WO2015129278A1 - Virus inactivation effect test - Google Patents

Virus inactivation effect test Download PDF

Info

Publication number
WO2015129278A1
WO2015129278A1 PCT/JP2015/001012 JP2015001012W WO2015129278A1 WO 2015129278 A1 WO2015129278 A1 WO 2015129278A1 JP 2015001012 W JP2015001012 W JP 2015001012W WO 2015129278 A1 WO2015129278 A1 WO 2015129278A1
Authority
WO
WIPO (PCT)
Prior art keywords
norovirus
strain
virus
solution
feline calicivirus
Prior art date
Application number
PCT/JP2015/001012
Other languages
French (fr)
Japanese (ja)
Inventor
学剛 合田
Original Assignee
本部三慶株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本部三慶株式会社 filed Critical 本部三慶株式会社
Publication of WO2015129278A1 publication Critical patent/WO2015129278A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • C12Q1/18Testing for antimicrobial activity of a material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2770/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
    • C12N2770/00011Details
    • C12N2770/16011Caliciviridae
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2770/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
    • C12N2770/00011Details
    • C12N2770/16011Caliciviridae
    • C12N2770/16061Methods of inactivation or attenuation
    • C12N2770/16063Methods of inactivation or attenuation by chemical treatment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/005Assays involving biological materials from specific organisms or of a specific nature from viruses
    • G01N2333/08RNA viruses

Definitions

  • the present invention relates to a technique for simply testing a virus inactivation effect.
  • the present inventors have developed chlorous acid water or a preparation thereof as a novel disinfectant / disinfectant and confirmed the inactivation effect of norovirus using the plaque method. As a result, it was found that it has an inactivating effect on Norovirus (International Publication No. 2014/188311 (Patent Document 1)), and this aqueous chlorite (International Publication No. 2008/026607 (Patent Document 2)) We tried to apply these preparations as disinfectants and disinfectants for infants aged 5 years and under, vomit, and filth.
  • the method currently employed by the Ministry of Health, Labor and Welfare is the TCID 50 method, which uses each disinfectant and disinfectant and has been evaluated for its inactivation effect on feline calicivirus, a substitute for norovirus.
  • the present inventors have developed a new method that can efficiently test the killing effect against feline calicivirus for the test of norovirus.
  • the present invention also provides the following.
  • the present invention provides (A) inoculating a host cell with a feline calicivirus (FCV) strain or other Norovirus equivalent strain; (B) culturing the inoculated host cell in a serum-containing medium; (C) a step of collecting the culture medium and cells; (D) a step of centrifuging the collected culture medium and cells to obtain a supernatant; and (E) a sample using the supernatant as a test virus solution.
  • FCV feline calicivirus
  • the serum-containing medium used in the present invention is fetal bovine serum-containing Eagle MEM.
  • centrifugation is performed at about 1,500 to 2,000 ⁇ g.
  • the feline calicivirus (FCV) strain or other Norovirus equivalent strain uses a plurality of strains.
  • the feline calicivirus (FCV) strain or other norovirus equivalent strain comprises feline calicivirus (FCV) F4 strain and F9 strain.
  • step (C) is performed when all cytopathic effects (CPE) have occurred.
  • the present invention further provides the following items.
  • (Item 1) (A) inoculating a host cell with a feline calicivirus (FCV) strain or other Norovirus equivalent strain; (B) culturing the inoculated host cells in a serum-containing medium; (C) recovering the culture solution and cells; (D) centrifuging the collected culture medium and cells to obtain a supernatant; (E) A step of inactivating the test virus solution with a chlorite aqueous solution or a chlorite water preparation using the supernatant as the test virus solution; (F) The step of neutralizing by diluting with albumin phosphate buffered saline (PBS) after the inactivation treatment; (G) culturing host cells inoculated with the neutralized virus solution and measuring TCID 50 , A method for measuring the inactivation effect of chlorite water or a chlorite water preparation against norovirus.
  • FCV feline calicivirus
  • (Item 2) Item 2. The method according to Item 1, wherein the albumin is bovine serum albumin (BSA). (Item 3) Item 4. The method according to Item 1, wherein the step (F) is performed by diluting with PBS containing 0.1% BSA. (Item 4) Item 4. The method according to Item 3, wherein the step (F) is performed by diluting 10 times with PBS containing 0.1% BSA. (Item 5) Item 5. The method according to any one of Items 1 to 4, wherein the serum-containing medium is fetal bovine serum-containing Eagle MEM. (Item 6) Item 6. The method according to any one of Items 1 to 5, wherein the centrifugation is performed at about 1,500 to 2,000 ⁇ g.
  • BSA bovine serum albumin
  • (Item 7) Item 7. The method according to any one of Items 1 to 6, wherein a plurality of strains are used as the feline calicivirus (FCV) strain or other Norovirus equivalent strain.
  • (Item 8) Item 8. The method according to any one of Items 1 to 7, wherein the feline calicivirus (FCV) strain or other Norovirus equivalent strain comprises feline calicivirus (FCV) F4 strain and F9 strain.
  • (Item 9) Item 9. The method according to Item 8, wherein the feline calicivirus (FCV) strain or other Norovirus equivalent strain is feline calicivirus (FCV) F4 strain.
  • (Item 10) Item 10.
  • chlorous acid water refers to an aqueous solution containing chlorous acid (HClO 2 ) used as a disinfectant.
  • Chlorous acid water can be produced, for example, by the production method described in International Publication No. 2014/1888311 and PCT / JP2014 / 006379.
  • Chlorous acid water produced by the production method described in PCT / JP2014 / 006379 can stably maintain chlorous acid (HClO 2 ) over a long period of time by creating a transition state and delaying the decomposition reaction.
  • chlorite water and “CAW (chloro acid water)” can be used interchangeably.
  • Chlorous acid aqueous preparation can be manufactured using chlorous acid water. Although it is not limited to this as a typical composition of a chlorite aqueous formulation, chlorite water (5% product) 60.00% (w / v) (the concentration of chlorous acid is 50,000 ppm) ), Potassium dihydrogen phosphate 1.70% (w / v), potassium hydroxide 0.50% (w / v) and purified water 37.8% (w / v) (Sold under the name "Outturlock Super" by the applicant), but in the case of this composition, chlorous acid water is 0.25% (w / v) to 75% (W / v), potassium dihydrogen phosphate is 0.70% (w / v) to 13.90% (w / v), potassium hydroxide is 0.10% (w / v) to 5. It may be 60% (w / v). Sodium dihydrogen phosphate may be used instead of potassium dihydrogen phosphate, and sodium hydrox
  • a conventional sodium chlorate aqueous solution is added with sulfuric acid or an aqueous solution thereof in an amount and concentration capable of maintaining the pH value of the aqueous solution within 2.3 to 3.4.
  • Chloric acid was generated, and hydrogen peroxide was added in an amount equal to or greater than that required for the reduction reaction of the chloric acid.
  • chlorine dioxide gas (ClO 2 ) is added to any one of inorganic acids, inorganic acid salts, organic acids or organic acid salts, or two or more of them, or a combination of these (aqueous solution A). This is achieved by providing a method for producing chlorous acid including a process.
  • chlorite ions are generated with high alkalinity, and at that time, the pH drops to below neutral.
  • chlorous acid HClO 2
  • a transition state is created, and as a result, the advantage of being able to stably maintain chlorous acid (HClO 2 ) over a long period of time by delaying the decomposition reaction.
  • Chlorine dioxide (ClO 2 ) is trapped in an aqueous solution A containing any one or more of inorganic acids, inorganic acid salts, organic acids or organic acid salts, or a combination of these. This effect is achieved.
  • trap means adsorption or trapping, etc., preferably gaseous chlorine dioxide is any one of inorganic acid, inorganic acid salt, organic acid or organic acid salt, or a combination of two or more. Any operation may be performed as long as the state coexists with the system. As such an operation, in general, a method of directly blowing into the aqueous solution A, or a method of adsorbing by spraying the aqueous solution A in a mist form from the upper part and releasing chlorine dioxide gas from the lower part, spraying, and the like can be mentioned. However, it is not limited to them.
  • the chlorite water of the present invention (described in PCT / JP2014 / 006379) manufactured using a manufacturing plant as shown in FIG. 1 described in PCT / JP2014 / 006379. Examples 1 to 6) have been proven to exhibit a stable bactericidal effect at least for 10 days at refrigeration (4 ° C.) as shown in Example 7 described in PCT / JP2014 / 006379. It is understood that the invention described in PCT / JP2014 / 006379 provides a method for producing so-called chlorous acid water in which chlorous acid is stable in an aqueous solution.
  • antibacterial refers to inhibiting the growth of microorganisms such as filamentous fungi, bacteria and viruses having pathogenicity and harmfulness. Those having antibacterial action are called antibacterial agents.
  • bactericidal action in a narrow sense means to kill microorganisms such as filamentous fungi, bacteria and viruses having pathogenicity and harmfulness. What has a bactericidal action is called a narrowly defined bactericidal agent.
  • bactericidal agents in the present specification, and are generally understood as drugs having both an antibacterial action and a narrowly defined bactericidal action.
  • the “inactivation effect” means that a certain microorganism (eg, norovirus) is reduced or eliminated to the extent that there is no pathogenic or harmful effect.
  • a certain microorganism eg, norovirus
  • neutralization means stopping virus inactivation by chlorite water or a chlorite water preparation.
  • Neutralizing the inactivated virus solution is called “neutralization treatment”.
  • the neutralization treatment is performed by diluting with a buffer solution containing albumin immediately after the inactivation treatment.
  • the neutralization treatment is performed by diluting with 0.1% BSA-added PBS for 10 times, but is not limited thereto, and may be performed with PBS containing 0% to 5% BSA, for example, 0%, 0.05% , 0.1%, 0.5%, 1%, 2%, 3%, 4% or 5% BSA in PBS.
  • PBS with BSA means PBS containing BSA.
  • BSA bovine serum albumin
  • PBS phosphate buffered saline.
  • Performing the neutralization treatment after the inactivation treatment is important in measuring the inactivation effect of the chlorite aqueous solution or the chlorite aqueous preparation. This is because if neutralization is not performed, virus inactivation proceeds in the subsequent cell culture step, and an appropriate virus inactivation effect cannot be measured.
  • a neutralization treatment step was newly introduced.
  • BSA-added PBS was used for neutralization.
  • BSA-added PBS shows an excellent neutralizing effect on chlorite water or chlorite aqueous preparations.
  • chlorite water or chlorous acid was used in the same manner as the plaque method. It became possible to appropriately evaluate the virus inactivation effect of water preparations.
  • antiviral refers to inhibiting virus growth. Those having an antiviral action are called antiviral agents.
  • virus killing refers to inactivating the infectivity of virus particles. Virus inactivation is considered to be due to a three-dimensional structural change of viral particle components such as nucleic acid proteins and lipids, or modulation of the interaction between them. What has a virucidal action is called a virucidal agent.
  • virus killing refers to a broad concept that summarizes antiviral action and virucidal action.
  • Virtual killing agent refers to any agent having antiviral and virucidal action. Viral killing agents can be used as pharmaceuticals, quasi drugs, food additives, disinfectants and the like.
  • Antiviral agents act against specific viruses in principle, whereas virucidal agents are effective against a wide variety of viruses.
  • the use of a virucidal agent always gives rise to drug-resistant virus variants, but virucidal agents do not in principle give rise to drug-resistant virus strains. This is because there are multiple target molecules for the virucidal agent. Therefore, it is preferable in that resistance does not occur.
  • the virus targeted by the present invention can include any virus that can evaluate Norovirus.
  • viruses include noroviruses and norovirus equivalent strains such as feline calicivirus (FCV) strains.
  • FCV feline calicivirus
  • Norovirus is a genus of viruses that cause non-bacterial acute gastroenteritis. In addition to causing food poisoning due to the consumption of shellfish such as oysters, it is also orally transmitted through the dust of the infected human feces and vomit, or the dried ones.
  • feline calicivirus a related species. This related species test has been recognized in the field.
  • test method using alternative virus and feline calicivirus in Norovirus inactivation efficacy evaluation test EPA, 2007 Survey report on inactivation conditions of norovirus, National Institute of Health Sciences, Food Sanitation Management Department See Shigeki Yamamoto and Mamoru Noda, Ministry of Health, Labor and Welfare.
  • the virus-killing effect of norovirus can be replaced by a survey by feline calicivirus (FCV), a related bacterium (in addition to this literature, Gehrke, C et al: Inactivation of feline calicivirus, a surrogate of norovirus (formerly Norwalk-like viruses), by different types of alcohol in virtual and in vivo, J Hosp Infect (2004) 46: 49-55; Doultree, JC et al: Inactivation of feline calicivirus, a norwalk virussurrofect J (1999) 41: 51-57); Jennifer, L et al: Surrogates for the study of norovirus stability and inactivation in the environment: A comparison of murine norovirus and feline calicivirus, J Food Protect 1 (765) 11: 765 Hirotaka Takagi et al .: Examination of norovirus (NV) inactivation effect by replacing feline calicivirus (FCV)-Alikari agent, hydrogen peroxide And the inactivation effect by
  • the measurement of the inactivation rate of virus by chlorite water can be determined by conducting a normal experiment (mixing, etc.) and measuring the amount of remaining infectious virus, and the concentration of chlorite is 5 ppm.
  • the virus for example, influenza virus etc.
  • the virus can be completely inactivated by contact within 1 minute under the condition of pH 6.5.
  • the “norovirus equivalent strain” is not limited to the feline calicivirus (FCV) strain, and any virus strain can be used as long as the inactive effect can be exerted as described in the above research. It is understood that
  • Methods for quantifying infectious viruses include methods that use animals that are the original host or experimental animals that are sensitive to the virus, and methods that use cultured cells. Generally, cultured cells that are simple and highly quantitative are used. The method is used. However, since human norovirus has not been successfully cultured in cultured cells, the method using cultured cells cannot be performed. Therefore, historically, research on the inactivation of norovirus, etc. has been carried out by (1) infection experiments with human fecal norovirus by volunteers, (2) experiments with cultured cells using substitute viruses closely related to norovirus. It has been done by the estimation method.
  • Norovirus equivalent strains Such closely related viruses often show similar heat resistance and sensitivity to disinfectants, so instead of norovirus that cannot be cultured, the resistance of norovirus is inferred from the results of inactivation experiments with various viruses, Various viruses are used for inactivation experiments and the like for the purpose of knowing the resistance of norovirus.
  • enteroviruses such as poliovirus, coxakey virus and echovirus, which are the same human intestinal viruses and are non-enveloped 1 RNA viruses, are used for the purposes of the present invention. Viruses can also be targeted.
  • feline calicivirus which belongs to the same Caliciviridae family as Norovirus and has been successfully cultured in cell culture, came to be mainly used.
  • the current resistance to norovirus, such as heating and disinfectant, is mainly based on this feline calicivirus data, and since it is substantially equivalent, feline calicivirus is a preferred norovirus equivalent strain. It is not limited to.
  • mouse norovirus has been reported to be isolated and propagated in cultured cells for the first time as a virus belonging to the same norovirus genus as human norovirus (Wobus, CE et al: Replication of norovirus in cell culture reveals a tropism for dendritic cell sand macrophages, Plos Biol (2004) 2: 2076-2084). Since then, inactivation experiments using murine norovirus have begun.
  • human noroviruses were reported to be susceptible only to chimpanzees except for humans, but human norovirus infection was reported in pigs in 2006 (Cheetham, S et al, Pathogenesis of a genogroup II human norovirus in gnotobiotic pigs, J Virol (2006) 80: 10372-10381)), it can be applied to experiments using the infectivity of human norovirus to pigs as an index.
  • the present invention comprises (A) inoculating a host cell with a feline calicivirus (FCV) strain or other Norovirus equivalent strain; (B) culturing the inoculated host cell in a serum-containing medium; (C) a step of collecting the culture medium and cells; (D) a step of centrifuging the collected culture medium and cells to obtain a supernatant; and (E) a sample using the supernatant as a test virus solution.
  • FCV feline calicivirus
  • the serum-containing medium is fetal bovine serum-containing Eagle MEM, but is not limited thereto.
  • DMEM Dulbecco's modified Eagle medium
  • the centrifugation is advantageously performed at about 1,500 to 2,000 ⁇ g, but is not limited thereto.
  • centrifugation conditions of usually about 3,000 ⁇ g to 5000 ⁇ g are used, but are not limited thereto.
  • the feline calicivirus (FCV) strain or other Norovirus equivalent strain uses a plurality of strains. This is because the inactivation effect can be more reliably verified by two or more strains.
  • examples of such strains include, but are not limited to, feline calicivirus (FCV) F4 strain and F9 strain (for example, ATCC VR-782 strain).
  • FCV feline calicivirus
  • F4 strain for example, ATCC VR-782 strain
  • caliciviridae viruses other than feline calicivirus, FCV2280 strain, poliovirus, enteroviruses such as coxakey virus and echovirus, mouse norovirus CaCo-2 cells, and the like can be used.
  • enteroviruses such as coxakey virus and echovirus
  • mouse norovirus CaCo-2 cells and the like.
  • the feline calicivirus (FCV) strain or other norovirus equivalent strain includes feline calicivirus (FCV) F4 strain and F9 strain. This is because it is recommended as a stock at the National Pharmaceutical Food Sanitation Laboratory.
  • the step (C) is performed when all cytopathic effects (CPE) have occurred. This is because the virus recovery rate increases.
  • CPE cytopathic effects
  • the present invention is not limited to this, and the step (C) may also be performed when CRP occurs in cells of 50% or more. For example, 60% or more, 70% or more, 80% or more, 90% or more Any suitable numerical value such as 95% or more, 98% or more can be mentioned, and it is usually carried out at 70% or more.
  • the present invention provides (A) inoculating a host cell with a feline calicivirus (FCV) strain or other Norovirus equivalent strain; (B) culturing the inoculated host cell in a serum-containing medium; (C) a step of collecting the culture solution and cells; (D) a step of centrifuging the collected culture solution and cells to obtain a supernatant; (E) sublimation using the supernatant as a test virus solution.
  • FCV feline calicivirus
  • a method for measuring the inactivation effect of chlorite water or a preparation thereof against Norovirus, comprising culturing host cells inoculated with, and measuring TCID 50 is provided.
  • the step (F) is advantageously performed by diluting with PBS containing 0.1% BSA, but is not limited thereto.
  • PBS containing 0.1% BSA 0%, 0.05%, 0.1%, 0.5%, 1%, 2%, 3%, 4% or 5% BSA-added PBS may be used.
  • the step (F) is performed by diluting 10 times with PBS containing 0.1% BSA.
  • the dilution factor may be, for example, 100 times or 1000 times. After 10-fold dilution with PBS containing 0.1% BSA, a further 10-fold serial dilution may be performed.
  • the feline calicivirus (FCV) strain or other norovirus equivalent strain is feline calicivirus (FCV) F4 strain. It is preferable to verify the inactivation effect with a plurality of strains, but it is also possible to verify with the feline calicivirus (FCV) F4 strain alone. This is because if the method of the present invention is used, the feline calicivirus (FCV) F4 strain alone can sufficiently evaluate the virus inactivating effect of chlorite aqueous solution or chlorite aqueous preparation.
  • the step (C) is performed when cultured for about 2 days. This is because empirically, all cytopathic effects (CPE) occur approximately two days after the start of culture. Thus, it is possible to incubate for longer than 2 days until all cytopathic effects (CPE) have occurred.
  • the culture in the step (G) is advantageously performed for 7 to 8 days, but is not limited thereto, for example, it may be longer than 7 days and 8 days, It may be 8 days.
  • feline calicivirus which is a substitute virus for Norovirus in the plaque method that has been obtained so far, was also evaluated with the TCID 50 method. It can be verified that the preparation can be an effective disinfectant / disinfectant for norovirus.
  • the animals used in the following examples were handled based on the Declaration of Helsinki. Specifically, the reagents described in the examples were used as reagents, but equivalent products from other manufacturers (Sigma, Wako Pure Chemical, Nacalai Tesque, etc.) can be substituted.
  • Example 1 Comparative test between Plack method and TCID 50 method
  • test method of the present invention modified TCID 50 method
  • conventional test method Plac method
  • FCV feline calicivirus
  • FCV F4 strain was inoculated into CRFK cells, and then statically cultured in an Eagle's MEM medium containing 2% fetal calf serum in a CO 2 furan vessel at 37 ° C.
  • CPE cytopathic effects
  • 100 ⁇ l of the virus solution was added, and after 5 and 10 minutes, 100 ⁇ l of the treatment solution was sampled, diluted with cold 0.1% BSA-added PBS, and the residual virus infection titer was measured based on the plaque method and the TCID 50 method.
  • ⁇ Pluck method> The solution was diluted 10-fold with PBS containing 0.1% BSA, 0.5 ml was inoculated into a monolayer culture of CRFK cells, and virus adsorption was performed on a rocker platform for 60 minutes at room temperature with mechanical locking.
  • CRFK cells after virus adsorption were cultured in MEM containing 0.3 to 0.5% methylcellulose and 0.5% FBS at 37 ° C. in a CO 2 furan vessel. After confirming the generated plaques, the cells of the petri dish were single-stained with 0.5% (w / v) crystal murasaki staining solution containing 10% formalin, and the number of plaques was counted visually.
  • ⁇ TCID 50 method> The reaction solution diluted in serum-free Eagle MEM medium is further diluted 10-fold in serum-free MEM medium, and 25 ⁇ l of each dilution is inoculated into CRFK cells cultured in a 96-well plate (4 holes for each dilution). Used), and cultured in an MEM medium supplemented with 2% fetal calf serum at 37 ° C. in a CO 2 -furan chamber. After inoculation, the presence or absence of CPE was observed on days 7 to 8, and when CPE was observed in 50% or more of the cells, it was regarded as CPE positive (not inactivated).
  • the amount of surviving virus was shown as the amount of surviving virus (TCID 50 ) in 25 ⁇ l of the virus solution subjected to the inactivation test. Results of quantitative test, if the surviving virus can not be confirmed at all, the following survival viral load 32TCID 50 / 25 ⁇ l.
  • CRFK cells were cultured in 6-well dishes to form a single-layer sheet, and 500 ⁇ l of each treatment solution was inoculated, followed by infection treatment for 1 hour. Thereafter, the cells were cultured in a MEM containing 0.3 to 0.5% methylcellulose or 0.75% agar and FBS at 37 ° C. in a CO 2 furan vessel.
  • CRFK cells cultured in a monolayer on a 96-well plate were infected with 25 ⁇ l of a diluted solution obtained by diluting the inactivated stock solution 10-fold with 900 ⁇ l of 0.1% BSA-added PBS. The dilution series was evaluated using 4 Well.
  • chlorite solution and “chlorite solution formulation” in which “chlorite solution” is stabilized with a buffer solution are 400 ppm as chlorite concentration
  • the concentration of chlorous acid is 200 ppm
  • inactivation for 5 minutes If the treatment is performed, the amount of virus in the 10 3rd range can be inactivated, and if the inactivation process is performed for 10 minutes, the amount of virus in the 10th 5th range is inactivated to the detection limit or less. I knew that I could do it.
  • the sodium hypochlorite solution inactivates the amount of virus in the 10th power of 5 to below the detection limit if it is inactivated for 5 minutes using an effective chlorine concentration of 200 ppm. I knew that I could do it. From this, it can be judged that the same evaluation can be obtained by using either the plaque method or the TCID 50 method for the evaluation of the inactivation effect on the virus (Tables III-1 and III- 2).
  • the main active ingredient disappears under the conditions in which organic substances are present, and the chlorine concentration is higher than in the absence conditions in which organic substances are not present ( High) may be necessary.
  • chlorite solution and “chlorite solution preparation” in which “chlorite solution” is stabilized with a buffer solution are 1000 ppm as chlorite concentration
  • concentration of chlorous acid is 400 ppm
  • inactivation for 10 minutes If the treatment is performed, the amount of virus in the 10 3rd range can be inactivated, and if the inactivation process is performed for 10 minutes, the amount of virus in the 10th 5th range is inactivated to the detection limit or less. I knew that I could do it.
  • the sodium hypochlorite solution cannot inactivate the amount of virus in the 10th power to the detection limit or less unless it is inactivated for 5 minutes using an effective chlorine concentration of 1000 ppm. I understood that. (Table III-1 and Table III-2) From these results, the virus titer and the virus inactivation effect using disinfectant are the same as the evaluation results of the plaque method and the modified TCID 50 method in the absence of organic matter or in the presence of organic matter. It was found that the inactivation effect confirmation test against viruses was evaluated using the plaque method, but this data shows that the same result can be obtained even if the modified TCID 50 method is used. I understood.
  • the sodium hypochlorite solution will inactivate feline calicivirus sufficiently if it is inactivated at 200 ⁇ ⁇ ppm for 5 minutes as the effective chlorine concentration.
  • chlorite water and “chlorite aqueous preparations” are 10 to the third power of the virus when inactivated for 5 minutes at 200 ppm chlorite concentration. The amount can be inactivated, and further, if it is inactivated for 10 minutes, it can be said that it is a disinfectant having an inactivating effect equivalent to that of sodium hypochlorite solution.
  • sodium hypochlorite solution can inactivate viral loads on the 10 3rd power range by inactivating the effective chlorine concentration at 400 ppm for 5 minutes.
  • the effective chlorine concentration is not 1000 ppm, it cannot be inactivated to below the detection limit, whereas “chlorite aqueous solution” and “chlorite aqueous preparation” are the same sub-phase as sodium hypochlorite solution. It can be seen that a virus with a concentration of 400 3 (800 ppm as an effective chlorine concentration) and inactivation treatment for 5 minutes can inactivate the amount of virus in the 10th power range, and 1000 ppm as the concentration of chlorous acid.
  • Example 2 Comparison between modified methods
  • -Virus used "Feline calicivirus (F9 strain)"; as a substitute virus for Norovirus-Cells used: CrFK cells (cat kidney-derived cells)-Addition protein: To examine whether the presence or absence of organic substances affects the effect of the drug Add "7.5% bovine serum albumin (BSA)” ... mix with virus solution to 1% BSA.
  • BSA bovine serum albumin
  • -Drug reaction stop solution added to stop the effect of the drug on the virus solution at the set time 1N sodium thiosulfate (pentahydrate, molecular weight 248.19) Polypeptone (PP) 80mg / ml -Buffer solution: In order to investigate the effect of the virus inactivation effect of each drug due to the difference in pH range, three points of acid, neutral, and basic regions are provided.
  • citrate-phosphate buffer is as follows> ⁇ 0.1M citric acid: 19.21g / L (molecular weight 192.1) ⁇ 0.2M disodium hydrogen phosphate: 35.6g / L (dodecahydrate, molecular weight 358.14) Add 0.2M disodium hydrogenphosphate solution to the adjusted 0.1M citric acid solution, and adjust the pH using a pH meter. (See the table below for the mixing ratio of each solution)
  • reaction between test solution and virus (1) Sodium hypochlorite group or chlorite water group added 1.8 ml of buffer solution of each pH to a small tube, and control group added 1.9 ml of buffer solution to a small tube, sodium hypochlorite 0.1 ml of sodium hypochlorite or chlorous acid water adjusted to 200 ppm was added to the section or chlorite water section. (2) 0.1 ml of virus solution (adjusted with BSA) was added thereto and reacted for 10 minutes. (3) PP 0.9 ml was dispensed into a small tube, and 0.1 ml of the sample solution of (2) was added after the designated reaction time had elapsed to stop the reaction.
  • Infectious titer measurement Infectious titer was measured by a standard plaque assay method. (BMSA regular method) -Cells were seeded in 6-well plates and used after 3-5 days in culture, when the cells became confluent. (1) 0.1 ml of the test virus solution was added to 0.9 ml of PP, and the 0.1 ml was diluted 10-fold with Eagle's minimum essential medium (MEM) without fetal bovine serum. (Same as above (reaction between test solution and virus) (4)) (2) The plate solution was removed and the diluted virus solution was inoculated at 100 ⁇ l / well. (3) Placed in a 34 ° C. CO 2 incubator for 1 hour to adsorb the virus.
  • MEM Eagle's minimum essential medium
  • test solution is determined to be significant.
  • feline calicivirus F4 a norovirus substitute virus
  • TCID 50 method was used for CAW (sublimation).
  • the inactivation effect of chloric acid water) was confirmed, and the inactivation effect in the presence of organic matter was confirmed using bovine serum albumin (BSA).
  • BSA bovine serum albumin
  • Sodium hypochlorite can be used under the condition that 5logCFU / ml virus at 400ppm chloric acid concentration can be inactivated below the detection limit (1.3LogCFU / ml or less) and BSA is added to a final concentration of 0.05%.
  • CAW and CAW were able to inactivate 5Log CFU / ml virus below the detection limit (1.3LogCFU / ml or less) at 1,000 ppm chlorite concentration.
  • the inactivation effect with respect to a feline calicivirus can also be confirmed using the chlorous acid liquid contained in the wet sheet of the cotton material nonwoven fabric impregnated with the diluted CAW solution.
  • a technique capable of easily testing the effect of a bactericide on a norovirus is provided, and the possibility of being widely used in the food industry, the medical field, etc. is further increased.

Abstract

The present invention addresses the problem of providing a technique by which the effect of a germicide against norovirus can be easily tested. The present invention provides a method of measuring the inactivation effect of chlorous acid water or a chlorous acid water preparation against norovirus, the method comprising: (A) a step for inoculating host cells with a feline calicivirus (FCV) strain or other norovirus-equivalent strain; (B) a step for culturing the inoculated host cells in a serum-containing medium; (C) a step for recovering the culture solution and cells; (D) a step for centrifuging the recovered culture solution and cells, and obtaining a supernatant; (E) a step for using the supernatant as a test virus solution, and performing an inactivation treatment on the test virus solution using chlorous acid water or a chlorous acid water preparation; (F) a step for neutralizing by diluting with BSA-added PBS after the inactivation treatment; and (G) a step for culturing host cells inoculated with the neutralized virus solution, and measuring the TCID50.

Description

ウイルス不活化効果試験Virus inactivation test
本発明はウイルス不活化効果を簡便に試験する技術に関する。 The present invention relates to a technique for simply testing a virus inactivation effect.
 最近、ノロウイルスによる食中毒や、感染症がとても深刻な問題となり、特に、5歳以下の乳幼児のノロウイルスの感染が、その全体の6割程度を占めており、死亡事例が発生するなど、社会的な問題にまで発展しつつある。 Recently, food poisoning caused by norovirus and infectious diseases have become very serious problems. In particular, norovirus infection in infants under 5 years old accounts for about 60% of the total, and death cases occur. It is developing into a problem.
 日本の厚生労働省をはじめ政府当局はでは、新たに5歳以下の乳幼児を対象としたノロウイルス対策を別途、検討しているとされる。現状、有効な殺菌・消毒剤は、次亜塩素酸ナトリウムしかなく、次亜塩素酸ナトリウムは、必要な時に必要な分だけ、希釈して使用することができる薬剤であり、咄嗟の時のために備えておくことができない。突然の事態に使える殺菌・消毒剤は、アルコール類しかないが、このアルコール類は、一般的にウイルスに対する効果はほとんど期待できず、予め準備しておく事ができる有効な殺菌・消毒剤の開発が望まれている。 The government authorities, including the Japanese Ministry of Health, Labor and Welfare, are now considering a new anti-norovirus measure for infants under 5 years old. Currently, the only effective disinfectant and disinfectant is sodium hypochlorite, and sodium hypochlorite is a drug that can be used by diluting it as much as necessary. Can't prepare for. Alcohols are the only bactericidal / disinfecting agents that can be used in sudden situations, but these alcohols are generally expected to have little effect on viruses. Is desired.
 本発明者らは、新規殺菌・消毒剤として亜塩素酸水またはその製剤を開発し、プラック法を用いてノロウイルスの不活化効果を確認した。その結果、ノロウイルスに対して不活化効果を有しているということが分かり(国際公開第2014/188311(特許文献1))、この亜塩素酸水(国際公開第2008/026607(特許文献2)参照)またはその製剤類を、5歳以下の乳幼児の吐しゃ物や、嘔吐物や、汚物等の殺菌・消毒剤として応用することを試みた。 The present inventors have developed chlorous acid water or a preparation thereof as a novel disinfectant / disinfectant and confirmed the inactivation effect of norovirus using the plaque method. As a result, it was found that it has an inactivating effect on Norovirus (International Publication No. 2014/188311 (Patent Document 1)), and this aqueous chlorite (International Publication No. 2008/026607 (Patent Document 2)) We tried to apply these preparations as disinfectants and disinfectants for infants aged 5 years and under, vomit, and filth.
 現在厚生労働省が採用している手法は、TCID50法であり、この方法で、各殺菌・消毒剤を使用し、ノロウイルスの代替ウイルスであるネコカリシウイルスに対する不活化効果が評価されている。 The method currently employed by the Ministry of Health, Labor and Welfare is the TCID 50 method, which uses each disinfectant and disinfectant and has been evaluated for its inactivation effect on feline calicivirus, a substitute for norovirus.
国際公開第2014/188311International Publication No. 2014/188311 国際公開第2008/026607International Publication No. 2008/026607
 本発明者らは、ノロウイルスの試験のためのネコカリシウイルスに対する殺傷効果を効率よく試験し得る新規方法を開発した。本発明は以下をも提供する。 The present inventors have developed a new method that can efficiently test the killing effect against feline calicivirus for the test of norovirus. The present invention also provides the following.
 1つの局面では、本発明は、(A)ネコカリシウイルス(FCV)株または他のノロウイルス等価株を宿主細胞に接種する工程;(B)該接種した宿主細胞を血清含有培地で培養する工程;(C)培養液および細胞を回収する工程;(D)該回収された培養液および細胞を遠心分離して上清を得る工程、(E)該上清を供試ウイルス液として用いてサンプルの不活化試験を行う工程、を包含する、凍結融解せずにノロウイルスに対するサンプルの不活化効果を測定する方法を提供する。 In one aspect, the present invention provides (A) inoculating a host cell with a feline calicivirus (FCV) strain or other Norovirus equivalent strain; (B) culturing the inoculated host cell in a serum-containing medium; (C) a step of collecting the culture medium and cells; (D) a step of centrifuging the collected culture medium and cells to obtain a supernatant; and (E) a sample using the supernatant as a test virus solution. A method for measuring the inactivation effect of a sample against norovirus without freezing and thawing, comprising the step of performing an inactivation test.
 1つの実施形態では、本発明で用いられる血清含有培地は、ウシ胎児血清含有イーグルMEMである。 In one embodiment, the serum-containing medium used in the present invention is fetal bovine serum-containing Eagle MEM.
 1つの実施形態では、遠心分離は、約1,500~2,000×gで行われる。 In one embodiment, centrifugation is performed at about 1,500 to 2,000 × g.
 別の実施形態では、前記ネコカリシウイルス(FCV)株または他のノロウイルス等価株は、複数の株を用いることを特徴とする。 In another embodiment, the feline calicivirus (FCV) strain or other Norovirus equivalent strain uses a plurality of strains.
 さらに別の実施形態では、前記ネコカリシウイルス(FCV)株または他のノロウイルス等価株は、ネコカリシウイルス(FCV)F4株およびF9株を含む。 In yet another embodiment, the feline calicivirus (FCV) strain or other norovirus equivalent strain comprises feline calicivirus (FCV) F4 strain and F9 strain.
 さらに別の実施形態では、前記工程(C)は、すべての細胞変性効果(CPE)が生じた時点でなされる。 In yet another embodiment, the step (C) is performed when all cytopathic effects (CPE) have occurred.
 本発明は、さらに以下の項目を提供する。
(項目1)
(A)ネコカリシウイルス(FCV)株または他のノロウイルス等価株を宿主細胞に接種する工程;
(B)該接種した宿主細胞を血清含有培地で培養する工程;
(C)培養液および細胞を回収する工程;
(D)該回収された培養液および細胞を遠心分離して上清を得る工程;
(E)該上清を供試ウイルス液として用いて亜塩素酸水または亜塩素酸水製剤による該供試ウイルス液の不活化処理を行う工程;
(F)該不活化処理後にアルブミン加リン酸緩衝化生理食塩水(PBS)で希釈することにより中和する工程;
(G)該中和後のウイルス液を接種した宿主細胞を培養し、TCID50を測定する工程、
を包含する、ノロウイルスに対する亜塩素酸水または亜塩素酸水製剤の不活化効果を測定する方法。
(項目2)
前記アルブミンは、ウシ血清アルブミン(BSA)である、項目1に記載の方法。
(項目3)
前記工程(F)は、0.1%BSA加PBSで希釈することにより行われる、項目1に記載の方法。
(項目4)
前記工程(F)は、0.1%BSA加PBSで10倍希釈することにより行われる、項目3に記載の方法。
(項目5)
前記血清含有培地は、ウシ胎児血清含有イーグルMEMである、項目1~4のいずれか1項に記載の方法。
(項目6)
前記遠心分離は、約1,500~2,000×gで行われる、項目1~5のいずれか1項に記載の方法。
(項目7)
前記ネコカリシウイルス(FCV)株または他のノロウイルス等価株は、複数の株を用いることを特徴とする、項目1~6のいずれか1項に記載の方法。
(項目8)
前記ネコカリシウイルス(FCV)株または他のノロウイルス等価株は、ネコカリシウイルス(FCV)F4株およびF9株を含むことを特徴とする、項目1~7のいずれか1項に記載の方法。
(項目9)
前記ネコカリシウイルス(FCV)株または他のノロウイルス等価株は、ネコカリシウイルス(FCV)F4株である、項目8に記載の方法。
(項目10)
前記工程(C)は、すべての細胞変性効果(CPE)が生じた時点でなされる、項目1~9のいずれか1項に記載の方法。
(項目11)
前記工程(C)は、約2日間培養した時点でなされる、項目10に記載の方法。
(項目12)
前記工程(G)の培養は、7~8日間行われる、項目1~11のいずれか1項に記載の方法。
(項目13)
前記工程(G)の培養は、8日間行われる、項目12に記載の方法。
The present invention further provides the following items.
(Item 1)
(A) inoculating a host cell with a feline calicivirus (FCV) strain or other Norovirus equivalent strain;
(B) culturing the inoculated host cells in a serum-containing medium;
(C) recovering the culture solution and cells;
(D) centrifuging the collected culture medium and cells to obtain a supernatant;
(E) A step of inactivating the test virus solution with a chlorite aqueous solution or a chlorite water preparation using the supernatant as the test virus solution;
(F) The step of neutralizing by diluting with albumin phosphate buffered saline (PBS) after the inactivation treatment;
(G) culturing host cells inoculated with the neutralized virus solution and measuring TCID 50 ,
A method for measuring the inactivation effect of chlorite water or a chlorite water preparation against norovirus.
(Item 2)
Item 2. The method according to Item 1, wherein the albumin is bovine serum albumin (BSA).
(Item 3)
Item 4. The method according to Item 1, wherein the step (F) is performed by diluting with PBS containing 0.1% BSA.
(Item 4)
Item 4. The method according to Item 3, wherein the step (F) is performed by diluting 10 times with PBS containing 0.1% BSA.
(Item 5)
Item 5. The method according to any one of Items 1 to 4, wherein the serum-containing medium is fetal bovine serum-containing Eagle MEM.
(Item 6)
Item 6. The method according to any one of Items 1 to 5, wherein the centrifugation is performed at about 1,500 to 2,000 × g.
(Item 7)
Item 7. The method according to any one of Items 1 to 6, wherein a plurality of strains are used as the feline calicivirus (FCV) strain or other Norovirus equivalent strain.
(Item 8)
Item 8. The method according to any one of Items 1 to 7, wherein the feline calicivirus (FCV) strain or other Norovirus equivalent strain comprises feline calicivirus (FCV) F4 strain and F9 strain.
(Item 9)
Item 9. The method according to Item 8, wherein the feline calicivirus (FCV) strain or other Norovirus equivalent strain is feline calicivirus (FCV) F4 strain.
(Item 10)
Item 10. The method according to any one of Items 1 to 9, wherein the step (C) is performed when all cytopathic effects (CPE) are generated.
(Item 11)
Item 11. The method according to Item 10, wherein the step (C) is performed when the cells are cultured for about 2 days.
(Item 12)
The method according to any one of items 1 to 11, wherein the culture in the step (G) is performed for 7 to 8 days.
(Item 13)
Item 13. The method according to Item 12, wherein the culture in the step (G) is performed for 8 days.
 上記特徴は複数を組み合わせて実施しうることが理解され、そのような実施形態は本発明の範囲であることが理解される。 It will be understood that the features described above can be implemented in combination, and that such embodiments are within the scope of the present invention.
 本発明のなおさらなる実施形態および利点は、必要に応じて以下の詳細な説明を読んで理解すれば、当業者に認識される。
(発明の効果)
 本発明によれば、殺菌剤のノロウイルスに対する効果を簡便に試験することができる技術が提供され、食品産業、医療現場等で幅広く活用できる可能性がさらに高まった。
Still further embodiments and advantages of the invention will be recognized by those of ordinary skill in the art upon reading and understanding the following detailed description as needed.
(The invention's effect)
According to the present invention, a technique capable of simply testing the effect of a bactericide on a norovirus is provided, and the possibility of being widely used in the food industry, the medical field and the like is further increased.
 以下、本発明を説明する。本明細書の全体にわたり、単数形の表現は、特に言及しない限り、その複数形の概念をも含むことが理解されるべきである。従って、単数形の冠詞(例えば、英語の場合は「a」、「an」、「the」など)は、特に言及しない限り、その複数形の概念をも含むことが理解されるべきである。また、本明細書において使用される用語は、特に言及しない限り、当該分野で通常用いられる意味で用いられることが理解されるべきである。従って、他に定義されない限り、本明細書中で使用されるすべての専門用語および科学技術用語は、本発明の属する分野の当業者によって一般的に理解されるのと同じ意味を有する。矛盾する場合、本明細書(定義を含めて)が優先する。 Hereinafter, the present invention will be described. Throughout this specification, it should be understood that the singular forms also include the plural concept unless specifically stated otherwise. Thus, it should be understood that singular articles (eg, “a”, “an”, “the”, etc. in the case of English) also include the plural concept unless otherwise stated. In addition, it is to be understood that the terms used in the present specification are used in the meaning normally used in the art unless otherwise specified. Thus, unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. In case of conflict, the present specification, including definitions, will control.
 本明細書において、「亜塩素酸水」とは、殺菌剤として使用される亜塩素酸(HClO)を含む水溶液のことをいう。亜塩素酸水は、例えば、国際公開第2014/188311およびPCT/JP2014/006379に記載の製法で製造することができる。PCT/JP2014/006379に記載の製法で製造された亜塩素酸水は、遷移状態を作り出し、分解反応を遅らせることで長時間にわたって亜塩素酸(HClO)を安定的に維持することができる。亜塩素酸水の検体を分光光度計により測定すると、UVスペクトルにおいて波長240~420nmの間に260nm付近でピークを表す酸性亜塩素酸イオン(H+ClO )を含む吸収部と350nm付近にピークを表す二酸化塩素(ClO)を含む吸収部を2つ同時に確認できる場合、すなわち、双瘤を示す場合、亜塩素酸水の存在を認めることができる。この際に亜塩素酸(HClO)を主体として、二酸化塩素(ClO)、および酸性亜塩素酸イオン(H+ClO )のサイクル反応が同時進行していると考える。 In the present specification, “chlorous acid water” refers to an aqueous solution containing chlorous acid (HClO 2 ) used as a disinfectant. Chlorous acid water can be produced, for example, by the production method described in International Publication No. 2014/1888311 and PCT / JP2014 / 006379. Chlorous acid water produced by the production method described in PCT / JP2014 / 006379 can stably maintain chlorous acid (HClO 2 ) over a long period of time by creating a transition state and delaying the decomposition reaction. When a specimen of chlorite water was measured with a spectrophotometer, an absorption part containing acidic chlorite ions (H + + ClO 2 ) that show a peak in the vicinity of 260 nm between wavelengths of 240 to 420 nm in the UV spectrum and around 350 nm When two absorption parts containing chlorine dioxide (ClO 2 ) representing a peak can be confirmed at the same time, that is, in the case of showing a twine, the presence of chlorous acid water can be recognized. At this time, it is considered that the cycle reaction of chlorine dioxide (ClO 2 ) and acidic chlorite ion (H + + ClO 2 ) is proceeding mainly with chlorous acid (HClO 2 ) as a main component.
 本明細書において、「亜塩素酸水」および「C.A.W(chlorous acid water)」は、交換可能に使用することができる。 In the present specification, “chlorite water” and “CAW (chloro acid water)” can be used interchangeably.
 「亜塩素酸水製剤」は亜塩素酸水を用いて製造することができる。亜塩素酸水製剤の代表的な組成として、これに限定されることはないが、亜塩素酸水(5%品)60.00%(w/v)(亜塩素酸の濃度としては50000ppmである。)、リン酸二水素カリウム1.70%(w/v)、水酸化カリウム0.50%(w/v)および精製水37.8%(w/v)のものを配合し、使用することができる(出願人より「オウトゥロックスーパー」という名称で販売されている。)が、この配合組成の場合は、亜塩素酸水は、0.25%(w/v)~75%(w/v)、リン酸二水素カリウムは、0.70%(w/v)~13.90%(w/v)、水酸化カリウムは、0.10%(w/v)~5.60%(w/v)であっても良い。リン酸二水素カリウムの代わりにリン酸二水素ナトリウムを、水酸化カリウムの代わりに水酸化ナトリウムを使用しても良い。 “Chlorous acid aqueous preparation” can be manufactured using chlorous acid water. Although it is not limited to this as a typical composition of a chlorite aqueous formulation, chlorite water (5% product) 60.00% (w / v) (the concentration of chlorous acid is 50,000 ppm) ), Potassium dihydrogen phosphate 1.70% (w / v), potassium hydroxide 0.50% (w / v) and purified water 37.8% (w / v) (Sold under the name "Outturlock Super" by the applicant), but in the case of this composition, chlorous acid water is 0.25% (w / v) to 75% (W / v), potassium dihydrogen phosphate is 0.70% (w / v) to 13.90% (w / v), potassium hydroxide is 0.10% (w / v) to 5. It may be 60% (w / v). Sodium dihydrogen phosphate may be used instead of potassium dihydrogen phosphate, and sodium hydroxide may be used instead of potassium hydroxide.
 PCT/JP2014/006379に記載の発明は、従来塩素酸ナトリウム水溶液に、該水溶液のpH値を2.3から3.4内に維持させることができる量及び濃度の硫酸またはその水溶液を加えて反応させることにより、塩素酸を発生させ、次いで該塩素酸の還元反応に必要とされる量と同等、もしくはそれ以上の量の過酸化水素を加えていたが、塩素酸に過酸化水素を加えるのではなく、二酸化塩素ガス(ClO)を、無機酸、無機酸塩、有機酸もしくは有機酸塩のうちのいずれか単体もしくは2種類以上の単体、またはこれらを併用したもの(水溶液A)に加える工程を包含する、亜塩素酸の製造方法を提供することによって、達成したものである。二酸化塩素のガス(気体)を原料に用いることで、高いアルカリ度をもって、亜塩素酸イオンを発生させ、その際に、pHが中性以下にまで下がることから、亜塩素酸イオンの一部が亜塩素酸の状態に移行することで、遷移状態を作り出し、その結果、分解反応を遅らせることで長時間にわたって亜塩素酸(HClO)を安定して維持させることができるというメリットを享受することができる。二酸化塩素(ClO)は、無機酸、無機酸塩、有機酸もしくは有機酸塩のうちのいずれか単体もしくは2種類以上の単体、またはこれらを併用したものを含む水溶液Aにトラップ(Trap)させることによってこのような効果が達成される。トラップとの表現は、吸着ないし捕捉等、好ましくは気体の二酸化塩素が無機酸、無機酸塩、有機酸もしくは有機酸塩のうちのいずれか単体もしくは2種類以上の単体、またはこれらを併用したものと共存するような状態になる限りどのような操作を行ってもよい。そのような操作としては、一般的に、水溶液Aに直接吹き込む方法、もしくは、上部から水溶液Aを霧状に噴霧し、下部から二酸化塩素ガスを放出することで、吸着する方法、吹付等が挙げられるが、あくまでもそれらに限定されない。理論に束縛されることを望まないが、PCT/JP2014/006379に記載されている図1で示されるような製造プラントを用いて製造した本発明の亜塩素酸水(PCT/JP2014/006379に記載の実施例1~6を参照)は、PCT/JP2014/006379に記載の実施例7に示されるように、少なくとも冷蔵(4℃)で10日間、安定した殺菌効果を示すことが証明されており、PCT/JP2014/006379に記載の発明は水溶液中で亜塩素酸が安定しているもの、いわゆる亜塩素酸水の製造法を提供することが理解される。 In the invention described in PCT / JP2014 / 006379, a conventional sodium chlorate aqueous solution is added with sulfuric acid or an aqueous solution thereof in an amount and concentration capable of maintaining the pH value of the aqueous solution within 2.3 to 3.4. Chloric acid was generated, and hydrogen peroxide was added in an amount equal to or greater than that required for the reduction reaction of the chloric acid. Rather, chlorine dioxide gas (ClO 2 ) is added to any one of inorganic acids, inorganic acid salts, organic acids or organic acid salts, or two or more of them, or a combination of these (aqueous solution A). This is achieved by providing a method for producing chlorous acid including a process. By using chlorine dioxide gas (gas) as a raw material, chlorite ions are generated with high alkalinity, and at that time, the pH drops to below neutral. By transitioning to the state of chlorous acid, a transition state is created, and as a result, the advantage of being able to stably maintain chlorous acid (HClO 2 ) over a long period of time by delaying the decomposition reaction. Can do. Chlorine dioxide (ClO 2 ) is trapped in an aqueous solution A containing any one or more of inorganic acids, inorganic acid salts, organic acids or organic acid salts, or a combination of these. This effect is achieved. The expression “trap” means adsorption or trapping, etc., preferably gaseous chlorine dioxide is any one of inorganic acid, inorganic acid salt, organic acid or organic acid salt, or a combination of two or more. Any operation may be performed as long as the state coexists with the system. As such an operation, in general, a method of directly blowing into the aqueous solution A, or a method of adsorbing by spraying the aqueous solution A in a mist form from the upper part and releasing chlorine dioxide gas from the lower part, spraying, and the like can be mentioned. However, it is not limited to them. Although not wishing to be bound by theory, the chlorite water of the present invention (described in PCT / JP2014 / 006379) manufactured using a manufacturing plant as shown in FIG. 1 described in PCT / JP2014 / 006379. Examples 1 to 6) have been proven to exhibit a stable bactericidal effect at least for 10 days at refrigeration (4 ° C.) as shown in Example 7 described in PCT / JP2014 / 006379. It is understood that the invention described in PCT / JP2014 / 006379 provides a method for producing so-called chlorous acid water in which chlorous acid is stable in an aqueous solution.
 本明細書において「抗菌(作用)」とは病原性や有害性を有する糸状菌、細菌、ウイルスなどの微生物の増殖を抑制することをいう。抗菌作用を有するものを抗菌剤という。 In this specification, “antibacterial (action)” refers to inhibiting the growth of microorganisms such as filamentous fungi, bacteria and viruses having pathogenicity and harmfulness. Those having antibacterial action are called antibacterial agents.
 本明細書において狭義の「殺菌(作用)」とは病原性や有害性を有する糸状菌、細菌、ウイルスなどの微生物を死滅させることをいう。殺菌作用を有するものを狭義の殺菌剤という。 In this specification, “sterilization (action)” in a narrow sense means to kill microorganisms such as filamentous fungi, bacteria and viruses having pathogenicity and harmfulness. What has a bactericidal action is called a narrowly defined bactericidal agent.
 抗菌作用および殺菌作用を総称して、殺傷(作用)というが、本明細書では特に限定しない限り、殺菌(作用)は抗菌(作用)をも含む広い概念で用いる。したがって、抗菌作用および殺菌作用を有するものを総称して本明細書において通常「殺菌剤」といい、本明細書において通常使用する場合は抗菌作用および狭義の殺菌作用の両方を有する薬剤と理解される。 The antibacterial action and bactericidal action are collectively referred to as killing (action), but unless otherwise specified in this specification, bactericidal (action) is used in a broad concept including antibacterial (action). Accordingly, those having antibacterial action and bactericidal action are generally referred to as “bactericidal agents” in the present specification, and are generally understood as drugs having both an antibacterial action and a narrowly defined bactericidal action. The
 本明細書において「不活化効果」は、ある微生物(例えば、ノロウイルス)について、病原性または有害性の影響がない程度に低下または消滅させることをいう。 In this specification, the “inactivation effect” means that a certain microorganism (eg, norovirus) is reduced or eliminated to the extent that there is no pathogenic or harmful effect.
 本明細書において「中和」とは、亜塩素酸水または亜塩素酸水製剤によるウイルスの不活化を停止することをいう。不活化処理されたウイルス液を中和することを「中和処理」という。中和処理は、不活化処理後速やかにアルブミンを含む緩衝液で希釈することにより行われる。通常は、中和処理は0.1%BSA加PBSで10希釈により行うが、これに限定されず、0%~5%BSAを含有するPBSで行ってよく、例えば0%、0.05%、0.1%、0.5%、1%、2%、3%、4%または5%BSAを含有するPBSで行ってよい。 In this specification, “neutralization” means stopping virus inactivation by chlorite water or a chlorite water preparation. Neutralizing the inactivated virus solution is called “neutralization treatment”. The neutralization treatment is performed by diluting with a buffer solution containing albumin immediately after the inactivation treatment. Usually, the neutralization treatment is performed by diluting with 0.1% BSA-added PBS for 10 times, but is not limited thereto, and may be performed with PBS containing 0% to 5% BSA, for example, 0%, 0.05% , 0.1%, 0.5%, 1%, 2%, 3%, 4% or 5% BSA in PBS.
 本明細書において「BSA加PBS」とは、BSAを含有するPBSをいう。「BSA」とは、ウシ血清アルブミンをいい、「PBS」とは、リン酸緩衝化生理食塩水をいう。 In this specification, “PBS with BSA” means PBS containing BSA. “BSA” refers to bovine serum albumin and “PBS” refers to phosphate buffered saline.
 不活化処理後に中和処理を行うことは、亜塩素酸水または亜塩素酸水製剤の不活化効果を測定する上で重要である。なぜなら、中和処理を行わなければ、その後の細胞培養工程において、ウイルスの不活化が進み、適正なウイルス不活化効果を測定することができないからである。従来のTCID50法を用いたウイルス不活化効果試験においては、ウイルスの不活化処理後に中和処理を行うという概念が存在していなかったが、本発明において、新たに中和処理工程を導入し、中和処理にはBSA加PBSを使用した。BSA加PBSは、亜塩素酸水または亜塩素酸水製剤に対する優れた中和作用を示し、BSA加PBSを中和処理に使用した結果、プラック法と同じように亜塩素酸水または亜塩素酸水製剤のウイルス不活化効果を適正に評価することが可能となった。 Performing the neutralization treatment after the inactivation treatment is important in measuring the inactivation effect of the chlorite aqueous solution or the chlorite aqueous preparation. This is because if neutralization is not performed, virus inactivation proceeds in the subsequent cell culture step, and an appropriate virus inactivation effect cannot be measured. In the virus inactivation effect test using the conventional TCID 50 method, there was no concept of neutralization after virus inactivation treatment. However, in the present invention, a neutralization treatment step was newly introduced. For neutralization, BSA-added PBS was used. BSA-added PBS shows an excellent neutralizing effect on chlorite water or chlorite aqueous preparations. As a result of using BSA-added PBS for neutralization treatment, chlorite water or chlorous acid was used in the same manner as the plaque method. It became possible to appropriately evaluate the virus inactivation effect of water preparations.
 本明細書において「抗ウイルス(作用)」とはウイルス増殖を抑制することをいう。抗ウイルス作用を有するものを抗ウイルス剤という。 As used herein, “antiviral (action)” refers to inhibiting virus growth. Those having an antiviral action are called antiviral agents.
 本明細書において「殺ウイルス(作用)」とはウイルス粒子の感染性を不活化することをいう。ウイルス不活化は、核酸タンパク質、脂質などウイルス粒子構成成分の立体構造変化、または、それらの間の相互作用の変調によると考えられる。殺ウイルス作用を有するものを殺ウイルス剤という。 In this specification, “virus killing (action)” refers to inactivating the infectivity of virus particles. Virus inactivation is considered to be due to a three-dimensional structural change of viral particle components such as nucleic acid proteins and lipids, or modulation of the interaction between them. What has a virucidal action is called a virucidal agent.
 本明細書において「ウイルス殺傷(作用)」とは、抗ウイルス作用および殺ウイルス作用をまとめた広義の概念をいう。「ウイルス殺傷剤」とは、抗ウイルス作用および殺ウイルス作用を有する任意の薬剤をいう。ウイルス殺傷剤は、医薬品、医薬部外品、食品添加物、消毒薬等として使用することができる。 In this specification, “virus killing (action)” refers to a broad concept that summarizes antiviral action and virucidal action. “Viral killing agent” refers to any agent having antiviral and virucidal action. Viral killing agents can be used as pharmaceuticals, quasi drugs, food additives, disinfectants and the like.
 抗ウイルス剤が原則的に特定のウイルスに対して作用するのに対し、殺ウイルス剤は広範な種類のウイルスに対して有効である。殺ウイルス剤の使用は常に薬剤耐性ウイルス変異株を生じるが、殺ウイルス剤では原理的に薬剤耐性ウイルス株を生じることはない。殺ウイルス剤の標的分子が複数あるためである。したがって、耐性が生じないという点で好ましい。 Antiviral agents act against specific viruses in principle, whereas virucidal agents are effective against a wide variety of viruses. The use of a virucidal agent always gives rise to drug-resistant virus variants, but virucidal agents do not in principle give rise to drug-resistant virus strains. This is because there are multiple target molecules for the virucidal agent. Therefore, it is preferable in that resistance does not occur.
 従来の殺ウイルス剤作用の測定法としては、代表的に以下の試験が用いられている。
1)2ml プラスチックチューブ(アシストチューブ)に180μlの指定pHの緩衝液を加える。2)10μlの指定濃度の亜塩素酸水溶液を加える。3)10μlのウイルス液を加え、充分撹拌した後、指定温度の恒温水槽内で保温する。4)保温後直ちに氷水で冷却しタンパク質を含むウイルス希釈液で100倍希釈する。5)残存感染ウイルス量をプラック法にて測定する。
The following tests are typically used as conventional methods for measuring the action of a virucidal agent.
1) Add 180 μl of buffer solution at the specified pH to a 2 ml plastic tube (assist tube). 2) Add 10 μl of the specified concentration of chlorous acid aqueous solution. 3) Add 10 μl of virus solution, stir well, and keep warm in a constant temperature water bath at the specified temperature. 4) Immediately after the incubation, cool with ice water and dilute 100 times with the virus diluted solution containing protein. 5) Measure residual viral load by plaque method.
 本発明が対象とするウイルスは、ノロウイルスを評価し得る任意のウイルスを挙げることができる。たとえば、このようなウイルスとしては、ノロウイルスのほか、ネコカリシウイルス(FCV)株等のノロウイルス等価株が挙げられる。 The virus targeted by the present invention can include any virus that can evaluate Norovirus. For example, such viruses include noroviruses and norovirus equivalent strains such as feline calicivirus (FCV) strains.
 ノロウイルスは、非細菌性急性胃腸炎を引き起こすウイルスの一属である。カキなどの貝類の摂食による食中毒の原因になるほか、感染したヒトの糞便や吐瀉物、あるいはそれらが乾燥したものから出る塵埃を介して経口感染する。ノロウイルスを試験する際は近縁種であるネコカリシウイルスが使用される。この近縁種での試験は当該分野で認定されたものである。ノロウイルスについては、ノロウィルス不活化有効性評価試験に於ける代替ウィルス、ネコカリシウィルス使用による試験法 EPA、平成19年度 ノロウイルスの不活化条件に関する調査報告書、国立医薬品食品衛生研究所食品衛生管理部山本茂貴および野田衛、厚生労働省を参照。ノロウイルスの殺ウイルス効果については、近縁菌であるネコカリシウイルス(FCV)による調査で代替されうるとされており(この文献のほか、Gehrke, C et al: Inactivation of feline calicivirus, a surrogate of norovirus (formerly Norwalk-like viruses), by different types of alcohol in virtro and in vivo, J Hosp Infect (2004)46:49-55; Doultree, JC et al: Inactivation of feline calicivirus, a norwalk virus surrogate, J Hosp Infect (1999)41:51-57);Jennifer, L et al: Surrogates for the study of norovirus stability and inactivation in the environment: A comparison of murine norovirus and feline calicivirus, J Food Protect (2006)11:2761-2765;高木弘隆他:ネコカリシウイルス(FCV)を代替としたノロウイルス(NV)不活化効果の検討-アリカリ剤、過酸化水素および過炭酸ナトリウムによる不活化効果-、医学と薬学(2007)57:311-312)、本明細書でもこれを援用する。 Norovirus is a genus of viruses that cause non-bacterial acute gastroenteritis. In addition to causing food poisoning due to the consumption of shellfish such as oysters, it is also orally transmitted through the dust of the infected human feces and vomit, or the dried ones. When testing for norovirus, feline calicivirus, a related species, is used. This related species test has been recognized in the field. For norovirus, test method using alternative virus and feline calicivirus in Norovirus inactivation efficacy evaluation test, EPA, 2007 Survey report on inactivation conditions of norovirus, National Institute of Health Sciences, Food Sanitation Management Department See Shigeki Yamamoto and Mamoru Noda, Ministry of Health, Labor and Welfare. The virus-killing effect of norovirus can be replaced by a survey by feline calicivirus (FCV), a related bacterium (in addition to this literature, Gehrke, C et al: Inactivation of feline calicivirus, a surrogate of norovirus (formerly Norwalk-like viruses), by different types of alcohol in virtual and in vivo, J Hosp Infect (2004) 46: 49-55; Doultree, JC et al: Inactivation of feline calicivirus, a norwalk virussurrofect J (1999) 41: 51-57); Jennifer, L et al: Surrogates for the study of norovirus stability and inactivation in the environment: A comparison of murine norovirus and feline calicivirus, J Food Protect 1 (765) 11: 765 Hirotaka Takagi et al .: Examination of norovirus (NV) inactivation effect by replacing feline calicivirus (FCV)-Alikari agent, hydrogen peroxide And the inactivation effect by sodium percarbonate, Medicine and pharmacy (2007) 57: 311-312), which is also incorporated herein.
 例えば、亜塩素酸水によるウイルスの不活化速度の測定は、通常の実験(混合等)を行い、残留した感染性ウイルスの量を測定することによって判定することができ、亜塩素酸濃度として5ppmの亜塩素酸水を、pH6.5の条件で、1分以内の接触により、完全にウイルス(例えば、インフルエンザウイルス等)を不活化することができる。 For example, the measurement of the inactivation rate of virus by chlorite water can be determined by conducting a normal experiment (mixing, etc.) and measuring the amount of remaining infectious virus, and the concentration of chlorite is 5 ppm. The virus (for example, influenza virus etc.) can be completely inactivated by contact within 1 minute under the condition of pH 6.5.
 したがって、本明細書において「ノロウイルス等価株」は、ネコカリシウイルス(FCV)株の他、上記の研究にあるように、不活効果が演繹しうるウイルスであれば、任意のウイルス株を用いることができることが理解される。 Therefore, in the present specification, the “norovirus equivalent strain” is not limited to the feline calicivirus (FCV) strain, and any virus strain can be used as long as the inactive effect can be exerted as described in the above research. It is understood that
 ウイルスに対する熱や消毒薬に対する抵抗性や環境における生存性などを調べるためには、生きた(感染性のある)ウイルスを定量的に測定する必要がある。感染性を持つウイルスを定量する方法は、本来の宿主である動物あるいはそのウイルスに感受性のある実験動物を用いる方法、培養細胞を用いる方法があるが、一般に簡便で定量性の高い培養細胞を用いる方法が利用される。しかし、ヒトノロウイルスはこれまで培養細胞での培養が成功していないため、培養細胞による方法は実施することができない。そのため、歴史的にはノロウイルスの不活化等に関する研究は、(1)ボランティアによるヒトの糞便由来ノロウイルスの感染実験、(2)ノロウイルスに近縁な代替えウイルスによる培養細胞での実験によりノロウイルスの結果を推定する方法より行われてきた。ボランティアによる感染実験は、糞便由来のヒトノロウイルスを含むジュースを直接ボランティアに飲ませ、嘔吐、下痢等の胃腸炎症状の発症の有無を調べるもので主に米国で行われてきた。ノロウイルスの不活化条件等を直接的に知ることができるが、実験が手間である、定量性に欠けるなどの問題点がある。また近年個体によりノロウイルスに対する感受性に違いが認められることが明らかになっており、その発見以前の研究の実験結果には疑問が残る可能性がある。 In order to investigate heat resistance against viruses, resistance to disinfectants, viability in the environment, etc., it is necessary to quantitatively measure live (infectious) viruses. Methods for quantifying infectious viruses include methods that use animals that are the original host or experimental animals that are sensitive to the virus, and methods that use cultured cells. Generally, cultured cells that are simple and highly quantitative are used. The method is used. However, since human norovirus has not been successfully cultured in cultured cells, the method using cultured cells cannot be performed. Therefore, historically, research on the inactivation of norovirus, etc. has been carried out by (1) infection experiments with human fecal norovirus by volunteers, (2) experiments with cultured cells using substitute viruses closely related to norovirus. It has been done by the estimation method. Volunteer infection experiments have been carried out mainly in the United States to examine the presence or absence of gastrointestinal inflammation symptoms such as vomiting and diarrhea by directly drinking the juice containing fecal human norovirus. Although the inactivation conditions of norovirus can be known directly, there are problems such as laborious experiments and lack of quantitativeness. In recent years, it has been clarified that there is a difference in susceptibility to norovirus depending on the individual, and there is a possibility that the experimental results of the research before the discovery may remain doubtful.
 そのような中、ノロウイルス等価株として、分類学的に近縁なウイルスが注目されている。このような近縁ウイルスは互いに類似した熱抵抗性や消毒薬に対する感受性を示すことが多いことから、培養できないノロウイルスに替わり、種々のウイルスによる不活化実験の結果からノロウイルスの抵抗性が類推され、またノロウイルスの抵抗性を知る目的で種々のウイルスが不活化実験等に利用されるようになっている。初期においては、同じヒトの腸管系ウイルスであり、エンベロープを持たない 1 本鎖 RNA ウイルスであるポリオウイルス、コクサキーウイルスおよびエコーウイルスなどのエンテロウイルスが用いられており、本発明の目的では、これらのウイルスも対象とすることができる。 Under such circumstances, viruses that are taxonomically related are attracting attention as Norovirus equivalent strains. Such closely related viruses often show similar heat resistance and sensitivity to disinfectants, so instead of norovirus that cannot be cultured, the resistance of norovirus is inferred from the results of inactivation experiments with various viruses, Various viruses are used for inactivation experiments and the like for the purpose of knowing the resistance of norovirus. Initially, enteroviruses such as poliovirus, coxakey virus and echovirus, which are the same human intestinal viruses and are non-enveloped 1 RNA viruses, are used for the purposes of the present invention. Viruses can also be targeted.
 加えて、1990年代後半になると、ノロウイルスと同じカリシウイルス科に属し細胞培養での培養が成功したネコカリシウイルスが主に利用されるようになった。現在のノロウイルスに対する加熱や消毒剤等に対する抵抗性は、主にこのネコカリシウイルスのデータに基づいており、実質的に同等とされることから好ましいノロウイルス等価株としてはネコカリシウイルスが挙げられるがこれに限定されない。US EPA の Anti microbials Division の抗ウイルス効果試験法として、ノロウイルスの不活化試験としてネコカリシウイルスを用いるプロトコルが記載されている(Antimicrobials DivisionUSEPA, Initial virucidal effectiveness test, using feline calicivirus as surrogate for norovirus,http://epa.gov/oppad001/pdf_files/initial_virucidal_test.pdf )。また、ノロウイルスと同様に二枚貝を介しての感染が示唆されているA型肝炎ウイルスに関するデータも利用される場合があり、本明細書の目的では、ノロウイルス等価株の範疇にはいることが理解される。より最近になって、マウスノロウイルスが、ヒトノロウイルスと同じノロウイルス属に属するウイルスとして初めて培養細胞での分離・増殖が報告されている(Wobus,CE et al: Replication of norovirus in cell culture reveals a tropism for dendritic cell sand macrophages, Plos Biol (2004)2:2076-2084 )。それ以来、マウスノロウイルスを用いた不活化実験等が行われはじめた。また、ヒトノロウイルスはヒト以外ではチンパンジーしか感受性が報告されていなかったが、2006年にブタにおけるヒトノロウイルスの感染が報告(Cheetham,S et al, Pathogenesis of a genogroup II human norovirus in gnotobiotic pigs, J Virol(2006)80:10372-10381 )されたことから、ヒトノロウイルスのブタに対する感染性を指標とした実験にも応用され得る。また、ヒト結腸癌由来株化細胞であるCaCo2細胞の 3 次元立体培養法によりヒトノロウイルスの増殖が確認されたとする報告(Straub, TM et al: In vitro cell culture infectivity assay for human noroviruses, Emerg Infect Dis(2007)13:396-403 )があるため、このようなCaco2細胞も本明細書の目的では、ノロウイルス等価株の範疇にはいることが理解される。 In addition, in the late 1990s, feline calicivirus, which belongs to the same Caliciviridae family as Norovirus and has been successfully cultured in cell culture, came to be mainly used. The current resistance to norovirus, such as heating and disinfectant, is mainly based on this feline calicivirus data, and since it is substantially equivalent, feline calicivirus is a preferred norovirus equivalent strain. It is not limited to. As a test method for the antiviral effect of US Anti-microbials Division of US EPA, a protocol using feline calicivirus is described as an inactivation test for norovirus (Antimicrobials Division USPA, Initial-virucidal-effectiveness test, using feline calicivirus as surrogate for norovirus, http: //epa.gov/oppad001/pdf_files/initial_virucidal_test.pdf). In addition, data concerning hepatitis A virus, which is suggested to be transmitted through bivalves as well as norovirus, may be used. For the purposes of this specification, it is understood that it falls within the category of norovirus equivalent strains. The More recently, mouse norovirus has been reported to be isolated and propagated in cultured cells for the first time as a virus belonging to the same norovirus genus as human norovirus (Wobus, CE et al: Replication of norovirus in cell culture reveals a tropism for dendritic cell sand macrophages, Plos Biol (2004) 2: 2076-2084). Since then, inactivation experiments using murine norovirus have begun. In addition, human noroviruses were reported to be susceptible only to chimpanzees except for humans, but human norovirus infection was reported in pigs in 2006 (Cheetham, S et al, Pathogenesis of a genogroup II human norovirus in gnotobiotic pigs, J Virol (2006) 80: 10372-10381)), it can be applied to experiments using the infectivity of human norovirus to pigs as an index. In addition, it was reported that human norovirus growth was confirmed by Ca3 three-dimensional culture method of CaCo2 cells derived from human colon cancer (Straub, TM et al: In vitro cell culture infectivity assay for human noroviruses, Emerg Infect Dis (2007) 13: 396-403), it is understood that such Caco2 cells fall within the category of norovirus equivalent strains for the purposes of this specification.
 (好ましい実施形態)
 以下に本発明の好ましい実施形態を説明する。以下に提供される実施形態は、本発明のよりよい理解のために提供されるものであり、本発明の範囲は以下の記載に限定されるべきでないことが理解される。従って、当業者は、本明細書中の記載を参酌して、本発明の範囲内で適宜改変を行うことができることは明らかである。また、本発明の以下の実施形態は単独でも使用されあるいはそれらを組み合わせて使用することができることが理解される。
(Preferred embodiment)
Hereinafter, preferred embodiments of the present invention will be described. The embodiments provided below are provided for a better understanding of the present invention, and it is understood that the scope of the present invention should not be limited to the following description. Therefore, it is obvious that those skilled in the art can make appropriate modifications within the scope of the present invention with reference to the description in the present specification. It will also be appreciated that the following embodiments of the invention may be used alone or in combination.
 1つの局面において、本発明は、(A)ネコカリシウイルス(FCV)株または他のノロウイルス等価株を宿主細胞に接種する工程;(B)該接種した宿主細胞を血清含有培地で培養する工程;(C)培養液および細胞を回収する工程;(D)該回収された培養液および細胞を遠心分離して上清を得る工程、(E)該上清を供試ウイルス液として用いてサンプルの不活化試験を行う工程、を包含する、凍結融解せずにノロウイルスに対するサンプルの不活化効果を測定する方法を提供する。 In one aspect, the present invention comprises (A) inoculating a host cell with a feline calicivirus (FCV) strain or other Norovirus equivalent strain; (B) culturing the inoculated host cell in a serum-containing medium; (C) a step of collecting the culture medium and cells; (D) a step of centrifuging the collected culture medium and cells to obtain a supernatant; and (E) a sample using the supernatant as a test virus solution. A method for measuring the inactivation effect of a sample against norovirus without freezing and thawing, comprising the step of performing an inactivation test.
 本発明の培養の実施においては、任意の方法を用いることができるが、例えば、特開2010―148522(P2010-148522A)において記載されている、無血清条件下で初代細胞を培養する方法及びウイルスを増殖させる方法を参照することができ、これを参考として本明細書に援用する。 Any method can be used in carrying out the culture of the present invention. For example, the method and virus for culturing primary cells under serum-free conditions described in JP2010-148522A (P2010-148522A) Can be referred to and is incorporated herein by reference.
 1つの実施形態では、前記血清含有培地は、ウシ胎児血清含有イーグルMEMであるがこれに限定されず、例えば、このほか、DMEM(ダルベッコ改変イーグル培地)等を用いることができる。 In one embodiment, the serum-containing medium is fetal bovine serum-containing Eagle MEM, but is not limited thereto. For example, DMEM (Dulbecco's modified Eagle medium) can be used.
 1つの実施形態では、前記遠心分離は、約1,500~2,000×gで行われることが有利であるがこれに限定されない。例えば、このほか、通常3,000×g~5000×g程度までの遠心分離条件が利用されているが、これに限定されるものではない。 In one embodiment, the centrifugation is advantageously performed at about 1,500 to 2,000 × g, but is not limited thereto. For example, in addition to this, centrifugation conditions of usually about 3,000 × g to 5000 × g are used, but are not limited thereto.
 1つの実施形態では、前記ネコカリシウイルス(FCV)株または他のノロウイルス等価株は、複数の株を用いることを特徴とする。2つ以上の株によってより確実に不活化効果を検証することができるからである。このような株としては、ネコカリシウイルス(FCV)F4株、F9株(例えば、ATCC VR-782株等)などを挙げることができるがそれに限定されない。例えば、このほか、ネコカリシウイルス以外のカリシウイルス科ウイルス、FCV2280株、ポリオウイルス、、コクサキーウイルスおよびエコーウイルスなどのエンテロウイルス、マウスノロウイルスCaCo-2細胞等を用いることができる。実験データは示さないが、FCV2280株、ポリオウイルス等でも実際に機能するデータが得られている。 In one embodiment, the feline calicivirus (FCV) strain or other Norovirus equivalent strain uses a plurality of strains. This is because the inactivation effect can be more reliably verified by two or more strains. Examples of such strains include, but are not limited to, feline calicivirus (FCV) F4 strain and F9 strain (for example, ATCC VR-782 strain). For example, in addition to this, caliciviridae viruses other than feline calicivirus, FCV2280 strain, poliovirus, enteroviruses such as coxakey virus and echovirus, mouse norovirus CaCo-2 cells, and the like can be used. Although experimental data is not shown, data that actually functions is obtained even with FCV2280 strain, poliovirus and the like.
 別の実施形態では、前記ネコカリシウイルス(FCV)株または他のノロウイルス等価株は、ネコカリシウイルス(FCV)F4株およびF9株を含むことを特徴とする。国立医薬品食品衛生試験所等において推奨される株とされているからである。 In another embodiment, the feline calicivirus (FCV) strain or other norovirus equivalent strain includes feline calicivirus (FCV) F4 strain and F9 strain. This is because it is recommended as a stock at the National Pharmaceutical Food Sanitation Laboratory.
 別の実施形態では、前記工程(C)は、すべての細胞変性効果(CPE)が生じた時点でなされる。ウイルスの回収率が高まるからである。しかしながら、これに限定されず、CRPが50%以上の細胞で生じた場合にも(C)工程を行ってよく、例えば、このほか、60%以上、70%以上、80%以上、90%以上、95%以上、98%以上などの任意の適切な数値が挙げられ、通常は70%以上で行われる。 In another embodiment, the step (C) is performed when all cytopathic effects (CPE) have occurred. This is because the virus recovery rate increases. However, the present invention is not limited to this, and the step (C) may also be performed when CRP occurs in cells of 50% or more. For example, 60% or more, 70% or more, 80% or more, 90% or more Any suitable numerical value such as 95% or more, 98% or more can be mentioned, and it is usually carried out at 70% or more.
 別の局面において、本発明は、(A)ネコカリシウイルス(FCV)株または他のノロウイルス等価株を宿主細胞に接種する工程;(B)該接種した宿主細胞を血清含有培地で培養する工程;(C)培養液および細胞を回収する工程;(D)該回収された培養液および細胞を遠心分離して上清を得る工程;(E)該上清を供試ウイルス液として用いて亜塩素酸水またはその製剤による該供試ウイルス液の不活化処理を行う工程;(F)該不活化処理後にBSA加PBSで希釈することにより中和する工程;(G)該中和後のウイルス液を接種した宿主細胞を培養し、TCID50を測定する工程、を包含する、ノロウイルスに対する亜塩素酸水またはその製剤の不活化効果を測定する方法を提供する。 In another aspect, the present invention provides (A) inoculating a host cell with a feline calicivirus (FCV) strain or other Norovirus equivalent strain; (B) culturing the inoculated host cell in a serum-containing medium; (C) a step of collecting the culture solution and cells; (D) a step of centrifuging the collected culture solution and cells to obtain a supernatant; (E) sublimation using the supernatant as a test virus solution. A step of inactivating the test virus solution with acid water or a preparation thereof; (F) a step of neutralizing by dilution with BSA-added PBS after the inactivation treatment; (G) a virus solution after the neutralization; A method for measuring the inactivation effect of chlorite water or a preparation thereof against Norovirus, comprising culturing host cells inoculated with, and measuring TCID 50 is provided.
 1つの実施形態では、前記工程(F)は、0.1%BSA加PBSで希釈することにより行われるのが有利であるが、これに限定されない。例えば、このほか、0%、0.05%、0.1%、0.5%、1%、2%、3%、4%または5%BSA加PBSで行ってよい。 In one embodiment, the step (F) is advantageously performed by diluting with PBS containing 0.1% BSA, but is not limited thereto. For example, 0%, 0.05%, 0.1%, 0.5%, 1%, 2%, 3%, 4% or 5% BSA-added PBS may be used.
 別の実施形態では、前記工程(F)は、0.1%BSA加PBSで10倍希釈することにより行われる。希釈倍率は、例えば、100倍または1000倍であってもよい。0.1%BSA加PBSで10倍希釈した後、さらに10倍段階希釈を行ってもよい。 In another embodiment, the step (F) is performed by diluting 10 times with PBS containing 0.1% BSA. The dilution factor may be, for example, 100 times or 1000 times. After 10-fold dilution with PBS containing 0.1% BSA, a further 10-fold serial dilution may be performed.
 別の実施形態では、前記ネコカリシウイルス(FCV)株または他のノロウイルス等価株は、ネコカリシウイルス(FCV)F4株である。複数の株によって不活化効果を検証することが好ましいが、ネコカリシウイルス(FCV)F4株単独で検証することも可能である。本発明の方法を使用すれば、ネコカリシウイルス(FCV)F4株単独でも、十分に亜塩素酸水または亜塩素酸水製剤のウイルス不活化効果を評価することが可能であるからである。 In another embodiment, the feline calicivirus (FCV) strain or other norovirus equivalent strain is feline calicivirus (FCV) F4 strain. It is preferable to verify the inactivation effect with a plurality of strains, but it is also possible to verify with the feline calicivirus (FCV) F4 strain alone. This is because if the method of the present invention is used, the feline calicivirus (FCV) F4 strain alone can sufficiently evaluate the virus inactivating effect of chlorite aqueous solution or chlorite aqueous preparation.
 さらに別の実施形態では、前記工程(C)は、約2日間培養した時点でなされる。経験的に培養開始から約2日で、すべての細胞変性効果(CPE)が生じるからである。したがって、すべての細胞変性効果(CPE)が生じるまで、2日より長く培養することも可能である。 In yet another embodiment, the step (C) is performed when cultured for about 2 days. This is because empirically, all cytopathic effects (CPE) occur approximately two days after the start of culture. Thus, it is possible to incubate for longer than 2 days until all cytopathic effects (CPE) have occurred.
 さらに別の実施形態では、前記工程(G)の培養は、7~8日間行われるのが有利であるが、これに限定されず、例えば、7日より長く8日間であってもよいし、8日間であってもよい。 In still another embodiment, the culture in the step (G) is advantageously performed for 7 to 8 days, but is not limited thereto, for example, it may be longer than 7 days and 8 days, It may be 8 days.
 これまでに取得できているプラック法でのノロウイルスの代替ウイルスであるネコカリシウイルスに対する不活化効果を、TCID50法でも、評価し、どちらの評価方法でも同じく、「亜塩素酸水」や、その製剤類が、ノロウイルス対策の有効な殺菌・消毒剤になり得るという検証を得ることができる。 The inactivation effect of feline calicivirus, which is a substitute virus for Norovirus in the plaque method that has been obtained so far, was also evaluated with the TCID 50 method. It can be verified that the preparation can be an effective disinfectant / disinfectant for norovirus.
 なお、本明細書において引用された、科学文献、特許、特許出願などの参考文献は、その全体が、各々具体的に記載されたのと同じ程度に本明細書において参考として援用される。 It should be noted that the references cited in this specification, such as scientific literature, patents, and patent applications, are incorporated herein by reference to the same extent as if they were specifically described.
 以上、本発明を、理解の容易のために好ましい実施形態を示して説明してきた。以下に、実施例に基づいて本発明を説明するが、上述の説明および以下の実施例は、例示の目的のみに提供され、本発明を限定する目的で提供したのではない。従って、本発明の範囲は、本明細書に具体的に記載された実施形態にも実施例にも限定されず、特許請求の範囲によってのみ限定される。 As described above, the present invention has been described by showing preferred embodiments for easy understanding. In the following, the present invention will be described based on examples, but the above description and the following examples are provided only for the purpose of illustration, not for the purpose of limiting the present invention. Accordingly, the scope of the present invention is not limited to the embodiments or examples specifically described in the present specification, but is limited only by the scope of the claims.
 必要な場合、以下の実施例で用いる動物の取り扱いは、ヘルシンキ宣言に基づいて行った。試薬類は具体的には実施例中に記載した製品を使用したが、他メーカー(Sigma,和光純薬、ナカライテスク等)の同等品でも代用可能である。 When necessary, the animals used in the following examples were handled based on the Declaration of Helsinki. Specifically, the reagents described in the examples were used as reagents, but equivalent products from other manufacturers (Sigma, Wako Pure Chemical, Nacalai Tesque, etc.) can be substituted.
 (実施例1:プラック法とTCID50法の比較試験)
 本実施例では、本発明の試験法(改変TCID50法)と従来行っていた試験法(プラック法)との比較を行った。
(Example 1: Comparative test between Plack method and TCID 50 method)
In this example, the test method of the present invention (modified TCID 50 method) was compared with the conventional test method (Plac method).
 (方法)
 以下の手法で試験を行った。
(Method)
The test was conducted by the following method.
 (供試ウイルス液の調製)
 ネコカリシウイルス(FCV)F4株をCRFK細胞に接種した後、2%ウシ胎児血清含有イーグルMEM培地で、37℃、COフラン器内で静置培養した。すべての細胞変性効果(CPE)が生じた時点(約2日間培養)で、培養液および細胞を回収し、3,000rpm(約1,500~2,000×g)、30分で遠心分離した上清を供試ウイルス液とした。
(Preparation of test virus solution)
The feline calicivirus (FCV) F4 strain was inoculated into CRFK cells, and then statically cultured in an Eagle's MEM medium containing 2% fetal calf serum in a CO 2 furan vessel at 37 ° C. When all the cytopathic effects (CPE) occurred (cultured for about 2 days), the culture medium and cells were collected and centrifuged at 3,000 rpm (about 1,500 to 2,000 × g) for 30 minutes. The supernatant was used as a test virus solution.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 (確認試験(1) プラック法とTCID50法の比較試験)
 使用直前に各消毒剤を、ヨウドカリ滴定法に基づき、原液濃度を確認後、滅菌済イオン交換水で有効塩素濃度1,000 ppmになるように調製した希釈液を用い、終濃度として400 ppm、200 ppmになるように1,000 ppmの希釈液と、滅菌済イオン交換水を混和した(終濃度400ppmの場合、1,000ppm希釈液400μl、イオン交換水500μlに希釈し、終濃度400 ppmの場合、1,000ppm希釈液200μl、イオン交換水700μlに希釈した。)。ウイルス液を100μlを加え、5分、10分後に、100μlの処理液をサンプリングし、冷0.1%BSA加PBSで希釈し、プラック法とTCID50法に基づき、残存ウイルス感染価を測定した。
(Confirmation test (1) Comparison test between Plack method and TCID 50 method)
Immediately before use, after confirming the concentration of each disinfectant based on the iodokari titration method, use a diluted solution prepared with sterile ion-exchanged water so that the effective chlorine concentration is 1,000 ppm. The final concentration is 400 ppm, 200 ppm. The diluted solution of 1,000 ppm and sterilized ion-exchanged water were mixed so that the final concentration was 400 ppm for the final concentration of 400 ppm and diluted to 500 μl of ion-exchanged water for the final concentration of 400 ppm. The solution was diluted to 200 μl and ion-exchanged water 700 μl). 100 μl of the virus solution was added, and after 5 and 10 minutes, 100 μl of the treatment solution was sampled, diluted with cold 0.1% BSA-added PBS, and the residual virus infection titer was measured based on the plaque method and the TCID 50 method.
 <プラック法>
 0.1%BSA加PBSで10倍段階希釈し、0.5mlをCRFK細胞の単層培養に接種し、室温で60分間、ロッカープラットフォーム上で、機械的にロッキングしながらウイルスの吸着処理を行った。プラックの形成は、ウイルス吸着後のCRFK細胞を0.3~0.5%メチルセルロースと0.5%FBSを含有するMEM中で37℃、CO2フラン器で培養した。生じたプラックを確認後、シャーレの細胞を10%ホルマリンを含む0.5%(w/v)結晶ムラサキ染色液で単染色したのち、目視によりプラック数を数えた。
<TCID50法>
 血清不含イーグルMEM培地で希釈した反応液を、さらに血清不含MEM培地で10倍段階希釈し、各希釈液25μlを96穴プレートに培養したCRFK細胞に接種し(各希釈液につき4穴を使用)、2%牛胎児血清加イーグルMEM培地で37℃、CO2加フラン器内で培養した。接種後、7~8日目にCPEの有無を観察し、50%以上細胞にCPEが認められた場合、CPE陽性(不活化されていない)とした。生残ウイルス量は不活化試験に供したウイルス液25μl中の生残ウイルス量(TCID50)で示した。定量試験の結果、生残ウイルスがまったく確認できない場合、32TCID50/25μl以下の生残ウイルス量となる。
<Pluck method>
The solution was diluted 10-fold with PBS containing 0.1% BSA, 0.5 ml was inoculated into a monolayer culture of CRFK cells, and virus adsorption was performed on a rocker platform for 60 minutes at room temperature with mechanical locking. For the formation of plaques, CRFK cells after virus adsorption were cultured in MEM containing 0.3 to 0.5% methylcellulose and 0.5% FBS at 37 ° C. in a CO 2 furan vessel. After confirming the generated plaques, the cells of the petri dish were single-stained with 0.5% (w / v) crystal murasaki staining solution containing 10% formalin, and the number of plaques was counted visually.
<TCID 50 method>
The reaction solution diluted in serum-free Eagle MEM medium is further diluted 10-fold in serum-free MEM medium, and 25 μl of each dilution is inoculated into CRFK cells cultured in a 96-well plate (4 holes for each dilution). Used), and cultured in an MEM medium supplemented with 2% fetal calf serum at 37 ° C. in a CO 2 -furan chamber. After inoculation, the presence or absence of CPE was observed on days 7 to 8, and when CPE was observed in 50% or more of the cells, it was regarded as CPE positive (not inactivated). The amount of surviving virus was shown as the amount of surviving virus (TCID 50 ) in 25 μl of the virus solution subjected to the inactivation test. Results of quantitative test, if the surviving virus can not be confirmed at all, the following survival viral load 32TCID 50 / 25μl.
 (不活化処理) (Inactivation process)
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 (中和処理段階希釈)
 処理液100μlを、速やかに0.1%BSA加PBS900μlで10倍に希釈し、適宜段階希釈を行った。
(Neutralization step dilution)
100 μl of the treatment solution was immediately diluted 10-fold with 900 μl of 0.1% BSA-added PBS, and appropriate serial dilution was performed.
 (感染)
 CRFK細胞を6well Dishを用いて、単層シートになる様に培養し、各処理液500μlを接種後、1時間感染処理を行った。その後、0.3~0.5%メチルセルロースまたは、0.75%寒天とFBSを含有するMEM中で37℃、CO2フラン器内で培養した。
(infection)
CRFK cells were cultured in 6-well dishes to form a single-layer sheet, and 500 μl of each treatment solution was inoculated, followed by infection treatment for 1 hour. Thereafter, the cells were cultured in a MEM containing 0.3 to 0.5% methylcellulose or 0.75% agar and FBS at 37 ° C. in a CO 2 furan vessel.
 (評価)
 プラック数を目視で測定し、生残ウイルス量を算出した。
(Evaluation)
The number of plaques was measured visually, and the amount of surviving virus was calculated.
 (結果)
 IBSA無添加バージョン
(result)
IBSA additive-free version
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 (プラック法)
 不活化処理した原液を0.1%BSA加PBS 900μlで10倍に希釈した希釈液500μlを、6Wellプレートに単層培したCRFK細胞に感染させた。
(Plac method)
CRFK cells monolayer-cultured on 6-well plates were infected with 500 μl of a diluted solution obtained by diluting the inactivated stock solution 10-fold with 900 μl of 0.1% BSA-added PBS.
 (TCID50法)
 不活化処理した原液を0.1%BSA加PBS 900μlで10倍に希釈した希釈液25μlを、96Wellプレートに単層培したCRFK細胞に感染させた。尚、同希釈列は、4Wellを用いて評価した。
(TCID 50 method)
CRFK cells cultured in a monolayer on a 96-well plate were infected with 25 μl of a diluted solution obtained by diluting the inactivated stock solution 10-fold with 900 μl of 0.1% BSA-added PBS. The dilution series was evaluated using 4 Well.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 (II. BSA終濃度0.05%添加バージョン) (II. Version with 0.05% final BSA concentration)
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 (まとめ)
 有機物非存在下の条件で5分間不活化処理を施した時における各消毒剤のネコカリシウイルスに対する不活化効果をまとめた。
(Summary)
The inactivation effect of each disinfectant on feline calicivirus when inactivated for 5 minutes in the absence of organic matter was summarized.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 次に、有機物非存在下の条件で10分間不活化処理を施した時における各消毒剤のネコカリシウイルスに対する不活化効果をまとめた。 Next, the inactivation effect of each disinfectant on feline calicivirus when inactivated for 10 minutes in the absence of organic matter was summarized.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 次に、有機物存在下(BSA終濃度0.05%)の条件で5分間不活化処理を施した時における各消毒剤のネコカリシウイルスに対する不活化効果をまとめた。 Next, the inactivation effect of each disinfectant against feline calicivirus when inactivated for 5 minutes in the presence of organic substances (final concentration of BSA 0.05%) was summarized.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 次に、有機物存在下(BSA終濃度0.05%)の条件で10分間不活化処理を施した時における各消毒剤のネコカリシウイルスに対する不活化効果を確認した。 Next, the inactivation effect of each disinfectant against feline calicivirus when inactivated for 10 minutes in the presence of organic substances (final concentration of BSA 0.05%) was confirmed.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 (考察)
 プラック法と、TCID50法での評価を比較するべく、先ずは、ノロウイルスの代替ウイルスであるネコカリシウイルスF4株を用いて、ウイルス力価を確認した。その結果、ウイルス力価は両評価方法であっても10の6乗台のウイルス量になるということが分かった(表I-1)。
(Discussion)
In order to compare the evaluation between the plaque method and the TCID 50 method, first, the virus titer was confirmed using the feline calicivirus F4 strain, which is an alternative virus to Norovirus. As a result, it was found that the virus titer was 10 6 to the 6th level of virus even with both evaluation methods (Table I-1).
 次に、各消毒剤として、「亜塩素酸水」と、「亜塩素酸水製剤」と、「次亜塩素酸ナトリウム液」のウイルスに対する不活化効果を、プラック法と、TCID50法の両評価方法で確認した。その結果、プラック法でも、TCID50法でも、いずれの評価方法であっても、「亜塩素酸水」と、「亜塩素酸水製剤」と、「次亜塩素酸ナトリウム液」のウイルスに対する不活化効果は、同等の結果が得られるということが分かった。(表I-2)。 Next, as each disinfectant, the inactivation effect against viruses of “chlorite aqueous solution”, “chlorite aqueous preparation” and “sodium hypochlorite solution” was compared with both the plaque method and the TCID 50 method. It confirmed with the evaluation method. As a result, regardless of the plaque method, TCID 50 method, or any of the evaluation methods, there is no anti-virus against the viruses of “chlorite aqueous solution”, “chlorite aqueous preparation”, and “sodium hypochlorite solution”. It was found that the same effect was obtained for the activation effect. (Table I-2).
 なお、ウイルスに対する不活化効果に関して、「亜塩素酸水」と、「亜塩素酸水」を緩衝液でより安定化させた「亜塩素酸水製剤」は、亜塩素酸濃度として400 ppmで、5分間、不活化処理を施せば、10の5乗台のウイルス量を検出限界以下にまで不活化することができるということが分かり、亜塩素酸濃度として200ppmであっても5分間の不活化処理を施せば、10の3乗台のウイルス量を不活化することができており、10分間の不活化処理を施せば、10の5乗台のウイルス量を検出限界以下にまで不活化することができるということが分かった。 In addition, regarding the inactivation effect against viruses, “chlorite solution” and “chlorite solution formulation” in which “chlorite solution” is stabilized with a buffer solution are 400 ppm as chlorite concentration, It can be seen that if the inactivation treatment is performed for 5 minutes, the amount of virus in the 10th to the fifth power can be inactivated to below the detection limit. Even if the concentration of chlorous acid is 200 ppm, inactivation for 5 minutes If the treatment is performed, the amount of virus in the 10 3rd range can be inactivated, and if the inactivation process is performed for 10 minutes, the amount of virus in the 10th 5th range is inactivated to the detection limit or less. I knew that I could do it.
 次に、次亜塩素酸ナトリウム液は、有効塩素濃度として200 ppmの液を用いて、5分間の不活化処理を施せば、10の5乗台のウイルス量を検出限界以下にまで不活化することができるということが分かった。このことから、ウイルスに対する不活化効果の評価は、プラック法もしくは、TCID50法のどちらの評価方法を用いても、同じ評価が得られると判断することができる(表III-1、表III-2)。但し、塩素系消毒剤を用いて、有機物が存在している条件下では、その主たる有効成分が消失してしまい、有機物が存在していない非存在条件下の時よりも塩素の濃度が多く(高く)必要になる場合がありえる。このことから、有機物存在下の条件でウイルスを不活化することができる「亜塩素酸水」の適正濃度を確認してみることにした。尚、有機物としては、国立医薬品食品衛生研究所の方で実施された『ノロウイルスの不活化条件に関する調査 報告書』を基に、終濃度0.05%になるように調整した牛血清アルブミン(以下、BSAと省略する。)液を用いて、確認してみることにし、有機物の影響で、プラック法と、TCID50法との評価に、違いが表れてくるのかどうかということについて、確認するべく、両評価方法で確認した。先ず、ノロウイルスの代替ウイルスであるネコカリシウイルスF4株を用いて、ウイルス力価を確認した。 Next, the sodium hypochlorite solution inactivates the amount of virus in the 10th power of 5 to below the detection limit if it is inactivated for 5 minutes using an effective chlorine concentration of 200 ppm. I knew that I could do it. From this, it can be judged that the same evaluation can be obtained by using either the plaque method or the TCID 50 method for the evaluation of the inactivation effect on the virus (Tables III-1 and III- 2). However, with the use of a chlorine-based disinfectant, the main active ingredient disappears under the conditions in which organic substances are present, and the chlorine concentration is higher than in the absence conditions in which organic substances are not present ( High) may be necessary. From this, we decided to confirm the appropriate concentration of “chlorite water” that can inactivate the virus in the presence of organic matter. As organic substances, bovine serum albumin (hereinafter referred to as BSA) adjusted to a final concentration of 0.05% based on the “Survey Report on Inactivation Conditions of Norovirus” conducted by the National Institute of Health Sciences. In order to confirm whether there is a difference between the plaque method and the TCID 50 method due to the influence of organic matter, we will try to confirm using liquid. It confirmed with the evaluation method. First, the virus titer was confirmed using the feline calicivirus F4 strain, which is a norovirus substitute virus.
 その結果、ウイルス力価は両評価方法であっても10の6乗台のウイルス量になるということが分かり、どちらの評価方法であっても、有機物の影響を受けることなく、有機物非存在下という条件と同じウイルス力価になるということが分かった(表II-1)。 As a result, it was found that the virus titer was 10 6 to the 6th level of virus even in both evaluation methods, and both evaluation methods were not affected by organic matter and in the absence of organic matter. (Table II-1).
 次に、「亜塩素酸水」と、「亜塩素酸水製剤」と、「次亜塩素酸ナトリウム液」のウイルスに対する不活化効果を、プラック法と、TCID50法で評価した。その結果、プラック法でも、TCID50法でも、いずれの評価方法であっても、「亜塩素酸水」と、「亜塩素酸水製剤」と、「次亜塩素酸ナトリウム液」のウイルスに対する不活化効果は、有機物非存在条件下と同様に、同等の結果が得られるということが分かった。(表II-2)。 Next, the inactivation effect against viruses of “chlorite aqueous solution”, “chlorite aqueous preparation” and “sodium hypochlorite solution” was evaluated by the plaque method and the TCID 50 method. As a result, regardless of the plaque method, TCID 50 method, or any of the evaluation methods, there is no anti-virus against the viruses of “chlorite aqueous solution”, “chlorite aqueous preparation”, and “sodium hypochlorite solution”. As for the activation effect, it turned out that an equivalent result is obtained similarly to the organic substance absence condition. (Table II-2).
 また、ウイルスに対する不活化効果に関しては、「亜塩素酸水」と、「亜塩素酸水」を緩衝液でより安定化させた「亜塩素酸水製剤」は、亜塩素酸濃度として1000ppmで、5分間の不活化処理を施せば、10の5乗台のウイルス量を検出限界以下にまで不活化することができるということが分かり、亜塩素酸濃度として400ppmであっても10分間の不活化処理を施せば、10の3乗台のウイルス量を不活化することができており、10分間の不活化処理を施せば、10の5乗台のウイルス量を検出限界以下にまで不活化することができるということが分かった。しかしながら、次亜塩素酸ナトリウム液は、有効塩素濃度として1000ppmの液を用いて、5分間の不活化処理を施さなければ、10の5乗台のウイルス量を、検出限界以下にまで不活化できないということが分かった。(表III-1、表III-2)
 これらの結果から、ウイルス力価や、消毒剤を用いたウイルスの不活化効果は、有機物非存在下条件でも、有機物存在下条件でもプラック法と、修正TCID50法の評価結果は、同じ結果が得られるということが分かり、これまでウイルスに対する不活化効果確認試験をプラック法を用いて、評価していたが、このデータは、修正TCID50法を利用しても、同じ結果が得られるということが分かった。
In addition, regarding the inactivation effect against viruses, “chlorite solution” and “chlorite solution preparation” in which “chlorite solution” is stabilized with a buffer solution are 1000 ppm as chlorite concentration, It turns out that the inactivation for 5 minutes can inactivate the amount of virus in the 5th to the 5th power level to below the detection limit. Even if the concentration of chlorous acid is 400 ppm, inactivation for 10 minutes If the treatment is performed, the amount of virus in the 10 3rd range can be inactivated, and if the inactivation process is performed for 10 minutes, the amount of virus in the 10th 5th range is inactivated to the detection limit or less. I knew that I could do it. However, the sodium hypochlorite solution cannot inactivate the amount of virus in the 10th power to the detection limit or less unless it is inactivated for 5 minutes using an effective chlorine concentration of 1000 ppm. I understood that. (Table III-1 and Table III-2)
From these results, the virus titer and the virus inactivation effect using disinfectant are the same as the evaluation results of the plaque method and the modified TCID 50 method in the absence of organic matter or in the presence of organic matter. It was found that the inactivation effect confirmation test against viruses was evaluated using the plaque method, but this data shows that the same result can be obtained even if the modified TCID 50 method is used. I understood.
 また、有機物が存在していないという非存在条件下であれば、次亜塩素酸ナトリウム液は、有効塩素濃度として200 ppmで5分間の不活化処理を施せば、十分にネコカリシウイルスを不活化することができるのに対して、「亜塩素酸水」や、「亜塩素酸水製剤」は、亜塩素酸濃度として200ppmで5分間の不活化処理を施せば、10の3乗台のウイルス量を不活化でき、更には、10分間の不活化処理を施せば、次亜塩素酸ナトリウム液と同等の不活化効果を有している消毒剤であると言える。 If there is no organic matter, the sodium hypochlorite solution will inactivate feline calicivirus sufficiently if it is inactivated at 200 分 間 ppm for 5 minutes as the effective chlorine concentration. In contrast, “chlorite water” and “chlorite aqueous preparations” are 10 to the third power of the virus when inactivated for 5 minutes at 200 ppm chlorite concentration. The amount can be inactivated, and further, if it is inactivated for 10 minutes, it can be said that it is a disinfectant having an inactivating effect equivalent to that of sodium hypochlorite solution.
 また、有機物が存在している条件下では、次亜塩素酸ナトリウム液は、有効塩素濃度として400 ppmで5分間の不活化処理を施せば、10の3乗台のウイルス量を不活化できるが、有効塩素濃度として1000 ppmなければ、検出限界以下にまで不活化できないのに対して、「亜塩素酸水」や、「亜塩素酸水製剤」は、次亜塩素酸ナトリウム液と同様の亜塩素酸濃度として400ppm(有効塩素濃度として800ppm)の液で、5分間の不活化処理を施せば、10の3乗台のウイルス量を、不活化できるということが分かり、亜塩素酸濃度として1000ppm(有効塩素濃度として2000ppm)の液であれば、検出限界以下にまで不活化できるということが分かった。加えて、プラック法を用いたネコカリシウイルスに対する不活化効果確認試験を、TCID50法を用いて再現性確認試験(クロスチェックテスト)を実施することによって、その結果、問題がなく「亜塩素酸水」や、その製剤類には、ノロウイルスの代替ウイルスであるネコカリシウイルスに対して、不活化効果があり、次亜塩素酸ナトリウムと比べると、長期間、その不活化効果が持続するということが証明することができる(原液、6倍希釈液、30倍希釈液)(保存期間;D+360まで)。 In addition, under conditions where organic substances are present, sodium hypochlorite solution can inactivate viral loads on the 10 3rd power range by inactivating the effective chlorine concentration at 400 ppm for 5 minutes. However, if the effective chlorine concentration is not 1000 ppm, it cannot be inactivated to below the detection limit, whereas “chlorite aqueous solution” and “chlorite aqueous preparation” are the same sub-phase as sodium hypochlorite solution. It can be seen that a virus with a concentration of 400 3 (800 ppm as an effective chlorine concentration) and inactivation treatment for 5 minutes can inactivate the amount of virus in the 10th power range, and 1000 ppm as the concentration of chlorous acid. It was found that a liquid with an effective chlorine concentration of 2000 ppm can be inactivated to below the detection limit. In addition, an inactivation effect confirmation test for feline calicivirus using the plaque method was carried out by performing a reproducibility confirmation test (cross check test) using the TCID 50 method. "Water" and its preparations have an inactivation effect against feline calicivirus, which is a substitute for norovirus, and the inactivation effect lasts longer than sodium hypochlorite. (Stock solution, 6-fold dilution, 30-fold dilution) (storage period; up to D + 360).
 (実施例2:変法同士の比較)
 本試験例について、大学で実施した亜塩素酸水製剤のネコカリシウイルス不活化効果について、別の民間施設で、再現性確認試験(クロスチェックテスト)を実施し、その結果をまとめた。
(Example 2: Comparison between modified methods)
About this test example, about the feline calicivirus inactivation effect of the chlorite aqueous preparation carried out at the university, a reproducibility confirmation test (cross check test) was conducted at another private facility, and the results were summarized.
 (検査機関による試験方法の比較検討)
従来施設(大学医学部)と、民間施設の試験内容について、異なる試験資料及び方法について以下の表にまとめる。
(Comparison study of test methods by inspection organizations)
The following table summarizes the different test materials and methods for the test contents of conventional facilities (university medical school) and private facilities.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
 (試験方法)
 (材料)
 (薬剤)
・次亜塩素酸ナトリウム(200ppm及び400ppm)
「ピューラックス;オーヤラックス」(次亜塩素酸ナトリウム 6%)
・亜塩素酸水(200ppm及び400ppm)
「亜塩素酸水製剤:本部三慶株式会社」(亜塩素酸 4%)
・対照
クエン酸‐リン酸緩衝液(各pHに調整されたものを使用)
次亜塩素酸ナトリウムと亜塩素酸水については、濃度400ppmと800ppmとなるように蒸留水で希釈したものを用いる。なお、時間経過により濃度が変化するため、調整は試験開始直前に行う。
ウイルス及び緩衝液の添加により最終濃度200ppmと400ppmに希釈される。
・使用ウイルス:「ネコカリシウイルス(F9株)」;ノロウイルスの代替ウイルスとして
・使用細胞:CrFK細胞(ネコ腎臓由来細胞)・添加タンパク質:有機物の有無が薬剤の効果に影響するかを調べるために添加
「7.5%ウシ血清アルブミン(BSA)」…1%BSAになるようにウイルス液と混合する。(薬剤と緩衝液を混合することで最終濃度0.05%BSAとなる。)
・薬剤の反応停止液:設定時間にてウイルス液に対する薬剤の影響を停止させるために添加
 1N チオ硫酸ナトリウム(五水和物、分子量248.19)
 ポリペプトン(PP)80mg/ml 
・緩衝液:pH域の違いによる各薬剤のウイルス不活化効果の影響を調べるため、酸性、中性、塩基性域の3点を設ける。
(1)pH5.5(酸性域)
(2)pH6.5(中性域)
(3)pH7.5(アルカリ(塩基)性域)
〈クエン酸‐リン酸緩衝液の調整は以下の通り〉
・0.1Mクエン酸:19.21g/L(分子量192.1)
・0.2Mリン酸水素二ナトリウム:35.6g/L(十二水和物、分子量358.14)
 調整した0.1Mクエン酸溶液に、0.2Mリン酸水素二ナトリウム溶液を加え、pHメーターを用いてpHを調整する。
(各溶液の混合割合は下表を参照)
(Test method)
(material)
(Drug)
・ Sodium hypochlorite (200ppm and 400ppm)
"Purelux;Oyalux" (sodium hypochlorite 6%)
・ Chlorous acid water (200ppm and 400ppm)
“Chlorous acid aqueous formulation: Sankei Co., Ltd.” (Chlorous acid 4%)
・ Control citrate-phosphate buffer (use adjusted to each pH)
About sodium hypochlorite and chlorous acid water, those diluted with distilled water to a concentration of 400 ppm and 800 ppm are used. Since the concentration changes with time, adjustment is performed immediately before the start of the test.
Dilute to final concentrations of 200 and 400 ppm by addition of virus and buffer.
-Virus used: "Feline calicivirus (F9 strain)"; as a substitute virus for Norovirus-Cells used: CrFK cells (cat kidney-derived cells)-Addition protein: To examine whether the presence or absence of organic substances affects the effect of the drug Add "7.5% bovine serum albumin (BSA)" ... mix with virus solution to 1% BSA. (The final concentration is 0.05% BSA by mixing the drug and buffer.)
-Drug reaction stop solution: added to stop the effect of the drug on the virus solution at the set time 1N sodium thiosulfate (pentahydrate, molecular weight 248.19)
Polypeptone (PP) 80mg / ml
-Buffer solution: In order to investigate the effect of the virus inactivation effect of each drug due to the difference in pH range, three points of acid, neutral, and basic regions are provided.
(1) pH 5.5 (acidic range)
(2) pH6.5 (neutral range)
(3) pH7.5 (alkali (basic) range)
<Adjustment of citrate-phosphate buffer is as follows>
・ 0.1M citric acid: 19.21g / L (molecular weight 192.1)
・ 0.2M disodium hydrogen phosphate: 35.6g / L (dodecahydrate, molecular weight 358.14)
Add 0.2M disodium hydrogenphosphate solution to the adjusted 0.1M citric acid solution, and adjust the pH using a pH meter.
(See the table below for the mixing ratio of each solution)
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
 (方法)
 使用したウイルス液及び薬剤、クエン酸‐リン酸緩衝液の混合割合は下表の通りである。
(Method)
The mixing ratio of the used virus solution, drug, and citrate-phosphate buffer is shown in the table below.
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
 (被験液とウイルスの反応)
(1)次亜塩素酸ナトリウム区、又は、亜塩素酸水区は、小チューブに各pHの緩衝液を1.8ml加え、対照区は小チューブに緩衝液を1.9ml加え、次亜塩素酸ナトリウム区、又は、亜塩素酸水区には、200ppmに調整した次亜塩素酸ナトリウム、又は、亜塩素酸水を0.1ml加えた。
(2)そこに、ウイルス液(BSAで調整したもの)0.1mlを加え、10分間反応させた。
(3)PP0.9mlを小チューブに分注しておき、指定の反応時間経過後に(2)の検体液を0.1ml加え、反応を停止させた。このとき、次亜塩素酸ナトリウム及び亜塩素酸水については、反応後直ちにチオ硫酸ナトリウム(1N0.1ml)を加え、反応を停止させた後、PPに加えた。
(4)別にウシ胎児血清不添加のイーグル最小必須培地(MEM)0.9mlを小チューブに分注しておき、(3)の検体液0.1mlを加え、10倍希釈する。続けて直ちに10倍段階希釈を行った。
(5)細胞の液を抜き、直ちに100μlずつ接種した。
(Reaction between test solution and virus)
(1) Sodium hypochlorite group or chlorite water group added 1.8 ml of buffer solution of each pH to a small tube, and control group added 1.9 ml of buffer solution to a small tube, sodium hypochlorite 0.1 ml of sodium hypochlorite or chlorous acid water adjusted to 200 ppm was added to the section or chlorite water section.
(2) 0.1 ml of virus solution (adjusted with BSA) was added thereto and reacted for 10 minutes.
(3) PP 0.9 ml was dispensed into a small tube, and 0.1 ml of the sample solution of (2) was added after the designated reaction time had elapsed to stop the reaction. At this time, sodium hypochlorite and aqueous chlorite were added immediately after the reaction, sodium thiosulfate (1N 0.1 ml) was added to stop the reaction, and then added to PP.
(4) Separately, 0.9 ml of Eagle's minimum essential medium (MEM) with no fetal bovine serum added to a small tube, add 0.1 ml of the sample solution of (3), and dilute 10 times. Subsequently, a 10-fold serial dilution was performed immediately.
(5) The cell fluid was drained and immediately 100 μl was inoculated.
 (感染価測定)
・感染価測定は、標準的なプラックアッセイ法で行った。(BMSA常法)
・細胞を6穴プレートに撒き、培養3日から5日後、細胞がconfluentになったところで使用した。
(1)被験ウイルス液0.1mlをPP 0.9mlに加え、その0.1mlをウシ胎児血清不添加のイーグル最小必須培地(MEM)で10倍段階希釈した。(上記(被験液とウイルスの反応)(4)と同じ)
(2)プレートの液を取り除き、希釈したウイルス液を100μl/well 接種した。
(3)34℃ CO2恒温器に1時間置き、ウイルスを吸着させた。
(4)1時間後、各wellに寒天培地を3ml/well加えた(以下の表9参照)。
(5)プレートを裏返し、34℃ CO2恒温器で2日間培養した。
(6)2日後、プレートを34℃CO2恒温器から取り出し、約3%ホルマリン液を、各2ml/well加え、1時間以上室温に静置し、細胞を固定した。
(7)固定した後、寒天培地を流水洗浄し、メチレンブルー染色液を2ml加え、30分以上室温に静置する。その後、流水洗浄し、乾燥させた後に、プラックを数えた。
(Infectious titer measurement)
Infectious titer was measured by a standard plaque assay method. (BMSA regular method)
-Cells were seeded in 6-well plates and used after 3-5 days in culture, when the cells became confluent.
(1) 0.1 ml of the test virus solution was added to 0.9 ml of PP, and the 0.1 ml was diluted 10-fold with Eagle's minimum essential medium (MEM) without fetal bovine serum. (Same as above (reaction between test solution and virus) (4))
(2) The plate solution was removed and the diluted virus solution was inoculated at 100 μl / well.
(3) Placed in a 34 ° C. CO 2 incubator for 1 hour to adsorb the virus.
(4) After 1 hour, 3 ml / well of agar medium was added to each well (see Table 9 below).
(5) The plate was turned over and cultured in a 34 ° C. CO 2 incubator for 2 days.
(6) Two days later, the plate was removed from the 34 ° C. CO 2 incubator, about 3% formalin solution was added at 2 ml / well, and allowed to stand at room temperature for 1 hour or more to fix the cells.
(7) After fixation, the agar medium is washed with running water, 2 ml of methylene blue staining solution is added, and left at room temperature for 30 minutes or longer. Thereafter, the plaques were counted after washing with running water and drying.
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
 (評価)
 被験液と対照とのウイルス感染価の差が、1/1000以下の差があるとき、被験液が有意と判定する。
(Evaluation)
When the difference in virus infectivity between the test solution and the control is 1/1000 or less, the test solution is determined to be significant.
 (結果) (Result)
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
 (考察)
 タンパク質非存在下では、pH域に係わらず、亜塩素酸濃度として200ppmの亜塩素酸水の希釈液での感染価は、検出限界以下となり、ネコカリシウイルスを不活化することができた。しかしながら、次亜塩素酸ナトリウムでは、400ppm及び200ppmの有効塩素の液でも、アルカリ性域でしか感染価は検出限界以下になっていなかったことが分かった。また、タンパク質存在下では、酸性域に近づけば近づくほど、亜塩素酸水のウイルス不活化効果が高くなるということがわかり、特に、亜塩素酸濃度として400ppmの亜塩素酸水の希釈液であれば、酸性域及び中性域でも、感染価が検出限界以下となり、ネコカリシウイルスを不活化できるということがわかった。
(Discussion)
In the absence of protein, the infectious titer in a diluted solution of 200 ppm chlorite water as the concentration of chlorite was below the detection limit regardless of the pH range, and feline calicivirus could be inactivated. However, with sodium hypochlorite, it was found that the infectious titer was less than the detection limit only in the alkaline region, even with 400 ppm and 200 ppm effective chlorine solutions. In addition, in the presence of protein, the closer to the acidic range, the higher the virus inactivation effect of chlorite water, especially in the case of 400 ppm dilute chlorite water as a chlorite concentration. For example, the infectious titer was below the detection limit even in the acidic range and neutral range, indicating that feline calicivirus can be inactivated.
 更に、これまでに得られた結果の内、10分で不活化することができた濃度と、本試験におけるタンパク質存在下での結果を比較したところ、これまでに得られた結果も、本実施例のいずれも、「亜塩素酸水」は次亜塩素酸ナトリウムと同等、もしくは、それ以上の不活化効果を有しているということが確認できた。 Furthermore, comparing the results obtained so far, the concentration that could be inactivated in 10 minutes and the results in the presence of protein in this test, the results obtained so far are also In any of the examples, it was confirmed that “chlorite aqueous solution” had an inactivation effect equivalent to or higher than that of sodium hypochlorite.
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
 以上のことから、本実施例結果は、大学で実施して得られている従来結果と同等、もしくは、それ以上の結果が得られた。よって、「亜塩素酸水」、及び、その製剤類は、ネコカリシウイルスに対して十分な不活化効果が得られるという評価は、適切な評価であると判断することができる。したがって、本実施例において採用された検査手法も妥当であると評価することができる。 From the above, the results of the present example were the same as or better than the conventional results obtained by the university. Therefore, it can be judged that the evaluation that “chlorite aqueous solution” and its preparations have a sufficient inactivation effect against feline calicivirus is an appropriate evaluation. Therefore, it can be evaluated that the inspection technique employed in this embodiment is also appropriate.
 なお、厚生労働省の方では、各々の殺菌・消毒剤のウイルスに対する不活化効果の評価は、国立医薬品食品衛生研究所の方で、平成21年度に作成された『ノロウイルスの不活化条件に関する調査』という報告書に基づいているが、この報告書について、各々の殺菌・消毒剤を使用し、ノロウイルスの代替ウイルスであるネコカリシウイルスに対する不活化効果を、TCID50法を用いて評価しており、この評価方法で不活化効果が認められた殺菌・消毒剤を、ノロウイルス対策用の殺菌・殺菌・消毒剤としても認めているとされる。本発明の方法は、これらの手法とは異なりさらに簡便化した方法であるが、同様に評価可能であることが分かった。 For the Ministry of Health, Labor and Welfare, the evaluation of the inactivation effect of each disinfectant / disinfectant against viruses was conducted by the National Institute of Health Sciences in 2009, “Survey on Norovirus Inactivation Conditions”. This report is based on the TCID 50 method for evaluating the inactivation effect of feline calicivirus, which is a substitute for norovirus, using each disinfectant and disinfectant. It is said that the sterilizing / disinfecting agent for which inactivation effect was recognized by this evaluation method is also recognized as a sterilizing / disinfecting / disinfecting agent for norovirus measures. The method of the present invention is a simplified method unlike these methods, but it was found that the method can be similarly evaluated.
 (まとめ)
 ノロウイルスによる食中毒や、感染症がとても深刻な問題となっている。特に、5歳以下の乳幼児のノロウイルスの感染が全体の6割程度を占め、死亡事例も発生しており、感染症予防の為の消毒剤の開発が望まれているが、亜塩素酸(HClO2)を主成分とする「亜塩素酸水」のノロウイルスに対する不活化効果を検討したところ、本発明の手法で首尾よく測定することができることが明らかになった。
(Summary)
Food poisoning caused by norovirus and infectious diseases are very serious problems. In particular, norovirus infection in infants under 5 years old accounts for about 60% of the total, and death cases have occurred, and development of a disinfectant for the prevention of infectious diseases is desired, but chlorous acid (HClO) As a result of examining the inactivation effect of “chlorite aqueous solution” containing 2 ) as a main component against norovirus, it was found that the method of the present invention can be successfully measured.
 手法を簡便にまとめると、ノロウイルスの代替ウイルスであるネコカリシウイルスF4株を用いて、塩素濃度として100 ppmから1,000 ppmまでの薬液で10分間、不活化処理後、TCID50法で、C.A.W(亜塩素酸水)の不活化効果を確認し、牛血清アルブミン(BSA)を用いて、有機物存在下での不活化効果について確認したところ、その結果、有機物(BSA)添加していない条件では、亜塩素酸濃度として400ppmで5LogCFU/mlのウイルスを検出限界以下(1.3LogCFU/ml以下)に不活化することができ、BSAを終濃度0.05%になる様に添加した条件では、次亜塩素酸ナトリウムもC.A.Wも、亜塩素酸濃度として1,000ppmで5Log CFU/mlのウイルスを検出限界以下(1.3LogCFU/ml以下)に不活化することができた。また、C.A.Wの希釈液をコットン素材の不織布に含浸させた状態のウェットシートの中に含まれている亜塩素酸液を用いて、ネコカリシウイルスに対する不活化効果も確認することができる。 To summarize the method, feline calicivirus F4, a norovirus substitute virus, was inactivated with a chemical solution with a chlorine concentration of 100 ppm to 1,000 ppm for 10 minutes, and then the TCID 50 method was used for CAW (sublimation). The inactivation effect of chloric acid water) was confirmed, and the inactivation effect in the presence of organic matter was confirmed using bovine serum albumin (BSA). As a result, under conditions where organic matter (BSA) was not added, Sodium hypochlorite can be used under the condition that 5logCFU / ml virus at 400ppm chloric acid concentration can be inactivated below the detection limit (1.3LogCFU / ml or less) and BSA is added to a final concentration of 0.05%. Both CAW and CAW were able to inactivate 5Log CFU / ml virus below the detection limit (1.3LogCFU / ml or less) at 1,000 ppm chlorite concentration. Moreover, the inactivation effect with respect to a feline calicivirus can also be confirmed using the chlorous acid liquid contained in the wet sheet of the cotton material nonwoven fabric impregnated with the diluted CAW solution.
 以上のように、本発明の好ましい実施形態を用いて本発明を例示してきたが、本発明は、特許請求の範囲によってのみその範囲が解釈されるべきであることが理解される。本明細書において引用した特許、特許出願および文献は、その内容自体が具体的に本明細書に記載されているのと同様にその内容が本明細書に対する参考として援用されるべきであることが理解される。本出願は、2014年2月28日に出願された日本国特許出願第2014-39373号の優先権の利益を主張し、その内容は全体が本明細書に参考として援用される。 As described above, the present invention has been exemplified by using the preferred embodiments of the present invention, but it is understood that the scope of the present invention should be interpreted only by the scope of the claims. Patents, patent applications, and documents cited herein should be incorporated by reference in their entirety, as if the contents themselves were specifically described herein. Understood. This application claims the benefit of priority of Japanese Patent Application No. 2014-39373 filed on February 28, 2014, the contents of which are hereby incorporated by reference in their entirety.
 本発明によれば、殺菌剤のノロウイルスに対する効果を簡便に試験することができる技術が提供され、食品産業、医療現場等で幅広く活用できる可能性がさらに高まった。 According to the present invention, a technique capable of easily testing the effect of a bactericide on a norovirus is provided, and the possibility of being widely used in the food industry, the medical field, etc. is further increased.

Claims (13)

  1. (A)ネコカリシウイルス(FCV)株または他のノロウイルス等価株を宿主細胞に接種する工程;
    (B)該接種した宿主細胞を血清含有培地で培養する工程;
    (C)培養液および細胞を回収する工程;
    (D)該回収された培養液および細胞を遠心分離して上清を得る工程;
    (E)該上清を供試ウイルス液として用いて亜塩素酸水または亜塩素酸水製剤による該供試ウイルス液の不活化処理を行う工程;
    (F)該不活化処理後にアルブミン加リン酸緩衝化生理食塩水(PBS)で希釈することにより中和する工程;
    (G)該中和後のウイルス液を接種した宿主細胞を培養し、TCID50を測定する工程、
    を包含する、ノロウイルスに対する亜塩素酸水または亜塩素酸水製剤の不活化効果を測定する方法。
    (A) inoculating a host cell with a feline calicivirus (FCV) strain or other Norovirus equivalent strain;
    (B) culturing the inoculated host cells in a serum-containing medium;
    (C) recovering the culture solution and cells;
    (D) centrifuging the collected culture medium and cells to obtain a supernatant;
    (E) A step of inactivating the test virus solution with a chlorite aqueous solution or a chlorite water preparation using the supernatant as the test virus solution;
    (F) The step of neutralizing by diluting with albumin phosphate buffered saline (PBS) after the inactivation treatment;
    (G) culturing host cells inoculated with the neutralized virus solution and measuring TCID 50 ,
    A method for measuring the inactivation effect of chlorite water or a chlorite water preparation against norovirus.
  2. 前記アルブミンは、ウシ血清アルブミン(BSA)である、請求項1に記載の方法。 The method of claim 1, wherein the albumin is bovine serum albumin (BSA).
  3. 前記工程(F)は、0.1%BSA加PBSで希釈することにより行われる、請求項1に記載の方法。 The method according to claim 1, wherein the step (F) is performed by diluting with PBS containing 0.1% BSA.
  4. 前記工程(F)は、0.1%BSA加PBSで10倍希釈することにより行われる、請求項3に記載の方法。 The method according to claim 3, wherein the step (F) is performed by diluting 10 times with PBS containing 0.1% BSA.
  5. 前記血清含有培地は、ウシ胎児血清含有イーグルMEMである、請求項1~4のいずれか1項に記載の方法。 The method according to any one of claims 1 to 4, wherein the serum-containing medium is fetal calf serum-containing Eagle MEM.
  6. 前記遠心分離は、約1,500~2,000×gで行われる、請求項1~5のいずれか1項に記載の方法。 The method according to any one of claims 1 to 5, wherein the centrifugation is performed at about 1,500 to 2,000 x g.
  7. 前記ネコカリシウイルス(FCV)株または他のノロウイルス等価株は、複数の株を用いることを特徴とする、請求項1~6のいずれか1項に記載の方法。 The method according to any one of claims 1 to 6, wherein a plurality of strains are used as the feline calicivirus (FCV) strain or other Norovirus equivalent strain.
  8. 前記ネコカリシウイルス(FCV)株または他のノロウイルス等価株は、ネコカリシウイルス(FCV)F4株およびF9株を含むことを特徴とする、請求項1~7のいずれか1項に記載の方法。 The method according to any one of claims 1 to 7, characterized in that the feline calicivirus (FCV) strain or other norovirus equivalent strain comprises feline calicivirus (FCV) F4 and F9 strains.
  9. 前記ネコカリシウイルス(FCV)株または他のノロウイルス等価株は、ネコカリシウイルス(FCV)F4株である、請求項8に記載の方法。 9. The method of claim 8, wherein the feline calicivirus (FCV) strain or other norovirus equivalent strain is feline calicivirus (FCV) F4 strain.
  10. 前記工程(C)は、すべての細胞変性効果(CPE)が生じた時点でなされる、請求項1~9のいずれか1項に記載の方法。 The method according to any one of claims 1 to 9, wherein the step (C) is performed when all cytopathic effects (CPE) have occurred.
  11. 前記工程(C)は、約2日間培養した時点でなされる、請求項10に記載の方法。 The method according to claim 10, wherein the step (C) is performed when the culture is performed for about 2 days.
  12. 前記工程(G)の培養は、7~8日間行われる、請求項1~11のいずれか1項に記載の方法。 The method according to any one of claims 1 to 11, wherein the culture in the step (G) is performed for 7 to 8 days.
  13. 前記工程(G)の培養は、8日間行われる、請求項12に記載の方法。 The method according to claim 12, wherein the culture in the step (G) is performed for 8 days.
PCT/JP2015/001012 2014-02-28 2015-02-26 Virus inactivation effect test WO2015129278A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014039373 2014-02-28
JP2014-039373 2014-02-28

Publications (1)

Publication Number Publication Date
WO2015129278A1 true WO2015129278A1 (en) 2015-09-03

Family

ID=54008609

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/001012 WO2015129278A1 (en) 2014-02-28 2015-02-26 Virus inactivation effect test

Country Status (1)

Country Link
WO (1) WO2015129278A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009123183A1 (en) * 2008-03-31 2009-10-08 国立大学法人広島大学 Antiviral agent and antiviral composition

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009123183A1 (en) * 2008-03-31 2009-10-08 国立大学法人広島大学 Antiviral agent and antiviral composition

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
"Heisei 25 Nendo Dai 40 Kai The Society for Antibacterial and Antifungal Agents", JAPAN NENJI TAIKAI YOSHISHU, vol. 40, 2013, pages 177 *
HEISEI 21 NENDO NOROVIRUS NO FUKATSUKA JOKEN NI KANSURU CHOSA HOKOKUSHO *
JAPANESE SOCIETY OF CHEMOTHERAPY NISHINIHON SHIBU SOKAI PROGRAM KOEN SHOROKU, vol. 61, 2013, pages 281 *
JAPANESE SOCIETY OF CHEMOTHERAPY SOKAI PROGRAM KOEN YOSHISHU, vol. 62, 19 May 2014 (2014-05-19), pages 320 *
YAKUGAKU ZASSHI, vol. 133, no. 9, 2013, pages 1017 - 1022 *

Similar Documents

Publication Publication Date Title
Lo et al. UVC disinfects SARS-CoV-2 by induction of viral genome damage without apparent effects on viral morphology and proteins
Ye et al. Reactivity of enveloped virus genome, proteins, and lipids with free chlorine and UV254
Qin et al. Catalytic inactivation of influenza virus by iron oxide nanozyme
Dellanno et al. The antiviral action of common household disinfectants and antiseptics against murine hepatitis virus, a potential surrogate for SARS coronavirus
Park et al. Inactivation of murine norovirus, feline calicivirus and echovirus 12 as surrogates for human norovirus (NoV) and coliphage (F+) MS2 by ultraviolet light (254 nm) and the effect of cell association on UV inactivation
Bentley et al. Hydrogen peroxide vapour decontamination of surfaces artificially contaminated with norovirus surrogate feline calicivirus
Chepurnov et al. Inactivation of Ebola virus with a surfactant nanoemulsion
Kramer et al. Virucidal activity of a new hand disinfectant with reduced ethanol content: comparison with other alcohol-based formulations
Krug et al. Chemical disinfection of high-consequence transboundary animal disease viruses on nonporous surfaces
Zimmer et al. Stability and inactivation of vesicular stomatitis virus, a prototype rhabdovirus
Zonta et al. Comparative virucidal efficacy of seven disinfectants against murine norovirus and feline calicivirus, surrogates of human norovirus
JP6144413B2 (en) Hydrochloric acid-containing virus killing agent
Silverman et al. Systematic review and meta-analysis of the persistence of enveloped viruses in environmental waters and wastewater in the absence of disinfectants
Arthur et al. Physicochemical stability profile of Tulane virus: a human norovirus surrogate
Pinto et al. Effect of surfactants, temperature, and sonication on the virucidal activity of polyhexamethylene biguanide against the bacteriophage MS2
Zonta et al. Virucidal efficacy of a hydrogen peroxide nebulization against murine norovirus and feline calicivirus, two surrogates of human norovirus
Campos et al. Virucidal activity of chemical biocides against mimivirus, a putative pneumonia agent
Saadatpour et al. Physicochemical susceptibility of SARS‐CoV‐2 to disinfection and physical approach of prophylaxis
Zhang et al. Waterborne human pathogenic viruses in complex microbial communities: environmental implication on virus infectivity, persistence, and disinfection
Leclercq et al. How to improve the chemical disinfection of contaminated surfaces by viruses, bacteria and fungus?
Maillard et al. Virucidal activity of microbicides
Shimakura et al. Inactivation of human norovirus and its surrogate by the disinfectant consisting of calcium hydrogen carbonate mesoscopic crystals
Eterpi et al. Virucidal activity of disinfectants against parvoviruses and reference viruses
Sahun et al. Inactivation of SARS-CoV-2 and other enveloped and non-enveloped viruses with non-thermal plasma for hospital disinfection
WO2015129278A1 (en) Virus inactivation effect test

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15755758

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15755758

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP