WO2015129805A1 - Material mixing method - Google Patents

Material mixing method Download PDF

Info

Publication number
WO2015129805A1
WO2015129805A1 PCT/JP2015/055604 JP2015055604W WO2015129805A1 WO 2015129805 A1 WO2015129805 A1 WO 2015129805A1 JP 2015055604 W JP2015055604 W JP 2015055604W WO 2015129805 A1 WO2015129805 A1 WO 2015129805A1
Authority
WO
WIPO (PCT)
Prior art keywords
mixed material
liquid
mixed
solid
mixing method
Prior art date
Application number
PCT/JP2015/055604
Other languages
French (fr)
Japanese (ja)
Inventor
明生 中原
洋介 松尾
丸人 伊藤
瞭汰 米山
Original Assignee
学校法人日本大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人日本大学 filed Critical 学校法人日本大学
Priority to JP2016505293A priority Critical patent/JP6565067B2/en
Publication of WO2015129805A1 publication Critical patent/WO2015129805A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/50Mixing liquids with solids
    • B01F23/51Methods thereof
    • B01F23/511Methods thereof characterised by the composition of the liquids or solids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/50Mixing liquids with solids
    • B01F23/55Mixing liquids with solids the mixture being submitted to electrical, sonic or similar energy
    • B01F23/551Mixing liquids with solids the mixture being submitted to electrical, sonic or similar energy using vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F31/00Mixers with shaking, oscillating, or vibrating mechanisms
    • B01F31/20Mixing the contents of independent containers, e.g. test tubes
    • B01F31/24Mixing the contents of independent containers, e.g. test tubes the containers being submitted to a rectilinear movement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F31/00Mixers with shaking, oscillating, or vibrating mechanisms
    • B01F31/80Mixing by means of high-frequency vibrations above one kHz, e.g. ultrasonic vibrations
    • B01F31/87Mixing by means of high-frequency vibrations above one kHz, e.g. ultrasonic vibrations transmitting the vibratory energy by means of a fluid, e.g. by means of air shock waves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F2215/00Auxiliary or complementary information in relation with mixing
    • B01F2215/04Technical information in relation with mixing
    • B01F2215/0413Numerical information
    • B01F2215/0436Operational information
    • B01F2215/0454Numerical frequency values

Definitions

  • the present invention relates to a material mixing method. This application claims priority based on Japanese Patent Application No. 2014-038777 for which it applied on February 28, 2014, and uses the content here.
  • a solid-liquid mixed material obtained by mixing a solid material and a liquid material has a mechanical external field such as a flow and vibration during stirring when the solid material has a high concentration so as to exhibit plasticity.
  • a mechanical external field such as a flow and vibration during stirring when the solid material has a high concentration so as to exhibit plasticity.
  • a micro and anisotropic close-packed structure was formed in the inside depending on the direction of the external field (see, for example, Non-Patent Document 1).
  • a dense structure due to compression waves generated in the vibration direction is formed inside the solid-liquid mixed material.
  • a dense structure due to the shear stress of the flow is formed inside the solid-liquid mixed material. That is, in the solid-liquid mixed material, a dense structure having anisotropy is formed according to a dynamic external field.
  • the concrete body obtained from the mortar in which the anisotropic dense structure is formed may have anisotropy in strength.
  • a chemical reaction when allowed to proceed in a solid-liquid mixed material, it is expected that a reaction is more likely to occur in a dense part than in a relatively sparse part. That is, as a whole reaction system, a portion where a chemical reaction easily proceeds and a portion where a chemical reaction hardly proceeds are generated. In such a reaction system, the reaction may occur non-uniformly.
  • the mixed material having a dense structure is a solid-liquid mixed material.
  • a liquid material and a liquid material are mixed
  • the mixed material of the liquid material and the liquid material is When it has plasticity, the above-mentioned dense structure can be formed in the mixed material. In that case, a similar problem may occur.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide a material mixing method capable of reducing the anisotropy of the dense structure included in the mixed material.
  • a particulate solid material and a liquid material, or a colloidal particle and a dispersion medium of the colloidal particle have a volume ratio that is greater than a liquid limit and less than a plastic limit.
  • the external field may be a dynamic external field.
  • the particulate solid material may be a dielectric or a magnetic material
  • the external field may be an electromagnetic external field
  • Another embodiment of the present invention is to obtain a particulate solid material and a liquid material, or a colloidal particle and a dispersion medium of the colloidal particle while mixing so that the volume ratio is higher than the liquid limit and lower than the plastic limit.
  • a material mixing method including a step of propagating ultrasonic vibration having energy exceeding the yield stress of the mixed material inside the mixed material.
  • Another embodiment of the present invention is obtained by mixing particulate solid material and liquid material, or colloidal particles and a dispersion medium of the colloidal particles so that the volume ratio is higher than the liquid limit and lower than the plastic limit.
  • a material mixing method including a step of propagating ultrasonic vibration having energy exceeding the yield stress of the mixed material inside the mixed material in a state where the mixed material is left standing.
  • the step of propagating the ultrasonic vibration may be a method of propagating the ultrasonic vibration from a plurality of directions with respect to the solid-liquid mixed material.
  • the particulate solid material and the liquid material, or the colloidal particles and the dispersion medium of the colloidal particles are mixed so that the volume ratio is not less than the liquid limit and not more than the plastic limit. Adding an external field to the mixed material, and after allowing the mixed material to stand, propagating ultrasonic vibration having energy exceeding the yield stress of the mixed material to the inside of the mixed material.
  • the particulate solid material and the liquid material, or the colloidal particles and the dispersion medium of the colloidal particles are set so that the volume ratio is not less than the liquid limit and not more than the plastic limit. And mixing ultrasonic vibration having energy exceeding the yield stress of the mixed material into the obtained mixed material.
  • the particulate solid material and the liquid material, or the colloidal particles and the dispersion medium of the colloidal particles are set so that the volume ratio is not less than the liquid limit and not more than the plastic limit.
  • volume ratio in this specification specifically refers to a value represented by the following formula (1) or formula (2).
  • the unit of volume ratio is “%”.
  • the volume ratio is defined by the above formula (1).
  • the materials to be mixed are colloidal particles and a dispersion medium, the volume ratio is defined by the above formula (2).
  • yield stress of mixed material refers to a value obtained by using a rheometer (Physica MCR301, manufactured by Anton Paar) after adjusting the mixed material.
  • a specific method for measuring the yield stress is as follows.
  • the mixed material is sandwiched between two parallel plates placed horizontally, and the upper parallel plate is rotated in one direction by applying torque to the upper parallel plate with the lower parallel plate fixed.
  • a shear stress is applied to the mixed material sandwiched between the two parallel plates.
  • the shear rate representing the fluidity of the mixed material as a function of the strength of the shear stress
  • the shear stress at which the mixed material begins to flow is obtained. This “shear stress when the mixed material starts to flow” is defined as a yield stress to be obtained.
  • the “liquid limit” refers to the volume ratio of the boundary between the liquid state and the plastic state in a liquid mixed material obtained by mixing a solid material and a liquid material or colloidal particles and a dispersion medium. . Specifically, when the yield stress of the solid-liquid mixed material is measured by the above-described method, the volume ratio is such that the yield stress value is 0 Pa.
  • the “plastic limit” refers to the volume ratio of the boundary between the plastic state and the semi-solid state for a mixed material obtained by mixing a solid material and a liquid material or a colloidal particle and a dispersion medium. Specifically, when the yield stress of the mixed material is measured by the above-described method, the volume ratio indicates the volume ratio at which the yield stress exceeds the measurement limit.
  • the mixed material when the volume ratio of the mixed material is not less than the liquid limit and not more than the plastic limit, the mixed material is a plastic body.
  • liquid limit and plastic limit of the mixed material are values that vary depending on the combination of the solid material and the liquid material used, or the combination of the colloidal particles and the dispersion medium. Therefore, before carrying out the material mixing method of the present invention, it is advisable to conduct preliminary experiments and obtain respective values.
  • the “yield stress” of the mixed material is a value that varies depending on the volume ratio of the mixed material. Therefore, before carrying out the material mixing method of the present invention, a preliminary experiment is performed to determine the yield stress for each of a plurality of volume ratios, and a correspondence table or graph showing the relationship between the volume ratio of the mixed material and the yield stress is created. It is good to keep.
  • the material mixing method of this embodiment is demonstrated in order.
  • any of inorganic materials and organic materials can be used as long as the solid material is particulate and can be mixed with a liquid material to form a plastic body.
  • “particulate” includes both powdery and granular.
  • the particle size distribution of the solid material may be monodispersed or polydispersed.
  • the solid material may be insoluble or soluble in the liquid material described later.
  • the present embodiment is applied to the mixed material in which the solid material is dispersed in the liquid material by mixing the solid material at a saturation concentration or higher of the liquid material.
  • the liquid mixing method can be applied.
  • the organic material may be food powder such as starch (corn starch, starch starch, potato starch), wheat flour, rice flour, or various organic compound powders.
  • the metal oxide may be an oxide containing one kind of metal such as magnesium oxide, magnetic iron oxide, titanium oxide, and barium titanate.
  • LiCoO 2 , Li 2 FeO 4 , ITO (indium-tin- An oxide containing two or more kinds of metals may be used.
  • the liquid material used in the material mixing method of the present embodiment may be either water or an organic solvent.
  • organic solvent various commonly known solvents such as alcohols such as methanol and ethanol, hydrocarbons such as hexane, decane and petroleum ether, as well as ethers, ketones, amines and esters can be used.
  • a substance soluble in the liquid material may be dissolved in the liquid material.
  • the “soluble substance” may be an organic substance or an inorganic substance.
  • solid materials and liquid materials may be used alone or in combination of two or more.
  • the material mixing method Next, the material mixing method will be described.
  • the first material mixing method first, the above-mentioned solid material and liquid material, or colloidal particles and dispersion medium are mixed so that the volume ratio is not less than the liquid limit and not more than the plastic limit. Thereby, the mixed material of a plastic body is obtained.
  • the mixed material is a plastic body (the volume ratio is greater than the liquid limit and less than the plastic limit), when the mixed material is subjected to an external field, the mixed material will be subjected to the direction of the external field. Thus, a micro dense / dense structure having anisotropy is formed.
  • the “external field” as used in this specification includes both “dynamic external field” and “electromagnetic external field”.
  • Mechanism external field refers to a shearing force applied to the mixed material when the mixed material is agitated or fluidized, or a vibration applied to the mixed material by reciprocating the mixed material in one direction.
  • Electrical external field includes “electrical external field” and “magnetic external field”.
  • Electromagnetic external field refers to an electric or magnetic external force applied to a mixed material when the solid particles constituting the mixed material are a dielectric or magnetic material. For example, Coulomb force or Lorentz force Is mentioned.
  • the electromagnetic external field may be stationary or time-varying. Examples of stationary external electromagnetic fields include those caused by direct current. Moreover, what originated in alternating current is mentioned as what an electromagnetic external field fluctuates with time.
  • a dense structure is formed in a direction crossing the flow direction of stirring.
  • a dense structure is formed in a direction crossing the flow direction.
  • the “sparse” portion extending along the flow direction and flow direction of stirring and the “dense” portion extending along the flow direction and flow direction of stirring are divided into the flow direction and flow of stirring. A plurality are alternately formed in a direction crossing the direction.
  • a dense structure is formed in a direction intersecting the electric field direction or the magnetic field direction.
  • the “sparse” part that extends along the electric field direction and the magnetic field direction and the “dense” part that extends along the electric field direction and the magnetic field direction intersect with the electric field direction and the magnetic field direction.
  • a plurality are alternately formed.
  • a dense structure is formed in the direction of vibration. Specifically, a plurality of sparse portions extending in a direction intersecting the excitation direction and dense portions extending in a direction intersecting the excitation direction are alternately formed in the excitation direction.
  • the ultrasonic vibration having energy exceeding the yield stress of the mixed material is propagated inside the mixed material (the ultrasonic vibration is propagated). Process).
  • the solid material or colloidal particles are shaken, the micro-dense dense structure is reduced, and a mixed material having a uniform structure can be obtained.
  • the mixed material obtained by using the first material mixing method is solidified or cured, a molded body having a uniform structure having no sparse / dense structure can be obtained.
  • the above-mentioned solid material and liquid material are mixed so that the volume ratio is not less than the liquid limit and not more than the plastic limit. Propagate ultrasonic vibrations with energy exceeding the yield stress.
  • an anisotropic dense structure is formed inside the mixed material due to the external field applied by mixing at a certain moment.
  • the resulting new sparse / dense structure is formed. That is, a dense structure is always formed inside the mixed material.
  • the second material mixing method of this embodiment ultrasonic vibration is propagated inside the mixed material while mixing.
  • the solid material or colloidal particles are shaken during mixing of the mixed material, the formation of a micro and anisotropic dense structure is suppressed, and a mixed material having a uniform structure can be obtained.
  • a chemical reaction when a chemical reaction is caused in a mixed material while mixing a solid material and a liquid material, or a colloidal particle and a dispersion medium using the second material mixing method, the concentration difference is reduced in a micro reaction field. Therefore, a chemical reaction can be caused under more uniform concentration conditions.
  • ultrasonic vibration is propagated inside the mixed material while the mixed material obtained by mixing is left standing.
  • the solid material or colloidal particles are shaken during mixing of the mixed material, the formation of a micro and anisotropic dense structure is suppressed, and a mixed material having a uniform structure can be obtained.
  • the propagation of ultrasonic vibration is usually performed using an ultrasonic vibrator.
  • the propagation of the ultrasonic vibration may be performed from a plurality of directions with respect to the mixed material.
  • This ultrasonic irradiation from a plurality of directions may be realized, for example, by using a single ultrasonic transducer and performing ultrasonic irradiation from a plurality of directions. You may implement
  • Ultrasonic vibration propagating inside the mixed material gradually loses energy inside the mixed material and attenuates until it eventually falls below the yield stress of the mixed material. Therefore, for example, in the first material mixing method and the third material mixing method, it is assumed that it is difficult to propagate ultrasonic vibrations to the entire mixed material by ultrasonic irradiation in one direction from one place. Is done. For example, the amount of the mixed material to be left is large, or the container in which the mixed material to be left is stored is long. Even in such a case, ultrasonic irradiation can be performed on a desired region by performing ultrasonic irradiation from a plurality of directions.
  • the ultrasonic vibration when propagating ultrasonic vibration from a plurality of directions to the mixed material, the ultrasonic vibration may be propagated throughout the mixed material. It is also possible not to perform sound wave irradiation.
  • a concrete molded body obtained from such a mortar is expected to have a relatively low strength in a portion corresponding to a mortar having a dense structure compared to a portion corresponding to a mortar having a uniform internal structure. Therefore, even if it is a simple shape such as a columnar shape or a plate shape, a concrete molded body having a difference in strength depending on the portion can be obtained without forming a notch or changing the thickness.
  • the ultrasonic wave is applied to a desired region by performing ultrasonic irradiation from a plurality of directions. Can be irradiated.
  • the material mixing method as described above it is possible to provide a material mixing method capable of reducing the anisotropy of the dense structure included in the mixed material.
  • the material When a plastic-solid-liquid mixed material is dried, the material is dried while maintaining a close-packed structure, and a dry breakage occurs in the dried product.
  • the corresponding part of the dried product In the solid-liquid mixed material, since there are few solid materials in the “sparse” part, the corresponding part of the dried product also has a low density. Such a portion is more brittle and lower in strength than the portion corresponding to the “dense” portion of the solid-liquid mixed material in the dried product, and thus is easily cracked by drying shrinkage. Therefore, when the state of cracks after dry fracture is observed, it can be determined that the solid-liquid mixed material has a “sparse” portion corresponding to the cracks.
  • Example 1 Calcium carbonate (Deer grade 1, manufactured by Kanto Chemical Co., Inc.) was used as the solid material, and pure water was used as the liquid material, and mixed to prepare a solid-liquid mixed material having a plurality of volume ratios.
  • the obtained solid-liquid mixed material was directly put into a container of a container-type ultrasonic cleaner (SW5800, manufactured by Citizen, major axis diameter 148 mm, minor axis diameter 125 mm), and then a desktop shaker (FNX-220). , Manufactured by Tokyo Glass Instrument Co., Ltd.).
  • the conditions for excitation were as follows. ⁇ conditions> Vibration frequency: 40 rpm, amplitude: 15 mm, vibration time: 1 minute
  • the container type ultrasonic cleaner was driven to directly irradiate the solid-liquid mixed material in the container type ultrasonic cleaner with ultrasonic vibration.
  • the conditions of ultrasonic irradiation were as follows. ⁇ conditions> Frequency: 42 kHz, irradiation time: 1 minute
  • the solid-liquid mixed material was dried at a temperature of 24 ° C. ⁇ 1 ° C. and a humidity of 30% ⁇ 10, and the dried product was dried and broken, and the state of the breaking was observed.
  • Example 1 Except not carrying out ultrasonic irradiation, it carried out similarly to Example 1, and dried and destroyed the dried material, and observed the mode of destruction.
  • FIG. 1A and FIG. 1B are photographs showing the appearance of cracks in the dried product.
  • 1A shows the results of Example 1
  • FIG. 1B shows the results of Comparative Example 1.
  • the double arrows in the figure indicate the direction of horizontal excitation using a desktop shaker.
  • Example 1 As shown in FIG. 1A, in the dried product of Example 1, cracks occurred isotropically. On the other hand, as shown in FIG. 1B, in the dried product of Comparative Example 1, striped cracks were formed in the direction orthogonal to the excitation direction. In Example 1, it was shown that the anisotropic dense structure inside the solid-liquid mixed material was reduced or eliminated by ultrasonic irradiation, and as a result, there was no dense structure enough to cause anisotropy during dry fracture. Seem.
  • Example 2 Example 1 except that the solid material is calcium fluoride (Deer grade 1, manufactured by Kanto Chemical Co., Inc.), the liquid material is ethanol, the volume ratio is 20%, and the vibration frequency is 120 rpm. Then, the dried material was dried and broken, and the state of the breaking was observed.
  • the solid material is calcium fluoride (Deer grade 1, manufactured by Kanto Chemical Co., Inc.)
  • the liquid material is ethanol
  • the volume ratio is 20%
  • the vibration frequency 120 rpm
  • Example 3 Drying was conducted in the same manner as in Example 1 except that the solid material was magnesium carbonate hydroxide (Deer grade 1, manufactured by Kanto Chemical Co., Ltd.), the volume ratio was 7.7%, and the vibration frequency was 120 rpm. The object was dried and destroyed, and the state of destruction was observed.
  • the solid material was magnesium carbonate hydroxide (Deer grade 1, manufactured by Kanto Chemical Co., Ltd.)
  • the volume ratio was 7.7%
  • the vibration frequency was 120 rpm.
  • the object was dried and destroyed, and the state of destruction was observed.
  • Example 4 Except that the volume ratio was 12.5%, the dried product was dried and broken in the same manner as in Example 3 to observe the state of destruction.
  • Example 5 The dried material was destroyed by drying in the same manner as in Example 1 except that the solid material was corn starch (special grade, manufactured by Wako Pure Chemical Industries, Ltd.), the volume ratio was 47.4%, and the vibration frequency was 60 rpm. We observed the state of destruction.
  • corn starch special grade, manufactured by Wako Pure Chemical Industries, Ltd.
  • Example 6 The liquid material was a 0.1 mol / L aqueous solution of sodium chloride (special grade, manufactured by Kanto Chemical Co., Inc.), the volume ratio was 25%, and the frequency at the time of vibration was 99 rpm. The dried product was destroyed by drying and observed for destruction.
  • sodium chloride special grade, manufactured by Kanto Chemical Co., Inc.
  • Example 7 Except that the volume ratio was 35%, the dried material was dried and broken in the same manner as in Example 6 to observe the state of destruction.
  • FIG. 2 is a schematic diagram showing an experimental apparatus 100 used in Experiment 3.
  • the experimental device 100 includes a vibration device 10 and an ultrasonic irradiation device 20.
  • the vibration device 10 includes a vibrator 11 placed on the base B, a stand 12 placed on the vibrator 11, and an arm 13 provided on the stand 12. .
  • the ultrasonic irradiation device 20 includes an elevator 21, a water tank 22 placed on the elevator 21, and an ultrasonic vibrator 23 placed on the bottom surface of the water tank 22.
  • the shaker 11 uses a desktop shaker (FNX-220, manufactured by Tokyo Glass Instruments Co., Ltd.).
  • the arm 13 provided on the stand 12 extends to the inside of the water tank 22 across the side wall of the water tank 22.
  • a petri dish 1 for storing the solid-liquid mixed material is held at the tip of the arm 13.
  • the elevator 21 moves the water tank 22 and the ultrasonic transducer 23 up and down.
  • Water W is stored in the water tank 22 up to a height of 38 cm from the bottom surface. Since the height of the ultrasonic transducer 23 is 8 cm, this situation corresponds to the case where the distance from the “surface of the ultrasonic transducer in which the ultrasonic wave is oscillated” to the water surface is 30 cm.
  • the ultrasonic vibrator 23 has a specification in which the frequency can be changed.
  • the ultrasonic vibration oscillated from the ultrasonic vibrator 23 propagates through the water W from the bottom surface side to the water surface side. In the figure, the propagation direction of the ultrasonic vibration is indicated by symbol ⁇ .
  • the elevator 21 is lowered to store the solid-liquid mixed material in the petri dish 1 with the petri dish 1 separated from the water surface of the water W.
  • the vibrator 11 When the vibrator 11 is moved in this state, the stand 12 reciprocates in the direction of the double arrow indicated by the symbol ⁇ in the drawing. Since the movement of the stand 12 is transmitted to the petri dish 1 through the arm 13, the petri dish 1 is vibrated in the direction of the double arrow indicated by the symbol ⁇ . Thereby, a solid-liquid mixed material is vibrated and a shearing force is applied.
  • the vibrator 11 is stopped, and the elevator 21 is raised until the front bottom surface of the petri dish 1 comes into contact with the water surface of the water W while the solid-liquid mixed material in the petri dish 1 is left standing.
  • the ultrasonic vibrator 23 is driven to propagate ultrasonic vibrations to the solid-liquid mixed material in the petri dish 1 through the water W.
  • Example 8 Using the experimental apparatus 100, the dried product was dried and broken to observe the state of destruction in the same manner as in Example 1 except that 37 kHz ultrasonic vibration was propagated to the solid-liquid mixed material.
  • Example 9 Except that the ultrasonic vibration of 71 kHz was propagated to the solid-liquid mixed material, the dried material was dried and broken to observe the state of breaking in the same manner as in Example 8.
  • Example 10 Except that 102 kHz ultrasonic vibration was propagated to the solid-liquid mixed material, the dried material was dried and broken to observe the state of destruction in the same manner as in Example 8.
  • FIGS. 3A to 3D are photographs showing the state of cracks generated in the dried product.
  • 3A shows the results of Example 8
  • FIG. 3B shows the results of Example 9
  • FIG. 3C shows the results of Example 10, and
  • FIG. In addition, the double arrows in the figure indicate the direction of horizontal excitation.
  • the instant cement used includes Portland cement, silica sand, and adhesive.
  • the method for producing the cement paste is in accordance with the method described in the product bag of the cement with sand used.
  • Comparative Example 9 A cement test piece of Comparative Example 9 was produced in the same manner as in Example 11 except that the above (d. Ultrasonic irradiation to cement paste) was not performed.
  • Comparative Example 10 A cement test piece of Comparative Example 10 was produced in the same manner as in Example 11 except that (c. Excitation to cement paste) and (d. Ultrasonic irradiation to cement paste) were not performed.
  • the obtained cement test piece was measured for fracture strength by a three-point bending method using a tabletop precision universal testing machine (manufactured by Shimadzu Corp., Autograph AGS-X). Specifically, the solidified cement test piece was taken out from the silicon container, and the cement test piece taken out while maintaining the vertical vertical direction when solidified was installed in a testing machine, and the fracture strength was measured.
  • the area where the indenter of the testing machine contacts on the surface of the test piece was processed so as to be flattened, and then the fracture strength was measured.
  • the sanding is intended to remove unevenness in a region where the indenter contacts in order to prevent stress from the indenter from being concentrated locally.
  • the measurement conditions for the fracture strength measurement were as follows. ⁇ conditions> Indenter tip radius: 5 mm, indenter tip width: 34 mm, fulcrum tip radius: 5 mm, fulcrum tip width: 34 mm, fulcrum distance (span): 50 mm, indenter descending speed: 1 mm / min
  • Example 11 and Comparative Examples 9 and 10 are shown in Table 2 and the graph of FIG. In the graph of FIG. 4, among the three points indicating the results of the examples and comparative examples, the central point indicates the average value of the results, and the upper and lower points indicate the standard deviation.
  • Example 11 As a result of the evaluation, it was found that the fracture strength of Example 11 increased by 1.2 times compared with Comparative Example 9.
  • the anisotropic dense structure inside the cement paste was reduced or eliminated by ultrasonic irradiation.
  • the inside became uniform compared to the cement test piece of Comparative Example 9, and the test stress was This seems to indicate that the “sparse” structure that is easy to concentrate has disappeared.
  • Comparative Example 9 the difference in fracture strength between Comparative Example 9 and Comparative Example 10 is that bubbles in the cement paste are removed due to vibration, and the arch structure of the silica sand as an aggregate is collapsed. This is probably due to the decrease or disappearance of the sparse / dense structure.
  • the anisotropic structure (dense / dense structure) of the mixed material can be reduced or eliminated, and the internal structure of the mixed material can be easily uniformed. It is useful for mixing raw materials such as building materials such as concrete, cosmetics, paints, carbon materials and electronic materials in which inorganic fine particles are dispersed and mixed; foods in which organic materials are dispersed and mixed; In a powder sintering method, a powder gypsum method, and an ink jet method 3D printer, particles such as powder constituting a modeled object are wet with a dispersion medium or a liquid resin before curing (before being completely cured).
  • micro anisotropy can be erased while maintaining the shape of the modeled object.
  • a modeled object obtained by a 3D printer has a layer structure, but by implementing the material mixing method of the present embodiment, it can be expected that the anisotropy between layers is eliminated and a stronger structure is obtained.
  • a chemical reaction is generated while mixing materials using the material mixing method of the present embodiment, a uniform reaction can be expected, which is useful when mixing raw materials in a chemical plant.

Abstract

This material mixing method has: a step in which an external field is applied to a mixed material in which a particulate solid material and liquid material, or colloid particles and a colloid particle dispersion medium are mixed such that the volume ratio is equal to or higher than the liquid limit and equal to or lower than the plastic limit; and a step in which the mixed material is left to stand, and then an ultrasonic vibration having an energy exceeding the yield stress of the mixed material is propagated inside the mixed material.

Description

材料混合方法Material mixing method
 本発明は、材料混合方法に関するものである。
 本願は、2014年02月28日に出願された日本国特願2014-038777号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a material mixing method.
This application claims priority based on Japanese Patent Application No. 2014-038777 for which it applied on February 28, 2014, and uses the content here.
 従来、固体材料と液体材料とを混合した混合材料や、液体材料と液体材料を混合した混合材料のように、2種以上の材料を混合するという操作は、塗料、化粧品、建築等の多くの分野において多く行われている。このような混合材料は、濃度によって挙動が大きく変化する。 Conventionally, the operation of mixing two or more kinds of materials, such as a mixed material in which a solid material and a liquid material are mixed, or a mixed material in which a liquid material and a liquid material are mixed, is often used in many paints, cosmetics, and architectures. Much has been done in the field. The behavior of such a mixed material varies greatly depending on the concentration.
 例えば、発明者らの検討により、固体材料と液体材料とを混合した固液混合材料は、塑性を発現するほど固体材料が高濃度となると、撹拌時の流れや振動などの力学的な外場を受けることで、外場の方向に応じて内部にミクロで異方的な疎密構造が形成されることが分かった(例えば、非特許文献1参照)。 For example, as a result of investigations by the inventors, a solid-liquid mixed material obtained by mixing a solid material and a liquid material has a mechanical external field such as a flow and vibration during stirring when the solid material has a high concentration so as to exhibit plasticity. As a result, it was found that a micro and anisotropic close-packed structure was formed in the inside depending on the direction of the external field (see, for example, Non-Patent Document 1).
 例えば、高濃度の固液混合材料を一方向に往復させ振動させると、固液混合材料の内部には、振動方向に生じる圧縮波に起因した疎密構造が形成される。また、高濃度の固液混合材料を流動させると、固液混合材料の内部には、流れのせん断応力に起因した疎密構造が形成される。すなわち、固液混合材料には、力学的な外場に応じて、異方性を有する疎密構造が形成される。 For example, when a high-concentration solid-liquid mixed material is reciprocated in one direction and vibrated, a dense structure due to compression waves generated in the vibration direction is formed inside the solid-liquid mixed material. Further, when a high-concentration solid-liquid mixed material is flowed, a dense structure due to the shear stress of the flow is formed inside the solid-liquid mixed material. That is, in the solid-liquid mixed material, a dense structure having anisotropy is formed according to a dynamic external field.
 上述のように、一見すると均一に見える固液混合材料が、ミクロに見ると異方的な疎密構造を有している場合、例えば、次のような課題が生じうる。 As described above, when the solid-liquid mixed material that appears uniform at first glance has an anisotropic dense structure when viewed microscopically, for example, the following problems may occur.
 上記現象について、固液混合材料としてモルタルを想定した場合、内部に異方的な疎密構造が形成されたモルタルから得られるコンクリート体には、強度に異方性を有するおそれがある。 Regarding the above phenomenon, when mortar is assumed as the solid-liquid mixed material, the concrete body obtained from the mortar in which the anisotropic dense structure is formed may have anisotropy in strength.
 また、固液混合材料において化学反応を進行させる場合、密な部分では相対的に疎な部分よりも反応が生じやすいことが予想される。すなわち、反応系全体としては、化学反応が進行しやすい箇所と進行しにくい箇所とが生じることとなる。そのような反応系では、反応が不均一に生じるおそれがある。 Also, when a chemical reaction is allowed to proceed in a solid-liquid mixed material, it is expected that a reaction is more likely to occur in a dense part than in a relatively sparse part. That is, as a whole reaction system, a portion where a chemical reaction easily proceeds and a portion where a chemical reaction hardly proceeds are generated. In such a reaction system, the reaction may occur non-uniformly.
 しかしながら、固液混合材料の内部の異方的な疎密構造については、従来、検討自体がなされていなかった。したがって、固液混合材料の異方的な疎密構造を消去する技術については知られていなかった。 However, the anisotropic dense structure inside the solid-liquid mixed material has not been studied in the past. Therefore, a technique for eliminating the anisotropic dense structure of the solid-liquid mixed material has not been known.
 以上、疎密構造を有する混合材料が固液混合材料である場合について説明した。しかし、例えば、液体材料と液体材料とを混合する場合であっても、一方の液体材料が他方の液体材料中にコロイド状に分散した分散系の場合、液体材料と液体材料との混合材料が塑性を有するときには、混合材料中に上述の疎密構造が形成され得る。その場合には、同様の課題が生じるおそれがある。 In the above, the case where the mixed material having a dense structure is a solid-liquid mixed material has been described. However, even when, for example, a liquid material and a liquid material are mixed, in the case of a dispersion system in which one liquid material is colloidally dispersed in the other liquid material, the mixed material of the liquid material and the liquid material is When it has plasticity, the above-mentioned dense structure can be formed in the mixed material. In that case, a similar problem may occur.
 本発明はこのような事情に鑑みてなされたものであって、混合材料が内包する疎密構造の異方性を低減することができる材料混合方法を提供することを目的とする。 The present invention has been made in view of such circumstances, and an object of the present invention is to provide a material mixing method capable of reducing the anisotropy of the dense structure included in the mixed material.
 上記の課題を解決するため、本発明の一態様は、粒子状の固体材料および液体材料、またはコロイド粒子および前記コロイド粒子の分散媒を、体積比率が液性限界以上かつ塑性限界以下となるように混合した混合材料に外場を加える工程と、前記混合材料を静置した後、前記混合材料の内部に、前記混合材料の降伏応力を超えるエネルギーを有する超音波振動を伝播させる工程と、を有する材料混合方法を提供する。 In order to solve the above problems, according to one embodiment of the present invention, a particulate solid material and a liquid material, or a colloidal particle and a dispersion medium of the colloidal particle have a volume ratio that is greater than a liquid limit and less than a plastic limit. Applying an external field to the mixed material mixed in step (b), and allowing the ultrasonic vibration having energy exceeding the yield stress of the mixed material to propagate inside the mixed material after the mixed material is allowed to stand. A material mixing method is provided.
 本発明の一態様においては、前記外場は、力学的な外場であってもよい。 In one aspect of the present invention, the external field may be a dynamic external field.
 本発明の一態様においては、前記粒子状の固体材料が誘電体または磁性体であり、前記外場は、電磁気的な外場であってもよい。 In one embodiment of the present invention, the particulate solid material may be a dielectric or a magnetic material, and the external field may be an electromagnetic external field.
 また、本発明の一態様は、粒子状の固体材料および液体材料、またはコロイド粒子および前記コロイド粒子の分散媒を、体積比率が液性限界以上かつ塑性限界以下となるように混合しながら、得られる混合材料の内部に、前記混合材料の降伏応力を超えるエネルギーを有する超音波振動を伝播させる工程を有する材料混合方法を提供する。 Another embodiment of the present invention is to obtain a particulate solid material and a liquid material, or a colloidal particle and a dispersion medium of the colloidal particle while mixing so that the volume ratio is higher than the liquid limit and lower than the plastic limit. There is provided a material mixing method including a step of propagating ultrasonic vibration having energy exceeding the yield stress of the mixed material inside the mixed material.
 また、本発明の一態様は、粒子状の固体材料および液体材料、またはコロイド粒子および前記コロイド粒子の分散媒を、体積比率が液性限界以上かつ塑性限界以下となるように混合して得られる混合材料を静置した状態で、前記混合材料の内部に、前記混合材料の降伏応力を超えるエネルギーを有する超音波振動を伝播させる工程を有する材料混合方法を提供する。 Another embodiment of the present invention is obtained by mixing particulate solid material and liquid material, or colloidal particles and a dispersion medium of the colloidal particles so that the volume ratio is higher than the liquid limit and lower than the plastic limit. Provided is a material mixing method including a step of propagating ultrasonic vibration having energy exceeding the yield stress of the mixed material inside the mixed material in a state where the mixed material is left standing.
 本発明の一態様においては、前記超音波振動を伝播させる工程では、前記固液混合材料に対して複数の方向から前記超音波振動を伝播させる方法としてもよい。 In one aspect of the present invention, the step of propagating the ultrasonic vibration may be a method of propagating the ultrasonic vibration from a plurality of directions with respect to the solid-liquid mixed material.
 本発明によれば、混合材料が内包する疎密構造の異方性を低減することができる材料混合方法を提供することができる。 According to the present invention, it is possible to provide a material mixing method that can reduce the anisotropy of the dense structure included in the mixed material.
実施例の結果を示す写真である。It is a photograph which shows the result of an Example. 比較例の結果を示す写真である。It is a photograph which shows the result of a comparative example. 実施例で用いる実験装置を示す模式図である。It is a schematic diagram which shows the experimental apparatus used in an Example. 実施例の結果を示す写真である。It is a photograph which shows the result of an Example. 実施例の結果を示す写真である。It is a photograph which shows the result of an Example. 実施例の結果を示す写真である。It is a photograph which shows the result of an Example. 比較例の結果を示す写真である。It is a photograph which shows the result of a comparative example. 実施例の結果を示すグラフである。It is a graph which shows the result of an Example.
 本実施形態に係る第1の材料混合方法は、粒子状の固体材料および液体材料、またはコロイド粒子および前記コロイド粒子の分散媒を、体積比率が液性限界以上かつ塑性限界以下となるように混合した混合材料に外場を加える工程と、前記混合材料を静置した後、前記混合材料の内部に、前記混合材料の降伏応力を超えるエネルギーを有する超音波振動を伝播させる工程と、を有する。 In the first material mixing method according to the present embodiment, the particulate solid material and the liquid material, or the colloidal particles and the dispersion medium of the colloidal particles are mixed so that the volume ratio is not less than the liquid limit and not more than the plastic limit. Adding an external field to the mixed material, and after allowing the mixed material to stand, propagating ultrasonic vibration having energy exceeding the yield stress of the mixed material to the inside of the mixed material.
 または、本実施形態に係る第2の材料混合方法は、粒子状の固体材料および液体材料、またはコロイド粒子および前記コロイド粒子の分散媒を、体積比率が液性限界以上かつ塑性限界以下となるように混合しながら、得られる混合材料の内部に、前記混合材料の降伏応力を超えるエネルギーを有する超音波振動を伝播させる工程を有する。 Alternatively, in the second material mixing method according to this embodiment, the particulate solid material and the liquid material, or the colloidal particles and the dispersion medium of the colloidal particles are set so that the volume ratio is not less than the liquid limit and not more than the plastic limit. And mixing ultrasonic vibration having energy exceeding the yield stress of the mixed material into the obtained mixed material.
 または、本実施形態に係る第3の材料混合方法は、粒子状の固体材料および液体材料、またはコロイド粒子および前記コロイド粒子の分散媒を、体積比率が液性限界以上かつ塑性限界以下となるように混合して得られる混合材料を静置した状態で、前記混合材料の内部に、前記混合材料の降伏応力を超えるエネルギーを有する超音波振動を伝播させる工程を有する。 Alternatively, in the third material mixing method according to the present embodiment, the particulate solid material and the liquid material, or the colloidal particles and the dispersion medium of the colloidal particles are set so that the volume ratio is not less than the liquid limit and not more than the plastic limit. A step of propagating ultrasonic vibration having energy exceeding the yield stress of the mixed material in the mixed material in a state in which the mixed material obtained by mixing is left standing.
 ここで、本明細書において「体積比率」とは、具体的には下記式(1)または式(2)で表される値を指す。体積比率の単位は「%」である。 Here, the “volume ratio” in this specification specifically refers to a value represented by the following formula (1) or formula (2). The unit of volume ratio is “%”.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 混合する材料が固体材料と液体材料とである場合には、上記式(1)によって体積比率を定義する。また、混合する材料がコロイド粒子と分散媒とである場合には、上記式(2)によって体積比率を定義する。 When the material to be mixed is a solid material and a liquid material, the volume ratio is defined by the above formula (1). When the materials to be mixed are colloidal particles and a dispersion medium, the volume ratio is defined by the above formula (2).
 また、本明細書において、「混合材料の降伏応力」は、混合材料を調整した後、レオメーター(Physica MCR301、アントンパール社製)を用いて求められる値を指す。 In this specification, “yield stress of mixed material” refers to a value obtained by using a rheometer (Physica MCR301, manufactured by Anton Paar) after adjusting the mixed material.
 降伏応力の具体的な測定方法は次の通りである。
 混合材料を水平に設置した2枚のパラレルプレートで挟み、下部のパラレルプレートを固定した状態で上部のパラレルプレートにトルクを加えて一方向に回転させる。これにより、2枚のパラレルプレートで挟んだ混合材料にせん断応力を加える。せん断応力の強さの関数として混合材料の流動性を表すせん断速度を測定することにより、混合材料が流動を始める時のせん断応力が得られる。この「混合材料が流動を始める時のせん断応力」を、求める降伏応力とする。
A specific method for measuring the yield stress is as follows.
The mixed material is sandwiched between two parallel plates placed horizontally, and the upper parallel plate is rotated in one direction by applying torque to the upper parallel plate with the lower parallel plate fixed. Thereby, a shear stress is applied to the mixed material sandwiched between the two parallel plates. By measuring the shear rate representing the fluidity of the mixed material as a function of the strength of the shear stress, the shear stress at which the mixed material begins to flow is obtained. This “shear stress when the mixed material starts to flow” is defined as a yield stress to be obtained.
 また、本明細書において「液性限界」とは、固体材料と液体材料、またはコロイド粒子と分散媒を混合して得られる液状の混合材料について、液状と塑性状態との境界の体積比率を指す。具体的には、上述の方法で固液混合材料の降伏応力を測定したときに、降伏応力の値が0Paとなる体積比率を指す。 In the present specification, the “liquid limit” refers to the volume ratio of the boundary between the liquid state and the plastic state in a liquid mixed material obtained by mixing a solid material and a liquid material or colloidal particles and a dispersion medium. . Specifically, when the yield stress of the solid-liquid mixed material is measured by the above-described method, the volume ratio is such that the yield stress value is 0 Pa.
 また、本明細書において「塑性限界」とは、固体材料と液体材料、またはコロイド粒子と分散媒を混合して得られる混合材料について、塑性状態と半固体状との境界の体積比率を指す。具体的には、上述の方法で混合材料の降伏応力を測定したときに、降伏応力が測定限界を超える体積比率を指す。 In addition, in this specification, the “plastic limit” refers to the volume ratio of the boundary between the plastic state and the semi-solid state for a mixed material obtained by mixing a solid material and a liquid material or a colloidal particle and a dispersion medium. Specifically, when the yield stress of the mixed material is measured by the above-described method, the volume ratio indicates the volume ratio at which the yield stress exceeds the measurement limit.
 すなわち、混合材料の体積比率が、液性限界以上かつ塑性限界以下である場合、混合材料は塑性体である。 That is, when the volume ratio of the mixed material is not less than the liquid limit and not more than the plastic limit, the mixed material is a plastic body.
 混合材料の「液性限界」「塑性限界」は、用いる固体材料および液体材料の組み合わせ、またはコロイド粒子と分散媒の組み合わせに応じて変化する値である。そのため、本発明の材料混合方法を実施する前に、予備実験を行いそれぞれの値を求めておくとよい。 The “liquid limit” and “plastic limit” of the mixed material are values that vary depending on the combination of the solid material and the liquid material used, or the combination of the colloidal particles and the dispersion medium. Therefore, before carrying out the material mixing method of the present invention, it is advisable to conduct preliminary experiments and obtain respective values.
 また、混合材料の「降伏応力」は、混合材料の体積比率に応じて変化する値である。そのため、本発明の材料混合方法を実施する前に、予備実験を行い、複数の体積比率ごとに降伏応力を求め、混合材料の体積比率と降伏応力との関係を示す対応表やグラフを作成しておくとよい。
 以下、本実施形態の材料混合方法について順に説明する。
Further, the “yield stress” of the mixed material is a value that varies depending on the volume ratio of the mixed material. Therefore, before carrying out the material mixing method of the present invention, a preliminary experiment is performed to determine the yield stress for each of a plurality of volume ratios, and a correspondence table or graph showing the relationship between the volume ratio of the mixed material and the yield stress is created. It is good to keep.
Hereinafter, the material mixing method of this embodiment is demonstrated in order.
(固体材料)
 本実施形態の材料混合方法においては、固体材料として、粒子状であり、液体材料と混合して塑性体を形成するものであれば、無機材料と有機材料とのいずれも用いることができる。ここで「粒子状」とは、粉状および粒状の両方を含む。固体材料の粒子径分布は、単分散であってもよく、多分散であってもよい。
(Solid material)
In the material mixing method of the present embodiment, any of inorganic materials and organic materials can be used as long as the solid material is particulate and can be mixed with a liquid material to form a plastic body. Here, “particulate” includes both powdery and granular. The particle size distribution of the solid material may be monodispersed or polydispersed.
 また、固体材料は、後述の液体材料に対して不溶であってもよく、溶解性を有していてもよい。固体材料が液体材料に対して溶解性を有する場合、固体材料を液体材料の飽和濃度以上に混合することにより、液体材料中に固体材料が分散している状態の混合材料には、本実施形態の液体混合方法を適用することができる。 The solid material may be insoluble or soluble in the liquid material described later. In the case where the solid material is soluble in the liquid material, the present embodiment is applied to the mixed material in which the solid material is dispersed in the liquid material by mixing the solid material at a saturation concentration or higher of the liquid material. The liquid mixing method can be applied.
 有機材料としては、でんぷん(コーンスターチ、片栗粉、馬鈴薯でんぷん)、小麦粉、米粉などの食品粉末であってもよく、種々の有機化合物の粉末であってもよい。 The organic material may be food powder such as starch (corn starch, starch starch, potato starch), wheat flour, rice flour, or various organic compound powders.
 無機材料としては、炭酸カルシウム、フッ化カルシウム、塩基性炭酸マグネシウム(別名:炭酸水酸化マグネシウム(mMgCO・Mg(OH)・nHO,代表的な値はm=4,n=5))などの塩;
 カオリンやベントナイトに代表される粘土、泥などの鉱物;
 石炭、活性炭、グラフェン、カーボンナノチューブなどの炭素素材;
 金属酸化物;を挙げることができる。
Inorganic materials include calcium carbonate, calcium fluoride, basic magnesium carbonate (also known as magnesium carbonate hydroxide (mMgCO 3 · Mg (OH) 2 · nH 2 O, typical values are m = 4, n = 5)) ) And other salts;
Minerals such as clay and mud represented by kaolin and bentonite;
Carbon materials such as coal, activated carbon, graphene and carbon nanotubes;
Metal oxides;
 金属酸化物としては、酸化マグネシウム、磁性酸化鉄、酸化チタン、チタン酸バリウムのような1種類の金属を含む酸化物であってもよく、LiCoO、LiFeO、ITO(インジウム-錫-酸化物)など、2種類以上の金属を含む酸化物であってもよい。 The metal oxide may be an oxide containing one kind of metal such as magnesium oxide, magnetic iron oxide, titanium oxide, and barium titanate. LiCoO 2 , Li 2 FeO 4 , ITO (indium-tin- An oxide containing two or more kinds of metals may be used.
(液体材料)
 また、本実施形態の材料混合方法において用いる液体材料としては、水および有機溶媒のいずれであってもよい。有機溶媒としては、メタノール、エタノールなどのアルコール、ヘキサン、デカン、石油エーテルのような炭化水素の他、エーテル、ケトン、アミン、エステルなど、通常知られた種々のものを用いることができる。
(Liquid material)
Further, the liquid material used in the material mixing method of the present embodiment may be either water or an organic solvent. As the organic solvent, various commonly known solvents such as alcohols such as methanol and ethanol, hydrocarbons such as hexane, decane and petroleum ether, as well as ethers, ketones, amines and esters can be used.
 なお、液体材料には、液体材料に可溶な物質が溶解していてもよい。「可溶な物質」は、有機物であってもよく、無機物であってもよい。 Note that a substance soluble in the liquid material may be dissolved in the liquid material. The “soluble substance” may be an organic substance or an inorganic substance.
 これらの固体材料および液体材料は、それぞれ1種のみ用いてもよく、2種以上を併用してもよい。 These solid materials and liquid materials may be used alone or in combination of two or more.
(材料混合方法)
 次いで、材料混合方法について説明する。
 第1の材料混合方法では、まず、上述の固体材料と液体材料、またはコロイド粒子と分散媒を、液性限界以上かつ塑性限界以下の体積比率となるように混合する。これにより、塑性体の混合材料が得られる。
(Material mixing method)
Next, the material mixing method will be described.
In the first material mixing method, first, the above-mentioned solid material and liquid material, or colloidal particles and dispersion medium are mixed so that the volume ratio is not less than the liquid limit and not more than the plastic limit. Thereby, the mixed material of a plastic body is obtained.
 しかし、混合材料が塑性体である(液性限界以上かつ塑性限界以下の体積比率である)と、混合材料が外場を受けた場合には、混合材料の内部に、外場の方向に応じて異方性を有するミクロな疎密構造が形成される。 However, if the mixed material is a plastic body (the volume ratio is greater than the liquid limit and less than the plastic limit), when the mixed material is subjected to an external field, the mixed material will be subjected to the direction of the external field. Thus, a micro dense / dense structure having anisotropy is formed.
 本明細書で対象とする「外場」とは、「力学的な外場」と「電磁気的な外場」との両方を含む。
 「力学的な外場」とは、混合材料を撹拌したり流動させたりする場合に混合材料に加わるせん断力や、混合材料を一方向に往復させて混合材料に加える振動などを指す。
 「電磁気的な外場」には、「電気的な外場」と「磁気的な外場」とを含む。「電磁気的な外場」とは、混合材料を構成する固体粒子が誘電体や磁性体である場合に、混合材料に対して加わる電気的または磁気的な外力を指し、例えばクーロン力やローレンツ力が挙げられる。電磁気的な外場は、定常的であってもよく時間変動してもよい。電磁気的な外場が定常的であるものとしては、直流電流に起因したものが挙げられる。また、電磁気的な外場が時間変動するものとしては、交流電流に起因したものが挙げられる。
The “external field” as used in this specification includes both “dynamic external field” and “electromagnetic external field”.
“Mechanical external field” refers to a shearing force applied to the mixed material when the mixed material is agitated or fluidized, or a vibration applied to the mixed material by reciprocating the mixed material in one direction.
“Electromagnetic external field” includes “electrical external field” and “magnetic external field”. “Electromagnetic external field” refers to an electric or magnetic external force applied to a mixed material when the solid particles constituting the mixed material are a dielectric or magnetic material. For example, Coulomb force or Lorentz force Is mentioned. The electromagnetic external field may be stationary or time-varying. Examples of stationary external electromagnetic fields include those caused by direct current. Moreover, what originated in alternating current is mentioned as what an electromagnetic external field fluctuates with time.
 例えば、混合材料を撹拌していると、撹拌の流れ方向に交差する方向に疎密構造が形成される。また、混合材料を流動させると、流動方向に交差する方向に疎密構造が形成される。詳しくは、撹拌の流れ方向や流動方向に沿って延在する「疎」な部分と、撹拌の流れ方向や流動方向に沿って延在する「密」な部分とが、撹拌の流れ方向や流動方向と交差する方向に交互に複数形成される。 For example, when the mixed material is stirred, a dense structure is formed in a direction crossing the flow direction of stirring. Further, when the mixed material is flowed, a dense structure is formed in a direction crossing the flow direction. Specifically, the “sparse” portion extending along the flow direction and flow direction of stirring and the “dense” portion extending along the flow direction and flow direction of stirring are divided into the flow direction and flow of stirring. A plurality are alternately formed in a direction crossing the direction.
 また、誘電体や磁性体を分散質として用いた混合材料に対し、電場あるいは磁場を印加すると、電場方向や磁場方向と交差する方向に疎密構造が形成される。詳しくは、電場方向や磁場方向に沿って延在する「疎」な部分と、電場方向や磁場方向に沿って延在する「密」な部分とが、電場方向や磁場方向と交差する方向に交互に複数形成される。 In addition, when an electric field or a magnetic field is applied to a mixed material using a dielectric or magnetic substance as a dispersoid, a dense structure is formed in a direction intersecting the electric field direction or the magnetic field direction. Specifically, the “sparse” part that extends along the electric field direction and the magnetic field direction and the “dense” part that extends along the electric field direction and the magnetic field direction intersect with the electric field direction and the magnetic field direction. A plurality are alternately formed.
 また、固液混合材料を振とうさせると、加振方向に疎密構造が形成される。詳しくは、加振方向に交差する方向に延在する疎な部分と、加振方向に交差する方向に延在する密な部分とが、加振方向に交互に複数形成される。 Also, when the solid-liquid mixed material is shaken, a dense structure is formed in the direction of vibration. Specifically, a plurality of sparse portions extending in a direction intersecting the excitation direction and dense portions extending in a direction intersecting the excitation direction are alternately formed in the excitation direction.
 そのため、本実施形態の第1の材料混合方法では、混合材料を静置した後、混合材料の内部に混合材料の降伏応力を超えるエネルギーを有する超音波振動を伝播させる(超音波振動を伝播させる工程)。これにより、混合材料の内部では、固体材料、またはコロイド粒子が揺さぶられ、ミクロに異方的な疎密構造が減少し、均一な構造の混合材料とすることができる。 Therefore, in the first material mixing method of the present embodiment, after leaving the mixed material, the ultrasonic vibration having energy exceeding the yield stress of the mixed material is propagated inside the mixed material (the ultrasonic vibration is propagated). Process). As a result, inside the mixed material, the solid material or colloidal particles are shaken, the micro-dense dense structure is reduced, and a mixed material having a uniform structure can be obtained.
 例えば、第1の材料混合方法を用いて得られた混合材料を固化または硬化させると、内部に疎密構造を有さない均一な構造の成形体を得ることができる。 For example, when the mixed material obtained by using the first material mixing method is solidified or cured, a molded body having a uniform structure having no sparse / dense structure can be obtained.
 また、第2の材料混合方法では、上述の固体材料と液体材料とを、液性限界以上かつ塑性限界以下の体積比率となるように混合しながら、得られる混合材料の内部に、混合材料の降伏応力を超えるエネルギーを有する超音波振動を伝播させる。 In the second material mixing method, the above-mentioned solid material and liquid material are mixed so that the volume ratio is not less than the liquid limit and not more than the plastic limit. Propagate ultrasonic vibrations with energy exceeding the yield stress.
 上述の体積比率の混合材料の混合中において、混合材料の内部では、ある瞬間には混合により加わる外場に起因した異方的な疎密構造が形成され、またある瞬間には混合による外場に起因した新たな疎密構造が形成される。すなわち、混合材料の内部では、常に疎密構造が形成されている。 During the mixing of the above-mentioned volume ratio of the mixed material, an anisotropic dense structure is formed inside the mixed material due to the external field applied by mixing at a certain moment. The resulting new sparse / dense structure is formed. That is, a dense structure is always formed inside the mixed material.
 そのため、本実施形態の第2の材料混合方法では、混合しながら混合材料の内部に超音波振動を伝播させる。これにより、混合材料の混合中において固体材料、またはコロイド粒子が揺さぶられ、ミクロで異方的な疎密構造の形成を抑制し、均一な構造の混合材料とすることができる。 Therefore, in the second material mixing method of this embodiment, ultrasonic vibration is propagated inside the mixed material while mixing. As a result, the solid material or colloidal particles are shaken during mixing of the mixed material, the formation of a micro and anisotropic dense structure is suppressed, and a mixed material having a uniform structure can be obtained.
 例えば、第2の材料混合方法を用いて固体材料と液体材料、またはコロイド粒子と分散媒を混合しながら、混合材料中で化学反応を生じさせると、ミクロな反応場において濃度差が小さくなる。そのため、より揃った濃度条件で化学反応を起こさせることができる。 For example, when a chemical reaction is caused in a mixed material while mixing a solid material and a liquid material, or a colloidal particle and a dispersion medium using the second material mixing method, the concentration difference is reduced in a micro reaction field. Therefore, a chemical reaction can be caused under more uniform concentration conditions.
 また、本実施形態の第3の材料混合方法では、混合して得られた混合材料を静置した状態で、混合材料の内部に超音波振動を伝播させる。これにより、混合材料の混合中において固体材料、またはコロイド粒子が揺さぶられ、ミクロで異方的な疎密構造の形成を抑制し、均一な構造の混合材料とすることができる。 Also, in the third material mixing method of the present embodiment, ultrasonic vibration is propagated inside the mixed material while the mixed material obtained by mixing is left standing. As a result, the solid material or colloidal particles are shaken during mixing of the mixed material, the formation of a micro and anisotropic dense structure is suppressed, and a mixed material having a uniform structure can be obtained.
 超音波振動の伝播は、通常、超音波振動子を用いて行う。超音波振動の伝播は、混合材料に対して複数の方向から行ってもよい。この複数の方向からの超音波照射は、例えば、1つの超音波振動子を用い、複数の方向から超音波照射を行うことで実現してもよく、複数の超音波振動子を用いて超音波照射を行うことで実現してもよい。 The propagation of ultrasonic vibration is usually performed using an ultrasonic vibrator. The propagation of the ultrasonic vibration may be performed from a plurality of directions with respect to the mixed material. This ultrasonic irradiation from a plurality of directions may be realized, for example, by using a single ultrasonic transducer and performing ultrasonic irradiation from a plurality of directions. You may implement | achieve by performing irradiation.
 混合材料の内部に伝播させる超音波振動は、混合材料の内部で徐々にエネルギーを失い、いずれ混合材料の降伏応力を下回るまで減衰する。そのため、例えば、第1の材料混合方法および第3の材料混合方法において、一か所からの一方向の超音波照射では混合材料の全体に超音波振動を伝播させることが困難である場合が想定される。例えば、静置する混合材料の量が多い、または静置する混合材料が貯留されている容器が長尺である、などの場合である。そのような場合であっても、複数の方向から超音波照射を行うことで、所望の領域に超音波照射をすることができる。 ∙ Ultrasonic vibration propagating inside the mixed material gradually loses energy inside the mixed material and attenuates until it eventually falls below the yield stress of the mixed material. Therefore, for example, in the first material mixing method and the third material mixing method, it is assumed that it is difficult to propagate ultrasonic vibrations to the entire mixed material by ultrasonic irradiation in one direction from one place. Is done. For example, the amount of the mixed material to be left is large, or the container in which the mixed material to be left is stored is long. Even in such a case, ultrasonic irradiation can be performed on a desired region by performing ultrasonic irradiation from a plurality of directions.
 なお、混合材料に対し複数の方向から超音波振動を伝播させる場合、混合材料の全体に超音波振動を伝播させることとしてもよく、一部の領域に超音波振動を伝播させ、残る領域は超音波照射を行わないということも可能となる。 In addition, when propagating ultrasonic vibration from a plurality of directions to the mixed material, the ultrasonic vibration may be propagated throughout the mixed material. It is also possible not to perform sound wave irradiation.
 例えば、混合材料としてモルタルを想定した場合、一部の領域には超音波照射を行い、残る領域には超音波照射を行わないという処理をすると、一部の領域では均一な内部構造を有し、残る領域では疎密構造を有する混合材料が得られる。このようなモルタルから得られるコンクリート成形体は、均一な内部構造のモルタルに対応する部分と比べ、疎密構造を有するモルタルに対応する部分は相対的に低強度となると予想される。そのため、柱状や板状などの簡単な形状であっても、切欠きの形成や厚みの変更をすることなく、部分によって強度の違いを有するコンクリート成形体とすることができる。 For example, if mortar is assumed as the mixed material, ultrasonic treatment is applied to some areas and no ultrasonic irradiation is applied to the remaining areas, so that some areas have a uniform internal structure. In the remaining area, a mixed material having a dense structure is obtained. A concrete molded body obtained from such a mortar is expected to have a relatively low strength in a portion corresponding to a mortar having a dense structure compared to a portion corresponding to a mortar having a uniform internal structure. Therefore, even if it is a simple shape such as a columnar shape or a plate shape, a concrete molded body having a difference in strength depending on the portion can be obtained without forming a notch or changing the thickness.
 また、第2の材料混合方法においても、混合材料の量が多い、混合材料を混合する容器が大きいというような場合に、複数の方向から超音波照射を行うことで、所望の領域に超音波照射をすることができる。 Also in the second material mixing method, when the amount of the mixed material is large and the container for mixing the mixed material is large, the ultrasonic wave is applied to a desired region by performing ultrasonic irradiation from a plurality of directions. Can be irradiated.
 例えば、第2の材料混合方法を用いて固体材料と液体材料とを混合しながら、混合材料中で化学反応を生じさせる場合に、複数の方向から超音波照射を行うことで、反応系全体の濃度条件を揃えて化学反応を起こさせることができる。 For example, when a chemical reaction is generated in a mixed material while mixing a solid material and a liquid material by using the second material mixing method, ultrasonic irradiation is performed from a plurality of directions, so that the entire reaction system is A chemical reaction can be caused by adjusting the concentration conditions.
 以上のような材料混合方法によれば、混合材料が内包する疎密構造の異方性を低減することができる材料混合方法を提供することができる。 According to the material mixing method as described above, it is possible to provide a material mixing method capable of reducing the anisotropy of the dense structure included in the mixed material.
 以上、本発明に係る好適な実施の形態例について説明したが、本発明は係る例に限定されないことは言うまでもない。上述した例は一例であって、本発明の主旨から逸脱しない範囲において設計要求等に基づき種々変更可能である。 The preferred embodiments according to the present invention have been described above, but it goes without saying that the present invention is not limited to such examples. The above-described example is an example, and various modifications can be made based on design requirements and the like without departing from the gist of the present invention.
 以下に本発明を実施例により説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be described by way of examples, but the present invention is not limited to these examples.
[1.外観観察]
 まず、本実施例においては、モデル実験により発明の効果を確かめた。
[1. Appearance observation]
First, in this example, the effect of the invention was confirmed by a model experiment.
 以下のモデル実験では、固液混合材料を調整した後、室温・低湿度で乾燥させて、乾燥物を乾燥破壊させ、破壊の様子を観察することで、固液混合材料内の異方的な疎密構造を確認した。 In the following model experiment, after adjusting the solid-liquid mixed material, it is dried at room temperature and low humidity, the dried product is dried and broken, and the state of the breakage is observed, so that the anisotropic state in the solid-liquid mixed material is observed. Confirmed the density structure.
 塑性体の固液混合材料を乾燥させると、疎密構造を保ったまま乾燥し、乾燥物に乾燥破壊が生じる。固液混合材料において「疎」な部分では固体材料が少ないため、乾燥物の対応する部分でも低密度となる。このような部分は、乾燥物において固液混合材料の「密」な部分に対応する部分よりも脆く低強度になるため、乾燥収縮によって割れやすくなる。そのため、乾燥破壊後の亀裂の様子を観察すると、固液混合材料では亀裂に対応した「疎」な部分があったと判断することができる。 When a plastic-solid-liquid mixed material is dried, the material is dried while maintaining a close-packed structure, and a dry breakage occurs in the dried product. In the solid-liquid mixed material, since there are few solid materials in the “sparse” part, the corresponding part of the dried product also has a low density. Such a portion is more brittle and lower in strength than the portion corresponding to the “dense” portion of the solid-liquid mixed material in the dried product, and thus is easily cracked by drying shrinkage. Therefore, when the state of cracks after dry fracture is observed, it can be determined that the solid-liquid mixed material has a “sparse” portion corresponding to the cracks.
<実験1>
(実施例1)
 固体材料として炭酸カルシウム(鹿1級、関東化学社製)、液体材料として純水を用い、混合して複数の体積比率の固液混合材料を調整した。
<Experiment 1>
Example 1
Calcium carbonate (Deer grade 1, manufactured by Kanto Chemical Co., Inc.) was used as the solid material, and pure water was used as the liquid material, and mixed to prepare a solid-liquid mixed material having a plurality of volume ratios.
 次いで、得られた固液混合材料を、容器型超音波洗浄機(SW5800、シチズン社製、長軸直径148mm、短軸直径125mm)の容器に直接に入れた後、卓上振盪機(FNX-220、東京硝子器械社製)を用いて水平方向に加振した。加振の条件は、以下の通りであった。
〈条件〉
 振動数:40rpm、振幅:15mm、加振時間:1分間
Next, the obtained solid-liquid mixed material was directly put into a container of a container-type ultrasonic cleaner (SW5800, manufactured by Citizen, major axis diameter 148 mm, minor axis diameter 125 mm), and then a desktop shaker (FNX-220). , Manufactured by Tokyo Glass Instrument Co., Ltd.). The conditions for excitation were as follows.
<conditions>
Vibration frequency: 40 rpm, amplitude: 15 mm, vibration time: 1 minute
 次いで、容器型超音波洗浄機を駆動させ、容器型超音波洗浄機内の固液混合材料に超音波振動を直接照射した。超音波照射の条件は、以下の通りであった。
〈条件〉
 振動数:42kHz、照射時間:1分間
Next, the container type ultrasonic cleaner was driven to directly irradiate the solid-liquid mixed material in the container type ultrasonic cleaner with ultrasonic vibration. The conditions of ultrasonic irradiation were as follows.
<conditions>
Frequency: 42 kHz, irradiation time: 1 minute
 超音波照射後、温度24℃±1℃、湿度30%±10で固液混合材料を乾燥させ、乾燥物を乾燥破壊させて、破壊の様子を観察した。 After ultrasonic irradiation, the solid-liquid mixed material was dried at a temperature of 24 ° C. ± 1 ° C. and a humidity of 30% ± 10, and the dried product was dried and broken, and the state of the breaking was observed.
(比較例1)
 超音波照射を行わないこと以外は実施例1と同様にして、乾燥物を乾燥破壊させて破壊の様子を観察した。
(Comparative Example 1)
Except not carrying out ultrasonic irradiation, it carried out similarly to Example 1, and dried and destroyed the dried material, and observed the mode of destruction.
 図1Aおよび図1Bは、乾燥物に生じた亀裂の様子を示す写真である。図1Aは実施例1、図1Bは比較例1の結果を示す。また、図中の両矢印は、卓上振盪機を用いた水平加振の方向を示している。 FIG. 1A and FIG. 1B are photographs showing the appearance of cracks in the dried product. 1A shows the results of Example 1, and FIG. 1B shows the results of Comparative Example 1. In addition, the double arrows in the figure indicate the direction of horizontal excitation using a desktop shaker.
 図1Aに示すように、実施例1の乾燥物においては、亀裂が等方的に生じた。対して、図1Bに示すように、比較例1の乾燥物においては、加振方向と直交する方向に縞状の亀裂が形成された。実施例1では、超音波照射により固液混合材料の内部の異方的な疎密構造が減少または消滅した結果、乾燥破壊時に異方性を生じるほどの疎密構造が無くなったことを示していると思われる。 As shown in FIG. 1A, in the dried product of Example 1, cracks occurred isotropically. On the other hand, as shown in FIG. 1B, in the dried product of Comparative Example 1, striped cracks were formed in the direction orthogonal to the excitation direction. In Example 1, it was shown that the anisotropic dense structure inside the solid-liquid mixed material was reduced or eliminated by ultrasonic irradiation, and as a result, there was no dense structure enough to cause anisotropy during dry fracture. Seem.
<実験2>
(実施例2)
 固体材料をフッ化カルシウム(鹿1級、関東化学社製)とし、液体材料をエタノールとし、体積比率を20%、加振時の振動数を120rpmとしたこと以外は、実施例1と同様にして、乾燥物を乾燥破壊させて破壊の様子を観察した。
<Experiment 2>
(Example 2)
Example 1 except that the solid material is calcium fluoride (Deer grade 1, manufactured by Kanto Chemical Co., Inc.), the liquid material is ethanol, the volume ratio is 20%, and the vibration frequency is 120 rpm. Then, the dried material was dried and broken, and the state of the breaking was observed.
(実施例3)
 固体材料を炭酸水酸化マグネシウム(鹿1級、関東化学社製)とし、体積比率を7.7%、加振時の振動数を120rpmとしたこと以外は、実施例1と同様にして、乾燥物を乾燥破壊させて破壊の様子を観察した。
Example 3
Drying was conducted in the same manner as in Example 1 except that the solid material was magnesium carbonate hydroxide (Deer grade 1, manufactured by Kanto Chemical Co., Ltd.), the volume ratio was 7.7%, and the vibration frequency was 120 rpm. The object was dried and destroyed, and the state of destruction was observed.
(実施例4)
 体積比率を12.5%としたこと以外は、実施例3と同様にして、乾燥物を乾燥破壊させて破壊の様子を観察した。
Example 4
Except that the volume ratio was 12.5%, the dried product was dried and broken in the same manner as in Example 3 to observe the state of destruction.
(実施例5)
 固体材料をコーンスターチ(特級、和光純薬社製)とし、体積比率を47.4%、加振時の振動数を60rpmとしたこと以外は、実施例1と同様にして、乾燥物を乾燥破壊させて破壊の様子を観察した。
(Example 5)
The dried material was destroyed by drying in the same manner as in Example 1 except that the solid material was corn starch (special grade, manufactured by Wako Pure Chemical Industries, Ltd.), the volume ratio was 47.4%, and the vibration frequency was 60 rpm. We observed the state of destruction.
(実施例6)
 液体材料を塩化ナトリウム(特級、関東化学社製)の0.1mol/L水溶液とし、体積比率を25%、加振時の振動数を99rpmとしたこと以外は、実施例1と同様にして、乾燥物を乾燥破壊させて破壊の様子を観察した。
(Example 6)
The liquid material was a 0.1 mol / L aqueous solution of sodium chloride (special grade, manufactured by Kanto Chemical Co., Inc.), the volume ratio was 25%, and the frequency at the time of vibration was 99 rpm. The dried product was destroyed by drying and observed for destruction.
(実施例7)
 体積比率を35%としたこと以外は、実施例6と同様にして、乾燥物を乾燥破壊させて破壊の様子を観察した。
(Example 7)
Except that the volume ratio was 35%, the dried material was dried and broken in the same manner as in Example 6 to observe the state of destruction.
(比較例2~7)
 超音波照射を行わないこと以外は、対応する実施例と同様にして、乾燥物を乾燥破壊させて破壊の様子を観察した。
(Comparative Examples 2 to 7)
Except not carrying out ultrasonic irradiation, it carried out similarly to the corresponding Example, the dry thing was dried and destroyed, and the mode of destruction was observed.
 実施例1~7の結果を表1に示す。表では、各実施例の亀裂パターンと、対応する比較例の亀裂パターンとを比較した結果を示した。 The results of Examples 1 to 7 are shown in Table 1. In the table, the result of comparing the crack pattern of each example with the crack pattern of the corresponding comparative example is shown.
 表中、結果の欄に示す「A」とは、対応する比較例における亀裂パターンが消滅し、等方的な亀裂パターンが観察されたことを示す。また、結果の欄に示す「B」とは、対応する比較例における亀裂パターンと同様のパターンは見て取れるものの、異方性が弱まった亀裂パターンが観察されたことを示す。 In the table, “A” in the result column indicates that the crack pattern in the corresponding comparative example disappeared and an isotropic crack pattern was observed. Further, “B” shown in the result column indicates that a crack pattern having a weak anisotropy was observed although a pattern similar to the crack pattern in the corresponding comparative example can be seen.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 評価の結果、固体材料、液体材料を変更しても、超音波照射により固液混合材料の内部の異方的な疎密構造を減少または消滅させることが分かった。 As a result of the evaluation, it was found that even if the solid material or liquid material was changed, the anisotropic dense structure inside the solid-liquid mixed material was reduced or eliminated by ultrasonic irradiation.
<実験3>
 図2は、実験3で用いる実験装置100を示す模式図である。実験装置100は、加振装置10と超音波照射装置20とを有している。
<Experiment 3>
FIG. 2 is a schematic diagram showing an experimental apparatus 100 used in Experiment 3. The experimental device 100 includes a vibration device 10 and an ultrasonic irradiation device 20.
 加振装置10は、基台B上に載置された加振器11と、加振器11上に載置されたスタンド12と、スタンド12に設けられたアーム13と、を有している。超音波照射装置20は、昇降機21と、昇降機21上に載置された水槽22と、水槽22の底面に載置された超音波振動子23と、を有している。 The vibration device 10 includes a vibrator 11 placed on the base B, a stand 12 placed on the vibrator 11, and an arm 13 provided on the stand 12. . The ultrasonic irradiation device 20 includes an elevator 21, a water tank 22 placed on the elevator 21, and an ultrasonic vibrator 23 placed on the bottom surface of the water tank 22.
 加振器11は、卓上振盪機(FNX-220、東京硝子器械社製)を用いる。スタンド12に設けられたアーム13は、水槽22の側壁を跨いで水槽22の内部にまで延在している。アーム13の先端には、固液混合材料を貯留するシャーレ1が保持されている。 The shaker 11 uses a desktop shaker (FNX-220, manufactured by Tokyo Glass Instruments Co., Ltd.). The arm 13 provided on the stand 12 extends to the inside of the water tank 22 across the side wall of the water tank 22. A petri dish 1 for storing the solid-liquid mixed material is held at the tip of the arm 13.
 昇降機21は、水槽22および超音波振動子23を昇降させる。水槽22には水Wが底面から38cmの高さまで貯留されている。超音波振動子23の高さが8cmなので、この状況は「超音波が発振される超音波振動子の表面」から水面までの距離が30cmの場合に相当する。超音波振動子23は、振動数が変更可能な仕様となっている。超音波振動子23から発振される超音波振動は、底面側から水面側に水Wを介して伝播する。図中、超音波振動の伝播方向を符号βで示す。 The elevator 21 moves the water tank 22 and the ultrasonic transducer 23 up and down. Water W is stored in the water tank 22 up to a height of 38 cm from the bottom surface. Since the height of the ultrasonic transducer 23 is 8 cm, this situation corresponds to the case where the distance from the “surface of the ultrasonic transducer in which the ultrasonic wave is oscillated” to the water surface is 30 cm. The ultrasonic vibrator 23 has a specification in which the frequency can be changed. The ultrasonic vibration oscillated from the ultrasonic vibrator 23 propagates through the water W from the bottom surface side to the water surface side. In the figure, the propagation direction of the ultrasonic vibration is indicated by symbol β.
 このような実験装置100では、まず昇降機21を下降させ、シャーレ1が水Wの水面から離れた状態として、シャーレ1内に固液混合材料を貯留する。この状態で、加振器11を可動すると、図中符号αで示した両矢印方向にスタンド12が往復運動する。スタンド12の動きはアーム13を介してシャーレ1に伝わるため、シャーレ1が符号αで示す両矢印方向に加振される。これにより、固液混合材料を加振しせん断力を加える。 In such an experimental apparatus 100, first, the elevator 21 is lowered to store the solid-liquid mixed material in the petri dish 1 with the petri dish 1 separated from the water surface of the water W. When the vibrator 11 is moved in this state, the stand 12 reciprocates in the direction of the double arrow indicated by the symbol α in the drawing. Since the movement of the stand 12 is transmitted to the petri dish 1 through the arm 13, the petri dish 1 is vibrated in the direction of the double arrow indicated by the symbol α. Thereby, a solid-liquid mixed material is vibrated and a shearing force is applied.
 次いで、加振器11を停止し、シャーレ1内の固液混合材料を静置した状態で、昇降機21を、シャーレ1のおもて側底面が水Wの水面に接触するまで上昇させる。この状態で、超音波振動子23を駆動し、水Wを介してシャーレ1内の固液混合材料に超音波振動を伝播させる。 Next, the vibrator 11 is stopped, and the elevator 21 is raised until the front bottom surface of the petri dish 1 comes into contact with the water surface of the water W while the solid-liquid mixed material in the petri dish 1 is left standing. In this state, the ultrasonic vibrator 23 is driven to propagate ultrasonic vibrations to the solid-liquid mixed material in the petri dish 1 through the water W.
(実施例8)
 実験装置100を用いて、固液混合材料に対し37kHzの超音波振動を伝播させたこと以外は、実施例1と同様にして、乾燥物を乾燥破壊させて破壊の様子を観察した。
(Example 8)
Using the experimental apparatus 100, the dried product was dried and broken to observe the state of destruction in the same manner as in Example 1 except that 37 kHz ultrasonic vibration was propagated to the solid-liquid mixed material.
(実施例9)
 固液混合材料に対し71kHzの超音波振動を伝播させたこと以外は、実施例8と同様にして、乾燥物を乾燥破壊させて破壊の様子を観察した。
Example 9
Except that the ultrasonic vibration of 71 kHz was propagated to the solid-liquid mixed material, the dried material was dried and broken to observe the state of breaking in the same manner as in Example 8.
(実施例10)
 固液混合材料に対し102kHzの超音波振動を伝播させたこと以外は、実施例8と同様にして、乾燥物を乾燥破壊させて破壊の様子を観察した。
(Example 10)
Except that 102 kHz ultrasonic vibration was propagated to the solid-liquid mixed material, the dried material was dried and broken to observe the state of destruction in the same manner as in Example 8.
(比較例8)
 超音波照射を行わないこと以外は実施例8と同様にして、乾燥物を乾燥破壊させて破壊の様子を観察した。
(Comparative Example 8)
Except not carrying out ultrasonic irradiation, it carried out similarly to Example 8, and dried and destroyed the dried material, and observed the mode of destruction.
 図3A~図3Dは、乾燥物に生じた亀裂の様子を示す写真である。図3Aは実施例8、図3Bは実施例9、図3Cは実施例10、図3Dは比較例8の結果を示す。また、図中の両矢印は、水平加振の方向を示している。 FIGS. 3A to 3D are photographs showing the state of cracks generated in the dried product. 3A shows the results of Example 8, FIG. 3B shows the results of Example 9, FIG. 3C shows the results of Example 10, and FIG. In addition, the double arrows in the figure indicate the direction of horizontal excitation.
 図3A~図3Cに示すように、実施例8~10の乾燥物においては、亀裂が等方的に生じた。対して、図3Dに示すように、比較例8の乾燥物においては、加振方向と直交する方向に縞状の亀裂が形成された。実施例8~10では、超音波照射により固液混合材料の内部の異方的な疎密構造が減少または消滅した結果、乾燥破壊時に異方性を生じるほどの疎密構造が無くなったことを示していると思われる。 As shown in FIGS. 3A to 3C, cracks areotropically occurred in the dried products of Examples 8 to 10. On the other hand, as shown in FIG. 3D, in the dried product of Comparative Example 8, striped cracks were formed in the direction orthogonal to the excitation direction. In Examples 8 to 10, it was shown that the anisotropic dense structure inside the solid-liquid mixed material was reduced or disappeared by ultrasonic irradiation, and as a result, there was no dense structure enough to cause anisotropy during dry fracture. It seems that there is.
[2.破壊強度]
 次いで、本実施例においては、セメント試験片の破壊強度を測定することにより発明の効果を確かめた。
[2. destruction strength]
Next, in this example, the effect of the invention was confirmed by measuring the breaking strength of the cement specimen.
(実施例11)
(a.セメントペーストの作製)
 水と砂入りセメント(トーヨーマテラン社製、インスタントセメント(汎用セメント))とを、質量比で水:セメント=3:10の割合となるようにそれぞれ秤量して1分間混合し、セメントペーストを作製した。なお、用いたインスタントセメントは、ポルトランドセメント、シリカサンド、接着剤を含むものである。また、セメントペーストの作製法は、用いた砂入りセメントの製品袋に記載された方法に従ったものである。
(Example 11)
(A. Preparation of cement paste)
Water and cement containing sand (Toyo Materan Co., Ltd., instant cement (general purpose cement)) are weighed in a mass ratio of water: cement = 3: 10 and mixed for 1 minute. Produced. The instant cement used includes Portland cement, silica sand, and adhesive. The method for producing the cement paste is in accordance with the method described in the product bag of the cement with sand used.
(b.セメントペーストの充填)
 次いで、76mm×27mm×30mmの直方体状の空間を有するシリコン容器にセメントペーストを、48g流し込んだ。シリコン容器は、セメントペーストの充填前に、予め容器型超音波洗浄機(SW5800、シチズン社製、長軸直径148mm、短軸直径125mm)の容器に配置させていた。
(B. Cement paste filling)
Next, 48 g of cement paste was poured into a silicon container having a rectangular parallelepiped space of 76 mm × 27 mm × 30 mm. The silicon container was previously placed in a container of a container type ultrasonic cleaner (SW5800, manufactured by Citizen, major axis diameter 148 mm, minor axis diameter 125 mm) before filling with cement paste.
(c.セメントペーストへの加振)
 次いで、振盪機(TAITEC社製、トリプルシェイカーNR-80)を用い、シリコン容器および容器型超音波洗浄機ごと、セメントペーストを水平方向に加振した。加振の条件は、以下の通りであった。
〈条件〉
 振動数:60rpm、振幅:シリコン容器の長尺方向に15mm、加振時間:1分間
(C. Excitation to cement paste)
Next, using a shaker (manufactured by TAITEC, Triple Shaker NR-80), the cement paste was vibrated in the horizontal direction together with the silicon container and the container-type ultrasonic cleaner. The conditions for excitation were as follows.
<conditions>
Frequency: 60 rpm, amplitude: 15 mm in the length direction of the silicon container, excitation time: 1 minute
(d.セメントペーストへの超音波照射)
 水平振動の停止後、容器型超音波洗浄機の容器内に水を張り、容器型超音波洗浄機を駆動させ、容器型超音波洗浄機内の固液混合材料に超音波振動を直接照射した。超音波照射の条件は、以下の通りであった。
〈条件〉
 振動数:42kHz、照射時間:1分間
(D. Ultrasonic irradiation to cement paste)
After stopping the horizontal vibration, water was filled in the container of the container-type ultrasonic cleaner, the container-type ultrasonic cleaner was driven, and the solid-liquid mixed material in the container-type ultrasonic cleaner was directly irradiated with ultrasonic vibration. The conditions of ultrasonic irradiation were as follows.
<conditions>
Frequency: 42 kHz, irradiation time: 1 minute
(e.セメントペーストの固化)
 超音波照射後、温度24℃±1℃、湿度30%±10でセメントペーストを静置保存し、固化させてセメント試験片を作製した。得られたセメント試験片は、長さ:約76mm×幅:約27mm×厚み:約11mmであり、質量:約40gであった。
(E. Solidification of cement paste)
After ultrasonic irradiation, the cement paste was stored at a temperature of 24 ° C. ± 1 ° C. and a humidity of 30% ± 10 and solidified to prepare a cement test piece. The obtained cement test piece was length: about 76 mm × width: about 27 mm × thickness: about 11 mm, and mass: about 40 g.
(比較例9)
 上記(d.セメントペーストへの超音波照射)を行わなかったこと以外は、実施例11と同様にして、比較例9のセメント試験片を作製した。
(Comparative Example 9)
A cement test piece of Comparative Example 9 was produced in the same manner as in Example 11 except that the above (d. Ultrasonic irradiation to cement paste) was not performed.
(比較例10)
 上記(c.セメントペーストへの加振)および(d.セメントペーストへの超音波照射)を行わなかったこと以外は、実施例11と同様にして、比較例10のセメント試験片を作製した。
(Comparative Example 10)
A cement test piece of Comparative Example 10 was produced in the same manner as in Example 11 except that (c. Excitation to cement paste) and (d. Ultrasonic irradiation to cement paste) were not performed.
(破壊強度の測定)
 得られたセメント試験片について、卓上型精密万能試験機(島津製作所製、オートグラフAGS-X)を用い、3点曲げ法により破壊強度測定を行った。具体的には、固化したセメント試験片をシリコン容器から取出し、固化させた時の鉛直上下方向を保ったまま取り出したセメント試験片を試験機に設置して破壊強度測定を行った。
(Measurement of fracture strength)
The obtained cement test piece was measured for fracture strength by a three-point bending method using a tabletop precision universal testing machine (manufactured by Shimadzu Corp., Autograph AGS-X). Specifically, the solidified cement test piece was taken out from the silicon container, and the cement test piece taken out while maintaining the vertical vertical direction when solidified was installed in a testing machine, and the fracture strength was measured.
 ただし、比較例10のセメント試験片については、試験片の表面のうち、試験機の圧子が接触する領域を、やすり掛けして平らになるように加工した後に、破壊強度測定を行った。やすり掛けは、圧子からの応力が局所的に集中することを防ぐため、圧子が接触する領域の凹凸を除去することを目的とするものである。 However, for the cement test piece of Comparative Example 10, the area where the indenter of the testing machine contacts on the surface of the test piece was processed so as to be flattened, and then the fracture strength was measured. The sanding is intended to remove unevenness in a region where the indenter contacts in order to prevent stress from the indenter from being concentrated locally.
 破壊強度の測定値に対するやすり掛けの影響については、別途、実施例11および比較例9のセメント試験片を用いて評価した。この評価により、比較例10のサンプル試験片に施す程度のやすり掛けは、破壊強度の評価結果に影響しないことを確認した。 About the influence of the sanding on the measured value of fracture strength, the cement test pieces of Example 11 and Comparative Example 9 were separately evaluated. By this evaluation, it was confirmed that the amount of application to the sample test piece of Comparative Example 10 did not affect the evaluation result of the fracture strength.
 破壊強度測定の測定条件は以下の通りであった。
〈条件〉
 圧子先端半径:5mm、圧子先端幅:34mm、支点先端半径:5mm、支点先端幅:34mm、支点間距離(スパン):50mm、圧子下降速度:1mm/分
The measurement conditions for the fracture strength measurement were as follows.
<conditions>
Indenter tip radius: 5 mm, indenter tip width: 34 mm, fulcrum tip radius: 5 mm, fulcrum tip width: 34 mm, fulcrum distance (span): 50 mm, indenter descending speed: 1 mm / min
 破壊強度測定は、長さ、幅、厚み、質量を測定した10個のセメント試験片について行った。各セメント試験片について、求められる最大点応力(単位:N/mm)の算術平均値(n=10)を破壊強度とした。また、各セメント試験片の最大点応力について、標準偏差を求めた。 The fracture strength measurement was performed on ten cement test pieces whose length, width, thickness, and mass were measured. About each cement test piece, the arithmetic mean value (n = 10) of the maximum point stress (unit: N / mm < 2 >) calculated | required was made into the fracture strength. Moreover, the standard deviation was calculated | required about the maximum point stress of each cement test piece.
 実施例11、比較例9,10の結果を表2および図4のグラフに示す。図4のグラフにおいて各実施例、比較例の結果を示す3点のうち、中心の点は、各結果の平均値を示し、上下の点は、標準偏差を示す。 The results of Example 11 and Comparative Examples 9 and 10 are shown in Table 2 and the graph of FIG. In the graph of FIG. 4, among the three points indicating the results of the examples and comparative examples, the central point indicates the average value of the results, and the upper and lower points indicate the standard deviation.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 評価の結果、実施例11は、比較例9と比べて1.2倍ほど破壊強度が増加することが分かった。実施例11のセメント試験片は、超音波照射によりセメントペーストの内部の異方的な疎密構造が減少または消滅した結果、比較例9のセメント試験片と比べて内部が一様となり、試験応力が集中しやすい「疎」な構造が無くなったことを示していると思われる。 As a result of the evaluation, it was found that the fracture strength of Example 11 increased by 1.2 times compared with Comparative Example 9. In the cement test piece of Example 11, the anisotropic dense structure inside the cement paste was reduced or eliminated by ultrasonic irradiation. As a result, the inside became uniform compared to the cement test piece of Comparative Example 9, and the test stress was This seems to indicate that the “sparse” structure that is easy to concentrate has disappeared.
 また、比較例9と比較例10との破壊強度の違いは、加振によりセメントペースト中の気泡が抜けたり、骨材であるシリカサンドのアーチ構造が崩れたりすることで、セメント試験片の内部の疎密構造が減少または消滅したことによるものと思われる。 In addition, the difference in fracture strength between Comparative Example 9 and Comparative Example 10 is that bubbles in the cement paste are removed due to vibration, and the arch structure of the silica sand as an aggregate is collapsed. This is probably due to the decrease or disappearance of the sparse / dense structure.
 以上の結果から、本発明の有用性を確認することができた。 From the above results, the usefulness of the present invention could be confirmed.
 本実施形態の材料混合方法によれば、混合材料の異方構造(疎密構造)を低減または消去し、混合材料の内部構造を容易に均一化することができることから、固液混合材料を用いて得られるコンクリート等の建材;無機微粒子を分散混合する化粧品、塗料、炭素素材、電子材料;有機材料を分散混合する食品;などの原料を混合する際に有用である。
 また、粉末焼結方式、粉末石膏方式、インクジェット方式の3Dプリンタにおいては、造形物を構成する粉末等の粒子が、分散媒や硬化前の液状樹脂で濡れている状態(完全に硬化する前)で本実施形態の材料混合方法を実施することで、造形物の形状を保持したまま、ミクロな異方性を消去することができる。一般に、3Dプリンタによって得られた造形物は層構造を有するが、本実施形態の材料混合方法を実施することで、層間の異方性を消去し、より強固な構造物することが期待できる。
 また、本実施形態の材料混合方法を用いて材料を混合しながら化学反応を生じさせると、均一な反応が期待できることから、化学プラントにおいて原料を混合する際に有用である。
According to the material mixing method of this embodiment, the anisotropic structure (dense / dense structure) of the mixed material can be reduced or eliminated, and the internal structure of the mixed material can be easily uniformed. It is useful for mixing raw materials such as building materials such as concrete, cosmetics, paints, carbon materials and electronic materials in which inorganic fine particles are dispersed and mixed; foods in which organic materials are dispersed and mixed;
In a powder sintering method, a powder gypsum method, and an ink jet method 3D printer, particles such as powder constituting a modeled object are wet with a dispersion medium or a liquid resin before curing (before being completely cured). By implementing the material mixing method of this embodiment, micro anisotropy can be erased while maintaining the shape of the modeled object. In general, a modeled object obtained by a 3D printer has a layer structure, but by implementing the material mixing method of the present embodiment, it can be expected that the anisotropy between layers is eliminated and a stronger structure is obtained.
In addition, when a chemical reaction is generated while mixing materials using the material mixing method of the present embodiment, a uniform reaction can be expected, which is useful when mixing raw materials in a chemical plant.
10…加振装置、11…加振器、12…スタンド、13…アーム、20…超音波照射装置、21…昇降機、22…水槽、23…超音波振動子、100…実験装置、B…基台、W…水、α…水平加振方向、β…超音波振動の伝播方向 DESCRIPTION OF SYMBOLS 10 ... Excitation apparatus, 11 ... Exciter, 12 ... Stand, 13 ... Arm, 20 ... Ultrasonic irradiation apparatus, 21 ... Elevator, 22 ... Water tank, 23 ... Ultrasonic vibrator, 100 ... Experimental apparatus, B ... Base Table, W ... Water, α ... Horizontal excitation direction, β ... Ultrasonic vibration propagation direction

Claims (6)

  1.  粒子状の固体材料および液体材料、またはコロイド粒子および前記コロイド粒子の分散媒を、体積比率が液性限界以上かつ塑性限界以下となるように混合した混合材料に外場を加える工程と、
     前記混合材料を静置した後、前記混合材料の内部に、前記混合材料の降伏応力を超えるエネルギーを有する超音波振動を伝播させる工程と、を有する材料混合方法。
    Adding an external field to a mixed material prepared by mixing a particulate solid material and a liquid material, or a colloidal particle and a dispersion medium of the colloidal particle so that the volume ratio is not less than the liquid limit and not more than the plastic limit;
    A step of propagating ultrasonic vibration having energy exceeding a yield stress of the mixed material after the mixed material is allowed to stand;
  2.  前記外場は、力学的な外場である請求項1に記載の材料混合方法。 The material mixing method according to claim 1, wherein the external field is a dynamic external field.
  3.  前記粒子状の固体材料が誘電体または磁性体であり、
     前記外場は、電磁気的な外場である請求項1に記載の材料混合方法。
    The particulate solid material is a dielectric or magnetic material;
    The material mixing method according to claim 1, wherein the external field is an electromagnetic external field.
  4.  粒子状の固体材料および液体材料、またはコロイド粒子および前記コロイド粒子の分散媒を、体積比率が液性限界以上かつ塑性限界以下となるように混合しながら、得られる混合材料の内部に、前記混合材料の降伏応力を超えるエネルギーを有する超音波振動を伝播させる工程を有する材料混合方法。 While mixing the particulate solid material and the liquid material, or the colloidal particles and the dispersion medium of the colloidal particles so that the volume ratio is not less than the liquid limit and not more than the plastic limit, the mixing is performed inside the obtained mixed material. A material mixing method comprising a step of propagating ultrasonic vibrations having energy exceeding a material yield stress.
  5.  粒子状の固体材料および液体材料、またはコロイド粒子および前記コロイド粒子の分散媒を、体積比率が液性限界以上かつ塑性限界以下となるように混合して得られる混合材料を静置した状態で、前記混合材料の内部に、前記混合材料の降伏応力を超えるエネルギーを有する超音波振動を伝播させる工程を有する材料混合方法。 In the state where the mixed material obtained by mixing the particulate solid material and the liquid material, or the colloidal particles and the dispersion medium of the colloidal particles so that the volume ratio is higher than the liquid limit and lower than the plastic limit, A material mixing method comprising a step of propagating ultrasonic vibration having energy exceeding the yield stress of the mixed material in the mixed material.
  6.  前記超音波振動を伝播させる工程では、前記混合材料に対して複数の方向から前記超音波振動を伝播させる請求項1から5のいずれか1項に記載の材料混合方法。 The material mixing method according to any one of claims 1 to 5, wherein in the step of propagating the ultrasonic vibration, the ultrasonic vibration is propagated from a plurality of directions with respect to the mixed material.
PCT/JP2015/055604 2014-02-28 2015-02-26 Material mixing method WO2015129805A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016505293A JP6565067B2 (en) 2014-02-28 2015-02-26 Material mixing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014038777 2014-02-28
JP2014-038777 2014-02-28

Publications (1)

Publication Number Publication Date
WO2015129805A1 true WO2015129805A1 (en) 2015-09-03

Family

ID=54009119

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/055604 WO2015129805A1 (en) 2014-02-28 2015-02-26 Material mixing method

Country Status (2)

Country Link
JP (1) JP6565067B2 (en)
WO (1) WO2015129805A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109591193A (en) * 2018-12-24 2019-04-09 山西省交通科学研究院 A kind of separating tests dispersing agent matching device and matching method
CN112720891A (en) * 2020-12-14 2021-04-30 九江中科鑫星新材料有限公司 Mixing equipment for preparing ultrahigh molecular polyethylene filter material
CN114179220A (en) * 2021-11-16 2022-03-15 北京市政路桥股份有限公司 Ultrasonic vibration cement slurry stirring device and operation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62225235A (en) * 1986-03-27 1987-10-03 Denki Kagaku Kogyo Kk Method and apparatus for preparation slurry
JP2006239596A (en) * 2005-03-04 2006-09-14 Sumitomo Bakelite Co Ltd Method for producing solid-liquid-mixed material
JP2010036073A (en) * 2008-08-01 2010-02-18 Mitsubishi Materials Corp Method and apparatus for mixing granular material with liquid

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08105378A (en) * 1994-08-09 1996-04-23 Hitachi Zosen Corp Forcible feeding pump
JPH09109136A (en) * 1995-10-16 1997-04-28 Mitsubishi Materials Corp Manufacture of mortar or concrete
JP4292903B2 (en) * 2003-07-28 2009-07-08 株式会社村田製作所 Liquid application method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62225235A (en) * 1986-03-27 1987-10-03 Denki Kagaku Kogyo Kk Method and apparatus for preparation slurry
JP2006239596A (en) * 2005-03-04 2006-09-14 Sumitomo Bakelite Co Ltd Method for producing solid-liquid-mixed material
JP2010036073A (en) * 2008-08-01 2010-02-18 Mitsubishi Materials Corp Method and apparatus for mixing granular material with liquid

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109591193A (en) * 2018-12-24 2019-04-09 山西省交通科学研究院 A kind of separating tests dispersing agent matching device and matching method
CN109591193B (en) * 2018-12-24 2020-06-30 山西省交通科学研究院 Dispersing agent proportioning device and method for particle test
CN112720891A (en) * 2020-12-14 2021-04-30 九江中科鑫星新材料有限公司 Mixing equipment for preparing ultrahigh molecular polyethylene filter material
CN114179220A (en) * 2021-11-16 2022-03-15 北京市政路桥股份有限公司 Ultrasonic vibration cement slurry stirring device and operation method thereof
CN114179220B (en) * 2021-11-16 2023-10-20 北京市政路桥股份有限公司 Ultrasonic vibration cement slurry stirring device and operation method thereof

Also Published As

Publication number Publication date
JPWO2015129805A1 (en) 2017-03-30
JP6565067B2 (en) 2019-08-28

Similar Documents

Publication Publication Date Title
Chung et al. Characterization of ZnO nanoparticle suspension in water: Effectiveness of ultrasonic dispersion
Gao et al. Effects SiO2/Na2O molar ratio on mechanical properties and the microstructure of nano-SiO2 metakaolin-based geopolymers
JP6565067B2 (en) Material mixing method
Du et al. Methylcellulose stabilized multi-walled carbon nanotubes dispersion for sustainable cement composites
Yuanliang et al. Properties of foamed concrete with Ca (OH) 2 as foam stabilizer
Kong et al. Gel-casting without de-airing process using silica sol as a binder
KR20110053775A (en) A dispersing apparatus for nano powders using intensity focused ultrasonics wave and a dispersing method using thereof
Liu et al. Effects of foam composition on the microstructure and piezoelectric properties of macroporous PZT ceramics from ultrastable particle-stabilized foams
Pietrzak et al. Diglyceryl acrylate as alternative additive dedicated to colloidal shaping of oxide materials–synthesis, characterization and application in manufacturing of ZTA composites by gelcasting
Liu et al. Rheological characterization and shape control in gel-casting of nano-sized zirconia powders
Zhang et al. Effect of piezoelectric ceramic particles size gradation on piezoelectric properties of 0–3 cement-based piezoelectric composites
Zhao et al. Ceramic foams shaped by oppositely charged dispersant and surfactant
Liu et al. Fabrication and properties of 3-3 type PZT-ordinary Portland cement composites
Shoaib et al. Effect of pH-modifiers on the rheological behaviour of clay slurries: Difference between a swelling and non-swelling clay
US10323168B2 (en) Crystal oriented ceramicscrystal oriented ceramics, the production process, and heat radiation material
Ali et al. Aggregation and stability of anisotropic charged clay colloids in aqueous medium in the presence of salt
Xie et al. Fabrication of Fine‐Scale 1–3 Piezoelectric Arrays by Aqueous Gelcasting
Xie et al. Gelation behavior and mechanical properties of gelcast lead zirconate titanate ceramics
CN106546481B (en) The test method of rock-like materials mechanical characteristic
Abdullaev et al. Surface Characteristics of Nanosized Bentonite Suspensions as a Modifying Component of Cement Composites
Raghupathy et al. Spray freeze drying of YSZ nanopowder
Avci et al. A PCE-based rheology modifier allows machining of solid cast green bodies of alumina
Sikorsky et al. Rheological behavior of montmorillonite water suspensions in the presence of surfactants
Sharma et al. Essential parameters responsible for rheological assessment of concentrated dispersion:-a comprehensive review
EP2937195A1 (en) Method for manufacturing high-strength cement cured product

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15756013

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2016505293

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15756013

Country of ref document: EP

Kind code of ref document: A1