WO2015129842A1 - Radar device - Google Patents

Radar device Download PDF

Info

Publication number
WO2015129842A1
WO2015129842A1 PCT/JP2015/055747 JP2015055747W WO2015129842A1 WO 2015129842 A1 WO2015129842 A1 WO 2015129842A1 JP 2015055747 W JP2015055747 W JP 2015055747W WO 2015129842 A1 WO2015129842 A1 WO 2015129842A1
Authority
WO
WIPO (PCT)
Prior art keywords
radar
ground surface
ground
section
scattering cross
Prior art date
Application number
PCT/JP2015/055747
Other languages
French (fr)
Japanese (ja)
Inventor
田川哲也
Original Assignee
株式会社次世代技術研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社次世代技術研究所 filed Critical 株式会社次世代技術研究所
Publication of WO2015129842A1 publication Critical patent/WO2015129842A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/40Means for monitoring or calibrating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/52Discriminating between fixed and moving objects or between objects moving at different speeds
    • G01S13/522Discriminating between fixed and moving objects or between objects moving at different speeds using transmissions of interrupted pulse modulated waves
    • G01S13/524Discriminating between fixed and moving objects or between objects moving at different speeds using transmissions of interrupted pulse modulated waves based upon the phase or frequency shift resulting from movement of objects, with reference to the transmitted signals, e.g. coherent MTi
    • G01S13/5244Adaptive clutter cancellation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/89Radar or analogous systems specially adapted for specific applications for mapping or imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/95Radar or analogous systems specially adapted for specific applications for meteorological use
    • G01S13/953Radar or analogous systems specially adapted for specific applications for meteorological use mounted on aircraft
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Definitions

  • the present invention relates to a radar apparatus for measuring a radar scattering cross section on the ground surface.
  • the conventional method depends on the off-nadir angle and the undulations / states of the ground surface, cannot be applied to the ground surface in the direction directly below the radar and in the vicinity thereof, and the application is limited when the off-nadir angle is relatively large.
  • the calculated value of the radar scattering cross section of the ground surface is reduced by the amount of radio wave attenuation in the propagation path between the radar and the ground surface.
  • the method of Patent Document 2 also has a problem that its use is limited to a synthetic aperture radar that can perform interferometry processing.
  • the first invention applies a theorem of the average value of integrals in the radar equation representing the surface echo, so that the radar can be located directly below the radar or in the vicinity thereof, regardless of sea or land.
  • the radar scattering cross section of the ground surface per unit area and the attenuation in the propagation path are obtained. Further, it is possible to improve the spatial resolution in the range cell by changing the antenna gain for irradiating the same range cell by antenna beam scanning. Also, the coordinates of the region emphasized by the antenna gain are obtained.
  • the second invention is based on the radar scattering cross section of the ground surface with improved spatial resolution in the range cell. It is possible to collate and estimate the error contained in the antenna gain.
  • the third invention calculates a ground surface echo based on the radar scattering cross section of the ground surface per unit area estimated for each distance and each beam scanning, and calculates the ground surface from the total received power at a certain distance and beam scanning. By subtracting the echo component, it is possible to reduce the ground surface clutter.
  • the radar scattering cross section of the ground surface per unit area and the propagation regardless of whether it is in the vicinity of the radar or in the vicinity thereof, or in the vicinity of the radar, or when the radio wave is attenuated in the propagation path.
  • the amount of attenuation in the path can be determined.
  • the spatial resolution in the range cell can be improved.
  • the radar equation representing the surface echo intensity Ps is represented by the following equation (1).
  • the positional relationship between the radar and the ground surface, and the coordinate system are shown in FIG. 1 (a radar equation representing ground surface echo is shown in Non-Patent Document 1, etc.).
  • Ps (r, k) is the ground echo (mW) received from the range bin at the distance r
  • k is the number assigned for each antenna beam direction
  • Pt is the power (mW) transmitted from the radar
  • I (r , k) is determined by antenna gain (transmission: Gt, k reception: Gr, k), transmission pulse waveform u, radar scattering cross section ⁇ 0 of the ground surface, and radio wave attenuation A in the propagation path between the radar and the ground surface.
  • the integral value, r ′ is the distance from the radar to a position on the ground surface
  • S is the ground surface at the same distance as the range bin at the position of distance r.
  • the antenna gain is expressed as a function of the incident angle ⁇ and the azimuth angle ⁇ , and any of a model based on a Gaussian function and a sinc function and an actually measured antenna gain can be used.
  • a model formula based on the sinc function is shown in Patent Document 1 and the like.
  • the transmission pulse waveform u any of a rectangular function, a model based on a Gaussian function or a sinc function, or an actually measured pulse waveform can be used.
  • a Gaussian function it is expressed by the equation (2).
  • c is the speed of light
  • t is the -6 dB width of the transmission / reception pulse.
  • the relationship between the range cell and the antenna gain when a rectangular pulse waveform is assumed as the transmission pulse waveform u can be illustrated as shown in FIG. (A resolution function may be used as the transmission pulse waveform u.)
  • a resolution function may be used as the transmission pulse waveform u.
  • the antenna gain gradient is relatively large, and the area inside the antenna gain is irradiated more strongly, and the ground surface echo emphasized on the black dot ( ⁇ ) side in the range cell is received.
  • the intensity of the irradiation area is generated by the gradient of the antenna gain, and a partially enhanced ground surface echo is received.
  • the spatial resolution of ground echoes received by the radar is determined by the radar range resolution and antenna gain. Even if the range cells determined by the radar range resolution are the same, the spatial resolution of the ground surface echo can be substantially improved by changing the gradient of the antenna gain by scanning the antenna beam.
  • Equation 3 Equation 3 is obtained.
  • Equation 4 is used to obtain the radar scattering cross-sectional area ⁇ 0A of the ground surface per unit area obtained by weighted averaging within the integration range S with the antenna gains Gt, k and Gr, k.
  • Equation 5 is obtained from Equation 1, Equation 3, and Equation 4.
  • Equation (3) When obtaining Equation (3) from I (r, k) of Equation (1), after giving the model equation (Equation 6) and the calculated or observed values for ⁇ 0 ( ⁇ , ⁇ ) and A ( ⁇ , ⁇ ), ⁇ t , k, ⁇ t, k and ⁇ r, k, ⁇ r, k need to be obtained (subscript t means transmit, r means initial of receive).
  • ⁇ t, k, ⁇ t, k and ⁇ r, k, ⁇ r, k are variables indicating the position on the polar coordinate together with the distance r ′, and are coordinates representing an emphasized region as indicated by a black dot ( ⁇ ) in FIG. I can say that.
  • f ( ⁇ , ⁇ ) a theoretical value based on an electromagnetic wave scattering model (depending on the classification of the ground surface such as the sea surface, forests, and deserts), an experimental model value, and an observation value obtained by a scatterometer or the like can be used.
  • a ( ⁇ , ⁇ ) depends on the frequency of radio waves to be transmitted and received, and the amount of attenuation (difference in attenuation between single frequencies and attenuation between multiple frequencies) causes precipitation. There is a method for estimating the quantity and the like.
  • the present invention which can improve the spatial resolution even by scanning the antenna beam even in the same range cell, estimates and compensates for non-uniformity such as precipitation.
  • ⁇ 0 ( ⁇ , ⁇ ) within the same range cell is used for a plurality of values of ⁇ 0 ( ⁇ , ⁇ ) A ( ⁇ , ⁇ ) obtained by scanning the antenna beam.
  • Calculate statistics such as variance of A ( ⁇ , ⁇ ).
  • the received data is oversampled in the direction of the distance r, and statistical values such as variance are calculated including adjacent range cells.
  • FIG. 3 shows the relationship between the antenna beam, the resolution cell, and the ⁇ r, k value of Equation 3.
  • FIG. 3 illustrates the case where the antenna beam on the receiving side is scanned in the ⁇ direction. However, it is possible to scan in any direction of ( ⁇ , ⁇ ), and also in the case of scanning both the transmitting and receiving antenna beams. It is the same.
  • FIG. 3A shows the magnitude relationship between the antenna gain in the beam direction k ⁇ 1, k, k + 1 and the ⁇ r, k ⁇ 1, ⁇ r, k, ⁇ r, k + 1 values of Equation 3.
  • the beam in the k-1 direction has a smaller ⁇ value than the beam in the k direction.
  • FIG. 3B illustrates a case where the value of ⁇ 0 ( ⁇ , ⁇ ) A ( ⁇ , ⁇ ) has a slope that rises to the right with respect to ⁇ .
  • the convergence determination is performed based on the residual norm or the upper limit of the number of iterations.
  • Method that uses theoretical values, model values, and observed values as f ( ⁇ , ⁇ ) but does not use iterative calculation is set as Method 1, and ⁇ t, k, ⁇ t, k, ⁇ r calculated based on f ( ⁇ , ⁇ ) , k, ⁇ r, k are used in the calculation of ⁇ 0 ( ⁇ , ⁇ ) A ( ⁇ , ⁇ ).
  • Method 2 is a method for obtaining ⁇ 0 ( ⁇ , ⁇ ) A ( ⁇ , ⁇ ) by increasing the accuracy of ⁇ t, k, ⁇ t, k and ⁇ r, k, ⁇ r, k by iterative calculation.
  • the coordinate values obtained by this calculation are (r ′, ⁇ t, k, ⁇ t, k) and (r ′, ⁇ r, k, ⁇ r, k) on the polar coordinates.
  • the beam direction represented as (m, n) beam direction can be set while overlapping in any direction.
  • the transmission antenna beam and the reception antenna beam may have different antenna gains and directions. The present invention is not limited to the case where the transmission and reception antennas are at the same position as shown in FIG. Can be applied.
  • Equation 5 can be expressed as Equation 7 using the coefficient wi, j.
  • (i, j) is the lattice point in FIG. 3C, and is determined by the antenna beam direction, the oversampling position of the data in the range direction, and the like.
  • the value of ⁇ 0 ( ⁇ , ⁇ ) A ( ⁇ , ⁇ ) at the position of the black point ( ⁇ ) in FIG. 3C can also be considered to be included in the lattice point (i, j) as a part of the region including the point. .
  • Equation 8 For the term A representing the attenuation, particularly when focusing on the attenuation before and after rainfall (assuming A ′), if the ratio is taken as in Equation 8, the observed value Ps of the ground surface echo without including the variable in Equation 5 It can be represented by (r, k). The case where the amount of attenuation due to water vapor or the like is obtained can be similarly expressed.
  • FIG. 5 is a configuration diagram of the radar apparatus according to the first and second embodiments of the present invention.
  • a pulsed radio wave 11b is transmitted from the transmitter 13b through the transmission antenna 12b, and the reflected wave 11a is received through the reception antenna 12a.
  • This operation is performed for each polarization and each transmission / reception frequency.
  • the transmission / reception polarization is selected from horizontal / vertical polarization and right / left-hand circular polarization.
  • the frequency of radio waves to be transmitted / received is selected so that the attenuation characteristics due to water vapor, precipitation, etc. are different.
  • the receiver 13a receives the received wave and the reference signal 16 from the transmitter.
  • the transmitting / receiving antenna beam is formed by mechanical scanning, electrical scanning, digital beam forming, or the like.
  • the -6 dB width of the transmission / reception pulse in Equation 2 can be defined by the -6 dB width of the BPF output pulse waveform when the transmission pulse is input to the bandpass filter (BPF) of the receiver.
  • Radio wave transmission / reception and beam direction control are performed by the controller 15, and the signal processing unit 14 performs data collection, coordinate determination, database reference / calculation.
  • the antenna beam scans in the direction of coordinates (m, n) in a manner that can overlap with the adjacent antenna footprint.
  • the signal processing device 14 accumulates data for each beam direction and each range (including oversampling in the range direction). Radar position is obtained by positioning satellite data, inertial navigation system, etc.
  • a flowchart of the processing in the signal processing device 14 is shown in FIG.
  • h's hs-h
  • h is the height from the spheroid model such as the Earth's geoid or GRS80 ellipsoid to the plane of the figure.
  • DEM degital Elevation Model
  • the unevenness of the ground surface is divided into slices for each range cell, and the portion where the ground surface echo is generated is specified including the region around the range cell.
  • the range bin in which the ground surface echo is mixed is specified by the DEM data from the data received for each beam direction and for each range bin.
  • ⁇ t, k, ⁇ t, k, ⁇ r, k, ⁇ r, k are obtained based on the model value and the observed value of ⁇ 0 ( ⁇ , ⁇ ) A ( ⁇ , ⁇ ).
  • ⁇ 0A is obtained by Method 1 or Method 2
  • the ⁇ 0 value changes depending on the sea, river, desert, forest, and ice surface, so it is possible to detect deviations in the antenna beam direction compared to the database of ground surface classification (covering conditions).
  • the deviation of the antenna beam direction is caused by an electrical / mechanical error of the antenna or an attitude change of the aircraft / satellite.
  • the antenna gain for correcting the deviation is corrected, and ⁇ 0A is calculated again.
  • Equation 8. If there are a plurality of polarizations and a plurality of frequencies, the above processing is repeated for the combination.
  • the industrial applicability of the present invention is useful for measuring radar scattering cross sections on the ground surface and attenuation in propagation paths, mapping the ground surface and reducing ground clutter.
  • FIG. 1 It is a figure which shows the positional relationship of the radar mounted in the aircraft and the artificial satellite, the ground surface, and the target body. It is a figure which shows the relationship between the radar scattering cross section of a ground surface, a range cell, and an antenna gain. It is a figure which shows the relationship between an antenna beam, a range cell, (theta) r, k value of several 3, etc.
  • FIG. It is a flowchart explaining the calculation method of the radar scattering cross section (with attenuation) of the ground surface. It is a block diagram of the radar apparatus in Embodiment 1, 2 of this invention. It is a flowchart of the process in a signal processing apparatus.
  • Patent 4481078 “Radar equipment”
  • Patent 3660989 “Synthetic Aperture Radar Antenna Pattern Correction Method”
  • US 8138962 METHOD FOR PROCESSING MEASURED VERTICAL PROFILES OF THE POWER OF THE ECHOES RETURNED FOLLOWINGA TRANSMISSION OF RADAR SIGNALS
  • Patent No. 3408943 “Dual-frequency measurement method and multi-frequency radar device”

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

Conventional methods are dependent upon the off-nadir angle and the state and contour of the surface of the ground, and cannot be applied to ground surfaces in the direction directly below a radar, or in a direction close thereto, thus limiting application to instances in which the off-nadir angle is relatively large. Additionally, because of a failure to take attenuation of radio waves by water vapor, rain, and the like into consideration, the value of the radar scatter cross section computed for the surface of the ground is smaller, by the equivalent of attenuation of the radio waves on the propagation path between the radar and the surface of the ground. According to the present invention, by applying the mean value theorem for integrals in a radar equation representing surface echo, the radar scatter cross section of the ground surface per unit area, and the amount of attenuation on the propagation path, can be calculated even in the direction directly below a radar or in a direction close thereto, whether on sea or land. Additionally, by carrying out antenna beam scanning to vary the antenna gain irradiating a given range cell, it is possible to improve the spatial resolution within a range cell.

Description

レーダ装置Radar equipment
 本発明は、地表面のレーダ散乱断面積を測定するレーダ装置に関する。 The present invention relates to a radar apparatus for measuring a radar scattering cross section on the ground surface.
レーダによる観測では、目標物(航空機や船舶、雨・雲などの気象目標)からの反射波に重畳する地表面からの散乱波(グラウンドクラッタ)が妨害となって問題になることがある。例えば、特許文献1では、航空機搭載のレーダで観測した海上の船舶からの反射波に重畳する海面クラッタを低減することを目的に、アンテナビームをエレベーション方向に走査し、船舶と同一のレンジセル上にある海面のレーダ散乱断面積の推定値を求めている。 In radar observation, scattered waves (ground clutter) from the ground surface superimposed on the reflected waves from the target (aircraft, ships, weather targets such as rain and clouds) may become a problem due to interference. For example, in Patent Document 1, an antenna beam is scanned in the elevation direction for the purpose of reducing sea surface clutter superimposed on a reflected wave from a marine vessel observed by an onboard radar, and on the same range cell as the vessel. The estimated value of radar scattering cross section at sea level is obtained.
この方法では、海面のように水平な面のレーダ散乱断面積を推定することができるが、陸上のように起伏のある地表面には適用するのは難しい。起伏のある地表面のレーダ散乱断面積の計算時に、特許文献2のようにインターフェロメトリによる地表面高度情報を用いてアンテナゲインを補正する方法もある。 Although this method can estimate the radar scattering cross section of a horizontal surface such as the sea surface, it is difficult to apply it to an uneven ground surface such as land. At the time of calculating the radar scattering cross section of the undulating ground surface, there is also a method of correcting the antenna gain using ground surface altitude information by interferometry as disclosed in Patent Document 2.
従来の方法はオフナディア角や地表面の起伏・状態に依存し、レーダの真下方向及びその近傍方向の地表面には適用できず、オフナディア角が比較的大きい場合に適用が限定される。また、水蒸気・雨等による電波の減衰を考慮していないために、レーダと地表面の間の伝搬経路における電波の減衰の分、計算した地表面のレーダ散乱断面積の値が低くなる。特許文献2の方法は、インターフェロメトリ処理が行える合成開口レーダに利用が限定されるという問題もある。 The conventional method depends on the off-nadir angle and the undulations / states of the ground surface, cannot be applied to the ground surface in the direction directly below the radar and in the vicinity thereof, and the application is limited when the off-nadir angle is relatively large. In addition, since the attenuation of radio waves due to water vapor, rain, or the like is not taken into account, the calculated value of the radar scattering cross section of the ground surface is reduced by the amount of radio wave attenuation in the propagation path between the radar and the ground surface. The method of Patent Document 2 also has a problem that its use is limited to a synthetic aperture radar that can perform interferometry processing.
以上の課題を解決するために、第一発明は地表面エコーを表すレーダ方程式において、積分の平均値の定理を適用することで、海陸を問わず、レーダの真下方向やその近傍であっても単位面積当たりの地表面のレーダ散乱断面積と伝搬経路における減衰量を求める。また、アンテナビーム走査により、同一のレンジセルを照射するアンテナゲインを変化させることで、レンジセル内の空間分解能を向上することを可能にする。またアンテナゲインにより強調される領域の座標を求める。 In order to solve the above-mentioned problems, the first invention applies a theorem of the average value of integrals in the radar equation representing the surface echo, so that the radar can be located directly below the radar or in the vicinity thereof, regardless of sea or land. The radar scattering cross section of the ground surface per unit area and the attenuation in the propagation path are obtained. Further, it is possible to improve the spatial resolution in the range cell by changing the antenna gain for irradiating the same range cell by antenna beam scanning. Also, the coordinates of the region emphasized by the antenna gain are obtained.
第二発明は、レンジセル内の空間分解能を向上した地表面のレーダ散乱断面積をもとに、観測値や地表面の被覆・分類等に依存する電磁波散乱モデルや経験式によるレーダ散乱断面積と照合し、アンテナゲインに含まれる誤差を推定することを可能にする。 The second invention is based on the radar scattering cross section of the ground surface with improved spatial resolution in the range cell. It is possible to collate and estimate the error contained in the antenna gain.
第三発明は、距離ごと並びにビーム走査ごとに推定した単位面積当たりの地表面のレーダ散乱断面積を基に地表面エコーを計算し、ある距離並びにビーム走査時の全受信電力から、その地表面エコー成分を差し引くことで地表面クラッタを低減することを可能にする。 The third invention calculates a ground surface echo based on the radar scattering cross section of the ground surface per unit area estimated for each distance and each beam scanning, and calculates the ground surface from the total received power at a certain distance and beam scanning. By subtracting the echo component, it is possible to reduce the ground surface clutter.
本発明によれば、海陸を問わず、レーダの真下方向やその近傍であっても、また、伝搬経路における電波の減衰を生じていても、単位面積当たりの地表面のレーダ散乱断面積と伝搬経路における減衰量を求めることができる。また、レンジセル内の空間分解能を向上することを可能にする。
According to the present invention, the radar scattering cross section of the ground surface per unit area and the propagation regardless of whether it is in the vicinity of the radar or in the vicinity thereof, or in the vicinity of the radar, or when the radio wave is attenuated in the propagation path. The amount of attenuation in the path can be determined. In addition, the spatial resolution in the range cell can be improved.
以下、本発明の実施の形態について式と図面を参照して説明する。
地表面エコー強度Psを表すレーダ方程式は次の数1によって示される式となる。レーダと地表面の位置関係、座標系については図1に示す(非特許文献1などに地表面エコーを表すレーダ方程式が示されている)。
Figure JPOXMLDOC01-appb-M000001


ここでPs(r,k)は距離rの位置のレンジビンから受信する地表面エコー(mW)、kはアンテナビーム方向毎に割り当てた番号、Ptはレーダから送信する電力(mW)、I(r,k)はアンテナゲイン(送信:Gt,k 受信:Gr,k)、送信パルス波形u、地表面のレーダ散乱断面積σ0、レーダと地表面の間の伝搬経路における電波の減衰量Aにより決まる積分値、r'はレーダから地表面上のある位置までの距離、Sは距離rの位置のレンジビンと同一距離にある地表面である。アンテナゲインは入射角θ、方位角φの関数として表されるが、ガウス関数やsinc関数によるモデル、実測のアンテナゲインのいずれも利用できる。sinc関数によるモデル式は特許文献1などに示されている。送信パルス波形uは、矩形関数、ガウス関数やsinc関数によるモデル、実測のパルス波形のいずれも利用できる。ガウス関数の場合には、数2の式で表される。
Figure JPOXMLDOC01-appb-M000002


ここでcは光の速さ、tは送受信パルスの-6dB幅とする。
送信パルス波形uとして矩形関数(rectangular pulse waveform)を仮定した場合の、レンジセルとアンテナゲインの関係は図2のように例示できる。(送信パルス波形uとしてその他の分解能関数を用いる場合もある)アンテナゲインの中央付近で観測するレンジセルでは、アンテナゲインの勾配が小さく、そのレンジセルの地表面をほぼ等しく照射し地表面エコーを受信する。その両脇のレンジセルでは、アンテナゲインの勾配が比較的大きく、アンテナゲインの内側の領域をより強く照射し、レンジセル内の黒点(●)側に強調した地表面エコーを受信することになる。上下左右矢印の方向にアンテナビーム走査によりビーム方向を変化させたとき、同一のレンジセルであってもアンテナゲインの勾配によって、照射領域に強弱が生じ、部分的に強調された地表面エコーを受信する。レーダが受信する地表面エコーの空間分解能は、レーダのレンジ分解能とアンテナゲインによって決まる。また、レーダのレンジ分解能によって決まるレンジセルが同一であっても、アンテナビーム走査によってアンテナゲインの勾配を変化させることで、地表面エコーの空間分解能を実質的に向上することができる。
Hereinafter, embodiments of the present invention will be described with reference to equations and drawings.
The radar equation representing the surface echo intensity Ps is represented by the following equation (1). The positional relationship between the radar and the ground surface, and the coordinate system are shown in FIG. 1 (a radar equation representing ground surface echo is shown in Non-Patent Document 1, etc.).
Figure JPOXMLDOC01-appb-M000001


Where Ps (r, k) is the ground echo (mW) received from the range bin at the distance r, k is the number assigned for each antenna beam direction, Pt is the power (mW) transmitted from the radar, I (r , k) is determined by antenna gain (transmission: Gt, k reception: Gr, k), transmission pulse waveform u, radar scattering cross section σ0 of the ground surface, and radio wave attenuation A in the propagation path between the radar and the ground surface. The integral value, r ′, is the distance from the radar to a position on the ground surface, and S is the ground surface at the same distance as the range bin at the position of distance r. The antenna gain is expressed as a function of the incident angle θ and the azimuth angle φ, and any of a model based on a Gaussian function and a sinc function and an actually measured antenna gain can be used. A model formula based on the sinc function is shown in Patent Document 1 and the like. As the transmission pulse waveform u, any of a rectangular function, a model based on a Gaussian function or a sinc function, or an actually measured pulse waveform can be used. In the case of a Gaussian function, it is expressed by the equation (2).
Figure JPOXMLDOC01-appb-M000002


Here, c is the speed of light, and t is the -6 dB width of the transmission / reception pulse.
The relationship between the range cell and the antenna gain when a rectangular pulse waveform is assumed as the transmission pulse waveform u can be illustrated as shown in FIG. (A resolution function may be used as the transmission pulse waveform u.) In the range cell observed near the center of the antenna gain, the gradient of the antenna gain is small, and the ground surface of the range cell is irradiated almost equally and the ground surface echo is received. . In the range cells on both sides, the antenna gain gradient is relatively large, and the area inside the antenna gain is irradiated more strongly, and the ground surface echo emphasized on the black dot (●) side in the range cell is received. When the beam direction is changed by the antenna beam scanning in the direction of the up / down / left / right arrows, even in the same range cell, the intensity of the irradiation area is generated by the gradient of the antenna gain, and a partially enhanced ground surface echo is received. . The spatial resolution of ground echoes received by the radar is determined by the radar range resolution and antenna gain. Even if the range cells determined by the radar range resolution are the same, the spatial resolution of the ground surface echo can be substantially improved by changing the gradient of the antenna gain by scanning the antenna beam.
数1のI(r,k)について、積分記号内に含まれる関数が積分可能でいずれも0より大の関数(積分区間内で±の符号が変化しない)であることから、積分の平均値の定理(mean value theorem for integration)を適用でき、数3を得る。
Figure JPOXMLDOC01-appb-M000003


数3において、積分範囲S内でアンテナゲインGt,k、Gr,kで重み付け平均した、単位面積当たりの地表面のレーダ散乱断面積σ0Aを求めるために数4を利用する。
Figure JPOXMLDOC01-appb-M000004



数1と数3,数4より数5を得る。
Figure JPOXMLDOC01-appb-M000005

For I (r, k) in Equation 1, since the functions included in the integration symbol can be integrated and both are functions larger than 0 (the sign of ± does not change in the integration interval), the average value of the integration The theorem (mean value theorem for integration) can be applied, and Equation 3 is obtained.
Figure JPOXMLDOC01-appb-M000003


In Equation 3, Equation 4 is used to obtain the radar scattering cross-sectional area σ0A of the ground surface per unit area obtained by weighted averaging within the integration range S with the antenna gains Gt, k and Gr, k.
Figure JPOXMLDOC01-appb-M000004



Equation 5 is obtained from Equation 1, Equation 3, and Equation 4.
Figure JPOXMLDOC01-appb-M000005

数1のI(r,k)から数3を得るときに、σ0(θ,φ)とA(θ,φ)についてモデル式(数6)や計算値または観測値を与えた上で、θt,k,φt,k、θr,k,φr,kを求める必要がある(添え字tはtransmit, rはreceiveの頭文字を意味する)。θt,k,φt,k、θr,k,φr,kは距離r'と合わせて極座標上の位置を示す変数であり、図2の黒点(●)のように強調した領域を代表する座標といえる。
Figure JPOXMLDOC01-appb-M000006


もっとも単純なモデルはf(θ,φ)=1(真数)と考える。f(θ,φ)として、電磁波散乱モデルによる理論値(海面・森林・砂漠等の地表面の分類に依存する)、経験によるモデル値、散乱計等による観測値のいずれも利用できる。A(θ,φ)については、特許文献4に示されているように送受信する電波の周波数に依存し、その減衰量(単一周波数の減衰量や複数周波数間の減衰量の差)から降水量等を推定する方法がある。降雨等は空間的に非一様であり、アンテナビームを走査することで同一のレンジセルであっても空間分解能を向上させることのできる本発明は、降水等の非一様性を推定・補償する上で有効となる。例えば非一様性を定量化するために、アンテナビームを走査することで得られる複数のσ0(θ,φ)A(θ,φ)の値について、同一レンジセル内でのσ0(θ,φ)A(θ,φ)の分散などの統計値を計算する。非一様性をより広い領域で求める場合には、距離r方向に受信データをオーバーサンプリングしたり、隣接するレンジセルも含めて分散などの統計値を計算する。図2の上下左右矢印のようにビーム位置を変化させることで、平面的な非一様性の変動を求めることができ、更にレーダは高さ方向(距離r方向)の降水等の分布を測定できるので、あわせて3次元の非一様性を本発明を利用することで求めることができる。
When obtaining Equation (3) from I (r, k) of Equation (1), after giving the model equation (Equation 6) and the calculated or observed values for σ0 (θ, φ) and A (θ, φ), θt , k, φt, k and θr, k, φr, k need to be obtained (subscript t means transmit, r means initial of receive). θt, k, φt, k and θr, k, φr, k are variables indicating the position on the polar coordinate together with the distance r ′, and are coordinates representing an emphasized region as indicated by a black dot (●) in FIG. I can say that.
Figure JPOXMLDOC01-appb-M000006


The simplest model is f (θ, φ) = 1 (true number). As f (θ, φ), a theoretical value based on an electromagnetic wave scattering model (depending on the classification of the ground surface such as the sea surface, forests, and deserts), an experimental model value, and an observation value obtained by a scatterometer or the like can be used. As shown in Patent Document 4, A (θ, φ) depends on the frequency of radio waves to be transmitted and received, and the amount of attenuation (difference in attenuation between single frequencies and attenuation between multiple frequencies) causes precipitation. There is a method for estimating the quantity and the like. Rainfall is non-uniform spatially, and the present invention, which can improve the spatial resolution even by scanning the antenna beam even in the same range cell, estimates and compensates for non-uniformity such as precipitation. Effective above. For example, in order to quantify non-uniformity, σ0 (θ, φ) within the same range cell is used for a plurality of values of σ0 (θ, φ) A (θ, φ) obtained by scanning the antenna beam. Calculate statistics such as variance of A (θ, φ). When obtaining non-uniformity in a wider area, the received data is oversampled in the direction of the distance r, and statistical values such as variance are calculated including adjacent range cells. By changing the beam position as shown by the up / down / left / right arrows in FIG. Therefore, it is possible to obtain three-dimensional non-uniformity by using the present invention.
図3にアンテナビーム、レンジセル(resolution cell)と数3のθr,k値等の関係を示す。図3では、受信側のアンテナビームをθ方向に走査した場合を例示しているが、(θ、φ)のどの方向に走査した場合でも、また送信・受信いずれのアンテナビームを走査した場合も同様である。図3(a)ではビーム方向k-1,k,k+1のアンテナゲインと数3のθr,k-1、θr,k、θr,k+1値の大小関係を示す。k-1方向のビームでは、k方向のビームよりもθ値が小さい側にある。逆にk+1方向のビームでは、k方向のビームよりもθ値が大きい側にある。
図3(b)ではσ0(θ,φ)A(θ,φ)の値がθについて右上がりの勾配を持つ場合を例示する。数1のI(r,k)に積分の平均値の定理を適用して数3を得るときに、アンテナゲインと同時に、σ0(θ,φ)A(θ,φ)の値の影響がθt,k,φt,k、θr,k,φr,kの値に生じる。図3(b)のようにθについて右上がりの勾配を持つ場合には、図3(a)のσ0(θ,φ)A(θ,φ)=1とした場合に比べて、θr,k値等の大小関係は図3(b)に例示したようになる。
σ0(θ,φ)A(θ,φ)の勾配を反復計算によって求めながら、σ0(θ,φ)A(θ,φ)の計算精度を高めることができる。そのフローチャートを図4に示す。図3(c)の格子点(i,j)について、σ0(θ,φ)A(θ,φ)を求めるとすると、反復計算によってその座標は変動する。収束判定を残差ノルム又は反復回数の上限に基づいて行う。f(θ,φ)として理論値やモデル値、観測値を用いるものの反復計算は用いない方法をMethod 1とし、そのf(θ,φ)に基づいて計算したθt,k,φt,k、θr,k,φr,kをσ0(θ,φ)A(θ,φ)の計算で用いる。反復計算によってθt,k,φt,k、θr,k,φr,kの精度を高めてσ0(θ,φ)A(θ,φ)を求める方法をMethod 2とする。この計算で求まる座標値は極座標上で(r',θt,k,φt,k)、(r',θr,k,φr,k)となる。
(m,n)beam directionと表記したビーム方向は、どのような方向にでもオーバーラップさせながら設定できる。送信アンテナビームと受信アンテナビームは異なるアンテナゲイン・方向でもよく、図1のように送受信のアンテナが同一の位置にある場合に限らず、送信アンテナと受信アンテナが離れた位置にあっても本発明の方法を適用できる。
FIG. 3 shows the relationship between the antenna beam, the resolution cell, and the θr, k value of Equation 3. FIG. 3 illustrates the case where the antenna beam on the receiving side is scanned in the θ direction. However, it is possible to scan in any direction of (θ, φ), and also in the case of scanning both the transmitting and receiving antenna beams. It is the same. FIG. 3A shows the magnitude relationship between the antenna gain in the beam direction k−1, k, k + 1 and the θr, k−1, θr, k, θr, k + 1 values of Equation 3. The beam in the k-1 direction has a smaller θ value than the beam in the k direction. Conversely, the beam in the k + 1 direction has a larger θ value than the beam in the k direction.
FIG. 3B illustrates a case where the value of σ0 (θ, φ) A (θ, φ) has a slope that rises to the right with respect to θ. Applying the integral mean value theorem to I (r, k) in Equation 1 to obtain Equation 3, the effect of the value of σ0 (θ, φ) A (θ, φ) simultaneously with the antenna gain is θt , k, φt, k, θr, k, φr, k. As shown in FIG. 3B, when θ has a slope that rises to the right, θr, k is compared to the case where σ0 (θ, φ) A (θ, φ) = 1 in FIG. The magnitude relationship such as the value is as illustrated in FIG.
While calculating the gradient of σ0 (θ, φ) A (θ, φ) by iterative calculation, the calculation accuracy of σ0 (θ, φ) A (θ, φ) can be improved. The flowchart is shown in FIG. If σ0 (θ, φ) A (θ, φ) is obtained for the lattice point (i, j) in FIG. 3 (c), its coordinates change by repeated calculation. The convergence determination is performed based on the residual norm or the upper limit of the number of iterations. Method that uses theoretical values, model values, and observed values as f (θ, φ) but does not use iterative calculation is set as Method 1, and θt, k, φt, k, θr calculated based on f (θ, φ) , k, φr, k are used in the calculation of σ0 (θ, φ) A (θ, φ). Method 2 is a method for obtaining σ0 (θ, φ) A (θ, φ) by increasing the accuracy of θt, k, φt, k and θr, k, φr, k by iterative calculation. The coordinate values obtained by this calculation are (r ′, θt, k, φt, k) and (r ′, θr, k, φr, k) on the polar coordinates.
The beam direction represented as (m, n) beam direction can be set while overlapping in any direction. The transmission antenna beam and the reception antenna beam may have different antenna gains and directions. The present invention is not limited to the case where the transmission and reception antennas are at the same position as shown in FIG. Can be applied.
数5を係数wi,jを用いて数7のように表せる。(i,j)は図3(c)の格子点であり、アンテナビーム方向、レンジ方向のデータのオーバーサンプリング位置などによって決まる。図3(c)の黒点(●)の位置のσ0(θ,φ)A(θ,φ)値もその点を含む領域の一部として格子点(i,j)に含めて考えることもできる。
Figure JPOXMLDOC01-appb-M000007


減衰量を表す項Aについて、特に降雨前後の減衰量(A'とする)に着目する場合、数8のように比を取ると、数5の変数を含まずに地表面エコーの観測値Ps(r,k)によって表すことができる。水蒸気等による減衰量を求める場合も同様に表すことができる。
Figure JPOXMLDOC01-appb-M000008


Equation 5 can be expressed as Equation 7 using the coefficient wi, j. (i, j) is the lattice point in FIG. 3C, and is determined by the antenna beam direction, the oversampling position of the data in the range direction, and the like. The value of σ0 (θ, φ) A (θ, φ) at the position of the black point (●) in FIG. 3C can also be considered to be included in the lattice point (i, j) as a part of the region including the point. .
Figure JPOXMLDOC01-appb-M000007


For the term A representing the attenuation, particularly when focusing on the attenuation before and after rainfall (assuming A ′), if the ratio is taken as in Equation 8, the observed value Ps of the ground surface echo without including the variable in Equation 5 It can be represented by (r, k). The case where the amount of attenuation due to water vapor or the like is obtained can be similarly expressed.
Figure JPOXMLDOC01-appb-M000008


強い雨等の場合、地表面からのエコーと同じ程度あるいはそれよりも強い降雨エコーを受信する。地表面からのエコーと降雨エコーを分離する方法として、特許文献3があるが、この方法では電波の伝搬経路上での減衰が考慮されていないという問題がある。ビーム方向kで受信する目標物からの反射波(降雨エコー等)をPr(r,k)とすると、全受信電力P(r,k)と地表面エコーPs(r,k)と数5を用いて数9のように表せる。Pr(r,k),P(r,k)が時間的に変動すると考える。
Figure JPOXMLDOC01-appb-M000009


特許文献1では、一つのレンジセルを照射する複数のビームで得たデータによって、その照射領域の強弱にかかわらず求めたσ0値を用いてクラッタの低減を図っているが(特許文献1の数11)、本発明の方法では一つ一つのビームのアンテナゲインによる照射領域の強弱を用いているので、数9において、k方向のビームから混入するクラッタを低減する場合には、k方向のビームから混入する地表面エコー(σ0AとI'(r,k)により決まる)を用いる。
In the case of heavy rain or the like, the rain echo is received to the same extent or stronger than the echo from the ground surface. As a method for separating the echo from the ground surface and the rain echo, there is Patent Document 3, but this method has a problem that the attenuation on the propagation path of the radio wave is not considered. If the reflected wave (rain echo, etc.) from the target received in the beam direction k is Pr (r, k), the total received power P (r, k) and the ground surface echo Ps (r, k) It can be expressed as shown in Equation 9. It is assumed that Pr (r, k) and P (r, k) vary with time.
Figure JPOXMLDOC01-appb-M000009


In Patent Document 1, clutter is reduced by using data obtained with a plurality of beams that irradiate one range cell, using the σ0 value obtained regardless of the intensity of the irradiation region (Equation 11 in Patent Document 1). ) In the method of the present invention, the intensity of the irradiation area depending on the antenna gain of each beam is used. Therefore, when the clutter mixed from the beam in the k direction is reduced in Equation 9, the beam from the k direction is used. Use mixed ground surface echoes (determined by σ0A and I ′ (r, k)).
以上に記述した原理を基に本発明の実施形態1(海面の地表面エコー)について説明する。陸面の地表面エコーの場合についても実施形態2に後述する。
平面的な海面を仮定すると、図1のr',θ,φと数1,3,4のdSについて幾何学的に数10が成立する。地球の球面に沿った海面の場合も簡単な式で表すことができる。
Figure JPOXMLDOC01-appb-M000010


この式から、数1,3,4の積分変数がθ,φとなることがわかる(ここでhsはレーダの直下点からの高度)。
図5は本発明の実施形態1,2におけるレーダ装置の構成図である。送信機13bからパルス状の電波11bを送信アンテナ12bを通して送信し、反射波11aを受信アンテナ12aを通して受信する。この動作を偏波毎・送受信周波数毎に行う。送受信する偏波は水平・垂直偏波、右/左旋円偏波から選択する。送受信する電波の周波数は水蒸気・降水等による減衰特性が異なる周波数を選択する。受信機13aには受信波と送信機からの参照信号16を入力する。送受信のアンテナビームは機械的走査や電気的走査、デジタルビームフォーミング等によって形成する。数2における送受信パルスの-6dB幅は受信機のバンドパスフィルター(BPF)に送信パルスを入力するとした場合のBPF出力パルス波形の-6dB幅で定義できる。電波の送受信・ビーム方向の制御をコントローラ15で行い、信号処理装置14でデータ収集・座標決定・データベースの参照・計算を行う。
アンテナビームは図3(c)に示すように座標(m,n)の方向に、隣接するアンテナフットプリントとオーバラップも可能な形で走査する。信号処理装置14はビーム方向ごと、レンジ毎(レンジ方向のオーバーサンプルを含む)にデータを蓄積する。レーダ位置は測位衛星データ・慣性航法装置等により取得する。
信号処理装置14における処理のフローチャートを図6に示す。
Based on the principle described above, the first embodiment of the present invention (sea surface echo on the sea surface) will be described. The case of the land surface echo on the land surface will also be described later in the second embodiment.
Assuming a flat sea surface, Equation 10 holds geometrically with respect to r ′, θ, φ in FIG. The sea surface along the earth's spherical surface can also be expressed by a simple formula.
Figure JPOXMLDOC01-appb-M000010


From this equation, it can be seen that the integral variables of Equations 1, 3 and 4 are θ and φ (where hs is the altitude from the point directly below the radar).
FIG. 5 is a configuration diagram of the radar apparatus according to the first and second embodiments of the present invention. A pulsed radio wave 11b is transmitted from the transmitter 13b through the transmission antenna 12b, and the reflected wave 11a is received through the reception antenna 12a. This operation is performed for each polarization and each transmission / reception frequency. The transmission / reception polarization is selected from horizontal / vertical polarization and right / left-hand circular polarization. The frequency of radio waves to be transmitted / received is selected so that the attenuation characteristics due to water vapor, precipitation, etc. are different. The receiver 13a receives the received wave and the reference signal 16 from the transmitter. The transmitting / receiving antenna beam is formed by mechanical scanning, electrical scanning, digital beam forming, or the like. The -6 dB width of the transmission / reception pulse in Equation 2 can be defined by the -6 dB width of the BPF output pulse waveform when the transmission pulse is input to the bandpass filter (BPF) of the receiver. Radio wave transmission / reception and beam direction control are performed by the controller 15, and the signal processing unit 14 performs data collection, coordinate determination, database reference / calculation.
As shown in FIG. 3C, the antenna beam scans in the direction of coordinates (m, n) in a manner that can overlap with the adjacent antenna footprint. The signal processing device 14 accumulates data for each beam direction and each range (including oversampling in the range direction). Radar position is obtained by positioning satellite data, inertial navigation system, etc.
A flowchart of the processing in the signal processing device 14 is shown in FIG.
次に本発明の実施形態2について説明する。
陸面のように凹凸のある地表面からのエコーの場合、凹凸に合わせて数10(海面の場合)を修正する必要がある。地球の球面に沿って凹凸がある場合も簡単な式で表すことができる。特許文献2の図2のように平面からの高さ(Gh)を用いると(図でθ1→θ、θ2→θ'に対応)、数10のθが数11のθ'になる。ここでh's=hs-h、hは地球のジオイドやGRS80楕円体などの回転楕円体モデルから、図の平面までの高さとする。
Figure JPOXMLDOC01-appb-M000011


地表面の凹凸データとしてDEM(degital Elevation Model)データを用いる。レンジセル毎に地表面の凹凸をスライス状に分割し、地表面エコーが生じる部分をレンジセルの周辺の領域も含めて特定する。
図6のフローチャートでは、ビーム方向毎、レンジビン毎に受信したデータの中から、地表面エコーが混入するレンジビンをDEMデータにより特定する。次にσ0(θ,φ)A(θ,φ)のモデル値や観測値に基づいてθt,k,φt,k、θr,k,φr,kを求める。Method 1又はMethod 2によりσ0Aを求めると、そのσ0値は海・川・砂漠・森林・氷面によって変わるので、地表面分類(被覆状況)のデータベースと比較すると、アンテナビーム方向のずれを検出できる。アンテナビーム方向のずれはアンテナの電気的・機械的誤差や航空機・人工衛星の姿勢変動などにより生じる。アンテナビーム方向のずれを検出した場合には、そのずれを修正するアンテナゲインの補正を行い、再度σ0Aを計算する。
降水・水蒸気等による減衰量A'を求める場合には、数8により計算する。
以上の処理を複数の偏波・複数の周波数がある場合にはその組み合わせで繰り返す。
Next, a second embodiment of the present invention will be described.
In the case of an echo from the ground surface with unevenness like the land surface, it is necessary to correct tens (in the case of the sea surface) according to the unevenness. Even if there are irregularities along the earth's spherical surface, it can be expressed by a simple formula. If the height (Gh) from the plane is used as shown in FIG. 2 of Patent Document 2 (corresponding to θ1 → θ and θ2 → θ ′ in the figure), θ in Equation 10 becomes θ ′ in Equation 11. Here, h's = hs-h, h is the height from the spheroid model such as the Earth's geoid or GRS80 ellipsoid to the plane of the figure.
Figure JPOXMLDOC01-appb-M000011


DEM (degital Elevation Model) data is used as unevenness data on the ground surface. The unevenness of the ground surface is divided into slices for each range cell, and the portion where the ground surface echo is generated is specified including the region around the range cell.
In the flowchart of FIG. 6, the range bin in which the ground surface echo is mixed is specified by the DEM data from the data received for each beam direction and for each range bin. Next, θt, k, φt, k, θr, k, φr, k are obtained based on the model value and the observed value of σ0 (θ, φ) A (θ, φ). When σ0A is obtained by Method 1 or Method 2, the σ0 value changes depending on the sea, river, desert, forest, and ice surface, so it is possible to detect deviations in the antenna beam direction compared to the database of ground surface classification (covering conditions). . The deviation of the antenna beam direction is caused by an electrical / mechanical error of the antenna or an attitude change of the aircraft / satellite. When a deviation in the antenna beam direction is detected, the antenna gain for correcting the deviation is corrected, and σ0A is calculated again.
When calculating the attenuation amount A ′ due to precipitation, water vapor, etc., it is calculated by Equation 8.
If there are a plurality of polarizations and a plurality of frequencies, the above processing is repeated for the combination.
本発明の産業上の利用可能性は、地表面のレーダ散乱断面積と伝搬経路における減衰量の測定、地表面のマッピングや地表面クラッタの低減に役立つ。 The industrial applicability of the present invention is useful for measuring radar scattering cross sections on the ground surface and attenuation in propagation paths, mapping the ground surface and reducing ground clutter.
航空機・人工衛星に搭載されたレーダと地表面・目標体の位置関係を示す図である。It is a figure which shows the positional relationship of the radar mounted in the aircraft and the artificial satellite, the ground surface, and the target body. 地表面のレーダ散乱断面積とレンジセル、アンテナゲインの関係を示す図である。It is a figure which shows the relationship between the radar scattering cross section of a ground surface, a range cell, and an antenna gain. アンテナビーム、レンジセルと数3のθr,k値等の関係を示す図である。It is a figure which shows the relationship between an antenna beam, a range cell, (theta) r, k value of several 3, etc. FIG. 地表面のレーダ散乱断面積(減衰有)の計算方法を説明するフローチャートである。It is a flowchart explaining the calculation method of the radar scattering cross section (with attenuation) of the ground surface. 本発明の実施形態1,2におけるレーダ装置の構成図である。It is a block diagram of the radar apparatus in Embodiment 1, 2 of this invention. 信号処理装置における処理のフローチャートである。It is a flowchart of the process in a signal processing apparatus.
 1:レーダ装置 
 2:アンテナビーム方向
 3:入射角
 4:方位角
 5:目標体
 6:目標体と同一距離にある地表面(斜線の領域)
 11:送受信する電波(偏波・周波数により異なる)
 12:送受信アンテナ(機械式走査/電気式走査)
 13:送受信機
 14:信号処理装置
 15:各部を制御するコントローラ
 16:送信機から受信機に入力する参照信号
1: Radar equipment
2: Antenna beam direction 3: Incident angle 4: Azimuth angle 5: Target body 6: Ground surface at the same distance as the target body (shaded area)
11: Radio waves to be transmitted and received (depending on polarization and frequency)
12: Transmitting and receiving antenna (mechanical scanning / electrical scanning)
13: Transmitter / receiver 14: Signal processing device 15: Controller for controlling each part 16: Reference signal input from transmitter to receiver
特許4481078号 「レーダ装置」Patent 4481078 "Radar equipment" 特許3660989号 「合成開口レーダーのアンテナパターン補正方法」Patent 3660989 “Synthetic Aperture Radar Antenna Pattern Correction Method” US 8138962  「METHOD FOR PROCESSING MEASURED VERTICAL PROFILES OF THE POWER OF THE ECHOES RETURNED FOLLOWINGA TRANSMISSION OF RADAR SIGNALS」US 8138962 METHOD FOR PROCESSING MEASURED VERTICAL PROFILES OF THE POWER OF THE ECHOES RETURNED FOLLOWINGA TRANSMISSION OF RADAR SIGNALS 特許3408943号 「2周波計測方法及び多周波レーダ装置」Patent No. 3408943 “Dual-frequency measurement method and multi-frequency radar device”

Claims (5)

  1. アンテナビームを走査して電波を送受信する手段と、
    距離ごと並びにビーム走査ごとに受信信号を測定する手段を備えるレーダ装置において、
    積分の平均値の定理により、単位面積当たりの地表面のレーダ散乱断面積を推定する手段と、
    前記ビーム走査によりレンジセルごとのアンテナゲインを変化させる手段を有することを特徴とするレーダ装置。
    Means for transmitting and receiving radio waves by scanning an antenna beam;
    In a radar apparatus comprising means for measuring a received signal for each distance and each beam scan,
    Means for estimating the radar scattering cross section of the ground surface per unit area by the theorem of the mean value of the integral;
    A radar apparatus comprising means for changing an antenna gain for each range cell by the beam scanning.
  2. 請求項1に記載のレーダ装置において、積分の平均値の定理により座標値を計算することで、距離ごと並びにビーム走査ごとに地表面エコーが生じる位置を代表する座標を求める手段を有することを特徴とするレーダ装置。 2. The radar apparatus according to claim 1, further comprising means for calculating coordinates representing a position at which a ground surface echo is generated for each distance and for each beam scanning by calculating a coordinate value according to an integral average value theorem. Radar equipment.
  3. 請求項1と請求項2に記載のレーダ装置の前記座標において、前記レーダ散乱断面積を、観測値または地表面の状態に依存するモデルによるレーダ散乱断面積と照合し、前記アンテナゲインに含まれる誤差を推定する手段を有することを特徴とするレーダ装置。 3. The radar device according to claim 1, wherein the radar scattering cross section is compared with a radar scattering cross section by a model depending on an observed value or a ground surface state, and is included in the antenna gain. A radar apparatus comprising means for estimating an error.
  4. 請求項1に記載のレーダ装置において、距離ごと並びにビーム走査ごとに推定した前記レーダ散乱断面積を基に地表面エコーを計算し、ある距離並びにビーム走査時の全受信電力から、前記地表面エコーを差し引くことでグラウンドクラッタを低減する手段を有することを特徴とするレーダ装置。 2. The radar apparatus according to claim 1, wherein a ground surface echo is calculated based on the radar scattering cross section estimated for each distance and each beam scanning, and the ground surface echo is calculated from a certain distance and the total received power at the time of the beam scanning. A radar apparatus comprising means for reducing ground clutter by subtracting.
  5. 請求項1に記載のレーダ装置の前記レーダ散乱断面積を基に、降水等の非一様性を推定する手段を有することを特徴とするレーダ装置。 A radar apparatus comprising means for estimating non-uniformity such as precipitation based on the radar scattering cross section of the radar apparatus according to claim 1.
PCT/JP2015/055747 2014-02-27 2015-02-27 Radar device WO2015129842A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-037601 2014-02-27
JP2014037601 2014-02-27

Publications (1)

Publication Number Publication Date
WO2015129842A1 true WO2015129842A1 (en) 2015-09-03

Family

ID=54009155

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/055747 WO2015129842A1 (en) 2014-02-27 2015-02-27 Radar device

Country Status (1)

Country Link
WO (1) WO2015129842A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110568431A (en) * 2019-08-07 2019-12-13 中国电子科技集团公司第二十九研究所 Method for calculating detection distance of Blake-like radar
CN115356747A (en) * 2022-10-19 2022-11-18 成都朴为科技有限公司 Multi-line laser radar obstacle identification method and device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6707415B1 (en) * 2002-12-20 2004-03-16 Honeywell International Inc. Method and system for generating weather and ground reflectivity information
JP2005326228A (en) * 2004-05-13 2005-11-24 Mitsubishi Electric Corp Radar device
JP2008191071A (en) * 2007-02-07 2008-08-21 Mitsubishi Electric Corp Radar apparatus
JP2012230102A (en) * 2011-04-04 2012-11-22 Honeywell Internatl Inc Method and system for generating weather and ground reflectivity information

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6707415B1 (en) * 2002-12-20 2004-03-16 Honeywell International Inc. Method and system for generating weather and ground reflectivity information
JP2005326228A (en) * 2004-05-13 2005-11-24 Mitsubishi Electric Corp Radar device
JP2008191071A (en) * 2007-02-07 2008-08-21 Mitsubishi Electric Corp Radar apparatus
JP2012230102A (en) * 2011-04-04 2012-11-22 Honeywell Internatl Inc Method and system for generating weather and ground reflectivity information

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TOSHIAKI KOZU: "A Generalized Surface Echo Radar Equation for Down-Looking Pencil Beam Radar", IEICE TRANSACTIONS ON COMMUNICATIONS, vol. E78-B, no. 8, August 1995 (1995-08-01), pages 1245 - 1248, XP000539761 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110568431A (en) * 2019-08-07 2019-12-13 中国电子科技集团公司第二十九研究所 Method for calculating detection distance of Blake-like radar
CN110568431B (en) * 2019-08-07 2023-03-14 中国电子科技集团公司第二十九研究所 Method for calculating detection distance of Blake-like radar
CN115356747A (en) * 2022-10-19 2022-11-18 成都朴为科技有限公司 Multi-line laser radar obstacle identification method and device
CN115356747B (en) * 2022-10-19 2023-01-24 成都朴为科技有限公司 Multi-line laser radar obstacle identification method and device

Similar Documents

Publication Publication Date Title
CN110426690B (en) Automatic calibration method for airborne weather radar beam pointing
US7796082B2 (en) Methods and apparatus for log-FTC radar receivers having enhanced sea clutter model
US8289202B1 (en) Method and system for generating weather and ground reflectivity information
CN103487803B (en) Airborne scanning radar imaging method in iteration compression mode
CN106093932B (en) A kind of high-resolution radar scatterometer of scanning beam
Rosenberg Characterization of high grazing angle X-band sea-clutter Doppler spectra
JP6054435B2 (en) Enhanced imaging system
CN108107432B (en) High-low orbit bistatic SAR phase-preserving imaging method based on time domain disturbance
CN110726980A (en) Method for analyzing ground clutter by airborne phased array weather radar
CN107110956A (en) The azimuthal error detection method and device, trailer-mounted radar device in presumption orientation are used
US7714766B2 (en) Method of processing a radar image
CN109884337B (en) Method for detecting sea surface wind direction by using high-frequency ground wave radar
WO2015129842A1 (en) Radar device
CN103197295B (en) Broadband frequency agility angle super resolution method using prior information
CN110879391A (en) Radar image data set manufacturing method based on electromagnetic simulation and missile-borne echo simulation
KR102408991B1 (en) High resolution image decoding system based on squint sar and method of decoding image using the same
CN113376625A (en) Method and device for obtaining deviation angle of target object, electronic equipment and storage medium
KR102326564B1 (en) System and Method for Correcting Wind Filed of Dual Doppler Radar using Wind Profiler
CN108020835A (en) A kind of strong clutter suppression method and device of spaceborne SAR ground moving object instruction GMTI
JP4481078B2 (en) Radar equipment
CN115079114B (en) Airborne SAR radiometric calibration method based on backscattering of ocean and corner reflector
CN112213699A (en) Method for calculating performance parameters of satellite-borne SAR (synthetic aperture radar) system in large squint imaging mode
WO2016140230A1 (en) Radar device
Helzel et al. Software beam forming for ocean radar WERA features and accuracy
JP2014202740A (en) Radar signal processing method and radar apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15755934

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 15755934

Country of ref document: EP

Kind code of ref document: A1