WO2015129970A1 - Ft gtl apparatus and method for producing single synthetic crude oil - Google Patents

Ft gtl apparatus and method for producing single synthetic crude oil Download PDF

Info

Publication number
WO2015129970A1
WO2015129970A1 PCT/KR2014/007012 KR2014007012W WO2015129970A1 WO 2015129970 A1 WO2015129970 A1 WO 2015129970A1 KR 2014007012 W KR2014007012 W KR 2014007012W WO 2015129970 A1 WO2015129970 A1 WO 2015129970A1
Authority
WO
WIPO (PCT)
Prior art keywords
crude oil
synthetic crude
gtl
producing
unit
Prior art date
Application number
PCT/KR2014/007012
Other languages
French (fr)
Korean (ko)
Inventor
권혁
문영식
최정호
김원석
박태신
고글랜
덴흠더글라스
Original Assignee
대우조선해양 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020140024695A external-priority patent/KR101562823B1/en
Priority claimed from KR1020140059689A external-priority patent/KR101597557B1/en
Application filed by 대우조선해양 주식회사 filed Critical 대우조선해양 주식회사
Priority to JP2016552950A priority Critical patent/JP2017512225A/en
Priority to US15/122,140 priority patent/US20160369173A1/en
Priority to EP14883641.4A priority patent/EP3112250A4/en
Publication of WO2015129970A1 publication Critical patent/WO2015129970A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G5/00Recovery of liquid hydrocarbon mixtures from gases, e.g. natural gas
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • C10G2/30Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
    • C10G2/31Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen thermal, non catalytic conversion
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • C10G2/30Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
    • C10G2/32Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/58Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G47/00Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G49/00Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G67/00Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1025Natural gas
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4037In-situ processes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4062Geographical aspects, e.g. different process units form a combination process at different geographical locations

Definitions

  • the present invention relates to a Fischer-Tropsch (FT) Gas-to-Liquid (FT) device and method for producing a single synthetic crude oil, and in particular, to GTL FPSO (Floated Production, Storage, and Off-loading) ),
  • FT wax is a low-level, general grade to fluidize FT wax, which is difficult to transport due to its solid state in the syncrude products (FT naphtha, FT heavy oil, FT wax) as intermediate products of the chemical process.
  • the FT GTL process involves the use of a high pressure catalytic reactor to convert syngas, a mixture of hydrogen and carbon monoxide, including small amounts of methane and carbon dioxide, into large hydrocarbon molecules.
  • the FT synthesis reaction in the Fischer-Tropsch synthesis reactor is as follows.
  • the catalyst iron oxide-based and cobalt-based materials are used, the temperature is 200 to 350 ° C., and the pressure is 10 to 30 bar. This reaction is a moderate exothermic reaction, and the exothermic control through heat exchange is important for improving the catalytic reaction rate, which is a key element of the reactor design.
  • the FT product produced from the catalytic reactor consists of unreacted syngas, methane, ethane, LPG (C3 to C4), naphtha (C5 to C10), heavy oil (C11 to C22) and wax (> C22).
  • FT essentially produces hundreds of components in the carbon numbers 1 to 40 and above.
  • the relative amount of such material in the raw product depends mainly on the reactor reaction temperature and the catalyst used.
  • the catalyst used there are three basic FT operating systems. That is, high temperature FT reaction using iron catalyst (HTFT-Fe), low temperature FT reaction using iron catalyst (LTFT-Fe), low temperature FT reaction using cobalt catalyst (LTFT-Co).
  • FPSO is a floating crude oil production storage and unloading facility, produces and stores the crude oil floating on the sea and serves to unload crude oil transportation means such as tankers.
  • the FPSO includes drilling equipment for drilling crude oil and an oil / gas separation device for separating crude oil and associated gas in a glass oil state.
  • the FPSO also includes storage facilities for storing crude oil and unloading means for transferring crude oil to crude oil transportation means.
  • FPSO-GTL and FPSO-DME which is used as a raw material of the GTL process, are manufactured as a synthesis gas on the ship, and the accompanying gas of the oil field is applied.
  • natural gas extracted directly from the marginal gas field can be used in the FPSO-GTL process for producing synthetic fuel, or in the FPSO-LNG process for direct liquefaction.
  • Patent Document 1 discloses an FPSO facility including a separator for glacier oil and an oil / gas separation unit, and a direct method including a reforming reactor, a dimethylether reactor, a CO2 subsea storage device, and a power generation system for internal power generation.
  • An FPSODME apparatus for manufacturing an offshore DME comprising a hydrogen separator and a carbon dioxide separation unit between the reforming reactor and the dimethyl ether reactor, wherein the dimethyl ether reactor is combined with a carbon dioxide separator to generate the separated carbon dioxide and the internal power generation system.
  • an offshore oilfield FPSO-DME device configured to recycle water and carbon dioxide back to the reforming reactor and to store excess carbon dioxide on the seabed.
  • Patent Document 2 the FPSO facility comprising a glass oil separator for separating the oil from the oil and the accompanying gas and crude oil, oil / gas separation unit for separating the separated crude oil and oil; A reforming reactor for receiving a gas from which the carbon compound having 1 to 4 carbon atoms separated from the gas supplied from the FPSO facility is removed from the H 2 S component as a sulfur compound through a desulfurizer; Liquid carbon compound production apparatus for producing a liquid carbon compound using the synthesis gas passed through the reforming reactor; An upgraded reactor for supplying separated hydrogen by converting the synthesis gas passed through the reforming reactor into a water gas conversion reaction; A CO2 subsea storage device for supplying surplus in carbon dioxide other than hydrogen separated from syngas; An FPSO-GTL apparatus including an internal power generation system for internal power generation of an FPSO-GTL apparatus, wherein a hydrogen separator and a carbon dioxide separation unit are configured between the reforming reactor and the liquid carbon compound producing apparatus, and the liquid carbon compound is produced.
  • a reforming reactor for
  • a water separator is constructed between the apparatus and the upgrading reactor, the offshore oil configured to recycle the separated water and carbon dioxide and the water and carbon dioxide produced in the internal power generation system back to the reforming reactor and to store excess carbon dioxide in the seabed.
  • a dedicated FPSO-GTL device is disclosed.
  • Synthetic crude oil is an artificial fuel made from natural gas, coal, and bio raw materials in addition to petroleum. In Korea, it is being developed as a next-generation clean fuel compound technology at major large corporations and research institutes under the government's initiative. As the high oil price trend is intensifying in the future, demand for GTL clean fuel is expected to soar.
  • GTL FPSO In the same vein, the development of GTL FPSO to implement land technologies at sea is being promoted, but there are still many problems to be solved before commercialization.
  • One of the problems inherent in the GTL FPSO includes the issue of "guaranteed liquidity for the storage and transportation of GTL synthetic crude oil". This is due to the high viscosity of the synthetic oil produced in GTL FPSO containing a large amount of wax. Therefore, the liquidity of synthetic crude oil is recognized as one of the key factors to secure efficient operation and economic feasibility of GTL FPSO.
  • Korean Patent Publication No. 0339993 includes contacting tar / sludge with an effective amount of a surfactant and an effective amount of an inorganic acid and / or a carrier, wherein the inorganic acid Provides a method of washing or fluidizing tar / sludge from vessels / tubes which are sulfuric acid, phosphoric acid or mixtures thereof. Accordingly, the effect of removing tar / sludge in a form that can be easily transported, handled and pumped is expected.
  • an object of the present invention is to improve the economics of a series of processes from production / storage / unloading / transport / separation by securing the fluidity by producing and mixing while controlling the wax components of the synthetic crude oil produced in GTL FPSO It is to provide a wax component control device for GTL FPSO synthetic crude oil.
  • FT Fischer-Tropsch
  • FPSO Floated Production, Storage, and Off-loading
  • a gas injection stabilization unit that performs stabilization on the produced natural gas to generate natural gas condensate
  • a single FT GTL apparatus for producing crude oil comprising a reforming unit for reforming natural gas processed in the gas injection stabilization unit to produce a synthetic crude oil product.
  • a product processing unit for mixing the natural gas condensate and the synthetic crude product, it is possible to produce a single synthetic crude oil.
  • the gas injection stabilization unit may include a first three-phase separator injecting CH 1 to 40 and H 2 O to separate CH 1 to 4 and the natural gas condensate (CH 5 to 40) and water (H 2 O). .
  • the synthetic crude oil product is FT naphtha, FT heavy oil, FT wax
  • the reforming unit is a FT reactor for producing the FT wax and a second mixture for producing a first mixture of the FT naphtha and FT heavy oil mixed.
  • Three-phase separators are preferred.
  • the second three-phase separator may separate the residual gas, H 2 O, and the first mixture by heat-exchanging the synthesis gas treated in the FT reactor in a first heat exchanger.
  • the product processing unit stores the first mixture, FT naphtha, a second mixture of FT heavy oil and FT wax, a product mixing tank for mixing natural gas condensate, and a GTL liquid mixed in the product mixing tank. It may include a storage tank.
  • the product processing unit is a second heat exchanger that heat exchanges for the FT wax produced in the FT reactor, a hydrocracking reaction or mild hydroisomerization reaction for the FT wax heat exchanged in the second heat exchanger.
  • a reactor for producing the second mixture through may further include a separator for separating the unreacted residual gas in the second mixture.
  • the product processing unit further comprises a first compressor for compressing residual gas and a second compressor for adding hydrogen, wherein the unreacted residual gas separated in the separator is separated from the first compressor and the second compressor. It may be supplied to the second heat exchanger via a compressor.
  • a residual gas separation unit for separating the residual gas and the first mixture of FT naphtha and FT heavy oil mixed in the synthetic crude oil
  • the first mixture separated in the residual gas separation unit may be supplied to the product processing unit.
  • the reforming unit F-T synthesis unit for producing a synthesis gas generated from natural gas as a synthetic oil; And a control unit for controlling the F-T synthesis unit to maintain the wax component of the synthetic crude oil modified with the synthetic oil at a set value.
  • the FT synthesis unit comprises an LT-FT reactor and a HT-FT reactor in series or in parallel, and the flow rate of the LT-FT reactor and the HT-FT reactor in response to the composition of the synthetic crude oil generated downstream I can regulate it.
  • control unit may include a wax detection unit for detecting the wax content of the synthetic crude oil, and an unreacted gas detection unit for detecting the content of the unreacted gas.
  • control unit may be controlled to keep the wax component to a minimum within the limit of keeping the unreacted gas within the set value.
  • FT Fischer-Tropsch
  • FT Gas-to-Liquid
  • step (c) may be carried out by wax hydrocracking or mild hydrogenation isomerization.
  • the single synthetic crude oil produced in step (d) can be stored and transported without heat treatment.
  • the method may further comprise (e) refining the single synthetic crude oil in a land refining plant.
  • the FT GTL apparatus and method for producing a single synthetic crude oil according to the present invention through simple installation of equipment upgrading equipment, it is possible to save the deck space in the FPSO, to reduce the production cost, and to store the product in the FPSO Only one tank is needed, and there is no need for additional heat supply to move it to storage and pumps, resulting in lower transportation costs.
  • FT GTL apparatus and method for producing a single synthetic crude oil after mixing FT naphtha and FT heavy oil, a portion of the FT wax can be transported at a low level so that the synthetic crude oil can be transported without heating.
  • a general hydrocracking reaction or weak hydroisomerization reaction the complexity, space and cost can be reduced when compared with the entire refinery having high pressure hydrocracking, and the amount of hydrogen used compared with the entire refinery. You can also achieve the effect.
  • the present invention has the effect of accumulating the commercialization technology of the related field by improving the economics for a series of processes ranging from production / storage / unloading / transport / separation by securing the fluidity of the synthetic crude oil produced in GTL FPSO.
  • FIG. 1 is an overall configuration diagram of an FT GTL apparatus for producing a single synthetic crude oil according to a first embodiment of the present invention.
  • FIG. 2 is a diagram illustrating a coupling relationship between main units of FIG. 1.
  • FIG. 3 is a flowchart illustrating a FT GTL method for producing a single synthetic crude oil according to the first embodiment of the present invention.
  • FIG. 5 is a view for explaining the production / storage / unloading / transport / separation of a single synthetic crude oil according to a first embodiment of the present invention.
  • FIG. 6 is a flowchart illustrating the main process of the GTL FPSO according to the second embodiment of the present invention.
  • FIG. 7 is a configuration diagram showing main parts of the F-T synthesis unit of FIG. 6.
  • FIG. 7 is a configuration diagram showing main parts of the F-T synthesis unit of FIG. 6.
  • GTL FPSO is an offshore structure that can produce clean energy at sea by fusing GTL with floating oil production storage and unloading facilities (FPSO).
  • the GTL process is a reforming process that generates syngas (H2, CO) from natural gas (NG), a FT (Fischer-Tropsch) process that generates synthetic oil from syngas, and synthetic crude oil as the desired carbon number fuel. Conversion to an upgrading process.
  • the first embodiment of the present invention is for producing a synthetic crude oil product that can be transported in a single FT GTL FPSO for this purpose. That is, it is a new concept to produce a single mixed FT synthetic crude that can be stored and transported without heat treatment with a mixture of FT naphtha, FT heavy oil and treated FT wax.
  • the single mixed FT synthetic crude oil concept requires the use of suitable catalysts, reactor designs, and operating systems for wax hydrocracking or mild hydroisomerization.
  • This single mixed FT synthetic crude oil concept can reduce the cost and space for FT product processing and simplify the storage and transportation conditions for FT GTL FPSO products.
  • synthetic crude oil produced from multiple FT GTL FPSOs is transported and processed in a single coastal refining plant. It can also be produced as a commercially available vehicle fuel by mixing and / or further refinement with common crude oil products. This concept is useful because it allows the entire system to benefit from economies of scale in coastal refining plants, while operating carrier fleets more efficiently and minimizing space and capital requirements for FPSOs.
  • a part of the FT wax is mixed with a low level of general hydrocracking reaction or weak hydroisomerization reaction so that the synthetic crude oil can be transported without heating.
  • the concept involves the use of catalysts and operating systems that do not produce the final FT product, but transforms the blended crude oil into sufficient storage and transport without heat treatment. It also does not involve diluting (or mixing) naphtha and heavy oil with the treated wax, but involves the use of different catalysts for the purpose of producing multiple products.
  • This concept involves hydrocracking FT wax to raise the pour point freezing point without intentionally modifying other properties, only without hydrogenation or intentionally attempting to modify other properties.
  • the size, space and cost of processing FPSO onboard FT products will be reduced while simplifying product storage and transportation.
  • FIG. 1 is an overall configuration diagram of an FT GTL apparatus for producing a single synthetic crude oil according to a first embodiment of the present invention.
  • the FT GTL apparatus for producing a single synthetic crude oil according to the first embodiment of the present invention is an FT GTL apparatus for producing a single synthetic crude oil in FPSO, as shown in FIG. 10), desulfurization unit 20, natural gas saturation and pre-reforming unit 30, small reforming unit 40, syngas conditioning unit 50, FT synthesis unit 60, a tail gas separation unit 70, and a production treatment unit 80.
  • the gas injection stabilization unit 10 performs stabilization on the produced crude natural gas (RAW NG) to generate natural gas, natural gas condensate and water (H 2 O), and the natural gas condensate is processed into a product. Supplied to the unit 80.
  • the desulfurization unit 20 removes sulfur contained in natural gas and supplies crude natural gas to the natural gas saturation and preliminary reforming unit 30.
  • a portion of the crude natural gas pretreated in the natural gas saturation and preliminary reforming unit 30 is used as a gas for fuel, and the remaining natural gas is heated by steam and supplied to the reforming unit 40 and discharged to the saturator.
  • the reforming unit 40 reforms the natural gas supplied through steam in the natural gas saturation and preliminary reforming unit 30 to crude syngas (RAW SYNGAS) to produce a synthetic crude product.
  • the gas not processed in the reforming unit 40 is supplied to the natural gas saturation and preliminary reforming unit 30 as fuel gas.
  • the crude syngas treated in the reforming unit 40 is generated as syngas SYNGAS in the syngas adjusting unit 50, and hydrogen (H2) generated in this process is fuel gas, and the reforming unit 40 and product processing. Supplied to the unit 80.
  • the syngas condensate produced in the syngas adjusting unit 50 is supplied or discharged to the natural gas saturation and preliminary reforming unit 30.
  • the syngas supplied from the syngas adjusting unit 50 is separated into a first mixture of FT naphtha and FT heavy oil and FT wax through the FT synthesis unit 60 and supplied to the product processing unit 80.
  • the residual gas separation unit 70 separates a residual gas and a first mixture of FT naphtha and FT heavy oil from the syngas supplied from the FT synthesis unit 60, and the first mixture is a product processing unit 80.
  • the remaining gas is partially discharged or supplied to the natural gas saturation and preliminary reforming unit 30 for recycling.
  • the product processing unit 80 is supplied from the natural gas condensate supplied from the gas injection stabilization unit 10, the first mixture and FT wax supplied from the FT synthesis unit 60, and the residual gas separation unit 70.
  • the first mixture is mixed to produce a single synthetic crude oil according to the invention.
  • the boiler feed water (BFW) for forming steam is supplied to the reforming unit 40 and the syngas adjusting unit 50.
  • FIG. 2 is a diagram illustrating a coupling relationship between main units of FIG. 1.
  • the gas injection stabilization unit 10 injects CH 1 to 40 and H 2 O to separate CH 1 to 4 and the natural gas condensate (CH 5 to 40) and water (H 2 O).
  • a phase separator 41 The natural gas condensate (CH5 ⁇ 40) is supplied to the product processing unit 80, the water (H2O) is supplied to the natural gas saturation and preliminary reforming unit (30).
  • the reforming unit 40 includes an FT reactor 41 for producing FT wax in natural gas and a second three-phase separator 42 for producing a first mixture of the FT naphtha and FT heavy oil.
  • the second three-phase separator 42 heats the syngas treated in the FT reactor 41 in a first heat exchanger 43 to separate residual gas, H 2 O, and the first mixture.
  • the mixture is fed to the product processing unit 80.
  • the product processing unit 80 is supplied from the first mixture supplied from the second three-phase separator 42, the second mixture of FT naphtha, the FT heavy oil and the FT wax, and the gas injection stabilization unit 10.
  • the product mixing tank 81 for mixing the natural gas condensate, the storage tank 82 for storing the GTL liquid mixed in the product mixing tank 81, the heat exchanger for the FT wax produced in the FT reactor 41
  • a reactor 84 for producing the second mixture through a hydrocracking reaction or a mild hydroisomerization reaction with respect to the FT wax heat exchanged in the second heat exchanger 83 and the second heat exchanger 83;
  • a separator 85 for separating unreacted residual gas from the second mixture.
  • the single synthetic crude oil product according to the invention is a mixture of FT naphtha, FT heavy oil and FT wax.
  • the first mixture of FT naphtha and FT heavy oil, the second mixture of FT naphtha, FT heavy oil and FT wax, and natural gas condensate are mixed and stored in the product mixing tank 81 as described above. It is a product stored in the tank 82.
  • a single synthetic crude oil product manufactured as described above requires only one tank, storage tank 82, for storage of the product in the FPSO, and requires no additional heat supply to move to storage and pumps, thereby reducing transportation costs. can do.
  • the product processing unit 80 further includes a first compressor 86 for compressing the residual gas separated in the separator 85 and a second compressor 87 for adding hydrogen, the separator 85
  • the unreacted residual gas separated in is supplied to the second heat exchanger 83 via the first compressor 86 and the second compressor 87.
  • FIG 3 is a process chart for explaining a single synthetic crude oil production FT GTL method according to a first embodiment of the present invention
  • Figure 4 is a production / storage / unloading / transport of a single synthetic crude oil according to a first embodiment of the present invention It is a figure for demonstrating / separation.
  • the FT GTL method for producing a single synthetic crude oil according to the first embodiment of the present invention is a FT GTL method for producing a single synthetic crude oil in FPSO.
  • natural gas is stabilized in the gas injection stabilization unit 10 to generate natural gas condensate. (S10).
  • the sulfur contained in the natural gas is then removed in the desulfurization unit 20 and syngas is produced through the natural gas saturation and preliminary reforming unit 30 and the small reforming unit 40.
  • the reforming unit 40 generates a first mixture and FT wax in which FT naphtha and FT heavy oil are mixed through the synthesis gas (S20).
  • the product processing unit 80 performs a wax hydrocracking reaction or a mild hydroisomerization reaction on the FT wax to generate a second mixture of FT naphtha, FT heavy oil, and FT wax (S30).
  • the product processing unit 80 mixes the natural gas condensate produced in step S10, the first mixture generated in step S20, and the second mixture generated in step S30 to produce a single synthetic crude oil ( S40).
  • the single synthetic crude oil produced in step S40 is stored and transported without heat treatment, as shown in FIG. 4 (S50).
  • the single synthetic crude oil transported in the step S50 is purified in a land refining plant (S60).
  • the FT synthesis unit 600 is installed to generate syngas generated from natural gas as synthetic oil.
  • the GTL main processes include a natural gas saturation and pre-reforming unit 300, a reforming unit 400, a syngas control unit 500, a syngas control unit 500, and an FT synthesis unit 600.
  • the FT synthesis unit 600 serves to convert syngas into synthetic oil, and the product processing unit 800 plays a role of generating synthetic crude oil by upgrading the synthetic oil.
  • Syngas generated in excess in the FT synthesis unit 600 is classified in the residual gas separation unit 700 and partly recycled to the preforming unit 20.
  • Synthetic crude oil produced via the product processing unit 800 is stored in a tank.
  • the synthetic crude oil produced by GTL FPSO has a high viscosity containing a large amount of wax (Wax), so it must secure the fluidity for storage, unloading, transport. As the wax approaches 100%, it solidifies at room temperature / atmospheric pressure, making storage and unloading impossible.
  • Wax wax
  • control unit 900 controls the FT synthesis unit 600 to maintain the wax component of the synthetic crude oil modified with the synthetic oil at the set value.
  • the control unit 900 determines the state of the synthetic crude oil stored in the tank and performs an algorithm for optimally maintaining the wax component.
  • the FT synthesis unit 600 includes the LT-FT reactor 620 and the HT-FT reactor 640 in series or in parallel, and the The flow rate of the LT-FT reactor 620 and the HT-FT reactor 640 is controlled according to the composition.
  • the FT synthesis unit 600 includes an HT-FT reactor 640 downstream of the LT-FT reactor 620.
  • LT-FT reactor 620 is operating temperature range of 220 ⁇ 250 °C mainly synthesized in a liquid phase such as heavy oil or wax
  • HT-FT reactor 640 is operating temperature range of 330 ⁇ 350 °C mainly gasoline, naphtha Synthesize in the same vapor phase as
  • reference numeral 48 is a separator for removing water and the like after the synthesis reaction.
  • the mark on the right side shows that about 50% of the wax is included in the one-step reaction through the LT-FT reactor 620, but the mark on the left shows the two-step reaction through the HT-FT reactor 640.
  • the wax was later reduced to about 10% and the naphtha content appeared to increase.
  • the LT-FT reactor 620 may be disposed downstream of the HT-FT reactor 640 according to the characteristics of the synthetic crude oil to be produced. For example, if you want to produce a lot of light synthetic crude oil such as gasoline, naphtha, diesel.
  • the control unit 900 includes a wax detector 920 for detecting wax content of synthetic crude oil, an unreacted gas detector 940 and a driver for detecting the content of unreacted gas. 960 is provided.
  • the wax detector 920 and the unreacted gas detector 940 are not necessarily limited to hardware such as a specific sensor, and may include a database and software of content changes previously accumulated corresponding to the components of synthetic crude oil.
  • the control unit 900 is characterized in that the control to keep the wax component to a minimum within the limit to keep the unreacted gas within the set value.
  • Minimizing the wax component of the synthetic crude oil, as shown in Figure 3 causes an increase in the component of the unreacted gas, such as LPG, resulting in a decrease in transport efficiency.
  • the unreacted gas is controlled to maintain the optimum wax component within the range not exceeding the set value.
  • the wax component should be maintained within the range to ensure the fluidity of the synthetic crude oil.
  • the LT-FT reactor 620 and the HT-FT reactor 640 of the second embodiment of the present invention are both commercially available on land and have low risk when applied to the sea. As a result, there is no need to secure liquidity through an upgrading process that has not been verified at sea, and CAPEX and OPEX in the upgrading system can be reduced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

Disclosed are a Fischer-Tropsch (FT) gas-to-liquid (GTL) apparatus for producing single synthetic crude oil and an FT GTL method for producing single synthetic crude oil. The FT GTL apparatus for producing single synthetic crude oil of the present invention is an FT GTL apparatus for producing single synthetic crude oil from floated production, storage, and off-loading (FPSO), and characterized by comprising: a gas injection stabilization unit for performing stabilization on the produced natural gas to generate a natural gas condensate; and a modification unit for modifying the natural gas, which has been treated in the gas injection stabilization unit, to produce a synthetic crude oil product.

Description

단일 합성원유 생산용 FT GTL 장치 및 방법FT GTL Apparatus and Method for Single Synthetic Crude Oil Production
본 발명은 단일 합성원유 생산용 FT(Fischer-Tropsch) GTL(Gas-to-Liquid) 장치 및 방법에 관한 것으로, 특히 GTL FPSO(Floated Production, Storage, and Off-loading : 부유식 원유 생산 저장 하역 설비)에서 화학 공정의 중간결과물로 나오는 합성원유(syncrude)제품(FT 나프타, FT 중질유, FT 왁스) 중 고체 상태를 가지고 있어 수송이 어려운 FT 왁스를 유동화시키기 위해, FT 왁스의 일부를 낮은 수준의 일반적인 수소화 분해반응이나 약한 수소첨가 이성질화 반응을 사용하고, FT 나프타와 FT 중질유를 혼합하여 유체상태로 저장 및 수송하는 단일 합성원유 생산용 FT GTL 장치 및 방법에 관한 것이다.The present invention relates to a Fischer-Tropsch (FT) Gas-to-Liquid (FT) device and method for producing a single synthetic crude oil, and in particular, to GTL FPSO (Floated Production, Storage, and Off-loading) ), A part of the FT wax is a low-level, general grade to fluidize FT wax, which is difficult to transport due to its solid state in the syncrude products (FT naphtha, FT heavy oil, FT wax) as intermediate products of the chemical process. FT GTL apparatus and method for the production of a single synthetic crude oil using hydrocracking reaction or weak hydroisomerization reaction and mixing and storing FT naphtha and FT heavy oil in fluid state.
최근 석유 자원의 고갈에 따라 수송유, 연료유, 석유화학 제품을 생산할 수 있는 대체 자원의 활용이 요구되고 있다. 이러한 요구에 부합할 수 있는 대표적인 탄화수소 물질로는 그 매장량이 풍부한 석탄과 천연 가스가 있으며, 지구 온난화 방지를 위한 CO2 저감이란 측면에서 바이오매스(Biomass)나 폐기물 등 친환경적인 대체 탄화 수소원이 있다. 이러한 대체 탄화 수소원으로부터, 가솔린이나 디젤과 같은 수송유, 알콜, 왁스, 윤활기유, 올레핀 등의 화학제품을 생산할 수 있는 방법은 석탄의 간접 액화(CTL, Coal-to-Liquid), 천연가스로부터 합성 유분 생산(GTL), 바이오매스의 간접 액화(Biomass-to-Liquid) 공정이 잘 알려져 있다.Recently, due to the depletion of petroleum resources, the use of alternative resources to produce transportation oil, fuel oil, petrochemical products is required. Representative hydrocarbon materials that can meet these demands are rich reserves of coal and natural gas, and environmentally friendly alternative hydrocarbon sources such as biomass or waste in terms of CO2 reduction to prevent global warming. From these alternative hydrocarbon sources, chemicals such as transport oils such as gasoline and diesel, alcohols, waxes, lube base oils, and olefins can be produced from indirect liquefaction of coal (CTL, Coal-to-Liquid) and natural gas. Synthetic oil production (GTL) and Biomass-to-Liquid processes are well known.
FT GTL 공정은 높은 압력의 촉매반응기를 이용하여 적은 양의 메탄과 이산화탄소를 포함하는 수소와 일산화탄소의 혼합상태인 합성가스를 큰 탄화수소 분자들로 전환하는 것을 포함한다. 즉 피셔-트롭시(Fischer-Tropsch) 합성 반응기에서 FT합성 반응은 다음과 같다.The FT GTL process involves the use of a high pressure catalytic reactor to convert syngas, a mixture of hydrogen and carbon monoxide, including small amounts of methane and carbon dioxide, into large hydrocarbon molecules. In other words, the FT synthesis reaction in the Fischer-Tropsch synthesis reactor is as follows.
CO + 2H2 → -CH2 + H2O △H(227℃) = -165 kJ/molCO + 2H 2 → -CH 2 + H 2 O ΔH (227 ° C) = -165 kJ / mol
메탄 생성Methane generation
CO + 3H2 → CH4 + H2O △H(227℃) = -215 kJ/molCO + 3H 2 → CH 4 + H 2 O ΔH (227 ° C) = -215 kJ / mol
수성 가스 전환(water gas shift)Water gas shift
CO + H2O ↔ CO2 + H2 △H(227℃) = -40 kJ/molCO + H 2 O ↔ CO 2 + H 2 △ H (227 ° C) = -40 kJ / mol
부다 반응(boudouard reaction)Boudouard reaction
2CO ↔ C + CO2 △H(227℃) = -134 kJ/mol2CO ↔ C + CO 2 △ H (227 ℃) = -134 kJ / mol
여기서 촉매는 철 산화물 계와 코발트 계 등이 사용되고, 온도는 200 내지 350℃, 압력은 10 내지 30 bar이다. 이러한 반응은 중간 정도의 발열 반응으로, 촉매 반응 속도를 향상시키기 위해서는 열교환을 통한 발열 제어가 중요하며, 이는 반응기 설계의 핵심요소이다.As the catalyst, iron oxide-based and cobalt-based materials are used, the temperature is 200 to 350 ° C., and the pressure is 10 to 30 bar. This reaction is a moderate exothermic reaction, and the exothermic control through heat exchange is important for improving the catalytic reaction rate, which is a key element of the reactor design.
촉매 반응기로부터 생성된 FT 생성물은 미반응 합성가스, 메탄, 에탄, LPG(C3~C4), 나프타(C5~C10), 중질유(C11~C22), 왁스(>C22)로 구성된다. FT는 본질적으로 탄소번호 1부터 40 이상의 범위에서 수백 가지의 구성요소를 생성한다.The FT product produced from the catalytic reactor consists of unreacted syngas, methane, ethane, LPG (C3 to C4), naphtha (C5 to C10), heavy oil (C11 to C22) and wax (> C22). FT essentially produces hundreds of components in the carbon numbers 1 to 40 and above.
미처리된 생산물 안의 이와 같은 물질의 상대적인 양은 반응기 반응온도와 사용된 촉매에 주로 의존한다. 일반적으로, 3가지의 기본 FT 운영 체제가 있다. 즉, 철계 촉매를 사용하는 높은 온도 FT 반응(HTFT - Fe), 철계 촉매를 사용하는 낮은 온도 FT 반응(LTFT - Fe), 코발트계 촉매를 사용하는 낮은 온도 FT 반응(LTFT-Co)이다.The relative amount of such material in the raw product depends mainly on the reactor reaction temperature and the catalyst used. In general, there are three basic FT operating systems. That is, high temperature FT reaction using iron catalyst (HTFT-Fe), low temperature FT reaction using iron catalyst (LTFT-Fe), low temperature FT reaction using cobalt catalyst (LTFT-Co).
한편, FPSO는 부유식 원유 생산 저장 하역 설비로서, 해상에서 떠있는 상태로 원유를 생산하고 저장하며 유조선과 같은 원유 수송 수단에 하역하는 역할을 수행한다.On the other hand, FPSO is a floating crude oil production storage and unloading facility, produces and stores the crude oil floating on the sea and serves to unload crude oil transportation means such as tankers.
상기 FPSO는 원유를 시추하기 위한 시추 장비를 포함하며 글래시오일(glassy oil) 상태에서 원유(crude oil)와 수반 가스(associated gas)를 분리하기 위한 오일/가스 분리 장치를 포함한다. 또한 상기 FPSO는 원유를 저장할 수 있는 저장 설비와 원유 수송 수단으로 원유를 전송할 수 있는 하역 수단을 포함한다.The FPSO includes drilling equipment for drilling crude oil and an oil / gas separation device for separating crude oil and associated gas in a glass oil state. The FPSO also includes storage facilities for storing crude oil and unloading means for transferring crude oil to crude oil transportation means.
또 FPSO 공정에서 부수적으로 발생하는 수반 가스는 배출 연소시켜 대기중에 방출시키거나, 해저의 폐유정에 압축하여 재주입 시키고 있는 실정이다. 따라서, 상기 유전의 수반가스는 선상에서 합성가스를 제조한 다음, GTL 공정의 원료로 활용하는 FPSO-GTL과 FPSO-DME가 적용되고 있다. 또한 한계 가스전에서 직접 취출된 천연가스는 합성연료를 제조하는 FPSO-GTL 공정에 활용하거나, 직접액화시키는 FPSO-LNG 공정에 활용될 수 있다.In addition, the accompanying gas generated in the FPSO process is discharged and discharged into the atmosphere or compressed into a waste well on the seabed and re-injected. Therefore, FPSO-GTL and FPSO-DME, which is used as a raw material of the GTL process, are manufactured as a synthesis gas on the ship, and the accompanying gas of the oil field is applied. In addition, natural gas extracted directly from the marginal gas field can be used in the FPSO-GTL process for producing synthetic fuel, or in the FPSO-LNG process for direct liquefaction.
이러한 기술의 일 예가 하기 문헌 1 및 2 등에 개시되어 있다.Examples of such techniques are disclosed in Documents 1 and 2 below.
예를 들어, 하기 특허문헌 1에는 글레시 오일의 분리장치와 오일/가스 분리유닛을 포함하는 FPSO 설비와 개질 반응기, 디메틸에테르 반응기, CO2 해저 저장장치 및 내부 발전용 발전시스템을 포함하는 직접법에 의한 해상 DME 제조용 FPSODME장치로서, 상기 개질 반응기와 상기 디메틸에테르반응기 사이에는 수소 분리기와 이산화탄소 분리 유닛이 구성되고, 상기 디메틸에테르 반응기에는 이산화탄소 분리기가 결합되어, 분리된 이산화탄소 및 상기 내부 발전용 발전시스템에서 생성되는 물과 이산화탄소를 다시 개질 반응기로 재순환시키고 잉여의 이산화탄소는 해저에 저장하도록 구성된 해상유전용 FPSO-DME 장치에 대해 개시되어 있다.For example, Patent Document 1 below discloses an FPSO facility including a separator for glacier oil and an oil / gas separation unit, and a direct method including a reforming reactor, a dimethylether reactor, a CO2 subsea storage device, and a power generation system for internal power generation. An FPSODME apparatus for manufacturing an offshore DME, comprising a hydrogen separator and a carbon dioxide separation unit between the reforming reactor and the dimethyl ether reactor, wherein the dimethyl ether reactor is combined with a carbon dioxide separator to generate the separated carbon dioxide and the internal power generation system. Disclosed is an offshore oilfield FPSO-DME device configured to recycle water and carbon dioxide back to the reforming reactor and to store excess carbon dioxide on the seabed.
또 하기 특허문헌 2에는 유전에서 채취한 글래시 오일을 수반 가스와 원유로 분리하는 글레시 오일의 분리장치, 분리된 원유를 오일과 가스로 분리하는 오일/가스 분리 유닛을 포함하는 FPSO 설비; 상기 FPSO 설비에서 공급된 가스 중에서 분리한 탄소수 1-4의 탄소화합물을 탈황기를 통해 황화합물인 H2S 성분이 제거된 가스를 공급받는 개질 반응기; 개질 반응기를 거친 합성가스를 이용하여 액상 탄소화합물을 제조하는 액상 탄소화합물 제조장치; 개질 반응기를 거친 합성가스를 수성가스 전환 반응시켜서 분리된 수소가 공급되는 업그레이딩 반응기; 합성가스로부터 분리된 수소를 제외한 이산화탄소 중에 잉여분이 공급되는 CO2 해저 저장장치; FPSO-GTL 장치의 내부 발전을 위한 내부 발전용 발전시스템을 포함하는 FPSO-GTL 장치로서, 상기 개질 반응기와 상기 액상 탄소화합물 제조장치 사이에는 수소 분리기와 이산화탄소 분리 유닛이 구성되고, 상기 액상 탄소화합물 제조장치와 상기 업그레이딩 반응기 사이에는 물 분리기가 구성되어, 분리된 물과 이산화탄소 및 상기 내부 발전용 발전시스템에서 생성되는 물과 이산화탄소를 다시 개질 반응기로 재순환시키고 잉여의 이산화탄소는 해저에 저장하도록 구성된 해상유전용 FPSO-GTL 장치에 대해 개시되어 있다.In addition, Patent Document 2, the FPSO facility comprising a glass oil separator for separating the oil from the oil and the accompanying gas and crude oil, oil / gas separation unit for separating the separated crude oil and oil; A reforming reactor for receiving a gas from which the carbon compound having 1 to 4 carbon atoms separated from the gas supplied from the FPSO facility is removed from the H 2 S component as a sulfur compound through a desulfurizer; Liquid carbon compound production apparatus for producing a liquid carbon compound using the synthesis gas passed through the reforming reactor; An upgraded reactor for supplying separated hydrogen by converting the synthesis gas passed through the reforming reactor into a water gas conversion reaction; A CO2 subsea storage device for supplying surplus in carbon dioxide other than hydrogen separated from syngas; An FPSO-GTL apparatus including an internal power generation system for internal power generation of an FPSO-GTL apparatus, wherein a hydrogen separator and a carbon dioxide separation unit are configured between the reforming reactor and the liquid carbon compound producing apparatus, and the liquid carbon compound is produced. A water separator is constructed between the apparatus and the upgrading reactor, the offshore oil configured to recycle the separated water and carbon dioxide and the water and carbon dioxide produced in the internal power generation system back to the reforming reactor and to store excess carbon dioxide in the seabed. A dedicated FPSO-GTL device is disclosed.
합성원유는 석유 외에 천연가스, 석탄, 바이오원료 등의 자원을 이용하여 인공적으로 만든 연료로서 한국의 경우 정부 주도하에 주요 대기업과 연구소에서 차세대 청정연료 복합기술로 개발되고 있다. 향후 고유가 추세가 심화되는 상황에서 GTL 청정연료에 대한 수요가 급증할 것으로 기대되므로 점차 충분한 경제성을 확보할 것으로 평가된다. Synthetic crude oil is an artificial fuel made from natural gas, coal, and bio raw materials in addition to petroleum. In Korea, it is being developed as a next-generation clean fuel compound technology at major large corporations and research institutes under the government's initiative. As the high oil price trend is intensifying in the future, demand for GTL clean fuel is expected to soar.
이와 같은 맥락으로 육상의 기술을 해상에서 구현하기 위한 GTL FPSO의 개발이 추진되고 있으나 아직은 상용화에 앞서 해결해야 할 문제점이 많다. GTL FPSO에 내포된 문제점 중 하나로 "GTL 합성원유의 저장 및 운송을 위한 유동성 확보"에 대한 이슈가 포함된다. 이는 GTL FPSO에서 생산되는 합성원유에 다량의 왁스가 포함되어 고점성을 나타내는 물성에 기인한다. 이에 합성원유의 유동성은 GTL FPSO의 효율적인 운영 및 경제성을 확보하기 위한 중요한 관건의 하나로 인식된다. In the same vein, the development of GTL FPSO to implement land technologies at sea is being promoted, but there are still many problems to be solved before commercialization. One of the problems inherent in the GTL FPSO includes the issue of "guaranteed liquidity for the storage and transportation of GTL synthetic crude oil". This is due to the high viscosity of the synthetic oil produced in GTL FPSO containing a large amount of wax. Therefore, the liquidity of synthetic crude oil is recognized as one of the key factors to secure efficient operation and economic feasibility of GTL FPSO.
이를 위해 종래의 VLCC(Very Large Crude oil Carrier)와 유사한 개념을 적용하여 합성원유의 유동성이 확보되는 온도로 가열하는 방식이 검토될 있다. 그러나, 이 경우 생산/저장/하역/운송/분리에 이르는 동안 온도를 지속적으로 유지하기 위해 추가적인 설비와 더불어 연료 공급이 필요한 단점을 보인다. To this end, by applying a concept similar to the conventional VLCC (Very Large Crude Oil Carrier), a method of heating to a temperature at which fluidity of the synthetic crude oil is secured may be examined. However, in this case, there is a disadvantage in that fuel supply is required along with additional equipment to maintain the temperature continuously during production / storage / unloading / transportation / separation.
또 다른 방식과 관련하여 참고할 수 있는 선행특허의 일 예로서, 한국 등록특허공보 제0339993호는 타르/슬러지를 유효량의 계면활성제 및 유효량의 무기산 또는/및 캐리어와 접촉시키는 단계를 포함하며, 상기 무기산은 황산, 인산 또는 이들의 혼합물인 용기/관으로부터 타르/슬러지를 세척하거나 또는 유동화시키는 방법을 제공한다. 이에 따라, 용이하게 운송되고, 취급되고, 펌핑될 수 있는 형태로 타르/슬러지를 제거하는 효과를 기대한다. As an example of a prior patent which can be referred to in relation to another manner, Korean Patent Publication No. 0339993 includes contacting tar / sludge with an effective amount of a surfactant and an effective amount of an inorganic acid and / or a carrier, wherein the inorganic acid Provides a method of washing or fluidizing tar / sludge from vessels / tubes which are sulfuric acid, phosphoric acid or mixtures thereof. Accordingly, the effect of removing tar / sludge in a form that can be easily transported, handled and pumped is expected.
그러나, 이는 파이프 및 저장탱크 등에 물리적 변형을 유발하지 않고 타르/슬러지를 세척함을 요지로 하므로 GTL FPSO에서 생산되는 합성원유의 운송과 사용을 고려한 유동성 확보에 적용이 곤란하다. However, this is difficult to apply to ensure the fluidity considering the transport and use of synthetic crude oil produced in GTL FPSO because it is the main point to wash the tar / sludge without causing physical deformation in pipes and storage tanks.
상술한 바와 같은 종래의 기술에서는 왁스의 수소화 분해반응을 통해, LPG, 가솔린, 케로신 또는 디젤 등을 가벼운 물질로 완전히 전환하기 위한 정제 장치가 고가의 대형 고압 수소 첨가 분해 장치뿐만 아니라, 제품 분류장치가 포함되어 생산 비용이 증가한다는 문제가 있었다.In the prior art as described above, a purification device for completely converting LPG, gasoline, kerosene or diesel into a light substance through hydrocracking of wax is not only an expensive large-sized high-pressure hydrocracking device, but also a product sorting device. There was a problem that the production cost increases.
또한, 정제공정에서 생산한 세 가지 제품에 대해 개별적으로 저장 및 수송하므로, 운송 비용이 증가하는 문제가 있었다. In addition, since the three products produced in the refining process separately stored and transported, there was a problem that the transportation cost increases.
본 발명의 목적은 상술한 바와 같은 문제점을 해결하기 위해 이루어진 것으로서, 가능한 적은 장비를 사용해서, 단일 합성원유를 생산할 수 있는 단일 합성원유 생산용 FT GTL 장치 및 방법을 제공하는 것이다.It is an object of the present invention to provide a FT GTL apparatus and method for producing a single synthetic crude oil, which is made to solve the problems as described above, and can produce a single synthetic crude oil using as little equipment as possible.
본 발명의 다른 목적은 FPSO 생산물의 저장 및 생산물을 육상의 정제플랜트로 수송하는 운반의 복잡성과 비용을 감소시키는 단일 합성원유 생산용 FT GTL 장치 및 방법을 제공하는 것이다.It is another object of the present invention to provide a single synthetic crude oil production FT GTL apparatus and method which reduces the complexity and cost of transporting the storage of FPSO products and transporting the products to onshore refining plants.
또한 본 발명의 목적은, GTL FPSO에서 생산되는 합성원유의 왁스 성분을 조절하면서 생산 및 혼합하는 방식으로 유동성을 확보하여 생산/저장/하역/운송/분리에 이르는 일련의 공정에 대한 경제성을 제고하는 GTL FPSO 합성원유의 왁스성분 조절장치를 제공하는 데 있다. In addition, an object of the present invention is to improve the economics of a series of processes from production / storage / unloading / transport / separation by securing the fluidity by producing and mixing while controlling the wax components of the synthetic crude oil produced in GTL FPSO It is to provide a wax component control device for GTL FPSO synthetic crude oil.
본 발명의 일 측면에 따르면, FPSO(Floated Production, Storage, and Off-loading)에서 단일 합성원유 생산을 위한 FT(Fischer-Tropsch) GTL(Gas-to-Liquid) 장치로서,According to an aspect of the present invention, as a FT (Fischer-Tropsch) Gas-to-Liquid (FT) device for the production of a single synthetic crude oil in Floated Production, Storage, and Off-loading (FPSO),
생산된 천연가스에 대해 안정화를 실행하여 천연가스 콘덴세이트를 생성하는 가스 주입 안정화 유닛; 및A gas injection stabilization unit that performs stabilization on the produced natural gas to generate natural gas condensate; And
상기 가스 주입 안정화 유닛에서 처리된 천연가스를 개질하여 합성원유 제품을 생성하는 개질 유닛을 포함하는 것을 특징으로 하는 단일 합성원유 생산용 FT GTL 장치가 제공된다.A single FT GTL apparatus for producing crude oil is provided, comprising a reforming unit for reforming natural gas processed in the gas injection stabilization unit to produce a synthetic crude oil product.
바람직하게는, 상기 천연가스 콘덴세이트와 상기 합성원유 제품을 혼합하는 제품 처리 유닛을 더 포함하여, 단일한 합성원유를 생산할 수 있다.Preferably, further comprising a product processing unit for mixing the natural gas condensate and the synthetic crude product, it is possible to produce a single synthetic crude oil.
바람직하게는, 상기 가스 주입 안정화 유닛은 CH1~40과 H2O을 주입하여 CH1~4, 상기 천연가스 콘덴세이트(CH5~40)와 물(H2O)로 분리하는 제1의 3상 분리기를 포함할 수 있다.Preferably, the gas injection stabilization unit may include a first three-phase separator injecting CH 1 to 40 and H 2 O to separate CH 1 to 4 and the natural gas condensate (CH 5 to 40) and water (H 2 O). .
바람직하게는, 상기 합성원유 제품은 FT 나프타, FT 중질유, FT 왁스이고, 상기 개질 유닛은 상기 FT 왁스를 생성하는 FT 반응기 및 상기 FT 나프타와 FT 중질유가 혼합된 제1 혼합물을 생성하는 제2의 3상 분리기를 포함할 수 있다.Preferably, the synthetic crude oil product is FT naphtha, FT heavy oil, FT wax, and the reforming unit is a FT reactor for producing the FT wax and a second mixture for producing a first mixture of the FT naphtha and FT heavy oil mixed. Three-phase separators.
바람직하게는, 상기 제2의 3상 분리기는 상기 FT 반응기에서 처리된 합성가스를 제1의 열교환기에서 열교환 하여 잔류 가스, H2O, 상기 제1 혼합물을 분리할 수 있다. Preferably, the second three-phase separator may separate the residual gas, H 2 O, and the first mixture by heat-exchanging the synthesis gas treated in the FT reactor in a first heat exchanger.
바람직하게는, 상기 제품 처리 유닛은 상기 제1 혼합물, FT 나프타, FT 중질유와 FT 왁스가 혼합된 제2 혼합물, 천연가스 콘덴세이트를 혼합하는 생성물 혼합탱크, 상기 생성물 혼합탱크에서 혼합된 GTL 액을 저장하는 저장탱크를 포함할 수 있다. Preferably, the product processing unit stores the first mixture, FT naphtha, a second mixture of FT heavy oil and FT wax, a product mixing tank for mixing natural gas condensate, and a GTL liquid mixed in the product mixing tank. It may include a storage tank.
바람직하게는, 상기 제품 처리 유닛은 상기 FT 반응기에서 생성된 FT 왁스에 대해 열교환하는 제2의 열교환기, 상기 제2의 열교환기에서 열교환된 FT 왁스에 대해 수소화분해반응 또는 순한 수소첨가 이성질화 반응을 통해 상기 제2 혼합물을 생성하는 반응기, 상기 제2 혼합물에서 미반응 잔류가스를 분리하는 분리기를 더 포함할 수 있다.Preferably, the product processing unit is a second heat exchanger that heat exchanges for the FT wax produced in the FT reactor, a hydrocracking reaction or mild hydroisomerization reaction for the FT wax heat exchanged in the second heat exchanger. A reactor for producing the second mixture through, may further include a separator for separating the unreacted residual gas in the second mixture.
바람직하게는, 상기 제품 처리 유닛은 잔류 가스를 압축하는 제1의 압축기와 수소를 첨가하는 제2의 압축기를 더 포함하고, 상기 분리기에서 분리된 미반응 잔류 가스는 상기 제1의 압축기와 제2의 압축기를 경유하여 상기 제2의 열교환기에 공급될 수 있다.Preferably, the product processing unit further comprises a first compressor for compressing residual gas and a second compressor for adding hydrogen, wherein the unreacted residual gas separated in the separator is separated from the first compressor and the second compressor. It may be supplied to the second heat exchanger via a compressor.
바람직하게는, 상기 합성원유에서 FT 나프타와 FT 중질유가 혼합된 제1 혼합물과 잔류가스를 분리하는 잔류가스 분리유닛을 더 포함하고,Preferably, further comprising a residual gas separation unit for separating the residual gas and the first mixture of FT naphtha and FT heavy oil mixed in the synthetic crude oil,
상기 잔류가스 분리유닛에서 분리된 상기 제1 혼합물은 상기 제품 처리 유닛으로 공급될 수 있다. The first mixture separated in the residual gas separation unit may be supplied to the product processing unit.
바람직하게는 상기 개질 유닛은, 천연가스로부터 생성되는 합성가스를 합성유로 생성하는 F-T합성 유닛; 및 상기 합성유로 개질되는 합성원유의 왁스성분을 설정치로 유지하도록 F-T합성 유닛을 제어하는 컨트롤 유닛;을 포함하여, 합성원유의 왁스성분을 조절할 수 있다.Preferably, the reforming unit, F-T synthesis unit for producing a synthesis gas generated from natural gas as a synthetic oil; And a control unit for controlling the F-T synthesis unit to maintain the wax component of the synthetic crude oil modified with the synthetic oil at a set value.
바람직하게는, 상기 F-T합성 유닛은 LT-FT 반응기와 HT-FT 반응기를 직렬 또는 병렬로 구비하고, 하류측에서 생성되는 합성원유의 조성에 대응하여 LT-FT 반응기와 HT-FT 반응기의 유량을 조절할 수 있다.Preferably, the FT synthesis unit comprises an LT-FT reactor and a HT-FT reactor in series or in parallel, and the flow rate of the LT-FT reactor and the HT-FT reactor in response to the composition of the synthetic crude oil generated downstream I can regulate it.
바람직하게는, 상기 컨트롤 유닛은 합성원유에 대한 왁스 함량을 검출하는 왁스검출부와, 미반응 가스의 함량을 검출하는 미반응 가스 검출부를 구비할 수 있다. Preferably, the control unit may include a wax detection unit for detecting the wax content of the synthetic crude oil, and an unreacted gas detection unit for detecting the content of the unreacted gas.
바람직하게는, 상기 컨트롤 유닛은 미반응 가스를 설정치 이내로 유지하는 한도 내에서 왁스성분을 최소로 유지하도록 제어할 수 있다. Preferably, the control unit may be controlled to keep the wax component to a minimum within the limit of keeping the unreacted gas within the set value.
본 발명의 다른 측면에 따르면, FPSO(Floated Production, Storage, and Off-loading)에서 단일 합성원유 생산을 위한 FT(Fischer-Tropsch) GTL(Gas-to-Liquid) 방법으로서,According to another aspect of the present invention, as a Fischer-Tropsch (FT) Gas-to-Liquid (FT) method for producing a single synthetic crude oil in Floated Production, Storage, and Off-loading (FPSO),
(a) 천연가스에서 천연가스 콘덴세이트를 생성하는 단계,(a) producing natural gas condensate from natural gas,
(b) 합성가스에서 FT 나프타와 FT 중질유가 혼합된 제1 혼합물과 FT 왁스를(b) the first mixture of FT naphtha and FT heavy oil and FT wax in syngas;
생성하는 단계,Generating step,
(c) FT 나프타, FT 중질유와 FT 왁스가 혼합된 제2 혼합물을 생성하는 단계,(c) producing a second mixture of FT naphtha, FT heavy oil and FT wax,
(d) 상기 천연가스 콘덴세이트, 상기 제1 혼합물과 제2 혼합물을 혼합하여 단일 합성원유를 생성하는 단계를 포함하는 것을 특징으로 하는 단일 합성원유 생산용 FT GTL 방법이 제공된다.and (d) mixing the natural gas condensate, the first mixture and the second mixture to produce a single synthetic crude oil.
바람직하게는, 상기 단계 (c)는 왁스 수소화 분해반응 또는 순한 수소첨가 이성질화 반응에 의해 실행될 수 있다.Preferably, step (c) may be carried out by wax hydrocracking or mild hydrogenation isomerization.
바람직하게는, 상기 단계 (d)에서 생성된 단일 합성원유는 열처리 없이 저장 및 운송될 수 있다. Preferably, the single synthetic crude oil produced in step (d) can be stored and transported without heat treatment.
바람직하게는 상기 방법은, (e) 상기 단일 합성원유를 육상 정제 플랜트에서 정제하는 단계를 더 포함할 수 있다. Preferably the method may further comprise (e) refining the single synthetic crude oil in a land refining plant.
본 발명에 따른 단일 합성원유 생산용 FT GTL 장치 및 방법에 의하면, 간단한 제품 업그레이딩 장비 설치를 통해서, FPSO에서의 데크 공간을 절약할 수 있고, 생산 비용을 절감하며, FPSO에서 생성물의 저장을 위해 오직 한 가지 탱크만 필요하고, 저장 및 펌프로 이동시키기 위해 추가적인 열 공급의 필요가 없으므로 운송 비용을 절감하는 효과를 얻을 수 있다.According to the FT GTL apparatus and method for producing a single synthetic crude oil according to the present invention, through simple installation of equipment upgrading equipment, it is possible to save the deck space in the FPSO, to reduce the production cost, and to store the product in the FPSO Only one tank is needed, and there is no need for additional heat supply to move it to storage and pumps, resulting in lower transportation costs.
또, 본 발명에 따른 단일 합성원유 생산용 FT GTL 장치 및 방법에 의하면, FT 나프타와 FT 중질유를 혼합한 뒤, 합성원유가 가열이 필요 없는 상태에서 운송이 가능해지도록, FT 왁스의 일부를 낮은 수준의 일반적인 수소화 분해반응이나 약한 수소첨가 이성질화 반응을 사용하므로, 고압수소화 분해반응의 보유한 전체 정제 설비와 비교 시, 복잡성, 공간 및 비용을 절감할 수 있고, 전체 정제 설비와 비교 시 수소의 사용량을 절감할 수 있는 효과도 얻을 수 있다.In addition, according to the FT GTL apparatus and method for producing a single synthetic crude oil according to the present invention, after mixing FT naphtha and FT heavy oil, a portion of the FT wax can be transported at a low level so that the synthetic crude oil can be transported without heating. By using a general hydrocracking reaction or weak hydroisomerization reaction, the complexity, space and cost can be reduced when compared with the entire refinery having high pressure hydrocracking, and the amount of hydrogen used compared with the entire refinery. You can also achieve the effect.
또한 본 발명에 따르면 GTL FPSO에서 생산되는 합성원유의 유동성 확보로 생산/저장/하역/운송/분리에 이르는 일련의 공정에 대한 경제성을 제고하여 관련된 분야의 상용화 기술을 축적하는 효과가 있다. In addition, according to the present invention has the effect of accumulating the commercialization technology of the related field by improving the economics for a series of processes ranging from production / storage / unloading / transport / separation by securing the fluidity of the synthetic crude oil produced in GTL FPSO.
도 1은 본 발명의 제1 실시예에 따른 단일 합성원유 생산용 FT GTL 장치의 전체 구성도이다.1 is an overall configuration diagram of an FT GTL apparatus for producing a single synthetic crude oil according to a first embodiment of the present invention.
도 2는 도 1의 주요 유닛의 결합관계를 설명하기 위한 구성도이다. FIG. 2 is a diagram illustrating a coupling relationship between main units of FIG. 1.
도 3은 본 발명의 제1 실시예에 따른 단일 합성원유 생산용 FT GTL 방법을 설명하기 위한 공정도이다. 3 is a flowchart illustrating a FT GTL method for producing a single synthetic crude oil according to the first embodiment of the present invention.
도 5는 본 발명의 제1 실시예에 따른 단일 합성원유의 생산/저장/하역/운송/분리를 설명하기 위한 도면이다. 5 is a view for explaining the production / storage / unloading / transport / separation of a single synthetic crude oil according to a first embodiment of the present invention.
도 6은 본 발명의 제2 실시예에 따른 GTL FPSO의 주요 공정을 나타내는 공정도이다. 6 is a flowchart illustrating the main process of the GTL FPSO according to the second embodiment of the present invention.
도 7은 도 6의 F-T합성 유니트에 대한 요부를 나타내는 구성도이다. FIG. 7 is a configuration diagram showing main parts of the F-T synthesis unit of FIG. 6. FIG.
도 8은 본 발명의 제2 실시예에 따른 제어를 설명하기 위한 합성원유의 무게분율표이다. 8 is a weight fraction table of synthetic crude oil for explaining the control according to the second embodiment of the present invention.
본 발명의 상기 및 그 밖의 목적과 새로운 특징은 본 명세서의 기술 및 첨부 도면에 의해 더욱 명확하게 될 것이다.The above and other objects and novel features of the present invention will become more apparent from the description of the specification and the accompanying drawings.
먼저 본 발명에 대한 개념을 설명한다.First, the concept of the present invention will be described.
GTL FPSO는 FPSO(부유식 원유생산저장하역설비)에 GTL을 융합하여 해상에서 청정에너지를 생산할 수 있는 해양구조물이다. GTL 공정은 천연가스(NG)로부터 합성가스(H2 ,CO)를 생성하는 리포밍(reforming) 공정, 합성가스로부터 합성석유를 생성하는 F-T(Fischer-Tropsch) 공정, 합성원유를 원하는 탄소수의 연료로 전환하는 업그레이딩(upgrading) 공정으로 이루어진다. GTL FPSO is an offshore structure that can produce clean energy at sea by fusing GTL with floating oil production storage and unloading facilities (FPSO). The GTL process is a reforming process that generates syngas (H2, CO) from natural gas (NG), a FT (Fischer-Tropsch) process that generates synthetic oil from syngas, and synthetic crude oil as the desired carbon number fuel. Conversion to an upgrading process.
GTL FPSO에서 합성원유의 유동성 내지 수송성 확보가 상용화 정착을 위한 중요한 이슈로 부상되고 있다. 이를 위해 개질(Upgrading) 설비를 설치하는 것이 고려되기도 하지만 해상에 설치된 선례가 없어서 성능과 안전성 측면에서 문제가 발생할 가능성이 높은 상황이다. Securing liquidity and transportability of synthetic crude oil in GTL FPSO has emerged as an important issue for commercialization. For this purpose, it is considered to install an upgrading system, but there is no possibility of causing problems in terms of performance and safety because there is no precedent installed at sea.
우선, 본 발명 제1 실시예는 이를 위해 FT GTL FPSO에서 단일 운송할 수 있는 합성원유 제품을 생산하기 위한 것이다. 즉, FT 나프타, FT 중질유 및 처리된 FT 왁스의 혼합으로 열처리 없이 저장 및 운송 가능한 단일 혼합 FT 합성원유를 생산하는 것은 새로운 개념이다.First, the first embodiment of the present invention is for producing a synthetic crude oil product that can be transported in a single FT GTL FPSO for this purpose. That is, it is a new concept to produce a single mixed FT synthetic crude that can be stored and transported without heat treatment with a mixture of FT naphtha, FT heavy oil and treated FT wax.
단일 혼합 FT 합성원유 개념은 왁스 수소화 분해반응 또는 순한 수소첨가 이성질화 반응을 위한 적절한 촉매, 반응기 설계, 운영 체계의 사용을 요구한다. 이와 같은 단일 혼합 FT 합성원유 개념은 FT 생성물 처리를 위한 비용 및 공간을 줄일 수 있고, FT GTL FPSO 생산물을 위한 저장 및 운송 조건을 단순화할 수 있다.The single mixed FT synthetic crude oil concept requires the use of suitable catalysts, reactor designs, and operating systems for wax hydrocracking or mild hydroisomerization. This single mixed FT synthetic crude oil concept can reduce the cost and space for FT product processing and simplify the storage and transportation conditions for FT GTL FPSO products.
또한 다수의 FT GTL FPSO으로부터 생산된 합성원유는 운송하여 단일 해안 정제플랜트에서 처리한다. 또한, 일반적인 원유제품과 혼합 및/또는 추가적인 정제를 통해서, 판매가 가능한 운송수단 연료로 만들어 낼 수 있다. 이 개념은 해안의 정제플랜트에서 규모의 경제성으로부터 이득을 취할 수 있는 전체적인 시스템을 허용하면서, 운반선 함대를 보다 효율적으로 운용하고, FPSO를 위한 공간과 자본의 요구를 최소화할 수 있기 때문에 유용하다.In addition, synthetic crude oil produced from multiple FT GTL FPSOs is transported and processed in a single coastal refining plant. It can also be produced as a commercially available vehicle fuel by mixing and / or further refinement with common crude oil products. This concept is useful because it allows the entire system to benefit from economies of scale in coastal refining plants, while operating carrier fleets more efficiently and minimizing space and capital requirements for FPSOs.
본 발명 제1 실시예에 따르면 FT 나프타와 FT 중질유를 혼합한 뒤, 합성원유가 가열이 필요 없는 상태에서 운송이 가능해지도록, FT 왁스의 일부를 낮은 수준의 일반적인 수소화 분해반응이나 약한 수소첨가 이성질화 반응을 사용한다. 이 개념은 최종 FT 제품을 생산하지는 않는 촉매와 운영 체계를 사용하는 것을 포함하지만, 혼합된 합성원유를 열처리 없이 충분히 저장 및 운송 가능하도록 변형하는 것이다. 또한 나프타와 중질유를 처리된 왁스와 희석(또는 혼합)하는 것을 포함하지 않고, 다수 제품의 제조를 목표로, 서로 다른 촉매의 사용을 포함한다.According to the first embodiment of the present invention, after FT naphtha and FT heavy oil are mixed, a part of the FT wax is mixed with a low level of general hydrocracking reaction or weak hydroisomerization reaction so that the synthetic crude oil can be transported without heating. Use The concept involves the use of catalysts and operating systems that do not produce the final FT product, but transforms the blended crude oil into sufficient storage and transport without heat treatment. It also does not involve diluting (or mixing) naphtha and heavy oil with the treated wax, but involves the use of different catalysts for the purpose of producing multiple products.
이 개념은 의도적으로 다른 특성을 수정하는 것 없이, 오직 가수 소이 성체않거나 의도적으로 다른 속성을 수정하려고 시도하지 않고 유동점 동결 점을 올리기 위하여 FT 왁스를 수소 첨가 분해를 포함한다. 따라서, 크기, 공간 및 제품 저장 및 수송을 단순화하면서 FPSO 온보드 FT 생성물을 처리에 필요한 비용을 감소시킬 것이다.This concept involves hydrocracking FT wax to raise the pour point freezing point without intentionally modifying other properties, only without hydrogenation or intentionally attempting to modify other properties. Thus, the size, space and cost of processing FPSO onboard FT products will be reduced while simplifying product storage and transportation.
이하, 본 발명의 제1 실시예의 구성을 도면에 따라서 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, the structure of 1st Example of this invention is demonstrated according to drawing.
도 1은 본 발명의 제1 실시예에 따른 단일 합성원유 생산용 FT GTL 장치의 전체 구성도이다.1 is an overall configuration diagram of an FT GTL apparatus for producing a single synthetic crude oil according to a first embodiment of the present invention.
본 발명의 제1 실시예에 따른 단일 합성원유 생산용 FT GTL 장치는 도 1에 도시된 바와 같이, FPSO에서 단일 합성원유 생산을 위한 FT GTL 장치로서, 생산된 가스를 주입받는 가스 주입 안정화 유닛(10), 탈황 유닛(20), 천연가스 포화 및 예비 개질(Pre-Reforming) 유닛(30), 소형의 개질(Reforming) 유닛(40), 합성가스 조정(Conditioning) 유닛(50), FT합성 유닛(60), 잔류가스(Tail gas) 분리 유닛(70), 제품처리(Production treatment) 유닛(80)을 포함한다.The FT GTL apparatus for producing a single synthetic crude oil according to the first embodiment of the present invention is an FT GTL apparatus for producing a single synthetic crude oil in FPSO, as shown in FIG. 10), desulfurization unit 20, natural gas saturation and pre-reforming unit 30, small reforming unit 40, syngas conditioning unit 50, FT synthesis unit 60, a tail gas separation unit 70, and a production treatment unit 80.
상기 가스 주입 안정화 유닛(10)은 생산된 조 천연가스(RAW NG)에 대해 안정화를 실행하여 천연가스, 천연가스 콘덴세이트(NG condensate)와 물(H2O)을 생성하고, 상기 천연가스 콘덴세이트는 제품처리 유닛(80)으로 공급된다.The gas injection stabilization unit 10 performs stabilization on the produced crude natural gas (RAW NG) to generate natural gas, natural gas condensate and water (H 2 O), and the natural gas condensate is processed into a product. Supplied to the unit 80.
상기 탈황 유닛(20)은 천연가스에 포함된 황을 제거하고, 천연가스 포화 및 예비 개질 유닛(30)으로 조 천연가스를 공급한다. 천연가스 포화 및 예비 개질 유닛(30)에서 예비 처리된 조 천연가스의 일부는 연료용 가스로 사용되고, 나머지의 천연가스는 스팀에 의해 가열되어 개질 유닛(40)으로 공급되며, 포화기로 배출된다.The desulfurization unit 20 removes sulfur contained in natural gas and supplies crude natural gas to the natural gas saturation and preliminary reforming unit 30. A portion of the crude natural gas pretreated in the natural gas saturation and preliminary reforming unit 30 is used as a gas for fuel, and the remaining natural gas is heated by steam and supplied to the reforming unit 40 and discharged to the saturator.
상기 개질 유닛(40)은 천연가스 포화 및 예비 개질 유닛(30)에서 스팀을 통과하여 공급된 천연 가스를 조 합성가스(RAW SYNGAS)로 개질하여 합성원유 제품을 생성한다. 또한 상기 개질 유닛(40)에서 처리되지 않은 가스는 연료가스로서 천연가스 포화 및 예비 개질 유닛(30)으로 공급된다.The reforming unit 40 reforms the natural gas supplied through steam in the natural gas saturation and preliminary reforming unit 30 to crude syngas (RAW SYNGAS) to produce a synthetic crude product. In addition, the gas not processed in the reforming unit 40 is supplied to the natural gas saturation and preliminary reforming unit 30 as fuel gas.
상기 개질 유닛(40)에서 처리된 조 합성가스는 합성가스 조정 유닛(50)에서 합성가스(SYNGAS)로 생성되고, 이 과정에서 발생한 수소(H2)는 연료가스로서 개질 유닛(40)과 제품처리 유닛(80)에 공급된다. 또한 합성가스 조정 유닛(50)에서 생성된 합성가스 콘덴세이트는 천연가스 포화 및 예비 개질 유닛(30)로 공급되거나 배출된다.The crude syngas treated in the reforming unit 40 is generated as syngas SYNGAS in the syngas adjusting unit 50, and hydrogen (H2) generated in this process is fuel gas, and the reforming unit 40 and product processing. Supplied to the unit 80. In addition, the syngas condensate produced in the syngas adjusting unit 50 is supplied or discharged to the natural gas saturation and preliminary reforming unit 30.
상기 합성가스 조정 유닛(50)에서 공급된 합성가스는 FT합성 유닛(60)을 거쳐 FT 나프타와 FT 중질유의 제1 혼합물과 FT 왁스로 분리되어 제품처리 유닛(80)에 공급된다.The syngas supplied from the syngas adjusting unit 50 is separated into a first mixture of FT naphtha and FT heavy oil and FT wax through the FT synthesis unit 60 and supplied to the product processing unit 80.
상기 잔류가스 분리 유닛(70)은 FT합성 유닛(60)에서 공급된 합성가스에서 FT 나프타와 FT 중질유가 혼합된 제1 혼합물과 잔류가스를 분리하고, 상기 제1 혼합물은 제품처리 유닛(80)으로 공급되고, 잔류 가스는 일부 배출되거나, 상기 천연가스 포화 및 예비 개질 유닛(30)으로 공급되어 리사이클 된다.The residual gas separation unit 70 separates a residual gas and a first mixture of FT naphtha and FT heavy oil from the syngas supplied from the FT synthesis unit 60, and the first mixture is a product processing unit 80. The remaining gas is partially discharged or supplied to the natural gas saturation and preliminary reforming unit 30 for recycling.
상기 제품처리 유닛(80)은 상기 가스 주입 안정화 유닛(10)에서 공급된 천연가스 콘덴세이트, 상기 FT합성 유닛(60)에서 공급된 제1 혼합물과 FT 왁스, 상기 잔류가스 분리 유닛(70)에서 공급된 제1 혼합물을 혼합하여 본 발명에 따른 단일합성원유를 생산한다.The product processing unit 80 is supplied from the natural gas condensate supplied from the gas injection stabilization unit 10, the first mixture and FT wax supplied from the FT synthesis unit 60, and the residual gas separation unit 70. The first mixture is mixed to produce a single synthetic crude oil according to the invention.
한편 상기 개질 유닛(40)과 합성가스 조정 유닛(50)에는 스팀을 형성하기 위한 보일러 급수(BFW)가 공급된다.Meanwhile, the boiler feed water (BFW) for forming steam is supplied to the reforming unit 40 and the syngas adjusting unit 50.
다음에 본 발명 제1 실시예의 주요 특징인 가스 주입 안정화 유닛(10), 개질 유닛(40), 제품처리 유닛(80)의 구성에 대해 도 2에 따라 설명한다.Next, the configuration of the gas injection stabilization unit 10, the reforming unit 40, and the product processing unit 80, which are the main features of the first embodiment of the present invention, will be described with reference to FIG.
도 2는 도 1의 주요 유닛의 결합관계를 설명하기 위한 구성도이다.FIG. 2 is a diagram illustrating a coupling relationship between main units of FIG. 1.
상기 가스 주입 안정화 유닛(10)은 도 2에 도시된 바와 같이, CH1~40과 H2O을 주입하여 CH1~4, 상기 천연가스 콘덴세이트(CH5~40)와 물(H2O)로 분리하는 제1의 3상 분리기(41)를 포함한다. 상기 천연가스 콘덴세이트(CH5~40)는 제품처리 유닛(80)으로 공급되고, 상기 물(H2O)은 천연가스 포화 및 예비 개질 유닛(30)로 공급된다.As shown in FIG. 2, the gas injection stabilization unit 10 injects CH 1 to 40 and H 2 O to separate CH 1 to 4 and the natural gas condensate (CH 5 to 40) and water (H 2 O). A phase separator 41. The natural gas condensate (CH5 ~ 40) is supplied to the product processing unit 80, the water (H2O) is supplied to the natural gas saturation and preliminary reforming unit (30).
상기 개질 유닛(40)은 천연가스에서 FT 왁스를 생성하는 FT 반응기(41) 및 상기 FT 나프타와 FT 중질유가 혼합된 제1 혼합물을 생성하는 제2의 3상 분리기(42)를 포함한다. 상기 제2의 3상 분리기(42)는 상기 FT 반응기(41)에서 처리된 합성가스를 제1의 열교환기(43)에서 열교환 하여 잔류 가스, H2O, 상기 제1 혼합물을 분리한다, 상기 제1 혼합물은 제품처리 유닛(80)으로 공급된다.The reforming unit 40 includes an FT reactor 41 for producing FT wax in natural gas and a second three-phase separator 42 for producing a first mixture of the FT naphtha and FT heavy oil. The second three-phase separator 42 heats the syngas treated in the FT reactor 41 in a first heat exchanger 43 to separate residual gas, H 2 O, and the first mixture. The mixture is fed to the product processing unit 80.
상기 제품 처리 유닛(80)은 상기 제2의 3상 분리기(42)에서 공급된 제1 혼합물, FT 나프타, FT 중질유와 FT 왁스가 혼합된 제2 혼합물, 상기 가스 주입 안정화 유닛(10)에서 공급된 천연가스 콘덴세이트를 혼합하는 생성물 혼합탱크(81), 상기 생성물 혼합탱크(81)에서 혼합된 GTL 액을 저장하는 저장탱크(82), 상기 FT 반응기(41)에서 생성된 FT 왁스에 대해 열교환 하는 제2의 열교환기(83), 상기 제2의 열교환기(83)에서 열교환된 FT 왁스에 대해 수소화 분해반응 또는 순한 수소첨가 이성질화 반응을 통해 상기 제2 혼합물을 생성하는 반응기(84), 상기 제2 혼합물에서 미반응 잔류가스를 분리하는 분리기(85)를 포함한다.The product processing unit 80 is supplied from the first mixture supplied from the second three-phase separator 42, the second mixture of FT naphtha, the FT heavy oil and the FT wax, and the gas injection stabilization unit 10. The product mixing tank 81 for mixing the natural gas condensate, the storage tank 82 for storing the GTL liquid mixed in the product mixing tank 81, the heat exchanger for the FT wax produced in the FT reactor 41 A reactor 84 for producing the second mixture through a hydrocracking reaction or a mild hydroisomerization reaction with respect to the FT wax heat exchanged in the second heat exchanger 83 and the second heat exchanger 83; A separator 85 for separating unreacted residual gas from the second mixture.
본 발명에 따른 단일 합성원유 제품은 FT 나프타, FT 중질유와 FT 왁스가 혼합된 것이다. 이와 같은 혼합은 상술한 바와 같이, FT 나프타와 FT 중질유가 혼합된 제1 혼합물, FT 나프타, FT 중질유와 FT 왁스가 혼합된 제2 혼합물 및 천연가스 콘덴세이트를 생성물 혼합탱크(81)에서 혼합하여 저장탱크(82)에 저장된 제품이다.The single synthetic crude oil product according to the invention is a mixture of FT naphtha, FT heavy oil and FT wax. As described above, the first mixture of FT naphtha and FT heavy oil, the second mixture of FT naphtha, FT heavy oil and FT wax, and natural gas condensate are mixed and stored in the product mixing tank 81 as described above. It is a product stored in the tank 82.
상술한 바와 같이 제조된 단일 합성원유 제품은 FPSO에서 생성물의 저장을 위해 오직 한 가지 탱크인 저장탱크(82)만 필요하고, 저장 및 펌프로 이동시키기 위해 추가적인 열 공급의 필요가 없으므로 운송 비용을 절감할 수 있다.A single synthetic crude oil product manufactured as described above requires only one tank, storage tank 82, for storage of the product in the FPSO, and requires no additional heat supply to move to storage and pumps, thereby reducing transportation costs. can do.
또 상기 제품 처리 유닛(80)은 분리기(85)에서 분리된 잔류 가스를 압축하는 제1의 압축기(86)와 수소를 첨가하는 제2의 압축기(87)를 더 포함하고, 상기 분리기(85)에서 분리된 미반응 잔류 가스는 상기 제1의 압축기(86)와 제2의 압축기(87)를 경유하여 상기 제2의 열교환기(83)에 공급된다.The product processing unit 80 further includes a first compressor 86 for compressing the residual gas separated in the separator 85 and a second compressor 87 for adding hydrogen, the separator 85 The unreacted residual gas separated in is supplied to the second heat exchanger 83 via the first compressor 86 and the second compressor 87.
다음에, 도 1 및 도 2에 도시된 바와 같은 단일 합성원유 생산용 FT GTL 장치에 의해 단일 합성원유의 생산 및 저장과 하역/운송/분리하는 과정에 대해 도 3 및 도 4에 따라 설명한다.Next, a process of producing, storing and unloading / transporting / separating a single synthetic crude oil by the FT GTL apparatus for producing a single synthetic crude oil as shown in FIGS. 1 and 2 will be described with reference to FIGS. 3 and 4.
도 3은 본 발명의 제1 실시예에 따른 단일 합성원유 생산용 FT GTL 방법을 설명하기 위한 공정도이고, 도 4는 본 발명의 제1 실시예에 따른 단일 합성원유의 생산/저장/하역/운송/분리를 설명하기 위한 도면이다.3 is a process chart for explaining a single synthetic crude oil production FT GTL method according to a first embodiment of the present invention, Figure 4 is a production / storage / unloading / transport of a single synthetic crude oil according to a first embodiment of the present invention It is a figure for demonstrating / separation.
본 발명 제1 실시예에 따른 단일 합성원유 생산용 FT GTL 방법은 FPSO에서 단일 합성원유 생산을 위한 FT GTL 방법으로서, 먼저 가스 주입 안정화 유닛(10)에서 천연가스를 안정화 처리하여 천연가스 콘덴세이트를 생성한다(S10).The FT GTL method for producing a single synthetic crude oil according to the first embodiment of the present invention is a FT GTL method for producing a single synthetic crude oil in FPSO. First, natural gas is stabilized in the gas injection stabilization unit 10 to generate natural gas condensate. (S10).
다음에 탈황 유닛(20)에서 천연가스에 포함된 황이 제거되고, 천연가스 포화 및 예비 개질 유닛(30) 및 소형의 개질 유닛(40)을 통해 합성가스가 생성된다.The sulfur contained in the natural gas is then removed in the desulfurization unit 20 and syngas is produced through the natural gas saturation and preliminary reforming unit 30 and the small reforming unit 40.
상기 개질 유닛(40)에서는 합성가스를 통해 FT 나프타와 FT 중질유가 혼합된 제1 혼합물과 FT 왁스를 생성한다(S20).The reforming unit 40 generates a first mixture and FT wax in which FT naphtha and FT heavy oil are mixed through the synthesis gas (S20).
다음에 제품처리 유닛(80)에서는 FT 왁스에 대해 왁스 수소화 분해반응 또는 순한 수소첨가 이성질화 반응을 실행하여 FT 나프타, FT 중질유와 FT 왁스가 혼합된 제2 혼합물을 생성한다(S30).Next, the product processing unit 80 performs a wax hydrocracking reaction or a mild hydroisomerization reaction on the FT wax to generate a second mixture of FT naphtha, FT heavy oil, and FT wax (S30).
또, 상기 제품처리 유닛(80)은 상기 단계 S10에서 생성된 천연가스 콘덴세이트, 상기 단계 S20에서 생성된 상기 제1 혼합물, 상기 단계 S30에서 생성된 제2 혼합물을 혼합하여 단일 합성원유를 생성한다(S40).In addition, the product processing unit 80 mixes the natural gas condensate produced in step S10, the first mixture generated in step S20, and the second mixture generated in step S30 to produce a single synthetic crude oil ( S40).
상기 단계 S40에서 생성된 단일 합성원유는 도 4에 도시된 바와 같이, 열처리 없이 저장 및 운송된다(S50). 상기 단계 S50에서 운송된 단일 합성원유를 육상 정제 플랜트에서 정제된다(S60).The single synthetic crude oil produced in step S40 is stored and transported without heat treatment, as shown in FIG. 4 (S50). The single synthetic crude oil transported in the step S50 is purified in a land refining plant (S60).
다음으로, 본 발명 제2 실시예에 따르면 FT합성 유닛(600)가 천연가스로부터 생성되는 합성가스를 합성유로 생성하도록 설치된다. 도 5에서 GTL 주요 공정은 천연가스 포화 및 예비 개질(Pre-Reforming) 유닛(300), 개질 유닛(400), 합성가스 조정 유닛(500), 합성가스 조정 유닛(500), FT합성 유닛(600), 제품처리 유닛(800)를 순차적으로 연결한 구성을 보인다. FT합성 유닛(600)는 합성가스를 합성유로 변환하는 역할을 수행하고, 제품처리 유닛(800)는 합성유를 업그레이딩 처리하여 합성원유를 생성하는 역할을 담당한다. FT합성 유닛(600)에서 잉여로 발생되는 합성가스는 잔류가스 분리 유닛(700)에서 분류되어 일부가 프리리포밍 유니트(20)로 재순환된다. 제품처리 유닛(800)를 거쳐 생산되는 합성원유는 탱크에 저장된다. Next, according to the second embodiment of the present invention, the FT synthesis unit 600 is installed to generate syngas generated from natural gas as synthetic oil. In FIG. 5, the GTL main processes include a natural gas saturation and pre-reforming unit 300, a reforming unit 400, a syngas control unit 500, a syngas control unit 500, and an FT synthesis unit 600. ), A configuration in which the product processing unit 800 is sequentially connected. The FT synthesis unit 600 serves to convert syngas into synthetic oil, and the product processing unit 800 plays a role of generating synthetic crude oil by upgrading the synthetic oil. Syngas generated in excess in the FT synthesis unit 600 is classified in the residual gas separation unit 700 and partly recycled to the preforming unit 20. Synthetic crude oil produced via the product processing unit 800 is stored in a tank.
이때, GTL FPSO에서 생산하는 합성원유는 다량의 왁스(Wax)가 포함된 고점성을 나타내므로 저장, 하역, 운송을 위한 유동성을 확보해야 한다. 왁스가 100%에 근접할수록 상온/상압에서 고체화되어 저장 및 하역이 불가능하다. At this time, the synthetic crude oil produced by GTL FPSO has a high viscosity containing a large amount of wax (Wax), so it must secure the fluidity for storage, unloading, transport. As the wax approaches 100%, it solidifies at room temperature / atmospheric pressure, making storage and unloading impossible.
본 발명 제2 실시예에 따르면 컨트롤 유닛(900)은 상기 합성유로 개질되는 합성원유의 왁스성분을 설정치로 유지하도록 FT합성 유닛(600)을 제어한다. 컨트롤 유닛(900)은 탱크에 저장되는 합성원유의 상태를 판단하여 왁스성분을 최적으로 유지하기 위한 알고리즘을 수행한다. According to the second embodiment of the present invention, the control unit 900 controls the FT synthesis unit 600 to maintain the wax component of the synthetic crude oil modified with the synthetic oil at the set value. The control unit 900 determines the state of the synthetic crude oil stored in the tank and performs an algorithm for optimally maintaining the wax component.
본 발명 제2 실시예의 세부 구성에 의하면, 상기 FT합성 유닛(600)은 LT-FT 반응기(620)와 HT-FT 반응기(640)를 직렬 또는 병렬로 구비하고, 하류측에서 생성되는 합성원유의 조성에 대응하여 LT-FT 반응기(620)와 HT-FT 반응기(640)의 유량을 조절하는 것을 특징으로 한다. 도 2에서 FT합성 유닛(600)는 LT-FT 반응기(620)의 하류측에 HT-FT 반응기(640)를 구비한다. LT-FT 반응기(620)는 작동온도 범위가 220~250℃로서 주로 중질유분이나 왁스와 같은 액상으로 합성하고, HT-FT 반응기(640)는 작동온도 범위가 330~350℃로서 주로 가솔린, 나프타와 같은 기상으로 합성한다. According to the detailed configuration of the second embodiment of the present invention, the FT synthesis unit 600 includes the LT-FT reactor 620 and the HT-FT reactor 640 in series or in parallel, and the The flow rate of the LT-FT reactor 620 and the HT-FT reactor 640 is controlled according to the composition. In FIG. 2, the FT synthesis unit 600 includes an HT-FT reactor 640 downstream of the LT-FT reactor 620. LT-FT reactor 620 is operating temperature range of 220 ~ 250 ℃ mainly synthesized in a liquid phase such as heavy oil or wax, HT-FT reactor 640 is operating temperature range of 330 ~ 350 ℃ mainly gasoline, naphtha Synthesize in the same vapor phase as
이와 같이 LT-FT 반응기(620)와 HT-FT 반응기(640)를 동시에 작동하면 왁스의 양을 조절하여 합성원유의 유동성 확보가 용이하다. 도 6에서 미설명 부호 48은 합성 반응 후 수분 등을 제거하기 위한 분리기이다. As such, when the LT-FT reactor 620 and the HT-FT reactor 640 are operated at the same time, it is easy to secure the fluidity of the synthetic crude oil by adjusting the amount of wax. In FIG. 6, reference numeral 48 is a separator for removing water and the like after the synthesis reaction.
도 7에서, 우측의 마크를 살피면 LT-FT 반응기(620)를 거친 1단계 반응에서 왁스가 약 50%가량 포함되는 것으로 나타나지만, 좌측의 마크를 살피면 HT-FT 반응기(640)를 거친 2단계 반응후에 왁스가 약 10%로 축소되고 나프타의 함량이 증가된 것으로 나타난다. In FIG. 7, the mark on the right side shows that about 50% of the wax is included in the one-step reaction through the LT-FT reactor 620, but the mark on the left shows the two-step reaction through the HT-FT reactor 640. The wax was later reduced to about 10% and the naphtha content appeared to increase.
한편, 생산하고자 하는 합성원유의 특성에 따라서 LT-FT 반응기(620)가 HT-FT 반응기(640) 보다 하류측에 배치될 수도 있다. 그 예로 가솔린, 나프타, 디젤 등의 가벼운 합성원유를 많이 생산하고자 하는 경우를 들 수 있다. Meanwhile, the LT-FT reactor 620 may be disposed downstream of the HT-FT reactor 640 according to the characteristics of the synthetic crude oil to be produced. For example, if you want to produce a lot of light synthetic crude oil such as gasoline, naphtha, diesel.
본 발명 제2 실시예의 세부 구성에 의하면, 상기 컨트롤 유닛(900)는 합성원유에 대한 왁스 함량을 검출하는 왁스검출부(920), 미반응 가스의 함량을 검출하는 미반응 가스 검출부(940) 및 구동부(960)를 구비하는 것을 특징으로 한다. 왁스검출부(920)와 미반응 가스 검출부(940)는 반드시 특정의 센서와 같은 하드웨어에 국한되는 것이 아니며, 합성원유의 성분에 대응하여 사전에 축적된 함량변화의 데이터베이스와 소프트웨어를 포함할 수 있다. According to the detailed configuration of the second embodiment of the present invention, the control unit 900 includes a wax detector 920 for detecting wax content of synthetic crude oil, an unreacted gas detector 940 and a driver for detecting the content of unreacted gas. 960 is provided. The wax detector 920 and the unreacted gas detector 940 are not necessarily limited to hardware such as a specific sensor, and may include a database and software of content changes previously accumulated corresponding to the components of synthetic crude oil.
본 발명 제2 실시예의 세부 구성에 의하면, 상기 컨트롤 유닛(900)는 미반응 가스를 설정치 이내로 유지하는 한도 내에서 왁스성분을 최소로 유지하도록 제어하는 것을 특징으로 한다. 도 3에 나타나는 것처럼 합성원유의 왁스성분을 최소화할수록 LPG 등의 미반응 가스의 성분 증가를 유발하므로 수송효율의 저하를 초래한다. 이에 미반응 가스가 설정치를 초과하지 않는 범위 내에서 생성되는 왁스성분을 최적치로 유지하도록 제어한다. 물론 이에 더하여 왁스성분은 합성원유의 유동성을 확보하는 범위 내에서 유지되어야 한다. According to the detailed configuration of the second embodiment of the present invention, the control unit 900 is characterized in that the control to keep the wax component to a minimum within the limit to keep the unreacted gas within the set value. Minimizing the wax component of the synthetic crude oil, as shown in Figure 3 causes an increase in the component of the unreacted gas, such as LPG, resulting in a decrease in transport efficiency. In this way, the unreacted gas is controlled to maintain the optimum wax component within the range not exceeding the set value. Of course, in addition to the wax component should be maintained within the range to ensure the fluidity of the synthetic crude oil.
이와 같이 본 발명 제2 실시예의 LT-FT 반응기(620)와 HT-FT 반응기(640)는 모두 육상에서 상용화된 공정으로 해상에 적용시 리스크가 적다. 이에 따라, 해상에서 검증되지 않은 Upgrading 공정을 통해 유동성 확보를 할 필요가 없고, 업그레이딩 시스템에 들어가는 CAPEX 및 OPEX 등은 줄일 수 있다. As described above, the LT-FT reactor 620 and the HT-FT reactor 640 of the second embodiment of the present invention are both commercially available on land and have low risk when applied to the sea. As a result, there is no need to secure liquidity through an upgrading process that has not been verified at sea, and CAPEX and OPEX in the upgrading system can be reduced.
본 발명은 기재된 실시예에 한정되는 것은 아니고, 본 발명의 사상 및 범위를 벗어나지 않고 다양하게 수정 및 변형할 수 있음은 이 기술의 분야에서 통상의 지식을 가진 자에게 자명하다. 따라서 그러한 변형예 또는 수정예들은 본 발명의 특허청구범위에 속한다 해야 할 것이다. It is apparent to those skilled in the art that the present invention is not limited to the described embodiments, and that various modifications and variations can be made without departing from the spirit and scope of the present invention. Therefore, such modifications or variations will have to belong to the claims of the present invention.

Claims (17)

  1. FPSO(Floated Production, Storage, and Off-loading)에서 단일 합성원유 생산을 위한 FT(Fischer-Tropsch) GTL(Gas-to-Liquid) 장치로서,FT (Fischer-Tropsch) Gas-to-Liquid (FT) device for single synthetic crude oil production in Floated Production, Storage, and Off-loading (FPSO)
    생산된 천연가스에 대해 안정화를 실행하여 천연가스 콘덴세이트를 생성하는 가스 주입 안정화 유닛; 및A gas injection stabilization unit that performs stabilization on the produced natural gas to generate natural gas condensate; And
    상기 가스 주입 안정화 유닛에서 처리된 천연가스를 개질하여 합성원유 제품을 생성하는 개질 유닛을 포함하는 것을 특징으로 하는 단일 합성원유 생산용 FT GTL 장치.And a reforming unit for reforming the natural gas processed in the gas injection stabilization unit to produce a synthetic crude oil product.
  2. 제 1항에 있어서,The method of claim 1,
    상기 천연가스 콘덴세이트와 상기 합성원유 제품을 혼합하는 제품 처리 유닛을 더 포함하여, Further comprising a product processing unit for mixing the natural gas condensate and the synthetic crude product,
    단일한 합성원유를 생산할 수 있는 것을 특징으로 하는 단일 합성원유 생산용 FT GTL 장치. FT GTL apparatus for producing a single synthetic crude oil, characterized in that it can produce a single synthetic crude oil.
  3. 제 2항에 있어서,The method of claim 2,
    상기 가스 주입 안정화 유닛은 CH1~40과 H2O을 주입하여 CH1~4, 상기 천연가스 콘덴세이트(CH5~40)와 물(H2O)로 분리하는 제1의 3상 분리기를 포함하는 것을 특징으로 하는 단일 합성원유 생산용 FT GTL 장치.The gas injection stabilization unit includes a first three-phase separator injecting CH 1 to 40 and H 2 O to separate CH 1 to 4 and the natural gas condensate (CH 5 to 40) and water (H 2 O). FT GTL unit for crude oil production.
  4. 제 3항에 있어서,The method of claim 3, wherein
    상기 합성원유 제품은 FT 나프타, FT 중질유, FT 왁스이고,The synthetic crude product is FT naphtha, FT heavy oil, FT wax,
    상기 개질 유닛은 상기 FT 왁스를 생성하는 FT 반응기 및 상기 FT 나프타와 FT 중질유가 혼합된 제1 혼합물을 생성하는 제2의 3상 분리기를 포함하는 것을 특징으로 하는 단일 합성원유 생산용 FT GTL 장치.Wherein said reforming unit comprises an FT reactor for producing said FT wax and a second three-phase separator for producing a first mixture of said FT naphtha and FT heavy oil.
  5. 제 4항에 있어서,The method of claim 4, wherein
    상기 제2의 3상 분리기는 상기 FT 반응기에서 처리된 합성가스를 제1의 열교환기에서 열교환 하여 잔류 가스, H2O, 상기 제1 혼합물을 분리하는 것을 특징으로 하는 단일 합성원유 생산용 FT GTL 장치.The second three-phase separator FT GTL apparatus for producing a single synthetic crude oil, characterized in that for separating the residual gas, H2O, the first mixture by heat-exchanging the synthesis gas treated in the FT reactor in a first heat exchanger.
  6. 제 5항에 있어서, The method of claim 5,
    상기 제품 처리 유닛은 상기 제1 혼합물, FT 나프타, FT 중질유와 FT 왁스가 혼합된 제2 혼합물, 천연가스 콘덴세이트를 혼합하는 생성물 혼합탱크, 상기 생성물 혼합탱크에서 혼합된 GTL 액을 저장하는 저장탱크를 포함하는 것을 특징으로 하는 단일 합성원유 생산용 FT GTL 장치.The product processing unit includes the first mixture, FT naphtha, a second mixture of FT heavy oil and FT wax, a product mixing tank for mixing natural gas condensate, and a storage tank for storing GTL liquid mixed in the product mixing tank. FT GTL device for producing a single synthetic crude oil, comprising.
  7. 제 6항에 있어서,The method of claim 6,
    상기 제품 처리 유닛은 상기 FT 반응기에서 생성된 FT 왁스에 대해 열교환하는 제2의 열교환기, 상기 제2의 열교환기에서 열교환된 FT 왁스에 대해 수소화분해반응 또는 순한 수소첨가 이성질화 반응을 통해 상기 제2 혼합물을 생성하는 반응기, 상기 제2 혼합물에서 미반응 잔류가스를 분리하는 분리기를 더 포함하는 것을 특징으로 하는 단일 합성원유 생산용 FT GTL 장치.The product processing unit includes a second heat exchanger that heat-exchanges the FT wax produced in the FT reactor, the hydrothermal decomposition or mild hydroisomerization reaction of the FT wax heat-exchanged in the second heat exchanger. A reactor for producing a mixture, FT GTL apparatus for producing a single synthetic crude oil further comprises a separator for separating the unreacted residual gas in the second mixture.
  8. 제 7항에 있어서,The method of claim 7, wherein
    상기 제품 처리 유닛은 잔류 가스를 압축하는 제1의 압축기와 수소를 첨가하는 제2의 압축기를 더 포함하고,The product processing unit further comprises a first compressor for compressing residual gas and a second compressor for adding hydrogen,
    상기 분리기에서 분리된 미반응 잔류 가스는 상기 제1의 압축기와 제2의 압축기를 경유하여 상기 제2의 열교환기에 공급되는 것을 특징으로 하는 단일 합성원유 생산용 FT GTL 장치.The unreacted residual gas separated in the separator is supplied to the second heat exchanger via the first compressor and the second compressor, FT GTL apparatus for producing a single synthetic crude oil.
  9. 제 2항에 있어서, The method of claim 2,
    상기 합성원유에서 FT 나프타와 FT 중질유가 혼합된 제1 혼합물과 잔류가스를 분리하는 잔류가스 분리유닛을 더 포함하고,Further comprising a residual gas separation unit for separating the residual gas and the first mixture of FT naphtha and FT heavy oil mixed in the synthetic crude oil,
    상기 잔류가스 분리유닛에서 분리된 상기 제1 혼합물은 상기 제품 처리 유닛으로 공급되는 것을 특징으로 하는 단일 합성원유 생산용 FT GTL 장치.And the first mixture separated from the residual gas separation unit is supplied to the product processing unit.
  10. 제 1항에 있어서, 상기 개질 유닛은,The method of claim 1, wherein the reforming unit,
    천연가스로부터 생성되는 합성가스를 합성유로 생성하는 F-T합성 유닛; 및 An F-T synthesis unit generating syngas generated from natural gas as synthetic oil; And
    상기 합성유로 개질되는 합성원유의 왁스성분을 설정치로 유지하도록 F-T합성 유닛을 제어하는 컨트롤 유닛;을 포함하여, And a control unit for controlling the F-T synthesis unit to maintain the wax component of the synthetic crude oil modified with the synthetic oil at the set value.
    합성원유의 왁스성분을 조절할 수 있는 것을 특징으로 하는 단일 합성원유 생산용 FT GTL 장치. FT GTL apparatus for producing a single synthetic crude oil, characterized in that the wax component of the synthetic crude oil can be adjusted.
  11. 제 10항에 있어서,The method of claim 10,
    상기 F-T합성 유닛은 LT-FT 반응기와 HT-FT 반응기를 직렬 또는 병렬로 구비하고, 하류측에서 생성되는 합성원유의 조성에 대응하여 LT-FT 반응기와 HT-FT 반응기의 유량을 조절하는 것을 특징으로 하는 단일 합성원유 생산용 FT GTL 장치. The FT synthesis unit includes an LT-FT reactor and an HT-FT reactor in series or in parallel, and adjusts the flow rates of the LT-FT reactor and the HT-FT reactor in response to the composition of the synthetic crude oil generated downstream. FT GTL unit for producing single synthetic crude oil.
  12. 제 10항에 있어서,The method of claim 10,
    상기 컨트롤 유닛은 합성원유에 대한 왁스 함량을 검출하는 왁스검출부와, 미반응 가스의 함량을 검출하는 미반응 가스 검출부를 구비하는 것을 특징으로 하는 단일 합성원유 생산용 FT GTL 장치. The control unit is a FT GTL apparatus for producing a single synthetic crude oil, characterized in that it comprises a wax detection unit for detecting the wax content of the synthetic crude oil, and an unreacted gas detection unit for detecting the content of unreacted gas.
  13. 제 12항에 있어서, The method of claim 12,
    상기 컨트롤 유닛은 미반응 가스를 설정치 이내로 유지하는 한도 내에서 왁스성분을 최소로 유지하도록 제어하는 것을 특징으로 하는 단일 합성원유 생산용 FT GTL 장치. The control unit is a FT GTL device for producing a single synthetic crude oil, characterized in that the control to keep the wax component to a minimum within the limit to maintain the unreacted gas within the set value.
  14. FPSO(Floated Production, Storage, and Off-loading)에서 단일 합성원유 생산을 위한 FT(Fischer-Tropsch) GTL(Gas-to-Liquid) 방법으로서,FT (Fischer-Tropsch) Gas-to-Liquid (FT) method for the production of single synthetic crude oil in Floated Production, Storage, and Off-loading (FPSO)
    (a) 천연가스에서 천연가스 콘덴세이트를 생성하는 단계,(a) producing natural gas condensate from natural gas,
    (b) 합성가스에서 FT 나프타와 FT 중질유가 혼합된 제1 혼합물과 FT 왁스를(b) the first mixture of FT naphtha and FT heavy oil and FT wax in syngas;
    생성하는 단계,Generating step,
    (c) FT 나프타, FT 중질유와 FT 왁스가 혼합된 제2 혼합물을 생성하는 단계,(c) producing a second mixture of FT naphtha, FT heavy oil and FT wax,
    (d) 상기 천연가스 콘덴세이트, 상기 제1 혼합물과 제2 혼합물을 혼합하여 단일 합성원유를 생성하는 단계를 포함하는 것을 특징으로 하는 단일 합성원유 생산용 FT GTL 방법.and (d) mixing the natural gas condensate, the first mixture and the second mixture to produce a single synthetic crude oil.
  15. 제14항에 있어서,The method of claim 14,
    상기 단계 (c)는 왁스 수소화 분해반응 또는 순한 수소첨가 이성질화 반응에 의해 실행되는 것을 특징으로 하는 단일 합성원유 생산용 FT GTL 방법.The step (c) is FT GTL method for producing a single synthetic crude oil, characterized in that carried out by a wax hydrocracking reaction or a mild hydroisomerization reaction.
  16. 제15항에 있어서,The method of claim 15,
    상기 단계 (d)에서 생성된 단일 합성원유는 열처리 없이 저장 및 운송되는 것을 특징으로 하는 단일 합성원유 생산용 FT GTL 방법.FT GTL method for producing a single synthetic crude oil, characterized in that the single synthetic crude oil produced in step (d) is stored and transported without heat treatment.
  17. 제15항에 있어서,The method of claim 15,
    (e) 상기 단일 합성원유를 육상 정제 플랜트에서 정제하는 단계를 더 포함하는 것을 특징으로 하는 단일 합성원유 생산용 FT GTL 방법.(e) FT GTL method for producing a single synthetic crude oil, further comprising the step of refining the single synthetic crude oil in a land refining plant.
PCT/KR2014/007012 2014-02-28 2014-07-30 Ft gtl apparatus and method for producing single synthetic crude oil WO2015129970A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016552950A JP2017512225A (en) 2014-02-28 2014-07-30 FT-GTL apparatus and method for single synthetic crude oil production
US15/122,140 US20160369173A1 (en) 2014-02-28 2014-07-30 Ft gtl apparatus and method for producing single synthetic crude oil
EP14883641.4A EP3112250A4 (en) 2014-02-28 2014-07-30 Ft gtl apparatus and method for producing single synthetic crude oil

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2014-0024695 2014-02-28
KR1020140024695A KR101562823B1 (en) 2014-02-28 2014-02-28 Apparatus for adjusting waxy component of GTL FPSO syncrude
KR10-2014-0059689 2014-05-19
KR1020140059689A KR101597557B1 (en) 2014-05-19 2014-05-19 FT GTL apparatus for producing a single synthetic syncrude product and method thereof

Publications (1)

Publication Number Publication Date
WO2015129970A1 true WO2015129970A1 (en) 2015-09-03

Family

ID=54009262

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/007012 WO2015129970A1 (en) 2014-02-28 2014-07-30 Ft gtl apparatus and method for producing single synthetic crude oil

Country Status (4)

Country Link
US (1) US20160369173A1 (en)
EP (1) EP3112250A4 (en)
JP (1) JP2017512225A (en)
WO (1) WO2015129970A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10144877B2 (en) * 2016-02-01 2018-12-04 Fluor Technologies Corporation Small scale modular gas to liquids plant for stranded remote gas

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020087992A (en) * 2000-04-21 2002-11-23 엑손모빌 리서치 앤드 엔지니어링 컴퍼니 Fischer-tropsch wax and crude oil mixtures having a high wax content
KR20030051374A (en) * 2001-12-17 2003-06-25 셰브런 유.에스.에이.인크. Process for the Production of High Quality Middle Distillates from Mild Hydrocrackers and Vacuum Gas Oil Hydrotreaters in Combination with External Feeds in the Middle Distillate Boiling Range
KR20110059306A (en) * 2009-11-27 2011-06-02 한국과학기술연구원 Fpso-gtl system for conversion of associated gas in oil fields and stranded gas in stranded gas fields, and process for production of synthetic fuel using the same
JP5301574B2 (en) * 2009-01-30 2013-09-25 独立行政法人石油天然ガス・金属鉱物資源機構 Method for refining FT synthetic oil and mixed crude oil

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO953797L (en) * 1995-09-25 1997-03-26 Norske Stats Oljeselskap Process and plant for treating a brönnström produced from an offshore oil field
US20050106086A1 (en) * 2003-08-06 2005-05-19 Tomlinson H. L. Movable gas-to-liquid system and process
US8753500B2 (en) * 2009-12-31 2014-06-17 Chevron U.S.A. Inc. Process and system for blending synthetic and natural crude oils derived from offshore produced fluids
GB201120327D0 (en) * 2011-11-24 2012-01-04 Compactgtl Plc Oil well product treatment
EP2659960A1 (en) * 2012-05-03 2013-11-06 Global-Synergy Consultancy Services S.L. Gas-to-liquid proccesing system in microreactors

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020087992A (en) * 2000-04-21 2002-11-23 엑손모빌 리서치 앤드 엔지니어링 컴퍼니 Fischer-tropsch wax and crude oil mixtures having a high wax content
KR20030051374A (en) * 2001-12-17 2003-06-25 셰브런 유.에스.에이.인크. Process for the Production of High Quality Middle Distillates from Mild Hydrocrackers and Vacuum Gas Oil Hydrotreaters in Combination with External Feeds in the Middle Distillate Boiling Range
JP5301574B2 (en) * 2009-01-30 2013-09-25 独立行政法人石油天然ガス・金属鉱物資源機構 Method for refining FT synthetic oil and mixed crude oil
KR20110059306A (en) * 2009-11-27 2011-06-02 한국과학기술연구원 Fpso-gtl system for conversion of associated gas in oil fields and stranded gas in stranded gas fields, and process for production of synthetic fuel using the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3112250A4 *

Also Published As

Publication number Publication date
EP3112250A4 (en) 2018-02-07
US20160369173A1 (en) 2016-12-22
JP2017512225A (en) 2017-05-18
EP3112250A1 (en) 2017-01-04

Similar Documents

Publication Publication Date Title
US20050150820A1 (en) Novell integration of gasification, hydrocarbon synthesis unit, and refining processes
US6277894B1 (en) System and method for converting light hydrocarbons into heavier hydrocarbons with a plurality of synthesis gas subsystems
RU2600733C2 (en) Method for processing of heavy oil and bitumen
BR112015023259B1 (en) PROCESS FOR IMPROVING HEAVY OIL OR BITUME, FOR SYNTHESIS OF PARTIALLY ENHANCED SYNTHETIC CRUDE OIL AND FOR CONVERSION OF HEAVY OR BITUME OIL INTO SYNTHETIC CRUDE OIL
GB2342919A (en) Disposal of Associated Gases from Offshore Oilfields
CA2750679A1 (en) Method for upgrading ft synthesis oil, and mixed crude oil
NO311696B1 (en) Process and integrated processing plant for the production of synfuel and electric power
WO2013066661A1 (en) Diesel fuel production process employing direct and indirect coal liquefaction
WO2015129970A1 (en) Ft gtl apparatus and method for producing single synthetic crude oil
WO2015012623A1 (en) Method and system for gtl production in fpso
WO2005113426A1 (en) Recovery of water originating from low temperature fischer-tropsch synthesis processes
KR101670870B1 (en) Methanol Production Method And System Using GTL Production Process
US20160186071A1 (en) Method for preparing synthetic fuel from natural gas of stranded gas field and associated gas from oil & gas fields by gtl-fpso process
US10266775B2 (en) Process for producing a hydrocarbon product flow from a gaseous hydrocarbonaceous feed flow and related installation
CA2636118C (en) Process and device for utilization of soot in pox plants
KR101597557B1 (en) FT GTL apparatus for producing a single synthetic syncrude product and method thereof
KR20160103427A (en) Apparatus for preventing subsea hydrate and topside process hydrate using flare gas
CA2806044C (en) Integrated xtl and in-situ oil sands extraction processes
KR101587476B1 (en) FT GTL apparatus on FPSO for using SMR and method thereof
CA2822455C (en) Integrated xtl and open pit oil sands mining processes
CN102333845B (en) Method for recovering hydrocarbon compound from gaseous by-product and hydrocarbon recovery apparatus
KR101562822B1 (en) Apparatus for enhancing GTL FPSO syncrude liquidity
KR20170135037A (en) Fpso having optimized configuration deployment
KR20150012401A (en) GTL Producing Method And System For FPSO
JP5014891B2 (en) Mutual use of hydrogen-containing gas

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14883641

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016552950

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2014883641

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15122140

Country of ref document: US

Ref document number: 2014883641

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE