturing the transformant may be performed using a method well known in the art.
  • the culture is not particularly limited as long as it can be produced by expressing the mutated MDH of the present invention, but may be continuously cultured in a batch process or an injection batch or repeated fed batch process (fed batch or repeated fed batch process). .
  • the medium used for culturing should meet the requirements of the particular strain in an appropriate manner while controlling the temperature, pH, etc. under aerobic conditions in a conventional medium containing a suitable carbon source, nitrogen source, amino acids, vitamins and the like.
  • Carbon sources that can be used include mixed sugars of glucose and xylose as the main carbon source, and sugars and carbohydrates such as sucrose, lactose, fructose, maltose, starch and cellulose, soybean oil, sunflower oil, castor oil, coconut Oils such as oils and fats, fatty acids such as palmitic acid, stearic acid, linoleic acid, alcohols such as glycerol, ethanol, organic acids such as acetic acid. These materials can be used individually or as a mixture.
  • Nitrogen sources that can be used include inorganic nitrogen sources such as ammonia, ammonium sulfate, ammonium chloride, ammonium acetate, ammonium phosphate, anmonium carbonate, and ammonium nitrate; Amino acids such as glutamic acid, methionine, glutamine and organic nitrogen sources such as peptone, NZ-amine, meat extract, yeast extract, malt extract, corn steep liquor, casein hydrolyzate, fish or its degradation product, skim soy cake or its degradation product Can be. These nitrogen sources may be used alone or in combination.
  • the medium may include, as personnel, monopotassium phosphate, dipotassium phosphate and corresponding sodium-containing salts.
  • Personnel that may be used include potassium dihydrogen phosphate or dipotassium hydrogen phosphate or the corresponding sodium-containing salts.
  • potassium dihydrogen phosphate or dipotassium hydrogen phosphate or the corresponding sodium-containing salts include potassium dihydrogen phosphate or dipotassium hydrogen phosphate or the corresponding sodium-containing salts.
  • sodium chloride, calcium chloride, iron chloride, magnesium sulfate, iron sulfate, manganese sulfate and calcium carbonate may be used.
  • essential growth substances such as amino acids and vitamins can be used.
  • suitable precursors to the culture medium may be used.
  • the raw materials described above may be added batchwise, fed-batch or continuous in a suitable manner to the culture in the culture process, but is not particularly limited thereto.
  • Basic compounds such as sodium hydroxide, potassium hydroxide, ammonia or acid compounds such as phosphoric acid or sulfuric acid can be used in an appropriate manner to adjust the pH of the culture.
  • antifoaming agents such as fatty acid polyglycol esters can be used to inhibit bubble generation.
  • the temperature of the culture is usually 27 ° C to 37 ° C, preferably 30 ° C to 35 ° C.
  • Incubation is continued until the maximum amount of D-type lactic acid is obtained. For this purpose it is usually achieved in 10 to 100 hours.
  • type D lactic acid is excreted in the culture medium, but may be contained in the cells in some cases.
  • the step of recovering the mutant MDH from the culture can be carried out by methods known in the art.
  • the recovery method is not particularly limited as long as it can recover the produced MDH of the present invention, preferably centrifugation, filtration, extraction, spraying, drying, augmentation, precipitation, crystallization, electrophoresis, Fractional solubilization (eg ammonium sulfate precipitation), chromatography (eg ion exchange, affinity, hydrophobicity and size exclusion) can be used.
  • the present invention provides a method for producing methanol by reducing formaldehyde using the above-mentioned MDH.
  • the methanol production method of the present invention comprises the steps of: (a) adding the mutated methanol dehydrogenase to a mixture containing formaldehyde and an electron donor to obtain a reaction product; And (b) recovering methanol from the reaction product.
  • the electron donor is not particularly limited to this, but preferably NADH may be used, and the reaction buffer may be further included in the mixture.
  • the reaction buffer is not particularly limited thereto, but is preferably a neutral phosphate buffer. Can be used.
  • the present invention provides the use of the mutated methanol dehydrogenase for producing methanol from the formaldehyde.
  • MDH is an enzyme that reversibly catalyzes the reaction of oxidizing methanol to convert formaldehyde or again to reduce formaldehyde to methanol. Since the mutant MDH provided by the present invention is superior in reducing activity to reduce formaldehyde to methanol than wild type MDH, it can be utilized as a use for producing methanol from formaldehyde more effectively.
  • Polynucleotide encoding the wild type methanol dehydrogenase (SEQ ID NO: 11) to express in wild Escherichia coli Methanol Dehydrogenase (MDH) (SEQ ID NO: 1) derived from Bacillus methanolicus (SEQ ID NO: 11) was synthesized (Bionia, Daejeon).
  • MDH wild Escherichia coli Methanol Dehydrogenase
  • SEQ ID NO: 1 derived from Bacillus methanolicus
  • the synthesized polynucleotide was cloned into the pET21b vector to obtain an expression vector, and the expression vector was used as a template for direct evolution to construct a mutation library.
  • PCR polymerase chain reaction
  • the E. coli BL21 (DE3) strain having the wild type MDH gene was inoculated into a medium containing formaldehyde at various concentrations (0, 1, 2, 3, 4 or 5 mM), and then cultured to grow the growth rate according to the concentration of formaldehyde.
  • FIG. 1 is a graph showing a result of comparing the growth rate of the E. coli BL21 (DE3) strain cultured in a medium containing formaldehyde of various concentrations (0, 1, 2, 3, 4 or 5mM) over time . As shown in Figure 1, it was confirmed that the growth rate of E. coli significantly reduced when formaldehyde or more than 2mM in the medium.
  • the mutant library constructed in Example 1 was introduced into the E. coli BL21 (DE3) strain to obtain respective transformants, and the transformants were 3 mM of formaldehyde and empicillin (50 ⁇ g / ml).
  • Inoculated in a 2YT liquid medium tryptone 16g, yeast extract 10g, NaCl 5g / 1L
  • 0.1 mM IPTG was added to express MDH, and then cultured at 37 ° C. for 24 hours to obtain a culture solution, and the obtained culture solution was smeared onto solid medium containing empicillin. And cultured to select single colonies resistant to formaldehyde.
  • Example 2 Single colonies obtained in Example 2 were each inoculated in 2YT liquid medium containing empicillin, shaken at 37 ° C. for 12 hours, and plasmid DNA was recovered from the culture, thereby encoding the polyimide MDH contained therein.
  • the nucleotide sequence and the amino acid sequence of the protein expressed therefrom were analyzed.
  • variant 1, variant 2, and variant 3 were identified which contain polynucleotides encoding variant MDH, each of which comprises a variant polynucleotide of SEQ ID NOs: 12-14 and is expressed from SEQ ID NO: 2 It was confirmed that a variant having an amino acid sequence of 4 to 4 can express MDH.
  • the variant MDH having the amino acid sequence of SEQ ID NO: 2 is a form in which 3 amino acids are substituted in the wild type MDH (F213V, F289L, F356S), and the variant MDH having the amino acid sequence of SEQ ID NO: 3 is 6 in the wild type MDH Variants of amino acids (S42G, K83I, L107S, L259S, S313G, A352T), and the variant MDH having the amino acid sequence of SEQ ID NO: 4 has 18 amino acid substitutions in the wild type MDH (L40P, I53T, D72E, D80G). , V81A, F82L, K83E, V132A, K165E, I198T, T207K, T210A, F213S, E233G, H261R, V281A, K344R, Q371R).
  • Expression vectors comprising the mutated polynucleotides of SEQ ID NOs: 12 to 14 were introduced into E. coli BL21 (DE3) to obtain respective transformants, which were inoculated in 2YT medium to which empicillin was added, respectively, at 37 ° C. Shake culture.
  • the absorbance (O.D. 600) of the culture reached 0.4, 0.1mM IPTG was added to the culture and further incubated for 1 hour to express MDH. Then, 3 mM of formaldehyde was added to each of the cultures, and the absorbance (O.D. 600) of the cultures was measured at intervals of 2-4 hours (FIG. 2).
  • E. coli BL21 (DE3) which was not transformed, was used as a positive control group
  • E. coli BL21 (DE3) into which an expression vector capable of expressing wild-type MDH, was used as a negative control group.
  • Figure 2 is a graph showing the change in proliferation level with the cultivation time of the strain expressing wild-type or mutant MDH cultured in a medium containing formaldehyde, vector represents a positive control group, WT represents a negative control group, mt1 represents variant 1, mt2 represents variant 2, and mt3 represents variant 3.
  • all strains show a pattern of stationary phage due to toxicity of formaldehyde and then regrowth, wherein variant 1 is the fastest regrowth in 17 hours, variant 2 is Regrowth occurred in 21 hours, and variant 3 performed regrowth in 23 hours. However, no positive control and no negative control were performed.
  • mutant MDH has better activity of reducing formaldehyde to methanol than the wild type MDH, and among these, the mutant MDH having the amino acid sequence of SEQ ID NO: 2 expressed in Variant 1 shows the best reducing activity.
  • An expression vector comprising the polynucleotide of SEQ ID NO: 11 obtained in Example 1 was used as a template, and a pair of primers for introducing F213V (SEQ ID NOs: 23 and 24), a pair of primers for introducing F289L (SEQ ID NOs: 25 and 26) or F356S Recombinant PCR was performed using introduction primer pairs (SEQ ID NOs: 27 and 28) to prepare respective polynucleotides, to obtain expression vectors into which the prepared polynucleotides were introduced. It was introduced into BL21 (DE3) to prepare each strain strain (variants 4 to 9) (Table 1).
  • F213V forward primer 5'-TACTGATGCAGTTGCAATTCAAGCA-3 '(SEQ ID NO: 23)
  • F213V reverse primer 5'-GAATTGCAACTGCATCAGTAACTGG-3 '(SEQ ID NO: 24)
  • F289L forward primer 5'-CGTTTGCGCACTCAACCTAATTGCT-3 '(SEQ ID NO: 25)
  • F289L reverse primer 5'-TTAGGTTGAGTGCGCAAACGTGTGG-3 '(SEQ ID NO: 26)
  • F356S forward primer 5'-AAAAACGCATCCGAAGACGTATGTA-3 '(SEQ ID NO: 27)
  • F356S reverse primer 5'-ACGTCTTCGGATGCGTTTTTCGCTA-3 '(SEQ ID NO: 28)
  • Example 5-1 The control prepared in Example 5-1 and each of the variants (variants 4 to 9) were inoculated in 5 ml of minimal liquid medium (2YT, 50 ⁇ g / ml empicillin), incubated at 37 ° C, and grown. Inoculated in 100 ml of minimal liquid medium and incubated at 37 ° C. until absorbance (OD 600) was 0.4. Subsequently, 0.1mM IPTG was added to the cultures, and shake cultured at 18 ° C. for 48 hours, thereby expressing each of the mutant MDHs and confirming the expression through SDS-PAGE (FIG. 3).
  • minimal liquid medium 2YT, 50 ⁇ g / ml empicillin
  • FIG. 3 is an electrophoresis picture showing the change in the expression of mutant MDH expressed from each variant prepared in Example 5-1, U represents a culture without the addition of IPTG, I is the solid content of the culture to which the IPTG is added S represents the water-soluble content of the culture to which IPTG was added. As shown in FIG. 3, it was confirmed that the mutant MDH was overexpressed in each variant by IPTG addition.
  • MDH consumes NADH as a cofactor when reducing formaldehyde to methanol.
  • the amount of NADH consumed during the reduction reaction was measured, and the reduction activity of each variant MDH purified in Example 5-3 was compared.
  • FIG. 4 is a graph showing the change with the reaction time of the reduction activity of each variant MDH purified in Example 5-3.
  • variant MDH As shown in Figure 4, among the variant MDH (SEQ ID NOs: 5 to 10) expressed in variants 4 to 9 except for the variant MDH (SEQ ID NO: 10) expressed in variant 9 (SEQ ID NOs: 5 to 9) Were found to show better reducing activity than the wild type MDH (SEQ ID NO: 1) and variant MDH (SEQ ID NO: 2) expressed in Variant 1. In particular, among the five mutant MDHs (SEQ ID NOs: 5 to 9), the mutated MDH of SEQ ID NO: 5 showed the best reducing activity, whereas the mutated MDH of SEQ ID NO: 10 showed a lower level of reducing activity than the wild type MDH. It was.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The present invention relates to: a methanol dehydrogenase (MDH) variant which is derived from Bacillus methanolicus and has increased reduction activity; a polynucleotide encoding the enzyme; an expression vector comprising the polynucleotide; a transformant into which the expression vector is introduced; a method for preparing the MDH variant by culturing the transformant; a method for producing methanol from formaldehyde by using the MDH variant; and a use of the MDH variant for producing methanol from formaldehyde. The production yield of methanol can be increased by using the MDH variant of the present invention since the reduction activity is improved to be more than that of a conventional MDH, and thus the MDH variant could be widely applied to a more effective preparation of methanol.

Description

증대된 환원활성을 나타내는 변이 메탄올 탈수소화 효소Mutant Methanol Dehydrogenase Showing Increased Reducing Activity
본 발명은 증대된 환원활성을 나타내는 변이 메탄올 탈수소화 효소에 관한 것으로, 보다 구체적으로 본 발명은 바실러스 메타놀리쿠스로부터 유래되고, 환원활성이 증대된 변이 메탄올 탈수소화 효소(methanol dehydrogenase, MDH), 상기 효소를 코딩하는 폴리뉴클레오티드, 상기 폴리뉴클레오티드를 포함하는 발현벡터, 상기 발현벡터가 도입된 형질전환체, 상기 형질전환체를 배양하여 상기 변이 메탄올 탈수소화 효소를 제조하는 방법, 상기 변이 메탄올 탈수소화 효소를 이용하여 포름알데히드로부터 메탄올을 생산하는 방법 및 상기 포름알데히드로부터 메탄올을 생산하기 위한 변이 메탄올 탈수소화 효소의 용도에 관한 것이다.The present invention relates to a mutant methanol dehydrogenase which exhibits increased reducing activity, and more particularly, to a mutant methanol dehydrogenase (MDH) derived from Bacillus metanoliqus and having an increased reducing activity. A polynucleotide encoding an enzyme, an expression vector comprising the polynucleotide, a transformant into which the expression vector is introduced, a method of culturing the transformant to produce the mutated methanol dehydrogenase, the mutant methanol dehydrogenase It relates to a method for producing methanol from formaldehyde and the use of the mutated methanol dehydrogenase for producing methanol from the formaldehyde.
포름알데히드는 유기 화합물로서 산업적, 생체의학적 용도로 다양하게 쓰이는 물질이다. 전체 생산양의 50%는 축합생성물인 수지 제조에 사용되어 열경화성수지와 열가소성 수지인 폴리아세탈 등을 제조하는데 사용되며, 40%는 합성 중간체로 섬유, 피혁, 페인트 용매 등으로 사용된다. 나머지 생산량의 약 1.5%는 35%의 수용액(포르말린)으로 제작되어 소독제, 시료보존액, 방부제로 사용된다. 미국과 캐나다 GDP의 1.2%를 차지 할 정도로 큰 시장을 이루고 있으며, 2010년 포름알데히드의 연간 총 생산량은 2900만 톤에 달한다. 하지만 이와 같이 널리 사용되는 물질임에도 불구하고 포름알데히드가 인간에게 미치는 독성에 때문에 사용에 많은 제약이 따른다. 상온에서 무색의 기체로서 주로 흡입과 피부 접촉을 통해 흡수 되는데 매우 짧은 시간에 대사가 되므로 노출직후에 점막이나 혈중에서 이를 검출하기가 어렵다. 눈과 호흡기의 자극제로서 일차적 자극성 및 알러지성 피부염을 유발하고 10~20ppm의 농도에서도 호흡이 곤란해지고, 기도손상, 폐부종 및 폐렴, 사망에 이를 수 있다. 2005년 국제암연구소(International Agency for Research on Cancer, IARC)에서 포름알데히드를 사람에게 발암확정물질인 ‘Group1'으로 지정하였다.Formaldehyde is an organic compound that is used in a variety of industrial and biomedical applications. 50% of the total production is used to make condensation product resin, and thermosetting resin and thermoplastic resin, polyacetal, etc., and 40% is used as fiber, leather, paint solvent, etc. as a synthetic intermediate. About 1.5% of the remaining production is made of 35% aqueous solution (formalin) and used as a disinfectant, sample preservative and preservative. It has a large market, accounting for 1.2% of the United States and Canada's GDP, and the annual total production of formaldehyde in 2010 amounts to 29 million tons. However, despite these widely used substances, there are many restrictions on their use due to the toxicity of formaldehyde to humans. As a colorless gas at room temperature, it is mainly absorbed through inhalation and skin contact. Since it is metabolized in a very short time, it is difficult to detect it in the mucous membrane or blood immediately after exposure. As a stimulant to the eyes and respiratory tract, it causes primary irritant and allergic dermatitis, and breathing becomes difficult at concentrations of 10 to 20 ppm, and can lead to airway damage, pulmonary edema, pneumonia, and death. In 2005, the International Agency for Research on Cancer (IARC) designated formaldehyde as a group 1 carcinogen for humans.
반면, 메탄올은 석유 자원의 차세대 대체 연료로 인식되며 점차 가치가 높아지고 있다. 성능이나 환경오염 측면에서 기존 가솔린이나 디젤유에 비해 우월하지만 경제성 때문에 보급화 되지 않고 있는 실정이지만, 유가가 상승하고 교토의정서에 따라 온실가스 배출 규제가 강화 되면서 상황이 변하고 있다. 중국은 2006년 메탄올을 자동차용 대체연료로 선정하였으며, MTO(Methanol to Olefin), MTP(Methanol to Propylene) 설비의 상업화가 진행 중이다. 또한 미국은 2007년부터 향후 10년간 가솔린 소비를 20% 감축하고 대체 연료 공급을 늘리겠다고 발표함으로서 메탄올을 이용한 대체 에너지 연구가 활발히 진행되고 있다. 그리고 환경오염이 적은 에너지원으로 주목 받는 수소에너지를 사용하기 위해서는 연료전지에 수소를 공급하는 매질이 필요한데, 메탄올은 높은 수소전환 효율, 안전성, 저온 운전특성 등의 장점을 지님으로서 수소 공급용 연료로도 사용이 확대 되고 있다. Methanol, on the other hand, is becoming increasingly valuable as it is recognized as the next-generation alternative fuel for petroleum resources. Although it is superior to existing gasoline or diesel oil in terms of performance and environmental pollution, it is not widely distributed due to economic feasibility. However, the situation is changing with rising oil prices and tightening greenhouse gas emission regulations in accordance with the Kyoto Protocol. China selected methanol as an alternative fuel for automobiles in 2006, and commercialization of MTO (Methanol to Olefin) and MTP (Methanol to Propylene) facilities is underway. In addition, the United States has been actively researching alternative energy using methanol by promising to reduce gasoline consumption by 20% and increase alternative fuel supply over the next 10 years. In order to use hydrogen energy, which is attracting attention as an energy source with less environmental pollution, a medium for supplying hydrogen to a fuel cell is required.Methanol has a high hydrogen conversion efficiency, safety, and low temperature operation characteristics. The use is also expanding.
한편, 메탄올 탈수소화 효소(methanol dehydrogenase, MDH)는 메탄올을 산화시켜 포름알데히드로 전환시키거나 다시 포름알데히드를 환원시켜 메탄올로 전환 시키는 반응을 가역적으로 촉매하는 효소이다. 그 중에서 그람 양성 박테리아에 속하는 바실러스 메타놀리쿠스(Bacillus methanolicus)의 메탄올 탈수소화 효소는 NAD(P)+ 의존성 그룹에 속하며, 주로 주변세포질(periplasm)이 아닌 세포질(cytoplasm) 내에 존재하는 것으로 알려져 있다. 또한, 단일 서브유닛(subunit)으로 활성을 나타낸다고 알려져 있다. 상기 MDH는 메탄올의 산업적인 생산에 이용되고 있는데, 메탄올의 생산수율을 보다 증대시키기 위한 연구가 활발히 진행되고 있다.On the other hand, methanol dehydrogenase (MDH) is an enzyme that reversibly catalyzes the reaction of oxidizing methanol to convert formaldehyde or again to reduce formaldehyde to methanol. Among them, Bacillus methanolicus, which belongs to the Gram-positive bacteria, belongs to the NAD (P) + dependent group, and is known to exist mainly in the cytoplasm rather than the periplasm. It is also known to exhibit activity in a single subunit. The MDH is used for the industrial production of methanol, and studies are being actively conducted to further increase the production yield of methanol.
예를 들어, WO 85/01063호에는 NADH 의존성 MDH와 결합체를 형성하여 메탄올 환원활성을 증대시킬 수 있는 NDA 의존성 MDH가 개시되어 있고, 미국특허 제6280972호에는 MDH의 환원활성을 증대시킬 수 있는 활성화제가 개시되어 있다. 또한, MDH 자체의 환원활성을 증대시킨 변이 MDH에 대한 연구가 활발히 진행되고 있으나, 환원활성의 증대수준이 미약하다는 단점이 있었다.For example, WO 85/01063 discloses NDA dependent MDH which can form a conjugate with NADH dependent MDH to increase methanol reducing activity, and US Pat. No. 6280972 discloses an activation which can increase the reducing activity of MDH. I am disclosed. In addition, the research on the mutant MDH to increase the reducing activity of the MDH itself is actively progressed, but there was a disadvantage that the level of increase of the reducing activity is weak.
본 발명자들은 종래의 MDH가 나타내는 환원활성을 증대시켜서 메탄올 생산성을 증대시킬 수 있는 변이 MDH를 개발하고자 예의 연구노력한 결과, 바실러스 메타놀리쿠스로부터 유래된 MDH를 대상으로 랜덤 돌연변이를 유발시켜 수득한 변이 MDH가 종래의 MDH 보다 최대 2배의 환원활성을 나타냄을 확인하고, 본 발명을 완성하였다.The present inventors have diligently researched to develop a mutant MDH capable of increasing methanol productivity by increasing the reducing activity exhibited by the conventional MDH. As a result, the mutant MDH obtained by causing a random mutation in MDH derived from Bacillus metanolicus was studied. It was confirmed that exhibits up to twice the reducing activity of the conventional MDH, to complete the present invention.
본 발명의 하나의 목적은 증대된 환원활성을 갖도록 변이 메탄올 탈수소화 효소(MDH)를 제공하는 것이다.One object of the present invention is to provide mutated methanol dehydrogenase (MDH) to have enhanced reducing activity.
본 발명의 다른 목적은 상기 변이 MDH를 코딩하는 폴리뉴클레오티드를 제공하는 것이다.Another object of the present invention is to provide a polynucleotide encoding the variant MDH.
본 발명의 또 다른 목적은 상기 폴리뉴클레오티드를 포함하는 발현벡터를 제공하는 것이다.Still another object of the present invention is to provide an expression vector comprising the polynucleotide.
본 발명의 또 다른 목적은 상기 발현벡터가 도입된 형질전환체를 제공하는 것이다.Still another object of the present invention is to provide a transformant into which the expression vector is introduced.
본 발명의 또 다른 목적은 상기 형질전환체를 배양하고, 이로부터 변이 MDH를 회수하는 단계를 포함하는 변이 MDH의 제조방법을 제공하는 것이다.Still another object of the present invention is to provide a method of preparing a variant MDH comprising culturing the transformant and recovering the variant MDH therefrom.
본 발명의 또 다른 목적은 상기 변이 MDH를 이용하여 포름알데히드로부터 메탄올을 생산하는 방법을 제공하는 것이다.It is another object of the present invention to provide a method for producing methanol from formaldehyde using the above-mentioned MDH.
본 발명의 또 다른 목적은 상기 포름알데히드로부터 메탄올을 생산하기 위한 변이 메탄올 탈수소화 효소의 용도를 제공하는 것이다.Another object of the present invention is to provide the use of the mutated methanol dehydrogenase for producing methanol from the formaldehyde.
본 발명의 변이 MDH를 사용하면, 종래의 MDH 보다도 환원활성이 향상되어 메탄올의 생산수율을 증대시킬 수 있으므로, 보다 효과적인 메탄올의 제조에 널리 활용될 수 있을 것이다.When the mutated MDH of the present invention is used, since the reducing activity is improved compared to the conventional MDH, the production yield of methanol can be increased, and thus it can be widely used for the production of more effective methanol.
도 1은 다양한 농도(0, 1, 2, 3, 4 또는 5mM)의 포름알데히드를 포함하는 배지에서 배양된 대장균 BL21 (DE3) 균주의 배양시간 경과에 따른 성장속도를 비교한 결과를 나타내는 그래프이다. 1 is a graph showing a result of comparing the growth rate of the E. coli BL21 (DE3) strain cultured in a medium containing formaldehyde of various concentrations (0, 1, 2, 3, 4 or 5mM) over time .
도 2는 포름알데히드가 포함된 배지에서 배양된 야생형 또는 변이 MDH를 발현시키는 균주의 배양시간의 경과에 따른 증식수준의 변화를 나타내는 그래프로서, vector는 양성대조군을 나타내고, WT는 음성대조군을 나타내며, mt1은 변이체 1을 나타내고, mt2는 변이체 2를 나타내며, mt3은 변이체 3을 나타낸다.Figure 2 is a graph showing the change in proliferation level with the cultivation time of the strain expressing wild-type or mutant MDH cultured in a medium containing formaldehyde, vector represents a positive control group, WT represents a negative control group, mt1 represents variant 1, mt2 represents variant 2, and mt3 represents variant 3.
도 3은 실시예 5-1에서 제작한 각 변이체로부터 발현된 변이 MDH의 발현변화를 나타내는 전기영동사진으로서, U는 IPTG를 첨가하지 않은 배양물을 나타내고, I는 IPTG를 첨가한 배양물의 고형분을 나타내며, S는 IPTG를 첨가한 배양물의 수용성분을 나타낸다.Figure 3 is an electrophoresis picture showing the change in the expression of mutant MDH expressed from each variant prepared in Example 5-1, U represents a culture without the addition of IPTG, I is the solid content of the culture to which the IPTG is added S represents the water-soluble content of the culture to which IPTG was added.
도 4는 실시예 5-3에서 정제된 각 변이 MDH의 반응시간의 경과에 따른 환원활성의 변화를 나타내는 그래프이다.Figure 4 is a graph showing the change in reducing activity with the passage of the reaction time of each variant purified in Example 5-3.
본 발명자들은 MDH 자체의 환원활성을 증대시킨 변이 MDH를 개발하고자 다양한 연구를 수행하던 중, 바실러스 메탄올리쿠스로부터 유래된 MDH를 대상으로 랜덤 돌연변이를 유발시켜서 수득한 변이 MDH가 증대된 환원활성을 나타냄을 확인하였다. 구체적으로, 바실러스 메탄올리쿠스의 MDH로부터 유래된 3종의 변이 MDH를 수득하였는데, 하나는 3개의 아미노산이 치환된 것이고, 다른 하나는 6개의 아미노산이 치환된 것이며, 마지막 하나는 18개의 아미노산이 치환된 것이다. 상기 3종의 변이 MDH를 발현시키는 변이균주를 포름알데히드가 포함된 배지에서 배양한 결과, 아미노산의 치환수가 적은 것일 수록 포름알데히드에 의한 독성에 대하여 향상된 내성을 나타냄을 확인하고, 상기 내성은 MDH의 환원활성에 기인한 것으로 분석하였다. 이에, 가장 환원활성이 우수하다고 판단된 변이 MDH의 3가지 아미노산 치환을 각각 조합하여 6종의 변이 MDH를 제작하고, 이들의 환원활성을 비교한 결과, 두개의 아미노산이 치환된(F213V, F289L) MDH가 가장 우수한 환원활성을 나타냄을 확인하였다.The present inventors conducted various studies to develop a mutant MDH that increased the reducing activity of MDH itself, the mutant MDH obtained by causing a random mutation in MDH derived from Bacillus methanolicus shows an increased reducing activity It was confirmed. Specifically, three variants of MDH derived from MDH of Bacillus methanolicus were obtained, one with three amino acids substituted, the other with six amino acids substituted, and the last one with 18 amino acids substituted. It is. As a result of culturing the mutant strains expressing the three mutant MDHs in a medium containing formaldehyde, it was confirmed that the less the number of amino acid substitutions, the improved resistance to toxicity caused by formaldehyde. The analysis was attributed to the reducing activity. Thus, six amino acid substitutions were prepared by combining three amino acid substitutions of the mutant MDHs, which were determined to have the best reducing activity, and comparing the reducing activities thereof, the two amino acids were substituted (F213V, F289L). It was confirmed that MDH showed the best reducing activity.
따라서, 본 발명에서 제공하는 변이 MDH를 메탄올의 생산성을 증대시키는데 활용될 수 있을 것이다.Therefore, the variant MDH provided by the present invention may be utilized to increase the productivity of methanol.
상술한 목적을 달성하기 위한 일 실시양태로서, 본 발명은 서열번호 1의 아미노산 서열로 구성된 야생형 메탄올 탈수소화 효소(MDH)에 변이가 도입되어, 상기 MDH 보다 환원활성이 증대된, 변이 메탄올 탈수소화 효소를 제공한다.As an embodiment for achieving the above object, the present invention is a variant introduced into the wild-type methanol dehydrogenase (MDH) consisting of the amino acid sequence of SEQ ID NO: 1, mutated methanol dehydrogenation, the reduction activity is increased than the MDH Provide enzymes.
본 발명의 용어 "메탄올 탈수소화 효소(methanol dehydrogenase, MDH)"란, 메탄올 탈수소효소라고도 하고, 메탄올을 산화시켜서 두개의 전자를 방출시킴으로서 포름알데히드를 생성하는 산화활성 및 포름알데히드를 환훤시켜서 두개의 전자를 결합시킴으로서 메탄올을 생성하는 환원활성을 가역적으로 나타낼 수 있는 효소를 의미한다. 이때, 사용되는 전자 공여체 또는 수용체로는 NADH가 사용될 수 있다. 상기 메탄올 탈수소화 효소의 구체적인 아미노산 서열 또는 그를 코딩하는 유전자의 염기서열 정보는 NCBI의 GenBank 등 공지의 데이터베이스(GenBank Accession No. AAA25380.1, AAA88366.1, WP_003599114.1 등)에서 얻을 수 있다.The term "methanol dehydrogenase (MDH)" of the present invention is also referred to as methanol dehydrogenase, and the oxidation activity and formaldehyde to form formaldehyde by oxidizing methanol to release two electrons to form two electrons By binding to means an enzyme capable of reversibly showing the reducing activity to produce methanol. In this case, NADH may be used as the electron donor or acceptor. The specific amino acid sequence of the methanol dehydrogenase or the nucleotide sequence information of the gene encoding the same can be obtained from a known database such as GenBank of NCBI (GenBank Accession No. AAA25380.1, AAA88366.1, WP_003599114.1, etc.).
본 발명에 있어서, 상기 MDH는 바실러스 메탄올리쿠스로부터 유래된 MDH로 해석될 수 있는데, 상기 MDH는 특별히 이에 제한되지 않으나, 바람직하게는 서열번호 1의 아미노산 서열을 갖는 야생형 MDH 또는 서열번호 2의 폴리뉴클레오티드로부터 발현되는 아미노산 서열을 갖는 야생형 MDH가 될 수 있다.In the present invention, the MDH may be interpreted as an MDH derived from Bacillus methanolicus, the MDH is not particularly limited to this, preferably a wild type MDH having a amino acid sequence of SEQ ID NO: 1 or a poly of SEQ ID NO: 2 Wild type MDH with an amino acid sequence expressed from nucleotides.
본 발명의 용어 "변이 메탄올 탈수소화 효소(methanol dehydrogenase, MDH)"란, 바실러스 메탄올리쿠스로부터 유래된 MDH로부터 변이되고, 증대된 환원활성을 나타내는 MDH를 의미한다.As used herein, the term "methanol dehydrogenase (MDH)" means an MDH that is mutated from MDH derived from Bacillus methanolicus and exhibits enhanced reducing activity.
본 발명에 있어서, 상기 변이 MDH는 특별히 이에 제한되지 않으나, 서열번호 1의 아미노산 서열을 갖는 야생형 MDH에서 하나 또는 다수의 아미노산이 치환된 아미노산 서열로 구성되는 MDH가 될 수 있는데, 바람직하게는 서열번호 1의 아미노산 서열에서 L40P, S42G, I53T, D72E, D80G, V81A, F82L, K83E, K83I, L107S, V132A, K165E, I198T, T207K, T210A, F213V, F213S, E233G, L259S, H261R, V281A, F289L, S313G, K344R, A352T, F356S, Q371R 등의 치환된 아미노산을 단독으로 또는 조합하여 포함하는 아미노산 서열로 구성되는 MDH가 될 수 있고, 보다 바람직하게는 서열번호 12 내지 19의 폴리뉴클레오티드로부터 발현될 수 있는 아미노산 서열 또는 서열번호 2 내지 9의 아미노산 서열로 구성되는 MDH가 될 수 있으며, 가장 바람직하게는 서열번호 5의 아미노산 서열 또는 서열번호 15의 폴리뉴클레오티드로부터 발현될 수 있는 아미노산 서열로 구성되는 MDH가 될 수 있다.In the present invention, the variant MDH is not particularly limited, but may be MDH consisting of an amino acid sequence substituted with one or a plurality of amino acids in the wild type MDH having the amino acid sequence of SEQ ID NO: 1, preferably SEQ ID NO: L40P, S42G, I53T, D72E, D80G, V81A, F82L, K83E, K83I, L107S, V132A, K165E, I198T, T207K, T210A, F213V, F213S, E233G, L259S, H261R, V281A, F289L at the amino acid sequence of 1 , K344R, A352T, F356S, Q371R and the like can be MDH consisting of an amino acid sequence comprising a single or a combination of substituted amino acids, more preferably amino acids that can be expressed from the polynucleotide of SEQ ID NO: 12 to 19 MDH consisting of a sequence or amino acid sequence of SEQ ID NO: 2 to 9, most preferably from the amino acid sequence of SEQ ID NO: 5 or polynucleotide of SEQ ID NO: 15 It can be an MDH consisting of an amino acid sequence that can be represented.
아울러, 상기 변이 MDH는 상술한 아미노산 서열과 하나 이상의 아미노산 잔기가 상이한 서열을 가지는 폴리펩티드를 포함할 수 있다. 효소의 활성을 전체적으로 변경시키지 않는 단백질 및 폴리펩티드에서의 아미노산 교환은 당해 분야에 공지되어 있다. 가장 통상적으로 일어나는 교환은 아미노산 잔기 Ala/Ser, Val/Ile, Asp/Glu, Thr/Ser, Ala/Gly, Ala/Thr, Ser/Asn, Ala/Val, Ser/Gly, Thy/Phe, Ala/Pro, Lys/Arg, Asp/Asn, Leu/Ile, Leu/Val, Ala/Glu, Asp/Gly 간의 교환이다. 또한, 아미노산 서열상의 변이 또는 수식에 의해서 단백질의 열, pH 등에 대한 구조적 안정성이 증가하거나 단백질 활성이 증가한 단백질을 포함할 수 있다.In addition, the variant MDH may include a polypeptide having a sequence in which at least one amino acid residue is different from the aforementioned amino acid sequence. Amino acid exchanges in proteins and polypeptides that do not alter the activity of the enzyme as a whole are known in the art. The most commonly occurring exchanges are amino acid residues Ala / Ser, Val / Ile, Asp / Glu, Thr / Ser, Ala / Gly, Ala / Thr, Ser / Asn, Ala / Val, Ser / Gly, Thy / Phe, Ala / Exchange between Pro, Lys / Arg, Asp / Asn, Leu / Ile, Leu / Val, Ala / Glu, Asp / Gly. In addition, the protein may include a protein having increased structural stability or increased protein activity against heat, pH, etc. of the protein by variation or modification on the amino acid sequence.
끝으로, 상기 변이 MDH는 당해 분야에 공지된 화학적 펩티드 합성방법으로 제조하거나, 상기 도메인을 코딩하는 유전자를 PCR (polymerase chain reaction) 에 의해 증폭하거나 공지된 방법으로 합성한 후 발현벡터에 클로닝하여 발현시켜서 제조할 수 있다. Finally, the mutant MDH may be prepared by a chemical peptide synthesis method known in the art, or the gene encoding the domain may be amplified by PCR (polymerase chain reaction) or synthesized by a known method and cloned into an expression vector for expression. Can be prepared.
본 발명의 일 실시예에 의하면, 바실러스 메타놀리쿠스(Bacillus methanolicus) 유래의 야생형 MDH를 코딩하는 폴리뉴클레오티드(서열번호 2)를 대상으로 랜덤 돌연변이를 유발시켜서, 각각의 변이된 폴리뉴클레오티드를 수득하고, 이를 대장균에 도입하여 각각의 형질전환체를 수득한 다음, 상기 수득한 형질전환체를 포름알데히드가 포함된 배지에 접종하고 배양하여, 포름알데히드에 대하여 내성을 갖는 형질전환체를 수득하였다(실시예 2). 상기 수득한 형질전환체에 포함된 각 MDH의 아미노산 서열을 분석한 결과, 야생형 MDH 에서 3개의 아미노산이 치환된 형태(F213V, F289L, F356S)의 변이 MDH(서열번호 2), 야생형 MDH 에서 6개의 아미노산이 치환된 형태(S42G, K83I, L107S, L259S, S313G, A352T)의 변이 MDH(서열번호 3) 및 야생형 MDH 에서 18개의 아미노산이 치환된 형태(L40P, I53T, D72E, D80G, V81A, F82L, K83E, V132A, K165E, I198T, T207K, T210A, F213S, E233G, H261R, V281A, K344R, Q371R)의 변이 MDH(서열번호 4)를 발굴하였다(실시예 3). 상기 각각의 변이 MDH를 포함하는 변이균주를 2% 포름알데히드가 포함된 배지에 접종하고 배양한 결과, 서열번호 8의 변이 MDH가 가장 우수한 포름알데히드에 대한 내성을 나타냄을 확인하였는데, 이러한 내성은 변이 MDH가 나타내는 포름알데히드를 메탄올로 환원시키는 활성에 기인할 것으로 분석되었는 바, 상기 서열번호 2의 변이 MDH가 상대적으로 가장 우수한 환원활성을 나타낸다고 판단하였다(도 2). 이에, 상기 서열번호 2의 변이 MDH에 포함된 3종의 치환된 아미노산(F213V, F289L, F356S)을 조합하여 6종의 변이 MDH인 서열번호 5(F213V+F289L), 6(F289L+F356S), 7(F213V+F356S), 8(F213V), 9(F289L) 및 10(F356S)의 아미노산 서열로 구성된 변이 MDH를 제조하고, 이들의 환원활성을 야생형 MDH 및 서열번호 2의 변이 MDH의 것과 비교한 결과, 서열번호 10(F356S)의 변이 MDH을 제외한 나머지 5종의 변이 MDH가 야생형 MDH 및 서열번호 2의 변이 MDH의 것보다 우수한 환원활성을 나타냄을 확인하였고, 그 중에서도 서열번호 5의 두개의 아미노산이 치환된 형태의 MDH(F213V+F289L)가 야생형 MDH는 물론 다른 모든 변이 MDH 보다도 우수한 환원활성을 나타냄을 확인하였다(도 4).According to one embodiment of the present invention, a random mutation is induced in a polynucleotide (SEQ ID NO: 2) encoding a wild type MDH derived from Bacillus methanolicus (Bacillus methanolicus), to obtain each of the mutated polynucleotides, This was introduced into E. coli to obtain each transformant, and then the transformant obtained was inoculated in a medium containing formaldehyde and cultured to obtain a transformant resistant to formaldehyde (Example 2). As a result of analyzing the amino acid sequence of each MDH contained in the obtained transformant, three amino acids were substituted in the wild type MDH (F213V, F289L, F356S) of the variant MDH (SEQ ID NO: 2), wild type MDH 6 Variant MDH (SEQ ID NO: 3) in the amino acid substituted form (S42G, K83I, L107S, L259S, S313G, A352T) and 18 amino acid substituted in the wild type MDH (L40P, I53T, D72E, D80G, V81A, F82L, Variant MDH (SEQ ID NO: 4) of K83E, V132A, K165E, I198T, T207K, T210A, F213S, E233G, H261R, V281A, K344R, Q371R was excavated (Example 3). After inoculating and culturing the strain strain containing each variant MDH in a medium containing 2% formaldehyde, it was confirmed that the variant MDH of SEQ ID NO: 8 shows the best resistance to formaldehyde. It was analyzed that it was due to the activity of reducing the formaldehyde represented by MDH to methanol, and it was determined that the mutated MDH of SEQ ID NO: 2 showed the relatively best reducing activity (FIG. 2). Thus, by combining three substituted amino acids (F213V, F289L, F356S) contained in the variant MDH of SEQ ID NO: 2, SEQ ID NO: 5 (F213V + F289L), 6 (F289L + F356S), which is six variants MDH, A variant MDH consisting of the amino acid sequences of 7 (F213V + F356S), 8 (F213V), 9 (F289L) and 10 (F356S) was prepared and their reducing activity was compared with that of wild type MDH and variant MDH of SEQ ID NO: 2. As a result, it was confirmed that the remaining five variant MDH except for the variant MDH of SEQ ID NO: 10 (F356S) showed better reducing activity than that of the wild type MDH and the variant MDH of SEQ ID NO: 2, among which two amino acids of SEQ ID NO: 5 It was confirmed that this substituted form of MDH (F213V + F289L) showed better reducing activity than wild type MDH as well as all other variants MDH (FIG. 4).
따라서, 본 발명에서 제공하는 변이 MDH는 야생형 MDH 보다도 우수한 환원활성을 나타내는 신규한 단백질임을 확인할 수 있었고, 상기 변이 MDH를 사용할 경우 메탄올의 생산성을 증대시킬 수 있음을 알 수 있었다.Therefore, it was confirmed that the mutant MDH provided by the present invention is a novel protein showing better reducing activity than the wild type MDH, and it can be seen that the use of the mutant MDH can increase the productivity of methanol.
상술한 목적을 달성하기 위한 다른 실시양태로서, 본 발명은 상기 변이 MDH를 코딩하는 폴리뉴클레오티드, 상기 폴리뉴클레오티드를 포함하는 변이 MDH 발현벡터, 상기 발현벡터가 도입된 형질전환체 및 상기 형질전환체를 이용하여 상기 변이 MDH를 제조하는 방법을 제공한다.As another embodiment for achieving the above object, the present invention provides a polynucleotide encoding the variant MDH, a variant MDH expression vector comprising the polynucleotide, a transformant having the expression vector introduced and the transformant It provides a method for producing the variant MDH using.
본 발명에서 제공하는 폴리뉴클레오티드는 상기 본 발명에서 제공하는 변이 MDH를 코딩하는 뉴클레오티드 서열을 포함하고, 바람직하게는 서열번호 5, 6, 7 또는 18의 뉴클레오티드 서열을 포함하는 폴리뉴클레오티드가 될 수 있다.The polynucleotide provided in the present invention includes a nucleotide sequence encoding the mutated MDH provided in the present invention, preferably may be a polynucleotide comprising a nucleotide sequence of SEQ ID NO: 5, 6, 7 or 18.
상기 폴리뉴클레오티드는 이로부터 발현되는 변이 MDH가 야생형 MDH 보다도 우수한 환원활성을 나타낼 수 있는 한, 하나 이상의 염기가 치환, 결실, 삽입 또는 이들의 조합에 의해 변이될 수 있다. 뉴클레오타이드 서열을 화학적으로 합성하여 제조하는 경우, 당업계에 널리 공지된 합성법, 예를 들어 문헌(Engels and Uhlmann, Angew Chem IntEd Engl., 37:73-127, 1988)에 기술된 방법을 이용할 수 있으며, 트리에스테르, 포스파이트, 포스포르아미다이트 및 H-포스페이트 방법, PCR 및 기타 오토프라이머 방법, 고체 지지체상의 올리고뉴클레오타이드 합성법 등을 들 수 있다.The polynucleotide may be mutated by one or more bases by substitution, deletion, insertion, or a combination thereof so long as the mutant MDH expressed therefrom can exhibit better reducing activity than the wild type MDH. When chemically synthesizing a nucleotide sequence, synthesis methods well known in the art may be used, for example, those described in Engels and Uhlmann, Angew Chem Int Ed Eng., 37: 73-127, 1988. , Triester, phosphite, phosphoramidite and H-phosphate methods, PCR and other autoprimer methods, oligonucleotide synthesis on a solid support, and the like.
본 발명의 용어 "발현벡터"란, 목적하는 숙주세포에서 목적 펩타이드를 발현할 수 있는 재조합 벡터로서, 유전자 삽입물이 발현되도록 작동하게 연결된 필수적인 조절 요소를 포함하는 유전자 제작물을 의미한다. 상기 발현벡터는 개시코돈, 종결코돈, 프로모터, 오퍼레이터 등의 발현조절 요소들을 포함하는데, 상기 개시 코돈 및 종결 코돈은 일반적으로 폴리펩타이드를 암호화하는 뉴클레오티드 서열의 일부로 간주되며, 유전자 제작물이 투여되었을 때 개체에서 반드시 작용을 나타내야 하며 코딩 서열과 인프레임(in frame)에 있어야 한다. 벡터의 프로모터는 구성적 또는 유도성일 수 있다. As used herein, the term "expression vector" refers to a gene construct which is a recombinant vector capable of expressing a peptide of interest in a host cell of interest, and which contains essential regulatory elements operably linked to express the gene insert. The expression vector includes expression control elements such as initiation codon, termination codon, promoter, operator, etc. The initiation codon and termination codon are generally considered to be part of the nucleotide sequence encoding the polypeptide and when the gene construct is administered, Must be functional and must be in coding sequence and in frame. The promoter of the vector may be constitutive or inducible.
본 발명의 용어 "작동가능하게 연결(operably linked)"이란, 일반적 기능을 수행하도록 핵산 발현조절 서열과 목적하는 단백질 또는 RNA를 코딩하는 핵산 서열이 기능적으로 연결(functional linkage)되어 있는 상태를 의미다. 예를 들어 프로모터와 단백질 또는 RNA를 코딩하는 핵산 서열이 작동가능하게 연결되어 코딩서열의 발현에 영향을 미칠 수 있다. 발현 벡터와의 작동적 연결은 당해 기술분야에서 잘 알려진 유전자 재조합 기술을 이용하여 제조할 수 있으며, 부위-특이적 DNA 절단 및 연결은 당해 기술 분야에서 일반적으로 알려진 효소 등을 사용할 수 있다.As used herein, the term "operably linked" refers to a state in which a nucleic acid expression control sequence and a nucleic acid sequence encoding a protein or RNA of interest are functionally linked to perform a general function. . For example, a promoter and a nucleic acid sequence encoding a protein or RNA may be operably linked to affect expression of the coding sequence. Operative linkage with expression vectors can be prepared using genetic recombination techniques well known in the art, and site-specific DNA cleavage and ligation can employ enzymes commonly known in the art.
또한, 상기 발현벡터는 세포 배양액으로부터 단백질의 분리를 촉진하기 위하여 융합 폴리펩타이드의 배출을 위한 시그널 서열을 포함할 수 있다. 특이적인 개시 시그널은 또한 삽입된 핵산 서열의 효율적인 번역에 필요할 수도 있다. 이들 시그널은 ATG 개시코돈 및 인접한 서열들을 포함한다. 어떤 경우에는, ATG 개시 코돈을 포함할 수 있는 외인성 번역 조절 시그널이 제공되어야 한다. 이들 외인성 번역 조절 시그널들 및 개시 코돈들은 다양한 천연 및 합성 공급원일 수 있다. 발현 효율은 적당한 전사 또는 번역 강화 인자의 도입에 의하여 증가될 수 있다.In addition, the expression vector may include a signal sequence for the release of the fusion polypeptide to facilitate the separation of the protein from the cell culture. Specific initiation signals may also be required for efficient translation of inserted nucleic acid sequences. These signals include ATG start codons and contiguous sequences. In some cases, an exogenous translational control signal must be provided that can include an ATG start codon. These exogenous translational control signals and initiation codons can be various natural and synthetic sources. Expression efficiency can be increased by the introduction of appropriate transcriptional or translation enhancing factors.
아울러, 상기 발현벡터는 융합단백질의 검출을 용이하게 하기 위하여, 임의로 엔도펩티아이제를 사용하여 제거할 수 있는 단백질 태그를 추가로 포함할 수 있다. In addition, the expression vector may further include a protein tag that can be removed using an endopeptidase, in order to facilitate the detection of the fusion protein.
본 발명의 용어 "태그(tag)"란, 정량가능한 활성 또는 특성을 나타내는 분자를 의미하며, 플로오레세인과 같은 화학적 형광물질(fluoracer), 형광 단백질(GFP) 또는 관련 단백질과 같은 폴리펩타이드 형광물질을 포함한 형광분자일 수도 있고; Myc 태그, 플래그(Flag) 태그, 히스티딘 태그, 루신 태그, IgG 태그, 스트랩타비딘 태그 등의 에피톱 태그일 수도 있다. 특히, 에피톱 태그를 사용할 경우, 바람직하게는 6개 이상의 아미노산 잔기로 구성되고, 보다 바람직하게는 8개 내지 50개의 아미노산 잔기로 구성된 펩타이드 태그를 사용할 수 있다.As used herein, the term "tag" refers to a molecule that exhibits quantifiable activity or properties, and refers to a polypeptide fluorescent substance such as a chemical fluorescent substance such as fluorescein, fluorescent protein (GFP) or related proteins. It may be a fluorescent molecule including; It may be an epitope tag such as a Myc tag, a flag tag, a histidine tag, a leucine tag, an IgG tag, a straptavidin tag, or the like. In particular, when an epitope tag is used, a peptide tag preferably consisting of 6 or more amino acid residues, more preferably 8 to 50 amino acid residues, may be used.
본 발명에 있어서, 상기 발현벡터는 상술한 본 발명에서 제공하는 변이 MDH를 코딩하는 뉴클레오티드 서열을 포함할 수 있는데, 이때 사용되는 벡터는 본 발명의 변이 MDH를 생산할 수 있는 한, 특별히 이에 제한되지 않으나, 바람직하게는 플라스미드 DNA, 파아지 DNA 등이 될 수 있고, 보다 바람직하게는 상업적으로 개발된 플라스미드(pUC18, pBAD, pIDTSAMRT-AMP 등), 대장균 유래 플라스미드(pYG601BR322, pBR325, pUC118, pUC119 등), 바실러스 서브틸리스 유래 플라스미드(pUB110, pTP5 등), 효모-유래 플라스미드(YEp13, YEp24, YCp50 등), 파아지 DNA(Charon4A, Charon21A, EMBL3, EMBL4, λgt10, λgt11, λZAP 등), 동물 바이러스 벡터(레트로바이러스(retrovirus), 아데노바이러스(adenovirus), 백시니아 바이러스(vaccinia virus) 등), 곤충 바이러스 벡터(배큘로바이러스(baculovirus) 등) 이 될 수 있다. 상기 발현벡터는 숙주 세포에 따라서 단백질의 발현량과 수식 등이 다르게 나타나므로, 목적에 가장 적합한 숙주세포를 선택하여 사용함이 바람직하다.In the present invention, the expression vector may include a nucleotide sequence encoding a variant MDH provided in the present invention described above, wherein the vector used is not particularly limited as long as it can produce a variant MDH of the present invention. , Preferably plasmid DNA, phage DNA and the like, more preferably commercially developed plasmids (pUC18, pBAD, pIDTSAMRT-AMP, etc.), E. coli derived plasmids (pYG601BR322, pBR325, pUC118, pUC119, etc.), Bacillus Subtilis derived plasmids (pUB110, pTP5, etc.), yeast-derived plasmids (YEp13, YEp24, YCp50, etc.), phage DNA (Charon4A, Charon21A, EMBL3, EMBL4, λgt10, λgt11, λZAP, etc.), animal viral vectors (retrovirus) (retrovirus), adenovirus (adenovirus), vaccinia virus (vaccinia virus, etc.), insect virus vectors (baculovirus, etc.). Since the expression vector is expressed differently depending on the host cell expression amount and formula, it is preferable to select the host cell most suitable for the purpose.
본 발명에서 제공하는 형질전환체는 상기 본 발명에서 제공하는 발현벡터를 숙주에 도입하여 형질전환시켜서 제작되고, 상기 발현벡터에 포함된 폴리뉴클레오티드를 발현시켜서, 본 발명의 변이 MDH를 생산하는데 사용될 수 있다. 상기 형질전환은 다양한 방법에 의하여 수행될 수 있는데, 다양한 세포활성을 높은 수준으로 향상시킬 수 있는 효과를 나타내는 본 발명의 변이 MDH를 생산할 수 있는 한, 특별히 이에 제한되지 않으나, CaCl2 침전법, CaCl2 침전법에 DMSO(dimethyl sulfoxide)라는 환원물질을 사용함으로써 효율을 높인 Hanahan 방법, 전기천공법(electroporation), 인산칼슘 침전법, 원형질 융합법, 실리콘 카바이드 섬유를 이용한 교반법, 아그로박테리아 매개된 형질전환법, PEG를 이용한 형질전환법, 덱스트란 설페이트, 리포펙타민 및 건조/억제 매개된 형질전환 방법 등이 사용될 수 있다. 또한, 상기 형질전환제의 제작에 사용되는 숙주역시 본 발명의 융합단백질을 생산할 수 있는 한, 특별히 이에 제한되지 않으나, 대장균(E. coli), 스트렙토마이세스, 살모넬라 티피뮤리움 등의 박테리아 세포; 사카로마이세스 세레비지애, 스키조사카로마이세스 폼베 등의 효모 세포; 피치아 파스토리스 등의 균류 세포; 드로조필라, 스포도프테라 Sf9 세포 등의 곤충 세포; CHO, COS, NSO, 293, 보우 멜라노마 세포 등의 동물 세포; 또는 식물 세포가 될 수 있다. 예를 들어, 본 발명에서는 대장균 BL21 (DE3) 균주를 숙주로서 사용하였다.The transformant provided by the present invention may be prepared by introducing the expression vector provided by the present invention into a host and transforming the same, and expressing a polynucleotide included in the expression vector to produce a mutant MDH of the present invention. have. The transformation can be carried out by a variety of methods, as long as it can produce a mutant MDH of the present invention exhibiting the effect of improving a variety of cellular activities to a high level, CaCl 2 precipitation method, CaCl 2 Hanahan method, the electroporation method, calcium phosphate precipitation method, plasma fusion method, stirring method using silicon carbide fiber, agrobacterial mediated trait which improved efficiency by using reducing material called DMSO (dimethyl sulfoxide) in precipitation method Conversion methods, transformation methods with PEG, dextran sulfate, lipofectamine and dry / inhibition mediated transformation methods and the like can be used. In addition, as long as the host used in the preparation of the transformant can also produce the fusion protein of the present invention, there are no particular limitations, such as bacterial cells such as E. coli , Streptomyces, Salmonella typhimurium; Yeast cells, such as Saccharomyces cerevisiae and ski-irradiated caromyces pombe; Fungal cells such as Pchia pastoris; Insect cells such as Drozophila and Spodoptera Sf9 cells; Animal cells such as CHO, COS, NSO, 293, bow melanoma cells; Or plant cells. For example, in the present invention, E. coli BL21 (DE3) strain was used as a host.
상기 형질전환체는 본 발명에서 제공하는 변이 MDH를 제조하는 방법에 사용될 수 있다. 구체적으로, 본 발명에서 제공하는 변이 MDH의 제조방법은 (a) 상기 형질전환체를 배양하여 배양물을 수득하는 단계; 및, (b) 상기 배양물로부터 본 발명의 변이 MDH를 회수하는 단계를 포함한다. The transformant may be used in the method for producing the mutant MDH provided by the present invention. Specifically, the method of producing a mutant MDH provided by the present invention comprises the steps of (a) culturing the transformant to obtain a culture; And, (b) recovering the variant MDH of the present invention from the culture.
본 발명의 용어 "배양"이란, 미생물을 적당히 인공적으로 조절한 환경조건에서 생육시키는 방법을 의미한다. As used herein, the term "culture" means a method of growing microorganisms under appropriately artificially controlled environmental conditions.
본 발명에 있어서, 상기 형질전환체를 배양하는 방법은 당업계에 널리 알려져 있는 방법을 이용하여 수행할 수 있다. 구체적으로 상기 배양은 본 발명의 변이 MDH를 발현시켜서 생산할 수 있는 한 특별히 이에 제한되지 않으나, 배치 공정 또는 주입 배치 또는 반복 주입 배치 공정(fed batch or repeated fed batch process)에서 연속식으로 배양할 수 있다.In the present invention, the method of culturing the transformant may be performed using a method well known in the art. Specifically, the culture is not particularly limited as long as it can be produced by expressing the mutated MDH of the present invention, but may be continuously cultured in a batch process or an injection batch or repeated fed batch process (fed batch or repeated fed batch process). .
배양에 사용되는 배지는 적당한 탄소원, 질소원, 아미노산, 비타민 등을 함유한 통상의 배지 내에서 호기성 조건 하에서 온도, pH 등을 조절하면서 적절한 방식으로 특정 균주의 요건을 충족해야 한다. 사용될 수 있는 탄소원으로는 글루코즈 및 자일로즈의 혼합당을 주 탄소원으로 사용하며 이외에 수크로즈, 락토즈, 프락토즈, 말토즈, 전분, 셀룰로즈와 같은 당 및 탄수화물, 대두유, 해바라기유, 피마자유, 코코넛유 등과 같은 오일 및 지방, 팔미트산, 스테아린산, 리놀레산과 같은 지방산, 글리세롤, 에탄올과 같은 알코올, 아세트산과 같은 유기산이 포함된다. 이들 물질은 개별적으로 또는 혼합물로서 사용될 수 있다. 사용될 수 있는 질소원으로는 암모니아, 황산암모늄, 염화암모늄, 초산암모늄, 인산암모늄, 탄산안모늄, 및 질산암모늄과 같은 무기질소원; 글루탐산, 메티오닌, 글루타민과 같은 아미노산 및 펩톤, NZ-아민, 육류 추출물, 효모 추출물, 맥아 추출물, 옥수수 침지액, 카세인 가수분해물, 어류 또는 그의 분해생성물, 탈지 대두 케이크 또는 그의 분해생성물 등 유기질소원이 사용될 수 있다. 이들 질소원은 단독 또는 조합되어 사용될 수 있다. 상기 배지에는 인원으로서 인산 제1칼륨, 인산 제2칼륨 및 대응되는 소듐-함유 염이 포함될 수 있다. 사용될 수 있는 인원으로는 인산이수소칼륨 또는 인산수소이칼륨 또는 상응하는 나트륨-함유 염이 포함된다. 또한, 무기화합물로는 염화나트륨, 염화칼슘, 염화철, 황산마그네슘, 황산철, 황산망간 및 탄산칼슘 등이 사용될 수 있다. 마지막으로, 상기 물질에 더하여 아미노산 및 비타민과 같은 필수 성장 물질이 사용될 수 있다. The medium used for culturing should meet the requirements of the particular strain in an appropriate manner while controlling the temperature, pH, etc. under aerobic conditions in a conventional medium containing a suitable carbon source, nitrogen source, amino acids, vitamins and the like. Carbon sources that can be used include mixed sugars of glucose and xylose as the main carbon source, and sugars and carbohydrates such as sucrose, lactose, fructose, maltose, starch and cellulose, soybean oil, sunflower oil, castor oil, coconut Oils such as oils and fats, fatty acids such as palmitic acid, stearic acid, linoleic acid, alcohols such as glycerol, ethanol, organic acids such as acetic acid. These materials can be used individually or as a mixture. Nitrogen sources that can be used include inorganic nitrogen sources such as ammonia, ammonium sulfate, ammonium chloride, ammonium acetate, ammonium phosphate, anmonium carbonate, and ammonium nitrate; Amino acids such as glutamic acid, methionine, glutamine and organic nitrogen sources such as peptone, NZ-amine, meat extract, yeast extract, malt extract, corn steep liquor, casein hydrolyzate, fish or its degradation product, skim soy cake or its degradation product Can be. These nitrogen sources may be used alone or in combination. The medium may include, as personnel, monopotassium phosphate, dipotassium phosphate and corresponding sodium-containing salts. Personnel that may be used include potassium dihydrogen phosphate or dipotassium hydrogen phosphate or the corresponding sodium-containing salts. In addition, as the inorganic compound, sodium chloride, calcium chloride, iron chloride, magnesium sulfate, iron sulfate, manganese sulfate and calcium carbonate may be used. Finally, in addition to the above substances, essential growth substances such as amino acids and vitamins can be used.
또한, 배양 배지에 적절한 전구체들이 사용될 수 있다. 상기된 원료들은 배양과정에서 배양물에 적절한 방식에 의해 회분식, 유가식 또는 연속식으로 첨가될 수 있으나, 특별히 이에 제한되지는 않는다. 수산화나트륨, 수산화칼륨, 암모니아와 같은 기초 화합물 또는 인산 또는 황산과 같은 산 화합물을 적절한 방식으로 사용하여 배양물의 pH를 조절할 수 있다.In addition, suitable precursors to the culture medium may be used. The raw materials described above may be added batchwise, fed-batch or continuous in a suitable manner to the culture in the culture process, but is not particularly limited thereto. Basic compounds such as sodium hydroxide, potassium hydroxide, ammonia or acid compounds such as phosphoric acid or sulfuric acid can be used in an appropriate manner to adjust the pH of the culture.
또한, 지방산 폴리글리콜 에스테르와 같은 소포제를 사용하여 기포 생성을 억제할 수 있다. 호기 상태를 유지하기 위해 배양물 내로 산소 또는 산소-함유 기체(예, 공기)를 주입한다. 배양물의 온도는 보통 27℃ 내지 37℃, 바람직하게는 30℃ 내지 35℃이다. 배양은 D형 젖산의 생성량이 최대로 얻어질 때까지 계속한다. 이러한 목적으로 보통 10 내지 100 시간에서 달성된다. 대체로 D형 젖산은 배양 배지 중으로 배출되지만, 경우에 따라서는 세포 중에 포함되어 있을 수 있다.In addition, antifoaming agents such as fatty acid polyglycol esters can be used to inhibit bubble generation. Inject oxygen or an oxygen-containing gas (eg air) into the culture to maintain aerobic conditions. The temperature of the culture is usually 27 ° C to 37 ° C, preferably 30 ° C to 35 ° C. Incubation is continued until the maximum amount of D-type lactic acid is obtained. For this purpose it is usually achieved in 10 to 100 hours. In general, type D lactic acid is excreted in the culture medium, but may be contained in the cells in some cases.
아울러, 배양물로부터 상기 변이 MDH를 회수하는 단계는 당업계에 공지된 방법에 의해 수행될 수 있다. 구체적으로, 상기 회수 방법은 생산된 본 발명의 변이 MDH를 회수할 수 있는 한, 특별히 이에 제한되지 않으나, 바람직하게는 원심분리, 여과, 추출, 분무, 건조, 증방, 침전, 결정화, 전기영동, 분별용해(예를 들면 암모늄 설페이트 침전), 크로마토그래피(예를 들면 이온 교환, 친화성, 소수성 및 크기배제) 등의 방법을 사용할 수 있다.In addition, the step of recovering the mutant MDH from the culture can be carried out by methods known in the art. Specifically, the recovery method is not particularly limited as long as it can recover the produced MDH of the present invention, preferably centrifugation, filtration, extraction, spraying, drying, augmentation, precipitation, crystallization, electrophoresis, Fractional solubilization (eg ammonium sulfate precipitation), chromatography (eg ion exchange, affinity, hydrophobicity and size exclusion) can be used.
상술한 목적을 달성하기 위한 또 다른 실시양태로서, 본 발명은 상기 변이 MDH를 이용하여 포름알데히드를 환원시켜서 메탄올을 생산하는 방법을 제공한다.As another embodiment for achieving the above object, the present invention provides a method for producing methanol by reducing formaldehyde using the above-mentioned MDH.
구체적으로, 본 발명의 메탄올 생산방법은 (a) 상기 변이 메탄올 탈수소화 효소를, 포름알데히드 및 전자공여체를 포함하는 혼합물에 가하여 반응시켜서 반응산물을 수득하는 단계; 및 (b) 상기 반응산물로부터 메탄올을 회수하는 단계를 포함한다. 이때, 상기 전자공여체는 특별히 이에 제한되지 않으나 바람직하게는 NADH를 사용할 수 있고, 상기 혼합물에 반응완충액을 추가로 포함할 수 있는데, 상기 반응완충액은 특별히 이에 제한되지 않으나, 바람직하게는 중성의 인산염 완충액을 사용할 수 있다.Specifically, the methanol production method of the present invention comprises the steps of: (a) adding the mutated methanol dehydrogenase to a mixture containing formaldehyde and an electron donor to obtain a reaction product; And (b) recovering methanol from the reaction product. At this time, the electron donor is not particularly limited to this, but preferably NADH may be used, and the reaction buffer may be further included in the mixture. The reaction buffer is not particularly limited thereto, but is preferably a neutral phosphate buffer. Can be used.
상술한 목적을 달성하기 위한 또 다른 실시양태로서, 본 발명은 상기 포름알데히드로부터 메탄올을 생산하기 위한 변이 메탄올 탈수소화 효소의 용도를 제공한다.As another embodiment for achieving the above object, the present invention provides the use of the mutated methanol dehydrogenase for producing methanol from the formaldehyde.
상술한 바와 같이, MDH는 메탄올을 산화시켜 포름알데히드로 전환시키거나 다시 포름알데히드를 환원시켜 메탄올로 전환 시키는 반응을 가역적으로 촉매하는 효소이다. 본 발명에서 제공하는 변이 MDH는 야생형 MDH 보다도 포름알데히드를 메탄올로 환원시키는 환원활성이 우수하므로, 포름알데히드로부터 메탄올을 보다 효과적으로 생산하기 위한 용도로서 활용될 수 있다.As mentioned above, MDH is an enzyme that reversibly catalyzes the reaction of oxidizing methanol to convert formaldehyde or again to reduce formaldehyde to methanol. Since the mutant MDH provided by the present invention is superior in reducing activity to reduce formaldehyde to methanol than wild type MDH, it can be utilized as a use for producing methanol from formaldehyde more effectively.
이하 본 발명을 실시예를 통하여 보다 상세하게 설명한다. 그러나 이들 실시예는 본 발명을 예시적으로 설명하기 위한 것으로 본 발명의 범위가 이들 실시예에 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples. However, these examples are for illustrative purposes only and the scope of the present invention is not limited to these examples.
실시예 1: 야생형 메탄올 탈수소화 효소 발현 벡터 클로닝 및 방향성 진화(direct evolution) 방법을 이용한 변이 라이브러리 구축Example 1 Mutation Library Construction Using Wild-type Methanol Dehydrogenase Expression Vector Cloning and Direct Evolution
바실러스 메타놀리쿠스(Bacillus methanolicus) 유래의 야생형 메탄올 탈수소화 효소(Methanol Dehydrogenase; MDH)(서열번호 1)를 대장균 내에서 발현하기 위하여, 상기 야생형 메탄올 탈수소화 효소를 코딩하는 폴리뉴클레오티드(서열번호 11)를 합성하였다(바이오니아, 대전). 상기 합성된 폴리뉴클레오티드를 pET21b 벡터에 클로닝하여 발현벡터를 수득하고, 상기 발현벡터를 변이 라이브러리를 구축하기 위한 방향성 진화 실험(direct evolution)의 주형으로 사용하였다. Diversity® PCR Random Mutagenesis Kit(Clontech, USA)을 이용하여 MDH 유전자 내 변이를 유도하고, 하기 프라이머를 사용하여 중합 효소 연쇄 반응(PCR)을 수행하여, 변이 라이브러리를 구축하였다. 이때, PCR 조건은 94℃에서 30초간 1회; 25회(94℃ 30초, 68℃ 1분); 68℃에서 1분간 1회의 반응조건으로 수행하였다. Polynucleotide encoding the wild type methanol dehydrogenase (SEQ ID NO: 11) to express in wild Escherichia coli Methanol Dehydrogenase (MDH) (SEQ ID NO: 1) derived from Bacillus methanolicus (SEQ ID NO: 11) Was synthesized (Bionia, Daejeon). The synthesized polynucleotide was cloned into the pET21b vector to obtain an expression vector, and the expression vector was used as a template for direct evolution to construct a mutation library. By using induced mutation within the gene to MDH, primers for Diversity ® PCR Random Mutagenesis Kit (Clontech , USA) by performing polymerase chain reaction (PCR), a mutation library was constructed. At this time, PCR conditions are once for 30 seconds at 94 ℃; 25 times (94 ° C 30 seconds, 68 ° C 1 minute); It was performed under one reaction condition at 68 ° C. for 1 minute.
forward primer: 5'-AAGAAGGAGATATACATATGACA-3'(서열번호 21)forward primer: 5'-AAGAAGGAGATATACATATGACA-3 '(SEQ ID NO: 21)
reverse primer: 5'-ATACTCGAGCAGAGCGTTTTTG-3'(서열번호 22)reverse primer: 5'-ATACTCGAGCAGAGCGTTTTTG-3 '(SEQ ID NO: 22)
실시예 2: 야생형 보다 높은 포름알데히드 저항성을 갖는 MDH 변이주 선별Example 2: Selection of MDH Mutants with Higher Formaldehyde Resistance than Wild-type
먼저, 야생형 MDH 유전자를 갖는 대장균 BL21 (DE3) 균주를 다양한 농도(0, 1, 2, 3, 4 또는 5mM)의 포름알데히드를 포함하는 배지에 접종하고, 배양하여 포름알데히드의 농도에 따른 성장속도의 차이를 비교하였다(도 1). 도 1은 다양한 농도(0, 1, 2, 3, 4 또는 5mM)의 포름알데히드를 포함하는 배지에서 배양된 대장균 BL21 (DE3) 균주의 배양시간 경과에 따른 성장속도를 비교한 결과를 나타내는 그래프이다. 도 1에서 보듯이, 2mM 이상의 포름알데히드가 배지에 존재 할 경우 대장균의 성장속도가 현저하게 감소함을 확인하였다.First, the E. coli BL21 (DE3) strain having the wild type MDH gene was inoculated into a medium containing formaldehyde at various concentrations (0, 1, 2, 3, 4 or 5 mM), and then cultured to grow the growth rate according to the concentration of formaldehyde. Was compared (FIG. 1). 1 is a graph showing a result of comparing the growth rate of the E. coli BL21 (DE3) strain cultured in a medium containing formaldehyde of various concentrations (0, 1, 2, 3, 4 or 5mM) over time . As shown in Figure 1, it was confirmed that the growth rate of E. coli significantly reduced when formaldehyde or more than 2mM in the medium.
다음으로, 상기 실시예 1에서 구축한 변이 라이브러리를 대장균 BL21 (DE3) 균주에 도입하여 각각의 형질전환체를 수득하고, 상기 형질전환체를 3mM의 포름알데히드와 엠피실린(50㎍/㎖)이 포함 된 2YT 액체 배지(tryptone 16g, yeast extract 10g, NaCl 5g/ 1ℓ)에 접종한 다음, 37℃에서 진탕배양하였다. 배양액의 600nm 흡광도가 0.4가 되었을 때, MDH가 발현되도록 0.1mM의 IPTG를 첨가한 다음, 37℃에서 24시간 동안 배양하여 배양액을 수득하고, 상기 수득한 배양액을 엠피실린이 포함된 고체 배지에 도말하고 배양하여, 포름알데히드에 저항성을 갖는 단일 콜로니를 선별하였다.Next, the mutant library constructed in Example 1 was introduced into the E. coli BL21 (DE3) strain to obtain respective transformants, and the transformants were 3 mM of formaldehyde and empicillin (50 µg / ml). Inoculated in a 2YT liquid medium (tryptone 16g, yeast extract 10g, NaCl 5g / 1L) and then shaken at 37 ℃. When the 600 nm absorbance of the culture medium reached 0.4, 0.1 mM IPTG was added to express MDH, and then cultured at 37 ° C. for 24 hours to obtain a culture solution, and the obtained culture solution was smeared onto solid medium containing empicillin. And cultured to select single colonies resistant to formaldehyde.
실시예 3: 변이 MDH의 서열분석Example 3: Sequencing of Mutant MDHs
상기 실시예 2에서 수득한 단일 콜로니들을 각각 엠피실린을 포함한 2YT 액체 배지에 접종하고, 37℃에서 12시간동안 진탕 배양하고, 상기 배양물로부터 플라스미드 DNA를 회수하여, 이에 포함된 MDH를 코딩하는 폴리뉴클레오티드의 염기서열 및 이로부터 발현되는 단백질의 아미노산 서열을 분석하였다. 그 결과, 변이 MDH를 코딩하는 폴리뉴클레오티드를 포함하는 변이체 1, 변이체 2 및 변이체 3을 발굴하였는데, 이들 각 변이체는 서열번호 12 내지 14의 변이된 폴리뉴클레오티드를 포함하고, 이로부터 발현되는 서열번호 2 내지 4의 아미노산 서열을 갖는 변이 MDH를 발현시킬 수 있음을 확인하였다. 상기 변이 MDH 중에서, 서열번호 2의 아미노산 서열을 갖는 변이 MDH는 야생형 MDH에서 3개의 아미노산이 치환된 형태(F213V, F289L, F356S)이고, 서열번호 3의 아미노산 서열을 갖는 변이 MDH는 야생형 MDH에서 6개의 아미노산이 치환된 형태(S42G, K83I, L107S, L259S, S313G, A352T)이며, 서열번호 4의 아미노산 서열을 갖는 변이 MDH는 야생형 MDH 에서 18개의 아미노산이 치환된 형태(L40P, I53T, D72E, D80G, V81A, F82L, K83E, V132A, K165E, I198T, T207K, T210A, F213S, E233G, H261R, V281A, K344R, Q371R)임을 확인하였다.Single colonies obtained in Example 2 were each inoculated in 2YT liquid medium containing empicillin, shaken at 37 ° C. for 12 hours, and plasmid DNA was recovered from the culture, thereby encoding the polyimide MDH contained therein. The nucleotide sequence and the amino acid sequence of the protein expressed therefrom were analyzed. As a result, variant 1, variant 2, and variant 3 were identified which contain polynucleotides encoding variant MDH, each of which comprises a variant polynucleotide of SEQ ID NOs: 12-14 and is expressed from SEQ ID NO: 2 It was confirmed that a variant having an amino acid sequence of 4 to 4 can express MDH. Among the variant MDHs, the variant MDH having the amino acid sequence of SEQ ID NO: 2 is a form in which 3 amino acids are substituted in the wild type MDH (F213V, F289L, F356S), and the variant MDH having the amino acid sequence of SEQ ID NO: 3 is 6 in the wild type MDH Variants of amino acids (S42G, K83I, L107S, L259S, S313G, A352T), and the variant MDH having the amino acid sequence of SEQ ID NO: 4 has 18 amino acid substitutions in the wild type MDH (L40P, I53T, D72E, D80G). , V81A, F82L, K83E, V132A, K165E, I198T, T207K, T210A, F213S, E233G, H261R, V281A, K344R, Q371R).
실시예 4: 변이 MDH의 환원활성 분석Example 4: Analysis of Reducing Activity of Mutant MDH
상기 서열번호 12 내지 14의 변이된 폴리뉴클레오티드를 포함하는 발현벡터를 대장균 BL21 (DE3)에 도입하여 각각의 형질전환체를 수득하고, 이들을 각각 엠피실린이 첨가된 2YT 배지에 접종하였으며, 37℃에서 진탕배양하였다. 배양물의 흡광도(O.D. 600)가 0.4에 도달하면, 상기 배양물에 0.1mM IPTG를 첨가하여 1시간 동안 추가로 배양하여, MDH를 발현시켰다. 그런 다음, 상기 각 배양물에 3mM의 포름알데히드를 첨가하고, 2-4시간 간격으로 배양물의 흡광도(O.D. 600)를 측정하였다(도 2). 이때, 양성대조군으로는 형질전환되지 않은 대장균 BL21 (DE3)을 사용하고, 음성대조군으로는 야생형 MDH를 발현시킬 수 있는 발현벡터가 도입된 대장균 BL21 (DE3)을 사용하였다.Expression vectors comprising the mutated polynucleotides of SEQ ID NOs: 12 to 14 were introduced into E. coli BL21 (DE3) to obtain respective transformants, which were inoculated in 2YT medium to which empicillin was added, respectively, at 37 ° C. Shake culture. When the absorbance (O.D. 600) of the culture reached 0.4, 0.1mM IPTG was added to the culture and further incubated for 1 hour to express MDH. Then, 3 mM of formaldehyde was added to each of the cultures, and the absorbance (O.D. 600) of the cultures was measured at intervals of 2-4 hours (FIG. 2). In this case, E. coli BL21 (DE3), which was not transformed, was used as a positive control group, and E. coli BL21 (DE3), into which an expression vector capable of expressing wild-type MDH, was used as a negative control group.
도 2는 포름알데히드가 포함된 배지에서 배양된 야생형 또는 변이 MDH를 발현시키는 균주의 배양시간의 경과에 따른 증식수준의 변화를 나타내는 그래프로서, vector는 양성대조군을 나타내고, WT는 음성대조군을 나타내며, mt1은 변이체 1을 나타내고, mt2는 변이체 2를 나타내며, mt3은 변이체 3을 나타낸다. 도 2에서 보듯이, 모든 균주는 포름알데히드의 독성에 의해 일정 시간 정지기(stationary phage)를 갖다가 다시 재성장하는 양상을 나타내는데, 변이체 1이 17시간 만에 가장 빠르게 재성장이 수행되었고, 변이체 2는 21시간 만에 재성장이 수행되었으며, 변이체 3은 23시간 만에 재성장이 수행되었다. 그러나, 양성대조군 및 음성대조군은 재성장이 수행되지 못하였다. Figure 2 is a graph showing the change in proliferation level with the cultivation time of the strain expressing wild-type or mutant MDH cultured in a medium containing formaldehyde, vector represents a positive control group, WT represents a negative control group, mt1 represents variant 1, mt2 represents variant 2, and mt3 represents variant 3. As shown in Figure 2, all strains show a pattern of stationary phage due to toxicity of formaldehyde and then regrowth, wherein variant 1 is the fastest regrowth in 17 hours, variant 2 is Regrowth occurred in 21 hours, and variant 3 performed regrowth in 23 hours. However, no positive control and no negative control were performed.
상기 결과로부터, 변이 MDH가 야생형 MDH 보다도 포름알데히드를 메탄올로 환원시키는 활성이 우수하고, 그 중에서도 변이체 1에서 발현되는 서열번호 2의 아미노산 서열을 갖는 변이 MDH가 가장 우수한 환원활성을 나타내는 것으로 분석되었다.From the above results, it was analyzed that the mutant MDH has better activity of reducing formaldehyde to methanol than the wild type MDH, and among these, the mutant MDH having the amino acid sequence of SEQ ID NO: 2 expressed in Variant 1 shows the best reducing activity.
실시예 5: 변이체 1에 포함된 변이 MDH를 이용한 변이 MDH의 제작 및 선별Example 5 Construction and Selection of Variant MDH Using Variant MDH in Variant 1
상기 실시예 4에서 가장 우수한 환원활성을 나타내는 것으로 분석된 서열번호 2의 아미노산 서열을 갖는 변이 MDH는 3개의 페닐알라닌이 각각 발린, 루신 및 세린으로 치환된 형태(F213V, F289L, F356S)이다. 상기 페닐알라닌은 고리구조의 치환기를 포함하여 단백질 내에서 유동성을 약화시킨다고 알려져 있으므로, 상기 변이 MDH는 야생형 MDH 보다도 높은 수준의 유동성을 나타낼 것으로 예상하였다. 이에, 재조합 PCR 방법을 사용하여, 야생형 MDH를 코딩하는 폴리뉴클레오티드(서열번호 11)에 상기 3개의 치환부위를 조합함으로써, 각각의 변이 MDH를 코딩하는 폴리뉴클레오티드를 수득하고, 이로부터 발현되는 변이 MDH의 활성을 비교하여, 환원활성이 가장 우수한 변이 MDH를 선별하고자 하였다.Variant MDH having the amino acid sequence of SEQ ID NO: 2, which was analyzed as having the best reducing activity in Example 4, was substituted with three phenylalanines with valine, leucine, and serine (F213V, F289L, and F356S). Since the phenylalanine is known to weaken the fluidity in the protein including a ring substituent, the mutant MDH was expected to show a higher level of fluidity than the wild type MDH. Thus, by using the recombinant PCR method, by combining the three substitution sites with a polynucleotide encoding the wild type MDH (SEQ ID NO: 11), to obtain a polynucleotide encoding each variant MDH, the variant MDH expressed therefrom To compare the activity of, to select the best variant mutant MDH.
실시예 5-1: 변이 MDH를 발현시키는 변이균주의 제작Example 5-1 Construction of Mutant Strains That Express Mutant MDH
상기 실시예 1에서 수득한 서열번호 11의 폴리뉴클레오티드를 포함하는 발현벡터를 주형으로 하고, F213V 도입용 프라이머쌍(서열번호 23 및 24), F289L 도입용 프라이머쌍(서열번호 25 및 26) 또는 F356S 도입용 프라이머쌍(서열번호 27 및 28)을 사용한 재조합 PCR을 수행하여, 각각의 폴리뉴클레오티드를 제작하고, 상기 제작된 각각의 폴리뉴클레오티드가 도입된 발현벡터를 수득하였으며, 상기 각각의 발현벡터를 대장균 BL21 (DE3)에 도입하여 각각의 변이균주(변이체 4 내지 9)를 제작하였다(표 1).An expression vector comprising the polynucleotide of SEQ ID NO: 11 obtained in Example 1 was used as a template, and a pair of primers for introducing F213V (SEQ ID NOs: 23 and 24), a pair of primers for introducing F289L (SEQ ID NOs: 25 and 26) or F356S Recombinant PCR was performed using introduction primer pairs (SEQ ID NOs: 27 and 28) to prepare respective polynucleotides, to obtain expression vectors into which the prepared polynucleotides were introduced. It was introduced into BL21 (DE3) to prepare each strain strain (variants 4 to 9) (Table 1).
F213V forward primer: 5'-TACTGATGCAGTTGCAATTCAAGCA-3'(서열번호 23)F213V forward primer: 5'-TACTGATGCAGTTGCAATTCAAGCA-3 '(SEQ ID NO: 23)
F213V reverse primer: 5'-GAATTGCAACTGCATCAGTAACTGG-3'(서열번호 24)F213V reverse primer: 5'-GAATTGCAACTGCATCAGTAACTGG-3 '(SEQ ID NO: 24)
F289L forward primer: 5'-CGTTTGCGCACTCAACCTAATTGCT-3'(서열번호 25)F289L forward primer: 5'-CGTTTGCGCACTCAACCTAATTGCT-3 '(SEQ ID NO: 25)
F289L reverse primer: 5'-TTAGGTTGAGTGCGCAAACGTGTGG-3'(서열번호 26)F289L reverse primer: 5'-TTAGGTTGAGTGCGCAAACGTGTGG-3 '(SEQ ID NO: 26)
F356S forward primer: 5'-AAAAACGCATCCGAAGACGTATGTA-3'(서열번호 27)F356S forward primer: 5'-AAAAACGCATCCGAAGACGTATGTA-3 '(SEQ ID NO: 27)
F356S reverse primer: 5'-ACGTCTTCGGATGCGTTTTTCGCTA-3'(서열번호 28)F356S reverse primer: 5'-ACGTCTTCGGATGCGTTTTTCGCTA-3 '(SEQ ID NO: 28)
표 1 변이체 1에 포함된 변이 MDH를 이용하여 제작된 변이 MDH
변이체 F213V F289L F356S 서열번호 비고
음성대조군 × × × 1 야생형 MDH
양성대조군 2 변이체 1의 MDH
4 × 5
5 × 6
6 × 7
7 × × 8
8 × × 9
9 × × 10
Table 1 Variant MDH Created Using Variant MDH in Variant 1
Variant F213V F289L F356S SEQ ID NO: Remarks
Negative Control × × × One Wild type MDH
Positive control group 2 MDH of variant 1
4 × 5
5 × 6
6 × 7
7 × × 8
8 × × 9
9 × × 10
실시예 5-2: 변이 MDH의 생산Example 5-2: Production of Mutant MDH
상기 실시예 5-1에서 제작한 대조군과 각 변이체(변이체 4 내지 9)를 5㎖의 최소 액체 배지(2YT, 50㎍/㎖ 엠피실린)에 접종하고, 37℃에서 배양하여 증식시켰으며, 이를 100㎖의 최소 액체 배지에 접종하고, 37℃에서 흡광도(O.D. 600)가 0.4가 될 때 까지 배양하였다. 이어, 배양물에 0.1mM IPTG를 첨가하고 18℃에서 48시간 동안 진탕 배양하여, 각각의 변이 MDH를 발현시켰으며, 발현여부를 SDS-PAGE를 통해 확인하였다(도 3). 도 3은 실시예 5-1에서 제작한 각 변이체로부터 발현된 변이 MDH의 발현변화를 나타내는 전기영동사진으로서, U는 IPTG를 첨가하지 않은 배양물을 나타내고, I는 IPTG를 첨가한 배양물의 고형분을 나타내며, S는 IPTG를 첨가한 배양물의 수용성분을 나타낸다. 상기 도 3에서 보듯이, IPTG 첨가에 의하여 각 변이체에서 변이 MDH가 과발현됨을 확인하였다.The control prepared in Example 5-1 and each of the variants (variants 4 to 9) were inoculated in 5 ml of minimal liquid medium (2YT, 50 µg / ml empicillin), incubated at 37 ° C, and grown. Inoculated in 100 ml of minimal liquid medium and incubated at 37 ° C. until absorbance (OD 600) was 0.4. Subsequently, 0.1mM IPTG was added to the cultures, and shake cultured at 18 ° C. for 48 hours, thereby expressing each of the mutant MDHs and confirming the expression through SDS-PAGE (FIG. 3). Figure 3 is an electrophoresis picture showing the change in the expression of mutant MDH expressed from each variant prepared in Example 5-1, U represents a culture without the addition of IPTG, I is the solid content of the culture to which the IPTG is added S represents the water-soluble content of the culture to which IPTG was added. As shown in FIG. 3, it was confirmed that the mutant MDH was overexpressed in each variant by IPTG addition.
실시예 5-3: 변이 MDH의 정제Example 5-3 Purification of Mutant MDH
상기 실시예 5-2에서 배양된 각 변이체의 배양물을 원심분리(5000rpm, 15분, 4℃)하여 각 균체를 회수하고, 상기 회수된 각 균체를 완충액(20mM Tris, 0.5M NaCl, pH 7.5)에 현탁시켜서 현탁액을 수득하였으며, 상기 현탁액에 단백질 분해효소 억제제(proteinase inhibiter, complete mini, Roche, USA)를 가하였다. 상기 현탁액에 초음파를 처리하여(10mm 직경의 750W microtip, 20% amplitude, 4℃, 6분) 각 균체를 파쇄하여 파쇄물을 수득하고, 상기 파쇄물을 원심분리(10000rpm, 20분, 4℃)하여 각각의 상층액을 수득하였다. 상기 수득한 각 상층액을 HisTrap FF 컬럼 크로마토그래피에 적용하여, 변이 MDH를 흡착시키고, 250 mM 이미다졸(imidazole; pH7.5) 완충 용액을 가하여 변이 MDH를 용출시켜서, 변이 MDH를 정제하였다.Centrifugation (5000rpm, 15 minutes, 4 ℃) of the culture of each variant cultured in Example 5-2 to recover each cell, and the recovered cells were buffered (20mM Tris, 0.5M NaCl, pH 7.5 Suspension to give a suspension, to which was added a proteinase inhibitor (complete mini, Roche, USA). The suspension was sonicated (10 mm diameter 750 W microtip, 20% amplitude, 4 ° C., 6 minutes) to break up each cell to obtain a lysate, and the lysate was centrifuged (10000 rpm, 20 minutes, 4 ° C.), respectively. Supernatant of was obtained. Each obtained supernatant was subjected to HisTrap FF column chromatography to adsorb variant MDH, eluting variant MDH by adding 250 mM imidazole (pH 7.5) buffer solution to purify variant MDH.
실시예 5-4: 변이 MDH의 환원활성 분석Example 5-4 Analysis of Reducing Activity of Mutant MDH
MDH가 포름알데히드를 메탄올로 환원 시킬 때 보조인자(cofactor)로 NADH를 소모시킨다. 이에, 환원반응시에 소모되는 NADH의 양을 측정하여, 상기 실시예 5-3에서 정제한 각 변이 MDH의 환원활성을 비교하였다.MDH consumes NADH as a cofactor when reducing formaldehyde to methanol. Thus, the amount of NADH consumed during the reduction reaction was measured, and the reduction activity of each variant MDH purified in Example 5-3 was compared.
구체적으로, 500㎕의 100mM KH2PO4(pH 7.5) 완충용액에 0.6mM NADH와 50mM의 포름알데히드를 첨가한 후, 상기 실시예 5-3에서 정제한 각 변이 MDH 10㎍를 가하여 2시간 동안 반응시키면서, 340nm에서 흡광도를 측정하여 반응물에 포함된 NADH의 함량변화를 산출하였다(도 4). 도 4는 실시예 5-3에서 정제된 각 변이 MDH의 환원활성의 반응시간의 경과에 따른 변화를 나타내는 그래프이다. 도 4에서 보듯이, 변이체 4 내지 9에서 발현된 변이 MDH(서열번호 5 내지 10) 중에서 변이체 9에서 발현된 변이 MDH(서열번호 10)를 제외한 나머지 5종의 변이 MDH(서열번호 5 내지 9)는 모두 야생형 MDH(서열번호 1) 및 변이체 1에서 발현된 변이 MDH(서열번호 2) 보다도 우수한 환원활성을 나타냄을 확인하였다. 특히, 상기 5종의 변이 MDH(서열번호 5 내지 9) 중에서도 서열번호 5의 변이 MDH가 가장 우수한 환원활성을 나타낸 반면, 서열번호 10의 변이 MDH는 야생형 MDH 보다도 낮은 수준의 환원활성을 나타냄을 확인하였다.Specifically, 0.6mM NADH and 50mM formaldehyde were added to 500µl of 100mM KH 2 PO 4 (pH 7.5) buffer, followed by adding 10 µg of MDH purified in Example 5-3 for 2 hours. While reacting, the absorbance was measured at 340 nm to calculate the change in content of NADH contained in the reactants (FIG. 4). Figure 4 is a graph showing the change with the reaction time of the reduction activity of each variant MDH purified in Example 5-3. As shown in Figure 4, among the variant MDH (SEQ ID NOs: 5 to 10) expressed in variants 4 to 9 except for the variant MDH (SEQ ID NO: 10) expressed in variant 9 (SEQ ID NOs: 5 to 9) Were found to show better reducing activity than the wild type MDH (SEQ ID NO: 1) and variant MDH (SEQ ID NO: 2) expressed in Variant 1. In particular, among the five mutant MDHs (SEQ ID NOs: 5 to 9), the mutated MDH of SEQ ID NO: 5 showed the best reducing activity, whereas the mutated MDH of SEQ ID NO: 10 showed a lower level of reducing activity than the wild type MDH. It was.
또한, 반응액에 포함된 보조인자(NADH)가 반으로 감소되는데 소요되는 시간을 기준으로, 상기 서열번호 5의 변이 MDH는 야생형 MDH의 환원활성의 약 2배에 달하는 환원활성을 나타냄을 확인하였다.In addition, based on the time taken for the cofactor (NADH) contained in the reaction solution to be reduced by half, it was confirmed that the mutated MDH of SEQ ID NO: 5 exhibits a reducing activity approximately twice that of the wild type MDH. .

Claims (12)

  1. 서열번호 1의 아미노산 서열로 구성된 야생형 메탄올 탈수소화 효소(MDH)에 변이가 도입되어, 상기 MDH 보다 환원활성이 증대된, 변이 메탄올 탈수소화 효소.The mutant methanol dehydrogenase, wherein the mutation is introduced into the wild type methanol dehydrogenase (MDH) consisting of the amino acid sequence of SEQ ID NO: 1, the reducing activity is increased than the MDH.
  2. 제1항에 있어서,The method of claim 1,
    서열번호 2 내지 9로 구성된 군으로부터 선택되는 아미노산 서열로 구성되는 것인 변이 메탄올 탈수소화 효소.A mutated methanol dehydrogenase, comprising an amino acid sequence selected from the group consisting of SEQ ID NOs: 2-9.
  3. 제1항 또는 제2항의 변이 메탄올 탈수소화 효소를 코딩하는 폴리뉴클레오티드.A polynucleotide encoding the variant methanol dehydrogenase of claim 1.
  4. 제3항에 있어서,The method of claim 3,
    서열번호 12 내지 19로 구성된 군으로부터 선택되는 뉴클레오티드 서열을 포함하는 폴리뉴클레오티드.A polynucleotide comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs: 12-19.
  5. 제3항의 폴리뉴클레오티드를 포함하는 발현벡터.An expression vector comprising the polynucleotide of claim 3.
  6. 제5항의 발현벡터가 도입되어 형질전환된 형질전환체.A transformant transformed by introducing the expression vector of claim 5.
  7. (a) 제6항의 형질전환체를 배양하여 배양물을 수득하는 단계; 및, (a) culturing the transformant of claim 6 to obtain a culture; And,
    (b) 상기 배양물로부터 제1항의 변이 메탄올 탈수소화 효소를 회수하는 단계를 포함하는, 제1항의 변이 메탄올 탈수소화 효소의 제조방법.(b) recovering the mutated methanol dehydrogenase of claim 1 from the culture, the method of producing the mutated methanol dehydrogenase of claim 1.
  8. (a) 제1항 또는 제2항의 변이 메탄올 탈수소화 효소를, 포름알데히드 및 전자공여체를 포함하는 혼합물에 가하여 반응시켜서 반응산물을 수득하는 단계; 및(a) reacting the mutated methanol dehydrogenase of claim 1 or 2 with a mixture comprising formaldehyde and an electron donor to obtain a reaction product; And
    (b) 상기 반응산물로부터 메탄올을 회수하는 단계를 포함하는, 메탄올의 생산방법.(b) recovering methanol from the reaction product.
  9. 제8항에 있어서,The method of claim 8,
    상기 전자공여체는 NADH인 것인 방법.Wherein said electron donor is NADH.
  10. 제8항에 있어서,The method of claim 8,
    상기 혼합물은 반응완충액을 추가로 포함하는 것인 방법.Wherein said mixture further comprises a reaction buffer.
  11. 제10항에 있어서,The method of claim 10,
    상기 반응완충액은 중성의 인산염 완충액인 것인 방법.The reaction buffer is a neutral phosphate buffer.
  12. 포름알데히드로부터 메탄올을 생산하기 위한 제1항의 변이 메탄올 탈수소화 효소의 용도.Use of the mutated methanol dehydrogenase of claim 1 for producing methanol from formaldehyde.
PCT/KR2015/001912 2014-02-27 2015-02-27 Methanol dehydrogenase variant exhibiting increased reduction activity WO2015130119A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020140023414A KR20150101752A (en) 2014-02-27 2014-02-27 Mutated methanol dehydrogenase having improved reduction activity
KR10-2014-0023414 2014-02-27

Publications (1)

Publication Number Publication Date
WO2015130119A1 true WO2015130119A1 (en) 2015-09-03

Family

ID=54009368

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/001912 WO2015130119A1 (en) 2014-02-27 2015-02-27 Methanol dehydrogenase variant exhibiting increased reduction activity

Country Status (2)

Country Link
KR (1) KR20150101752A (en)
WO (1) WO2015130119A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013110797A1 (en) * 2012-01-25 2013-08-01 Sinvent As Novel methanol dehydrogenase enzymes from bacillus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013110797A1 (en) * 2012-01-25 2013-08-01 Sinvent As Novel methanol dehydrogenase enzymes from bacillus

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
DATABASE NCBI [O] 16 October 2013 (2013-10-16), XP055220847, Database accession no. P31005.3 *
HEKTOR, HARM J. ET AL.: "Identification of a magnesium-dependent NAD (P)(H)-binding domain in the nicotinoprotein methanol dehydrogenase from Bacillus methanolicus", JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 277, no. 49, 2002, pages 46966 - 46973, XP055220654, ISSN: 0021-9258 *
KROG, ANNE ET AL.: "Functional characterization of key enzymes involved in L-glutamate synthesis and degradation in the thermotolerant and methylotrophic bacterium Bacillus methanolicus", APPLIED AND ENVIRONMENTAL MICROBIOLOGY, vol. 79, no. 17, 2013, pages 5321 - 5328, XP055220651, ISSN: 0099-2240 *
SUNG, BONG HYUN ET AL.: "Development of improved methanol dehydrogenases using directed evolution and biological methanol sensor system for the elimination of formaldehyde", BIOBRICKS FOUNDATION SB6.0 CONFERENCE, vol. 31, 2013, pages s189, XP055220648, ISSN: 1871-6784 *

Also Published As

Publication number Publication date
KR20150101752A (en) 2015-09-04

Similar Documents

Publication Publication Date Title
WO2018043856A1 (en) Novel promoter and use thereof
CA3095659C (en) Isopropylmalate synthase variant and a method of producing l-leucine using the same
EP3250692A1 (en) Novel promoter and uses thereof
WO2019160301A1 (en) Modified polypeptide with attenuated activity of citrate synthase and method for producing l-amino acids using same
US7410789B2 (en) Process for the fermentative production of S-adenosylmethionine
WO2020122505A1 (en) Mutant strain having enhanced l-glutamic acid producing ability, and l-glutamic acid preparation method using same
WO2014208970A1 (en) Transketolase gene promoter mutant and use thereof
WO2023158175A1 (en) Novel transport protein variant and method for producing l-aromatic amino acid using same
WO2015009074A2 (en) Novel mutant ornithine decarboxylase protein and use thereof
WO2016182386A1 (en) Method for preparing cinnamaldehyde
WO2018093033A1 (en) L-lysine producing microorganism of genus corynebacterium, and method for producing l-lysine using same
WO2020067618A1 (en) L-amino acid-producing microorganism exhibiting increased α-glucosidase activity, and l-amino acid production method using same
WO2021125494A1 (en) Multidrug efflux pump variant, polynucleotide coding variant, microorganism comprising variant, and method for producing violacein or deoxyviolacein using same
WO2015130119A1 (en) Methanol dehydrogenase variant exhibiting increased reduction activity
WO2022240071A1 (en) Recombinant microorganism for producing carnosine, histidine and beta-alanine and method for producing carnosine, histidine and beta-alanine by using same
WO2021125493A1 (en) Microorganism comprising genetic modification that increases activity of multidrug transporter, and method for producing tryptophan metabolites by using same
WO2017065529A1 (en) O-acetylhomoserine sulfhydrylase variant and method for producing l-methionine using same
WO2021125867A1 (en) Microorganism for producing compound and compound production method using same
WO2021071318A1 (en) Thermostable phospholipase a2 and use thereof
KR20210146670A (en) Novel L-tyrosine exporter variant and the method of producing L-tyrosine using the same
WO2018016873A1 (en) Microorganism having activity of acyltransferase and use thereof
HUT69769A (en) Recombinant dna compounds and expression vectors encoding para-nitrobenzyl esterase activity from bacillus
WO2023158176A1 (en) Novel stress protein variant, and method for producing l-aromatic amino acid using same
WO2024090884A1 (en) Novel phenylalanine:h+ symporter phep variant, and method for producing l-aromatic amino acids using same
WO2021133030A1 (en) Microorganism for producing l-amino acid having increased cytochrome c activity, and l-amino acid production method using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15755649

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15755649

Country of ref document: EP

Kind code of ref document: A1