WO2015129667A1 - Image display device and image display method - Google Patents

Image display device and image display method Download PDF

Info

Publication number
WO2015129667A1
WO2015129667A1 PCT/JP2015/055156 JP2015055156W WO2015129667A1 WO 2015129667 A1 WO2015129667 A1 WO 2015129667A1 JP 2015055156 W JP2015055156 W JP 2015055156W WO 2015129667 A1 WO2015129667 A1 WO 2015129667A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
input image
display
luminance
frequency distribution
Prior art date
Application number
PCT/JP2015/055156
Other languages
French (fr)
Japanese (ja)
Inventor
秀紀 桑島
文隆 関
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2015129667A1 publication Critical patent/WO2015129667A1/en

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2007Display of intermediate tones
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0233Improving the luminance or brightness uniformity across the screen
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0271Adjustment of the gradation levels within the range of the gradation scale, e.g. by redistribution or clipping
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0613The adjustment depending on the type of the information to be displayed
    • G09G2320/062Adjustment of illumination source parameters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0626Adjustment of display parameters for control of overall brightness
    • G09G2320/0646Modulation of illumination source brightness and image signal correlated to each other
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/02Details of power systems and of start or stop of display operation
    • G09G2330/021Power management, e.g. power saving
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2360/00Aspects of the architecture of display systems
    • G09G2360/16Calculation or use of calculated indices related to luminance levels in display data

Definitions

  • the present invention relates to an image display apparatus and an image display method for generating an image for display from an input image and displaying the image.
  • the maximum luminance value that can be expressed by the image display device is m (for example, in the case of a display device that expresses 8 bits, the maximum luminance value is 255).
  • the entire image data is normalized (converted) so that the maximum luminance value n of the input image data becomes the maximum luminance value m.
  • the entire image data is brightened. That is, in the conventional image display device, the converted image data is generally brightened by m / n compared to the input image data. Further, at the same time as the image data is brightened, the amount of light of the backlight is reduced by the amount that the image data is brightened. That is, the brightness of the backlight is lowered by m / n.
  • CABC Contents Adaptive Backlight Control
  • Patent Document 1 when a bright pixel having a certain luminance or more is present in the input image data, the pixel is ignored (allowed) and the entire image is displayed. CABC is applied.
  • Patent Document 1 can reduce power consumption, there is no disclosure or suggestion of a measure for suppressing a reduction in display quality of a display image. For example, since the allowable value is determined numerically based on the histogram result of the entire image, for example, even if a small number of pixels are ignored (allowed), an image whose display quality is significantly deteriorated is ignored. However, since CABC is applied uniformly, the display quality of the display image is deteriorated.
  • the entire image data is calculated using the brightness value n ′ of the protruding bright pixel as a normalized value, the image is hardly brightened as described above, and as a result, the amount of light of the backlight cannot be reduced.
  • Normalization is performed with a luminance value n that has decreased to some extent. Then, in calculation, the luminance value n ′ of the pixel is n ′ ⁇ (m / n). However, when the maximum luminance value m is exceeded, the luminance value of the pixel becomes m (saturated. End up).
  • Patent Document 1 when a display image is generated by paying attention only to a specific luminance of a pixel of the input image, there is a possibility that the display quality of the display image cannot be maintained. That is, in the technique disclosed in Patent Document 1, the display image is generated without considering the image feature (contrast presence / absence) of the input image, so that the display quality of the display image is degraded depending on the image feature. Will do.
  • the present invention has been made in view of the above-described problems, and an object of the present invention is to generate an image for display in consideration of image characteristics of an input image, thereby preventing image display from deteriorating the display quality of the image for display.
  • An apparatus and an image display method are provided.
  • an image display device includes a filter processing unit that performs a filtering process on an input image in an image display device that generates a display image from an input image and displays the image.
  • An information recording unit that records in the memory unit image analysis information obtained by analyzing a frequency distribution or cumulative frequency distribution obtained from the number of pixels for each luminance in the input image filtered by the filter processing unit, and the memory unit
  • an image processing unit that generates the display image by applying the image analysis information recorded in the input image to the input image.
  • the display image is generated in consideration of the image characteristics of the input image, so that the display quality of the display image is not deteriorated.
  • FIG. 1 is a schematic configuration block diagram of an image display apparatus according to Embodiment 1 of the present invention. It is a schematic block diagram of the image analysis part with which the image display apparatus shown in FIG. 1 is provided. It is a figure which shows an example of the digital filter used with the filter part with which the image analysis part shown in FIG. 2 is provided. It is a histogram which shows the frequency distribution which shows the relationship between the brightness
  • Embodiment 1 An embodiment of the present invention will be described as follows.
  • FIG. 1 is a block diagram illustrating a schematic configuration of an image display apparatus 101 according to the present embodiment.
  • the image display device 101 includes a display device 6 such as a liquid crystal display panel (LCD), a light source 7 such as a backlight, an image control of the display device 6, and a light source control of the light source 7. And a control unit 1 for controlling the whole.
  • the control unit 1 performs parameter determination to create a normalization parameter S3 for performing appropriate light source control and image control from the image analysis unit 2 that analyzes the image of the input image S1 and the image analysis information S2 of the image analysis unit 2.
  • the image processing unit 4 that generates the normalized image S4 by applying the normalization parameter S3 to the unit 3, and the light source control signal S5 for adjusting the luminance of the light source 7 by applying the normalization parameter S3 in the same manner
  • a light source control unit 5 that performs the operation.
  • the input image S1 is assumed to be a YUV signal, and is processed based on the luminance component Y in particular.
  • the input image S1 has another signal format such as RGB, a conversion processing unit can be provided before and after the input image S1 to perform the same processing.
  • the input image S1 is expressed by 8 bits, and 0 is the darkest signal and 255 is the brightest signal.
  • FIG. 2 is a schematic block diagram illustrating an example of the image analysis unit 2.
  • the image analysis unit 2 performs a filter process (filter process) on the input image S1, and the input image S1 (processed input) filtered by the filter process unit 21.
  • the memory unit 23 is not necessarily provided in the image analysis unit 2, and may be provided outside the image analysis unit 2, outside the control unit 1, and further outside the image display device 101. Well, there are no particular restrictions on the location.
  • the image analysis unit 2 configured as described above does not directly obtain the frequency distribution or the cumulative frequency distribution from the number of images for each luminance of the input image S1, but the processed input image S1 ′ once filtered by the filter processing unit 21.
  • the frequency distribution and cumulative frequency distribution are obtained from the number of images for each luminance. This is a feature of the present invention.
  • FIG. 3 is a conceptual diagram of a 3 ⁇ 3 digital filter (low-pass filter) for filtering the input image S1 in the filter processing unit 21.
  • the luminance value of the 3 ⁇ 3 central pixel of the input image S1 is S1 (x, y), and this luminance value S1 (x, y) is the luminance value of the calculation target pixel (target pixel).
  • the luminance values of the eight pixels around the pixel of interest that is, the luminance values S1 (x ⁇ 1, y ⁇ 1) to S1 (x + 1, y + 1) of the surrounding pixels are also used for calculating the luminance value of the pixel of interest. It is done.
  • the filtered input image S1 is a processed input image S1 ′
  • the luminance value of the target pixel of the processed input image S1 ′ is S1 ′ (x, y)
  • the following expression (1) is expressed. Can do.
  • F0 to F8 are the coefficients of the filter. That is, F0 is a coefficient of S1 (x-1, y-1), F1 is a coefficient of S1 (x, y-1), F2 is a coefficient of S1 (x + 1, y-1), and F3 is S1 (x-1 , Y), F4 is a coefficient of S1 (x, y) (target pixel), F5 is a coefficient of S1 (x + 1, y), F6 is a coefficient of S1 (x-1, y + 1), and F7 is S1 (x , Y + 1) and F8 is a coefficient of S1 (x + 1, y + 1).
  • the luminance value S1 (x, y) of the pixel of interest is close to 255, and the luminance value S1 of the surrounding pixels.
  • (X-1, y-1) to S1 (x + 1, y + 1) are values close to zero.
  • the luminance value S1 (x, y) of the target pixel is 240 and the luminance values S1 (x ⁇ 1, y ⁇ 1) to S1 (x + 1, y + 1) of the surrounding pixels are all 30, As a result of 1), the luminance value S1 ′ (x, y) after filtering of the pixel of interest is 156, which is somewhat smaller than the original luminance value.
  • the luminance value S1 (x, y) of the target pixel is 240, and the luminance of the surrounding pixels Assuming that the values S1 (x ⁇ 1, y ⁇ 1) to S1 (x + 1, y + 1) are all 220, the luminance value S1 ′ (x, y) after filtering of the target pixel is obtained as a result of Expression (1). 232, which is not much less than the original luminance value.
  • the 3 ⁇ 3 low-pass filter is used as the digital filter, but the present invention is not limited to this, and a 5 ⁇ 5 low-pass filter or a 3 ⁇ 3 high-pass filter may be used.
  • the information recording unit 22 causes the filter processing unit 21 to store the input image S1 ′ that has been filtered using Expression (1) in the memory unit 23, and creates a frequency distribution and a cumulative frequency distribution from the input image S1 ′. From the result, image analysis information S2 described later is created. Of course, as usual, the data of the input image S1 may also be created as another frequency distribution or cumulative frequency distribution and reflected in the image analysis information S2.
  • FIGS. 4 and 5 show image diagrams of a general frequency distribution and a cumulative frequency distribution in the input image S1, respectively.
  • FIG. 6 shows an image of the cumulative frequency distribution of the processed input image S1 ′ that is the filtered input image from the cumulative frequency distribution shown in FIG.
  • the digital filter as shown in FIG. 3 is a low-pass filter that lowers the image spatial frequency
  • the pixel value of the processed input image S1 ′ is an intermediate value compared to the pixel value of the input image S1. It is easy to become.
  • the memory unit 23 in the image analysis unit 2 stores the processed input image S1 'that has been filtered and the frequency distribution of the input image S1.
  • the frequency distribution memory F (0 to 255) is cleared to zero. Then, while the luminance values of all the pixels S1 'for one screen are input, the following equation (2) is calculated. Then, when all input pixels for one screen are calculated, a frequency distribution F is created. Also, the memory F is cleared to 0 before the next screen is input.
  • the frequency distribution F and the cumulative frequency distribution C may be obtained by any method.
  • the image analysis information S2 having the image characteristics of the input image S1 is obtained by performing the filtering process and taking the frequency distribution.
  • the image analysis information S2 created as described above is sent to the parameter determination unit 3 at the subsequent stage.
  • Normalization parameter S3 The parameter determination unit 3 generates a normalization parameter S3 appropriate for the input image S1 from the image analysis information S2. For example, the parameter determination unit 3 sets the normalization parameter S3 low if the high numerical value is relatively small in the frequency distribution of the processed input image S1 ′, and conversely if the numerical value of the processed input image S1 ′ is high, Control is performed such that the normalization parameter S3 is set to a high value.
  • the normalization parameter S3 thus obtained is sent to the subsequent image processing unit 4 and the light source control unit 5.
  • the image analysis information S2 recorded in the memory unit 23 is used as a light source 7 (backlight) for irradiating the display device 6 (liquid crystal display panel) for displaying a display image generated by the image processing unit 4 from the back side. ) Will be described. Note that the description of the light amount control corresponds to the CABC technique which is a known technique, and thus the description will be simplified.
  • the image processing unit 4 uses the normalized parameter S3 received from the parameter determining unit 3 to create a normalized image S4 that brightens the input image S1 (image processing step).
  • the light source control unit 5 performs control to lower the luminance of the light source 7 by the amount that is brighter than the input image S1.
  • the normalization parameter S3 is n
  • the luminance of the light source 7 before correcting the processed input image S1 ′ with n is Y
  • the luminance of the light source 7 after correction is Y ′
  • the luminance Y ′ is It calculates
  • CABC processing control may be performed to reduce display quality.
  • the display quality can be prevented from being lowered by adjusting so as to reduce the effectiveness of the CABC process.
  • the CABC process itself may not be performed.
  • FIG. 7A is a diagram illustrating an example of an image S1a having gradation as the input image S1
  • FIG. 7B is a diagram illustrating an example of an image S1b having a high contrast as the input image S1.
  • An image S1b shown in FIG. 7B is an image in which the gradation of the gradient image S1a shown in FIG.
  • the image S1a and the image S1b have exactly the same relationship between the number of pixels and the luminance value, except that the position of the image data (luminance value) is different. Accordingly, the cumulative frequency distributions shown in FIGS. 8A and 8B are the same.
  • the filter processing unit 21 of the image analysis unit 2 performs the filtering process on the input image S1
  • the cumulative frequency distribution of the processed input image S1 'after the filtering process is created.
  • a 3 ⁇ 3 low-pass filter shown in FIG. 3 is used, and the input image S1 is filtered by this filter.
  • the low-pass filter is set with filter coefficients F0 to F8 (FIG. 3).
  • the filter coefficient F4 (x, y) for the center pixel of interest is set to 0.6
  • the filter coefficients F0 to F3 and F5 to F8 for the surrounding pixels are all set to 0.05.
  • FIGS. 10 (a) and 10 (b) are diagrams showing the high-contrast image S1b shown in FIG. 7 (b) with luminance values corresponding to pixels.
  • FIGS. 10C to 10E are diagrams showing the gradation image S1a shown in FIG. 7A with luminance values corresponding to pixels.
  • the image S1 shown in (a) to (e) of FIG. 10 is filtered to obtain a processed input image S1 '.
  • the processed input image S1 ' is obtained by the above equation (1). Accordingly, in the case of the image shown in FIG. 10A, the luminance value S ′ (x, y) of the center pixel of the processed input image S1 ′ is 178.7, which is the case of the image shown in FIG.
  • the luminance value S ′ (x, y) of the central pixel of the processed input image S1 ′ is 89.75.
  • the luminance value of the central pixel of the processed input image S1 ′ is 89.75.
  • FIG. 11 shows a cumulative frequency distribution after the image S1a having the gradation shown in (a) in FIG. 7 is filtered.
  • saturation of the cumulative frequency distribution is not seen even when the low-pass filter is applied.
  • the image quality is significantly reduced. Therefore, the image S1a having the gradation shown in FIG. 7A can be said to be an image not suitable for CABC processing.
  • FIG. 11B shows a cumulative frequency distribution after the high-contrast image S1b shown in FIG. 7B is filtered.
  • the luminance value S ′ of the pixel of the processed input image S1 ′ becomes an intermediate value as a whole. That is, there is no high value and it is saturated with a low S1 'value. In such a case, even if the normalized value is lowered somewhat, it is difficult to cause a reduction in image quality. Therefore, the image S1b having a high contrast shown in FIG. 7B can be said to be an image suitable for CABC processing.
  • CABC processing is performed on the processed input images S1a ′ and S1b ′ obtained by performing filtering on the images S1a and S1b in FIGS. 7A and 7B, respectively.
  • the CABC process is performed with the normalized value set to 192 for the image after the filter process.
  • the image analysis information S2 is applied to the input image S1, thereby normalizing in consideration of the image features (contrast level, etc.) of the input image S1.
  • a light source control signal S5 that provides a backlight light amount suitable for the generated display image is generated. Therefore, the power consumption by the backlight is reduced, and the display quality of the display image is not deteriorated.
  • FIG. 13 shows filter coefficients of a 5 ⁇ 5 low-pass filter.
  • the filter coefficient of the center pixel (target pixel) is set to 0.4
  • the filter coefficient of the peripheral pixels is set to 0.02.
  • the luminance value S1 ′ (x, y) 143.4 of the central pixel is obtained.
  • the luminance value S1 ′ (x, y) of the center pixel is 194.4.
  • the number of target pixels that can be processed is increased from 3 ⁇ 3 to 5 ⁇ 5, more detailed image analysis can be performed.
  • more appropriate image analysis information can be obtained.
  • the circuit scale increases and the cost increases. Therefore, it is preferable to set the number of target pixels that can be processed by balancing the image quality finally obtained (or the image quality desired by the user) with the circuit scale. Note that the number of target pixels that can be processed may be 7 ⁇ 7 or more.
  • the display device 6 of the image display device 101 shown in the first embodiment is a liquid crystal display device (LCD)
  • the normalized image is taken into account in consideration of the ⁇ characteristic ( ⁇ curve) of the liquid crystal display device.
  • An example of correcting S4 will be described.
  • the display device 6 when the normalized image S4 output from the image processing unit 4 of the control unit 1 is an input value X, the input value X is multiplied by the ⁇ curve shown in FIG. Correction ( ⁇ correction) for obtaining the output value Y is performed, and an image is displayed with the corrected output value Y.
  • ⁇ correction ⁇ correction
  • the image displayed on the display device 6 takes into account the LCD characteristics, that is, the ⁇ characteristics, the image quality can be further improved. Therefore, according to the image display apparatus 101 according to the present embodiment, it is possible to maintain or improve image quality while reducing power consumption.
  • the CABC process is performed.
  • the present invention is not limited to the CABC process, and can be applied to other processes.
  • the present invention can be applied to edge enhancement processing for enhancing the edge of an image.
  • edge enhancement processing for enhancing the edge of an image.
  • FIG. 16 is a block diagram schematically illustrating the configuration of the image display apparatus 201 according to the present embodiment.
  • the image display device 201 has substantially the same configuration as the image display device 101 of the first embodiment.
  • the difference from the image display apparatus 101 is that the parameter determination unit 3 is not provided in the control unit 1 and an edge enhancement processing unit 8 is provided instead of the image processing unit 4.
  • Image analysis information S2 from the image analysis unit 2 is input to the edge enhancement processing unit 8. Then, the edge enhancement processing unit 8 performs edge enhancement processing on the input image S1 based on the input image analysis information S2, and outputs the image subjected to the edge enhancement processing to the display device 6 as an edge enhanced image S6. It is supposed to be.
  • the image analysis unit 2 illustrated in FIG. 16 has the same configuration as the image analysis unit 2 illustrated in FIG. 2 of the first embodiment, and includes a filter processing unit 21, an information recording unit 22, and a memory unit 23.
  • the difference is the digital filter used in the filter processing unit 21. That is, in the first embodiment, the filter processing unit 21 uses a low-pass filter, but in the present embodiment, the edge enhancement processing unit 8 performs the edge enhancement processing in order to perform the filter processing in the image analysis unit 2.
  • the unit 21 performs a filtering process using a high-pass filter.
  • FIG. 17 is a diagram showing filter coefficients in the 3 ⁇ 3 high-pass filter used in the present embodiment.
  • the edge is not clear, it is necessary to emphasize the edge strongly, but FIG.
  • the edge is better to emphasize the edge weakly or not to emphasize the edge.
  • the edge emphasis processing unit 8 adjusts the degree of edge emphasis according to whether the input image S1 is a gradation image shown in FIG. 7A or a high contrast image shown in FIG. 7B. .
  • a guideline for this is image analysis information S2 output from the image analysis unit 2.
  • the image analysis information S2 includes information obtained by analyzing the cumulative frequency distribution of the processed input image S1 'filtered by the filter processing unit 21. That is, the image analysis information S2 includes information for adjusting the degree of edge enhancement of the input image S1 according to the value of the processed input image S1 '.
  • the image S1 shown in FIGS. 10A to 10E shown in the first embodiment is subjected to filter processing to obtain a processed input image S1 ′.
  • the processed input image S1 ' is obtained by the above equation (1).
  • the luminance value S1 ′ (x, y) of the processed input image S1 ′ is 76.35.
  • the luminance value S1 ′ (x, y) of S1 ′ is 38.25.
  • the luminance value S1 ′ (x, y) of the processed input image S1 ′ is 0.
  • the luminance value S1 ′ (x, y) of the processed input image S1 ′ is 0, and in the case of the image shown in FIG. 10E, the processed input image S1 ′.
  • the luminance value S1 ′ (x, y) of the pixel is 0.
  • the luminance value S1 'of the processed input image S1' of each peripheral pixel is obtained.
  • the luminance value of the processed input image S1 ′ is large ((a) and (b) in FIG. 10) and the contrast is not good (low). It can be seen that in the image (image with few edges), the luminance value of the processed input image S1 ′ is small ((c) to (e) in FIG. 10).
  • image analysis unit 2 for an image having a large luminance value of the processed input image S1 ′, information for instructing to adjust the degree of edge enhancement to a low level, an image having a small value of the processed input image S1 ′ In contrast, image analysis information S2 including information instructing to adjust the degree of edge enhancement to a high level is created.
  • the control unit 1 of the image display apparatuses 101 and 201 may be realized by a logic circuit (hardware) formed in an integrated circuit (IC chip) or the like, or realized by software using a CPU (Central Processing Unit). May be.
  • the image display devices 101 and 201 include a CPU that executes instructions of a program that is software that realizes each function, and a ROM (Read Only Memory) or a storage device (these are referred to as “recording media”), a RAM (Random Access Memory) for expanding the program, and the like.
  • a computer or CPU
  • the recording medium a “non-temporary tangible medium” such as a tape, a disk, a card, a semiconductor memory, a programmable logic circuit, or the like can be used.
  • the program may be supplied to the computer via an arbitrary transmission medium (such as a communication network or a broadcast wave) that can transmit the program.
  • a transmission medium such as a communication network or a broadcast wave
  • the present invention can also be realized in the form of a data signal embedded in a carrier wave in which the program is embodied by electronic transmission.
  • the image display device includes a filter processing unit 21 that performs a filtering process on an input image S1, and luminance in the input image (processed input image S1 ′) that has been filtered by the filter processing unit 21.
  • the information recording unit 22 for recording the image analysis information S2 obtained by analyzing the frequency distribution or cumulative frequency distribution obtained from the number of pixels for each memory in the memory unit 23, and the image analysis information S2 recorded in the memory unit 23 for the input image
  • an image processing unit 4 that generates a display image by applying to S1.
  • the image analysis information is information obtained by analyzing the frequency distribution or cumulative frequency distribution obtained from the number of pixels for each luminance in the input image filtered by the filter processing unit. Image features (such as the presence or absence of contrast and the presence or absence of edges) are revealed. If such image analysis information is applied to the input image to generate a display image, the generated display image is an image that takes into account the image characteristics of the input image.
  • the display image is generated in consideration of the image characteristics of the input image, as compared with the conventional case where the display image is generated by paying attention only to the specific luminance of the pixel of the input image, The display quality of the display image is not deteriorated.
  • the image display device is characterized in that, in the aspect 1, the filter processing unit 21 performs a filtering process by a low-pass filter on the input image S1.
  • S1 ′ the lower the contrast (gradation image), the higher the luminance remains and the image (processed input image S1 ′) having a cumulative frequency distribution in which the luminance is not saturated as a whole.
  • Examples of low-pass filters include the following 3 ⁇ 3, 5 ⁇ 5, and 7 ⁇ 7 filters.
  • the low-pass filter calculates the luminance value of the target pixel to be processed from the luminance values of the surrounding eight pixels centered on the target pixel.
  • the desired 3 ⁇ 3 digital filter is preferable.
  • the low-pass filter calculates the luminance value of the target pixel to be processed from the luminance values of 24 pixels around the target pixel.
  • the desired 5 ⁇ 5 digital filter is preferable.
  • the low-pass filter calculates the luminance value of the target pixel to be processed from the luminance values of 48 pixels around the target pixel.
  • a 7 ⁇ 7 digital filter to be obtained is preferable.
  • the number of target pixels that can be processed is increased to 3 ⁇ 3, 5 ⁇ 5, and 7 ⁇ 7, more detailed image analysis can be performed. In particular, when a display device with high resolution is used, more appropriate image analysis information can be obtained. However, if the number of target pixels that can be processed is increased, the circuit scale increases and the cost increases. Therefore, it is preferable to set the number of target pixels that can be processed by balancing the image quality finally obtained (or the image quality desired by the user) with the circuit scale.
  • the image display device is characterized in that, in aspect 1, the filter processing unit 21 performs a filtering process with a high-pass filter on the input image S1.
  • the input image S1 is filtered with a high-pass filter, so that the input image S1 is an image with high contrast (image with many edges) or an image with low contrast (image with few edges). Can be determined.
  • edge enhancement processing is weakened for images with many edges and the edge enhancement processing is strengthened for images with few edges, so that excessive edge enhancement processing is not performed. There will be no degradation of image quality associated with processing.
  • the image display device is the image display device according to aspect 2, in which the image analysis information S2 recorded in the memory unit 23 is irradiated from the back surface to the liquid crystal display panel (display device 6) that displays the display image. It is preferable to apply to the light amount control of the backlight (light source 7).
  • An image display device is the liquid crystal display panel (display device 6) for displaying the display image and the backlight for illuminating the liquid crystal display panel (display device 6) from the back surface in the aspect 7. (Light source 7).
  • An image display method is an image display method for generating an image for display from an input image S1 and displaying the image.
  • An image analysis information recording step for recording in the memory unit 23 image analysis information S2 obtained by analyzing the frequency distribution or cumulative frequency distribution obtained from the number of pixels for each luminance in the input image filtered and recorded in the memory unit 23
  • the image analysis information S2 is applied to the input image S1 to generate an image for display, and is characterized by including an image processing step. According to said structure, there exists an effect similar to the said aspect 1.
  • the control unit 1 provided in the image display apparatus according to each aspect of the present invention may be realized by a computer.
  • the control unit 1 is operated by causing the computer to operate as each unit provided in the control unit 1.
  • the control program of the control unit 1 for realizing the above in a computer and a computer-readable recording medium on which the control program is recorded also fall within the scope of the present invention.
  • the present invention can be suitably used for all kinds of display devices such as mobile phones, smartphones, tablet terminals, personal computers equipped with displays, televisions of various sizes, projectors, and the like.

Abstract

 The present invention provides an image display device in which the display quality of a display image is not degraded. This image display device (101) is provided with an image processing unit (4) for applying, to an input image (S1), a normalization parameter (S3) obtained from image analysis information (S2) derived by analyzing a frequency distribution or cumulative frequency distribution obtained from the number of pixels per luminance of an image obtained by filtering the input image (S1), and generating a normalized image (S4).

Description

画像表示装置および画像表示方法Image display device and image display method
 本発明は、入力画像から表示用画像を生成して画像表示を行う画像表示装置および画像表示方法に関する。 The present invention relates to an image display apparatus and an image display method for generating an image for display from an input image and displaying the image.
 従来、バックライトを用いて画像を表示する画像表示装置では、当該画像表示装置が表現できる最大輝度値をm(例えば、8bitで表現する表示装置の場合、最大輝度値を255とする)とした場合であって、例えばmほど明るい値が存在しない入力画像データを表示する場合、その入力画像データの最大輝度値nを、最大輝度値mになるように画像データ全体を正規化(変換)することにより、画像データ全体を明るくする。すなわち、従来の画像表示装置では、入力画像データに比べ、全体的に変換後の画像データはm/nだけ明るくなる。また、画像データを明るくすると同時に、当該画像データが明るくなった分だけ、バックライトの光量を削減する。すなわち、m/n分だけバックライトの輝度を下げる。 Conventionally, in an image display device that displays an image using a backlight, the maximum luminance value that can be expressed by the image display device is m (for example, in the case of a display device that expresses 8 bits, the maximum luminance value is 255). For example, when displaying input image data that does not have a value as bright as m, for example, the entire image data is normalized (converted) so that the maximum luminance value n of the input image data becomes the maximum luminance value m. As a result, the entire image data is brightened. That is, in the conventional image display device, the converted image data is generally brightened by m / n compared to the input image data. Further, at the same time as the image data is brightened, the amount of light of the backlight is reduced by the amount that the image data is brightened. That is, the brightness of the backlight is lowered by m / n.
 上記の組み合わせ(画像データを明るくし、バックライトの輝度を下げる)により、結果的には、見た目の表示画像の明るさを変えることなく、バックライトの消費電力を削減している。この方法は、公知のものであり、いわゆるCABC(Contents Adaptive Backlight Control)と呼ばれている。 As a result of the above combination (brightening the image data and lowering the brightness of the backlight), the power consumption of the backlight is reduced without changing the brightness of the apparent display image. This method is known and is called a so-called CABC (Contents Adaptive Backlight Control).
 しかしながら、CABCでは、入力画像データにわずかでも最大輝度値mに近い輝度値n’の画素が存在すると、ほとんど画像データを明るく変換することが出来ない。つまり、このような場合、かぎりなくm/n’が1に近いため、バックライトの輝度を効果的に下げることができず、消費電力削減効果が期待できない。 However, in CABC, if there is a pixel having a luminance value n ′ close to the maximum luminance value m in the input image data, the image data can hardly be converted brightly. That is, in such a case, since m / n ′ is as close to 1 as possible, the luminance of the backlight cannot be effectively reduced, and a power consumption reduction effect cannot be expected.
 そこで、上記の問題を解決するために、例えば特許文献1では、ある一定以上の輝度を持つ明るい画素が入力画像データにある場合については、その画素を無視(許容)して、全体的な画像に対してCABCを適用している。 In order to solve the above problem, for example, in Patent Document 1, when a bright pixel having a certain luminance or more is present in the input image data, the pixel is ignored (allowed) and the entire image is displayed. CABC is applied.
日本国登録特許公報「特許第4995623号公報(2012年5月18日登録)」Japanese Patent Registration “Patent No. 4996623 (registered on May 18, 2012)”
 しかしながら、特許文献1に開示された技術では、消費電力を低減することは可能であるものの、表示画像の表示品位の低下を抑制するための対策について何ら開示も示唆もされていない。例えば、単純に画像全体のヒストグラム結果により、数値的に許容値を決めているため、例えば少数の画素数であっても、無視(許容)すると、著しく表示品位が損なわれるような画像に対しても、一様にCABCを適用してしまうため、表示画像の表示品位の低下を招く。 However, although the technique disclosed in Patent Document 1 can reduce power consumption, there is no disclosure or suggestion of a measure for suppressing a reduction in display quality of a display image. For example, since the allowable value is determined numerically based on the histogram result of the entire image, for example, even if a small number of pixels are ignored (allowed), an image whose display quality is significantly deteriorated is ignored. However, since CABC is applied uniformly, the display quality of the display image is deteriorated.
 ここで、少数の画素数であっても、無視してCABCを適用すると好ましくない画像の一例を説明する。突出して明るい画素の周りの画素が、暗い画素であった場合は、この画素の輝度低下は許容してCABCを適用しても、ある程度コントラストが確保できるため、表示品位はそう下がることは無いが、周りの画素もある程度明るい画素であった場合は、突出した明るい画素の輝度低下が起こると、周囲の画素とのコントラストが著しく下がってしまい、結果、表示品位に悪影響を及ぼすことになる。例えば、突出して明るい画素の輝度値n’を正規化値として全体画像データを演算すると、前述したようにほとんど画像が明るくならず、結果バックライトの光量を削減できない為、輝度値n’ではなくある程度輝度が下がった輝度値nで正規化する。すると計算上、上記の画素の輝度値n’はn’×(m/n)となるが、最大輝度値mを超えてしまうと、この画素の輝度値はmになってしまう(飽和してしまう)。輝度値nで正規化したので、バックライト輝度はn/mとなるが、元の画素の輝度値n’はmとなってしまっているので、この画素の見た目の明るさは、m×n/m=nとなり、結果的にこの画素は暗く見えることになる。 Here, an example of an image that is not preferable when CABC is applied by ignoring even a small number of pixels will be described. If the pixels around the bright and protruding pixels are dark pixels, even if CABC is applied by allowing the luminance of this pixel to be lowered, a certain degree of contrast can be secured, so the display quality will not be lowered so much. If the surrounding pixels are also bright pixels to some extent, if the brightness of the protruding bright pixels is reduced, the contrast with the surrounding pixels is significantly lowered, resulting in an adverse effect on the display quality. For example, when the entire image data is calculated using the brightness value n ′ of the protruding bright pixel as a normalized value, the image is hardly brightened as described above, and as a result, the amount of light of the backlight cannot be reduced. Normalization is performed with a luminance value n that has decreased to some extent. Then, in calculation, the luminance value n ′ of the pixel is n ′ × (m / n). However, when the maximum luminance value m is exceeded, the luminance value of the pixel becomes m (saturated. End up). Since the luminance value n is normalized, the backlight luminance is n / m, but since the luminance value n ′ of the original pixel is m, the apparent brightness of this pixel is m × n. / M = n, resulting in the pixel appearing dark.
 従って、特許文献1に記載のように、入力画像の画素の特定の輝度にのみ着目して表示用画像を生成した場合、表示用画像の表示品位を維持できない虞がある。つまり、特許文献1に開示された技術では、入力画像の画像特徴(コントラストの有無)を考慮せずに表示用画像を生成しているため、上記画像特徴によっては表示用画像の表示品位が低下することになる。 Therefore, as described in Patent Document 1, when a display image is generated by paying attention only to a specific luminance of a pixel of the input image, there is a possibility that the display quality of the display image cannot be maintained. That is, in the technique disclosed in Patent Document 1, the display image is generated without considering the image feature (contrast presence / absence) of the input image, so that the display quality of the display image is degraded depending on the image feature. Will do.
 本発明は、上記の問題点に鑑みなされたものであって、その目的は、入力画像の画像特徴を考慮して表示用画像を生成することで、表示用画像の表示品位を低下させない画像表示装置および画像表示方法を提供することにある。 The present invention has been made in view of the above-described problems, and an object of the present invention is to generate an image for display in consideration of image characteristics of an input image, thereby preventing image display from deteriorating the display quality of the image for display. An apparatus and an image display method are provided.
 上記の課題を解決するために、本発明の一態様に係る画像表示装置は、入力画像から表示用画像を生成して画像表示を行う画像表示装置において、入力画像にフィルタ処理を行うフィルタ処理部と、上記フィルタ処理部にてフィルタ処理された上記入力画像における輝度毎の画素数から得られる度数分布あるいは累積度数分布を解析した画像解析情報をメモリ部に記録させる情報記録部と、上記メモリ部に記録された画像解析情報を、上記入力画像に適用して表示用画像を生成する画像処理部とを備えていることを特徴としている。 In order to solve the above problems, an image display device according to an aspect of the present invention includes a filter processing unit that performs a filtering process on an input image in an image display device that generates a display image from an input image and displays the image. An information recording unit that records in the memory unit image analysis information obtained by analyzing a frequency distribution or cumulative frequency distribution obtained from the number of pixels for each luminance in the input image filtered by the filter processing unit, and the memory unit And an image processing unit that generates the display image by applying the image analysis information recorded in the input image to the input image.
 本発明の一態様によれば、入力画像の画像特徴を考慮して表示用画像を生成することで、表示用画像の表示品位を低下させないという効果を奏する。 According to one aspect of the present invention, the display image is generated in consideration of the image characteristics of the input image, so that the display quality of the display image is not deteriorated.
本発明の実施形態1に係る画像表示装置の概略構成ブロック図である。1 is a schematic configuration block diagram of an image display apparatus according to Embodiment 1 of the present invention. 図1に示す画像表示装置が備えている画像解析部の概略ブロック図である。It is a schematic block diagram of the image analysis part with which the image display apparatus shown in FIG. 1 is provided. 図2に示す画像解析部が備えているフィルタ部で使用するデジタルフィルタの一例を示す図である。It is a figure which shows an example of the digital filter used with the filter part with which the image analysis part shown in FIG. 2 is provided. 入力画像における輝度と画素数との関係を示す度数分布を示すヒストグラムである。It is a histogram which shows the frequency distribution which shows the relationship between the brightness | luminance in an input image, and the number of pixels. 入力画像における輝度と画素数との関係を示す累積度数分布を示すヒストグラムである。It is a histogram which shows the cumulative frequency distribution which shows the relationship between the brightness | luminance in an input image, and the number of pixels. フィルタ処理済みの入力画像における輝度と画素数との関係を示す累積度数分布を示すヒストグラムである。It is a histogram which shows the cumulative frequency distribution which shows the relationship between the brightness | luminance and the number of pixels in a filter-processed input image. 入力画像の例を示す図である。It is a figure which shows the example of an input image. 図7に示す入力画像における輝度と画素数との関係を示す累積度数分布を示すヒストグラムである。It is a histogram which shows the cumulative frequency distribution which shows the relationship between the brightness | luminance in the input image shown in FIG. 7, and the number of pixels. 図7に示す入力画像に対するフィルタ処理で用いるデジタルフィルタの一例を示す図である。It is a figure which shows an example of the digital filter used by the filter process with respect to the input image shown in FIG. 図9に示すデジタルフィルタによって図7に示す入力画像をフィルタ処理した場合の画像例を示す図である。It is a figure which shows the example of an image at the time of filtering the input image shown in FIG. 7 with the digital filter shown in FIG. 図9に示すデジタルフィルタによって図7に示す入力画像をフィルタ処理した場合の画像における輝度と画素数との関係を示す累積度数分布を示すヒストグラムである。10 is a histogram showing a cumulative frequency distribution indicating the relationship between the luminance and the number of pixels in an image when the input image shown in FIG. 7 is filtered by the digital filter shown in FIG. 9. 図9に示すデジタルフィルタによって図7に示す入力画像をフィルタ処理した場合の画像に対してCABCを適用した画像の例を示す図である。It is a figure which shows the example of the image which applied CABC with respect to the image at the time of filtering the input image shown in FIG. 7 with the digital filter shown in FIG. 図7に示す入力画像に対するフィルタ処理で用いるデジタルフィルタの他の例を示す図である。It is a figure which shows the other example of the digital filter used by the filter process with respect to the input image shown in FIG. 図13に示すデジタルフィルタによって図7に示す入力画像をフィルタ処理した場合の画像例を示す図である。It is a figure which shows the example of an image at the time of filtering the input image shown in FIG. 7 with the digital filter shown in FIG. 本発明の実施形態2に係る画像表示装置において用いられる液晶表示装置の入力値と出力値との関係を示すグラフである。It is a graph which shows the relationship between the input value of a liquid crystal display device used in the image display apparatus which concerns on Embodiment 2 of this invention, and an output value. 本発明の実施形態3に係る画像表示装置の概略構成ブロック図である。It is a schematic block diagram of an image display device according to Embodiment 3 of the present invention. 図16に示す画像解析部が備えているフィルタ部で使用するデジタルフィルタの一例を示す図である。It is a figure which shows an example of the digital filter used with the filter part with which the image-analysis part shown in FIG.
 〔実施形態1〕
 本発明の一実施形態について説明すれば、以下の通りである。
Embodiment 1
An embodiment of the present invention will be described as follows.
 (画像表示装置の概略説明)
 図1は、本実施形態に係る画像表示装置101の概略構成を示すブロック図である。
(General description of the image display device)
FIG. 1 is a block diagram illustrating a schematic configuration of an image display apparatus 101 according to the present embodiment.
 画像表示装置101は、図1に示すように、液晶表示パネル(LCD)等の表示装置6と、バックライト等の光源7と、表示装置6の画像制御と光源7の光源制御とを含む装置全体を制御する制御部1とを備えている。制御部1は、入力画像S1の画像を解析する画像解析部2と、画像解析部2の画像解析情報S2から、適切な光源制御および画像制御を行うための正規化パラメータS3を作成するパラメータ判断部3と、正規化パラメータS3を適用し、正規化後画像S4を作成する画像処理部4と、同じく正規化パラメータS3を適用し、光源7の輝度調整を行うための光源制御信号S5を作成する光源制御部5とを備えている。 As shown in FIG. 1, the image display device 101 includes a display device 6 such as a liquid crystal display panel (LCD), a light source 7 such as a backlight, an image control of the display device 6, and a light source control of the light source 7. And a control unit 1 for controlling the whole. The control unit 1 performs parameter determination to create a normalization parameter S3 for performing appropriate light source control and image control from the image analysis unit 2 that analyzes the image of the input image S1 and the image analysis information S2 of the image analysis unit 2. The image processing unit 4 that generates the normalized image S4 by applying the normalization parameter S3 to the unit 3, and the light source control signal S5 for adjusting the luminance of the light source 7 by applying the normalization parameter S3 in the same manner And a light source control unit 5 that performs the operation.
 上記構成の画像表示装置101では、入力画像S1はYUV信号を想定し、特にその輝度成分Yを元に処理する。なお、入力画像S1がRGB等の他の信号形式の場合、前後に変換処理部を設けて同様に処理することが可能である。本実施形態では、入力画像S1は8bitで表現され、0が最も暗く、255が最も明るい信号として説明する。 In the image display apparatus 101 configured as described above, the input image S1 is assumed to be a YUV signal, and is processed based on the luminance component Y in particular. When the input image S1 has another signal format such as RGB, a conversion processing unit can be provided before and after the input image S1 to perform the same processing. In the present embodiment, the input image S1 is expressed by 8 bits, and 0 is the darkest signal and 255 is the brightest signal.
 (画像解析部の説明)
 図2は、画像解析部2の一例を示す概略構成ブロック図である。
(Explanation of image analysis unit)
FIG. 2 is a schematic block diagram illustrating an example of the image analysis unit 2.
 画像解析部2は、図2に示すように、入力画像S1にフィルタ処理(フィルタ処理工程)を行うフィルタ処理部21と、フィルタ処理部21にてフィルタ処理された上記入力画像S1(処理済入力画像S1’)における輝度毎の画素数から得られる度数分布あるいは累積度数分布を解析した画像解析情報S2をメモリ部23に記録させる(画像解析情報記録工程)情報記録部22とを含んでいる。なお、メモリ部23については、画像解析部2内に設けられている必要はなく、画像解析部2の外部、あるいは制御部1の外部、さらには画像表示装置101の外部に設けられていてもよく、特に設ける場所について限定しない。 As shown in FIG. 2, the image analysis unit 2 performs a filter process (filter process) on the input image S1, and the input image S1 (processed input) filtered by the filter process unit 21. And an image recording information 22 for recording image analysis information S2 obtained by analyzing the frequency distribution or cumulative frequency distribution obtained from the number of pixels for each luminance in the image S1 ′) in the memory unit 23 (image analysis information recording step). The memory unit 23 is not necessarily provided in the image analysis unit 2, and may be provided outside the image analysis unit 2, outside the control unit 1, and further outside the image display device 101. Well, there are no particular restrictions on the location.
 すなわち、上記構成の画像解析部2は、入力画像S1の輝度毎の画像数から直接度数分布や累積度数分布を求めるのではなく、フィルタ処理部21によって一度フィルタ処理された処理済入力画像S1’の輝度毎の画像数から度数分布や累積度数分布を求めている。この点が、本発明の特長である。 That is, the image analysis unit 2 configured as described above does not directly obtain the frequency distribution or the cumulative frequency distribution from the number of images for each luminance of the input image S1, but the processed input image S1 ′ once filtered by the filter processing unit 21. The frequency distribution and cumulative frequency distribution are obtained from the number of images for each luminance. This is a feature of the present invention.
 (デジタルフィルタ)
 図3は、フィルタ処理部21において入力画像S1のフィルタ処理を行うための3×3のデジタルフィルタ(ローパスフィルタ)の概念図を示している。
(Digital filter)
FIG. 3 is a conceptual diagram of a 3 × 3 digital filter (low-pass filter) for filtering the input image S1 in the filter processing unit 21.
 上記デジタルフィルタでは、入力画像S1の3×3の中心画素の輝度値をS1(x,y)とし、この輝度値S1(x,y)が計算対象画素(注目画素)の輝度値であり、当該注目画素の周囲の8つの画素の輝度値、すなわち周囲の画素の輝度値S1(x-1,y-1)~S1(x+1,y+1)も併せて上記注目画素の輝度値の計算に用いられる。フィルタ処理済みの上記入力画像S1を処理済入力画像S1’とし、この処理済入力画像S1’の注目画素の輝度値をS1’(x,y)とすると、以下の式(1)で表すことができる。ここで、F0からF8はフィルタの各係数である。すなわち、F0はS1(x-1,y-1)の係数、F1はS1(x,y-1)の係数、F2はS1(x+1,y-1)の係数、F3はS1(x-1,y)の係数、F4はS1(x,y)(注目画素)の係数、F5はS1(x+1,y)の係数、F6はS1(x-1,y+1)の係数、F7はS1(x,y+1)の係数、F8はS1(x+1,y+1)の係数である。 In the digital filter, the luminance value of the 3 × 3 central pixel of the input image S1 is S1 (x, y), and this luminance value S1 (x, y) is the luminance value of the calculation target pixel (target pixel). The luminance values of the eight pixels around the pixel of interest, that is, the luminance values S1 (x−1, y−1) to S1 (x + 1, y + 1) of the surrounding pixels are also used for calculating the luminance value of the pixel of interest. It is done. When the filtered input image S1 is a processed input image S1 ′, and the luminance value of the target pixel of the processed input image S1 ′ is S1 ′ (x, y), the following expression (1) is expressed. Can do. Here, F0 to F8 are the coefficients of the filter. That is, F0 is a coefficient of S1 (x-1, y-1), F1 is a coefficient of S1 (x, y-1), F2 is a coefficient of S1 (x + 1, y-1), and F3 is S1 (x-1 , Y), F4 is a coefficient of S1 (x, y) (target pixel), F5 is a coefficient of S1 (x + 1, y), F6 is a coefficient of S1 (x-1, y + 1), and F7 is S1 (x , Y + 1) and F8 is a coefficient of S1 (x + 1, y + 1).
 S1’(x,y)=F0×S1(x-1,y-1)+F1×S1(x,y-1)
+F2×S1(x+1,y-1)+F3×S1(x-1,y)
+F4×S1(x,y)+F5×S1(x+1,y)
+F6×S1(x-1,y+1)+F7×S1(x,y+1)
+F8×S1(x+1,y+1)・・・・・・・(1)
 各フィルタ係数を変更することで、適切なフィルタ計算が行え、結果的に適切な画像解析結果が得られる事になる。例えば、注目画素のフィルタ係数F4を0.6、周囲の画素のその他の画素のフィルタ係数F0~F3,F5~F8を0.05とした場合を考慮してみる。
S1 ′ (x, y) = F0 × S1 (x−1, y−1) + F1 × S1 (x, y−1)
+ F2 × S1 (x + 1, y−1) + F3 × S1 (x−1, y)
+ F4 × S1 (x, y) + F5 × S1 (x + 1, y)
+ F6 × S1 (x−1, y + 1) + F7 × S1 (x, y + 1)
+ F8 × S1 (x + 1, y + 1) (1)
By changing each filter coefficient, an appropriate filter calculation can be performed and, as a result, an appropriate image analysis result can be obtained. For example, consider the case where the filter coefficient F4 of the target pixel is 0.6 and the filter coefficients F0 to F3 and F5 to F8 of other pixels of the surrounding pixels are 0.05.
 ここで、入力画像S1は、突出して明るい画素を有し、コントラストがはっきりしている画像である場合、注目画素の輝度値S1(x,y)は255に近く、周囲の画素の輝度値S1(x-1,y-1)~S1(x+1,y+1)は0に近い値となる。例えば、注目画素の輝度値S1(x,y)は240、その周囲の画素の輝度値S1(x-1,y-1)~S1(x+1,y+1)はすべて30であったとすると、式(1)の結果、注目画素のフィルタ処理後の輝度値S1’(x,y)は156となり、本来の輝度値より幾分減少することになる。 Here, when the input image S1 is an image having protruding bright pixels and clear contrast, the luminance value S1 (x, y) of the pixel of interest is close to 255, and the luminance value S1 of the surrounding pixels. (X-1, y-1) to S1 (x + 1, y + 1) are values close to zero. For example, if the luminance value S1 (x, y) of the target pixel is 240 and the luminance values S1 (x−1, y−1) to S1 (x + 1, y + 1) of the surrounding pixels are all 30, As a result of 1), the luminance value S1 ′ (x, y) after filtering of the pixel of interest is 156, which is somewhat smaller than the original luminance value.
 また、入力画像S1は、突出して明るい画素を有し、周囲の画素も明るくコントラストがはっきりしない画像である場合、例えば、注目画素の輝度値S1(x,y)は240、周囲の画素の輝度値S1(x-1,y-1)~S1(x+1,y+1)はすべて220であったとすると、式(1)の結果、注目画素のフィルタ処理後の輝度値S1’(x,y)は232となり、本来の輝度値よりあまり減少しないことになる。 Further, when the input image S1 is an image that protrudes and has bright pixels and the surrounding pixels are bright and the contrast is not clear, for example, the luminance value S1 (x, y) of the target pixel is 240, and the luminance of the surrounding pixels Assuming that the values S1 (x−1, y−1) to S1 (x + 1, y + 1) are all 220, the luminance value S1 ′ (x, y) after filtering of the target pixel is obtained as a result of Expression (1). 232, which is not much less than the original luminance value.
 上記2つの計算例より、このようなフィルタ係数を用いた時、注目画素のフィルタ処理後の輝度値S1’(x,y)は高ければ高いほど、明るいが、コントラストは低い画像である、と判断できる。 From the above two calculation examples, when such a filter coefficient is used, the higher the brightness value S1 ′ (x, y) after the filter processing of the target pixel is, the brighter the image is, but the lower the contrast is. I can judge.
 上記の例では、デジタルフィルタとしては3×3のローパスフィルタを用いたが、これに限定されるものでなく、5×5のローパスフィルタや、3×3のハイパスフィルタを用いてもよい。また、フィルタ処理部21によるフィルタ処理済みの入力画像S1’を生成する場合、上記のようなデジタルフィルタを用いる以外に、例えば1次関数(R’=α×R等)回路などのデジタル回路を用いてもよい。 In the above example, the 3 × 3 low-pass filter is used as the digital filter, but the present invention is not limited to this, and a 5 × 5 low-pass filter or a 3 × 3 high-pass filter may be used. In addition, when generating the input image S1 ′ filtered by the filter processing unit 21, a digital circuit such as a linear function (R ′ = α × R) circuit, for example, is used in addition to the digital filter as described above. It may be used.
 情報記録部22は、フィルタ処理部21において式(1)を用いてフィルタ処理済みの入力画像S1’をメモリ部23に記憶させるとともに、当該入力画像S1’から度数分布や累積度数分布を作り、その結果から後述する画像解析情報S2を作成する。もちろん、従来通り入力画像S1のデータも併せて、別の度数分布、累積度数分布として作成して、併せて画像解析情報S2に反映してもよい。 The information recording unit 22 causes the filter processing unit 21 to store the input image S1 ′ that has been filtered using Expression (1) in the memory unit 23, and creates a frequency distribution and a cumulative frequency distribution from the input image S1 ′. From the result, image analysis information S2 described later is created. Of course, as usual, the data of the input image S1 may also be created as another frequency distribution or cumulative frequency distribution and reflected in the image analysis information S2.
 (画像解析情報S2)
 画像解析情報S2の作成について以下に説明する。入力画像S1における、一般的な度数分布、累積度数分布のイメージ図をそれぞれ図4、図5に示す。また、図5に示す累積度数分布から、フィルタ処理済みの入力画像である処理済入力画像S1'の累計度数分布のイメージを図6に示す。例えば、図3に示すようなデジタルフィルタは、画像空間周波数を下げる、いわばローパスフィルタであるため、この処理済入力画像S1'の画素値は、入力画像S1の画素値に比べて中間的な値になりやすい。
(Image analysis information S2)
The creation of the image analysis information S2 will be described below. FIGS. 4 and 5 show image diagrams of a general frequency distribution and a cumulative frequency distribution in the input image S1, respectively. FIG. 6 shows an image of the cumulative frequency distribution of the processed input image S1 ′ that is the filtered input image from the cumulative frequency distribution shown in FIG. For example, since the digital filter as shown in FIG. 3 is a low-pass filter that lowers the image spatial frequency, the pixel value of the processed input image S1 ′ is an intermediate value compared to the pixel value of the input image S1. It is easy to become.
 画像解析部2内のメモリ部23は、フィルタ処理済みの処理済入力画像S1’や入力画像S1の度数分布を記憶する。 The memory unit 23 in the image analysis unit 2 stores the processed input image S1 'that has been filtered and the frequency distribution of the input image S1.
 度数分布Fの作成方法の一例を以下に示す。まず1画面分の入力画像S1を入力する前に、度数分布用のメモリF(0~255)を0にクリアしておく。そして、1画面分のすべての画素S1’の輝度値が入力される間、下記の式(2)の計算を行う。そうすると、1画面分すべての入力画素を計算した時点で、度数分布Fが作成される。また、次の1画面分が入力される前には、またメモリFを0にクリアする。 An example of how to create the frequency distribution F is shown below. First, before inputting the input image S1 for one screen, the frequency distribution memory F (0 to 255) is cleared to zero. Then, while the luminance values of all the pixels S1 'for one screen are input, the following equation (2) is calculated. Then, when all input pixels for one screen are calculated, a frequency distribution F is created. Also, the memory F is cleared to 0 before the next screen is input.
 F(S1’(x,y))=F(S1’(x,y))+1・・・・(2)
 累積度数分布Cは以下の式(3)で表される。本例では輝度値は256階調なので、iの最大値は255である。
F (S1 ′ (x, y)) = F (S1 ′ (x, y)) + 1 (2)
The cumulative frequency distribution C is represented by the following formula (3). In this example, since the luminance value is 256 gradations, the maximum value of i is 255.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 いずれにせよ、度数分布F、累積度数分布Cはどのような方法で求めても良い。上記のように、フィルタ処理を行い、その度数分布を取ることで、入力画像S1の画像的特徴を有する画像解析情報S2が得られる。 In any case, the frequency distribution F and the cumulative frequency distribution C may be obtained by any method. As described above, the image analysis information S2 having the image characteristics of the input image S1 is obtained by performing the filtering process and taking the frequency distribution.
 以上のように作成された画像解析情報S2は、後段のパラメータ判断部3に送られる。 The image analysis information S2 created as described above is sent to the parameter determination unit 3 at the subsequent stage.
 (正規化パラメータS3)
 パラメータ判断部3では、画像解析情報S2から入力画像S1に適切である正規化パラメータS3を生成する。例えば、パラメータ判断部3は、処理済入力画像S1’の度数分布上、高い数値が比較的少なければ、正規化パラメータS3を低く設定し、反対に処理済入力画像S1’の数値が高ければ、正規化パラメータS3を高い値に設定するような制御を行う。
(Normalization parameter S3)
The parameter determination unit 3 generates a normalization parameter S3 appropriate for the input image S1 from the image analysis information S2. For example, the parameter determination unit 3 sets the normalization parameter S3 low if the high numerical value is relatively small in the frequency distribution of the processed input image S1 ′, and conversely if the numerical value of the processed input image S1 ′ is high, Control is performed such that the normalization parameter S3 is set to a high value.
 こうして求められた正規化パラメータS3は、後段の画像処理部4と、光源制御部5に送られる。 The normalization parameter S3 thus obtained is sent to the subsequent image processing unit 4 and the light source control unit 5.
 (表示画像生成処理)
 以下は、上記メモリ部23に記録された画像解析情報S2を、画像処理部4にて生成される表示用画像を表示する表示装置6(液晶表示パネル)を背面から照射する光源7(バックライト)の光量制御に用いた例について説明する。なお、この光量制御の説明は、公知の技術であるCABC技術に相当しているため、説明を簡略化する。
(Display image generation processing)
In the following, the image analysis information S2 recorded in the memory unit 23 is used as a light source 7 (backlight) for irradiating the display device 6 (liquid crystal display panel) for displaying a display image generated by the image processing unit 4 from the back side. ) Will be described. Note that the description of the light amount control corresponds to the CABC technique which is a known technique, and thus the description will be simplified.
 画像処理部4は、パラメータ判断部3から受け取った正規化パラメータS3を用いて、入力画像S1を明るくした正規化後画像S4を作成する(画像処理工程)。 The image processing unit 4 uses the normalized parameter S3 received from the parameter determining unit 3 to create a normalized image S4 that brightens the input image S1 (image processing step).
 ここで、一例として、正規化パラメータS3がnであった場合の、正規化後画像S4の作成方法を以下の式(4)に示す。 Here, as an example, a method of creating the normalized image S4 when the normalization parameter S3 is n is shown in the following equation (4).
 S4(x,y)=(255/n)×S1(x,y)・・・・(4)
 なお、正規化後画像S4を求める際、単純な上記の式(4)による正規化だけでなく、表示装置6特有のパラメータ、例えば液晶のγ特性なども考慮して計算しても良い。
S4 (x, y) = (255 / n) × S1 (x, y) (4)
Note that when obtaining the normalized image S4, the calculation may be performed in consideration of not only the normalization by the above-described simple expression (4) but also a parameter peculiar to the display device 6, such as the γ characteristic of the liquid crystal.
 このように、入力画像S1よりも明るくなった正規化後画像S4を作成したことによって、光源制御部5では、入力画像S1よりも明るくなった分、光源7の輝度を下げる制御を行う。ここで、正規化パラメータS3をnとし、nで処理済入力画像S1’を補正する前の、光源7の輝度をY、補正した後の光源7の輝度をY’とすると、輝度Y’は以下の式(5)で求められる。そして、光源制御部5から光源7に対して出力する光源制御信号S5を上記輝度Y’になるよう制御する。 Thus, by creating the normalized image S4 that is brighter than the input image S1, the light source control unit 5 performs control to lower the luminance of the light source 7 by the amount that is brighter than the input image S1. Here, assuming that the normalization parameter S3 is n, the luminance of the light source 7 before correcting the processed input image S1 ′ with n is Y, and the luminance of the light source 7 after correction is Y ′, the luminance Y ′ is It calculates | requires by the following formula | equation (5). Then, the light source control signal S5 output from the light source control unit 5 to the light source 7 is controlled to have the luminance Y '.
 Y’=(n/255)×Y・・・・(5)
 以上のように、輝度Y’を制御することにより、画像表示装置101において表示される画像の明るさを変えずに、光源7により消費する電力を削減することが可能となる。
Y ′ = (n / 255) × Y (5)
As described above, by controlling the luminance Y ′, it is possible to reduce the power consumed by the light source 7 without changing the brightness of the image displayed on the image display apparatus 101.
 (CABC処理制御)
 入力画像S1によってはCABC処理を行って、表示品位が低下する場合もある。このように、CABC処理を行っても表示品位が低下するような入力画像S1を特定できれば、CABC処理の効きを弱めるように調整することで、表示品位の低下を防ぐことができる。なお、CABC処理を行っても表示品位が低下するような入力画像S1を特定できた場合、CABC処理そのものを行わないようにしてもよい。
(CABC processing control)
Depending on the input image S1, CABC processing may be performed to reduce display quality. As described above, if the input image S1 whose display quality deteriorates even if the CABC process is performed can be specified, the display quality can be prevented from being lowered by adjusting so as to reduce the effectiveness of the CABC process. In addition, when the input image S1 whose display quality deteriorates even if the CABC process is performed can be specified, the CABC process itself may not be performed.
 以下では、入力画像がCABC処理に向くか否かを判断するための説明を行う。 Hereinafter, a description will be given for determining whether or not an input image is suitable for CABC processing.
 図7の(a)は、入力画像S1としてグラデーションを有する画像S1aの例を示す図であり、(b)は、入力画像S1としてコントラストを高くした画像S1bの例を示す図である。なお、図7の(b)に示す画像S1bは、図7の(a)に示すグラデ-ション画像S1aのグラデーションを並び替えてコントラストを高くした画像である。 7A is a diagram illustrating an example of an image S1a having gradation as the input image S1, and FIG. 7B is a diagram illustrating an example of an image S1b having a high contrast as the input image S1. An image S1b shown in FIG. 7B is an image in which the gradation of the gradient image S1a shown in FIG.
 図7の(a)(b)に示す画像S1a、画像S1bそれぞれの画素と輝度値の関係を示す累積度数分布を作成した場合、図8の(a)(b)のようになる。 When the cumulative frequency distribution indicating the relationship between the pixels of the images S1a and S1b shown in FIGS. 7A and 7B and the luminance value is created, the results are as shown in FIGS. 8A and 8B.
 上述のように、画像S1aと画像S1bは、画像データ(輝度値)の位置が異なるだけで、画素数と輝度値との関係は全く同じである。従って、図8の(a)(b)に示すそれぞれの累積度数分布は同じである。 As described above, the image S1a and the image S1b have exactly the same relationship between the number of pixels and the luminance value, except that the position of the image data (luminance value) is different. Accordingly, the cumulative frequency distributions shown in FIGS. 8A and 8B are the same.
 単に累積度数を取るだけでは、図7の(a)に示す画像S1aと、図7の(b)に示す画像S1bとの相違が明確でなくなるので、どちらがCABC処理に適した画像であるのかを判断することが難しい。 By simply taking the cumulative frequency, the difference between the image S1a shown in FIG. 7A and the image S1b shown in FIG. 7B is not clear, so which is the image suitable for the CABC process? It is difficult to judge.
 そこで、本実施形態のように、画像解析部2のフィルタ処理部21により入力画像S1に対してフィルタ処理を施した後、フィルタ処理済みの処理済入力画像S1’の累積度数分布を作成する。 Therefore, as in this embodiment, after the filter processing unit 21 of the image analysis unit 2 performs the filtering process on the input image S1, the cumulative frequency distribution of the processed input image S1 'after the filtering process is created.
 例えばフィルタ処理部21で用いるフィルタとして、図3に示す3×3のローパスフィルタを用い、このフィルタによって入力画像S1にフィルタ処理を施す。上記ローパスフィルタは、図9に示すように、フィルタ係数F0~F8(図3)が設定されている。ここでは、中心の注目画素に対するフィルタ係数F4(x、y)は0.6、周辺の画素に対するフィルタ係数F0~F3,F5~F8は全て0.05に設定されている。 For example, as a filter used in the filter processing unit 21, a 3 × 3 low-pass filter shown in FIG. 3 is used, and the input image S1 is filtered by this filter. As shown in FIG. 9, the low-pass filter is set with filter coefficients F0 to F8 (FIG. 3). Here, the filter coefficient F4 (x, y) for the center pixel of interest is set to 0.6, and the filter coefficients F0 to F3 and F5 to F8 for the surrounding pixels are all set to 0.05.
 図10の(a)(b)は、図7の(b)に示すコントラストの高い画像S1bを画素に対応する輝度値で示した図である。図10の(c)~(e)は、図7の(a)に示すグラデーション画像S1aを、画素に対応する輝度値で示した図である。 10 (a) and 10 (b) are diagrams showing the high-contrast image S1b shown in FIG. 7 (b) with luminance values corresponding to pixels. FIGS. 10C to 10E are diagrams showing the gradation image S1a shown in FIG. 7A with luminance values corresponding to pixels.
 図9に示すフィルタ係数のローパスフィルタを用いて、図10の(a)~(e)に示す画像S1にフィルタ処理を施して、処理済入力画像S1’を求める。処理済入力画像S1’は、上述した式(1)により求める。従って、図10の(a)に示す画像の場合、処理済入力画像S1’の中心画素の輝度値S’(x、y)は178.7となり、図10の(b)に示す画像の場合、処理済入力画像S1’ の中心画素の輝度値S’(x、y)は89.75となり、図10の(c)に示す画像の場合、処理済入力画像S1’の中心画素の輝度値S’(x、y)は254となり、図10の(d)に示す画像の場合、処理済入力画像S1’の中心画素の輝度値S’(x、y)は128となり、図10の(e)に示す画像の場合、処理済入力画像S1’の中心画素の輝度値S’(x、y)は10となる。同様にして、各画像において、それぞれの周辺の画素の処理済入力画像S1’を求める。 Using the low-pass filter having the filter coefficient shown in FIG. 9, the image S1 shown in (a) to (e) of FIG. 10 is filtered to obtain a processed input image S1 '. The processed input image S1 'is obtained by the above equation (1). Accordingly, in the case of the image shown in FIG. 10A, the luminance value S ′ (x, y) of the center pixel of the processed input image S1 ′ is 178.7, which is the case of the image shown in FIG. The luminance value S ′ (x, y) of the central pixel of the processed input image S1 ′ is 89.75. In the case of the image shown in FIG. 10C, the luminance value of the central pixel of the processed input image S1 ′. S ′ (x, y) is 254, and in the case of the image shown in FIG. 10D, the luminance value S ′ (x, y) of the central pixel of the processed input image S1 ′ is 128, which is shown in FIG. In the case of the image shown in e), the luminance value S ′ (x, y) of the center pixel of the processed input image S1 ′ is 10. Similarly, in each image, a processed input image S1 'for each peripheral pixel is obtained.
 フィルタ処理後の処理済入力画像S1’に高い値が多い場合、CABC処理時の正規化値(正規化パラメータS3の値)をあまり下げないように制御する必要がある。このような画像において、CABC処理時の正規化値を下げすぎると、画質の劣化が著しくなる。 When there are many high values in the processed input image S1 'after the filter processing, it is necessary to control so that the normalized value (value of the normalized parameter S3) at the time of CABC processing is not lowered too much. In such an image, if the normalized value at the time of CABC processing is lowered too much, the image quality deteriorates significantly.
 以上のようにして、入力画像S1から求めた処理済入力画像S1’の累積度数分布を求めた結果は、図11の(a)(b)のようになる。 As described above, the results of obtaining the cumulative frequency distribution of the processed input image S1 'obtained from the input image S1 are as shown in FIGS.
 図11の(a)は、図7の(a)に示すグラデーションを有する画像S1aをフィルタ処理した後の累積度数分布を示している。このように、図7の(a)に示すグラデーションを有する画像S1aの場合、ローパスフィルタをかけても、累積度数分布の飽和が見られない。このような場合に、CABC処理を強く行う(正規化値を大きく下げる)と、著しく画像品位を低下させる。従って、図7の(a)に示すグラデーションを有する画像S1aの場合、CABC処理に向かない画像と言える。 (A) in FIG. 11 shows a cumulative frequency distribution after the image S1a having the gradation shown in (a) in FIG. 7 is filtered. As described above, in the case of the image S1a having the gradation shown in FIG. 7A, saturation of the cumulative frequency distribution is not seen even when the low-pass filter is applied. In such a case, if the CABC process is strongly performed (the normalized value is greatly reduced), the image quality is significantly reduced. Therefore, the image S1a having the gradation shown in FIG. 7A can be said to be an image not suitable for CABC processing.
 一方、図11の(b)は、図7の(b)に示すコントラストの高い画像S1bをフィルタ処理した後の累積度数分布を示している。このように、図7の(b)に示すグラデーションを有する画像S1aの場合、ローパスフィルタをかければ、処理済入力画像S1’の画素の輝度値S’は全体的に中間値よりになる。すなわち、高い値が無く、低いS1’値で飽和している。このような場合、正規化値を多少下げても、画像品位の低下を招きにくい。従って、図7の(b)に示すコントラストの高い画像S1bの場合、CABC処理に向く画像と言える。 On the other hand, FIG. 11B shows a cumulative frequency distribution after the high-contrast image S1b shown in FIG. 7B is filtered. As described above, in the case of the image S1a having the gradation shown in FIG. 7B, if the low-pass filter is applied, the luminance value S ′ of the pixel of the processed input image S1 ′ becomes an intermediate value as a whole. That is, there is no high value and it is saturated with a low S1 'value. In such a case, even if the normalized value is lowered somewhat, it is difficult to cause a reduction in image quality. Therefore, the image S1b having a high contrast shown in FIG. 7B can be said to be an image suitable for CABC processing.
 但し、上記の結果が全てではなくあくまでもCABC処理に向く画像であるか否かを判断するための一指標に過ぎない。 However, it is only an index for determining whether or not the above result is an image suitable for CABC processing.
 図12の(a)(b)は、図7の(a)(b)の画像S1a,画像S1bそれぞれにフィルタ処理を施した処理済入力画像S1a’,S1b’に対してCABC処理を施したときの画像を示す。ここでは、フィルタ処理後の画像に対して正規化値を192としてCABC処理を施している。 12A and 12B, CABC processing is performed on the processed input images S1a ′ and S1b ′ obtained by performing filtering on the images S1a and S1b in FIGS. 7A and 7B, respectively. An image of when. Here, the CABC process is performed with the normalized value set to 192 for the image after the filter process.
 図12の(a)に示す画像から、輝度値の高い部分でコントラストが無くなり、画像潰れが生じ、図7の(a)に示す入力画像S1aに比べて画像品位の低下が著しいことが分かる。 From the image shown in FIG. 12 (a), it can be seen that the contrast is lost in the portion with a high luminance value, the image is crushed, and the image quality is significantly lowered compared to the input image S1a shown in FIG. 7 (a).
 一方、図12の(b)に示す画像から、最大輝度値が192に低下しているものの、コントラストの変化があまり見られず、見た目的には、図7の(b)に示す入力画像S1bからさほど画像品位が低下していないことが分かる。 On the other hand, although the maximum luminance value is reduced to 192 from the image shown in FIG. 12B, the change in contrast is not so much seen. For the purpose of viewing, the input image S1b shown in FIG. Therefore, it can be seen that the image quality has not deteriorated so much.
 以上のことから、本実施形態に係る画像表示装置101によれば、画像解析情報S2を入力画像S1に適用することで、入力画像S1の画像特徴(コントラストの高低等)を考慮して正規化後画像S4(表示用画像)を生成すると共に、上記画像解析情報S2を光源制御部5に適用することで、生成した表示用画像に適したバックライトの光量となるような光源制御信号S5を生成することになるので、バックライトによる消費電力の低減を図り、且つ、表示用画像の表示品位を低下させることがない。 From the above, according to the image display apparatus 101 according to the present embodiment, the image analysis information S2 is applied to the input image S1, thereby normalizing in consideration of the image features (contrast level, etc.) of the input image S1. By generating the rear image S4 (display image) and applying the image analysis information S2 to the light source control unit 5, a light source control signal S5 that provides a backlight light amount suitable for the generated display image is generated. Therefore, the power consumption by the backlight is reduced, and the display quality of the display image is not deteriorated.
 (フィルタ処理:5×5のローパスフィルタ)
 以上の説明では、フィルタ処理部21で用いるデジタルフィルタとして、3×3のローパスフィルタを用いて説明したが、5×5のローパスフィルタを用いてもよい。
(Filter processing: 5 × 5 low-pass filter)
In the above description, the digital filter used in the filter processing unit 21 has been described using a 3 × 3 low-pass filter, but a 5 × 5 low-pass filter may be used.
 図13は、5×5のローパスフィルタのフィルタ係数を示している。ここでは、中心の画素(注目画素)のフィルタ係数は0.4に設定され、周辺の画素のフィルタ係数は0.02に設定されている。 FIG. 13 shows filter coefficients of a 5 × 5 low-pass filter. Here, the filter coefficient of the center pixel (target pixel) is set to 0.4, and the filter coefficient of the peripheral pixels is set to 0.02.
 上記5×5のローパスフィルタを用いて、図14の(a)に示すコントラストのよい場合の処理済入力画像S1’を求めると、中心画素の輝度値S1’(x、y)=143.4となり、図14の(b)に示すようにコントラストのない場合の処理済入力画像S1’を求めると、中心画素の輝度値S1’(x、y)=194.4となる。 When the processed input image S1 ′ in the case of good contrast shown in FIG. 14A is obtained using the 5 × 5 low-pass filter, the luminance value S1 ′ (x, y) = 143.4 of the central pixel is obtained. Thus, when the processed input image S1 ′ when there is no contrast as shown in FIG. 14B is obtained, the luminance value S1 ′ (x, y) of the center pixel is 194.4.
 上記の場合も、3×3のローパスフィルタの場合と同様に、求めた輝度値S1’の値が高いほど、明るく、且つコントラストが少ないということを判別することができる。 In the above case as well, as in the case of the 3 × 3 low-pass filter, it can be determined that the higher the obtained luminance value S1 ', the brighter and the less the contrast.
 このように、処理できる対象画素数を3×3から5×5に増加すると、より詳細な画像解析ができる。特に、解像度の高い表示装置を使用する場合、より適切な画像解析情報を得ることができる。但し、処理できる対象画素数を多くすれば、回路規模が大きくなり、コストの増大を招来する。従って、最終的に得られる画像品位(あるいはユーザが所望している画像品位)と、回路規模とのバランスをとって、処理できる対象画素数を設定することが好ましい。なお、処理できる対象画素数は、7×7であってもよく、これ以上であってもよい。 Thus, when the number of target pixels that can be processed is increased from 3 × 3 to 5 × 5, more detailed image analysis can be performed. In particular, when a display device with high resolution is used, more appropriate image analysis information can be obtained. However, if the number of target pixels that can be processed is increased, the circuit scale increases and the cost increases. Therefore, it is preferable to set the number of target pixels that can be processed by balancing the image quality finally obtained (or the image quality desired by the user) with the circuit scale. Note that the number of target pixels that can be processed may be 7 × 7 or more.
 〔実施形態2〕
 本発明の他の実施形態について説明すれば、以下の通りである。なお、説明の便宜上、前記実施形態1にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
[Embodiment 2]
Another embodiment of the present invention will be described as follows. For convenience of explanation, members having the same functions as those described in the first embodiment are given the same reference numerals, and descriptions thereof are omitted.
 (γ補正)
 本実施形態では、前記実施形態1に示す画像表示装置101の表示装置6を液晶表示装置(LCD)とした場合に、当該液晶表示装置のγ特性(γカーブ)を考慮して正規化後画像S4を補正する例について説明する。
(Γ correction)
In the present embodiment, when the display device 6 of the image display device 101 shown in the first embodiment is a liquid crystal display device (LCD), the normalized image is taken into account in consideration of the γ characteristic (γ curve) of the liquid crystal display device. An example of correcting S4 will be described.
 一般に、液晶表示装置では、入力値(輝度値)Xと出力値(輝度値)Yとの関係は、図15の実線で示すγカーブ(γ値=2.2等)となる。また、表示装置における入力値Xと出力値Yとの理想的な関係は、図15の破線で示す直線(γ値=1.0)である。 Generally, in a liquid crystal display device, the relationship between an input value (luminance value) X and an output value (luminance value) Y is a γ curve (γ value = 2.2 or the like) indicated by a solid line in FIG. Further, an ideal relationship between the input value X and the output value Y in the display device is a straight line (γ value = 1.0) indicated by a broken line in FIG.
 従って、表示装置6では、制御部1の画像処理部4から出力される正規化後画像S4を入力値Xとしたとき、この入力値Xに対して、図15に示すγカーブを掛け合わせて出力値Yを得る補正(γ補正)を行い、補正した出力値Yにより画像表示を行う。 Therefore, in the display device 6, when the normalized image S4 output from the image processing unit 4 of the control unit 1 is an input value X, the input value X is multiplied by the γ curve shown in FIG. Correction (γ correction) for obtaining the output value Y is performed, and an image is displayed with the corrected output value Y.
 以上のことから、表示装置6に表示される画像は、LCDの特性、すなわちγ特性を考慮しているので、画像品位をより高くすることができる。よって、本実施形態に係る画像表示装置101によれば、消費電力を低減させつつ、画像品位を維持、あるいは向上させることが可能となる。 From the above, since the image displayed on the display device 6 takes into account the LCD characteristics, that is, the γ characteristics, the image quality can be further improved. Therefore, according to the image display apparatus 101 according to the present embodiment, it is possible to maintain or improve image quality while reducing power consumption.
 上記実施形態1,2では、CABC処理を行うことを前提としているが、本発明はCABC処理に限定されるものではなく、他の処理にも適用することができる。例えば、画像のエッジを強調するためのエッジ強調処理にも本発明を適用することができる。以下の実施形態3では、本発明をエッジ強調処理に適用した例について説明する。 In the first and second embodiments, it is assumed that the CABC process is performed. However, the present invention is not limited to the CABC process, and can be applied to other processes. For example, the present invention can be applied to edge enhancement processing for enhancing the edge of an image. In the following third embodiment, an example in which the present invention is applied to edge enhancement processing will be described.
 〔実施形態3〕
 本発明のさらに他の実施形態について説明すれば、以下の通りである。なお、説明の便宜上、前記実施形態1にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
[Embodiment 3]
The following will describe still another embodiment of the present invention. For convenience of explanation, members having the same functions as those described in the first embodiment are given the same reference numerals, and descriptions thereof are omitted.
 (画像表示装置の概略説明)
 図16は、本実施形態に係る画像表示装置201の概略構成ブロック図である。
(General description of the image display device)
FIG. 16 is a block diagram schematically illustrating the configuration of the image display apparatus 201 according to the present embodiment.
 画像表示装置201は、前記実施形態1の画像表示装置101とほぼ同じ構成をしている。画像表示装置101と異なるのは、制御部1内にパラメータ判断部3が無くなり、画像処理部4の代わりにエッジ強調処理部8が備えられている点である。 The image display device 201 has substantially the same configuration as the image display device 101 of the first embodiment. The difference from the image display apparatus 101 is that the parameter determination unit 3 is not provided in the control unit 1 and an edge enhancement processing unit 8 is provided instead of the image processing unit 4.
 エッジ強調処理部8には、画像解析部2からの画像解析情報S2が入力される。そして、エッジ強調処理部8は、入力された画像解析情報S2に基づいて入力画像S1に対してエッジ強調処理を行い、エッジ強調処理を施した画像をエッジ強調後画像S6として表示装置6に出力するようになっている。 Image analysis information S2 from the image analysis unit 2 is input to the edge enhancement processing unit 8. Then, the edge enhancement processing unit 8 performs edge enhancement processing on the input image S1 based on the input image analysis information S2, and outputs the image subjected to the edge enhancement processing to the display device 6 as an edge enhanced image S6. It is supposed to be.
 (フィルタ処理:3×3のハイパスフィルタ)
 図16に示す画像解析部2は、前記実施形態1の図2に示す画像解析部2と同じ構成であり、フィルタ処理部21、情報記録部22、メモリ部23を有している。異なるのは、フィルタ処理部21で用いるデジタルフィルタである。つまり、前記実施形態1では、フィルタ処理部21ではローパスフィルタを用いたのに対して、本実施形態では、エッジ強調処理部8においてエッジ強調処理を行うために、画像解析部2内のフィルタ処理部21においてハイパスフィルタを用いたフィルタ処理を行っている。
(Filter processing: 3 × 3 high-pass filter)
The image analysis unit 2 illustrated in FIG. 16 has the same configuration as the image analysis unit 2 illustrated in FIG. 2 of the first embodiment, and includes a filter processing unit 21, an information recording unit 22, and a memory unit 23. The difference is the digital filter used in the filter processing unit 21. That is, in the first embodiment, the filter processing unit 21 uses a low-pass filter, but in the present embodiment, the edge enhancement processing unit 8 performs the edge enhancement processing in order to perform the filter processing in the image analysis unit 2. The unit 21 performs a filtering process using a high-pass filter.
 図17は、本実施形態で用いる3×3のハイパスフィルタにおけるフィルタ係数を示した図である。通常、前記実施形態1の図7の(a)に示すコントラストが無い画像(グラデーション画像)の場合、エッジが明確でないため、エッジを強めに強調する必要があるが、図7の(b)に示すコントラストの良い画像の場合、エッジが明確であるため、エッジを弱めに強調するか、あるいはエッジを強調しない方がよい。 FIG. 17 is a diagram showing filter coefficients in the 3 × 3 high-pass filter used in the present embodiment. Usually, in the case of the image (gradation image) without contrast shown in FIG. 7A of the first embodiment, since the edge is not clear, it is necessary to emphasize the edge strongly, but FIG. In the case of an image with good contrast, since the edge is clear, it is better to emphasize the edge weakly or not to emphasize the edge.
 エッジ強調処理部8では、入力画像S1が図7の(a)に示すグラデーション画像か、図7の(b)に示すコントラストの良い画像によって、エッジの強調の度合いを調整するようになっている。そのための指針が、画像解析部2から出力される画像解析情報S2である。画像解析情報S2には、フィルタ処理部21によってフィルタ処理された処理済入力画像S1’の累積度数分布を解析した情報が含まれている。つまり、画像解析情報S2には、処理済入力画像S1’の値に応じて入力画像S1のエッジ強調の度合いを調整するための情報が含まれている。 The edge emphasis processing unit 8 adjusts the degree of edge emphasis according to whether the input image S1 is a gradation image shown in FIG. 7A or a high contrast image shown in FIG. 7B. . A guideline for this is image analysis information S2 output from the image analysis unit 2. The image analysis information S2 includes information obtained by analyzing the cumulative frequency distribution of the processed input image S1 'filtered by the filter processing unit 21. That is, the image analysis information S2 includes information for adjusting the degree of edge enhancement of the input image S1 according to the value of the processed input image S1 '.
 例えば、図16に示すフィルタ係数のハイパスフィルタを用いて、前記実施形態1で示した図10の(a)~(e)に示す画像S1にフィルタ処理を施して、処理済入力画像S1’を求める。処理済入力画像S1’は、上述した式(1)により求める。図10の(a)に示す画像の場合、処理済入力画像S1’の輝度値S1’(x、y)は76.35となり、図10の(b)に示す画像の場合、処理済入力画像S1’の輝度値S1’(x、y)は38.25となり、図10の(c)に示す画像の場合、処理済入力画像S1’の輝度値S1’(x、y)は0となり、図10の(d)に示す画像の場合、処理済入力画像S1’の輝度値S1’(x、y)は0となり、図10の(e)に示す画像の場合、処理済入力画像S1’ の輝度値S1’(x、y)は0となる。同様にして、各画像において、それぞれの周辺の画素の処理済入力画像S1’の輝度値S1’を求める。 For example, by using a high-pass filter having a filter coefficient shown in FIG. 16, the image S1 shown in FIGS. 10A to 10E shown in the first embodiment is subjected to filter processing to obtain a processed input image S1 ′. Ask. The processed input image S1 'is obtained by the above equation (1). In the case of the image shown in FIG. 10A, the luminance value S1 ′ (x, y) of the processed input image S1 ′ is 76.35. In the case of the image shown in FIG. The luminance value S1 ′ (x, y) of S1 ′ is 38.25. In the case of the image shown in FIG. 10C, the luminance value S1 ′ (x, y) of the processed input image S1 ′ is 0. In the case of the image shown in FIG. 10D, the luminance value S1 ′ (x, y) of the processed input image S1 ′ is 0, and in the case of the image shown in FIG. 10E, the processed input image S1 ′. The luminance value S1 ′ (x, y) of the pixel is 0. Similarly, in each image, the luminance value S1 'of the processed input image S1' of each peripheral pixel is obtained.
 以上のことから、コントラストの良い(高い)画像(エッジが多い画像)では、処理済入力画像S1’ の輝度値は大きく(図10の(a)(b))、コントラストの良くない(低い)画像(エッジが少ない画像)では、処理済入力画像S1’の輝度値は小さく(図10の(c)~(e))なることが分かる。 From the above, in the image with good (high) contrast (image with many edges), the luminance value of the processed input image S1 ′ is large ((a) and (b) in FIG. 10) and the contrast is not good (low). It can be seen that in the image (image with few edges), the luminance value of the processed input image S1 ′ is small ((c) to (e) in FIG. 10).
 従って、画像解析部2において、処理済入力画像S1’の輝度値が大きい画像に対しては、エッジ強調の度合いを低く調整するように指示する情報、処理済入力画像S1’の値が小さい画像に対しては、エッジ強調の度合いを高く調整するように指示する情報を含む画像解析情報S2が作成される。 Therefore, in the image analysis unit 2, for an image having a large luminance value of the processed input image S1 ′, information for instructing to adjust the degree of edge enhancement to a low level, an image having a small value of the processed input image S1 ′ In contrast, image analysis information S2 including information instructing to adjust the degree of edge enhancement to a high level is created.
 〔ソフトウェアによる実現例〕
 画像表示装置101、201の制御部1は、集積回路(ICチップ)等に形成された論理回路(ハードウェア)によって実現してもよいし、CPU(Central Processing Unit)を用いてソフトウェアによって実現してもよい。
[Example of software implementation]
The control unit 1 of the image display apparatuses 101 and 201 may be realized by a logic circuit (hardware) formed in an integrated circuit (IC chip) or the like, or realized by software using a CPU (Central Processing Unit). May be.
 後者の場合、画像表示装置101、201は、各機能を実現するソフトウェアであるプログラムの命令を実行するCPU、上記プログラムおよび各種データがコンピュータ(またはCPU)で読み取り可能に記録されたROM(Read Only Memory)または記憶装置(これらを「記録媒体」と称する)、上記プログラムを展開するRAM(Random Access Memory)などを備えている。そして、コンピュータ(またはCPU)が上記プログラムを上記記録媒体から読み取って実行することにより、本発明の目的が達成される。上記記録媒体としては、「一時的でない有形の媒体」、例えば、テープ、ディスク、カード、半導体メモリ、プログラマブルな論理回路などを用いることができる。また、上記プログラムは、該プログラムを伝送可能な任意の伝送媒体(通信ネットワークや放送波等)を介して上記コンピュータに供給されてもよい。なお、本発明は、上記プログラムが電子的な伝送によって具現化された、搬送波に埋め込まれたデータ信号の形態でも実現され得る。 In the latter case, the image display devices 101 and 201 include a CPU that executes instructions of a program that is software that realizes each function, and a ROM (Read Only Memory) or a storage device (these are referred to as “recording media”), a RAM (Random Access Memory) for expanding the program, and the like. And the objective of this invention is achieved when a computer (or CPU) reads the said program from the said recording medium and runs it. As the recording medium, a “non-temporary tangible medium” such as a tape, a disk, a card, a semiconductor memory, a programmable logic circuit, or the like can be used. The program may be supplied to the computer via an arbitrary transmission medium (such as a communication network or a broadcast wave) that can transmit the program. The present invention can also be realized in the form of a data signal embedded in a carrier wave in which the program is embodied by electronic transmission.
 〔まとめ〕
 本発明の態様1に係る画像表示装置は、入力画像S1にフィルタ処理を行うフィルタ処理部21と、上記フィルタ処理部21にてフィルタ処理された上記入力画像(処理済入力画像S1’)における輝度毎の画素数から得られる度数分布あるいは累積度数分布を解析した画像解析情報S2をメモリ部23に記録させる情報記録部22と、上記メモリ部23に記録された画像解析情報S2を、上記入力画像S1に適用して表示用画像を生成する画像処理部4とを備えている。
[Summary]
The image display device according to the first aspect of the present invention includes a filter processing unit 21 that performs a filtering process on an input image S1, and luminance in the input image (processed input image S1 ′) that has been filtered by the filter processing unit 21. The information recording unit 22 for recording the image analysis information S2 obtained by analyzing the frequency distribution or cumulative frequency distribution obtained from the number of pixels for each memory in the memory unit 23, and the image analysis information S2 recorded in the memory unit 23 for the input image And an image processing unit 4 that generates a display image by applying to S1.
 上記の構成によれば、画像解析情報は、フィルタ処理部にてフィルタ処理された上記入力画像における輝度毎の画素数から得られる度数分布あるいは累積度数分布を解析した情報であるため、入力画像の画像特徴(コントラストの有無やエッジの有無など)を顕在化する。このような画像解析情報を入力画像に適用して表示用画像を生成すれば、生成された表示用画像は、入力画像の画像特徴を考慮した画像となる。 According to the above configuration, the image analysis information is information obtained by analyzing the frequency distribution or cumulative frequency distribution obtained from the number of pixels for each luminance in the input image filtered by the filter processing unit. Image features (such as the presence or absence of contrast and the presence or absence of edges) are revealed. If such image analysis information is applied to the input image to generate a display image, the generated display image is an image that takes into account the image characteristics of the input image.
 従って、表示用画像が入力画像の画像特徴を考慮して生成されているので、従来のように、入力画像の画素の特定の輝度にのみ着目して表示用画像を生成する場合にくらべて、表示用画像の表示品位の低下を招かない。 Therefore, since the display image is generated in consideration of the image characteristics of the input image, as compared with the conventional case where the display image is generated by paying attention only to the specific luminance of the pixel of the input image, The display quality of the display image is not deteriorated.
 本発明の態様2に係る画像表示装置は、上記態様1において、上記フィルタ処理部21は、上記入力画像S1に対してローパスフィルタによるフィルタ処理を行うことを特徴としいている。 The image display device according to aspect 2 of the present invention is characterized in that, in the aspect 1, the filter processing unit 21 performs a filtering process by a low-pass filter on the input image S1.
 上記の構成によれば、入力画像S1に対してローパスフィルタによるフィルタ処理を行うことで、コントラストの高い画像ほど、高い輝度がなくなり、低い輝度で飽和した累積度数分布を有する画像(処理済入力画像S1’)となり、コントラストの低い画像(グラデーション画像)ほど、高い輝度が残り、全体として輝度が飽和しない累積度数分布を有する画像(処理済入力画像S1’)となる。このように、高い輝度がなくなり、低い輝度で飽和した累積度数分布を有する画像では、正規化値を多少下げても画像品位の低下を招かないが、高い輝度が残り、全体として輝度が飽和しない累積度数分布を有する画像では、正規化値を下げれば画像品位が著しく低下する。 According to the above configuration, by performing the filtering process using the low-pass filter on the input image S1, the higher the contrast, the higher the luminance is, and the image having the cumulative frequency distribution saturated with the lower luminance (the processed input image). S1 ′), the lower the contrast (gradation image), the higher the luminance remains and the image (processed input image S1 ′) having a cumulative frequency distribution in which the luminance is not saturated as a whole. As described above, in an image having a cumulative frequency distribution in which high luminance disappears and is saturated at low luminance, even if the normalized value is slightly reduced, the image quality does not deteriorate, but high luminance remains and the luminance is not saturated as a whole. In an image having a cumulative frequency distribution, if the normalized value is lowered, the image quality is significantly lowered.
 従って、ローパスフィルタを用いたフィルタ処理を行うことで、正規化値を下げる所謂CABC処理を行うのが好ましい画像であるか否かを判定することができるので、CABC処理を適切に行うことが可能となる。 Therefore, by performing filter processing using a low-pass filter, it is possible to determine whether or not it is preferable to perform so-called CABC processing that lowers the normalized value, so that CABC processing can be performed appropriately. It becomes.
 ローパスフィルタとしては、例えば以下のような3×3、5×5、7×7のフィルタがある。 Examples of low-pass filters include the following 3 × 3, 5 × 5, and 7 × 7 filters.
 本発明の態様3に係る画像表示装置は、上記態様2において、上記ローパスフィルタは、処理対象となる注目画素の輝度値を、当該注目画素を中心とした周囲の8個の画素の輝度値から求める3×3のデジタルフィルタであることが好ましい。 In the image display device according to aspect 3 of the present invention, in the aspect 2, the low-pass filter calculates the luminance value of the target pixel to be processed from the luminance values of the surrounding eight pixels centered on the target pixel. The desired 3 × 3 digital filter is preferable.
 本発明の態様4に係る画像表示装置は、上記態様2において、上記ローパスフィルタは、処理対象となる注目画素の輝度値を、当該注目画素を中心とした周囲の24個の画素の輝度値から求める5×5のデジタルフィルタであることが好ましい。 In the image display device according to aspect 4 of the present invention, in the aspect 2, the low-pass filter calculates the luminance value of the target pixel to be processed from the luminance values of 24 pixels around the target pixel. The desired 5 × 5 digital filter is preferable.
 本発明の態様5に係る画像表示装置は、上記態様2において、上記ローパスフィルタは、処理対象となる注目画素の輝度値を、当該注目画素を中心とした周囲の48個の画素の輝度値から求める7×7のデジタルフィルタであることが好ましい。 In the image display device according to aspect 5 of the present invention, in the aspect 2, the low-pass filter calculates the luminance value of the target pixel to be processed from the luminance values of 48 pixels around the target pixel. A 7 × 7 digital filter to be obtained is preferable.
 処理できる対象画素数を3×3、5×5、7×7に増加すると、より詳細な画像解析ができる。特に、解像度の高い表示装置を使用する場合、より適切な画像解析情報を得ることができる。但し、処理できる対象画素数を多くすれば、回路規模が大きくなり、コストの増大を招来する。従って、最終的に得られる画像品位(あるいはユーザが所望している画像品位)と、回路規模とのバランスをとって、処理できる対象画素数を設定することが好ましい。 If the number of target pixels that can be processed is increased to 3 × 3, 5 × 5, and 7 × 7, more detailed image analysis can be performed. In particular, when a display device with high resolution is used, more appropriate image analysis information can be obtained. However, if the number of target pixels that can be processed is increased, the circuit scale increases and the cost increases. Therefore, it is preferable to set the number of target pixels that can be processed by balancing the image quality finally obtained (or the image quality desired by the user) with the circuit scale.
 本発明の態様6に係る画像表示装置は、上記態様1において、上記フィルタ処理部21は、上記入力画像S1に対してハイパスフィルタによるフィルタ処理を行うことを特徴としている。 The image display device according to aspect 6 of the present invention is characterized in that, in aspect 1, the filter processing unit 21 performs a filtering process with a high-pass filter on the input image S1.
 上記の構成によれば、入力画像S1に対してハイパスフィルタによるフィルタ処理を行うことで、入力画像S1がコントラストの高い画像(エッジの多い画像)か、コントラストの低い画像(エッジの少ない画像)かを判定することができる。 According to the above configuration, the input image S1 is filtered with a high-pass filter, so that the input image S1 is an image with high contrast (image with many edges) or an image with low contrast (image with few edges). Can be determined.
 これにより、エッジの多い画像にはエッジ強調処理を弱めて施し、エッジの少ない画像にはエッジ強調処理を強めて施すことで、過度なエッジ強調処理を行わないようにできるので、過度なエッジ強調処理に伴う画像品位の低下を招くことはない。 As a result, the edge enhancement processing is weakened for images with many edges and the edge enhancement processing is strengthened for images with few edges, so that excessive edge enhancement processing is not performed. There will be no degradation of image quality associated with processing.
 本発明の態様7に係る画像表示装置は、上記態様2において、上記メモリ部23に記録された画像解析情報S2を、上記表示用画像を表示する液晶表示パネル(表示装置6)を背面から照射するバックライト(光源7)の光量制御に適用することが好ましい。 The image display device according to aspect 7 of the present invention is the image display device according to aspect 2, in which the image analysis information S2 recorded in the memory unit 23 is irradiated from the back surface to the liquid crystal display panel (display device 6) that displays the display image. It is preferable to apply to the light amount control of the backlight (light source 7).
 上記の構成によれば、正規化値を下げても画像品位の低下を招かない画像を液晶表示パネルで表示する際に、正規化値を下げた分だけ、バックライトの光量を下げるように制御することで、画像品位を落とさずに、バックライトによる電力消費を低減することができる。具体的には、以下のような画像表示装置となる。 According to the above configuration, when displaying an image on the liquid crystal display panel that does not degrade the image quality even if the normalized value is lowered, control is performed so that the amount of light from the backlight is lowered by the amount that the normalized value is lowered. By doing so, power consumption by the backlight can be reduced without degrading the image quality. Specifically, the following image display device is obtained.
 本発明の態様8に係る画像表示装置は、上記態様7において、上記表示用画像を表示する液晶表示パネル(表示装置6)と、上記液晶表示パネル(表示装置6)を背面から照射するバックライト(光源7)と、をさらに備えていることを特徴としている。 An image display device according to an aspect 8 of the present invention is the liquid crystal display panel (display device 6) for displaying the display image and the backlight for illuminating the liquid crystal display panel (display device 6) from the back surface in the aspect 7. (Light source 7).
 本発明の態様9に係る画像表示方法は、入力画像S1から表示用画像を生成して画像表示を行う画像表示方法において、入力画像S1にフィルタ処理を行うフィルタ処理工程と、上記フィルタ処理工程にてフィルタ処理された上記入力画像における輝度毎の画素数から得られる度数分布あるいは累積度数分布を解析した画像解析情報S2をメモリ部23に記録させる画像解析情報記録工程と、上記メモリ部23に記録された画像解析情報S2を、上記入力画像S1に適用して表示用画像を生成する画像処理工程と、を含んでいることを特徴としている。上記の構成によれば、上記態様1と同様の効果を奏する。 An image display method according to an aspect 9 of the present invention is an image display method for generating an image for display from an input image S1 and displaying the image. An image analysis information recording step for recording in the memory unit 23 image analysis information S2 obtained by analyzing the frequency distribution or cumulative frequency distribution obtained from the number of pixels for each luminance in the input image filtered and recorded in the memory unit 23 The image analysis information S2 is applied to the input image S1 to generate an image for display, and is characterized by including an image processing step. According to said structure, there exists an effect similar to the said aspect 1. FIG.
 本発明の各態様に係る画像表示装置に備えられた制御部1は、コンピュータによって実現してもよく、この場合には、コンピュータを上記制御部1が備える各部として動作させることにより上記制御部1をコンピュータにて実現させる制御部1の制御プログラム、およびそれを記録したコンピュータ読み取り可能な記録媒体も、本発明の範疇に入る。 The control unit 1 provided in the image display apparatus according to each aspect of the present invention may be realized by a computer. In this case, the control unit 1 is operated by causing the computer to operate as each unit provided in the control unit 1. The control program of the control unit 1 for realizing the above in a computer and a computer-readable recording medium on which the control program is recorded also fall within the scope of the present invention.
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。 The present invention is not limited to the above-described embodiments, and various modifications are possible within the scope shown in the claims, and embodiments obtained by appropriately combining technical means disclosed in different embodiments. Is also included in the technical scope of the present invention. Furthermore, a new technical feature can be formed by combining the technical means disclosed in each embodiment.
 本発明は、携帯電話、スマートフォン、タブレット端末、ディスプレイを備えたパーソナルコンピュータ、各種サイズのテレビジョン、プロジェクタなど、あらゆる種類の表示装置に好適に利用することができる。 The present invention can be suitably used for all kinds of display devices such as mobile phones, smartphones, tablet terminals, personal computers equipped with displays, televisions of various sizes, projectors, and the like.
1 制御部、2 画像解析部、3 パラメータ判断部、4 画像処理部、5 光源制御部、6 表示装置(液晶表示パネル)、7 光源(バックライト)、8 エッジ強調処理部、21 フィルタ処理部、22 情報記録部、23 メモリ部、101 画像表示装置、201 画像表示装置、S1 入力画像、S1’ 処理済入力画像、S2 画像解析情報、S3 正規化パラメータ、S4 正規化後画像、S5 光源制御信号、S6 エッジ強調後画像 1 control unit, 2 image analysis unit, 3 parameter determination unit, 4 image processing unit, 5 light source control unit, 6 display device (liquid crystal display panel), 7 light source (backlight), 8 edge enhancement processing unit, 21 filter processing unit , 22 information recording unit, 23 memory unit, 101 image display device, 201 image display device, S1 input image, S1 ′ processed input image, S2 image analysis information, S3 normalization parameter, S4 post-normalization image, S5 light source control Signal, image after S6 edge enhancement

Claims (5)

  1.  入力画像から表示用画像を生成して画像表示を行う画像表示装置において、
     入力画像にフィルタ処理を行うフィルタ処理部と、
     上記フィルタ処理部にてフィルタ処理された上記入力画像における輝度毎の画素数から得られる度数分布あるいは累積度数分布を解析した画像解析情報をメモリ部に記録させる情報記録部と、
     上記メモリ部に記録された画像解析情報を、上記入力画像に適用して表示用画像を生成する画像処理部と、
     を備えていることを特徴とする画像表示装置。
    In an image display device that generates a display image from an input image and displays an image,
    A filter processing unit that performs a filtering process on the input image;
    An information recording unit that records in a memory unit image analysis information obtained by analyzing a frequency distribution or a cumulative frequency distribution obtained from the number of pixels for each luminance in the input image filtered by the filter processing unit;
    An image processing unit that generates image for display by applying the image analysis information recorded in the memory unit to the input image;
    An image display device comprising:
  2.  上記フィルタ処理部は、上記入力画像に対してローパスフィルタによるフィルタ処理を行うことを特徴とする請求項1に記載の画像表示装置。 The image display device according to claim 1, wherein the filter processing unit performs a filtering process using a low-pass filter on the input image.
  3.  上記メモリ部に記録された画像解析情報を、上記表示用画像を表示する液晶表示パネルを背面から照射するバックライトの光量制御に適用することを特徴とする請求項1または2に記載の画像表示装置。 3. The image display according to claim 1, wherein the image analysis information recorded in the memory unit is applied to a light amount control of a backlight that irradiates a liquid crystal display panel that displays the display image from the back side. apparatus.
  4.  上記表示用画像を表示する液晶表示パネルと、
     上記液晶表示パネルを背面から照射するバックライトと、をさらに備えていることを特徴とする請求項3に記載の画像表示装置。
    A liquid crystal display panel for displaying the display image;
    The image display apparatus according to claim 3, further comprising a backlight that irradiates the liquid crystal display panel from the back.
  5.  入力画像から表示用画像を生成して画像表示を行う画像表示方法において、
     入力画像にフィルタ処理を行うフィルタ処理工程と、
     上記フィルタ処理工程にてフィルタ処理された上記入力画像における輝度毎の画素数から得られる度数分布あるいは累積度数分布を解析した画像解析情報をメモリ部に記録させる画像解析情報記録工程と、
     上記メモリ部に記録された画像解析情報を、上記入力画像に適用して表示用画像を生成する画像処理工程と、
     を含んでいることを特徴とする画像表示方法。
    In an image display method for generating a display image from an input image and displaying the image,
    A filtering process for filtering the input image;
    An image analysis information recording step for recording in a memory unit image analysis information obtained by analyzing a frequency distribution or a cumulative frequency distribution obtained from the number of pixels for each luminance in the input image filtered in the filter processing step;
    An image processing step of generating image for display by applying the image analysis information recorded in the memory unit to the input image;
    An image display method comprising:
PCT/JP2015/055156 2014-02-28 2015-02-24 Image display device and image display method WO2015129667A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014039530 2014-02-28
JP2014-039530 2014-02-28

Publications (1)

Publication Number Publication Date
WO2015129667A1 true WO2015129667A1 (en) 2015-09-03

Family

ID=54008985

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/055156 WO2015129667A1 (en) 2014-02-28 2015-02-24 Image display device and image display method

Country Status (1)

Country Link
WO (1) WO2015129667A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004045634A (en) * 2002-07-10 2004-02-12 Seiko Epson Corp Image display device, image display method, and computer readable recording medium having image display program recorded
JP2004325644A (en) * 2003-04-23 2004-11-18 Seiko Epson Corp Projector
JP2010049125A (en) * 2008-08-25 2010-03-04 Hitachi Ltd Image display apparatus
JP2012118419A (en) * 2010-12-03 2012-06-21 Hitachi Consumer Electronics Co Ltd Image display device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004045634A (en) * 2002-07-10 2004-02-12 Seiko Epson Corp Image display device, image display method, and computer readable recording medium having image display program recorded
JP2004325644A (en) * 2003-04-23 2004-11-18 Seiko Epson Corp Projector
JP2010049125A (en) * 2008-08-25 2010-03-04 Hitachi Ltd Image display apparatus
JP2012118419A (en) * 2010-12-03 2012-06-21 Hitachi Consumer Electronics Co Ltd Image display device

Similar Documents

Publication Publication Date Title
KR102425302B1 (en) Burn-in statistics and burn-in compensation
JP6543442B2 (en) Image processing apparatus and image processing method
KR102157032B1 (en) Display management for high dynamic range video
US8031166B2 (en) Liquid crystal display method and the appratus thereof
JP5159208B2 (en) Image correction method and apparatus
JP6376971B2 (en) Image display method and image display apparatus
TWI519151B (en) Image processing method and image processing apparatus
JP5257108B2 (en) Projector, projection system, image display method, and image display program
WO2016157838A1 (en) Signal processing device, display device, signal processing method, and program
US20140348428A1 (en) Dynamic range-adjustment apparatuses and methods
JP2017044841A (en) Image processing device and image processing method
US10192495B2 (en) Display apparatus with lighting device, control method for display apparatus, and storage medium
KR20160068627A (en) Image processing device, image processing method and display device
WO2017006619A1 (en) Image processing device, display device, and program
US10762604B2 (en) Chrominance and luminance enhancing systems and methods
US20120314969A1 (en) Image processing apparatus and display device including the same, and image processing method
EP2056284B1 (en) A liquid crystal display method and apparatus
US20160248959A1 (en) Image processing device and method
US20190139500A1 (en) Display apparatus and control method thereof
WO2015129667A1 (en) Image display device and image display method
JP6226186B2 (en) Video display control device
US20170287116A1 (en) Image processing method, image processing device, and recording medium for storing image processing program
US10062359B2 (en) Image compensation method applied to display and associated control circuit
US20100303377A1 (en) Image processing apparatus, image processing method and computer readable medium
KR20160053632A (en) Local tone mapping circuit, and mobile computing device including the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15754528

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15754528

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP