WO2015129630A1 - Method for producing (s)-2-(5-chloro-2-nitrophenyl)-4-cyclopropyl-1,1,1-trifluorobut-3-yne-2-ol - Google Patents

Method for producing (s)-2-(5-chloro-2-nitrophenyl)-4-cyclopropyl-1,1,1-trifluorobut-3-yne-2-ol Download PDF

Info

Publication number
WO2015129630A1
WO2015129630A1 PCT/JP2015/055060 JP2015055060W WO2015129630A1 WO 2015129630 A1 WO2015129630 A1 WO 2015129630A1 JP 2015055060 W JP2015055060 W JP 2015055060W WO 2015129630 A1 WO2015129630 A1 WO 2015129630A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
nitrophenyl
cyclopropyl
chloro
trifluorobut
Prior art date
Application number
PCT/JP2015/055060
Other languages
French (fr)
Japanese (ja)
Inventor
賢 大楠
恵津子 徳永
哲男 柴田
Original Assignee
国立大学法人名古屋工業大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人名古屋工業大学 filed Critical 国立大学法人名古屋工業大学
Priority to JP2016505204A priority Critical patent/JPWO2015129630A1/en
Publication of WO2015129630A1 publication Critical patent/WO2015129630A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • A61P31/18Antivirals for RNA viruses for HIV
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C201/00Preparation of esters of nitric or nitrous acid or of compounds containing nitro or nitroso groups bound to a carbon skeleton
    • C07C201/06Preparation of nitro compounds
    • C07C201/12Preparation of nitro compounds by reactions not involving the formation of nitro groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D453/00Heterocyclic compounds containing quinuclidine or iso-quinuclidine ring systems, e.g. quinine alkaloids
    • C07D453/02Heterocyclic compounds containing quinuclidine or iso-quinuclidine ring systems, e.g. quinine alkaloids containing not further condensed quinuclidine ring systems
    • C07D453/04Heterocyclic compounds containing quinuclidine or iso-quinuclidine ring systems, e.g. quinine alkaloids containing not further condensed quinuclidine ring systems having a quinolyl-4, a substituted quinolyl-4 or a alkylenedioxy-quinolyl-4 radical linked through only one carbon atom, attached in position 2, e.g. quinine
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/08Bridged systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0234Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds
    • B01J31/0235Nitrogen containing compounds
    • B01J31/0244Nitrogen containing compounds with nitrogen contained as ring member in aromatic compounds or moieties, e.g. pyridine
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/07Optical isomers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/02Systems containing only non-condensed rings with a three-membered ring

Definitions

  • Efavirenz developed by Merck, is an AIDS onset inhibitor (non-nucleic acid reverse transcriptase inhibitor) and one of the world's top drugs. Efavirenz has an asymmetric carbon with a trifluoromethyl group and is known to have anti-HIV activity only in the (S) -form optical isomer and not in the (R) -form. Yes.
  • optical resolution using (-)-Camphanyl chloride as a chiral auxiliary is currently used (Non-patent Document 1), and in optical resolution, the intermediate is racemic. Since the diastereomers are separated after synthesis and the action of an optical resolving agent, half of the compounds are discarded.
  • R 5 represents a methyl group, an n-butyl group, an n-hexyl group, an n-octyl group, an n-decyl group or a cetyl group
  • R 6 represents a phenyl group, 3,5-tBu 2 C 6 H 3 group or 3,5- (CF 3 ) 2 C 6 H 3 group.
  • the quinaalkaloid phase transfer catalyst used in the reaction is a quinaalkaloid derivative represented by the above general formula (3), (4), (5) or (6).
  • the compounds represented by the general formulas (3), (4), (5), and (6) are isomers and have the same performance. For this reason, any of the compounds represented by the general formulas (3), (4), (5), and (6) may be used as the quina alkaloid phase transfer catalyst.
  • the use amount of the quina alkaloid phase transfer catalyst may be a catalyst amount that acts as a phase transfer catalyst.
  • R 1 represents an alkoxy group
  • R 2 represents an ethyl group or a vinyl group
  • R 3 represents an alkyl group, an alkenyl group or an alkynyl group.
  • R 4 represents an alkyl group, an alkenyl group, an aralkyl group, an alkynyl group, an aryl group, an alkoxy group or an amino group
  • X represents a counter anion.
  • alkyl group for R 3 and R 4 for example, an alkyl group having about 1 to 20 carbon atoms can be used. Specifically, methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group, undecyl group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group, A hexadecyl group, a heptadecyl group, an octadecyl group, a nonadecyl group, an icosyl group, or a cyclic alkyl group or a branched alkyl group thereof can be used.
  • the number of unsaturated bonds contained in the alkenyl group or alkynyl group of R 3 and R 4 is not particularly limited, but is preferably about 1 to 2.
  • the alkenyl group or alkynyl group may be linear or branched.
  • the aryl group represented by R 3 and R 4 also includes a heteroaryl group. Specific examples thereof include an aryl group having 2 to 30 carbon atoms, such as a phenyl group, a naphthyl group, an anthranyl group, a pyrenyl group, and biphenyl.
  • the alkyl group may be substituted with a substituent such as a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, a cyano group, a nitro group, an aryl group, an acyl group, an alkoxy group, an aryloxy group, and an acyloxy group.
  • a substituent such as a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, a cyano group, a nitro group, an aryl group, an acyl group, an alkoxy group, an aryloxy group, and an acyloxy group.
  • the alkynyl group may be substituted with a substituent such as a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, a cyano group, a nitro group, an aryl group, an acyl group, an alkoxy group, an aryloxy group, or an acyloxy group.
  • a substituent such as a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, a cyano group, a nitro group, an aryl group, an acyl group, an alkoxy group, an aryloxy group, or an acyloxy group.
  • Examples of the aralkyl group for R 4 include benzyl group, pentafluorobenzyl group, o-methylbenzyl group, m-methylbenzyl group, p-methylbenzyl group, p-nitrobenzyl group, naphthylmethyl group, furfuryl group, ⁇ -Phenethyl group and the like can be mentioned.
  • Examples of the amino group represented by R 4 include those in which one or two substituents of hydrogen, a substituted or unsubstituted alkyl group, an alkenyl group, an aralkyl group, an alkynyl group, and an aryl group are substituted on N.
  • the substituents are independent of each other and need not be the same.
  • the amino group can form a cyclic structure that can be formed by combining substituents. In particular, a monocyclic, bicyclic, or higher polycyclic structure composed of 3 to 20 members can be shown. Further, a part of the cyclic structure may be formed with or without hetero atoms.
  • the type of solvent used in the reaction is not particularly limited, and examples of the solvent include ether solvents such as diethyl ether, diisopropyl ether, n-butyl methyl ether, tert-butyl methyl ether, tetrahydrofuran, and dioxane; heptane, hexane, cyclopentane, Hydrocarbon solvents such as cyclohexane; Halogenated hydrocarbon solvents such as chloroform, carbon tetrachloride, methylene chloride, dichloroethane, trichloroethane; benzene, toluene, xylene, cumene, cymene, mesitylene, diisopropylbenzene, pyridine, pyrimidine, pyrazine, Aromatic solvents such as pyridazine; solvents such as dimethyl sulfoxide and dimethylformamide; methanol, ethanol, propano
  • a solvent used for the synthesis of enantioselective trifluoromethyl alcohol with respect to alkynyl ketone a mixed solvent of toluene and methylene chloride is preferable, as shown in the examples described later, and the solvent ratio of toluene and methylene chloride is a 2: 1 mixture.
  • a solvent is most preferred.
  • ammonium fluoride is preferable and tetramethylammonium fluoride is most preferable, as shown in the examples described later.
  • the amount used is generally 0.1 to 10 equivalents, preferably 0.5 equivalents, relative to formula (1).
  • the reaction temperature is not particularly limited, but is usually ⁇ 80 ° C. to 120 ° C., more preferably around room temperature.
  • the reactor can be either an open-air reactor or a closed reactor such as an autoclave.
  • the reaction pressure can be either atmospheric pressure or pressurized.
  • the reaction time is not particularly limited, but the reaction is usually completed in 1 hour to 5 days.
  • the trifluoromethyl alcohol compound represented by the above formula (2) can be isolated and purified from the reaction solution by a general method. For example, after concentrating the reaction solution, purification by column chromatography using an adsorbent such as silica gel and alumina, salting out, recrystallization and the like can be mentioned.
  • R 1 in the general formulas (3), (4), (5), and (6) is an alkoxy group, so that it is highly enantioselectively represented by the above formula (2). It is possible to produce trifluoromethyl alcohol compounds.
  • this reaction is a safe reaction because a metal catalyst is not used as an impurity because no metal catalyst is used and a quinaalkaloid phase transfer catalyst is used.
  • the quinaalkaloid phase transfer catalyst represented by the general formula (7) is represented by the above general formula (5), R 2 is a vinyl group, R 3 is an aryl group, and R 4 is a methoxy group ( It corresponds to a quinaalkaloid phase transfer catalyst in which X is bromide.
  • the catalysts 7a to 7m in which R 5 and R 6 in the general formula (7) are groups shown in Table 1 below were used.
  • R 5 corresponds to a part of R 1 in the general formula (5)
  • R 6 corresponds to a part of R 3 in the general formula (5).
  • Ph represents an unsubstituted phenyl group, and the 3,5-tBu 2 C 6 H 3 group and the 3,5- (CF 3 ) 2 C 6 H 3 group are substituted types. It is a phenyl group.
  • alkynyl ketone (0.10 mmol), tetramethylammonium fluoride (0.05 mmol), and any one of quinaalkaloid phase transfer catalysts (0.01 mmol) shown in Table 1 in 7a to 7m were used as a solvent.
  • (trifluoromethyl) trimethylsilane (0.20 mmol) was added at the temperature shown in Table 1.
  • Table 1 shows the enantioselectivity (Ee (%)) of the compound obtained in this example. From the results shown in Table 1, it can be seen that the compound of the formula (2) was obtained enantioselectively when any of the 7a to 7m quinaalkaloid phase transfer catalysts was used.
  • a 7f, 7m quinaalkaloid phase transfer catalyst when used, the enantioselectivity is as high as 80%. Therefore, it is represented by the general formula (7), and R 5 is an n-butyl group or an n-hexyl group. It can be seen that it is most preferable to use a quina alkaloid phase transfer catalyst.

Abstract

[Problem] To provide a novel method for producing (S)-2-(5-chloro-2-nitrophenyl)-4-cyclopropyl-1,1,1-trifluorobut-3-yne-2-ol. [Solution] An alkynyl ketone represented by belowmentioned formula (1) is reacted with (trifluoromethyl) trimethylsilane in a solvent in the presence of a basic group and a catalytic amount of a cinchona alkaloid phase transfer catalyst represented by belowmentioned general formula (3), (4), (5), or (6). (In the formulas, R1, R2, R3, R4 and X represent the meaning set forth in claim 1.)

Description

(S)-2-(5-クロロ-2-ニトロフェニル)-4-シクロプロピル-1,1,1-トリフルオロブト-3-イン-2-オールの製造方法Process for producing (S) -2- (5-chloro-2-nitrophenyl) -4-cyclopropyl-1,1,1-trifluorobut-3-in-2-ol
 本発明は、エイズ治療薬であるエファビレンツ(Efavirenz)の鍵中間体となる(S)-2-(5-クロロ-2-ニトロフェニル)-4-シクロプロピル-1,1,1-トリフルオロブト-3-イン-2-オールの製造方法に関するものである。 The present invention relates to (S) -2- (5-chloro-2-nitrophenyl) -4-cyclopropyl-1,1,1-trifluorobutene, which is a key intermediate of efavirenz, an AIDS therapeutic agent This relates to a method for producing -3-in-2-ol.
 Merck社が開発したエファビレンツ(Efavirenz)はエイズ発症抑制剤(非核酸系逆転写酵素阻害剤)であり、世界的なトップドラッグの一つであり、その売り上げは年間約200億円にのぼる。エファビレンツ(Efavirenz)はトリフルオロメチル基を持つ不斉炭素を有し、(S)-体の光学異性体のみに抗HIV活性があり、(R)-体には活性がないことが知られている。しかしながら、現在の実際の製造プロセスでは(-)-Camphanoyl chlorideをキラル補助基として利用した光学分割が用いられているのが現状であり(非特許文献1)、光学分割では中間体をラセミ体として合成し、光学分割剤を作用させた後にジアステレオマーを分離するので、半分の化合物は捨てていることになる。 Efavirenz, developed by Merck, is an AIDS onset inhibitor (non-nucleic acid reverse transcriptase inhibitor) and one of the world's top drugs. Efavirenz has an asymmetric carbon with a trifluoromethyl group and is known to have anti-HIV activity only in the (S) -form optical isomer and not in the (R) -form. Yes. However, in the current actual production process, optical resolution using (-)-Camphanyl chloride as a chiral auxiliary is currently used (Non-patent Document 1), and in optical resolution, the intermediate is racemic. Since the diastereomers are separated after synthesis and the action of an optical resolving agent, half of the compounds are discarded.
 また、エファビレンツの鍵中間体となる(S)-2-(5-クロロ-2-ニトロフェニル)-4-シクロプロピル-1,1,1-トリフルオロブト-3-イン-2-オールの製造方法には、大きく大別して二つ挙げられる。一つ目は、従来の方法であるトリフルオロメチルケトンに対する不斉アルキニル化反応であり(非特許文献2、3、4参照)、二つ目は、新たな方法であるアルキニルケトンに対する直接的不斉トリフルオロメチル化反応である(非特許文献5参照)。 Also, production of (S) -2- (5-chloro-2-nitrophenyl) -4-cyclopropyl-1,1,1-trifluorobut-3-in-2-ol, which is a key intermediate of efavirenz There are two major methods. The first is an asymmetric alkynylation reaction for trifluoromethyl ketone, which is a conventional method (see Non-Patent Documents 2, 3, and 4), and the second is a direct method for alkynyl ketone, which is a new method. This is a simultaneous trifluoromethylation reaction (see Non-Patent Document 5).
 しかし、以前に本発明者が上記二つ目の方法を報告しているが、エナンチオ選択性が中程度(50% ee)とあまり高くなかった。 However, although the present inventor has previously reported the second method, the enantioselectivity was not so high as moderate (50% ee).
 そのため、エナンチオ選択性をより高められるように、本発明者が以前に報告した方法を改良した新規な製造方法の開発が求められていた。 Therefore, there has been a demand for the development of a new production method that is an improvement on the method previously reported by the present inventors so that the enantioselectivity can be further enhanced.
 本発明は上記点に鑑みて、エナンチオ選択的トリフルオロメチル化反応を利用した(S)-2-(5-クロロ-2-ニトロフェニル)-4-シクロプロピル-1,1,1-トリフルオロブト-3-イン-2-オールの新規な製造方法を提供することを目的とする。 In view of the above points, the present invention is directed to (S) -2- (5-chloro-2-nitrophenyl) -4-cyclopropyl-1,1,1-trifluorobutene utilizing an enantioselective trifluoromethylation reaction. It is an object of the present invention to provide a novel method for producing to-3-in-2-ol.
 上記目的を達成するために、本発明者らが鋭意検討したところ、上記非特許文献5に記載の触媒とは一部の官能基が異なるキナアルカロイド相間移動触媒と(トリフルオロメチル)トリメチルシランを用いることにより、次式で示すアルキニルケトンへの高エナンチオ選択的トリフルオロメチル化反応に成功した。 In order to achieve the above-mentioned object, the present inventors have conducted intensive studies. As a result, a quinaalkaloid phase transfer catalyst having a partial functional group different from the catalyst described in Non-Patent Document 5 and (trifluoromethyl) trimethylsilane By using it, a highly enantioselective trifluoromethylation reaction to an alkynyl ketone represented by the following formula was successfully achieved.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 すなわち、請求項1に記載の発明は、溶媒中にて、塩基および触媒量の下記の一般式(3)、(4)、(5)または(6)で表されるキナアルカロイド相間移動触媒の存在下で、下記の式(1)で表されるアルキニルケトンと(トリフルオロメチル)トリメチルシランとを反応させることを特徴とする下記の式(2)で表される(S)-2-(5-クロロ-2-ニトロフェニル)-4-シクロプロピル-1,1,1-トリフルオロブト-3-イン-2-オールの新規な製造方法である。 That is, the invention described in claim 1 is a quinaalkaloid phase transfer catalyst represented by the following general formula (3), (4), (5) or (6) in a solvent in a base and a catalyst amount. (S) -2- (represented by the following formula (2) characterized by reacting an alkynyl ketone represented by the following formula (1) with (trifluoromethyl) trimethylsilane in the presence: This is a novel process for producing 5-chloro-2-nitrophenyl) -4-cyclopropyl-1,1,1-trifluorobut-3-in-2-ol.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
(式中、Rはアルコキシ基を示し、Rはエチル基またはビニル基を示し、Rはアルキル基、アルケニル基、アルキニル基またはアリール基を示し、Rはアルキル基、アルケニル基、アラルキル基、アルキニル基、アリール基、アルコキシ基またはアミノ基を示し、Xはカウンターアニオンを示す。)
 請求項1に記載の発明では、一般式(3)、(4)、(5)または(6)で表され、式中のRがアルコキシ基であるキナアルカロイド相間移動触媒を用いている。なお、非特許文献5に記載のキナアルカロイド相間移動触媒は、一般式(3)、(4)、(5)、(6)中のRがヒドロキシ基であるものに相当する。
(Wherein R 1 represents an alkoxy group, R 2 represents an ethyl group or a vinyl group, R 3 represents an alkyl group, an alkenyl group, an alkynyl group or an aryl group, and R 4 represents an alkyl group, an alkenyl group or an aralkyl group. Group, alkynyl group, aryl group, alkoxy group or amino group, and X represents a counter anion.)
The invention according to claim 1 uses a quinaalkaloid phase transfer catalyst represented by the general formula (3), (4), (5) or (6), wherein R 1 is an alkoxy group. In addition, the quina alkaloid phase transfer catalyst described in Non-Patent Document 5 corresponds to that in which R 1 in the general formulas (3), (4), (5), and (6) is a hydroxy group.
 請求項1に記載の発明によれば、(S)-2-(5-クロロ-2-ニトロフェニル)-4-シクロプロピル-1,1,1-トリフルオロブト-3-イン-2-オールをエナンチオ選択的に製造することができる。 According to the invention described in claim 1, (S) -2- (5-chloro-2-nitrophenyl) -4-cyclopropyl-1,1,1-trifluorobut-3-in-2-ol Can be produced enantioselectively.
 請求項1に記載の発明においては、請求項2に記載の発明のように、キナアルカロイド相間移動触媒として、Rが直鎖のアルコキシ基であるものを用いることが好ましい。 In the invention described in claim 1, like the invention described in claim 2, it is preferable to use a quinaalkaloid phase transfer catalyst in which R 1 is a linear alkoxy group.
 請求項1、2に記載の発明においては、請求項3に記載の発明のように、溶媒として、トルエンと塩化メチレンの混合溶媒を用いることが好ましい。 In the inventions described in claims 1 and 2, it is preferable to use a mixed solvent of toluene and methylene chloride as the solvent as in the invention described in claim 3.
 請求項1~3に記載の発明においては、請求項4に記載の発明のように、塩基として、アンモニウムフロリドを用いることが好ましい。 In the inventions described in claims 1 to 3, it is preferable to use ammonium fluoride as the base as in the invention described in claim 4.
 請求項1に記載の発明においては、請求項5に記載の発明のように、キナアルカロイド相間移動触媒として、下記の一般式(7)で表される化合物を用いることが好ましい。 In the invention described in claim 1, like the invention described in claim 5, it is preferable to use a compound represented by the following general formula (7) as the quinaalkaloid phase transfer catalyst.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
(式中、Rは、メチル基、n-ブチル基、n-ヘキシル基、n-オクチル基、n-デシル基またはセチル基であり、Rは、フェニル基、3,5-tBu基または3,5-(CF基である。)
 請求項5に記載の発明によれば、非特許文献5に記載の製造方法と比較して、(S)-2-(5-クロロ-2-ニトロフェニル)-4-シクロプロピル-1,1,1-トリフルオロブト-3-イン-2-オールを、高エナンチオ選択的に製造することができる(後述の実施例における表1中の7b、7c、7d、7e、7f、7j、7k、7l、7mの触媒を用いた反応例参照)。
(Wherein R 5 represents a methyl group, an n-butyl group, an n-hexyl group, an n-octyl group, an n-decyl group or a cetyl group, and R 6 represents a phenyl group, 3,5-tBu 2 C 6 H 3 group or 3,5- (CF 3 ) 2 C 6 H 3 group.)
According to the invention described in claim 5, compared to the production method described in Non-Patent Document 5, (S) -2- (5-chloro-2-nitrophenyl) -4-cyclopropyl-1,1 , 1-trifluorobut-3-in-2-ol can be produced with high enantioselectivity (7b, 7c, 7d, 7e, 7f, 7j, 7k in Table 1 in the examples described later). (Refer to reaction examples using 7 l and 7 m catalysts).
 本発明では、溶媒中にて、塩基およびキナアルカロイド相間移動触媒の存在下で、上記の式(1)で表されるアルキニルケトンと(トリフルオロメチル)トリメチルシランとを反応させる。これにより、上記の式(2)で表されるトリフルオロメチルアルコール化合物、すなわち、(S)-2-(5-クロロ-2-ニトロフェニル)-4-シクロプロピル-1,1,1-トリフルオロブト-3-イン-2-オールを製造する。 In the present invention, an alkynyl ketone represented by the above formula (1) and (trifluoromethyl) trimethylsilane are reacted in a solvent in the presence of a base and a quinaalkaloid phase transfer catalyst. Thus, the trifluoromethyl alcohol compound represented by the above formula (2), that is, (S) -2- (5-chloro-2-nitrophenyl) -4-cyclopropyl-1,1,1-trifluoro Lobut-3-in-2-ol is produced.
 式(1)で表されるアルキニルケトンは、1-(5-クロロ-2-ニトロフェニル)-3-シクロプロピル-2-プロピン-1-オールである。式(1)で表されるアルキニルケトンは、既存の製法で製造されたものを用いることができる。 The alkynyl ketone represented by the formula (1) is 1- (5-chloro-2-nitrophenyl) -3-cyclopropyl-2-propyn-1-ol. As the alkynyl ketone represented by the formula (1), one produced by an existing production method can be used.
 反応に用いるキナアルカロイド相間移動触媒は、上記の一般式(3)、(4)、(5)または(6)で表されるキナアルカロイド誘導体である。一般式(3)、(4)、(5)、(6)で表される化合物は、異性体の関係であり、同じ性能を有する。このため、キナアルカロイド相間移動触媒として、一般式(3)、(4)、(5)、(6)で表される化合物のいずれを用いてもよい。キナアルカロイド相間移動触媒の使用量は、相間移動触媒として作用する触媒量であればよい。 The quinaalkaloid phase transfer catalyst used in the reaction is a quinaalkaloid derivative represented by the above general formula (3), (4), (5) or (6). The compounds represented by the general formulas (3), (4), (5), and (6) are isomers and have the same performance. For this reason, any of the compounds represented by the general formulas (3), (4), (5), and (6) may be used as the quina alkaloid phase transfer catalyst. The use amount of the quina alkaloid phase transfer catalyst may be a catalyst amount that acts as a phase transfer catalyst.
 一般式(3)、(4)、(5)、(6)中において、Rはアルコキシ基を示し、Rはエチル基またはビニル基を示し、Rはアルキル基、アルケニル基、アルキニル基またはアリール基を示し、Rはアルキル基、アルケニル基、アラルキル基、アルキニル基、アリール基、アルコキシ基またはアミノ基を示し、Xはカウンターアニオンを示している。 In the general formulas (3), (4), (5) and (6), R 1 represents an alkoxy group, R 2 represents an ethyl group or a vinyl group, and R 3 represents an alkyl group, an alkenyl group or an alkynyl group. Or an aryl group, R 4 represents an alkyl group, an alkenyl group, an aralkyl group, an alkynyl group, an aryl group, an alkoxy group or an amino group, and X represents a counter anion.
 本明細書において、R及びRのアルキル基としては、例えば、炭素数1乃至20程度のアルキル基を用いることができる。具体的には、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基、ノナデシル基、イコシル基、又はこれらの環状アルキル基、分鎖アルキル基などを用いることができる。 In the present specification, as the alkyl group for R 3 and R 4 , for example, an alkyl group having about 1 to 20 carbon atoms can be used. Specifically, methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group, undecyl group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group, A hexadecyl group, a heptadecyl group, an octadecyl group, a nonadecyl group, an icosyl group, or a cyclic alkyl group or a branched alkyl group thereof can be used.
 R及びRのアルケニル基又はアルキニル基に含まれる不飽和結合の数は特に限定されないが、好ましくは1乃至2個程度である。該アルケニル基又はアルキニル基は、直鎖状又は分枝鎖状のいずれでもよい。 The number of unsaturated bonds contained in the alkenyl group or alkynyl group of R 3 and R 4 is not particularly limited, but is preferably about 1 to 2. The alkenyl group or alkynyl group may be linear or branched.
 R及びRが示すアリール基は、ヘテロアリール基も含有し、具体例としては、例えば炭素数2~30のアリール基、具体的にはフェニル基、ナフチル基、アンスラニル基、ピレニル基、ビフェニル基、インデニル基、テトラヒドロナフチル基、ピリジル基、ピリミジニル基、ピラジニル基、ピリダニジル基、ピペラジニル基、ピラゾリル基、イミダゾリル基、キニリル基、ピロリル基、インドリル基、フリル基などが挙げることができる。 The aryl group represented by R 3 and R 4 also includes a heteroaryl group. Specific examples thereof include an aryl group having 2 to 30 carbon atoms, such as a phenyl group, a naphthyl group, an anthranyl group, a pyrenyl group, and biphenyl. A group, an indenyl group, a tetrahydronaphthyl group, a pyridyl group, a pyrimidinyl group, a pyrazinyl group, a pyridanidyl group, a piperazinyl group, a pyrazolyl group, an imidazolyl group, a quinylyl group, a pyrrolyl group, an indolyl group, and a furyl group.
 アルキル基はフッ素原子、塩素原子、臭素原子、ヨウ素原子、シアノ基、ニトロ基、アリール基、アシル基、アルコキシ基、アリールオキシ基、アシルオキシ基などの置換基で置換されていてもよく、2個以上の置換基を有する場合には、それらは同一でも異なっていてもよい。 The alkyl group may be substituted with a substituent such as a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, a cyano group, a nitro group, an aryl group, an acyl group, an alkoxy group, an aryloxy group, and an acyloxy group. When having the above substituents, they may be the same or different.
 アルケニル基はフッ素原子、塩素原子、臭素原子、ヨウ素原子、シアノ基、ニトロ基、アリール基、アシル基、アルコキシ基、アリールオキシ基、アシルオキシ基などの置換基で置換されていてもよく、2個以上の置換基を有する場合には、それらは同一でも異なっていてもよい。 The alkenyl group may be substituted with a substituent such as a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, a cyano group, a nitro group, an aryl group, an acyl group, an alkoxy group, an aryloxy group, or an acyloxy group. When having the above substituents, they may be the same or different.
 アルキニル基はフッ素原子、塩素原子、臭素原子、ヨウ素原子、シアノ基、ニトロ基、アリール基、アシル基、アルコキシ基、アリールオキシ基、アシルオキシ基などの置換基で置換されていてもよく、2個以上の置換基を有する場合には、それらは同一でも異なっていてもよい。 The alkynyl group may be substituted with a substituent such as a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, a cyano group, a nitro group, an aryl group, an acyl group, an alkoxy group, an aryloxy group, or an acyloxy group. When having the above substituents, they may be the same or different.
 アリール基はアルキル基、フッ素原子、塩素原子、臭素原子、ヨウ素原子、シアノ基、ニトロ基、アリール基、アシル基、アルコキシ基、アリールオキシ基、アシルオキシ基などの置換基で置換されていてもよく、2個以上の置換基を有する場合には、それらは同一でも異なっていてもよい。 The aryl group may be substituted with a substituent such as an alkyl group, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, a cyano group, a nitro group, an aryl group, an acyl group, an alkoxy group, an aryloxy group, and an acyloxy group. When it has two or more substituents, they may be the same or different.
 Rのアラルキル基としては、例えば、ベンジル基、ペンタフルオロベンジル基、o-メチルベンジル基、m-メチルベンジル基、p-メチルベンジル基、p-ニトロベンジル基、ナフチルメチル基、フルフリル基、α-フェネチル基等が挙げられる。 Examples of the aralkyl group for R 4 include benzyl group, pentafluorobenzyl group, o-methylbenzyl group, m-methylbenzyl group, p-methylbenzyl group, p-nitrobenzyl group, naphthylmethyl group, furfuryl group, α -Phenethyl group and the like can be mentioned.
 Rが示すアミノ基としては、N上に水素、置換もしくは未置換のアルキル基、アルケニル基、アラルキル基、アルキニル基、アリール基の置換基が1つか2つ置換しているものが挙げられる。置換基はそれぞれ独立しており、同一である必要はない。アミノ基は、置換基を組み合わせて形成されうる環状構造を形成することができる。特に3員環から20員環でなる単環、双環、またはそれ以上の多環の構造を示すことができる。また、ヘテロ原子の介在もしくは非介在で環状構造の一部を形成してもよい。 Examples of the amino group represented by R 4 include those in which one or two substituents of hydrogen, a substituted or unsubstituted alkyl group, an alkenyl group, an aralkyl group, an alkynyl group, and an aryl group are substituted on N. The substituents are independent of each other and need not be the same. The amino group can form a cyclic structure that can be formed by combining substituents. In particular, a monocyclic, bicyclic, or higher polycyclic structure composed of 3 to 20 members can be shown. Further, a part of the cyclic structure may be formed with or without hetero atoms.
 RおよびRが示すアルコキシ基は炭素数が1~20のアルコキシ基が好ましく、炭素数が1~10のアルコキシ基がさらに好ましい。アルコキシ基の場合も上記のアルキル基の場合と同様の置換基により置換されていてもよい。エナンチオ選択性をより高めるという観点では、後述する実施例に示すように、Rのアルコキシ基は、直鎖のアルコキシ基であることが好ましく、その中でも、炭素数が4または6の直鎖のアルコキシ基であることが最も好ましい。 The alkoxy group represented by R 1 and R 4 is preferably an alkoxy group having 1 to 20 carbon atoms, and more preferably an alkoxy group having 1 to 10 carbon atoms. In the case of an alkoxy group, it may be substituted with the same substituent as in the case of the above alkyl group. From the viewpoint of further enhancing enantioselectivity, as shown in the examples described later, the alkoxy group of R 1 is preferably a linear alkoxy group, and among them, a linear chain having 4 or 6 carbon atoms is preferable. Most preferred is an alkoxy group.
 Xが示すカウンターアニオンとしては、ハロゲンやアルコキシドが挙げられ、より具体的には、フロリド、クロリド、ブロミド(Br)、ヨード、フェノキシド、トリフルオロボレート(BF)、ヘキサフルオロフォスフェート(PF)などが挙げられる。 Examples of the counter anion represented by X include halogen and alkoxide, and more specifically, fluoride, chloride, bromide (Br), iodo, phenoxide, trifluoroborate (BF 4 ), hexafluorophosphate (PF 6 ). Etc.
 反応に用いる溶媒の種類は特に限定されないが、溶媒としては、ジエチルエーテル、ジイソプロピルエーテル、n-ブチルメチルエーテル、tert-ブチルメチルエーテル、テトラヒドロフラン、ジオキサン等のエーテル系溶媒;ヘプタン、ヘキサン、シクロペンタン、シクロヘキサン等の炭化水素系溶媒;クロロホルム、四塩化炭素、塩化メチレン、ジクロロエタン、トリクロロエタン等のハロゲン化炭化水素系溶媒;ベンゼン、トルエン、キシレン、クメン、シメン、メシチレン、ジイソプロピルベンゼン、ピリジン、ピリミジン、ピラジン、ピリダジン等の芳香族系溶媒;ジメチルスルホキシド、ジメチルホルムアミド等の溶媒;メタノール、エタノール、プロパノール、i-プロピルアルコール、アミノエタノール、N、N-ジメチルアミノエタノール等のアルコール系溶媒が挙げられる。これらは単独で使用し得るのみならず、2種類以上を混合して用いることも可能である。アルキニルケトンに対するエナンチオ選択的トリフルオロメチルアルコールの合成に用いる溶媒としては、後述する実施例に示すように、トルエンと塩化メチレンの混合溶媒が好ましく、トルエンと塩化メチレンの溶媒比が2対1の混合溶媒が最も好ましい。 The type of solvent used in the reaction is not particularly limited, and examples of the solvent include ether solvents such as diethyl ether, diisopropyl ether, n-butyl methyl ether, tert-butyl methyl ether, tetrahydrofuran, and dioxane; heptane, hexane, cyclopentane, Hydrocarbon solvents such as cyclohexane; Halogenated hydrocarbon solvents such as chloroform, carbon tetrachloride, methylene chloride, dichloroethane, trichloroethane; benzene, toluene, xylene, cumene, cymene, mesitylene, diisopropylbenzene, pyridine, pyrimidine, pyrazine, Aromatic solvents such as pyridazine; solvents such as dimethyl sulfoxide and dimethylformamide; methanol, ethanol, propanol, i-propyl alcohol, aminoethanol, N, N-di Alcohol solvents such as chill amino ethanol. These can be used alone or in combination of two or more. As a solvent used for the synthesis of enantioselective trifluoromethyl alcohol with respect to alkynyl ketone, a mixed solvent of toluene and methylene chloride is preferable, as shown in the examples described later, and the solvent ratio of toluene and methylene chloride is a 2: 1 mixture. A solvent is most preferred.
 反応に用いる塩基として、無機塩基、有機塩基、有機金属試薬等が使用できる。塩基としては、例えば、炭酸カリウム、炭酸セシウム等の炭酸塩;酢酸ナトリウム、酢酸カリウムなどの酢酸塩;テトラメチルアンモニウムフロリド、テトラエチルアンモニウムフロリド、テトラブチルアンモニウムフロリドなどのアンモニウムフロリド;フッ化カリウム、フッ化セシウムなどのフッ化アルカリ金属類;水酸化ナトリウム、水酸化カリウム等の水酸化物;ナトリウムメトキシド、カリウムtert-ブトキシド等のアルコキシド化合物;DABCO、DBU、トリエチルアミン、N、N-ジメチルアミノピリジン等の有機塩基;n-ブチルリチウム、sec-ブチルリチウム、tert-ブチルリチウム、リチウムジイソプロピルアミド、ヘキサメチルジシラザンリチウム塩などのリチウム塩などが挙げられる。アルキニルケトンに対するエナンチオ選択的トリフルオロメチルアルコールの合成に用いる塩基としては、後述する実施例に示すように、アンモニウムフロリドが好ましく、テトラメチルアンモニウムフロリドが最も好ましい。使用量は一般的に式(1)に対して、0.1~10当量で、好ましくは0.5当量である。 As the base used in the reaction, an inorganic base, an organic base, an organometallic reagent, or the like can be used. Examples of the base include carbonates such as potassium carbonate and cesium carbonate; acetates such as sodium acetate and potassium acetate; ammonium fluorides such as tetramethylammonium fluoride, tetraethylammonium fluoride and tetrabutylammonium fluoride; Alkali metal fluorides such as potassium and cesium fluoride; hydroxides such as sodium hydroxide and potassium hydroxide; alkoxide compounds such as sodium methoxide and potassium tert-butoxide; DABCO, DBU, triethylamine, N, N-dimethyl And organic bases such as aminopyridine; lithium salts such as n-butyllithium, sec-butyllithium, tert-butyllithium, lithium diisopropylamide, and hexamethyldisilazane lithium salt. As the base used for the synthesis of the enantioselective trifluoromethyl alcohol with respect to the alkynyl ketone, ammonium fluoride is preferable and tetramethylammonium fluoride is most preferable, as shown in the examples described later. The amount used is generally 0.1 to 10 equivalents, preferably 0.5 equivalents, relative to formula (1).
 反応温度は特に限定されるものではないが、通常-80℃~120℃であり、より好ましくは室温付近である。反応器は大気開放型の反応器、またはオートクレーブ等の密閉型の反応器のいずれも可能である。反応圧力は大気圧下、または加圧下のいずれも可能である。反応時間は特に限定されるものではないが、通常1時間~5日で反応は完結する。 The reaction temperature is not particularly limited, but is usually −80 ° C. to 120 ° C., more preferably around room temperature. The reactor can be either an open-air reactor or a closed reactor such as an autoclave. The reaction pressure can be either atmospheric pressure or pressurized. The reaction time is not particularly limited, but the reaction is usually completed in 1 hour to 5 days.
 反応後、上記の式(2)で示されるトリフルオロメチルアルコール化合物は一般的な手法によって反応液から単離および精製することができる。例えば、反応液を濃縮した後、シリカゲル、アルミナ等の吸着剤を用いたカラムクロマトグラフ法での精製、塩析、再結晶等が挙げられる。 After the reaction, the trifluoromethyl alcohol compound represented by the above formula (2) can be isolated and purified from the reaction solution by a general method. For example, after concentrating the reaction solution, purification by column chromatography using an adsorbent such as silica gel and alumina, salting out, recrystallization and the like can be mentioned.
 この反応では、キナアルカロイド相間移動触媒の構造が不斉収率(エナンチオ選択性)に影響する。特に、本発明では、一般式(3)、(4)、(5)、(6)中のRがアルコキシ基であることによって、高エナンチオ選択的に、上記の式(2)で示されるトリフルオロメチルアルコール化合物を製造することが可能である。また、この反応は、金属触媒を用いず、キナアルカロイド相間移動触媒を用いるので、反応物に金属触媒が不純物として残存することがないため、安全な反応である。 In this reaction, the structure of the quina alkaloid phase transfer catalyst affects the asymmetric yield (enantioselectivity). In particular, in the present invention, R 1 in the general formulas (3), (4), (5), and (6) is an alkoxy group, so that it is highly enantioselectively represented by the above formula (2). It is possible to produce trifluoromethyl alcohol compounds. In addition, this reaction is a safe reaction because a metal catalyst is not used as an impurity because no metal catalyst is used and a quinaalkaloid phase transfer catalyst is used.
 以下、実施例により本発明をさらに具体的に説明するが、本発明の範囲は下記の実施例に限定されることはない。 Hereinafter, the present invention will be described more specifically with reference to examples. However, the scope of the present invention is not limited to the following examples.
 下記の反応式に示すように、溶媒中にて、塩基およびキナアルカロイド相間移動触媒の存在下で、式(1)で表されるアルキニルケトンと(トリフルオロメチル)トリメチルシラン(MeSiCF)とを反応させることにより、式(2)で表されるトリフルオロメチルアルコール化合物を製造した。この反応では、溶媒として、トルエンと塩化メチレンの混合溶媒(toluene/CHCl)を用い、塩基として、テトラメチルアンモニウムフロリド(MeNF)を用い、キナアルカロイド相間移動触媒として、下記の一般式(7)で表される化合物(cat.(7))を用いた。なお、この反応は、密閉型の容器内で、窒素雰囲気下で行った。 As shown in the following reaction formula, an alkynyl ketone represented by the formula (1) and (trifluoromethyl) trimethylsilane (Me 3 SiCF 3 ) in a solvent in the presence of a base and a quinaalkaloid phase transfer catalyst. To produce a trifluoromethyl alcohol compound represented by the formula (2). In this reaction, a mixed solvent of toluene and methylene chloride (toluene / CH 2 Cl 2 ) is used as a solvent, tetramethylammonium fluoride (Me 4 NF) is used as a base, and a quinaalkaloid phase transfer catalyst as described below. The compound represented by the general formula (7) (cat. (7)) was used. This reaction was carried out in a sealed container in a nitrogen atmosphere.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 この一般式(7)で表されるキナアルカロイド相間移動触媒は、上記の一般式(5)で表され、Rがビニル基であり、Rがアリール基であり、Rがメトキシ基(アルコキシ基)であり、Xがブロミドであるキナアルカロイド相間移動触媒に相当する。本実施例では、一般式(7)中のRおよびRが下記の表1に示す基である各触媒7a~7mを用いた。なお、Rは一般式(5)中のRの一部に相当し、Rは一般式(5)中のRの一部に相当する。 The quinaalkaloid phase transfer catalyst represented by the general formula (7) is represented by the above general formula (5), R 2 is a vinyl group, R 3 is an aryl group, and R 4 is a methoxy group ( It corresponds to a quinaalkaloid phase transfer catalyst in which X is bromide. In this example, the catalysts 7a to 7m in which R 5 and R 6 in the general formula (7) are groups shown in Table 1 below were used. R 5 corresponds to a part of R 1 in the general formula (5), and R 6 corresponds to a part of R 3 in the general formula (5).
 下記の表1のRの欄において、Meはメチル基、n-butylはn(ノルマル)-ブチル基、n-hexylはn-ヘキシル基、Bnはベンジル基、allylはアリール基、n-pentylはn-ペンチル基、n-octylはn-オクチル基、n-decylはn-デシル基、cetylはセチル基を示す。表1のRの欄において、Phは置換していないフェニル基を示し、3,5-tBu基および3,5-(CF基は置換型のフェニル基である。 In the column of R 5 in Table 1 below, Me is a methyl group, n-butyl is an n (normal) -butyl group, n-hexyl is an n-hexyl group, Bn is a benzyl group, allyl is an aryl group, and n-pentyl Represents an n-pentyl group, n-octyl represents an n-octyl group, n-decyl represents an n-decyl group, and cetyl represents a cetyl group. In the R 6 column of Table 1, Ph represents an unsubstituted phenyl group, and the 3,5-tBu 2 C 6 H 3 group and the 3,5- (CF 3 ) 2 C 6 H 3 group are substituted types. It is a phenyl group.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 具体的には、アルキニルケトン(0.10mmol)、テトラメチルアンモニウムフロリド(0.05mmol)および表1に示す7a~7mのいずれか1つのキナアルカロイド相間移動触媒(0.01 mmol)を、溶媒2mLに溶かし、表1に示す温度において(トリフルオロメチル)トリメチルシラン(0.20 mmol)を加えた。このとき用いた溶媒のトルエンと塩化メチレンの溶媒比(Tol./CHCl)は、表1に示す通り、トルエン:塩化メチレン=2:1または1:1である。 Specifically, alkynyl ketone (0.10 mmol), tetramethylammonium fluoride (0.05 mmol), and any one of quinaalkaloid phase transfer catalysts (0.01 mmol) shown in Table 1 in 7a to 7m were used as a solvent. Dissolved in 2 mL, (trifluoromethyl) trimethylsilane (0.20 mmol) was added at the temperature shown in Table 1. As shown in Table 1, the solvent ratio of toluene and methylene chloride (Tol./CH 2 Cl 2 ) used as the solvent was toluene: methylene chloride = 2: 1 or 1: 1.
 そして、表1に示す時間撹拌した後、飽和塩化アンモニウム水溶液を加えて反応を停止した。塩化メチレンを用いて抽出し、集めた有機相を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥させた。減圧下で溶媒を留去、テトラヒドロフラン(THF)1mLとテトラブチルアンモニウムフロリド(TBAF)を加え、室温で1時間撹拌した。その後、減圧下で溶媒を留去し、シリカゲルカラムクロマトグラフィーにて精製し、下記の式(2)で表されるトリフルオロメチルアルコール化合物を得た。 And after stirring for the time shown in Table 1, saturated ammonium chloride aqueous solution was added and reaction was stopped. Extraction was performed using methylene chloride, and the collected organic phases were washed with saturated brine and dried over anhydrous sodium sulfate. The solvent was distilled off under reduced pressure, 1 mL of tetrahydrofuran (THF) and tetrabutylammonium fluoride (TBAF) were added, and the mixture was stirred at room temperature for 1 hour. Thereafter, the solvent was distilled off under reduced pressure, and the residue was purified by silica gel column chromatography to obtain a trifluoromethyl alcohol compound represented by the following formula (2).
 本実施例の一例として、表1中の7mのキナアルカロイド相間移動触媒の構造式を以下に示すとともに、表1中の7mのキナアルカロイド相間移動触媒を用いたときの得られた式(2)の化合物のNMR等による分析結果を以下に示す。 As an example of this example, the structural formula of the 7m quinaalkaloid phase transfer catalyst in Table 1 is shown below, and the formula (2) obtained when the 7m quinaalkaloid phase transfer catalyst in Table 1 is used. The analysis results of this compound by NMR and the like are shown below.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 化合物(2):(S)-2-(5-クロロ-2-ニトロフェニル)-4-シクロプロピル-1,1,1-トリフルオロブト-3-イン-2-オール
1H NMR (CDCl3, 300 MHz) δ 0.79-0.92 (m 4H), 1.26-1.36 (m, 1H), 3.57 (s, 1H), 7.44-7.52 (m, 2H), 7.80 (s, 1H); 19F NMR (CDCl3, 188 MHz) δ-78.8 (s, 3F) ; MS (ESI, m/z) 318 [M-H]-. The ee of the product was determined by HPLC using an OD-3 column (n-hexane/i-PrOH = 95/5, flow rate 1.0 mL/min, λ = 254 nm, τmaj = 8.4 min, τmin = 9.5 min) ; [a]D 25 = -10.9 (c = 0.27, CHCl3) , 74%収率,80% ee.
 表1に、本実施例で得られた化合物のエナンチオ選択性(Ee(%))を示している。表1に示す結果より、7a~7mのキナアルカロイド相間移動触媒のいずれを用いたときでも、エナンチオ選択的に式(2)の化合物が得られたことがわかる。
Compound (2): (S) -2- (5-chloro-2-nitrophenyl) -4-cyclopropyl-1,1,1-trifluorobut-3-in-2-ol
1 H NMR (CDCl 3 , 300 MHz) δ 0.79-0.92 (m 4H), 1.26-1.36 (m, 1H), 3.57 (s, 1H), 7.44-7.52 (m, 2H), 7.80 (s, 1H) 19 F NMR (CDCl 3 , 188 MHz) δ-78.8 (s, 3F); MS (ESI, m / z) 318 [MH] - . The ee of the product was determined by HPLC using an OD-3 column ( n-hexane / i-PrOH = 95/5, flow rate 1.0 mL / min, λ = 254 nm, τ maj = 8.4 min, τ min = 9.5 min); [a] D 25 = -10.9 (c = 0.27, CHCl 3 ), 74% yield, 80% ee.
Table 1 shows the enantioselectivity (Ee (%)) of the compound obtained in this example. From the results shown in Table 1, it can be seen that the compound of the formula (2) was obtained enantioselectively when any of the 7a to 7m quinaalkaloid phase transfer catalysts was used.
 また、非特許文献5に記載の製造方法でのエナンチオ選択性は最高で50%であったのに対して、7b、7c、7d、7e、7f、7j、7k、7l、7mのキナアルカロイド相間移動触媒を用いたときは、エナンチオ選択性は60%以上であり、非特許文献5に記載の製造方法と比較して、エナンチオ選択性が高いことがわかる。これらの触媒のうち、7c、7d、7e、7f、7j、7k、7mは、一般式(5)において、Rが直鎖のアルコキシ基であるキナアルカロイド相間移動触媒に該当する。したがって、一般式(3)、(4)、(5)または(6)において、Rが直鎖のアルコキシ基であるキナアルカロイド相間移動触媒を用いたときに、エナンチオ選択性が高くなる傾向があることがわかる。 In addition, while the enantioselectivity in the production method described in Non-Patent Document 5 was 50% at the maximum, the quinaalkaloid phase of 7b, 7c, 7d, 7e, 7f, 7j, 7k, 7l, 7m When the transfer catalyst is used, the enantioselectivity is 60% or more, which indicates that the enantioselectivity is high as compared with the production method described in Non-Patent Document 5. Among these catalysts, 7c, 7d, 7e, 7f, 7j, 7k, and 7m correspond to quinaalkaloid phase transfer catalysts in which R 1 is a linear alkoxy group in the general formula (5). Therefore, in the general formula (3), (4), (5) or (6), when a quinaalkaloid phase transfer catalyst in which R 1 is a linear alkoxy group is used, the enantioselectivity tends to increase. I know that there is.
 また、7f、7mのキナアルカロイド相間移動触媒を用いたときが、エナンチオ選択性が80%と最も高いことから、一般式(7)で表され、Rがn-ブチル基またはn-ヘキシル基であるキナアルカロイド相間移動触媒を用いることが最も好ましいことがわかる。 Further, when a 7f, 7m quinaalkaloid phase transfer catalyst is used, the enantioselectivity is as high as 80%. Therefore, it is represented by the general formula (7), and R 5 is an n-butyl group or an n-hexyl group. It can be seen that it is most preferable to use a quina alkaloid phase transfer catalyst.

Claims (5)

  1.  溶媒中にて、塩基および触媒量の下記の一般式(3)、(4)、(5)または(6)で表されるキナアルカロイド相間移動触媒の存在下で、下記の式(1)で表されるアルキニルケトンと(トリフルオロメチル)トリメチルシランとを反応させることを特徴とする下記の式(2)で表される(S)-2-(5-クロロ-2-ニトロフェニル)-4-シクロプロピル-1,1,1-トリフルオロブト-3-イン-2-オールの製造方法。
    Figure JPOXMLDOC01-appb-C000001
     
    Figure JPOXMLDOC01-appb-C000002
    Figure JPOXMLDOC01-appb-C000003
    (式中、Rはアルコキシ基を示し、Rはエチル基またはビニル基を示し、Rはアルキル基、アルケニル基、アルキニル基またはアリール基を示し、Rはアルキル基、アルケニル基、アラルキル基、アルキニル基、アリール基、アルコキシ基またはアミノ基を示し、Xはカウンターアニオンを示す。)
    In the presence of a quinaalkaloid phase transfer catalyst represented by the following general formula (3), (4), (5) or (6) in a solvent and a base, the following formula (1): (S) -2- (5-chloro-2-nitrophenyl) -4 represented by the following formula (2), characterized by reacting the alkynyl ketone represented by (trifluoromethyl) trimethylsilane -Method for producing cyclopropyl-1,1,1-trifluorobut-3-in-2-ol.
    Figure JPOXMLDOC01-appb-C000001

    Figure JPOXMLDOC01-appb-C000002
    Figure JPOXMLDOC01-appb-C000003
    (Wherein R 1 represents an alkoxy group, R 2 represents an ethyl group or a vinyl group, R 3 represents an alkyl group, an alkenyl group, an alkynyl group or an aryl group, and R 4 represents an alkyl group, an alkenyl group or an aralkyl group. Group, alkynyl group, aryl group, alkoxy group or amino group, and X represents a counter anion.)
  2.  前記キナアルカロイド相間移動触媒として、前記Rが直鎖のアルコキシ基であるものを用いることを特徴とする請求項1に記載の(S)-2-(5-クロロ-2-ニトロフェニル)-4-シクロプロピル-1,1,1-トリフルオロブト-3-イン-2-オールの製造方法。 The (S) -2- (5-chloro-2-nitrophenyl)-according to claim 1 , wherein the R 1 is a linear alkoxy group as the quinaalkaloid phase transfer catalyst. A method for producing 4-cyclopropyl-1,1,1-trifluorobut-3-in-2-ol.
  3.  前記溶媒として、トルエンと塩化メチレンの混合溶媒を用いる請求項1または2に記載の(S)-2-(5-クロロ-2-ニトロフェニル)-4-シクロプロピル-1,1,1-トリフルオロブト-3-イン-2-オールの製造方法。 3. The (S) -2- (5-chloro-2-nitrophenyl) -4-cyclopropyl-1,1,1-trifluoro group according to claim 1 or 2, wherein a mixed solvent of toluene and methylene chloride is used as the solvent. Production method of Lobut-3-in-2-ol.
  4.  前記塩基として、アンモニウムフロリドを用いる請求項1ないし3のいずれか1つに記載の(S)-2-(5-クロロ-2-ニトロフェニル)-4-シクロプロピル-1,1,1-トリフルオロブト-3-イン-2-オールの製造方法。 4. (S) -2- (5-Chloro-2-nitrophenyl) -4-cyclopropyl-1,1,1- according to claim 1, wherein ammonium fluoride is used as the base. A method for producing trifluorobut-3-in-2-ol.
  5.  前記キナアルカロイド相間移動触媒として、下記の一般式(7)で表される化合物を用いる請求項1に記載の(S)-2-(5-クロロ-2-ニトロフェニル)-4-シクロプロピル-1,1,1-トリフルオロブト-3-イン-2-オールの製造方法。
    Figure JPOXMLDOC01-appb-C000004
    (式中、Rは、メチル基、n-ブチル基、n-ヘキシル基、n-オクチル基、n-デシル基またはセチル基であり、Rは、フェニル基、3,5-tBu基または3,5-(CF基である。)
    The (S) -2- (5-chloro-2-nitrophenyl) -4-cyclopropyl- according to claim 1, wherein a compound represented by the following general formula (7) is used as the quinaalkaloid phase transfer catalyst. A method for producing 1,1,1-trifluorobut-3-yn-2-ol.
    Figure JPOXMLDOC01-appb-C000004
    (Wherein R 5 represents a methyl group, an n-butyl group, an n-hexyl group, an n-octyl group, an n-decyl group or a cetyl group, and R 6 represents a phenyl group, 3,5-tBu 2 C 6 H 3 group or 3,5- (CF 3 ) 2 C 6 H 3 group.)
PCT/JP2015/055060 2014-02-25 2015-02-23 Method for producing (s)-2-(5-chloro-2-nitrophenyl)-4-cyclopropyl-1,1,1-trifluorobut-3-yne-2-ol WO2015129630A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016505204A JPWO2015129630A1 (en) 2014-02-25 2015-02-23 (S) -2- (5-Chloro-2-nitrophenyl) -4-cyclopropyl-1,1,1-trifluorobut-3-in-2-ol

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-034045 2014-02-25
JP2014034045 2014-02-25

Publications (1)

Publication Number Publication Date
WO2015129630A1 true WO2015129630A1 (en) 2015-09-03

Family

ID=54008948

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/055060 WO2015129630A1 (en) 2014-02-25 2015-02-23 Method for producing (s)-2-(5-chloro-2-nitrophenyl)-4-cyclopropyl-1,1,1-trifluorobut-3-yne-2-ol

Country Status (2)

Country Link
JP (1) JPWO2015129630A1 (en)
WO (1) WO2015129630A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015224222A (en) * 2014-05-28 2015-12-14 国立大学法人 名古屋工業大学 Method of producing optically active sulfonamide derivative

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005306769A (en) * 2004-04-21 2005-11-04 Tosoh F-Tech Inc Method for producing perfluoroalkyl group-having alcohol derivative
JP2009215196A (en) * 2008-03-10 2009-09-24 Nagoya Institute Of Technology Method for producing optically active perfluoroalkyl secondary alcohol derivative
JP2014001177A (en) * 2012-06-20 2014-01-09 Nagoya Institute Of Technology Catalytic enantioselective production method of trifluoromethyl-substituted pyrroline having asymmetric tetrasubstituted carbon

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005306769A (en) * 2004-04-21 2005-11-04 Tosoh F-Tech Inc Method for producing perfluoroalkyl group-having alcohol derivative
JP2009215196A (en) * 2008-03-10 2009-09-24 Nagoya Institute Of Technology Method for producing optically active perfluoroalkyl secondary alcohol derivative
JP2014001177A (en) * 2012-06-20 2014-01-09 Nagoya Institute Of Technology Catalytic enantioselective production method of trifluoromethyl-substituted pyrroline having asymmetric tetrasubstituted carbon

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
HIROYUKI KAWAI ET AL.: "A New Synthetic Approach to Efavirenz through Enantioselective Trifluoromethylation by Using the Ruppert- Prakash Reagent", EUROPEAN JOURNAL OF ORGANIC CHEMISTRY, vol. 30, 2011, pages 5959 - 5961 *
HIROYUKI KAWAI ET AL.: "Organocatalytic Asymmetric Synthesis of Trifluoromethyl- substituted Diarylpyrrolines: Enantioselective Conjugate Cyanation of beta-Aryl-beta- trifluoromethyl-disubstituted Enones", ANGEWANDTE CHEMIE INTERNATIONAL EDITION, vol. 51, no. 20, 2012, pages 4959 - 4962, XP055044598, DOI: doi:10.1002/anie.201201278 *
SATOSHI OKUSU ET AL.: "Asymmetric Synthesis of Efavirenz via Organocatalyzed Enantioselective Trifluoromethylation", ASIAN JOURNAL OF ORGANIC CHEMISTRY, vol. 4, pages 449 - 452 *
XIAOLEI HU ET AL.: "Cinchona alkaloid-derived quaternary ammonium salt combined with NaH: a facile catalyst system for the asymmetric trifluoromethylation of ketones", TETRAHEDRON LETTERS, vol. 50, no. 30, 2009, pages 4378 - 4380 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015224222A (en) * 2014-05-28 2015-12-14 国立大学法人 名古屋工業大学 Method of producing optically active sulfonamide derivative

Also Published As

Publication number Publication date
JPWO2015129630A1 (en) 2017-03-30

Similar Documents

Publication Publication Date Title
Rolla Sodium borohydride reactions under phase-transfer conditions: Reduction of azides to amines
Watanabe et al. Copper mediated defluorinative allylic alkylation of difluorohomoallyl alcohol derivatives directed to an efficient synthetic method for (Z)-fluoroalkene dipeptide isosteres
JP2013170151A (en) Direct method for producing indole-3-triflone and indole triflone derivative
Lu et al. Dipeptide-derived multifunctional phosphonium salt as a catalyst to synthesize highly functionalized chiral cyclopentanes
Nakamura et al. An efficient synthetic method for Z-fluoroalkene dipeptide isosteres: Application to the synthesis of the dipeptide isostere of Sta-Ala
WO2015129630A1 (en) Method for producing (s)-2-(5-chloro-2-nitrophenyl)-4-cyclopropyl-1,1,1-trifluorobut-3-yne-2-ol
US10710948B2 (en) Processes for preparing (R)-1-(5-chloro-[1,1″-biphenyl] -2-yl)-2,2,2-trifluoroethanol and 1-(5-chloro-[1,1″-biphenyl]-2-yl)-2,2,2-trifluoroethanone
Lemonnier et al. Efficient access to fluorinated homoallylic alcohols through an indium promoted fluoroallylation reaction
Lu et al. Primary-secondary diamines catalyzed Michael reaction to generate chiral fluorinated quaternary carbon centers
Nihei et al. Highly Stereoselective Synthesis of Fluoroalkene Dipeptides via the Novel Chromium (II)-Mediated Carbon–Fluorine Bond Cleavage/New Carbon–Carbon Bond Formation
JP2008255093A (en) Method for producing homoallyl alcohol or homoallyl hydrazide
JP2016132632A (en) Catalytic enantioselective manufacturing method of (s)-2-(5-chloro-2-nitrophenyl)-4-cyclopropyl-1,1,1-trifluorobut-3-yl-2-ol as key intermediate of aids therapeutic agent efavirenz using phase transfer catalyst derived from 5-ethynyl cinchona alkaloid
JP2013517255A (en) Method for producing arylacetic acid derivatives and heteroarylacetic acid derivatives
JP2014001177A (en) Catalytic enantioselective production method of trifluoromethyl-substituted pyrroline having asymmetric tetrasubstituted carbon
JP2012097041A (en) Tetrahydropyrazolopyrazolone derivative having fluoroalkyl group and method of producing the same
KR100713029B1 (en) Process for the preparation of hydroquinone derivatives
JP2014005257A (en) Monofluoromethyl substituted indole compound and enzyme enantioselective method for producing the same
WO2017170884A1 (en) Novel method for producing hydroxamic acid derivative, and intermediate thereof
JP2014122169A (en) ASYMMETRIC CONJUGATE ADDITION REACTION OF NITROMETHANE TO β-ARYL-β-TRIFLUOROMETHYL ENONE, AND CATALYTIC ENANTIOSELECTIVE PRODUCTION METHOD OF TRIFLUOROMETHYL SUBSTITUTED DIARYLPYRROLINE OR N-OXIDE THEREOF
JP4628979B2 (en) Process for producing optically active homoallyl primary amine using asymmetric 2-aza-corp rearrangement
JP2016034911A (en) Catalytic production method for monofluoromethyl substituted epoxide via inactive sp3c-f bond activation reaction with silicon reagent, and monofluoromethyl substituted epoxide thereof
JP5986872B2 (en) Compound, method for producing compound, method for producing acetate derivative, method for producing atorvastatin, and method for recovering asymmetric ligand
Tanaka et al. Double nitro-Mannich reaction utilizing in situ generated N-trimethylsilylaldimines: novel four-component one-pot synthesis of nitroimines
JPWO2014024753A1 (en) Β-Substituted β-trifluoromethyl-α, β-epoxyketone compound having asymmetric quaternary carbon and process for producing the same
JP4721541B2 (en) Method for producing optically active propoxynitrobenzene derivative

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15754977

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016505204

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15754977

Country of ref document: EP

Kind code of ref document: A1