WO2015129257A1 - Binder composition for lithium ion secondary battery electrode, slurry composition for lithium ion secondary battery negative electrode, negative electrode for lithium ion secondary battery, and lithium ion secondary battery - Google Patents
Binder composition for lithium ion secondary battery electrode, slurry composition for lithium ion secondary battery negative electrode, negative electrode for lithium ion secondary battery, and lithium ion secondary battery Download PDFInfo
- Publication number
- WO2015129257A1 WO2015129257A1 PCT/JP2015/000937 JP2015000937W WO2015129257A1 WO 2015129257 A1 WO2015129257 A1 WO 2015129257A1 JP 2015000937 W JP2015000937 W JP 2015000937W WO 2015129257 A1 WO2015129257 A1 WO 2015129257A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- lithium ion
- ion secondary
- secondary battery
- negative electrode
- particulate polymer
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/134—Electrodes based on metals, Si or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
- H01M4/1395—Processes of manufacture of electrodes based on metals, Si or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/386—Silicon or alloys based on silicon
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/483—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/621—Binders
- H01M4/622—Binders being polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to a binder composition for lithium ion secondary battery electrodes, a slurry composition for lithium ion secondary battery negative electrodes, a negative electrode for lithium ion secondary batteries, and a lithium ion secondary battery.
- Lithium ion secondary batteries are small and light, have high energy density, and can be repeatedly charged and discharged, and are used in a wide range of applications. Therefore, in recent years, improvement of battery members such as electrodes has been studied for the purpose of further improving the performance of lithium ion secondary batteries.
- the electrode for lithium ion secondary batteries is normally provided with the electrical power collector and the electrode compound-material layer formed on the electrical power collector.
- the electrode mixture layer is formed on the current collector by, for example, a slurry composition obtained by dispersing a binder composition containing a particulate polymer as a binder and an electrode active material in a dispersion medium such as water.
- the electrode active material and the like are bound with a particulate polymer. Therefore, in order to achieve further performance improvement of the lithium ion secondary battery, attempts have been made to improve a binder composition and a slurry composition using an aqueous medium as a dispersion medium, which is used for forming an electrode.
- Patent Document 1 in a composition for forming a lithium secondary battery electrode including specific first and second active material particles, a dispersant, a binder, and a solvent, the acid value is in the range of 100 mgKOH / g to 600 mgKOH / g. It has been proposed to ensure the stability of the composition by using the anionic dispersant as a dispersant.
- Patent Document 2 in a binder composition for an electrode containing polymer particles having a predetermined particle shape and a dispersion medium, a polymer containing a repeating unit derived from an unsaturated carboxylic acid at a predetermined ratio It has been proposed to improve the stability of an electrode slurry composition prepared using an electrode binder composition by using particles.
- the composition for forming a lithium secondary battery electrode using an anionic dispersant having a predetermined acid value and the polymer particles containing a repeating unit derived from an unsaturated carboxylic acid at a predetermined ratio are used.
- the electrode slurry composition only pays attention to the stability of the prepared composition.
- the electrode and lithium ion secondary battery manufactured using the above conventional composition have a problem that the occurrence of swelling of the electrode cannot be sufficiently suppressed and a problem that excellent cycle characteristics cannot be obtained. there were.
- an object of this invention is to provide the binder composition for lithium ion secondary battery electrodes which can improve cycling characteristics, suppressing the swelling of the electrode of a lithium ion secondary battery. Moreover, an object of this invention is to provide the slurry composition for lithium ion secondary battery negative electrodes which can improve cycling characteristics, suppressing the swelling of the negative electrode of a lithium ion secondary battery. Furthermore, an object of the present invention is to provide a negative electrode for a lithium ion secondary battery in which swelling is suppressed and the lithium ion secondary battery can exhibit excellent cycle characteristics. In addition, an object of the present invention is to provide a lithium ion secondary battery having excellent cycle characteristics.
- the present inventors have intensively studied for the purpose of solving the above problems. Then, the present inventors use the particulate polymer having a surface acid amount within a predetermined range as a binder, thereby improving the strength (toughness, binding strength to the current collector, etc.) of the electrode mixture layer. The inventors have newly found that the cycle characteristics can be improved while suppressing swelling of the electrodes of the lithium ion secondary battery, and the present invention has been completed.
- the present invention aims to advantageously solve the above-mentioned problems, and the binder composition for a lithium ion secondary battery electrode of the present invention comprises a particulate polymer and water, and the particulate weight
- the surface acid amount of the coalescence is 0.5 mmol / g or more and 3.0 mmol / g or less.
- the acid amount in the aqueous phase of the particulate polymer is preferably 0.1 mmol / g or more and 0.7 mmol / g or less.
- the value obtained by dividing the surface acid value of the particulate polymer by the acid value in the aqueous phase is 2.5 or more. preferable. If the value obtained by dividing the value of the surface acid amount of the particulate polymer by the value of the acid amount in the aqueous phase is not less than the above value, the swelling of the electrode is further suppressed, and the electrode mixture layer for the current collector The binding strength and the cycle characteristics of the lithium ion secondary battery can be further improved.
- the particulate polymer may contain a hydroxyl group-containing (meth) acrylic acid ester monomer unit in an amount of 0.5% by mass to 5% by mass. preferable. If the particulate polymer contains a hydroxyl group-containing (meth) acrylic acid ester monomer unit within the above range, it becomes easy to prepare a particulate polymer having a surface acid amount within a desired range.
- the slurry composition for lithium ion secondary battery negative electrodes of this invention is the binder for any of the lithium ion secondary battery electrodes mentioned above.
- a composition and a negative electrode active material are included.
- the slurry composition containing any one of the binder compositions for lithium ion secondary battery electrodes described above is used for forming the negative electrode mixture layer, the strength of the negative electrode mixture layer is ensured and swelling of the negative electrode is suppressed.
- a lithium ion secondary battery having excellent cycle characteristics can be obtained.
- the negative electrode active material preferably contains a silicon-based negative electrode active material. If a silicon-based negative electrode active material is used as the negative electrode active material, the capacity of the lithium ion secondary battery can be increased. Even when a silicon-based negative electrode active material is used, the negative electrode formed from the slurry composition of the present invention is sufficiently suppressed from swelling.
- the negative electrode for lithium ion secondary batteries of this invention is either of the slurry composition for lithium ion secondary battery negative electrodes mentioned above. It has the negative mix layer obtained by using, It is characterized by the above-mentioned.
- the negative electrode composite material layer is formed using the above-described slurry composition for a negative electrode of a lithium ion secondary battery, the swelling is suppressed and lithium capable of exhibiting excellent cycle characteristics in the lithium ion secondary battery.
- a negative electrode for an ion secondary battery is obtained.
- the lithium ion secondary battery of this invention is equipped with a positive electrode, a negative electrode, a separator, and electrolyte solution, and the said negative electrode is the above-mentioned lithium ion. It is a negative electrode for secondary batteries.
- the negative electrode is the above-described negative electrode for a lithium ion secondary battery, a lithium ion secondary battery having excellent cycle characteristics can be obtained.
- the binder composition for lithium ion secondary battery electrodes which can improve cycling characteristics, suppressing the swelling of the electrode of a lithium ion secondary battery can be provided.
- the slurry composition for lithium ion secondary battery negative electrodes which can improve cycling characteristics, suppressing the swelling of the negative electrode of a lithium ion secondary battery can be provided.
- a lithium ion secondary battery having excellent cycle characteristics can be provided.
- FIG. 3 is a graph showing a hydrochloric acid addition amount-electric conductivity curve created when calculating the surface acid amount of a particulate polymer and the acid amount in an aqueous phase.
- the binder composition for a lithium ion secondary battery electrode of the present invention is used for preparing a slurry composition for a lithium ion secondary battery electrode, preferably a slurry composition for a lithium ion secondary battery negative electrode.
- the slurry composition for lithium ion secondary battery negative electrodes of this invention is used for formation of the negative electrode of a lithium ion secondary battery.
- the negative electrode for lithium ion secondary batteries of this invention is equipped with the negative mix layer formed from the slurry composition for lithium ion secondary battery negative electrodes of this invention, It is characterized by the above-mentioned.
- the lithium ion secondary battery of the present invention is characterized by using the negative electrode for a lithium ion secondary battery of the present invention.
- the binder composition for a lithium ion secondary battery electrode of the present invention is a composition in which a particulate polymer having a surface acid amount of 0.5 mmol / g or more and 3.0 mmol / g or less is dispersed in an aqueous medium as a dispersion medium. It is.
- the particulate polymer is composed of each component in the electrode mixture layer or each component. And the current collector.
- a polymer that can be dispersed in an aqueous medium such as water can be used as the particulate polymer.
- the “surface acid amount” is the amount of acid present on the surface portion of the particulate polymer, and refers to the acid amount per gram of the solid content of the particulate polymer.
- the particulate polymer needs to have a surface acid amount of 0.5 mmol / g or more and 3.0 mmol / g or less, preferably 1.0 mmol / g or more, and 1.5 mmol / g. More preferably, it is preferably 2.8 mmol / g or less, more preferably 2.7 mmol / g or less, and particularly preferably 2.5 mmol / l or less.
- the surface acid amount of the particulate polymer is less than 0.5 mmol / g, sufficient strength of the electrode mixture layer cannot be obtained, and the suppression of the swelling of the electrode becomes insufficient, and the lithium ion secondary battery Cycle characteristics cannot be ensured.
- the surface acid amount of the particulate polymer is more than 3.0 mmol / g, the binding strength of the electrode mixture layer to the current collector cannot be sufficiently obtained, and the electrode and lithium ion two The productivity of the secondary battery and the cycle characteristics of the lithium ion secondary battery cannot be ensured.
- the “acid amount in the aqueous phase” is the amount of acid present in the aqueous phase in the aqueous dispersion containing the particulate polymer, and the acid amount per gram of the solid content of the particulate polymer.
- the particulate polymer preferably has an acid amount in the aqueous phase of 0.7 mmol / g or less, more preferably 0.65 mmol / g or less, and 0.6 mmol / g or less. Is more preferable, and 0.55 mmol / g or less is particularly preferable.
- the lower limit of the range of the acid amount in the aqueous phase is not particularly limited, but is usually 0.1 mmol / g or more.
- the amount of acid in the aqueous phase of the particulate polymer is 0.7 mmol / g or less, and a water-soluble acid component present in the aqueous phase, for example, a free oligomer produced during the preparation of the particulate polymer If the amount of such by-products is sufficiently small, adverse effects due to the water-soluble acid component can be suppressed. Specifically, inhibition of binding by the water-soluble acid component can be suppressed, and the binding strength of the electrode mixture layer to the current collector and the cycle characteristics of the lithium ion secondary battery can be further improved.
- the amount of the water-soluble acid component brought into the electrolyte of the lithium ion secondary battery can be reduced, and the rate characteristics of the lithium ion secondary battery can be improved.
- generation of gas generated by decomposition of a water-soluble acid component or the like can be suppressed, and swelling of cells of the lithium ion secondary battery can be suppressed.
- the value obtained by dividing the value of the surface acid amount of the particulate polymer by the value of the acid amount in the aqueous phase is preferably 2.5 or more, It is more preferably 3 or more, more preferably 3.5 or more, more preferably 4 or more, still more preferably 4.5 or more, and particularly preferably 5 or more.
- the value of the surface acid amount / acid amount in the aqueous phase is 2.5 or more, so that the occurrence of adverse effects due to the water-soluble acid component is suppressed and the swelling of the electrode is further suppressed. The cycle characteristics can be further improved.
- the surface acid amount of the particulate polymer and the acid amount in the aqueous phase can be calculated by the following method. First, an aqueous dispersion containing a particulate polymer is prepared. An aqueous dispersion containing the particulate polymer is placed in a glass container washed with distilled water, and a solution conductivity meter is set and stirred. Stirring is continued until addition of hydrochloric acid described later is completed. A 0.1 N aqueous sodium hydroxide solution is added to the aqueous dispersion containing the particulate polymer so that the electrical conductivity of the aqueous dispersion containing the particulate polymer is 2.5 to 3.0 mS. Thereafter, after 6 minutes, the electrical conductivity is measured.
- This value is the electrical conductivity at the start of measurement. Further, 0.5 mL of 0.1 N hydrochloric acid is added to the aqueous dispersion containing the particulate polymer, and the electrical conductivity is measured after 30 seconds. Thereafter, 0.5 mL of 0.1 N hydrochloric acid is added again, and the electrical conductivity is measured after 30 seconds. This operation is repeated at intervals of 30 seconds until the electrical conductivity of the aqueous dispersion containing the particulate polymer becomes equal to or higher than the electrical conductivity at the start of measurement.
- the obtained electrical conductivity data is plotted with the electrical conductivity (unit “mS”) on the vertical axis (Y coordinate axis) and the cumulative amount of added hydrochloric acid (unit “mmol”) on the horizontal axis (X coordinate axis). Plot to.
- a hydrochloric acid addition amount-electric conductivity curve having three inflection points is obtained as shown in FIG.
- the X coordinate of the three inflection points and the X coordinate at the end of the addition of hydrochloric acid are P1, P2, P3, and P4 in order from the smallest value.
- the approximate straight line L1 For the data in the four sections of the X coordinate from zero to the coordinate P1, from the coordinate P1 to the coordinate P2, from the coordinate P2 to the coordinate P3, and from the coordinate P3 to the coordinate P4, the approximate straight line L1 by the least square method, respectively. , L2, L3, and L4.
- the X coordinate of the intersection of the approximate line L1 and the approximate line L2 is A1 (mmol)
- the X coordinate of the intersection of the approximate line L2 and the approximate line L3 is A2 (mmol)
- the X point of the intersection of the approximate line L3 and the approximate line L4 The coordinates are A3 (mmol).
- the surface acid amount per 1 g of the particulate polymer and the acid amount in the aqueous phase per 1 g of the particulate polymer are given as values (mmol / g) converted to hydrochloric acid from the following formulas (a) and (b). It is done. Further, the total acid amount per 1 g of the particulate polymer dispersed in water is the sum of the formula (a) and the formula (b) as represented by the following formula (c).
- the surface acid amount of the particulate polymer can be controlled, for example, by changing the type and ratio of monomer units constituting the particulate polymer and the polymerization method. Specifically, for example, the amount of surface acid can be increased by increasing the amount of an acidic group-containing monomer such as an ethylenically unsaturated carboxylic acid monomer.
- semi-batch polymerization is adopted for the preparation of the particulate polymer, more preferably, for example, a hydroxyl group-containing (meth) acrylic acid ester monomer is added in the latter half of the polymerization reaction, and ethylenically unsaturated
- acidic group-containing monomers such as carboxylic acid monomers with other monomers at the surface portion of the particulate polymer
- water is increased while increasing the surface acid amount of the particulate polymer. The amount of acid in the phase can be reduced.
- the particulate polymer preferably has a gel content of 80% by mass or more, more preferably 85% by mass or more, still more preferably 90% by mass or more, and 99% by mass. Or less, more preferably 97% by mass or less, and still more preferably 94% by mass or less. If the gel content of the particulate polymer is 80% by mass or more, the degree of polymerization of the particulate polymer is increased and the strength of the particulate polymer itself is improved. Therefore, the strength of the electrode mixture layer is increased, and the swelling of the electrode is increased. Can be suppressed, and the size of the surface acid amount can be appropriately controlled on the particle surface. Further, if the gel content of the particulate polymer is 99% by mass or less, the particulate polymer is prevented from losing toughness and becoming brittle, and the components constituting the electrode mixture layer and the electrode mixture layer The current collector can be bound well.
- gel content can be measured using the measuring method as described in the Example of this specification.
- the gel content of the particulate polymer can be adjusted by changing the polymerization conditions of the particulate polymer. For example, the amount of the chain transfer agent (eg, t-dodecyl mercaptan) used during the polymerization. If the amount is reduced, the gel content can be increased, and if the amount of the chain transfer agent used during polymerization is increased, the gel content can be decreased.
- the chain transfer agent eg, t-dodecyl mercaptan
- the particulate polymer preferably has a number average particle diameter of 80 nm or more, more preferably 100 nm or more, particularly preferably 120 nm or more, and preferably 400 nm or less. It is more preferably 350 nm or less, and particularly preferably 300 nm or less. When the number average particle diameter is in the above range, the strength and flexibility of the obtained electrode mixture layer can be improved.
- the “number average particle diameter” means a particle diameter at which the value of the integrated distribution is 50% in the particle diameter-number integrated distribution measured using a laser diffraction / scattering particle size distribution measuring apparatus. Point to.
- the number average particle diameter of the particulate polymer can be adjusted by changing the production conditions of the particulate polymer. Specifically, for example, when preparing a particulate polymer by seed polymerization, the number average particle diameter of the particulate polymer is controlled by adjusting the number and particle diameter of the seed particles used for the polymerization. Can do.
- examples of the particulate polymer include known polymers such as a diene polymer, an acrylic polymer, a fluorine polymer, and a silicon polymer. These polymers may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
- the particulate polymer may be a diene polymer, particularly an aliphatic conjugated diene monomer unit. It is preferable to use a copolymer having an aromatic vinyl monomer unit or a hydrogenated product thereof.
- the particulate polymer composed of a copolymer having an aromatic vinyl monomer unit capable of enhancing the stability of the polymer can satisfactorily function as a binder.
- “comprising a monomer unit” means “a monomer-derived structural unit is contained in a polymer obtained using the monomer”.
- the monomer is not particularly limited, and 1,3-butadiene, 2-methyl-1,3-butadiene, 2,3-dimethyl-1,3-butadiene, 2-chloro-1,3-butadiene, Substituted linear conjugated pentadienes, substituted and side chain conjugated hexadienes, and the like can be used.
- an aliphatic conjugated diene monomer may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
- the content rate of an aliphatic conjugated diene monomer unit becomes like this.
- it is 30 mass% or more, More preferably, it is 40 mass% or more, Preferably it is 70 mass% or less, More preferably, it is 60 It is below mass%.
- the flexibility of the electrode formed using a binder composition can be improved because the content rate of an aliphatic conjugated diene monomer unit is 30 mass% or more.
- the binding force of the particulate polymer is sufficiently high, and the components constituting the electrode mixture layer and the electrode mixture layer This is because the current collector and the current collector can be favorably bound.
- aromatic vinyl monomer that can form an aromatic vinyl monomer unit is not particularly limited, and styrene, ⁇ -methylstyrene, vinyl toluene, divinylbenzene, and the like can be used.
- an aromatic vinyl monomer may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
- the content of the aromatic vinyl monomer unit is preferably 20% by mass or more, more preferably 30% by mass or more, preferably 50% by mass or less, more preferably 40% by mass. % Or less. It is because the electrolyte solution resistance of the electrode formed using a binder composition can be improved because the content rate of an aromatic vinyl monomer unit is 20 mass% or more. Further, since the content ratio of the aromatic vinyl monomer unit is 50% by mass or less, the binding force of the particulate polymer made of the copolymer is sufficiently high, and the components constituting the electrode mixture layer and This is because the electrode mixture layer and the current collector can be favorably bound.
- the copolymer having an aliphatic conjugated diene monomer unit and an aromatic vinyl monomer unit includes a 1,3-butadiene unit as the aliphatic conjugated diene monomer unit, and the aromatic vinyl monomer unit. It preferably contains a styrene unit (that is, a styrene-butadiene copolymer or a hydrogenated styrene-butadiene copolymer).
- a copolymer (particulate polymer) having an aliphatic conjugated diene monomer unit and an aromatic vinyl monomer unit is used.
- the coalesced) preferably contains an acidic group-containing monomer unit.
- the acidic group-containing monomer unit include an ethylenically unsaturated carboxylic acid monomer unit and an unsaturated monomer unit having a sulfonic acid group.
- a particulate polymer contains an ethylenically unsaturated carboxylic acid monomer unit.
- the ethylenically unsaturated carboxylic acid monomer capable of forming an ethylenically unsaturated carboxylic acid monomer unit includes ethylenically unsaturated monocarboxylic acid and derivatives thereof, ethylenically unsaturated dicarboxylic acid and acid anhydrides thereof. Products and derivatives thereof.
- the ethylenically unsaturated monocarboxylic acid include acrylic acid, methacrylic acid, crotonic acid and the like.
- Examples of the ethylenically unsaturated monocarboxylic acid derivatives include 2-ethylacrylic acid, isocrotonic acid, ⁇ -acetoxyacrylic acid, ⁇ -trans-aryloxyacrylic acid, ⁇ -chloro- ⁇ -E-methoxyacrylic. Acid, ⁇ -diaminoacrylic acid and the like.
- Examples of the ethylenically unsaturated dicarboxylic acid include maleic acid, fumaric acid, itaconic acid and the like.
- Examples of acid anhydrides of ethylenically unsaturated dicarboxylic acids include maleic anhydride, diacrylic anhydride, methyl maleic anhydride, dimethyl maleic anhydride, and the like.
- examples of ethylenically unsaturated dicarboxylic acid derivatives include methylmaleic acid, dimethylmaleic acid, phenylmaleic acid, chloromaleic acid, dichloromaleic acid, fluoromaleic acid, diphenyl maleate, nonyl maleate, decyl maleate , Dodecyl maleate, octadecyl maleate, fluoroalkyl maleate and the like.
- ethylenically unsaturated monocarboxylic acid is preferable, and acrylic acid is particularly preferable.
- acrylic acid is particularly preferable.
- One of these may be used alone, or two or more of these may be used in combination at any ratio.
- Examples of the unsaturated monomer having a sulfonic acid group capable of forming an unsaturated monomer unit having a sulfonic acid group include vinyl sulfonic acid, methyl vinyl sulfonic acid, (meth) acryl sulfonic acid, and styrene sulfone.
- Examples include acids, ethyl (meth) acrylic acid-2-sulfonate, 2-acrylamido-2-methylpropanesulfonic acid, 3-allyloxy-2-hydroxypropanesulfonic acid, and the like. One of these may be used alone, or two or more of these may be used in combination at any ratio.
- “(meth) acryl” means acrylic and / or methacrylic.
- the content ratio of the acidic group-containing monomer unit is preferably 10% by mass or more, more preferably 15% by mass or more, and particularly preferably 18% by mass or more. Is 30% by mass or less, more preferably 25% by mass or less, particularly preferably 23% by mass or less, and still more preferably 20% by mass or less.
- the content ratio of the acidic group-containing monomer unit is 10% by mass or more, the surface acid amount of the particulate polymer can be easily increased to the desired range of the present application, and the lithium ion secondary can be suppressed while suppressing the swelling of the electrode.
- the cycle characteristics of the battery can be made excellent.
- the preparation of the particulate polymer becomes easy.
- the copolymer (particulate polymer) having the above-described aliphatic conjugated diene monomer unit and aromatic vinyl monomer unit preferably contains a hydroxyl group-containing (meth) acrylate monomer unit.
- examples of the hydroxyl group-containing (meth) acrylate monomer that can form a hydroxyl group-containing (meth) acrylate monomer unit include 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, and hydroxypropyl acrylate. , Hydroxypropyl methacrylate, hydroxybutyl acrylate, hydroxybutyl methacrylate, 3-chloro-2-hydroxypropyl methacrylate, and the like. Of these, 2-hydroxyethyl acrylate is preferred. One of these may be used alone, or two or more of these may be used in combination at any ratio.
- the content rate of a hydroxyl-containing (meth) acrylic acid ester monomer unit becomes like this.
- it is 0.5 mass% or more, More preferably, it is 0.7 mass% or more, Most preferably, it is 0.00.
- It is 8% by mass or more, preferably 5% by mass or less, more preferably 4% by mass or less, particularly preferably 3% by mass or less, and still more preferably 2% by mass or less.
- Acid group-containing monomers such as ethylenically unsaturated carboxylic acid monomers and other monomers because the content ratio of the hydroxyl group-containing (meth) acrylic acid ester monomer unit is 0.5% by mass or more The copolymerizability with can be enhanced.
- the content ratio of the hydroxyl group-containing (meth) acrylate monomer unit is 5% by mass or less
- the hydroxyl group-containing (meth) acrylate monomer is polymerized to form a polymer.
- the copolymerization of the ethylenically unsaturated carboxylic acid monomer to the particulate polymer is improved, so that the copolymerization of the above-described monomer can proceed well.
- the copolymer having the aliphatic conjugated diene monomer unit and the aromatic vinyl monomer unit described above includes any other repeating unit other than those described above as long as the effects of the present invention are not significantly impaired. You may go out.
- the content of other repeating units is not particularly limited, but the upper limit is preferably 6% by mass or less, more preferably 4% by mass or less, and particularly preferably 2% by mass or less in total.
- the particulate polymer can be prepared by polymerizing a monomer composition containing the above-described monomer in an aqueous solvent.
- the content ratio of each monomer in the monomer composition can be determined according to the content ratio of the monomer units (repeating units) in the particulate polymer.
- the aqueous solvent is not particularly limited as long as the particulate polymer can be dispersed in a particulate state, but water is not flammable and a dispersion of particulate polymer particles is easily obtained. Particularly preferable from the viewpoint.
- water may be used as the main solvent, and an aqueous solvent other than water may be mixed and used as long as the dispersed state of the particulate polymer particles can be ensured.
- the polymerization mode is not particularly limited, and any mode such as a solution polymerization method, a suspension polymerization method, a bulk polymerization method, and an emulsion polymerization method can be used.
- the polymerization method any method such as ionic polymerization, radical polymerization, and living radical polymerization can be used.
- the binder composition of the present invention or the slurry composition of the present invention is used as it is.
- the emulsion polymerization method is particularly preferred.
- the emulsion polymerization can be performed according to a conventional method. In emulsion polymerization, seed polymerization using seed particles may be employed.
- emulsifiers used for polymerization can be used, and the amount used is also generally used.
- batch polymerization and semi-batch polymerization can be used, but it is preferable to use semi-batch polymerization in which a monomer is continuously or intermittently added to the reaction system. .
- semi-batch polymerization compared with the case of using batch polymerization in which acidic group-containing monomers such as ethylenically unsaturated carboxylic acid monomers are added to the reaction system from the beginning, the particulate polymer The surface acid amount and the value of the surface acid amount / the acid amount in the aqueous phase can be easily controlled.
- a method for preparing a particulate polymer using semi-batch polymerization for example, when the particulate polymer is a copolymer having the above-described aliphatic conjugated diene monomer unit and aromatic vinyl monomer unit, A primary monomer composition containing an aromatic conjugated diene monomer, an aromatic vinyl monomer and an acidic group-containing monomer is continuously or intermittently added to the reaction system, and the addition rate of the monomer composition Is 70% or more, a method of starting addition of a secondary monomer composition containing a hydroxyl group-containing (meth) acrylic acid monomer to obtain a particulate polymer is preferred. This preferred embodiment will be described in detail below.
- added continuously or intermittently means that the monomer composition is not added to the reaction system all at once, but added over a certain period of time (for example, 30 minutes or more).
- addition rate of the monomer composition refers to the ratio (mass%) of the monomer already added to the reaction system in the total monomer composition used for the polymerization.
- the “primary monomer composition” is a monomer composition that is added to the reaction system from the initiation stage of polymerization, and is preferably 80 to 99% by mass, more preferably among all monomer compositions used for polymerization. 90 to 99% by mass is included in the primary monomer composition.
- the primary monomer composition preferably includes an aromatic vinyl monomer, an aliphatic conjugated diene monomer, an acidic group-containing monomer, and a hydroxyl group-containing (meth) acrylic acid ester monomer. It is preferable that it does not contain substantially.
- a mixture obtained by appropriately adding an emulsifier, a chain transfer agent, and water to this primary monomer composition and a separately prepared polymerization initiator are combined.
- the polymerization reaction is started by adding to one reaction vessel.
- the reaction conditions at this time are not particularly limited, but the reaction temperature is preferably 60 to 90 ° C.
- the time from the start of polymerization until the addition rate of the monomer composition reaches 70% is not particularly limited, but is preferably 2 to 6 hours, more preferably 3 to 5 hours.
- the hydroxyl group content (The addition of the secondary monomer composition containing the (meth) acrylate monomer is started.
- the time from the start of the addition of the secondary monomer composition to the end of the addition of the secondary monomer composition is not particularly limited, but is preferably 1 to 3 hours.
- the addition of the primary monomer composition and the secondary monomer composition may be completed separately or may be completed simultaneously.
- the time from the start of polymerization to the end of the addition of all monomer compositions is not particularly limited, but is preferably 3 to 8 hours, more preferably 4 to 7 hours.
- the reaction is preferably carried out at 0 to 90 ° C. for 3 to 9 hours.
- the reaction is stopped by cooling.
- the obtained aqueous dispersion is, for example, alkali metal (for example, Li, Na, K, Rb, Cs) hydroxide, ammonia, inorganic ammonium compound (for example, NH 4 Cl).
- a basic aqueous solution containing an organic amine compound for example, ethanolamine, diethylamine, etc.
- An aqueous dispersion of a polymer may be used.
- pH adjustment with an alkali metal hydroxide is preferable because it improves the binding strength of the electrode mixture layer to the current collector.
- the binder composition of the present invention is prepared by adding water or any other component within a range not impairing the effects of the invention to the aqueous dispersion of the particulate polymer obtained by polymerizing the monomer composition. Although it may be prepared, it is preferable to use the aqueous dispersion of the particulate polymer obtained by emulsion polymerization (including any of the above-described pH adjustment and heating and vacuum distillation) as it is as the binder composition of the present invention. . That is, the binder composition for secondary battery electrodes of the present invention is preferably a binder composition obtained by emulsion polymerization of a monomer composition.
- the binder composition of the present invention can be used for producing either a positive electrode or a negative electrode of a lithium ion secondary battery.
- the problem of swelling of the electrode plate is significant, and the strength of the electrode mixture layer is high. It is preferable to use it for the more demanded negative electrode. That is, the binder composition for lithium ion secondary battery electrodes of the present invention is preferably used for forming a slurry composition for lithium ion secondary battery negative electrodes.
- the lithium ion battery negative electrode slurry composition of the present invention is an aqueous slurry composition containing a negative electrode active material and the above-described binder composition for lithium ion secondary battery electrodes of the present invention.
- the slurry composition for lithium ion secondary battery negative electrodes of this invention may contain the other component mentioned later other than the above-mentioned negative electrode active material and binder composition.
- the binder composition of the present invention containing the above-mentioned particulate polymer is included, the swelling of the negative electrode of the lithium ion secondary battery is reduced. It can suppress and can make cycling characteristics excellent.
- the negative electrode active material is a material that transfers electrons in the negative electrode of the lithium ion secondary battery.
- a negative electrode active material of a lithium ion secondary battery the substance which can occlude and discharge
- the material that can occlude and release lithium include a carbon-based negative electrode active material, a metal-based negative electrode active material, and a negative electrode active material obtained by combining these materials.
- the carbon-based negative electrode active material refers to an active material having carbon as a main skeleton capable of inserting lithium (also referred to as “dope”).
- examples of the carbon-based negative electrode active material include carbonaceous materials and graphite. Quality materials.
- the carbonaceous material is a material having a low degree of graphitization (ie, low crystallinity) obtained by carbonizing a carbon precursor by heat treatment at 2000 ° C. or lower.
- the minimum of the heat processing temperature at the time of carbonizing is not specifically limited, For example, it can be 500 degreeC or more.
- the carbonaceous material include graphitizable carbon that easily changes the carbon structure depending on the heat treatment temperature, and non-graphitizable carbon having a structure close to an amorphous structure typified by glassy carbon.
- the graphitizable carbon for example, a carbon material using tar pitch obtained from petroleum or coal as a raw material can be mentioned.
- examples of the non-graphitizable carbon include a phenol resin fired body, polyacrylonitrile-based carbon fiber, pseudo-isotropic carbon, furfuryl alcohol resin fired body (PFA), and hard carbon.
- the graphite material is a material having high crystallinity close to that of graphite obtained by heat-treating graphitizable carbon at 2000 ° C. or higher.
- the upper limit of heat processing temperature is not specifically limited, For example, it can be 5000 degrees C or less.
- the graphite material include natural graphite and artificial graphite.
- the artificial graphite for example, artificial graphite obtained by heat-treating carbon containing graphitizable carbon mainly at 2800 ° C. or higher, graphitized MCMB heat-treated at 2000 ° C. or higher, and mesophase pitch-based carbon fiber at 2000 ° C. Examples thereof include graphitized mesophase pitch-based carbon fibers that have been heat-treated.
- the metal-based negative electrode active material is an active material containing a metal, and usually includes an element capable of inserting lithium in the structure, and the theoretical electric capacity per unit mass when lithium is inserted is 500 mAh /
- the active material which is more than g.
- the metal active material include lithium metal and a single metal capable of forming a lithium alloy (for example, Ag, Al, Ba, Bi, Cu, Ga, Ge, In, Ni, P, Pb, Sb, Si, Sn). , Sr, Zn, Ti, etc.) and alloys thereof, and oxides, sulfides, nitrides, silicides, carbides, phosphides, and the like thereof.
- the metal-based negative electrode active material an active material containing silicon (silicon-based negative electrode active material) is preferable. This is because the capacity of the lithium ion secondary battery can be increased by using the silicon-based negative electrode active material.
- the silicon-based negative electrode active material generally expands and contracts greatly as compared with the carbon-based negative electrode active material due to charging / discharging of the lithium ion secondary battery.
- the slurry composition of the present invention uses the binder composition of the present invention, even if the negative electrode active material contains a silicon-based negative electrode active material, the swelling of the negative electrode due to charge / discharge is suitably suppressed. can do.
- silicon-based negative electrode active materials examples include silicon (Si), alloys containing silicon, SiO, SiO x , and a composite of a Si-containing material obtained by coating or combining a Si-containing material with conductive carbon and conductive carbon. Etc.
- silicon type negative electrode active materials may be used individually by 1 type, and may be used in combination of 2 types.
- the alloy containing silicon examples include an alloy composition containing silicon, aluminum, and a transition metal such as iron, and further containing a rare earth element such as tin and yttrium.
- SiO x is a compound containing at least one of SiO and SiO 2 and Si, and x is usually 0.01 or more and less than 2. Then, SiO x, for example, can be formed by using a disproportionation reaction of silicon monoxide (SiO). Specifically, SiO x can be prepared by heat-treating SiO, optionally in the presence of a polymer such as polyvinyl alcohol, to produce silicon and silicon dioxide. The heat treatment can be performed at a temperature of 900 ° C. or higher, preferably 1000 ° C. or higher, in an atmosphere containing an organic gas and / or steam after grinding and mixing SiO and optionally a polymer.
- SiO x can be prepared by heat-treating SiO, optionally in the presence of a polymer such as polyvinyl alcohol, to produce silicon and silicon dioxide. The heat treatment can be performed at a temperature of 900 ° C. or higher, preferably 1000 ° C. or higher, in an atmosphere containing an organic gas and / or steam
- a composite of Si-containing material and conductive carbon for example, a pulverized mixture of SiO, a polymer such as polyvinyl alcohol, and optionally a carbon material is heat-treated in an atmosphere containing, for example, an organic gas and / or steam.
- a composite is obtained by coating the surface of SiO particles by a chemical vapor deposition method using an organic gas or the like, or by combining SiO particles and graphite or artificial graphite by a mechanochemical method (granulation). It can also be obtained by a known method such as
- the binder composition used for the slurry composition of the present invention is a binder composition for a lithium ion secondary battery electrode containing the above-described particulate polymer of the present invention. And as for the slurry composition of this invention, content of the particulate polymer in a slurry composition becomes like this. Preferably it is 0.1 mass part or more per 100 mass parts of negative electrode active materials, More preferably, it is 0.5 mass part or more, The binder composition is contained so that the amount is particularly preferably 1 part by mass or more, preferably 20 parts by mass or less, more preferably 10 parts by mass or less, and particularly preferably 5 parts by mass or less.
- the slurry composition contains the particulate polymer in the above amount, the amount of the particulate polymer becomes sufficient to suitably follow the expansion and contraction of the negative electrode active material, while suppressing the swelling of the negative electrode, The cycle characteristics of the lithium ion secondary battery can be made excellent.
- the slurry composition for a negative electrode of a lithium ion secondary battery of the present invention includes components such as a water-soluble polymer such as carboxymethyl cellulose and polyacrylic acid, a conductive material, a reinforcing material, a leveling agent, and an electrolyte additive. May be contained. These are not particularly limited as long as they do not affect the battery reaction, and known ones such as those described in International Publication No. 2012/115096 can be used. These components may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios. In addition, these other components may be contained in the slurry composition of the present invention by using the binder composition of the present invention in which the components are blended.
- the particulate polymer used in the present invention has a large amount of surface acid and has a relatively high affinity for water, so that it is well compatible with water-soluble polymers such as carboxymethyl cellulose and polyacrylic acid. Therefore, when a water-soluble polymer such as carboxymethyl cellulose or polyacrylic acid is blended with the slurry composition for a negative electrode of the lithium ion secondary battery of the present invention, it is compared with the case where a particulate polymer having a small surface acid amount is used. And the intensity
- the slurry composition for a negative electrode of a lithium ion secondary battery of the present invention can be prepared by dispersing each of the above components in an aqueous medium as a dispersion medium. Specifically, the above components and any aqueous medium are mixed using a mixer such as a ball mill, sand mill, bead mill, pigment disperser, crushed grinder, ultrasonic disperser, homogenizer, planetary mixer, or fill mix. By doing so, a slurry composition can be prepared.
- a mixer such as a ball mill, sand mill, bead mill, pigment disperser, crushed grinder, ultrasonic disperser, homogenizer, planetary mixer, or fill mix.
- water is usually used as the aqueous medium, but an aqueous solution of an arbitrary compound or a mixed solution of a small amount of an organic medium and water may be used.
- a slurry composition by adding a negative electrode active material etc. to this binder composition.
- the aqueous medium in the slurry composition may be derived from the binder composition.
- the negative electrode for lithium ion secondary batteries of this invention can be manufactured using the slurry composition for negative electrodes of lithium ion secondary batteries of this invention.
- the negative electrode for a lithium ion secondary battery of the present invention includes a current collector and a negative electrode mixture layer formed on the current collector, and the negative electrode mixture layer is a lithium ion secondary battery of the present invention. Obtained from the negative electrode slurry composition.
- each component contained in the negative electrode composite material layer was contained in the slurry composition for a lithium ion secondary battery negative electrode of the present invention, and a suitable abundance ratio of each of these components is It is the same as the suitable abundance ratio of each component in the slurry composition for use.
- the negative electrode for lithium ion secondary batteries of this invention can suppress swelling, and can exhibit the cycling characteristics excellent in the lithium ion secondary battery.
- the negative electrode for a lithium ion secondary battery of the present invention was applied on the current collector, for example, a step of applying the above-described slurry composition for a lithium ion secondary battery negative electrode on the current collector (application step).
- the slurry composition for a negative electrode of a lithium ion secondary battery is dried and then manufactured through a step (drying step) of forming a negative electrode mixture layer on the current collector.
- a method for applying the slurry composition for a lithium ion secondary battery negative electrode on the current collector is not particularly limited, and a known method can be used. Specifically, as a coating method, a doctor blade method, a dip method, a reverse roll method, a direct roll method, a gravure method, an extrusion method, a brush coating method, or the like can be used. At this time, the slurry composition for negative electrode may be applied only to one side of the current collector, or may be applied to both sides. The thickness of the slurry film on the current collector after coating and before drying can be appropriately set according to the thickness of the negative electrode mixture layer obtained by drying.
- the current collector to which the slurry composition for negative electrode is applied a material having electrical conductivity and electrochemical durability is used.
- a current collector made of iron, copper, aluminum, nickel, stainless steel, titanium, tantalum, gold, platinum, or the like can be used.
- a copper foil is particularly preferable as the current collector used for the negative electrode.
- the said material may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
- a method for drying the slurry composition for the negative electrode on the current collector is not particularly limited, and a known method can be used, for example, drying with hot air, hot air, low-humidity air, vacuum drying, infrared rays, electron beam, etc. The drying method by irradiation is mentioned.
- a negative electrode mixture layer is formed on the current collector, and the negative electrode for a lithium ion secondary battery comprising the current collector and the negative electrode mixture layer Can be obtained.
- the negative electrode mixture layer may be subjected to pressure treatment using a die press or a roll press.
- the pressurization treatment the binding strength of the negative electrode mixture layer to the current collector can be improved.
- the lithium ion secondary battery of the present invention includes a positive electrode, a negative electrode, an electrolytic solution, and a separator, and the negative electrode for a lithium ion secondary battery of the present invention is used as the negative electrode. And since the lithium ion secondary battery of this invention uses the negative electrode for lithium ion secondary batteries of this invention, it is excellent in cycling characteristics.
- a positive electrode of a lithium ion secondary battery As a positive electrode of a lithium ion secondary battery, a known positive electrode used as a positive electrode for a lithium ion secondary battery can be used. Specifically, as the positive electrode, for example, a positive electrode formed by forming a positive electrode mixture layer on a current collector can be used. As the current collector, one made of a metal material such as aluminum can be used. As the positive electrode mixture layer, a layer containing a known positive electrode active material, a conductive material, and a binder can be used. Incidentally, the binder composition for a lithium ion secondary battery electrode of the present invention may be used for the preparation of the positive electrode mixture layer.
- an electrolytic solution in which an electrolyte is dissolved in a solvent can be used.
- the solvent an organic solvent capable of dissolving the electrolyte can be used.
- the solvent include alkyl carbonate solvents such as ethylene carbonate, propylene carbonate, and ⁇ -butyrolactone, 2,5-dimethyltetrahydrofuran, tetrahydrofuran, diethyl carbonate, ethyl methyl carbonate, dimethyl carbonate, methyl acetate, dimethoxyethane. , Dioxolane, methyl propionate, methyl formate and the like can be used.
- a lithium salt can be used as the electrolyte.
- the lithium salt for example, those described in JP 2012-204303 A can be used.
- LiPF 6 , LiClO 4 , and CF 3 SO 3 Li are preferable as the electrolyte because they are easily dissolved in an organic solvent and exhibit a high degree of dissociation.
- ⁇ Separator> As the separator, for example, those described in JP 2012-204303 A can be used. Among these, the thickness of the entire separator can be reduced, thereby increasing the ratio of the electrode active material in the lithium ion secondary battery and increasing the capacity per volume.
- a microporous film made of a series resin polyethylene, polypropylene, polybutene, polyvinyl chloride is preferred.
- a positive electrode and a negative electrode are overlapped via a separator, and this is wound into a battery container according to the battery shape as necessary, and put into a battery container. It can manufacture by inject
- an overcurrent prevention element such as a fuse or a PTC element, an expanded metal, a lead plate, etc. may be provided as necessary.
- the shape of the lithium ion secondary battery may be any of, for example, a coin shape, a button shape, a sheet shape, a cylindrical shape, a square shape, a flat shape, and the like.
- This value was taken as the electrical conductivity at the start of measurement. Further, 0.5 mL of 0.1 N hydrochloric acid was added to the aqueous dispersion containing the particulate polymer, and the electrical conductivity was measured after 30 seconds. Thereafter, 0.5 mL of 0.1 N hydrochloric acid was added again, and the electrical conductivity was measured after 30 seconds. This operation was repeated at intervals of 30 seconds until the electrical conductivity of the aqueous dispersion containing the particulate polymer was equal to or higher than the electrical conductivity at the start of measurement.
- the obtained electric conductivity data is plotted on a graph with the electric conductivity (unit “mS”) on the vertical axis (Y coordinate axis) and the cumulative amount of added hydrochloric acid (unit “mmol”) on the horizontal axis (X coordinate axis). Plotted. Thereby, a hydrochloric acid addition amount-electric conductivity curve having three inflection points as shown in FIG. 1 was obtained. The X coordinate of the three inflection points and the X coordinate at the end of the addition of hydrochloric acid were P1, P2, P3, and P4 in order from the smallest value.
- the approximate straight line L1 by the least square method For the data in the four sections of the X coordinate from zero to the coordinate P1, from the coordinate P1 to the coordinate P2, from the coordinate P2 to the coordinate P3, and from the coordinate P3 to the coordinate P4, the approximate straight line L1 by the least square method, respectively. , L2, L3 and L4 were determined.
- the X coordinate of the intersection of the approximate line L1 and the approximate line L2 is A1 (mmol)
- the X coordinate of the intersection of the approximate line L2 and the approximate line L3 is A2 (mmol)
- the X point of the intersection of the approximate line L3 and the approximate line L4 The coordinates were A3 (mmol).
- the surface acid amount per 1 g of the particulate polymer and the acid amount in the aqueous phase per 1 g of the particulate polymer were each determined as a value (mmol / g) converted to hydrochloric acid from the following formula.
- An aqueous dispersion containing a particulate polymer was prepared, and the aqueous dispersion was dried in an environment of 50% humidity and a temperature of 23 to 25 ° C. to form a film having a thickness of 1 ⁇ 0.3 mm.
- This film was dried with a vacuum dryer at a temperature of 60 ° C. for 10 hours. Thereafter, the dried film was cut into 3 to 5 mm square, and about 1 g was precisely weighed. The mass of the film piece obtained by cutting is defined as w0.
- This film piece was immersed in 50 g of tetrahydrofuran (THF) for 24 hours. Then, the film piece pulled up from THF was vacuum-dried at 105 degreeC for 3 hours, and the mass w1 of insoluble matter was measured. And gel content (mass%) was computed according to the following formula.
- Capacity change rate ⁇ C is less than 65% Swelling (after cycle)>
- the lithium ion secondary battery after the cycle characteristics were evaluated as described above was charged at 0.5 C in a 25 ° C.
- the produced negative electrode was cut into a rectangle having a width of 1.0 cm and a length of 10 cm to obtain a test piece. Then, the negative electrode composite layer side surface of the test piece was fixed upward, and a cellophane tape was attached to the negative electrode composite layer side surface of the test piece. At this time, the cellophane tape defined in JIS Z1522 was used.
- peel strength (N / m). It shows that the binding strength of the negative mix layer with respect to a collector is excellent, so that peel strength is large.
- Example 1 Preparation of binder composition for lithium ion secondary battery electrode> 33 parts of styrene as an aromatic vinyl monomer, 46 parts of 1,3-butadiene as an aliphatic conjugated diene monomer, 20 parts of acrylic acid as an acidic group-containing monomer, 0.25 tert-dodecyl mercaptan as a chain transfer agent The addition of these mixtures to the pressure vessel B from a container A containing 0.35 parts of sodium lauryl sulfate as an emulsifier, and at the same time, a pressure vessel of 1 part of potassium persulfate as a polymerization initiator The polymerization was started by starting the addition to B. The reaction temperature was maintained at 75 ° C.
- the unreacted monomer was removed by heating under reduced pressure. Furthermore, it cooled after that and the aqueous dispersion (Binder composition for lithium ion secondary battery electrodes, solid content concentration: 30%) containing the desired particulate polymer was obtained. Using the aqueous dispersion containing the particulate polymer, the surface acid amount, the acid amount in the aqueous phase, the gel content, and the number average particle diameter were measured. The results are shown in Table 1.
- an aqueous dispersion containing a particulate polymer (binder composition for a lithium ion secondary battery electrode), 1.5 parts in terms of solid content of the particulate polymer, and ion-exchanged water are added, The final solid concentration was adjusted to 50%, and the mixture was further mixed for 10 minutes. This was defoamed under reduced pressure to obtain a slurry composition for a negative electrode of a lithium ion secondary battery.
- the slurry composition for a negative electrode of a lithium ion secondary battery was applied with a comma coater onto a 15 ⁇ m thick copper foil as a current collector so that the amount applied was 9 to 10 mg / cm 2 .
- the copper foil coated with the lithium ion secondary battery negative electrode slurry composition was dried at a rate of 0.5 m / min in an oven at a temperature of 60 ° C. over 2 minutes. Thereafter, heat treatment was performed in an oven at a temperature of 120 ° C. for 2 minutes to obtain a negative electrode original fabric.
- the obtained negative electrode original fabric was pressed with a roll press machine so that the density of the negative electrode mixture layer was 1.6 to 1.7 g / cm 3 , thereby obtaining a negative electrode for a lithium ion secondary battery.
- the binding strength of the negative electrode mixture layer to the current collector was evaluated. The results are shown in Table 1.
- the obtained slurry composition for a lithium ion secondary battery positive electrode was applied onto an aluminum foil having a thickness of 20 ⁇ m as a current collector with a comma coater.
- the aluminum foil coated with the lithium ion secondary battery positive electrode slurry composition was dried by transporting it in an oven at a temperature of 60 ° C. for 2 minutes at a speed of 0.5 m / min. Thereafter, heat treatment was performed for 2 minutes in an oven at a temperature of 120 ° C. to obtain a positive electrode raw material.
- the obtained positive electrode fabric was pressed with a roll press machine so that the density of the positive electrode mixture layer was 3.40 to 3.50 g / cm 3 to obtain a positive electrode for a lithium ion secondary battery.
- a single-layer polypropylene separator (width 65 mm, length 500 mm, thickness 25 ⁇ m; manufactured by a dry method; porosity 55%) was prepared and cut into a 5 cm ⁇ 5 cm square.
- the aluminum packaging material exterior was prepared as a battery exterior.
- the produced positive electrode was cut out into a 4 cm x 4 cm square, and it has arrange
- the above-described square separator was disposed on the surface of the positive electrode mixture layer of the positive electrode.
- Example 2 to 4 A binder composition for a lithium ion secondary battery electrode in the same manner as in Example 1 except that the blending amount of 1,3-butadiene and acrylic acid was changed as shown in Table 1 when preparing the binder composition for a lithium ion secondary battery electrode.
- Product, a slurry composition for a negative electrode of a lithium ion secondary battery, a negative electrode for a lithium ion secondary battery, a positive electrode for a lithium ion secondary battery, and a lithium ion secondary battery were manufactured and evaluated by the method described above. The results are shown in Table 1.
- Example 5 A lithium ion secondary battery electrode was prepared in the same manner as in Example 1 except that the blending amounts of 1,3-butadiene and 2-hydroxyethyl acrylate were changed as shown in Table 1 when preparing the binder composition for a lithium ion secondary battery electrode.
- Example 7 A slurry composition for a lithium ion secondary battery negative electrode, a negative electrode for a lithium ion secondary battery, a lithium ion secondary battery, as in Example 1, except that the binder composition for a lithium ion secondary battery electrode was prepared by the following method. A positive electrode for a battery and a lithium ion secondary battery were produced and evaluated by the method described above. The results are shown in Table 1.
- the reaction temperature was maintained at 75 ° C. Five and a half hours after the start of the polymerization, the addition of the entire amount of the mixture containing these monomer compositions was completed, and then the mixture was further heated to 85 ° C. and reacted for 6 hours. When the polymerization conversion reached 97%, the reaction was stopped by cooling to obtain a mixture containing a particulate polymer. A 5% aqueous sodium hydroxide solution was added to the mixture containing the particulate polymer to adjust the pH to 8. Then, the unreacted monomer was removed by heating under reduced pressure. Furthermore, it cooled after that and the aqueous dispersion (Binder composition for lithium ion secondary battery electrodes solid content concentration: 30%) containing the desired particulate polymer was obtained.
- Example 8 Lithium ion secondary battery negative electrode was prepared in the same manner as in Example 1 except that artificial graphite 100 parts was used instead of artificial graphite 95 parts and carbon-coated SiOx 5 parts as the negative electrode active material when preparing the negative electrode slurry composition. Binder composition for ion secondary battery electrode, slurry composition for negative electrode of lithium ion secondary battery, negative electrode for lithium ion secondary battery, positive electrode for lithium ion secondary battery and lithium ion secondary battery, and the method described above Evaluation was performed. The results are shown in Table 1.
- Example 1 The same as Example 1 except that the blending amount of 1,3-butadiene and acrylic acid was changed as shown in Table 1 and 2-hydroxyethyl acrylate was not used when preparing the binder composition for lithium ion secondary battery electrodes.
- Example 2 Example 1 except that the blending amount of 1,3-butadiene was changed as shown in Table 1 and 1 part of itaconic acid was used instead of 20 parts of acrylic acid when preparing the binder composition for lithium ion secondary battery electrodes.
- a lithium ion secondary battery electrode binder composition, a lithium ion secondary battery negative electrode slurry composition, a lithium ion secondary battery negative electrode, a lithium ion secondary battery positive electrode, and a lithium ion secondary battery are manufactured. And evaluation was performed by the above-mentioned method. The results are shown in Table 1.
- Example 3 (Comparative Example 3) Example 1 except that the blending amount of 1,3-butadiene was changed as shown in Table 1 and 30 parts of methacrylic acid was used instead of 20 parts of acrylic acid when preparing the binder composition for lithium ion secondary battery electrodes.
- a lithium ion secondary battery electrode binder composition, a lithium ion secondary battery negative electrode slurry composition, a lithium ion secondary battery negative electrode, a lithium ion secondary battery positive electrode, and a lithium ion secondary battery are manufactured. And evaluation was performed by the above-mentioned method. The results are shown in Table 1.
- a binder composition was prepared by the following procedure.
- the number average particle diameter could not be measured because the polymer was not in the form of particles.
- the surface acid amount and the acid amount in the aqueous phase are all converted to the acid amount in the aqueous phase because the polymer is dissolved in water (that is, the value of A2 in FIG. 1 is specified). The surface acid amount could not be calculated.
- a negative electrode for a secondary battery, a positive electrode for a lithium ion secondary battery, and a lithium ion secondary battery were manufactured and evaluated by the above-described method. The results are shown in Table 1.
- ST is styrene
- BD is 1,3-butadiene
- 2-HEA 2-hydroxyethyl acrylate
- AA is acrylic acid
- IA is itaconic acid
- MAA is methacrylic acid
- BA is Butyl acrylate and EA indicate ethyl acrylate.
- Comparative Example 4 the polymer used as the binder is not in the form of particles, the swelling of the negative electrode at the initial stage and after the cycle is not suppressed, and the binding strength and cycle of the negative electrode mixture layer to the current collector It turns out that it is inferior to a characteristic.
- the binder composition for lithium ion secondary battery electrodes which can improve cycling characteristics, suppressing the swelling of the electrode of a lithium ion secondary battery can be provided.
- the slurry composition for lithium ion secondary battery negative electrodes which can improve cycling characteristics, suppressing the swelling of the negative electrode of a lithium ion secondary battery can be provided.
- a lithium ion secondary battery having excellent cycle characteristics can be provided.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Secondary Cells (AREA)
Abstract
The purpose of the present invention is to provide a binder composition for a lithium ion secondary battery electrode, said binder composition being capable of improving the cycle characteristic while suppressing swelling of an electrode of a lithium ion secondary battery. This binder composition for a lithium ion secondary battery electrode includes a particulate polymer and water. The surface acid amount of the particulate polymer is 0.5-3.0 mmol/g inclusive.
Description
本発明は、リチウムイオン二次電池電極用バインダー組成物、リチウムイオン二次電池負極用スラリー組成物、リチウムイオン二次電池用負極およびリチウムイオン二次電池に関するものである。
The present invention relates to a binder composition for lithium ion secondary battery electrodes, a slurry composition for lithium ion secondary battery negative electrodes, a negative electrode for lithium ion secondary batteries, and a lithium ion secondary battery.
リチウムイオン二次電池は、小型で軽量、且つエネルギー密度が高く、さらに繰り返し充放電が可能という特性があり、幅広い用途に使用されている。そのため、近年では、リチウムイオン二次電池の更なる高性能化を目的として、電極などの電池部材の改良が検討されている。
Lithium ion secondary batteries are small and light, have high energy density, and can be repeatedly charged and discharged, and are used in a wide range of applications. Therefore, in recent years, improvement of battery members such as electrodes has been studied for the purpose of further improving the performance of lithium ion secondary batteries.
ここで、リチウムイオン二次電池用の電極は、通常、集電体と、集電体上に形成された電極合材層とを備えている。そして、電極合材層は、例えば、結着材としての粒子状重合体を含むバインダー組成物と、電極活物質などとを水等の分散媒に分散させてなるスラリー組成物を集電体上に塗布し、乾燥させて電極活物質などを粒子状重合体で結着することにより形成されている。
そこで、リチウムイオン二次電池の更なる性能向上を達成すべく、電極の形成に用いられる、分散媒として水系媒体を用いたバインダー組成物やスラリー組成物の改良が試みられている。 Here, the electrode for lithium ion secondary batteries is normally provided with the electrical power collector and the electrode compound-material layer formed on the electrical power collector. The electrode mixture layer is formed on the current collector by, for example, a slurry composition obtained by dispersing a binder composition containing a particulate polymer as a binder and an electrode active material in a dispersion medium such as water. The electrode active material and the like are bound with a particulate polymer.
Therefore, in order to achieve further performance improvement of the lithium ion secondary battery, attempts have been made to improve a binder composition and a slurry composition using an aqueous medium as a dispersion medium, which is used for forming an electrode.
そこで、リチウムイオン二次電池の更なる性能向上を達成すべく、電極の形成に用いられる、分散媒として水系媒体を用いたバインダー組成物やスラリー組成物の改良が試みられている。 Here, the electrode for lithium ion secondary batteries is normally provided with the electrical power collector and the electrode compound-material layer formed on the electrical power collector. The electrode mixture layer is formed on the current collector by, for example, a slurry composition obtained by dispersing a binder composition containing a particulate polymer as a binder and an electrode active material in a dispersion medium such as water. The electrode active material and the like are bound with a particulate polymer.
Therefore, in order to achieve further performance improvement of the lithium ion secondary battery, attempts have been made to improve a binder composition and a slurry composition using an aqueous medium as a dispersion medium, which is used for forming an electrode.
例えば特許文献1では、特定の第一及び第二の活物質粒子、分散剤、バインダー並びに溶媒を含むリチウム二次電池電極形成用組成物において、酸価が100mgKOH/g以上600mgKOH/g以下の範囲内のアニオン性分散剤を分散剤として使用することで、該組成物の安定性を確保することが提案されている。
また、例えば特許文献2では、所定の粒子形状を有する重合体粒子と、分散媒体とを含有する電極用バインダー組成物において、不飽和カルボン酸に由来する繰り返し単位を所定の割合で含有する重合体粒子を使用することにより、電極用バインダー組成物を用いて調製した電極用スラリー組成物の安定性を向上させることが提案されている。 For example, in Patent Document 1, in a composition for forming a lithium secondary battery electrode including specific first and second active material particles, a dispersant, a binder, and a solvent, the acid value is in the range of 100 mgKOH / g to 600 mgKOH / g. It has been proposed to ensure the stability of the composition by using the anionic dispersant as a dispersant.
For example, in Patent Document 2, in a binder composition for an electrode containing polymer particles having a predetermined particle shape and a dispersion medium, a polymer containing a repeating unit derived from an unsaturated carboxylic acid at a predetermined ratio It has been proposed to improve the stability of an electrode slurry composition prepared using an electrode binder composition by using particles.
また、例えば特許文献2では、所定の粒子形状を有する重合体粒子と、分散媒体とを含有する電極用バインダー組成物において、不飽和カルボン酸に由来する繰り返し単位を所定の割合で含有する重合体粒子を使用することにより、電極用バインダー組成物を用いて調製した電極用スラリー組成物の安定性を向上させることが提案されている。 For example, in Patent Document 1, in a composition for forming a lithium secondary battery electrode including specific first and second active material particles, a dispersant, a binder, and a solvent, the acid value is in the range of 100 mgKOH / g to 600 mgKOH / g. It has been proposed to ensure the stability of the composition by using the anionic dispersant as a dispersant.
For example, in Patent Document 2, in a binder composition for an electrode containing polymer particles having a predetermined particle shape and a dispersion medium, a polymer containing a repeating unit derived from an unsaturated carboxylic acid at a predetermined ratio It has been proposed to improve the stability of an electrode slurry composition prepared using an electrode binder composition by using particles.
しかし、所定の酸価を有するアニオン性分散剤を使用した上記リチウム二次電池電極形成用組成物や、不飽和カルボン酸に由来する繰り返し単位を所定の割合で含有する重合体粒子を使用した上記電極用スラリー組成物は、調製される組成物の安定性に着目しているのみであった。
However, the composition for forming a lithium secondary battery electrode using an anionic dispersant having a predetermined acid value and the polymer particles containing a repeating unit derived from an unsaturated carboxylic acid at a predetermined ratio are used. The electrode slurry composition only pays attention to the stability of the prepared composition.
そして、上記従来の組成物を用いて製造した電極およびリチウムイオン二次電池には、電極の膨れの発生を十分に抑制することができないという問題や、優れたサイクル特性が得られないという問題があった。
The electrode and lithium ion secondary battery manufactured using the above conventional composition have a problem that the occurrence of swelling of the electrode cannot be sufficiently suppressed and a problem that excellent cycle characteristics cannot be obtained. there were.
そこで、本発明は、リチウムイオン二次電池の電極の膨れを抑制しつつサイクル特性を向上させることができるリチウムイオン二次電池電極用バインダー組成物を提供することを目的とする。
また、本発明は、リチウムイオン二次電池の負極の膨れを抑制しつつサイクル特性を向上させることができるリチウムイオン二次電池負極用スラリー組成物を提供することを目的とする。
更に、本発明は、膨れが抑制され、リチウムイオン二次電池に優れたサイクル特性を発揮させることができるリチウムイオン二次電池用負極を提供することを目的とする。
加えて、本発明は、サイクル特性に優れるリチウムイオン二次電池を提供することを目的とする。 Then, an object of this invention is to provide the binder composition for lithium ion secondary battery electrodes which can improve cycling characteristics, suppressing the swelling of the electrode of a lithium ion secondary battery.
Moreover, an object of this invention is to provide the slurry composition for lithium ion secondary battery negative electrodes which can improve cycling characteristics, suppressing the swelling of the negative electrode of a lithium ion secondary battery.
Furthermore, an object of the present invention is to provide a negative electrode for a lithium ion secondary battery in which swelling is suppressed and the lithium ion secondary battery can exhibit excellent cycle characteristics.
In addition, an object of the present invention is to provide a lithium ion secondary battery having excellent cycle characteristics.
また、本発明は、リチウムイオン二次電池の負極の膨れを抑制しつつサイクル特性を向上させることができるリチウムイオン二次電池負極用スラリー組成物を提供することを目的とする。
更に、本発明は、膨れが抑制され、リチウムイオン二次電池に優れたサイクル特性を発揮させることができるリチウムイオン二次電池用負極を提供することを目的とする。
加えて、本発明は、サイクル特性に優れるリチウムイオン二次電池を提供することを目的とする。 Then, an object of this invention is to provide the binder composition for lithium ion secondary battery electrodes which can improve cycling characteristics, suppressing the swelling of the electrode of a lithium ion secondary battery.
Moreover, an object of this invention is to provide the slurry composition for lithium ion secondary battery negative electrodes which can improve cycling characteristics, suppressing the swelling of the negative electrode of a lithium ion secondary battery.
Furthermore, an object of the present invention is to provide a negative electrode for a lithium ion secondary battery in which swelling is suppressed and the lithium ion secondary battery can exhibit excellent cycle characteristics.
In addition, an object of the present invention is to provide a lithium ion secondary battery having excellent cycle characteristics.
本発明者らは、上記課題を解決することを目的として鋭意検討を行った。そして、本発明者らは、所定の範囲内の表面酸量を有する粒子状重合体を結着材として用いることで、電極合材層の強度(靭性、集電体に対する結着強度等)を高め、リチウムイオン二次電池の電極の膨れを抑制しつつサイクル特性を向上させることができることを新たに見出し、本発明を完成させた。
The present inventors have intensively studied for the purpose of solving the above problems. Then, the present inventors use the particulate polymer having a surface acid amount within a predetermined range as a binder, thereby improving the strength (toughness, binding strength to the current collector, etc.) of the electrode mixture layer. The inventors have newly found that the cycle characteristics can be improved while suppressing swelling of the electrodes of the lithium ion secondary battery, and the present invention has been completed.
即ち、この発明は、上記課題を有利に解決することを目的とするものであり、本発明のリチウムイオン二次電池電極用バインダー組成物は、粒子状重合体と水を含み、前記粒子状重合体の表面酸量が0.5mmol/g以上3.0mmol/g以下であることを特徴とする。このように、所定の範囲内の表面酸量を有する粒子状重合体を用いれば、該粒子状重合体を含むバインダー組成物を用いて形成される電極合材層の強度が確保され、電極の膨れが抑制されると共にサイクル特性に優れるリチウムイオン二次電池が得られる。
That is, the present invention aims to advantageously solve the above-mentioned problems, and the binder composition for a lithium ion secondary battery electrode of the present invention comprises a particulate polymer and water, and the particulate weight The surface acid amount of the coalescence is 0.5 mmol / g or more and 3.0 mmol / g or less. Thus, if a particulate polymer having a surface acid amount within a predetermined range is used, the strength of the electrode mixture layer formed using the binder composition containing the particulate polymer is ensured, and the electrode A lithium ion secondary battery with suppressed swelling and excellent cycle characteristics can be obtained.
ここで、本発明のリチウムイオン二次電池電極用バインダー組成物は、前記粒子状重合体の水相中の酸量が0.1mmol/g以上0.7mmol/g以下であることが好ましい。このように水相中の酸量が所定の範囲内にある粒子状重合体を用いれば、集電体に対する電極合材層の結着強度およびリチウムイオン二次電池のサイクル特性を更に向上させることができる。
Here, in the binder composition for a lithium ion secondary battery electrode of the present invention, the acid amount in the aqueous phase of the particulate polymer is preferably 0.1 mmol / g or more and 0.7 mmol / g or less. By using a particulate polymer in which the amount of acid in the aqueous phase is within a predetermined range as described above, the binding strength of the electrode mixture layer to the current collector and the cycle characteristics of the lithium ion secondary battery can be further improved. Can do.
また、本発明のリチウムイオン二次電池電極用バインダー組成物は、前記粒子状重合体の表面酸量の値を水相中の酸量の値で除した値が2.5以上であることが好ましい。粒子状重合体の表面酸量の値を水相中の酸量の値で除した値が上述の値以上であれば、電極の膨れが更に抑制され、また、集電体に対する電極合材層の結着強度およびリチウムイオン二次電池のサイクル特性を更に優れたものとすることができる。
In the binder composition for a lithium ion secondary battery electrode according to the present invention, the value obtained by dividing the surface acid value of the particulate polymer by the acid value in the aqueous phase is 2.5 or more. preferable. If the value obtained by dividing the value of the surface acid amount of the particulate polymer by the value of the acid amount in the aqueous phase is not less than the above value, the swelling of the electrode is further suppressed, and the electrode mixture layer for the current collector The binding strength and the cycle characteristics of the lithium ion secondary battery can be further improved.
そして、本発明のリチウムイオン二次電池電極用バインダー組成物は、前記粒子状重合体が、水酸基含有(メタ)アクリル酸エステル単量体単位を0.5質量%以上5質量%以下含むことが好ましい。粒子状重合体が水酸基含有(メタ)アクリル酸エステル単量体単位を上述の範囲内で含めば、表面酸量が所望の範囲内である粒子状重合体の調製が容易となる。
In the binder composition for a lithium ion secondary battery electrode of the present invention, the particulate polymer may contain a hydroxyl group-containing (meth) acrylic acid ester monomer unit in an amount of 0.5% by mass to 5% by mass. preferable. If the particulate polymer contains a hydroxyl group-containing (meth) acrylic acid ester monomer unit within the above range, it becomes easy to prepare a particulate polymer having a surface acid amount within a desired range.
また、この発明は、上記課題を有利に解決することを目的とするものであり、本発明のリチウムイオン二次電池負極用スラリー組成物は、上述した何れかのリチウムイオン二次電池電極用バインダー組成物および負極活物質を含む。このように、上述した何れかのリチウムイオン二次電池電極用バインダー組成物を含むスラリー組成物を負極合材層の形成に用いれば、負極合材層の強度が確保され、負極の膨れが抑制されると共にサイクル特性に優れるリチウムイオン二次電池が得られる。
Moreover, this invention aims at solving the said subject advantageously, The slurry composition for lithium ion secondary battery negative electrodes of this invention is the binder for any of the lithium ion secondary battery electrodes mentioned above. A composition and a negative electrode active material are included. Thus, if the slurry composition containing any one of the binder compositions for lithium ion secondary battery electrodes described above is used for forming the negative electrode mixture layer, the strength of the negative electrode mixture layer is ensured and swelling of the negative electrode is suppressed. In addition, a lithium ion secondary battery having excellent cycle characteristics can be obtained.
ここで、本発明のリチウムイオン二次電池負極用スラリー組成物は、前記負極活物質がシリコン系負極活物質を含有することが好ましい。負極活物質としてシリコン系負極活物質を用いれば、リチウムイオン二次電池を高容量とすることができる。そしてシリコン系負極活物質を用いた場合でも、本発明のスラリー組成物から形成される負極は、その膨れが十分に抑制される。
Here, in the slurry composition for a negative electrode of a lithium ion secondary battery of the present invention, the negative electrode active material preferably contains a silicon-based negative electrode active material. If a silicon-based negative electrode active material is used as the negative electrode active material, the capacity of the lithium ion secondary battery can be increased. Even when a silicon-based negative electrode active material is used, the negative electrode formed from the slurry composition of the present invention is sufficiently suppressed from swelling.
また、この発明は、上記課題を有利に解決することを目的とするものであり、本発明のリチウムイオン二次電池用負極は、上述したリチウムイオン二次電池負極用スラリー組成物の何れかを用いて得られる負極合材層を有することを特徴とする。このように、上述したリチウムイオン二次電池負極用スラリー組成物を用いて負極合材層を形成すれば、膨れが抑制され、リチウムイオン二次電池に優れたサイクル特性を発揮させることができるリチウムイオン二次電池用負極が得られる。
Moreover, this invention aims at solving the said subject advantageously, The negative electrode for lithium ion secondary batteries of this invention is either of the slurry composition for lithium ion secondary battery negative electrodes mentioned above. It has the negative mix layer obtained by using, It is characterized by the above-mentioned. Thus, if the negative electrode composite material layer is formed using the above-described slurry composition for a negative electrode of a lithium ion secondary battery, the swelling is suppressed and lithium capable of exhibiting excellent cycle characteristics in the lithium ion secondary battery. A negative electrode for an ion secondary battery is obtained.
更に、この発明は、上記課題を有利に解決することを目的とするものであり、本発明のリチウムイオン二次電池は、正極、負極、セパレーターおよび電解液を備え、前記負極が上述のリチウムイオン二次電池用負極であることを特徴とする。このように、負極を上述したリチウムイオン二次電池用負極とすれば、サイクル特性に優れるリチウムイオン二次電池が得られる。
Furthermore, this invention aims at solving the said subject advantageously, The lithium ion secondary battery of this invention is equipped with a positive electrode, a negative electrode, a separator, and electrolyte solution, and the said negative electrode is the above-mentioned lithium ion. It is a negative electrode for secondary batteries. Thus, if the negative electrode is the above-described negative electrode for a lithium ion secondary battery, a lithium ion secondary battery having excellent cycle characteristics can be obtained.
本発明によれば、リチウムイオン二次電池の電極の膨れを抑制しつつサイクル特性を向上させることができるリチウムイオン二次電池電極用バインダー組成物を提供することができる。
また、本発明によれば、リチウムイオン二次電池の負極の膨れを抑制しつつサイクル特性を向上させることができるリチウムイオン二次電池負極用スラリー組成物を提供することができる。
更に、本発明によれば、膨れが抑制され、リチウムイオン二次電池に優れたサイクル特性を発揮させることができるリチウムイオン二次電池用負極を提供することができる。
加えて、本発明によれば、サイクル特性に優れるリチウムイオン二次電池を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the binder composition for lithium ion secondary battery electrodes which can improve cycling characteristics, suppressing the swelling of the electrode of a lithium ion secondary battery can be provided.
Moreover, according to this invention, the slurry composition for lithium ion secondary battery negative electrodes which can improve cycling characteristics, suppressing the swelling of the negative electrode of a lithium ion secondary battery can be provided.
Furthermore, according to the present invention, it is possible to provide a negative electrode for a lithium ion secondary battery in which swelling is suppressed and the cycle characteristics excellent in the lithium ion secondary battery can be exhibited.
In addition, according to the present invention, a lithium ion secondary battery having excellent cycle characteristics can be provided.
また、本発明によれば、リチウムイオン二次電池の負極の膨れを抑制しつつサイクル特性を向上させることができるリチウムイオン二次電池負極用スラリー組成物を提供することができる。
更に、本発明によれば、膨れが抑制され、リチウムイオン二次電池に優れたサイクル特性を発揮させることができるリチウムイオン二次電池用負極を提供することができる。
加えて、本発明によれば、サイクル特性に優れるリチウムイオン二次電池を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the binder composition for lithium ion secondary battery electrodes which can improve cycling characteristics, suppressing the swelling of the electrode of a lithium ion secondary battery can be provided.
Moreover, according to this invention, the slurry composition for lithium ion secondary battery negative electrodes which can improve cycling characteristics, suppressing the swelling of the negative electrode of a lithium ion secondary battery can be provided.
Furthermore, according to the present invention, it is possible to provide a negative electrode for a lithium ion secondary battery in which swelling is suppressed and the cycle characteristics excellent in the lithium ion secondary battery can be exhibited.
In addition, according to the present invention, a lithium ion secondary battery having excellent cycle characteristics can be provided.
以下、本発明の実施形態について詳細に説明する。
ここで、本発明のリチウムイオン二次電池電極用バインダー組成物は、リチウムイオン二次電池電極用スラリー組成物、好適にはリチウムイオン二次電池負極用スラリー組成物の調製に用いられる。また、本発明のリチウムイオン二次電池負極用スラリー組成物は、リチウムイオン二次電池の負極の形成に用いられる。そして、本発明のリチウムイオン二次電池用負極は、本発明のリチウムイオン二次電池負極用スラリー組成物から形成される負極合材層を備えることを特徴とする。更に、本発明のリチウムイオン二次電池は、本発明のリチウムイオン二次電池用負極を用いたことを特徴とする Hereinafter, embodiments of the present invention will be described in detail.
Here, the binder composition for a lithium ion secondary battery electrode of the present invention is used for preparing a slurry composition for a lithium ion secondary battery electrode, preferably a slurry composition for a lithium ion secondary battery negative electrode. Moreover, the slurry composition for lithium ion secondary battery negative electrodes of this invention is used for formation of the negative electrode of a lithium ion secondary battery. And the negative electrode for lithium ion secondary batteries of this invention is equipped with the negative mix layer formed from the slurry composition for lithium ion secondary battery negative electrodes of this invention, It is characterized by the above-mentioned. Furthermore, the lithium ion secondary battery of the present invention is characterized by using the negative electrode for a lithium ion secondary battery of the present invention.
ここで、本発明のリチウムイオン二次電池電極用バインダー組成物は、リチウムイオン二次電池電極用スラリー組成物、好適にはリチウムイオン二次電池負極用スラリー組成物の調製に用いられる。また、本発明のリチウムイオン二次電池負極用スラリー組成物は、リチウムイオン二次電池の負極の形成に用いられる。そして、本発明のリチウムイオン二次電池用負極は、本発明のリチウムイオン二次電池負極用スラリー組成物から形成される負極合材層を備えることを特徴とする。更に、本発明のリチウムイオン二次電池は、本発明のリチウムイオン二次電池用負極を用いたことを特徴とする Hereinafter, embodiments of the present invention will be described in detail.
Here, the binder composition for a lithium ion secondary battery electrode of the present invention is used for preparing a slurry composition for a lithium ion secondary battery electrode, preferably a slurry composition for a lithium ion secondary battery negative electrode. Moreover, the slurry composition for lithium ion secondary battery negative electrodes of this invention is used for formation of the negative electrode of a lithium ion secondary battery. And the negative electrode for lithium ion secondary batteries of this invention is equipped with the negative mix layer formed from the slurry composition for lithium ion secondary battery negative electrodes of this invention, It is characterized by the above-mentioned. Furthermore, the lithium ion secondary battery of the present invention is characterized by using the negative electrode for a lithium ion secondary battery of the present invention.
(リチウムイオン二次電池電極用バインダー組成物)
本発明のリチウムイオン二次電池電極用バインダー組成物は、表面酸量が0.5mmol/g以上3.0mmol/g以下である粒子状重合体が、分散媒としての水系媒体に分散した組成物である。 (Binder composition for lithium ion secondary battery electrode)
The binder composition for a lithium ion secondary battery electrode of the present invention is a composition in which a particulate polymer having a surface acid amount of 0.5 mmol / g or more and 3.0 mmol / g or less is dispersed in an aqueous medium as a dispersion medium. It is.
本発明のリチウムイオン二次電池電極用バインダー組成物は、表面酸量が0.5mmol/g以上3.0mmol/g以下である粒子状重合体が、分散媒としての水系媒体に分散した組成物である。 (Binder composition for lithium ion secondary battery electrode)
The binder composition for a lithium ion secondary battery electrode of the present invention is a composition in which a particulate polymer having a surface acid amount of 0.5 mmol / g or more and 3.0 mmol / g or less is dispersed in an aqueous medium as a dispersion medium. It is.
<粒子状重合体>
粒子状重合体は、本発明のリチウムイオン二次電池電極用バインダー組成物を用いて形成した電極合材層を備える電極(正極、負極)において、電極合材層中の各成分同士または各成分と集電体とを結着させる。なお、粒子状重合体としては、水などの水系媒体に分散可能な重合体を用いることができる。 <Particulate polymer>
In the electrode (positive electrode, negative electrode) provided with the electrode mixture layer formed using the binder composition for a lithium ion secondary battery electrode of the present invention, the particulate polymer is composed of each component in the electrode mixture layer or each component. And the current collector. As the particulate polymer, a polymer that can be dispersed in an aqueous medium such as water can be used.
粒子状重合体は、本発明のリチウムイオン二次電池電極用バインダー組成物を用いて形成した電極合材層を備える電極(正極、負極)において、電極合材層中の各成分同士または各成分と集電体とを結着させる。なお、粒子状重合体としては、水などの水系媒体に分散可能な重合体を用いることができる。 <Particulate polymer>
In the electrode (positive electrode, negative electrode) provided with the electrode mixture layer formed using the binder composition for a lithium ion secondary battery electrode of the present invention, the particulate polymer is composed of each component in the electrode mixture layer or each component. And the current collector. As the particulate polymer, a polymer that can be dispersed in an aqueous medium such as water can be used.
[粒子状重合体の性状]
以下、本発明で使用する粒子状重合体の表面酸量および水相中の酸量、ゲル含有量、並びに個数平均粒子径について詳述する。 [Properties of particulate polymer]
Hereinafter, the surface acid amount of the particulate polymer used in the present invention, the acid amount in the aqueous phase, the gel content, and the number average particle diameter will be described in detail.
以下、本発明で使用する粒子状重合体の表面酸量および水相中の酸量、ゲル含有量、並びに個数平均粒子径について詳述する。 [Properties of particulate polymer]
Hereinafter, the surface acid amount of the particulate polymer used in the present invention, the acid amount in the aqueous phase, the gel content, and the number average particle diameter will be described in detail.
[[表面酸量および水相中の酸量]]
本発明において、「表面酸量」とは、粒子状重合体の表面部分に存在する酸の量であって、粒子状重合体の固形分1g当たりの酸量を指す。そして、粒子状重合体は、表面酸量が、0.5mmol/g以上3.0mmol/g以下であることが必要であり、1.0mmol/g以上であることが好ましく、1.5mmol/g以上であることがより好ましく、また、2.8mmol/g以下であることが好ましく、2.7mmol/g以下であることがより好ましく、2.5mmol/l以下であることが特に好ましい。粒子状重合体の表面酸量が0.5mmol/g未満であると、十分な電極合材層の強度が得られず、電極の膨れの抑制が不十分となり、また、リチウムイオン二次電池のサイクル特性を確保することができない。一方、粒子状重合体の表面酸量が3.0mmol/g超であると、集電体に対する電極合材層の結着強度が十分に得られず、電極及び該電極を備えたリチウムイオン二次電池の生産性、並びにリチウムイオン二次電池のサイクル特性を確保することができない。 [[Surface acid amount and acid amount in aqueous phase]]
In the present invention, the “surface acid amount” is the amount of acid present on the surface portion of the particulate polymer, and refers to the acid amount per gram of the solid content of the particulate polymer. The particulate polymer needs to have a surface acid amount of 0.5 mmol / g or more and 3.0 mmol / g or less, preferably 1.0 mmol / g or more, and 1.5 mmol / g. More preferably, it is preferably 2.8 mmol / g or less, more preferably 2.7 mmol / g or less, and particularly preferably 2.5 mmol / l or less. When the surface acid amount of the particulate polymer is less than 0.5 mmol / g, sufficient strength of the electrode mixture layer cannot be obtained, and the suppression of the swelling of the electrode becomes insufficient, and the lithium ion secondary battery Cycle characteristics cannot be ensured. On the other hand, if the surface acid amount of the particulate polymer is more than 3.0 mmol / g, the binding strength of the electrode mixture layer to the current collector cannot be sufficiently obtained, and the electrode and lithium ion two The productivity of the secondary battery and the cycle characteristics of the lithium ion secondary battery cannot be ensured.
本発明において、「表面酸量」とは、粒子状重合体の表面部分に存在する酸の量であって、粒子状重合体の固形分1g当たりの酸量を指す。そして、粒子状重合体は、表面酸量が、0.5mmol/g以上3.0mmol/g以下であることが必要であり、1.0mmol/g以上であることが好ましく、1.5mmol/g以上であることがより好ましく、また、2.8mmol/g以下であることが好ましく、2.7mmol/g以下であることがより好ましく、2.5mmol/l以下であることが特に好ましい。粒子状重合体の表面酸量が0.5mmol/g未満であると、十分な電極合材層の強度が得られず、電極の膨れの抑制が不十分となり、また、リチウムイオン二次電池のサイクル特性を確保することができない。一方、粒子状重合体の表面酸量が3.0mmol/g超であると、集電体に対する電極合材層の結着強度が十分に得られず、電極及び該電極を備えたリチウムイオン二次電池の生産性、並びにリチウムイオン二次電池のサイクル特性を確保することができない。 [[Surface acid amount and acid amount in aqueous phase]]
In the present invention, the “surface acid amount” is the amount of acid present on the surface portion of the particulate polymer, and refers to the acid amount per gram of the solid content of the particulate polymer. The particulate polymer needs to have a surface acid amount of 0.5 mmol / g or more and 3.0 mmol / g or less, preferably 1.0 mmol / g or more, and 1.5 mmol / g. More preferably, it is preferably 2.8 mmol / g or less, more preferably 2.7 mmol / g or less, and particularly preferably 2.5 mmol / l or less. When the surface acid amount of the particulate polymer is less than 0.5 mmol / g, sufficient strength of the electrode mixture layer cannot be obtained, and the suppression of the swelling of the electrode becomes insufficient, and the lithium ion secondary battery Cycle characteristics cannot be ensured. On the other hand, if the surface acid amount of the particulate polymer is more than 3.0 mmol / g, the binding strength of the electrode mixture layer to the current collector cannot be sufficiently obtained, and the electrode and lithium ion two The productivity of the secondary battery and the cycle characteristics of the lithium ion secondary battery cannot be ensured.
本発明において、「水相中の酸量」は、粒子状重合体を含む水分散液における水相中に存在する酸の量であって、粒子状重合体の固形分1g当たりの酸量をいう。そして、粒子状重合体は、水相中の酸量が、0.7mmol/g以下であることが好ましく、0.65mmol/g以下であることがより好ましく、0.6mmol/g以下であることが更に好ましく、0.55mmol/g以下であることが特に好ましい。また、水相中の酸量の範囲の下限については特に限定されないが、通常0.1mmol/g以上である。
粒子状重合体の水相中の酸量が0.7mmol/g以下であり、水相中に存在している水溶性の酸成分、例えば、粒子状重合体の調製の際に生成する遊離オリゴマー等の副生成物の量が十分に少なければ、該水溶性の酸成分による悪影響を抑制することができる。具体的には、水溶性の酸成分による結着の阻害を抑制し、集電体に対する電極合材層の結着強度およびリチウムイオン二次電池のサイクル特性を更に向上させることができる。また、水溶性の酸成分の、リチウムイオン二次電池の電解液中への持ち込み量を低減し、リチウムイオン二次電池のレート特性を向上させることができる。加えて水溶性の酸成分の分解等により生じるガスの発生を抑制し、リチウムイオン二次電池のセルの膨らみを抑制することができる。 In the present invention, the “acid amount in the aqueous phase” is the amount of acid present in the aqueous phase in the aqueous dispersion containing the particulate polymer, and the acid amount per gram of the solid content of the particulate polymer. Say. The particulate polymer preferably has an acid amount in the aqueous phase of 0.7 mmol / g or less, more preferably 0.65 mmol / g or less, and 0.6 mmol / g or less. Is more preferable, and 0.55 mmol / g or less is particularly preferable. Further, the lower limit of the range of the acid amount in the aqueous phase is not particularly limited, but is usually 0.1 mmol / g or more.
The amount of acid in the aqueous phase of the particulate polymer is 0.7 mmol / g or less, and a water-soluble acid component present in the aqueous phase, for example, a free oligomer produced during the preparation of the particulate polymer If the amount of such by-products is sufficiently small, adverse effects due to the water-soluble acid component can be suppressed. Specifically, inhibition of binding by the water-soluble acid component can be suppressed, and the binding strength of the electrode mixture layer to the current collector and the cycle characteristics of the lithium ion secondary battery can be further improved. In addition, the amount of the water-soluble acid component brought into the electrolyte of the lithium ion secondary battery can be reduced, and the rate characteristics of the lithium ion secondary battery can be improved. In addition, generation of gas generated by decomposition of a water-soluble acid component or the like can be suppressed, and swelling of cells of the lithium ion secondary battery can be suppressed.
粒子状重合体の水相中の酸量が0.7mmol/g以下であり、水相中に存在している水溶性の酸成分、例えば、粒子状重合体の調製の際に生成する遊離オリゴマー等の副生成物の量が十分に少なければ、該水溶性の酸成分による悪影響を抑制することができる。具体的には、水溶性の酸成分による結着の阻害を抑制し、集電体に対する電極合材層の結着強度およびリチウムイオン二次電池のサイクル特性を更に向上させることができる。また、水溶性の酸成分の、リチウムイオン二次電池の電解液中への持ち込み量を低減し、リチウムイオン二次電池のレート特性を向上させることができる。加えて水溶性の酸成分の分解等により生じるガスの発生を抑制し、リチウムイオン二次電池のセルの膨らみを抑制することができる。 In the present invention, the “acid amount in the aqueous phase” is the amount of acid present in the aqueous phase in the aqueous dispersion containing the particulate polymer, and the acid amount per gram of the solid content of the particulate polymer. Say. The particulate polymer preferably has an acid amount in the aqueous phase of 0.7 mmol / g or less, more preferably 0.65 mmol / g or less, and 0.6 mmol / g or less. Is more preferable, and 0.55 mmol / g or less is particularly preferable. Further, the lower limit of the range of the acid amount in the aqueous phase is not particularly limited, but is usually 0.1 mmol / g or more.
The amount of acid in the aqueous phase of the particulate polymer is 0.7 mmol / g or less, and a water-soluble acid component present in the aqueous phase, for example, a free oligomer produced during the preparation of the particulate polymer If the amount of such by-products is sufficiently small, adverse effects due to the water-soluble acid component can be suppressed. Specifically, inhibition of binding by the water-soluble acid component can be suppressed, and the binding strength of the electrode mixture layer to the current collector and the cycle characteristics of the lithium ion secondary battery can be further improved. In addition, the amount of the water-soluble acid component brought into the electrolyte of the lithium ion secondary battery can be reduced, and the rate characteristics of the lithium ion secondary battery can be improved. In addition, generation of gas generated by decomposition of a water-soluble acid component or the like can be suppressed, and swelling of cells of the lithium ion secondary battery can be suppressed.
ここで、粒子状重合体の表面酸量の値を水相中の酸量の値で除した値(表面酸量/水相中の酸量)は、2.5以上であることが好ましく、3以上であることがより好ましく、3.5以上であることがより好ましく、4以上であることがより好ましく、4.5以上であることが更に好ましく、5以上であることが特に好ましい。表面酸量/水相中の酸量の値が2.5以上であることで、水溶性の酸成分による悪影響の発生を抑制しつつ、電極の膨れを更に抑制し、リチウムイオン二次電池のサイクル特性を更に向上させることができる。
Here, the value obtained by dividing the value of the surface acid amount of the particulate polymer by the value of the acid amount in the aqueous phase (surface acid amount / acid amount in the aqueous phase) is preferably 2.5 or more, It is more preferably 3 or more, more preferably 3.5 or more, more preferably 4 or more, still more preferably 4.5 or more, and particularly preferably 5 or more. The value of the surface acid amount / acid amount in the aqueous phase is 2.5 or more, so that the occurrence of adverse effects due to the water-soluble acid component is suppressed and the swelling of the electrode is further suppressed. The cycle characteristics can be further improved.
そして、粒子状重合体の表面酸量および水相中の酸量は、以下の方法で算出することができる。
まず、粒子状重合体を含む水分散液を調製する。蒸留水で洗浄したガラス容器に、前記粒子状重合体を含む水分散液を入れ、溶液電導率計をセットして攪拌する。なお、攪拌は、後述する塩酸の添加が終了するまで継続する。
粒子状重合体を含む水分散液の電気伝導度が2.5~3.0mSになるように、0.1規定の水酸化ナトリウム水溶液を、粒子状重合体を含む水分散液に添加する。その後、6分経過してから、電気伝導度を測定する。この値を測定開始時の電気伝導度とする。
さらに、この粒子状重合体を含む水分散液に0.1規定の塩酸を0.5mL添加して、30秒後に電気伝導度を測定する。その後、再び0.1規定の塩酸を0.5mL添加して、30秒後に電気伝導度を測定する。この操作を、30秒間隔で、粒子状重合体を含む水分散液の電気伝導度が測定開始時の電気伝導度以上になるまで繰り返し行う。
得られた電気伝導度のデータを、電気伝導度(単位「mS」)を縦軸(Y座標軸)、添加した塩酸の累計量(単位「mmol」)を横軸(X座標軸)としたグラフ上にプロットする。これにより、図1のように3つの変曲点を有する塩酸添加量-電気伝導度曲線が得られる。3つの変曲点のX座標および塩酸添加終了時のX座標を、値が小さい方から順にそれぞれP1、P2、P3およびP4とする。X座標が零から座標P1まで、座標P1から座標P2まで、座標P2から座標P3まで、および、座標P3から座標P4まで、の4つの区分内のデータについて、それぞれ、最小二乗法により近似直線L1、L2、L3およびL4を求める。近似直線L1と近似直線L2との交点のX座標をA1(mmol)、近似直線L2と近似直線L3との交点のX座標をA2(mmol)、近似直線L3と近似直線L4との交点のX座標をA3(mmol)とする。
粒子状重合体1g当たりの表面酸量及び粒子状重合体1g当たりの水相中の酸量は、下記の式(a)及び式(b)から、塩酸換算した値(mmol/g)として与えられる。また、水中に分散した粒子状重合体1g当たりの総酸量は、下記式(c)に表すように、式(a)及び式(b)の合計となる。
(a) 粒子状重合体1g当たりの表面酸量=(A2-A1)/水分散液中の粒子状重合体の固形分量
(b) 粒子状重合体1g当たりの水相中の酸量=(A3-A2)/水分散液中の粒子状重合体の固形分量
(c) 水中に分散した粒子状重合体1g当たりの総酸量=(A3-A1)/水分散液中の粒子状重合体の固形分量 The surface acid amount of the particulate polymer and the acid amount in the aqueous phase can be calculated by the following method.
First, an aqueous dispersion containing a particulate polymer is prepared. An aqueous dispersion containing the particulate polymer is placed in a glass container washed with distilled water, and a solution conductivity meter is set and stirred. Stirring is continued until addition of hydrochloric acid described later is completed.
A 0.1 N aqueous sodium hydroxide solution is added to the aqueous dispersion containing the particulate polymer so that the electrical conductivity of the aqueous dispersion containing the particulate polymer is 2.5 to 3.0 mS. Thereafter, after 6 minutes, the electrical conductivity is measured. This value is the electrical conductivity at the start of measurement.
Further, 0.5 mL of 0.1 N hydrochloric acid is added to the aqueous dispersion containing the particulate polymer, and the electrical conductivity is measured after 30 seconds. Thereafter, 0.5 mL of 0.1 N hydrochloric acid is added again, and the electrical conductivity is measured after 30 seconds. This operation is repeated at intervals of 30 seconds until the electrical conductivity of the aqueous dispersion containing the particulate polymer becomes equal to or higher than the electrical conductivity at the start of measurement.
On the graph, the obtained electrical conductivity data is plotted with the electrical conductivity (unit “mS”) on the vertical axis (Y coordinate axis) and the cumulative amount of added hydrochloric acid (unit “mmol”) on the horizontal axis (X coordinate axis). Plot to. As a result, a hydrochloric acid addition amount-electric conductivity curve having three inflection points is obtained as shown in FIG. The X coordinate of the three inflection points and the X coordinate at the end of the addition of hydrochloric acid are P1, P2, P3, and P4 in order from the smallest value. For the data in the four sections of the X coordinate from zero to the coordinate P1, from the coordinate P1 to the coordinate P2, from the coordinate P2 to the coordinate P3, and from the coordinate P3 to the coordinate P4, the approximate straight line L1 by the least square method, respectively. , L2, L3, and L4. The X coordinate of the intersection of the approximate line L1 and the approximate line L2 is A1 (mmol), the X coordinate of the intersection of the approximate line L2 and the approximate line L3 is A2 (mmol), and the X point of the intersection of the approximate line L3 and the approximate line L4 The coordinates are A3 (mmol).
The surface acid amount per 1 g of the particulate polymer and the acid amount in the aqueous phase per 1 g of the particulate polymer are given as values (mmol / g) converted to hydrochloric acid from the following formulas (a) and (b). It is done. Further, the total acid amount per 1 g of the particulate polymer dispersed in water is the sum of the formula (a) and the formula (b) as represented by the following formula (c).
(A) Surface acid amount per gram of particulate polymer = (A2-A1) / Solid content of particulate polymer in aqueous dispersion (b) Acid amount in aqueous phase per gram of particulate polymer = ( A3-A2) / Solid content of particulate polymer in aqueous dispersion (c) Total acid amount per gram of particulate polymer dispersed in water = (A3-A1) / Particulate polymer in aqueous dispersion Solid content of
まず、粒子状重合体を含む水分散液を調製する。蒸留水で洗浄したガラス容器に、前記粒子状重合体を含む水分散液を入れ、溶液電導率計をセットして攪拌する。なお、攪拌は、後述する塩酸の添加が終了するまで継続する。
粒子状重合体を含む水分散液の電気伝導度が2.5~3.0mSになるように、0.1規定の水酸化ナトリウム水溶液を、粒子状重合体を含む水分散液に添加する。その後、6分経過してから、電気伝導度を測定する。この値を測定開始時の電気伝導度とする。
さらに、この粒子状重合体を含む水分散液に0.1規定の塩酸を0.5mL添加して、30秒後に電気伝導度を測定する。その後、再び0.1規定の塩酸を0.5mL添加して、30秒後に電気伝導度を測定する。この操作を、30秒間隔で、粒子状重合体を含む水分散液の電気伝導度が測定開始時の電気伝導度以上になるまで繰り返し行う。
得られた電気伝導度のデータを、電気伝導度(単位「mS」)を縦軸(Y座標軸)、添加した塩酸の累計量(単位「mmol」)を横軸(X座標軸)としたグラフ上にプロットする。これにより、図1のように3つの変曲点を有する塩酸添加量-電気伝導度曲線が得られる。3つの変曲点のX座標および塩酸添加終了時のX座標を、値が小さい方から順にそれぞれP1、P2、P3およびP4とする。X座標が零から座標P1まで、座標P1から座標P2まで、座標P2から座標P3まで、および、座標P3から座標P4まで、の4つの区分内のデータについて、それぞれ、最小二乗法により近似直線L1、L2、L3およびL4を求める。近似直線L1と近似直線L2との交点のX座標をA1(mmol)、近似直線L2と近似直線L3との交点のX座標をA2(mmol)、近似直線L3と近似直線L4との交点のX座標をA3(mmol)とする。
粒子状重合体1g当たりの表面酸量及び粒子状重合体1g当たりの水相中の酸量は、下記の式(a)及び式(b)から、塩酸換算した値(mmol/g)として与えられる。また、水中に分散した粒子状重合体1g当たりの総酸量は、下記式(c)に表すように、式(a)及び式(b)の合計となる。
(a) 粒子状重合体1g当たりの表面酸量=(A2-A1)/水分散液中の粒子状重合体の固形分量
(b) 粒子状重合体1g当たりの水相中の酸量=(A3-A2)/水分散液中の粒子状重合体の固形分量
(c) 水中に分散した粒子状重合体1g当たりの総酸量=(A3-A1)/水分散液中の粒子状重合体の固形分量 The surface acid amount of the particulate polymer and the acid amount in the aqueous phase can be calculated by the following method.
First, an aqueous dispersion containing a particulate polymer is prepared. An aqueous dispersion containing the particulate polymer is placed in a glass container washed with distilled water, and a solution conductivity meter is set and stirred. Stirring is continued until addition of hydrochloric acid described later is completed.
A 0.1 N aqueous sodium hydroxide solution is added to the aqueous dispersion containing the particulate polymer so that the electrical conductivity of the aqueous dispersion containing the particulate polymer is 2.5 to 3.0 mS. Thereafter, after 6 minutes, the electrical conductivity is measured. This value is the electrical conductivity at the start of measurement.
Further, 0.5 mL of 0.1 N hydrochloric acid is added to the aqueous dispersion containing the particulate polymer, and the electrical conductivity is measured after 30 seconds. Thereafter, 0.5 mL of 0.1 N hydrochloric acid is added again, and the electrical conductivity is measured after 30 seconds. This operation is repeated at intervals of 30 seconds until the electrical conductivity of the aqueous dispersion containing the particulate polymer becomes equal to or higher than the electrical conductivity at the start of measurement.
On the graph, the obtained electrical conductivity data is plotted with the electrical conductivity (unit “mS”) on the vertical axis (Y coordinate axis) and the cumulative amount of added hydrochloric acid (unit “mmol”) on the horizontal axis (X coordinate axis). Plot to. As a result, a hydrochloric acid addition amount-electric conductivity curve having three inflection points is obtained as shown in FIG. The X coordinate of the three inflection points and the X coordinate at the end of the addition of hydrochloric acid are P1, P2, P3, and P4 in order from the smallest value. For the data in the four sections of the X coordinate from zero to the coordinate P1, from the coordinate P1 to the coordinate P2, from the coordinate P2 to the coordinate P3, and from the coordinate P3 to the coordinate P4, the approximate straight line L1 by the least square method, respectively. , L2, L3, and L4. The X coordinate of the intersection of the approximate line L1 and the approximate line L2 is A1 (mmol), the X coordinate of the intersection of the approximate line L2 and the approximate line L3 is A2 (mmol), and the X point of the intersection of the approximate line L3 and the approximate line L4 The coordinates are A3 (mmol).
The surface acid amount per 1 g of the particulate polymer and the acid amount in the aqueous phase per 1 g of the particulate polymer are given as values (mmol / g) converted to hydrochloric acid from the following formulas (a) and (b). It is done. Further, the total acid amount per 1 g of the particulate polymer dispersed in water is the sum of the formula (a) and the formula (b) as represented by the following formula (c).
(A) Surface acid amount per gram of particulate polymer = (A2-A1) / Solid content of particulate polymer in aqueous dispersion (b) Acid amount in aqueous phase per gram of particulate polymer = ( A3-A2) / Solid content of particulate polymer in aqueous dispersion (c) Total acid amount per gram of particulate polymer dispersed in water = (A3-A1) / Particulate polymer in aqueous dispersion Solid content of
粒子状重合体の表面酸量は、例えば、粒子状重合体を構成する単量体単位の種類及びその割合、そして重合方法の変更により制御しうる。具体的には、例えば、エチレン性不飽和カルボン酸単量体などの酸性基含有単量体の使用量を増加することにより表面酸量を増大させることができる。
また、後述するように、粒子状重合体の調製にセミバッチ重合を採用すること、より好適には例えば水酸基含有(メタ)アクリル酸エステル単量体を重合反応の後半に添加し、エチレン性不飽和カルボン酸単量体などの酸性基含有単量体と他の単量体との共重合性を粒子状重合体の表面部分において高めることで、粒子状重合体の表面酸量を増大させつつ水相中の酸量を減少させることができる。 The surface acid amount of the particulate polymer can be controlled, for example, by changing the type and ratio of monomer units constituting the particulate polymer and the polymerization method. Specifically, for example, the amount of surface acid can be increased by increasing the amount of an acidic group-containing monomer such as an ethylenically unsaturated carboxylic acid monomer.
In addition, as will be described later, semi-batch polymerization is adopted for the preparation of the particulate polymer, more preferably, for example, a hydroxyl group-containing (meth) acrylic acid ester monomer is added in the latter half of the polymerization reaction, and ethylenically unsaturated By increasing the copolymerizability of acidic group-containing monomers such as carboxylic acid monomers with other monomers at the surface portion of the particulate polymer, water is increased while increasing the surface acid amount of the particulate polymer. The amount of acid in the phase can be reduced.
また、後述するように、粒子状重合体の調製にセミバッチ重合を採用すること、より好適には例えば水酸基含有(メタ)アクリル酸エステル単量体を重合反応の後半に添加し、エチレン性不飽和カルボン酸単量体などの酸性基含有単量体と他の単量体との共重合性を粒子状重合体の表面部分において高めることで、粒子状重合体の表面酸量を増大させつつ水相中の酸量を減少させることができる。 The surface acid amount of the particulate polymer can be controlled, for example, by changing the type and ratio of monomer units constituting the particulate polymer and the polymerization method. Specifically, for example, the amount of surface acid can be increased by increasing the amount of an acidic group-containing monomer such as an ethylenically unsaturated carboxylic acid monomer.
In addition, as will be described later, semi-batch polymerization is adopted for the preparation of the particulate polymer, more preferably, for example, a hydroxyl group-containing (meth) acrylic acid ester monomer is added in the latter half of the polymerization reaction, and ethylenically unsaturated By increasing the copolymerizability of acidic group-containing monomers such as carboxylic acid monomers with other monomers at the surface portion of the particulate polymer, water is increased while increasing the surface acid amount of the particulate polymer. The amount of acid in the phase can be reduced.
[[ゲル含有量]]
また、粒子状重合体は、ゲル含有量が、80質量%以上であることが好ましく、85質量%以上であることがより好ましく、90質量%以上であることが更に好ましく、また、99質量%以下であることが好ましく、97質量%以下であることがより好ましく、94質量%以下であることが更に好ましい。粒子状重合体のゲル含有量が80質量%以上であれば、粒子状重合体の重合度が高まり粒子状重合体自身の強度が向上するため、電極合材層の強度を高め、電極の膨らみを抑制することができると共に、粒子表面において表面酸量の大きさを適切に制御することができる。また、粒子状重合体のゲル含有量が99質量%以下であれば、粒子状重合体が靱性を失って脆くなるのを防止し、電極合材層を構成する成分同士および電極合材層と集電体とを良好に結着させることができる。 [[Gel content]]
Further, the particulate polymer preferably has a gel content of 80% by mass or more, more preferably 85% by mass or more, still more preferably 90% by mass or more, and 99% by mass. Or less, more preferably 97% by mass or less, and still more preferably 94% by mass or less. If the gel content of the particulate polymer is 80% by mass or more, the degree of polymerization of the particulate polymer is increased and the strength of the particulate polymer itself is improved. Therefore, the strength of the electrode mixture layer is increased, and the swelling of the electrode is increased. Can be suppressed, and the size of the surface acid amount can be appropriately controlled on the particle surface. Further, if the gel content of the particulate polymer is 99% by mass or less, the particulate polymer is prevented from losing toughness and becoming brittle, and the components constituting the electrode mixture layer and the electrode mixture layer The current collector can be bound well.
また、粒子状重合体は、ゲル含有量が、80質量%以上であることが好ましく、85質量%以上であることがより好ましく、90質量%以上であることが更に好ましく、また、99質量%以下であることが好ましく、97質量%以下であることがより好ましく、94質量%以下であることが更に好ましい。粒子状重合体のゲル含有量が80質量%以上であれば、粒子状重合体の重合度が高まり粒子状重合体自身の強度が向上するため、電極合材層の強度を高め、電極の膨らみを抑制することができると共に、粒子表面において表面酸量の大きさを適切に制御することができる。また、粒子状重合体のゲル含有量が99質量%以下であれば、粒子状重合体が靱性を失って脆くなるのを防止し、電極合材層を構成する成分同士および電極合材層と集電体とを良好に結着させることができる。 [[Gel content]]
Further, the particulate polymer preferably has a gel content of 80% by mass or more, more preferably 85% by mass or more, still more preferably 90% by mass or more, and 99% by mass. Or less, more preferably 97% by mass or less, and still more preferably 94% by mass or less. If the gel content of the particulate polymer is 80% by mass or more, the degree of polymerization of the particulate polymer is increased and the strength of the particulate polymer itself is improved. Therefore, the strength of the electrode mixture layer is increased, and the swelling of the electrode is increased. Can be suppressed, and the size of the surface acid amount can be appropriately controlled on the particle surface. Further, if the gel content of the particulate polymer is 99% by mass or less, the particulate polymer is prevented from losing toughness and becoming brittle, and the components constituting the electrode mixture layer and the electrode mixture layer The current collector can be bound well.
なお、本発明において、「ゲル含有量」は、本明細書の実施例に記載の測定方法を用いて測定することができる。
In addition, in this invention, "gel content" can be measured using the measuring method as described in the Example of this specification.
そして、粒子状重合体のゲル含有量は、粒子状重合体の重合条件を変更することにより調整することができ、例えば、重合時に使用する連鎖移動剤(例えば、t-ドデシルメルカプタンなど)の量を少なくするとゲル含有量を高めることができ、重合時に使用する連鎖移動剤の量を多くするとゲル含有量を低下させることができる。
The gel content of the particulate polymer can be adjusted by changing the polymerization conditions of the particulate polymer. For example, the amount of the chain transfer agent (eg, t-dodecyl mercaptan) used during the polymerization. If the amount is reduced, the gel content can be increased, and if the amount of the chain transfer agent used during polymerization is increased, the gel content can be decreased.
[[個数平均粒子径]]
そして、粒子状重合体は、個数平均粒子径が、80nm以上であることが好ましく、100nm以上であることがより好ましく、120nm以上であることが特に好ましく、また、400nm以下であることが好ましく、350nm以下であることがより好ましく、300nm以下であることが特に好ましい。個数平均粒子径が上記範囲にあることで、得られる電極合材層の強度および柔軟性を良好にできる。 [[Number average particle diameter]]
The particulate polymer preferably has a number average particle diameter of 80 nm or more, more preferably 100 nm or more, particularly preferably 120 nm or more, and preferably 400 nm or less. It is more preferably 350 nm or less, and particularly preferably 300 nm or less. When the number average particle diameter is in the above range, the strength and flexibility of the obtained electrode mixture layer can be improved.
そして、粒子状重合体は、個数平均粒子径が、80nm以上であることが好ましく、100nm以上であることがより好ましく、120nm以上であることが特に好ましく、また、400nm以下であることが好ましく、350nm以下であることがより好ましく、300nm以下であることが特に好ましい。個数平均粒子径が上記範囲にあることで、得られる電極合材層の強度および柔軟性を良好にできる。 [[Number average particle diameter]]
The particulate polymer preferably has a number average particle diameter of 80 nm or more, more preferably 100 nm or more, particularly preferably 120 nm or more, and preferably 400 nm or less. It is more preferably 350 nm or less, and particularly preferably 300 nm or less. When the number average particle diameter is in the above range, the strength and flexibility of the obtained electrode mixture layer can be improved.
ここで、本発明において、「個数平均粒子径」とは、レーザー回折・散乱式粒度分布測定装置を用いて測定した粒子径-個数積算分布において、積算分布の値が50%となる粒子径を指す。
Here, in the present invention, the “number average particle diameter” means a particle diameter at which the value of the integrated distribution is 50% in the particle diameter-number integrated distribution measured using a laser diffraction / scattering particle size distribution measuring apparatus. Point to.
そして、粒子状重合体の個数平均粒子径は、粒子状重合体の製造条件を変更することにより調整することができる。具体的には、例えば、粒子状重合体をシード重合により調製する場合には、重合に使用するシード粒子の数や粒子径を調整することにより粒子状重合体の個数平均粒子径を制御することができる。
The number average particle diameter of the particulate polymer can be adjusted by changing the production conditions of the particulate polymer. Specifically, for example, when preparing a particulate polymer by seed polymerization, the number average particle diameter of the particulate polymer is controlled by adjusting the number and particle diameter of the seed particles used for the polymerization. Can do.
[粒子状重合体の種類]
ここで、粒子状重合体としては、既知の重合体、例えば、ジエン重合体、アクリル重合体、フッ素重合体、シリコン重合体などが挙げられる。これらの重合体は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 [Types of particulate polymer]
Here, examples of the particulate polymer include known polymers such as a diene polymer, an acrylic polymer, a fluorine polymer, and a silicon polymer. These polymers may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
ここで、粒子状重合体としては、既知の重合体、例えば、ジエン重合体、アクリル重合体、フッ素重合体、シリコン重合体などが挙げられる。これらの重合体は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 [Types of particulate polymer]
Here, examples of the particulate polymer include known polymers such as a diene polymer, an acrylic polymer, a fluorine polymer, and a silicon polymer. These polymers may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
具体的には、例えばリチウムイオン二次電池電極用バインダー組成物を負極用スラリー組成物の形成に用いる場合には、粒子状重合体としては、ジエン重合体、特に脂肪族共役ジエン単量体単位および芳香族ビニル単量体単位を有する共重合体、或いは、その水素添加物を用いることが好ましい。剛性が低くて柔軟な繰り返し単位であり、結着性を高めることが可能な脂肪族共役ジエン単量体単位と、重合体の電解液への溶解性を低下させて電解液中での粒子状重合体の安定性を高めることが可能な芳香族ビニル単量体単位とを有する共重合体よりなる粒子状重合体は、結着材としての機能を良好に発揮し得るからである。
なお、本発明において「単量体単位を含む」とは、「その単量体を用いて得た重合体中に単量体由来の構造単位が含まれている」ことを意味する。 Specifically, for example, when a binder composition for a lithium ion secondary battery electrode is used for forming a slurry composition for a negative electrode, the particulate polymer may be a diene polymer, particularly an aliphatic conjugated diene monomer unit. It is preferable to use a copolymer having an aromatic vinyl monomer unit or a hydrogenated product thereof. An aliphatic conjugated diene monomer unit that is a low-rigidity and flexible repeating unit that can enhance the binding property, and the solubility of the polymer in the electrolytic solution is reduced to form particles in the electrolytic solution. This is because the particulate polymer composed of a copolymer having an aromatic vinyl monomer unit capable of enhancing the stability of the polymer can satisfactorily function as a binder.
In the present invention, “comprising a monomer unit” means “a monomer-derived structural unit is contained in a polymer obtained using the monomer”.
なお、本発明において「単量体単位を含む」とは、「その単量体を用いて得た重合体中に単量体由来の構造単位が含まれている」ことを意味する。 Specifically, for example, when a binder composition for a lithium ion secondary battery electrode is used for forming a slurry composition for a negative electrode, the particulate polymer may be a diene polymer, particularly an aliphatic conjugated diene monomer unit. It is preferable to use a copolymer having an aromatic vinyl monomer unit or a hydrogenated product thereof. An aliphatic conjugated diene monomer unit that is a low-rigidity and flexible repeating unit that can enhance the binding property, and the solubility of the polymer in the electrolytic solution is reduced to form particles in the electrolytic solution. This is because the particulate polymer composed of a copolymer having an aromatic vinyl monomer unit capable of enhancing the stability of the polymer can satisfactorily function as a binder.
In the present invention, “comprising a monomer unit” means “a monomer-derived structural unit is contained in a polymer obtained using the monomer”.
[[脂肪族共役ジエン単量体単位および芳香族ビニル単量体単位を有する共重合体の調製に用いる単量体]]
ここで、脂肪族共役ジエン単量体単位および芳香族ビニル単量体単位を有する共重合体を粒子状重合体として用いる場合、脂肪族共役ジエン単量体単位を形成し得る脂肪族共役ジエン単量体としては、特に限定されることなく、1,3-ブタジエン、2-メチル-1,3-ブタジエン、2,3-ジメチル-1,3-ブタジエン、2-クロロ-1,3-ブタジエン、置換直鎖共役ペンタジエン類、置換および側鎖共役ヘキサジエン類などを用いることができる。なお、脂肪族共役ジエン単量体は1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 [[Monomer used for preparation of copolymer having aliphatic conjugated diene monomer unit and aromatic vinyl monomer unit]]
Here, when a copolymer having an aliphatic conjugated diene monomer unit and an aromatic vinyl monomer unit is used as a particulate polymer, an aliphatic conjugated diene unit capable of forming an aliphatic conjugated diene monomer unit is used. The monomer is not particularly limited, and 1,3-butadiene, 2-methyl-1,3-butadiene, 2,3-dimethyl-1,3-butadiene, 2-chloro-1,3-butadiene, Substituted linear conjugated pentadienes, substituted and side chain conjugated hexadienes, and the like can be used. In addition, an aliphatic conjugated diene monomer may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
ここで、脂肪族共役ジエン単量体単位および芳香族ビニル単量体単位を有する共重合体を粒子状重合体として用いる場合、脂肪族共役ジエン単量体単位を形成し得る脂肪族共役ジエン単量体としては、特に限定されることなく、1,3-ブタジエン、2-メチル-1,3-ブタジエン、2,3-ジメチル-1,3-ブタジエン、2-クロロ-1,3-ブタジエン、置換直鎖共役ペンタジエン類、置換および側鎖共役ヘキサジエン類などを用いることができる。なお、脂肪族共役ジエン単量体は1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 [[Monomer used for preparation of copolymer having aliphatic conjugated diene monomer unit and aromatic vinyl monomer unit]]
Here, when a copolymer having an aliphatic conjugated diene monomer unit and an aromatic vinyl monomer unit is used as a particulate polymer, an aliphatic conjugated diene unit capable of forming an aliphatic conjugated diene monomer unit is used. The monomer is not particularly limited, and 1,3-butadiene, 2-methyl-1,3-butadiene, 2,3-dimethyl-1,3-butadiene, 2-chloro-1,3-butadiene, Substituted linear conjugated pentadienes, substituted and side chain conjugated hexadienes, and the like can be used. In addition, an aliphatic conjugated diene monomer may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
そして、粒子状重合体中において、脂肪族共役ジエン単量体単位の含有割合は、好ましくは30質量%以上、より好ましくは40質量%以上であり、好ましくは70質量%以下、より好ましくは60質量%以下である。脂肪族共役ジエン単量体単位の含有割合が30質量%以上であることで、バインダー組成物を用いて形成される電極の柔軟性を高めることができるからである。また、脂肪族共役ジエン単量体単位の含有割合が70質量%以下であることで、粒子状重合体の結着力が十分に高くなり、電極合材層を構成する成分同士および電極合材層と集電体とを良好に結着させることができるからである。
And in a particulate polymer, the content rate of an aliphatic conjugated diene monomer unit becomes like this. Preferably it is 30 mass% or more, More preferably, it is 40 mass% or more, Preferably it is 70 mass% or less, More preferably, it is 60 It is below mass%. It is because the flexibility of the electrode formed using a binder composition can be improved because the content rate of an aliphatic conjugated diene monomer unit is 30 mass% or more. Further, when the content ratio of the aliphatic conjugated diene monomer unit is 70% by mass or less, the binding force of the particulate polymer is sufficiently high, and the components constituting the electrode mixture layer and the electrode mixture layer This is because the current collector and the current collector can be favorably bound.
また、芳香族ビニル単量体単位を形成し得る芳香族ビニル単量体としては、特に限定されることなく、スチレン、α-メチルスチレン、ビニルトルエン、ジビニルベンゼンなどを用いることができる。なお、芳香族ビニル単量体は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
The aromatic vinyl monomer that can form an aromatic vinyl monomer unit is not particularly limited, and styrene, α-methylstyrene, vinyl toluene, divinylbenzene, and the like can be used. In addition, an aromatic vinyl monomer may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
そして、粒子状重合体中において、芳香族ビニル単量体単位の含有割合は、好ましくは20質量%以上、より好ましくは30質量%以上であり、好ましくは50質量%以下、より好ましくは40質量%以下である。芳香族ビニル単量体単位の含有割合が20質量%以上であることで、バインダー組成物を用いて形成される電極の耐電解液性を向上させることができるからである。また、芳香族ビニル単量体単位の含有割合が50質量%以下であることで、共重合体よりなる粒子状重合体の結着力が十分に高くなり、電極合材層を構成する成分同士および電極合材層と集電体とを良好に結着させることができるからである。
In the particulate polymer, the content of the aromatic vinyl monomer unit is preferably 20% by mass or more, more preferably 30% by mass or more, preferably 50% by mass or less, more preferably 40% by mass. % Or less. It is because the electrolyte solution resistance of the electrode formed using a binder composition can be improved because the content rate of an aromatic vinyl monomer unit is 20 mass% or more. Further, since the content ratio of the aromatic vinyl monomer unit is 50% by mass or less, the binding force of the particulate polymer made of the copolymer is sufficiently high, and the components constituting the electrode mixture layer and This is because the electrode mixture layer and the current collector can be favorably bound.
なお、脂肪族共役ジエン単量体単位および芳香族ビニル単量体単位を有する共重合体は、脂肪族共役ジエン単量体単位として1,3-ブタジエン単位を含み、芳香族ビニル単量体単位としてスチレン単位を含む(即ち、スチレン-ブタジエン共重合体または水素化スチレン-ブタジエン共重合体である)ことが好ましい。
The copolymer having an aliphatic conjugated diene monomer unit and an aromatic vinyl monomer unit includes a 1,3-butadiene unit as the aliphatic conjugated diene monomer unit, and the aromatic vinyl monomer unit. It preferably contains a styrene unit (that is, a styrene-butadiene copolymer or a hydrogenated styrene-butadiene copolymer).
また、本発明で用いる粒子状重合体が上述した表面酸量を有する必要がある観点からは、脂肪族共役ジエン単量体単位および芳香族ビニル単量体単位を有する共重合体(粒子状重合体)は、酸性基含有単量体単位を含むことが好ましい。酸性基含有単量体単位としては、エチレン性不飽和カルボン酸単量体単位、スルホン酸基を有する不飽和単量体単位が挙げられる。中でも、粒子状重合体は、エチレン性不飽和カルボン酸単量体単位を含むことが好ましい。
Further, from the viewpoint that the particulate polymer used in the present invention needs to have the above-mentioned surface acid amount, a copolymer (particulate polymer) having an aliphatic conjugated diene monomer unit and an aromatic vinyl monomer unit is used. The coalesced) preferably contains an acidic group-containing monomer unit. Examples of the acidic group-containing monomer unit include an ethylenically unsaturated carboxylic acid monomer unit and an unsaturated monomer unit having a sulfonic acid group. Especially, it is preferable that a particulate polymer contains an ethylenically unsaturated carboxylic acid monomer unit.
ここで、エチレン性不飽和カルボン酸単量体単位を形成し得るエチレン性不飽和カルボン酸単量体としては、エチレン性不飽和モノカルボン酸およびその誘導体、エチレン性不飽和ジカルボン酸およびその酸無水物並びにそれらの誘導体などが挙げられる。
エチレン性不飽和モノカルボン酸の例としては、アクリル酸、メタクリル酸、クロトン酸などが挙げられる。そして、エチレン性不飽和モノカルボン酸の誘導体の例としては、2-エチルアクリル酸、イソクロトン酸、α-アセトキシアクリル酸、β-trans-アリールオキシアクリル酸、α-クロロ-β-E-メトキシアクリル酸、β-ジアミノアクリル酸などが挙げられる。
エチレン性不飽和ジカルボン酸の例としては、マレイン酸、フマル酸、イタコン酸などが挙げられる。そして、エチレン性不飽和ジカルボン酸の酸無水物の例としては、無水マレイン酸、ジアクリル酸無水物、メチル無水マレイン酸、ジメチル無水マレイン酸などが挙げられる。さらに、エチレン性不飽和ジカルボン酸の誘導体の例としては、メチルマレイン酸、ジメチルマレイン酸、フェニルマレイン酸、クロロマレイン酸、ジクロロマレイン酸、フルオロマレイン酸、マレイン酸ジフェニル、マレイン酸ノニル、マレイン酸デシル、マレイン酸ドデシル、マレイン酸オクタデシル、マレイン酸フルオロアルキルなどが挙げられる。中でも、エチレン性不飽和モノカルボン酸が好ましく、アクリル酸が特に好ましい。
これらは1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 Here, the ethylenically unsaturated carboxylic acid monomer capable of forming an ethylenically unsaturated carboxylic acid monomer unit includes ethylenically unsaturated monocarboxylic acid and derivatives thereof, ethylenically unsaturated dicarboxylic acid and acid anhydrides thereof. Products and derivatives thereof.
Examples of the ethylenically unsaturated monocarboxylic acid include acrylic acid, methacrylic acid, crotonic acid and the like. Examples of the ethylenically unsaturated monocarboxylic acid derivatives include 2-ethylacrylic acid, isocrotonic acid, α-acetoxyacrylic acid, β-trans-aryloxyacrylic acid, α-chloro-β-E-methoxyacrylic. Acid, β-diaminoacrylic acid and the like.
Examples of the ethylenically unsaturated dicarboxylic acid include maleic acid, fumaric acid, itaconic acid and the like. Examples of acid anhydrides of ethylenically unsaturated dicarboxylic acids include maleic anhydride, diacrylic anhydride, methyl maleic anhydride, dimethyl maleic anhydride, and the like. In addition, examples of ethylenically unsaturated dicarboxylic acid derivatives include methylmaleic acid, dimethylmaleic acid, phenylmaleic acid, chloromaleic acid, dichloromaleic acid, fluoromaleic acid, diphenyl maleate, nonyl maleate, decyl maleate , Dodecyl maleate, octadecyl maleate, fluoroalkyl maleate and the like. Among them, ethylenically unsaturated monocarboxylic acid is preferable, and acrylic acid is particularly preferable.
One of these may be used alone, or two or more of these may be used in combination at any ratio.
エチレン性不飽和モノカルボン酸の例としては、アクリル酸、メタクリル酸、クロトン酸などが挙げられる。そして、エチレン性不飽和モノカルボン酸の誘導体の例としては、2-エチルアクリル酸、イソクロトン酸、α-アセトキシアクリル酸、β-trans-アリールオキシアクリル酸、α-クロロ-β-E-メトキシアクリル酸、β-ジアミノアクリル酸などが挙げられる。
エチレン性不飽和ジカルボン酸の例としては、マレイン酸、フマル酸、イタコン酸などが挙げられる。そして、エチレン性不飽和ジカルボン酸の酸無水物の例としては、無水マレイン酸、ジアクリル酸無水物、メチル無水マレイン酸、ジメチル無水マレイン酸などが挙げられる。さらに、エチレン性不飽和ジカルボン酸の誘導体の例としては、メチルマレイン酸、ジメチルマレイン酸、フェニルマレイン酸、クロロマレイン酸、ジクロロマレイン酸、フルオロマレイン酸、マレイン酸ジフェニル、マレイン酸ノニル、マレイン酸デシル、マレイン酸ドデシル、マレイン酸オクタデシル、マレイン酸フルオロアルキルなどが挙げられる。中でも、エチレン性不飽和モノカルボン酸が好ましく、アクリル酸が特に好ましい。
これらは1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 Here, the ethylenically unsaturated carboxylic acid monomer capable of forming an ethylenically unsaturated carboxylic acid monomer unit includes ethylenically unsaturated monocarboxylic acid and derivatives thereof, ethylenically unsaturated dicarboxylic acid and acid anhydrides thereof. Products and derivatives thereof.
Examples of the ethylenically unsaturated monocarboxylic acid include acrylic acid, methacrylic acid, crotonic acid and the like. Examples of the ethylenically unsaturated monocarboxylic acid derivatives include 2-ethylacrylic acid, isocrotonic acid, α-acetoxyacrylic acid, β-trans-aryloxyacrylic acid, α-chloro-β-E-methoxyacrylic. Acid, β-diaminoacrylic acid and the like.
Examples of the ethylenically unsaturated dicarboxylic acid include maleic acid, fumaric acid, itaconic acid and the like. Examples of acid anhydrides of ethylenically unsaturated dicarboxylic acids include maleic anhydride, diacrylic anhydride, methyl maleic anhydride, dimethyl maleic anhydride, and the like. In addition, examples of ethylenically unsaturated dicarboxylic acid derivatives include methylmaleic acid, dimethylmaleic acid, phenylmaleic acid, chloromaleic acid, dichloromaleic acid, fluoromaleic acid, diphenyl maleate, nonyl maleate, decyl maleate , Dodecyl maleate, octadecyl maleate, fluoroalkyl maleate and the like. Among them, ethylenically unsaturated monocarboxylic acid is preferable, and acrylic acid is particularly preferable.
One of these may be used alone, or two or more of these may be used in combination at any ratio.
また、スルホン酸基を有する不飽和単量体単位を形成し得るスルホン酸基を有する不飽和単量体としては、例えば、ビニルスルホン酸、メチルビニルスルホン酸、(メタ)アクリルスルホン酸、スチレンスルホン酸、(メタ)アクリル酸-2-スルホン酸エチル、2-アクリルアミド-2-メチルプロパンスルホン酸、3-アリロキシ-2-ヒドロキシプロパンスルホン酸などが挙げられる。これらは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。本明細書において「(メタ)アクリル」とは、アクリルおよび/またはメタクリルを意味する。
Examples of the unsaturated monomer having a sulfonic acid group capable of forming an unsaturated monomer unit having a sulfonic acid group include vinyl sulfonic acid, methyl vinyl sulfonic acid, (meth) acryl sulfonic acid, and styrene sulfone. Examples include acids, ethyl (meth) acrylic acid-2-sulfonate, 2-acrylamido-2-methylpropanesulfonic acid, 3-allyloxy-2-hydroxypropanesulfonic acid, and the like. One of these may be used alone, or two or more of these may be used in combination at any ratio. In this specification, “(meth) acryl” means acrylic and / or methacrylic.
そして、粒子状重合体中において、酸性基含有単量体単位の含有割合は、好ましくは10質量%以上、より好ましくは15質量%以上であり、特に好ましくは18質量%以上であり、また好ましくは30質量%以下、より好ましくは25質量%以下、特に好ましくは23質量%以下、さらに特に好ましくは20質量%以下である。酸性基含有単量体単位の含有割合が10質量%以上であることで、粒子状重合体の表面酸量を本願の所望の範囲まで上昇させ易く、電極の膨れを抑制しつつリチウムイオン二次電池のサイクル特性を優れたものとすることができる。一方、30質量%以下であることで、粒子状重合体の調製が容易となる。
In the particulate polymer, the content ratio of the acidic group-containing monomer unit is preferably 10% by mass or more, more preferably 15% by mass or more, and particularly preferably 18% by mass or more. Is 30% by mass or less, more preferably 25% by mass or less, particularly preferably 23% by mass or less, and still more preferably 20% by mass or less. When the content ratio of the acidic group-containing monomer unit is 10% by mass or more, the surface acid amount of the particulate polymer can be easily increased to the desired range of the present application, and the lithium ion secondary can be suppressed while suppressing the swelling of the electrode. The cycle characteristics of the battery can be made excellent. On the other hand, when it is 30% by mass or less, the preparation of the particulate polymer becomes easy.
また、上述した脂肪族共役ジエン単量体単位および芳香族ビニル単量体単位を有する共重合体(粒子状重合体)は、水酸基含有(メタ)アクリル酸エステル単量体単位を含むことが好ましい。
ここで、水酸基含有(メタ)アクリル酸エステル単量体単位を形成し得る水酸基含有(メタ)アクリル酸エステル単量体としては、例えば、2-ヒドロキシエチルアクリレート、2-ヒドロキシエチルメタクリレート、ヒドロキシプロピルアクリレート、ヒドロキシプロピルメタクリレート、ヒドロキシブチルアクリレート、ヒドロキシブチルメタクリレート、3-クロロ-2-ヒドロキシプロピルメタクリレートなどが挙げられる。中でも、2-ヒドロキシエチルアクリレートが好ましい。
これらは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 Further, the copolymer (particulate polymer) having the above-described aliphatic conjugated diene monomer unit and aromatic vinyl monomer unit preferably contains a hydroxyl group-containing (meth) acrylate monomer unit. .
Here, examples of the hydroxyl group-containing (meth) acrylate monomer that can form a hydroxyl group-containing (meth) acrylate monomer unit include 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, and hydroxypropyl acrylate. , Hydroxypropyl methacrylate, hydroxybutyl acrylate, hydroxybutyl methacrylate, 3-chloro-2-hydroxypropyl methacrylate, and the like. Of these, 2-hydroxyethyl acrylate is preferred.
One of these may be used alone, or two or more of these may be used in combination at any ratio.
ここで、水酸基含有(メタ)アクリル酸エステル単量体単位を形成し得る水酸基含有(メタ)アクリル酸エステル単量体としては、例えば、2-ヒドロキシエチルアクリレート、2-ヒドロキシエチルメタクリレート、ヒドロキシプロピルアクリレート、ヒドロキシプロピルメタクリレート、ヒドロキシブチルアクリレート、ヒドロキシブチルメタクリレート、3-クロロ-2-ヒドロキシプロピルメタクリレートなどが挙げられる。中でも、2-ヒドロキシエチルアクリレートが好ましい。
これらは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 Further, the copolymer (particulate polymer) having the above-described aliphatic conjugated diene monomer unit and aromatic vinyl monomer unit preferably contains a hydroxyl group-containing (meth) acrylate monomer unit. .
Here, examples of the hydroxyl group-containing (meth) acrylate monomer that can form a hydroxyl group-containing (meth) acrylate monomer unit include 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, and hydroxypropyl acrylate. , Hydroxypropyl methacrylate, hydroxybutyl acrylate, hydroxybutyl methacrylate, 3-chloro-2-hydroxypropyl methacrylate, and the like. Of these, 2-hydroxyethyl acrylate is preferred.
One of these may be used alone, or two or more of these may be used in combination at any ratio.
そして、粒子状重合体中において、水酸基含有(メタ)アクリル酸エステル単量体単位の含有割合は、好ましくは0.5質量%以上、より好ましくは0.7質量%以上、特に好ましくは0.8質量%以上であり、好ましくは5質量%以下、より好ましくは4質量%以下、特に好ましくは3質量%以下、さらに特に好ましくは2質量%以下である。水酸基含有(メタ)アクリル酸エステル単量体単位の含有割合が0.5質量%以上であることで、エチレン性不飽和カルボン酸単量体などの酸性基含有単量体と他の単量体との共重合性を高めることができる。一方、水酸基含有(メタ)アクリル酸エステル単量体単位の含有割合が5質量%以下であることで、水酸基含有(メタ)アクリル酸エステル単量体同士が重合して重合体を形成することを抑制し、粒子状重合体へのエチレン性不飽和カルボン酸単量体の共重合性が向上するため、上述した単量体の共重合を良好に進行させることができる。
And in a particulate polymer, the content rate of a hydroxyl-containing (meth) acrylic acid ester monomer unit becomes like this. Preferably it is 0.5 mass% or more, More preferably, it is 0.7 mass% or more, Most preferably, it is 0.00. It is 8% by mass or more, preferably 5% by mass or less, more preferably 4% by mass or less, particularly preferably 3% by mass or less, and still more preferably 2% by mass or less. Acid group-containing monomers such as ethylenically unsaturated carboxylic acid monomers and other monomers because the content ratio of the hydroxyl group-containing (meth) acrylic acid ester monomer unit is 0.5% by mass or more The copolymerizability with can be enhanced. On the other hand, when the content ratio of the hydroxyl group-containing (meth) acrylate monomer unit is 5% by mass or less, the hydroxyl group-containing (meth) acrylate monomer is polymerized to form a polymer. And the copolymerization of the ethylenically unsaturated carboxylic acid monomer to the particulate polymer is improved, so that the copolymerization of the above-described monomer can proceed well.
また、上述した脂肪族共役ジエン単量体単位および芳香族ビニル単量体単位を有する共重合体は、本発明の効果を著しく損なわない限り、上述した以外にも任意のその他の繰り返し単位を含んでいてもよい。
その他の繰り返し単位の含有割合は、特に限定されないが、上限は合計量で6質量%以下が好ましく、4質量%以下がより好ましく、2質量%以下が特に好ましい。 In addition, the copolymer having the aliphatic conjugated diene monomer unit and the aromatic vinyl monomer unit described above includes any other repeating unit other than those described above as long as the effects of the present invention are not significantly impaired. You may go out.
The content of other repeating units is not particularly limited, but the upper limit is preferably 6% by mass or less, more preferably 4% by mass or less, and particularly preferably 2% by mass or less in total.
その他の繰り返し単位の含有割合は、特に限定されないが、上限は合計量で6質量%以下が好ましく、4質量%以下がより好ましく、2質量%以下が特に好ましい。 In addition, the copolymer having the aliphatic conjugated diene monomer unit and the aromatic vinyl monomer unit described above includes any other repeating unit other than those described above as long as the effects of the present invention are not significantly impaired. You may go out.
The content of other repeating units is not particularly limited, but the upper limit is preferably 6% by mass or less, more preferably 4% by mass or less, and particularly preferably 2% by mass or less in total.
[粒子状重合体の調製方法]
粒子状重合体は、上述した単量体を含む単量体組成物を水系溶媒中で重合することにより調製することができる。
ここで、本発明において単量体組成物中の各単量体の含有割合は、粒子状重合体における単量体単位(繰り返し単位)の含有割合に準じて定めることができる。 [Preparation method of particulate polymer]
The particulate polymer can be prepared by polymerizing a monomer composition containing the above-described monomer in an aqueous solvent.
Here, in the present invention, the content ratio of each monomer in the monomer composition can be determined according to the content ratio of the monomer units (repeating units) in the particulate polymer.
粒子状重合体は、上述した単量体を含む単量体組成物を水系溶媒中で重合することにより調製することができる。
ここで、本発明において単量体組成物中の各単量体の含有割合は、粒子状重合体における単量体単位(繰り返し単位)の含有割合に準じて定めることができる。 [Preparation method of particulate polymer]
The particulate polymer can be prepared by polymerizing a monomer composition containing the above-described monomer in an aqueous solvent.
Here, in the present invention, the content ratio of each monomer in the monomer composition can be determined according to the content ratio of the monomer units (repeating units) in the particulate polymer.
水系溶媒は粒子状重合体が粒子状態で分散可能なものであれば格別限定されることはないが、水は可燃性がなく、粒子状重合体の粒子の分散体が容易に得られやすいという観点から特に好ましい。なお、主溶媒として水を使用して、粒子状重合体の粒子の分散状態が確保可能な範囲において水以外の水系溶媒を混合して用いてもよい。
The aqueous solvent is not particularly limited as long as the particulate polymer can be dispersed in a particulate state, but water is not flammable and a dispersion of particulate polymer particles is easily obtained. Particularly preferable from the viewpoint. In addition, water may be used as the main solvent, and an aqueous solvent other than water may be mixed and used as long as the dispersed state of the particulate polymer particles can be ensured.
重合様式は、特に限定されず、例えば溶液重合法、懸濁重合法、塊状重合法、乳化重合法などのいずれの様式も用いることができる。重合方法としては、例えばイオン重合、ラジカル重合、リビングラジカル重合などいずれの方法も用いることができる。なお、高分子量体が得やすいこと、並びに、重合物がそのまま水に分散した状態で得られるので再分散化の処理が不要であり、そのまま本発明のバインダー組成物や本発明のスラリー組成物の製造に供することができることなど、製造効率の観点からは、乳化重合法が特に好ましい。なお、乳化重合は、常法に従い行うことができる。また、乳化重合においては、シード粒子を用いるシード重合を採用してもよい。
The polymerization mode is not particularly limited, and any mode such as a solution polymerization method, a suspension polymerization method, a bulk polymerization method, and an emulsion polymerization method can be used. As the polymerization method, any method such as ionic polymerization, radical polymerization, and living radical polymerization can be used. In addition, since it is easy to obtain a high molecular weight substance and the polymer is obtained in a state of being dispersed in water as it is, no redispersion treatment is required, and the binder composition of the present invention or the slurry composition of the present invention is used as it is. From the viewpoint of production efficiency, such as being capable of being used for production, the emulsion polymerization method is particularly preferred. The emulsion polymerization can be performed according to a conventional method. In emulsion polymerization, seed polymerization using seed particles may be employed.
そして、重合に使用される乳化剤、分散剤、重合開始剤、重合助剤などは、一般に用いられるものを使用することができ、その使用量も、一般に使用される量とする。
And generally used emulsifiers, dispersants, polymerization initiators, polymerization aids and the like used for polymerization can be used, and the amount used is also generally used.
また、本発明で使用する粒子状重合体を製造すべく、バッチ重合、セミバッチ重合を用いることができるが、反応系に単量体を連続的又は断続的に添加するセミバッチ重合を用いることが好ましい。セミバッチ重合を用いることで、エチレン性不飽和カルボン酸単量体などの酸性基含有単量体を反応系に最初から一括で添加するバッチ重合を用いた場合に比して、粒子状重合体の表面酸量、および、表面酸量/水相中の酸量の値を容易に制御することができる。
In order to produce the particulate polymer used in the present invention, batch polymerization and semi-batch polymerization can be used, but it is preferable to use semi-batch polymerization in which a monomer is continuously or intermittently added to the reaction system. . By using semi-batch polymerization, compared with the case of using batch polymerization in which acidic group-containing monomers such as ethylenically unsaturated carboxylic acid monomers are added to the reaction system from the beginning, the particulate polymer The surface acid amount and the value of the surface acid amount / the acid amount in the aqueous phase can be easily controlled.
セミバッチ重合を用いた粒子状重合体の調製方法としては、例えば、粒子状重合体が上述した脂肪族共役ジエン単量体単位および芳香族ビニル単量体単位を有する共重合体である場合、脂肪族共役ジエン単量体、芳香族ビニル単量体および酸性基含有単量体を含む一次単量体組成物を、反応系に連続的又は断続的に添加し、単量体組成物の添加率が70%以上となってから、水酸基含有(メタ)アクリル酸単量体を含む二次単量体組成物の添加を開始し、粒子状重合体を得る方法が好ましい。この好適な態様について、以下に詳述する。
なお、「連続的又は断続的に添加」とは、単量体組成物を反応系に一度に添加するのではなく、ある程度の時間(例えば30分以上)をかけて添加することをいう。
また、「単量体組成物の添加率」とは、重合に用いる全単量体組成物に占める、反応系内に添加済みの単量体の割合(質量%)をいう。 As a method for preparing a particulate polymer using semi-batch polymerization, for example, when the particulate polymer is a copolymer having the above-described aliphatic conjugated diene monomer unit and aromatic vinyl monomer unit, A primary monomer composition containing an aromatic conjugated diene monomer, an aromatic vinyl monomer and an acidic group-containing monomer is continuously or intermittently added to the reaction system, and the addition rate of the monomer composition Is 70% or more, a method of starting addition of a secondary monomer composition containing a hydroxyl group-containing (meth) acrylic acid monomer to obtain a particulate polymer is preferred. This preferred embodiment will be described in detail below.
Note that “added continuously or intermittently” means that the monomer composition is not added to the reaction system all at once, but added over a certain period of time (for example, 30 minutes or more).
The “addition rate of the monomer composition” refers to the ratio (mass%) of the monomer already added to the reaction system in the total monomer composition used for the polymerization.
なお、「連続的又は断続的に添加」とは、単量体組成物を反応系に一度に添加するのではなく、ある程度の時間(例えば30分以上)をかけて添加することをいう。
また、「単量体組成物の添加率」とは、重合に用いる全単量体組成物に占める、反応系内に添加済みの単量体の割合(質量%)をいう。 As a method for preparing a particulate polymer using semi-batch polymerization, for example, when the particulate polymer is a copolymer having the above-described aliphatic conjugated diene monomer unit and aromatic vinyl monomer unit, A primary monomer composition containing an aromatic conjugated diene monomer, an aromatic vinyl monomer and an acidic group-containing monomer is continuously or intermittently added to the reaction system, and the addition rate of the monomer composition Is 70% or more, a method of starting addition of a secondary monomer composition containing a hydroxyl group-containing (meth) acrylic acid monomer to obtain a particulate polymer is preferred. This preferred embodiment will be described in detail below.
Note that “added continuously or intermittently” means that the monomer composition is not added to the reaction system all at once, but added over a certain period of time (for example, 30 minutes or more).
The “addition rate of the monomer composition” refers to the ratio (mass%) of the monomer already added to the reaction system in the total monomer composition used for the polymerization.
「一次単量体組成物」は、重合の開始段階から反応系へ添加する単量体組成物であり、重合に用いる全単量体組成物のうち、好ましくは80~99質量%、より好ましくは90~99質量%を、一次単量体組成物に含める。そして、一次単量体組成物は、芳香族ビニル単量体、脂肪族共役ジエン単量体、酸性基含有単量体を含むことが好ましく、また、水酸基含有(メタ)アクリル酸エステル単量体を実質的に含有しないものであることが好ましい。
セミバッチ重合を用いた粒子状重合体の調製においては、例えば、この一次単量体組成物に、適宜、乳化剤、連鎖移動剤、水を加えてなる混合物と、別途用意した重合開始剤とを一つの反応容器に添加することで重合反応を開始する。この際の反応条件は特に限定されないが、反応温度は、好ましくは60~90℃である。重合開始から、単量体組成物の添加率が70%に達するまでの時間は、特に限定されないが好ましくは2~6時間、より好ましくは3~5時間である。 The “primary monomer composition” is a monomer composition that is added to the reaction system from the initiation stage of polymerization, and is preferably 80 to 99% by mass, more preferably among all monomer compositions used for polymerization. 90 to 99% by mass is included in the primary monomer composition. The primary monomer composition preferably includes an aromatic vinyl monomer, an aliphatic conjugated diene monomer, an acidic group-containing monomer, and a hydroxyl group-containing (meth) acrylic acid ester monomer. It is preferable that it does not contain substantially.
In preparation of the particulate polymer using semi-batch polymerization, for example, a mixture obtained by appropriately adding an emulsifier, a chain transfer agent, and water to this primary monomer composition and a separately prepared polymerization initiator are combined. The polymerization reaction is started by adding to one reaction vessel. The reaction conditions at this time are not particularly limited, but the reaction temperature is preferably 60 to 90 ° C. The time from the start of polymerization until the addition rate of the monomer composition reaches 70% is not particularly limited, but is preferably 2 to 6 hours, more preferably 3 to 5 hours.
セミバッチ重合を用いた粒子状重合体の調製においては、例えば、この一次単量体組成物に、適宜、乳化剤、連鎖移動剤、水を加えてなる混合物と、別途用意した重合開始剤とを一つの反応容器に添加することで重合反応を開始する。この際の反応条件は特に限定されないが、反応温度は、好ましくは60~90℃である。重合開始から、単量体組成物の添加率が70%に達するまでの時間は、特に限定されないが好ましくは2~6時間、より好ましくは3~5時間である。 The “primary monomer composition” is a monomer composition that is added to the reaction system from the initiation stage of polymerization, and is preferably 80 to 99% by mass, more preferably among all monomer compositions used for polymerization. 90 to 99% by mass is included in the primary monomer composition. The primary monomer composition preferably includes an aromatic vinyl monomer, an aliphatic conjugated diene monomer, an acidic group-containing monomer, and a hydroxyl group-containing (meth) acrylic acid ester monomer. It is preferable that it does not contain substantially.
In preparation of the particulate polymer using semi-batch polymerization, for example, a mixture obtained by appropriately adding an emulsifier, a chain transfer agent, and water to this primary monomer composition and a separately prepared polymerization initiator are combined. The polymerization reaction is started by adding to one reaction vessel. The reaction conditions at this time are not particularly limited, but the reaction temperature is preferably 60 to 90 ° C. The time from the start of polymerization until the addition rate of the monomer composition reaches 70% is not particularly limited, but is preferably 2 to 6 hours, more preferably 3 to 5 hours.
そして単量体組成物の添加率が70%以上となってから(即ち、重合に用いる全単量体組成物のうち70質量%を反応系に添加し終えた時以降から)、水酸基含有(メタ)アクリル酸エステル単量体を含む二次単量体組成物の添加を開始する。二次単量体組成物の添加開始から、二次単量体組成物の添加が終了するまでの時間は、特に限定されないが好ましくは1~3時間である。このように、水酸基含有(メタ)アクリル酸エステル単量体を後で添加することで、酸性基含有単量体と他の単量体との共重合を良好に進行させ、表面酸量の大きさを容易に制御することができる。
Then, after the addition rate of the monomer composition becomes 70% or more (that is, after the addition of 70% by mass of the total monomer composition used in the polymerization to the reaction system), the hydroxyl group content ( The addition of the secondary monomer composition containing the (meth) acrylate monomer is started. The time from the start of the addition of the secondary monomer composition to the end of the addition of the secondary monomer composition is not particularly limited, but is preferably 1 to 3 hours. Thus, by adding the hydroxyl group-containing (meth) acrylic acid ester monomer later, the copolymerization of the acidic group-containing monomer and other monomers proceeds well, and the surface acid amount is large. Can be controlled easily.
また、一次単量体組成物と二次単量体組成物の添加は別々に終了してもよいし、同時に終了してもよい。重合開始から全単量体組成物の添加が終了するまでの時間は、特に限定されないが好ましくは3~8時間、より好ましくは4~7時間である。そして全単量体組成物の添加が終了した後、0~90℃で3~9時間反応させることが好ましい。
Moreover, the addition of the primary monomer composition and the secondary monomer composition may be completed separately or may be completed simultaneously. The time from the start of polymerization to the end of the addition of all monomer compositions is not particularly limited, but is preferably 3 to 8 hours, more preferably 4 to 7 hours. Then, after the addition of the whole monomer composition is completed, the reaction is preferably carried out at 0 to 90 ° C. for 3 to 9 hours.
その後、重合転化率が十分(例えば95%以上)となった時点で冷却し反応を停止させる。
ここで、上述した重合の後、得られた水分散液は、例えばアルカリ金属(例えば、Li、Na、K、Rb、Cs)の水酸化物、アンモニア、無機アンモニウム化合物(例えばNH4Clなど)、有機アミン化合物(例えばエタノールアミン、ジエチルアミンなど)などを含む塩基性水溶液を用いて、pHが通常5以上であり、通常10以下、好ましくは9以下の範囲になるように調整して、粒子状重合体の水分散液としてもよい。なかでも、アルカリ金属水酸化物によるpH調整は、集電体に対する電極合材層の結着強度を向上させるので、好ましい。
また、pH調整後に、加熱減圧蒸留によって、未反応の単量体を除去することが好ましい。 Thereafter, when the polymerization conversion becomes sufficient (for example, 95% or more), the reaction is stopped by cooling.
Here, after the above-described polymerization, the obtained aqueous dispersion is, for example, alkali metal (for example, Li, Na, K, Rb, Cs) hydroxide, ammonia, inorganic ammonium compound (for example, NH 4 Cl). And a basic aqueous solution containing an organic amine compound (for example, ethanolamine, diethylamine, etc.), and adjusted so that the pH is usually 5 or more, usually 10 or less, preferably 9 or less. An aqueous dispersion of a polymer may be used. Among these, pH adjustment with an alkali metal hydroxide is preferable because it improves the binding strength of the electrode mixture layer to the current collector.
Moreover, it is preferable to remove an unreacted monomer by heating and vacuum distillation after pH adjustment.
ここで、上述した重合の後、得られた水分散液は、例えばアルカリ金属(例えば、Li、Na、K、Rb、Cs)の水酸化物、アンモニア、無機アンモニウム化合物(例えばNH4Clなど)、有機アミン化合物(例えばエタノールアミン、ジエチルアミンなど)などを含む塩基性水溶液を用いて、pHが通常5以上であり、通常10以下、好ましくは9以下の範囲になるように調整して、粒子状重合体の水分散液としてもよい。なかでも、アルカリ金属水酸化物によるpH調整は、集電体に対する電極合材層の結着強度を向上させるので、好ましい。
また、pH調整後に、加熱減圧蒸留によって、未反応の単量体を除去することが好ましい。 Thereafter, when the polymerization conversion becomes sufficient (for example, 95% or more), the reaction is stopped by cooling.
Here, after the above-described polymerization, the obtained aqueous dispersion is, for example, alkali metal (for example, Li, Na, K, Rb, Cs) hydroxide, ammonia, inorganic ammonium compound (for example, NH 4 Cl). And a basic aqueous solution containing an organic amine compound (for example, ethanolamine, diethylamine, etc.), and adjusted so that the pH is usually 5 or more, usually 10 or less, preferably 9 or less. An aqueous dispersion of a polymer may be used. Among these, pH adjustment with an alkali metal hydroxide is preferable because it improves the binding strength of the electrode mixture layer to the current collector.
Moreover, it is preferable to remove an unreacted monomer by heating and vacuum distillation after pH adjustment.
<リチウムイオン二次電池電極用バインダー組成物の調製>
本発明のバインダー組成物は、単量体組成物を重合して得た粒子状重合体の水分散液に対し、水や、発明の効果を損ねない範囲で任意のその他の成分を添加して調製してもよいが、乳化重合(上述の任意のpH調整および加熱減圧蒸留を含む)により得られた粒子状重合体の水分散液を、そのまま本発明のバインダー組成物として使用することが好ましい。すなわち、本発明の二次電池電極用バインダー組成物は、単量体組成物を乳化重合してなるバインダー組成物であることが好ましい。
そして、本発明のバインダー組成物は、リチウムイオン二次電池の正極及び負極の何れの作製にも使用することができるが、極板の膨らみの問題が顕著であり、電極合材層の強度がより求められる負極に用いることが好ましい。即ち、本発明のリチウムイオン二次電池電極用バインダー組成物は、リチウムイオン二次電池負極用スラリー組成物の形成に用いることが好ましい。 <Preparation of binder composition for lithium ion secondary battery electrode>
The binder composition of the present invention is prepared by adding water or any other component within a range not impairing the effects of the invention to the aqueous dispersion of the particulate polymer obtained by polymerizing the monomer composition. Although it may be prepared, it is preferable to use the aqueous dispersion of the particulate polymer obtained by emulsion polymerization (including any of the above-described pH adjustment and heating and vacuum distillation) as it is as the binder composition of the present invention. . That is, the binder composition for secondary battery electrodes of the present invention is preferably a binder composition obtained by emulsion polymerization of a monomer composition.
The binder composition of the present invention can be used for producing either a positive electrode or a negative electrode of a lithium ion secondary battery. However, the problem of swelling of the electrode plate is significant, and the strength of the electrode mixture layer is high. It is preferable to use it for the more demanded negative electrode. That is, the binder composition for lithium ion secondary battery electrodes of the present invention is preferably used for forming a slurry composition for lithium ion secondary battery negative electrodes.
本発明のバインダー組成物は、単量体組成物を重合して得た粒子状重合体の水分散液に対し、水や、発明の効果を損ねない範囲で任意のその他の成分を添加して調製してもよいが、乳化重合(上述の任意のpH調整および加熱減圧蒸留を含む)により得られた粒子状重合体の水分散液を、そのまま本発明のバインダー組成物として使用することが好ましい。すなわち、本発明の二次電池電極用バインダー組成物は、単量体組成物を乳化重合してなるバインダー組成物であることが好ましい。
そして、本発明のバインダー組成物は、リチウムイオン二次電池の正極及び負極の何れの作製にも使用することができるが、極板の膨らみの問題が顕著であり、電極合材層の強度がより求められる負極に用いることが好ましい。即ち、本発明のリチウムイオン二次電池電極用バインダー組成物は、リチウムイオン二次電池負極用スラリー組成物の形成に用いることが好ましい。 <Preparation of binder composition for lithium ion secondary battery electrode>
The binder composition of the present invention is prepared by adding water or any other component within a range not impairing the effects of the invention to the aqueous dispersion of the particulate polymer obtained by polymerizing the monomer composition. Although it may be prepared, it is preferable to use the aqueous dispersion of the particulate polymer obtained by emulsion polymerization (including any of the above-described pH adjustment and heating and vacuum distillation) as it is as the binder composition of the present invention. . That is, the binder composition for secondary battery electrodes of the present invention is preferably a binder composition obtained by emulsion polymerization of a monomer composition.
The binder composition of the present invention can be used for producing either a positive electrode or a negative electrode of a lithium ion secondary battery. However, the problem of swelling of the electrode plate is significant, and the strength of the electrode mixture layer is high. It is preferable to use it for the more demanded negative electrode. That is, the binder composition for lithium ion secondary battery electrodes of the present invention is preferably used for forming a slurry composition for lithium ion secondary battery negative electrodes.
(リチウムイオン二次電池負極用スラリー組成物)
本発明のリチウムイオン電池負極用スラリー組成物は、負極活物質と、上述の本発明のリチウムイオン二次電池電極用バインダー組成物とを含む水系のスラリー組成物である。なお、本発明のリチウムイオン二次電池負極用スラリー組成物は、上述の負極活物質およびバインダー組成物以外に、後述するその他の成分を含有していてもよい。 (Slurry composition for negative electrode of lithium ion secondary battery)
The lithium ion battery negative electrode slurry composition of the present invention is an aqueous slurry composition containing a negative electrode active material and the above-described binder composition for lithium ion secondary battery electrodes of the present invention. In addition, the slurry composition for lithium ion secondary battery negative electrodes of this invention may contain the other component mentioned later other than the above-mentioned negative electrode active material and binder composition.
本発明のリチウムイオン電池負極用スラリー組成物は、負極活物質と、上述の本発明のリチウムイオン二次電池電極用バインダー組成物とを含む水系のスラリー組成物である。なお、本発明のリチウムイオン二次電池負極用スラリー組成物は、上述の負極活物質およびバインダー組成物以外に、後述するその他の成分を含有していてもよい。 (Slurry composition for negative electrode of lithium ion secondary battery)
The lithium ion battery negative electrode slurry composition of the present invention is an aqueous slurry composition containing a negative electrode active material and the above-described binder composition for lithium ion secondary battery electrodes of the present invention. In addition, the slurry composition for lithium ion secondary battery negative electrodes of this invention may contain the other component mentioned later other than the above-mentioned negative electrode active material and binder composition.
そして、本発明のリチウムイオン二次電池負極用スラリー組成物によれば、上述の粒子状重合体を含有する本発明のバインダー組成物を含んでいるので、リチウムイオン二次電池の負極の膨らみを抑制し、かつ、サイクル特性を優れたものとすることができる。
And according to the slurry composition for a lithium ion secondary battery negative electrode of the present invention, since the binder composition of the present invention containing the above-mentioned particulate polymer is included, the swelling of the negative electrode of the lithium ion secondary battery is reduced. It can suppress and can make cycling characteristics excellent.
<負極活物質>
負極活物質は、リチウムイオン二次電池の負極において電子の受け渡しをする物質である。そして、リチウムイオン二次電池の負極活物質としては、通常は、リチウムを吸蔵および放出し得る物質を用いる。リチウムを吸蔵および放出し得る物質としては、例えば、炭素系負極活物質、金属系負極活物質、およびこれらを組み合わせた負極活物質などが挙げられる。 <Negative electrode active material>
The negative electrode active material is a material that transfers electrons in the negative electrode of the lithium ion secondary battery. And as a negative electrode active material of a lithium ion secondary battery, the substance which can occlude and discharge | release lithium is used normally. Examples of the material that can occlude and release lithium include a carbon-based negative electrode active material, a metal-based negative electrode active material, and a negative electrode active material obtained by combining these materials.
負極活物質は、リチウムイオン二次電池の負極において電子の受け渡しをする物質である。そして、リチウムイオン二次電池の負極活物質としては、通常は、リチウムを吸蔵および放出し得る物質を用いる。リチウムを吸蔵および放出し得る物質としては、例えば、炭素系負極活物質、金属系負極活物質、およびこれらを組み合わせた負極活物質などが挙げられる。 <Negative electrode active material>
The negative electrode active material is a material that transfers electrons in the negative electrode of the lithium ion secondary battery. And as a negative electrode active material of a lithium ion secondary battery, the substance which can occlude and discharge | release lithium is used normally. Examples of the material that can occlude and release lithium include a carbon-based negative electrode active material, a metal-based negative electrode active material, and a negative electrode active material obtained by combining these materials.
ここで、炭素系負極活物質とは、リチウムを挿入(「ドープ」ともいう。)可能な、炭素を主骨格とする活物質をいい、炭素系負極活物質としては、例えば炭素質材料と黒鉛質材料とが挙げられる。
Here, the carbon-based negative electrode active material refers to an active material having carbon as a main skeleton capable of inserting lithium (also referred to as “dope”). Examples of the carbon-based negative electrode active material include carbonaceous materials and graphite. Quality materials.
炭素質材料は、炭素前駆体を2000℃以下で熱処理して炭素化させることによって得られる、黒鉛化度の低い(即ち、結晶性の低い)材料である。なお、炭素化させる際の熱処理温度の下限は特に限定されないが、例えば500℃以上とすることができる。
そして、炭素質材料としては、例えば、熱処理温度によって炭素の構造を容易に変える易黒鉛性炭素や、ガラス状炭素に代表される非晶質構造に近い構造を持つ難黒鉛性炭素などが挙げられる。
ここで、易黒鉛性炭素としては、例えば、石油または石炭から得られるタールピッチを原料とした炭素材料が挙げられる。具体例を挙げると、コークス、メソカーボンマイクロビーズ(MCMB)、メソフェーズピッチ系炭素繊維、熱分解気相成長炭素繊維などが挙げられる。
また、難黒鉛性炭素としては、例えば、フェノール樹脂焼成体、ポリアクリロニトリル系炭素繊維、擬等方性炭素、フルフリルアルコール樹脂焼成体(PFA)、ハードカーボンなどが挙げられる。 The carbonaceous material is a material having a low degree of graphitization (ie, low crystallinity) obtained by carbonizing a carbon precursor by heat treatment at 2000 ° C. or lower. In addition, although the minimum of the heat processing temperature at the time of carbonizing is not specifically limited, For example, it can be 500 degreeC or more.
Examples of the carbonaceous material include graphitizable carbon that easily changes the carbon structure depending on the heat treatment temperature, and non-graphitizable carbon having a structure close to an amorphous structure typified by glassy carbon. .
Here, as the graphitizable carbon, for example, a carbon material using tar pitch obtained from petroleum or coal as a raw material can be mentioned. Specific examples include coke, mesocarbon microbeads (MCMB), mesophase pitch carbon fibers, pyrolytic vapor grown carbon fibers, and the like.
In addition, examples of the non-graphitizable carbon include a phenol resin fired body, polyacrylonitrile-based carbon fiber, pseudo-isotropic carbon, furfuryl alcohol resin fired body (PFA), and hard carbon.
そして、炭素質材料としては、例えば、熱処理温度によって炭素の構造を容易に変える易黒鉛性炭素や、ガラス状炭素に代表される非晶質構造に近い構造を持つ難黒鉛性炭素などが挙げられる。
ここで、易黒鉛性炭素としては、例えば、石油または石炭から得られるタールピッチを原料とした炭素材料が挙げられる。具体例を挙げると、コークス、メソカーボンマイクロビーズ(MCMB)、メソフェーズピッチ系炭素繊維、熱分解気相成長炭素繊維などが挙げられる。
また、難黒鉛性炭素としては、例えば、フェノール樹脂焼成体、ポリアクリロニトリル系炭素繊維、擬等方性炭素、フルフリルアルコール樹脂焼成体(PFA)、ハードカーボンなどが挙げられる。 The carbonaceous material is a material having a low degree of graphitization (ie, low crystallinity) obtained by carbonizing a carbon precursor by heat treatment at 2000 ° C. or lower. In addition, although the minimum of the heat processing temperature at the time of carbonizing is not specifically limited, For example, it can be 500 degreeC or more.
Examples of the carbonaceous material include graphitizable carbon that easily changes the carbon structure depending on the heat treatment temperature, and non-graphitizable carbon having a structure close to an amorphous structure typified by glassy carbon. .
Here, as the graphitizable carbon, for example, a carbon material using tar pitch obtained from petroleum or coal as a raw material can be mentioned. Specific examples include coke, mesocarbon microbeads (MCMB), mesophase pitch carbon fibers, pyrolytic vapor grown carbon fibers, and the like.
In addition, examples of the non-graphitizable carbon include a phenol resin fired body, polyacrylonitrile-based carbon fiber, pseudo-isotropic carbon, furfuryl alcohol resin fired body (PFA), and hard carbon.
黒鉛質材料は、易黒鉛性炭素を2000℃以上で熱処理することによって得られる、黒鉛に近い高い結晶性を有する材料である。なお、熱処理温度の上限は、特に限定されないが、例えば5000℃以下とすることができる。
そして、黒鉛質材料としては、例えば、天然黒鉛、人造黒鉛などが挙げられる。
ここで、人造黒鉛としては、例えば、易黒鉛性炭素を含んだ炭素を主に2800℃以上で熱処理した人造黒鉛、MCMBを2000℃以上で熱処理した黒鉛化MCMB、メソフェーズピッチ系炭素繊維を2000℃以上で熱処理した黒鉛化メソフェーズピッチ系炭素繊維などが挙げられる。 The graphite material is a material having high crystallinity close to that of graphite obtained by heat-treating graphitizable carbon at 2000 ° C. or higher. In addition, although the upper limit of heat processing temperature is not specifically limited, For example, it can be 5000 degrees C or less.
Examples of the graphite material include natural graphite and artificial graphite.
Here, as the artificial graphite, for example, artificial graphite obtained by heat-treating carbon containing graphitizable carbon mainly at 2800 ° C. or higher, graphitized MCMB heat-treated at 2000 ° C. or higher, and mesophase pitch-based carbon fiber at 2000 ° C. Examples thereof include graphitized mesophase pitch-based carbon fibers that have been heat-treated.
そして、黒鉛質材料としては、例えば、天然黒鉛、人造黒鉛などが挙げられる。
ここで、人造黒鉛としては、例えば、易黒鉛性炭素を含んだ炭素を主に2800℃以上で熱処理した人造黒鉛、MCMBを2000℃以上で熱処理した黒鉛化MCMB、メソフェーズピッチ系炭素繊維を2000℃以上で熱処理した黒鉛化メソフェーズピッチ系炭素繊維などが挙げられる。 The graphite material is a material having high crystallinity close to that of graphite obtained by heat-treating graphitizable carbon at 2000 ° C. or higher. In addition, although the upper limit of heat processing temperature is not specifically limited, For example, it can be 5000 degrees C or less.
Examples of the graphite material include natural graphite and artificial graphite.
Here, as the artificial graphite, for example, artificial graphite obtained by heat-treating carbon containing graphitizable carbon mainly at 2800 ° C. or higher, graphitized MCMB heat-treated at 2000 ° C. or higher, and mesophase pitch-based carbon fiber at 2000 ° C. Examples thereof include graphitized mesophase pitch-based carbon fibers that have been heat-treated.
また、金属系負極活物質とは、金属を含む活物質であり、通常は、リチウムの挿入が可能な元素を構造に含み、リチウムが挿入された場合の単位質量当たりの理論電気容量が500mAh/g以上である活物質をいう。金属系活物質としては、例えば、リチウム金属、リチウム合金を形成し得る単体金属(例えば、Ag、Al、Ba、Bi、Cu、Ga、Ge、In、Ni、P、Pb、Sb、Si、Sn、Sr、Zn、Tiなど)およびその合金、並びに、それらの酸化物、硫化物、窒化物、ケイ化物、炭化物、燐化物などが用いられる。これらの中でも、金属系負極活物質としては、ケイ素を含む活物質(シリコン系負極活物質)が好ましい。シリコン系負極活物質を用いることにより、リチウムイオン二次電池を高容量化することができるからである。また、シリコン系負極活物質は、一般的にリチウムイオン二次電池の充放電により、炭素系負極活物質に比して大きく膨張・収縮する。しかしながら、本発明のスラリー組成物は、本発明のバインダー組成物を用いているため、負極活物質がシリコン系負極活物質を含有する場合であっても、充放電による負極の膨らみを好適に抑制することができる。
Further, the metal-based negative electrode active material is an active material containing a metal, and usually includes an element capable of inserting lithium in the structure, and the theoretical electric capacity per unit mass when lithium is inserted is 500 mAh / The active material which is more than g. Examples of the metal active material include lithium metal and a single metal capable of forming a lithium alloy (for example, Ag, Al, Ba, Bi, Cu, Ga, Ge, In, Ni, P, Pb, Sb, Si, Sn). , Sr, Zn, Ti, etc.) and alloys thereof, and oxides, sulfides, nitrides, silicides, carbides, phosphides, and the like thereof. Among these, as the metal-based negative electrode active material, an active material containing silicon (silicon-based negative electrode active material) is preferable. This is because the capacity of the lithium ion secondary battery can be increased by using the silicon-based negative electrode active material. In addition, the silicon-based negative electrode active material generally expands and contracts greatly as compared with the carbon-based negative electrode active material due to charging / discharging of the lithium ion secondary battery. However, since the slurry composition of the present invention uses the binder composition of the present invention, even if the negative electrode active material contains a silicon-based negative electrode active material, the swelling of the negative electrode due to charge / discharge is suitably suppressed. can do.
シリコン系負極活物質としては、例えば、ケイ素(Si)、ケイ素を含む合金、SiO、SiOx、Si含有材料を導電性カーボンで被覆または複合化してなるSi含有材料と導電性カーボンとの複合化物などが挙げられる。なお、これらのシリコン系負極活物質は、1種類を単独で用いてもよいし、2種類上を組み合わせて用いてもよい。
Examples of silicon-based negative electrode active materials include silicon (Si), alloys containing silicon, SiO, SiO x , and a composite of a Si-containing material obtained by coating or combining a Si-containing material with conductive carbon and conductive carbon. Etc. In addition, these silicon type negative electrode active materials may be used individually by 1 type, and may be used in combination of 2 types.
ケイ素を含む合金としては、例えば、ケイ素と、アルミニウムと、鉄などの遷移金属とを含み、さらにスズおよびイットリウム等の希土類元素を含む合金組成物が挙げられる。
Examples of the alloy containing silicon include an alloy composition containing silicon, aluminum, and a transition metal such as iron, and further containing a rare earth element such as tin and yttrium.
SiOxは、SiOおよびSiO2の少なくとも一方と、Siとを含有する化合物であり、xは、通常、0.01以上2未満である。そして、SiOxは、例えば、一酸化ケイ素(SiO)の不均化反応を利用して形成することができる。具体的には、SiOxは、SiOを、任意にポリビニルアルコールなどのポリマーの存在下で熱処理し、ケイ素と二酸化ケイ素とを生成させることにより、調製することができる。なお、熱処理は、SiOと、任意にポリマーとを粉砕混合した後、有機物ガス及び/又は蒸気を含む雰囲気下、900℃以上、好ましくは1000℃以上の温度で行うことができる。
SiO x is a compound containing at least one of SiO and SiO 2 and Si, and x is usually 0.01 or more and less than 2. Then, SiO x, for example, can be formed by using a disproportionation reaction of silicon monoxide (SiO). Specifically, SiO x can be prepared by heat-treating SiO, optionally in the presence of a polymer such as polyvinyl alcohol, to produce silicon and silicon dioxide. The heat treatment can be performed at a temperature of 900 ° C. or higher, preferably 1000 ° C. or higher, in an atmosphere containing an organic gas and / or steam after grinding and mixing SiO and optionally a polymer.
Si含有材料と導電性カーボンとの複合化物としては、例えば、SiOと、ポリビニルアルコールなどのポリマーと、任意に炭素材料との粉砕混合物を、例えば有機物ガスおよび/または蒸気を含む雰囲気下で熱処理してなる化合物を挙げることができる。また、かかる複合化物は、SiOの粒子に対して、有機物ガスなどを用いた化学的蒸着法によって表面をコーティングする方法、SiOの粒子と黒鉛または人造黒鉛をメカノケミカル法によって複合粒子化(造粒化)する方法などの公知の方法でも得ることができる。
As a composite of Si-containing material and conductive carbon, for example, a pulverized mixture of SiO, a polymer such as polyvinyl alcohol, and optionally a carbon material is heat-treated in an atmosphere containing, for example, an organic gas and / or steam. Can be mentioned. In addition, such a composite is obtained by coating the surface of SiO particles by a chemical vapor deposition method using an organic gas or the like, or by combining SiO particles and graphite or artificial graphite by a mechanochemical method (granulation). It can also be obtained by a known method such as
<リチウムイオン二次電池電極用バインダー組成物>
本発明のスラリー組成物に用いるバインダー組成物は、上述の本発明の粒子状重合体を含むリチウムイオン二次電池電極用バインダー組成物である。そして、本発明のスラリー組成物は、スラリー組成物中の粒子状重合体の含有量が、負極活物質100質量部当たり好ましくは0.1質量部以上、より好ましくは0.5質量部以上、特に好ましくは1質量部以上となり、好ましくは20質量部以下、より好ましくは10質量部以下、特に好ましくは5質量部以下となるように、バインダー組成物を含有する。スラリー組成物が粒子状重合体を上記の量で含有することにより、粒子状重合体の量が負極活物質の膨張と収縮に好適に追従するために十分となり、負極の膨れを抑制しつつ、リチウムイオン二次電池のサイクル特性を優れたものとすることができる。 <Binder composition for lithium ion secondary battery electrode>
The binder composition used for the slurry composition of the present invention is a binder composition for a lithium ion secondary battery electrode containing the above-described particulate polymer of the present invention. And as for the slurry composition of this invention, content of the particulate polymer in a slurry composition becomes like this. Preferably it is 0.1 mass part or more per 100 mass parts of negative electrode active materials, More preferably, it is 0.5 mass part or more, The binder composition is contained so that the amount is particularly preferably 1 part by mass or more, preferably 20 parts by mass or less, more preferably 10 parts by mass or less, and particularly preferably 5 parts by mass or less. When the slurry composition contains the particulate polymer in the above amount, the amount of the particulate polymer becomes sufficient to suitably follow the expansion and contraction of the negative electrode active material, while suppressing the swelling of the negative electrode, The cycle characteristics of the lithium ion secondary battery can be made excellent.
本発明のスラリー組成物に用いるバインダー組成物は、上述の本発明の粒子状重合体を含むリチウムイオン二次電池電極用バインダー組成物である。そして、本発明のスラリー組成物は、スラリー組成物中の粒子状重合体の含有量が、負極活物質100質量部当たり好ましくは0.1質量部以上、より好ましくは0.5質量部以上、特に好ましくは1質量部以上となり、好ましくは20質量部以下、より好ましくは10質量部以下、特に好ましくは5質量部以下となるように、バインダー組成物を含有する。スラリー組成物が粒子状重合体を上記の量で含有することにより、粒子状重合体の量が負極活物質の膨張と収縮に好適に追従するために十分となり、負極の膨れを抑制しつつ、リチウムイオン二次電池のサイクル特性を優れたものとすることができる。 <Binder composition for lithium ion secondary battery electrode>
The binder composition used for the slurry composition of the present invention is a binder composition for a lithium ion secondary battery electrode containing the above-described particulate polymer of the present invention. And as for the slurry composition of this invention, content of the particulate polymer in a slurry composition becomes like this. Preferably it is 0.1 mass part or more per 100 mass parts of negative electrode active materials, More preferably, it is 0.5 mass part or more, The binder composition is contained so that the amount is particularly preferably 1 part by mass or more, preferably 20 parts by mass or less, more preferably 10 parts by mass or less, and particularly preferably 5 parts by mass or less. When the slurry composition contains the particulate polymer in the above amount, the amount of the particulate polymer becomes sufficient to suitably follow the expansion and contraction of the negative electrode active material, while suppressing the swelling of the negative electrode, The cycle characteristics of the lithium ion secondary battery can be made excellent.
<その他の成分>
本発明のリチウムイオン二次電池負極用スラリー組成物は、上記成分の他に、カルボキシメチルセルロースやポリアクリル酸などの水溶性重合体、導電材、補強材、レベリング剤、電解液添加剤などの成分を含有していてもよい。これらは、電池反応に影響を及ぼさないものであれば特に限られず、公知のもの、例えば国際公開第2012/115096号に記載のものを使用することができる。これらの成分は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。また、これらのその他の成分は、該成分を配合した本発明のバインダー組成物を使用することにより、本発明のスラリー組成物に含有させてもよい。
なお、本発明で用いる粒子状重合体は、表面酸量が大きく、水に対する親和性が比較的高いため、カルボキシメチルセルロースやポリアクリル酸などの水溶性重合体と良好に相溶する。従って、カルボキシメチルセルロースやポリアクリル酸などの水溶性重合体を本発明のリチウムイオン二次電池負極用スラリー組成物に配合した場合には、表面酸量が小さい粒子状重合体を使用した場合と比較し、粒子状重合体と水溶性重合体との相溶により電極合材層の強度を更に高めることができる。 <Other ingredients>
In addition to the above components, the slurry composition for a negative electrode of a lithium ion secondary battery of the present invention includes components such as a water-soluble polymer such as carboxymethyl cellulose and polyacrylic acid, a conductive material, a reinforcing material, a leveling agent, and an electrolyte additive. May be contained. These are not particularly limited as long as they do not affect the battery reaction, and known ones such as those described in International Publication No. 2012/115096 can be used. These components may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios. In addition, these other components may be contained in the slurry composition of the present invention by using the binder composition of the present invention in which the components are blended.
The particulate polymer used in the present invention has a large amount of surface acid and has a relatively high affinity for water, so that it is well compatible with water-soluble polymers such as carboxymethyl cellulose and polyacrylic acid. Therefore, when a water-soluble polymer such as carboxymethyl cellulose or polyacrylic acid is blended with the slurry composition for a negative electrode of the lithium ion secondary battery of the present invention, it is compared with the case where a particulate polymer having a small surface acid amount is used. And the intensity | strength of an electrode compound-material layer can further be raised by compatibility with a particulate polymer and a water-soluble polymer.
本発明のリチウムイオン二次電池負極用スラリー組成物は、上記成分の他に、カルボキシメチルセルロースやポリアクリル酸などの水溶性重合体、導電材、補強材、レベリング剤、電解液添加剤などの成分を含有していてもよい。これらは、電池反応に影響を及ぼさないものであれば特に限られず、公知のもの、例えば国際公開第2012/115096号に記載のものを使用することができる。これらの成分は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。また、これらのその他の成分は、該成分を配合した本発明のバインダー組成物を使用することにより、本発明のスラリー組成物に含有させてもよい。
なお、本発明で用いる粒子状重合体は、表面酸量が大きく、水に対する親和性が比較的高いため、カルボキシメチルセルロースやポリアクリル酸などの水溶性重合体と良好に相溶する。従って、カルボキシメチルセルロースやポリアクリル酸などの水溶性重合体を本発明のリチウムイオン二次電池負極用スラリー組成物に配合した場合には、表面酸量が小さい粒子状重合体を使用した場合と比較し、粒子状重合体と水溶性重合体との相溶により電極合材層の強度を更に高めることができる。 <Other ingredients>
In addition to the above components, the slurry composition for a negative electrode of a lithium ion secondary battery of the present invention includes components such as a water-soluble polymer such as carboxymethyl cellulose and polyacrylic acid, a conductive material, a reinforcing material, a leveling agent, and an electrolyte additive. May be contained. These are not particularly limited as long as they do not affect the battery reaction, and known ones such as those described in International Publication No. 2012/115096 can be used. These components may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios. In addition, these other components may be contained in the slurry composition of the present invention by using the binder composition of the present invention in which the components are blended.
The particulate polymer used in the present invention has a large amount of surface acid and has a relatively high affinity for water, so that it is well compatible with water-soluble polymers such as carboxymethyl cellulose and polyacrylic acid. Therefore, when a water-soluble polymer such as carboxymethyl cellulose or polyacrylic acid is blended with the slurry composition for a negative electrode of the lithium ion secondary battery of the present invention, it is compared with the case where a particulate polymer having a small surface acid amount is used. And the intensity | strength of an electrode compound-material layer can further be raised by compatibility with a particulate polymer and a water-soluble polymer.
<リチウムイオン二次電池負極用スラリー組成物の調製方法>
本発明のリチウムイオン二次電池負極用スラリー組成物は、上記各成分を分散媒としての水系媒体中に分散させることにより調製することができる。具体的には、ボールミル、サンドミル、ビーズミル、顔料分散機、らい潰機、超音波分散機、ホモジナイザー、プラネタリーミキサー、フィルミックスなどの混合機を用いて上記各成分と任意の水系媒体とを混合することにより、スラリー組成物を調製することができる。
ここで、水系媒体としては、通常は水を用いるが、任意の化合物の水溶液や、少量の有機媒体と水との混合溶液などを用いてもよい。なお、バインダー組成物を調製後、該バインダー組成物に負極活物質などを添加することで、スラリー組成物を調製してもよい。そして、スラリー組成物中の水系媒体は、バインダー組成物由来のものであってもよい。 <Method for preparing slurry composition for negative electrode of lithium ion secondary battery>
The slurry composition for a negative electrode of a lithium ion secondary battery of the present invention can be prepared by dispersing each of the above components in an aqueous medium as a dispersion medium. Specifically, the above components and any aqueous medium are mixed using a mixer such as a ball mill, sand mill, bead mill, pigment disperser, crushed grinder, ultrasonic disperser, homogenizer, planetary mixer, or fill mix. By doing so, a slurry composition can be prepared.
Here, water is usually used as the aqueous medium, but an aqueous solution of an arbitrary compound or a mixed solution of a small amount of an organic medium and water may be used. In addition, after preparing a binder composition, you may prepare a slurry composition by adding a negative electrode active material etc. to this binder composition. The aqueous medium in the slurry composition may be derived from the binder composition.
本発明のリチウムイオン二次電池負極用スラリー組成物は、上記各成分を分散媒としての水系媒体中に分散させることにより調製することができる。具体的には、ボールミル、サンドミル、ビーズミル、顔料分散機、らい潰機、超音波分散機、ホモジナイザー、プラネタリーミキサー、フィルミックスなどの混合機を用いて上記各成分と任意の水系媒体とを混合することにより、スラリー組成物を調製することができる。
ここで、水系媒体としては、通常は水を用いるが、任意の化合物の水溶液や、少量の有機媒体と水との混合溶液などを用いてもよい。なお、バインダー組成物を調製後、該バインダー組成物に負極活物質などを添加することで、スラリー組成物を調製してもよい。そして、スラリー組成物中の水系媒体は、バインダー組成物由来のものであってもよい。 <Method for preparing slurry composition for negative electrode of lithium ion secondary battery>
The slurry composition for a negative electrode of a lithium ion secondary battery of the present invention can be prepared by dispersing each of the above components in an aqueous medium as a dispersion medium. Specifically, the above components and any aqueous medium are mixed using a mixer such as a ball mill, sand mill, bead mill, pigment disperser, crushed grinder, ultrasonic disperser, homogenizer, planetary mixer, or fill mix. By doing so, a slurry composition can be prepared.
Here, water is usually used as the aqueous medium, but an aqueous solution of an arbitrary compound or a mixed solution of a small amount of an organic medium and water may be used. In addition, after preparing a binder composition, you may prepare a slurry composition by adding a negative electrode active material etc. to this binder composition. The aqueous medium in the slurry composition may be derived from the binder composition.
(リチウムイオン二次電池用負極)
本発明のリチウムイオン二次電池用負極は、本発明のリチウムイオン二次電池負極用スラリー組成物を使用して製造することができる。
ここで、本発明のリチウムイオン二次電池用負極は、集電体と、集電体上に形成された負極合材層とを備え、負極合材層は、本発明のリチウムイオン二次電池負極用スラリー組成物から得られる。なお、負極合材層中に含まれている各成分は、本発明のリチウムイオン二次電池負極用スラリー組成物中に含まれていたものであり、それら各成分の好適な存在比は、負極用スラリー組成物中の各成分の好適な存在比と同じである。
そして、本発明のリチウムイオン二次電池用負極は、膨れが抑制され、リチウムイオン二次電池に優れたサイクル特性を発揮させることができる。 (Anode for lithium ion secondary battery)
The negative electrode for lithium ion secondary batteries of this invention can be manufactured using the slurry composition for negative electrodes of lithium ion secondary batteries of this invention.
Here, the negative electrode for a lithium ion secondary battery of the present invention includes a current collector and a negative electrode mixture layer formed on the current collector, and the negative electrode mixture layer is a lithium ion secondary battery of the present invention. Obtained from the negative electrode slurry composition. In addition, each component contained in the negative electrode composite material layer was contained in the slurry composition for a lithium ion secondary battery negative electrode of the present invention, and a suitable abundance ratio of each of these components is It is the same as the suitable abundance ratio of each component in the slurry composition for use.
And the negative electrode for lithium ion secondary batteries of this invention can suppress swelling, and can exhibit the cycling characteristics excellent in the lithium ion secondary battery.
本発明のリチウムイオン二次電池用負極は、本発明のリチウムイオン二次電池負極用スラリー組成物を使用して製造することができる。
ここで、本発明のリチウムイオン二次電池用負極は、集電体と、集電体上に形成された負極合材層とを備え、負極合材層は、本発明のリチウムイオン二次電池負極用スラリー組成物から得られる。なお、負極合材層中に含まれている各成分は、本発明のリチウムイオン二次電池負極用スラリー組成物中に含まれていたものであり、それら各成分の好適な存在比は、負極用スラリー組成物中の各成分の好適な存在比と同じである。
そして、本発明のリチウムイオン二次電池用負極は、膨れが抑制され、リチウムイオン二次電池に優れたサイクル特性を発揮させることができる。 (Anode for lithium ion secondary battery)
The negative electrode for lithium ion secondary batteries of this invention can be manufactured using the slurry composition for negative electrodes of lithium ion secondary batteries of this invention.
Here, the negative electrode for a lithium ion secondary battery of the present invention includes a current collector and a negative electrode mixture layer formed on the current collector, and the negative electrode mixture layer is a lithium ion secondary battery of the present invention. Obtained from the negative electrode slurry composition. In addition, each component contained in the negative electrode composite material layer was contained in the slurry composition for a lithium ion secondary battery negative electrode of the present invention, and a suitable abundance ratio of each of these components is It is the same as the suitable abundance ratio of each component in the slurry composition for use.
And the negative electrode for lithium ion secondary batteries of this invention can suppress swelling, and can exhibit the cycling characteristics excellent in the lithium ion secondary battery.
<リチウムイオン二次電池用負極の製造方法>
本発明のリチウムイオン二次電池用負極は、例えば、集電体上に、上述したリチウムイオン二次電池負極用スラリー組成物を塗布する工程(塗布工程)と、集電体上に塗布されたリチウムイオン二次電池負極用スラリー組成物を乾燥し、集電体上に負極合材層を形成する工程(乾燥工程)とを経て製造される。 <Method for producing negative electrode for lithium ion secondary battery>
The negative electrode for a lithium ion secondary battery of the present invention was applied on the current collector, for example, a step of applying the above-described slurry composition for a lithium ion secondary battery negative electrode on the current collector (application step). The slurry composition for a negative electrode of a lithium ion secondary battery is dried and then manufactured through a step (drying step) of forming a negative electrode mixture layer on the current collector.
本発明のリチウムイオン二次電池用負極は、例えば、集電体上に、上述したリチウムイオン二次電池負極用スラリー組成物を塗布する工程(塗布工程)と、集電体上に塗布されたリチウムイオン二次電池負極用スラリー組成物を乾燥し、集電体上に負極合材層を形成する工程(乾燥工程)とを経て製造される。 <Method for producing negative electrode for lithium ion secondary battery>
The negative electrode for a lithium ion secondary battery of the present invention was applied on the current collector, for example, a step of applying the above-described slurry composition for a lithium ion secondary battery negative electrode on the current collector (application step). The slurry composition for a negative electrode of a lithium ion secondary battery is dried and then manufactured through a step (drying step) of forming a negative electrode mixture layer on the current collector.
[塗布工程]
上記リチウムイオン二次電池負極用スラリー組成物を集電体上に塗布する方法としては、特に限定されず公知の方法を用いることができる。具体的には、塗布方法としては、ドクターブレード法、ディップ法、リバースロール法、ダイレクトロール法、グラビア法、エクストルージョン法、ハケ塗り法などを用いることができる。この際、負極用スラリー組成物を集電体の片面だけに塗布してもよいし、両面に塗布してもよい。塗布後乾燥前の集電体上のスラリー膜の厚みは、乾燥して得られる負極合材層の厚みに応じて適宜に設定しうる。 [Coating process]
A method for applying the slurry composition for a lithium ion secondary battery negative electrode on the current collector is not particularly limited, and a known method can be used. Specifically, as a coating method, a doctor blade method, a dip method, a reverse roll method, a direct roll method, a gravure method, an extrusion method, a brush coating method, or the like can be used. At this time, the slurry composition for negative electrode may be applied only to one side of the current collector, or may be applied to both sides. The thickness of the slurry film on the current collector after coating and before drying can be appropriately set according to the thickness of the negative electrode mixture layer obtained by drying.
上記リチウムイオン二次電池負極用スラリー組成物を集電体上に塗布する方法としては、特に限定されず公知の方法を用いることができる。具体的には、塗布方法としては、ドクターブレード法、ディップ法、リバースロール法、ダイレクトロール法、グラビア法、エクストルージョン法、ハケ塗り法などを用いることができる。この際、負極用スラリー組成物を集電体の片面だけに塗布してもよいし、両面に塗布してもよい。塗布後乾燥前の集電体上のスラリー膜の厚みは、乾燥して得られる負極合材層の厚みに応じて適宜に設定しうる。 [Coating process]
A method for applying the slurry composition for a lithium ion secondary battery negative electrode on the current collector is not particularly limited, and a known method can be used. Specifically, as a coating method, a doctor blade method, a dip method, a reverse roll method, a direct roll method, a gravure method, an extrusion method, a brush coating method, or the like can be used. At this time, the slurry composition for negative electrode may be applied only to one side of the current collector, or may be applied to both sides. The thickness of the slurry film on the current collector after coating and before drying can be appropriately set according to the thickness of the negative electrode mixture layer obtained by drying.
ここで、負極用スラリー組成物を塗布する集電体としては、電気導電性を有し、かつ、電気化学的に耐久性のある材料が用いられる。具体的には、集電体としては、例えば、鉄、銅、アルミニウム、ニッケル、ステンレス鋼、チタン、タンタル、金、白金などからなる集電体を用い得る。中でも、負極に用いる集電体としては銅箔が特に好ましい。なお、前記の材料は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
Here, as the current collector to which the slurry composition for negative electrode is applied, a material having electrical conductivity and electrochemical durability is used. Specifically, as the current collector, for example, a current collector made of iron, copper, aluminum, nickel, stainless steel, titanium, tantalum, gold, platinum, or the like can be used. Among these, a copper foil is particularly preferable as the current collector used for the negative electrode. In addition, the said material may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
[乾燥工程]
集電体上の負極用スラリー組成物を乾燥する方法としては、特に限定されず公知の方法を用いることができ、例えば温風、熱風、低湿風による乾燥、真空乾燥、赤外線や電子線などの照射による乾燥法が挙げられる。このように集電体上の負極用スラリー組成物を乾燥することで、集電体上に負極合材層を形成し、集電体と負極合材層とを備えるリチウムイオン二次電池用負極を得ることができる。 [Drying process]
A method for drying the slurry composition for the negative electrode on the current collector is not particularly limited, and a known method can be used, for example, drying with hot air, hot air, low-humidity air, vacuum drying, infrared rays, electron beam, etc. The drying method by irradiation is mentioned. Thus, by drying the negative electrode slurry composition on the current collector, a negative electrode mixture layer is formed on the current collector, and the negative electrode for a lithium ion secondary battery comprising the current collector and the negative electrode mixture layer Can be obtained.
集電体上の負極用スラリー組成物を乾燥する方法としては、特に限定されず公知の方法を用いることができ、例えば温風、熱風、低湿風による乾燥、真空乾燥、赤外線や電子線などの照射による乾燥法が挙げられる。このように集電体上の負極用スラリー組成物を乾燥することで、集電体上に負極合材層を形成し、集電体と負極合材層とを備えるリチウムイオン二次電池用負極を得ることができる。 [Drying process]
A method for drying the slurry composition for the negative electrode on the current collector is not particularly limited, and a known method can be used, for example, drying with hot air, hot air, low-humidity air, vacuum drying, infrared rays, electron beam, etc. The drying method by irradiation is mentioned. Thus, by drying the negative electrode slurry composition on the current collector, a negative electrode mixture layer is formed on the current collector, and the negative electrode for a lithium ion secondary battery comprising the current collector and the negative electrode mixture layer Can be obtained.
なお、乾燥工程の後、金型プレスまたはロールプレスなどを用い、負極合材層に加圧処理を施してもよい。加圧処理により、集電体に対する負極合材層の結着強度を向上させることができる。
Note that after the drying step, the negative electrode mixture layer may be subjected to pressure treatment using a die press or a roll press. By the pressurization treatment, the binding strength of the negative electrode mixture layer to the current collector can be improved.
(リチウムイオン二次電池)
本発明のリチウムイオン二次電池は、正極と、負極と、電解液と、セパレーターとを備え、負極として、本発明のリチウムイオン二次電池用負極を用いたものである。そして、本発明のリチウムイオン二次電池は、本発明のリチウムイオン二次電池用負極を用いているので、サイクル特性に優れている。 (Lithium ion secondary battery)
The lithium ion secondary battery of the present invention includes a positive electrode, a negative electrode, an electrolytic solution, and a separator, and the negative electrode for a lithium ion secondary battery of the present invention is used as the negative electrode. And since the lithium ion secondary battery of this invention uses the negative electrode for lithium ion secondary batteries of this invention, it is excellent in cycling characteristics.
本発明のリチウムイオン二次電池は、正極と、負極と、電解液と、セパレーターとを備え、負極として、本発明のリチウムイオン二次電池用負極を用いたものである。そして、本発明のリチウムイオン二次電池は、本発明のリチウムイオン二次電池用負極を用いているので、サイクル特性に優れている。 (Lithium ion secondary battery)
The lithium ion secondary battery of the present invention includes a positive electrode, a negative electrode, an electrolytic solution, and a separator, and the negative electrode for a lithium ion secondary battery of the present invention is used as the negative electrode. And since the lithium ion secondary battery of this invention uses the negative electrode for lithium ion secondary batteries of this invention, it is excellent in cycling characteristics.
<正極>
リチウムイオン二次電池の正極としては、リチウムイオン二次電池用正極として用いられる既知の正極を用いることができる。具体的には、正極としては、例えば、正極合材層を集電体上に形成してなる正極を用いることができる。
なお、集電体としては、アルミニウム等の金属材料からなるものを用いることができる。また、正極合材層としては、既知の正極活物質と、導電材と、結着材とを含む層を用いることができる。因みに、正極合材層の調製には、本発明のリチウムイオン二次電池電極用バインダー組成物を用いてもよい。 <Positive electrode>
As a positive electrode of a lithium ion secondary battery, a known positive electrode used as a positive electrode for a lithium ion secondary battery can be used. Specifically, as the positive electrode, for example, a positive electrode formed by forming a positive electrode mixture layer on a current collector can be used.
As the current collector, one made of a metal material such as aluminum can be used. As the positive electrode mixture layer, a layer containing a known positive electrode active material, a conductive material, and a binder can be used. Incidentally, the binder composition for a lithium ion secondary battery electrode of the present invention may be used for the preparation of the positive electrode mixture layer.
リチウムイオン二次電池の正極としては、リチウムイオン二次電池用正極として用いられる既知の正極を用いることができる。具体的には、正極としては、例えば、正極合材層を集電体上に形成してなる正極を用いることができる。
なお、集電体としては、アルミニウム等の金属材料からなるものを用いることができる。また、正極合材層としては、既知の正極活物質と、導電材と、結着材とを含む層を用いることができる。因みに、正極合材層の調製には、本発明のリチウムイオン二次電池電極用バインダー組成物を用いてもよい。 <Positive electrode>
As a positive electrode of a lithium ion secondary battery, a known positive electrode used as a positive electrode for a lithium ion secondary battery can be used. Specifically, as the positive electrode, for example, a positive electrode formed by forming a positive electrode mixture layer on a current collector can be used.
As the current collector, one made of a metal material such as aluminum can be used. As the positive electrode mixture layer, a layer containing a known positive electrode active material, a conductive material, and a binder can be used. Incidentally, the binder composition for a lithium ion secondary battery electrode of the present invention may be used for the preparation of the positive electrode mixture layer.
<電解液>
電解液としては、溶媒に電解質を溶解した電解液を用いることができる。
ここで、溶媒としては、電解質を溶解可能な有機溶媒を用いることができる。具体的には、溶媒としては、エチレンカーボネート、プロピレンカーボネート、γ-ブチロラクトン等のアルキルカーボネート系溶媒に、2,5-ジメチルテトラヒドロフラン、テトラヒドロフラン、ジエチルカーボネート、エチルメチルカーボネート、ジメチルカーボネート、酢酸メチル、ジメトキシエタン、ジオキソラン、プロピオン酸メチル、ギ酸メチル等の粘度調整溶媒を添加したものを用いることができる。
電解質としては、リチウム塩を用いることができる。リチウム塩としては、例えば、特開2012-204303号公報に記載のものを用いることができる。これらのリチウム塩の中でも、有機溶媒に溶解しやすく、高い解離度を示すという点より、電解質としてはLiPF6、LiClO4、CF3SO3Liが好ましい。 <Electrolyte>
As the electrolytic solution, an electrolytic solution in which an electrolyte is dissolved in a solvent can be used.
Here, as the solvent, an organic solvent capable of dissolving the electrolyte can be used. Specifically, examples of the solvent include alkyl carbonate solvents such as ethylene carbonate, propylene carbonate, and γ-butyrolactone, 2,5-dimethyltetrahydrofuran, tetrahydrofuran, diethyl carbonate, ethyl methyl carbonate, dimethyl carbonate, methyl acetate, dimethoxyethane. , Dioxolane, methyl propionate, methyl formate and the like can be used.
A lithium salt can be used as the electrolyte. As the lithium salt, for example, those described in JP 2012-204303 A can be used. Among these lithium salts, LiPF 6 , LiClO 4 , and CF 3 SO 3 Li are preferable as the electrolyte because they are easily dissolved in an organic solvent and exhibit a high degree of dissociation.
電解液としては、溶媒に電解質を溶解した電解液を用いることができる。
ここで、溶媒としては、電解質を溶解可能な有機溶媒を用いることができる。具体的には、溶媒としては、エチレンカーボネート、プロピレンカーボネート、γ-ブチロラクトン等のアルキルカーボネート系溶媒に、2,5-ジメチルテトラヒドロフラン、テトラヒドロフラン、ジエチルカーボネート、エチルメチルカーボネート、ジメチルカーボネート、酢酸メチル、ジメトキシエタン、ジオキソラン、プロピオン酸メチル、ギ酸メチル等の粘度調整溶媒を添加したものを用いることができる。
電解質としては、リチウム塩を用いることができる。リチウム塩としては、例えば、特開2012-204303号公報に記載のものを用いることができる。これらのリチウム塩の中でも、有機溶媒に溶解しやすく、高い解離度を示すという点より、電解質としてはLiPF6、LiClO4、CF3SO3Liが好ましい。 <Electrolyte>
As the electrolytic solution, an electrolytic solution in which an electrolyte is dissolved in a solvent can be used.
Here, as the solvent, an organic solvent capable of dissolving the electrolyte can be used. Specifically, examples of the solvent include alkyl carbonate solvents such as ethylene carbonate, propylene carbonate, and γ-butyrolactone, 2,5-dimethyltetrahydrofuran, tetrahydrofuran, diethyl carbonate, ethyl methyl carbonate, dimethyl carbonate, methyl acetate, dimethoxyethane. , Dioxolane, methyl propionate, methyl formate and the like can be used.
A lithium salt can be used as the electrolyte. As the lithium salt, for example, those described in JP 2012-204303 A can be used. Among these lithium salts, LiPF 6 , LiClO 4 , and CF 3 SO 3 Li are preferable as the electrolyte because they are easily dissolved in an organic solvent and exhibit a high degree of dissociation.
<セパレーター>
セパレーターとしては、例えば、特開2012-204303号公報に記載のものを用いることができる。これらの中でも、セパレーター全体の膜厚を薄くすることができ、これにより、リチウムイオン二次電池内の電極活物質の比率を高くして体積あたりの容量を高くすることができるという点より、ポリオレフィン系の樹脂(ポリエチレン、ポリプロピレン、ポリブテン、ポリ塩化ビニル)からなる微多孔膜が好ましい。 <Separator>
As the separator, for example, those described in JP 2012-204303 A can be used. Among these, the thickness of the entire separator can be reduced, thereby increasing the ratio of the electrode active material in the lithium ion secondary battery and increasing the capacity per volume. A microporous film made of a series resin (polyethylene, polypropylene, polybutene, polyvinyl chloride) is preferred.
セパレーターとしては、例えば、特開2012-204303号公報に記載のものを用いることができる。これらの中でも、セパレーター全体の膜厚を薄くすることができ、これにより、リチウムイオン二次電池内の電極活物質の比率を高くして体積あたりの容量を高くすることができるという点より、ポリオレフィン系の樹脂(ポリエチレン、ポリプロピレン、ポリブテン、ポリ塩化ビニル)からなる微多孔膜が好ましい。 <Separator>
As the separator, for example, those described in JP 2012-204303 A can be used. Among these, the thickness of the entire separator can be reduced, thereby increasing the ratio of the electrode active material in the lithium ion secondary battery and increasing the capacity per volume. A microporous film made of a series resin (polyethylene, polypropylene, polybutene, polyvinyl chloride) is preferred.
<リチウムイオン二次電池の製造方法>
本発明のリチウムイオン二次電池は、例えば、正極と、負極とを、セパレーターを介して重ね合わせ、これを必要に応じて電池形状に応じて巻く、折るなどして電池容器に入れ、電池容器に電解液を注入して封口することにより製造することができる。リチウムイオン二次電池の内部の圧力上昇、過充放電などの発生を防止するために、必要に応じて、ヒューズ、PTC素子などの過電流防止素子、エキスパンドメタル、リード板などを設けてもよい。リチウムイオン二次電池の形状は、例えば、コイン型、ボタン型、シート型、円筒型、角形、扁平型など、何れであってもよい。 <Method for producing lithium ion secondary battery>
In the lithium ion secondary battery of the present invention, for example, a positive electrode and a negative electrode are overlapped via a separator, and this is wound into a battery container according to the battery shape as necessary, and put into a battery container. It can manufacture by inject | pouring electrolyte solution into and sealing. In order to prevent the occurrence of pressure rise and overcharge / discharge inside the lithium ion secondary battery, an overcurrent prevention element such as a fuse or a PTC element, an expanded metal, a lead plate, etc. may be provided as necessary. . The shape of the lithium ion secondary battery may be any of, for example, a coin shape, a button shape, a sheet shape, a cylindrical shape, a square shape, a flat shape, and the like.
本発明のリチウムイオン二次電池は、例えば、正極と、負極とを、セパレーターを介して重ね合わせ、これを必要に応じて電池形状に応じて巻く、折るなどして電池容器に入れ、電池容器に電解液を注入して封口することにより製造することができる。リチウムイオン二次電池の内部の圧力上昇、過充放電などの発生を防止するために、必要に応じて、ヒューズ、PTC素子などの過電流防止素子、エキスパンドメタル、リード板などを設けてもよい。リチウムイオン二次電池の形状は、例えば、コイン型、ボタン型、シート型、円筒型、角形、扁平型など、何れであってもよい。 <Method for producing lithium ion secondary battery>
In the lithium ion secondary battery of the present invention, for example, a positive electrode and a negative electrode are overlapped via a separator, and this is wound into a battery container according to the battery shape as necessary, and put into a battery container. It can manufacture by inject | pouring electrolyte solution into and sealing. In order to prevent the occurrence of pressure rise and overcharge / discharge inside the lithium ion secondary battery, an overcurrent prevention element such as a fuse or a PTC element, an expanded metal, a lead plate, etc. may be provided as necessary. . The shape of the lithium ion secondary battery may be any of, for example, a coin shape, a button shape, a sheet shape, a cylindrical shape, a square shape, a flat shape, and the like.
以下、本発明について実施例に基づき具体的に説明するが、本発明はこれら実施例に限定されるものではない。なお、以下の説明において、量を表す「%」及び「部」は、特に断らない限り、質量基準である。
実施例および比較例において、粒子状重合体の表面酸量、水相中の酸量、ゲル含有量および個数平均粒子径、並びに、リチウムイオン二次電池の負極の耐膨らみ性(初期)、サイクル特性、負極の耐膨らみ性(サイクル後)、集電体に対する負極合材層の結着強度は、それぞれ以下の方法を使用して評価した。 EXAMPLES Hereinafter, although this invention is demonstrated concretely based on an Example, this invention is not limited to these Examples. In the following description, “%” and “part” representing amounts are based on mass unless otherwise specified.
In Examples and Comparative Examples, the surface acid amount of the particulate polymer, the acid amount in the aqueous phase, the gel content and the number average particle diameter, and the swelling resistance (initial) of the negative electrode of the lithium ion secondary battery, the cycle The properties, the swelling resistance of the negative electrode (after cycle), and the binding strength of the negative electrode mixture layer to the current collector were evaluated using the following methods, respectively.
実施例および比較例において、粒子状重合体の表面酸量、水相中の酸量、ゲル含有量および個数平均粒子径、並びに、リチウムイオン二次電池の負極の耐膨らみ性(初期)、サイクル特性、負極の耐膨らみ性(サイクル後)、集電体に対する負極合材層の結着強度は、それぞれ以下の方法を使用して評価した。 EXAMPLES Hereinafter, although this invention is demonstrated concretely based on an Example, this invention is not limited to these Examples. In the following description, “%” and “part” representing amounts are based on mass unless otherwise specified.
In Examples and Comparative Examples, the surface acid amount of the particulate polymer, the acid amount in the aqueous phase, the gel content and the number average particle diameter, and the swelling resistance (initial) of the negative electrode of the lithium ion secondary battery, the cycle The properties, the swelling resistance of the negative electrode (after cycle), and the binding strength of the negative electrode mixture layer to the current collector were evaluated using the following methods, respectively.
<表面酸量および水相中の酸量>
蒸留水で洗浄した容量150mLのガラス容器に、調製した粒子状重合体を含む水分散液(固形分濃度 2%に調整)を50g入れ、溶液電導率計をセットして攪拌した。なお、攪拌は、後述する塩酸の添加が終了するまで継続した。
粒子状重合体を含む水分散液の電気伝導度が2.5~3.0mSになるように、0.1規定の水酸化ナトリウム水溶液を、粒子状重合体を含む水分散液に添加した。その後、6分経過してから、電気伝導度を測定した。この値を測定開始時の電気伝導度とした。
さらに、この粒子状重合体を含む水分散液に0.1規定の塩酸を0.5mL添加して、30秒後に電気伝導度を測定した。その後、再び0.1規定の塩酸を0.5mL添加して、30秒後に電気伝導度を測定した。この操作を、30秒間隔で、粒子状重合体を含む水分散液の電気伝導度が測定開始時の電気伝導度以上になるまで繰り返し行った。
得られた電気伝導度データを、電気伝導度(単位「mS」)を縦軸(Y座標軸)、添加した塩酸の累計量(単位「mmol」)を横軸(X座標軸)としたグラフ上にプロットした。これにより、図1のように3つの変曲点を有する塩酸添加量-電気伝導度曲線が得られた。3つの変曲点のX座標および塩酸添加終了時のX座標を、値が小さい方から順にそれぞれP1、P2、P3およびP4とした。X座標が零から座標P1まで、座標P1から座標P2まで、座標P2から座標P3まで、および、座標P3から座標P4まで、の4つの区分内のデータについて、それぞれ、最小二乗法により近似直線L1、L2、L3およびL4を求めた。近似直線L1と近似直線L2との交点のX座標をA1(mmol)、近似直線L2と近似直線L3との交点のX座標をA2(mmol)、近似直線L3と近似直線L4との交点のX座標をA3(mmol)とした。
粒子状重合体1g当たりの表面酸量及び粒子状重合体1g当たりの水相中の酸量は、それぞれ、下記の式から、塩酸換算した値(mmol/g)として求めた。
粒子状重合体1g当たりの表面酸量=A2-A1
粒子状重合体1g当たりの水相中の酸量=A3-A2
<ゲル含有量>
粒子状重合体を含む水分散液を用意し、この水分散液を湿度50%、温度23~25℃の環境下で乾燥させて、厚み1±0.3mmのフィルムに成膜した。このフィルムを、温度60℃の真空乾燥機で10時間乾燥させた。その後、乾燥させたフィルムを3~5mm角に裁断し、約1gを精秤した。裁断により得られたフィルム片の質量をw0とする。
このフィルム片を、50gのテトラヒドロフラン(THF)に24時間浸漬した。その後、THFから引き揚げたフィルム片を温度105℃で3時間真空乾燥して、不溶分の質量w1を計測した。
そして、下記式に従ってゲル含有量(質量%)を算出した。
ゲル含有量(質量%)=(w1/w0)×100
<個数平均粒子径>
粒子状重合体を含む水分散液について、レーザー回折・散乱式粒度分布測定装置(ベックマン・コールター社製、LS230)を用いて粒子状重合体の粒子径-個数積算分布を測定し、積算分布の値が50%となる粒子径を粒子状重合体の個数平均粒子径とした。
<負極の耐膨らみ性(初期)>
作製したラミネートセル型のリチウムイオン二次電池を、25℃環境下で5時間静置させた後、25℃環境下で、4.2V、0.5Cのレートにて充電を行った。
その後、充電状態のセルを解体して負極を取り出し、負極合材層の厚み(d1)を測定した。そして、リチウムイオン二次電池の作製前の負極合材層の厚み(d0)に対する変化率(初期膨らみ率={(d1-d0)/d0}×100(%))を求め、以下の基準により判定した。初期膨らみ率が小さいほど、負極の耐膨らみ性(初期)に優れることを示す。
A:初期膨らみ率が30%未満
B:初期膨らみ率が30%以上35%未満
C:初期膨らみ率が35%以上40%未満
D:初期膨らみ率が40%以上
<サイクル特性>
作製したラミネートセル型のリチウムイオン二次電池を25℃の環境下で24時間静置させた後、25℃の環境下で、4.2V、0.5Cの充放電レートにて充放電の操作を行い、初期容量C1を測定した。さらに、45℃の環境下で充放電を繰り返し、300サイクル後の容量C2を測定した。
サイクル特性は、ΔC=(C2/C1)×100(%)で示す容量変化率ΔCを算出し、以下の基準で評価した。この容量変化率ΔCの値が高いほど、サイクル特性に優れることを示す。
A:容量変化率ΔCが75%以上
B:容量変化率ΔCが70%以上75%未満
C:容量変化率ΔCが65%以上70%未満
D:容量変化率ΔCが65%未満
<負極の耐膨らみ性(サイクル後)>
上述のようにしてサイクル特性を評価した後のリチウムイオン二次電池について、25℃環境下で、0.5Cにて充電を行い、充電状態のセルを解体して負極を取り出し、負極合材層の厚み(d2)を測定した。そして、リチウムイオン二次電池の作製前の負極合材層の厚み(d0)に対する変化率(サイクル後膨らみ率={(d2-d0)/d0}×100(%))を求め、以下の基準により判定した。サイクル後膨らみ率が小さいほど、負極の耐膨らみ性(サイクル後)に優れることを示す。
A:サイクル後膨らみ率が35%未満
B:サイクル後膨らみ率が35%以上40%未満
C:サイクル後膨らみ率が40%以上45%未満
D:サイクル後膨らみ率が45%以上
<集電体に対する負極合材層の結着強度>
作製した負極を、幅1.0cm×長さ10cmの矩形に切って試験片とした。そして、試験片の負極合材層側の表面を上にして固定し、試験片の負極合材層側の表面にセロハンテープを貼り付けた。この際、セロハンテープはJIS Z1522に規定されるものを用いた。その後、試験片の一端からセロハンテープを50mm/分の速度で180°方向(試験片の他端側)に引き剥がしたときの応力を測定した。測定を10回行い、応力の平均値を求めて、これをピール強度(N/m)とした。ピール強度が大きいほど、集電体に対する負極合材層の結着強度が優れていることを示す。
A:ピール強度が5N/m以上
B:ピール強度が3N/m以上5N/m未満
C:ピール強度が2N/m以上3N/m未満
D:ピール強度が2N/m未満 <Surface acid amount and acid amount in aqueous phase>
In a glass container having a capacity of 150 mL washed with distilled water, 50 g of an aqueous dispersion containing the prepared particulate polymer (adjusted to a solid content concentration of 2%) was added, and a solution conductivity meter was set and stirred. Stirring was continued until the addition of hydrochloric acid described later was completed.
A 0.1 N aqueous sodium hydroxide solution was added to the aqueous dispersion containing the particulate polymer so that the electrical conductivity of the aqueous dispersion containing the particulate polymer was 2.5 to 3.0 mS. Thereafter, after 6 minutes, the electrical conductivity was measured. This value was taken as the electrical conductivity at the start of measurement.
Further, 0.5 mL of 0.1 N hydrochloric acid was added to the aqueous dispersion containing the particulate polymer, and the electrical conductivity was measured after 30 seconds. Thereafter, 0.5 mL of 0.1 N hydrochloric acid was added again, and the electrical conductivity was measured after 30 seconds. This operation was repeated at intervals of 30 seconds until the electrical conductivity of the aqueous dispersion containing the particulate polymer was equal to or higher than the electrical conductivity at the start of measurement.
The obtained electric conductivity data is plotted on a graph with the electric conductivity (unit “mS”) on the vertical axis (Y coordinate axis) and the cumulative amount of added hydrochloric acid (unit “mmol”) on the horizontal axis (X coordinate axis). Plotted. Thereby, a hydrochloric acid addition amount-electric conductivity curve having three inflection points as shown in FIG. 1 was obtained. The X coordinate of the three inflection points and the X coordinate at the end of the addition of hydrochloric acid were P1, P2, P3, and P4 in order from the smallest value. For the data in the four sections of the X coordinate from zero to the coordinate P1, from the coordinate P1 to the coordinate P2, from the coordinate P2 to the coordinate P3, and from the coordinate P3 to the coordinate P4, the approximate straight line L1 by the least square method, respectively. , L2, L3 and L4 were determined. The X coordinate of the intersection of the approximate line L1 and the approximate line L2 is A1 (mmol), the X coordinate of the intersection of the approximate line L2 and the approximate line L3 is A2 (mmol), and the X point of the intersection of the approximate line L3 and the approximate line L4 The coordinates were A3 (mmol).
The surface acid amount per 1 g of the particulate polymer and the acid amount in the aqueous phase per 1 g of the particulate polymer were each determined as a value (mmol / g) converted to hydrochloric acid from the following formula.
Surface acid amount per gram of particulate polymer = A2-A1
Acid amount in aqueous phase per gram of particulate polymer = A3-A2
<Gel content>
An aqueous dispersion containing a particulate polymer was prepared, and the aqueous dispersion was dried in an environment of 50% humidity and a temperature of 23 to 25 ° C. to form a film having a thickness of 1 ± 0.3 mm. This film was dried with a vacuum dryer at a temperature of 60 ° C. for 10 hours. Thereafter, the dried film was cut into 3 to 5 mm square, and about 1 g was precisely weighed. The mass of the film piece obtained by cutting is defined as w0.
This film piece was immersed in 50 g of tetrahydrofuran (THF) for 24 hours. Then, the film piece pulled up from THF was vacuum-dried at 105 degreeC for 3 hours, and the mass w1 of insoluble matter was measured.
And gel content (mass%) was computed according to the following formula.
Gel content (mass%) = (w1 / w0) × 100
<Number average particle diameter>
For the aqueous dispersion containing the particulate polymer, the particle size-number cumulative distribution of the particulate polymer is measured using a laser diffraction / scattering particle size distribution analyzer (LS230, manufactured by Beckman Coulter, Inc.) The particle diameter at which the value was 50% was taken as the number average particle diameter of the particulate polymer.
<Swelling resistance of negative electrode (initial)>
The produced laminate cell type lithium ion secondary battery was allowed to stand in a 25 ° C. environment for 5 hours, and then charged at a rate of 4.2 V and 0.5 C in a 25 ° C. environment.
Thereafter, the charged cell was disassembled, the negative electrode was taken out, and the thickness (d1) of the negative electrode mixture layer was measured. Then, a change rate (initial swelling ratio = {(d1−d0) / d0} × 100 (%)) with respect to the thickness (d0) of the negative electrode mixture layer before the production of the lithium ion secondary battery was obtained, and the following criteria were used. Judged. It shows that it is excellent in the swelling resistance (initial) of a negative electrode, so that an initial swelling rate is small.
A: Initial swell rate is less than 30% B: Initial swell rate is 30% to less than 35% C: Initial swell rate is 35% to less than 40% D: Initial swell rate is 40% or more <Cycle characteristics>
The prepared laminate cell type lithium ion secondary battery was allowed to stand for 24 hours in an environment of 25 ° C., and then charged and discharged at a charge / discharge rate of 4.2 V and 0.5 C in an environment of 25 ° C. The initial capacity C1 was measured. Furthermore, charge / discharge was repeated under an environment of 45 ° C., and the capacity C2 after 300 cycles was measured.
For the cycle characteristics, a capacity change rate ΔC represented by ΔC = (C2 / C1) × 100 (%) was calculated and evaluated according to the following criteria. It shows that it is excellent in cycle characteristics, so that the value of this capacity | capacitance change rate (DELTA) C is high.
A: Capacity change rate ΔC is 75% or more B: Capacity change rate ΔC is 70% or more and less than 75% C: Capacity change rate ΔC is 65% or more and less than 70% D: Capacity change rate ΔC is less than 65% Swelling (after cycle)>
The lithium ion secondary battery after the cycle characteristics were evaluated as described above was charged at 0.5 C in a 25 ° C. environment, the charged cell was disassembled, the negative electrode was taken out, and the negative electrode mixture layer The thickness (d2) of was measured. Then, the rate of change with respect to the thickness (d0) of the negative electrode mixture layer before the production of the lithium ion secondary battery (swell rate after cycle = {(d2−d0) / d0} × 100 (%)) was obtained, and the following criteria were obtained: Judged by. It shows that it is excellent in the swelling resistance (after a cycle) of a negative electrode, so that the swelling rate after a cycle is small.
A: Swelling rate after cycle is less than 35% B: Swelling rate after cycle is 35% or more and less than 40% C: Swelling rate after cycle is 40% or more and less than 45% D: Swelling rate after cycle is 45% or more <Current collector Bonding strength of negative electrode composite layer to
The produced negative electrode was cut into a rectangle having a width of 1.0 cm and a length of 10 cm to obtain a test piece. Then, the negative electrode composite layer side surface of the test piece was fixed upward, and a cellophane tape was attached to the negative electrode composite layer side surface of the test piece. At this time, the cellophane tape defined in JIS Z1522 was used. Thereafter, the stress was measured when the cellophane tape was peeled from the one end of the test piece in the 180 ° direction (the other end side of the test piece) at a speed of 50 mm / min. The measurement was performed 10 times, the average value of the stress was determined, and this was defined as the peel strength (N / m). It shows that the binding strength of the negative mix layer with respect to a collector is excellent, so that peel strength is large.
A: Peel strength is 5 N / m or more B: Peel strength is 3 N / m or more and less than 5 N / m C: Peel strength is 2 N / m or more and less than 3 N / m D: Peel strength is less than 2 N / m
蒸留水で洗浄した容量150mLのガラス容器に、調製した粒子状重合体を含む水分散液(固形分濃度 2%に調整)を50g入れ、溶液電導率計をセットして攪拌した。なお、攪拌は、後述する塩酸の添加が終了するまで継続した。
粒子状重合体を含む水分散液の電気伝導度が2.5~3.0mSになるように、0.1規定の水酸化ナトリウム水溶液を、粒子状重合体を含む水分散液に添加した。その後、6分経過してから、電気伝導度を測定した。この値を測定開始時の電気伝導度とした。
さらに、この粒子状重合体を含む水分散液に0.1規定の塩酸を0.5mL添加して、30秒後に電気伝導度を測定した。その後、再び0.1規定の塩酸を0.5mL添加して、30秒後に電気伝導度を測定した。この操作を、30秒間隔で、粒子状重合体を含む水分散液の電気伝導度が測定開始時の電気伝導度以上になるまで繰り返し行った。
得られた電気伝導度データを、電気伝導度(単位「mS」)を縦軸(Y座標軸)、添加した塩酸の累計量(単位「mmol」)を横軸(X座標軸)としたグラフ上にプロットした。これにより、図1のように3つの変曲点を有する塩酸添加量-電気伝導度曲線が得られた。3つの変曲点のX座標および塩酸添加終了時のX座標を、値が小さい方から順にそれぞれP1、P2、P3およびP4とした。X座標が零から座標P1まで、座標P1から座標P2まで、座標P2から座標P3まで、および、座標P3から座標P4まで、の4つの区分内のデータについて、それぞれ、最小二乗法により近似直線L1、L2、L3およびL4を求めた。近似直線L1と近似直線L2との交点のX座標をA1(mmol)、近似直線L2と近似直線L3との交点のX座標をA2(mmol)、近似直線L3と近似直線L4との交点のX座標をA3(mmol)とした。
粒子状重合体1g当たりの表面酸量及び粒子状重合体1g当たりの水相中の酸量は、それぞれ、下記の式から、塩酸換算した値(mmol/g)として求めた。
粒子状重合体1g当たりの表面酸量=A2-A1
粒子状重合体1g当たりの水相中の酸量=A3-A2
<ゲル含有量>
粒子状重合体を含む水分散液を用意し、この水分散液を湿度50%、温度23~25℃の環境下で乾燥させて、厚み1±0.3mmのフィルムに成膜した。このフィルムを、温度60℃の真空乾燥機で10時間乾燥させた。その後、乾燥させたフィルムを3~5mm角に裁断し、約1gを精秤した。裁断により得られたフィルム片の質量をw0とする。
このフィルム片を、50gのテトラヒドロフラン(THF)に24時間浸漬した。その後、THFから引き揚げたフィルム片を温度105℃で3時間真空乾燥して、不溶分の質量w1を計測した。
そして、下記式に従ってゲル含有量(質量%)を算出した。
ゲル含有量(質量%)=(w1/w0)×100
<個数平均粒子径>
粒子状重合体を含む水分散液について、レーザー回折・散乱式粒度分布測定装置(ベックマン・コールター社製、LS230)を用いて粒子状重合体の粒子径-個数積算分布を測定し、積算分布の値が50%となる粒子径を粒子状重合体の個数平均粒子径とした。
<負極の耐膨らみ性(初期)>
作製したラミネートセル型のリチウムイオン二次電池を、25℃環境下で5時間静置させた後、25℃環境下で、4.2V、0.5Cのレートにて充電を行った。
その後、充電状態のセルを解体して負極を取り出し、負極合材層の厚み(d1)を測定した。そして、リチウムイオン二次電池の作製前の負極合材層の厚み(d0)に対する変化率(初期膨らみ率={(d1-d0)/d0}×100(%))を求め、以下の基準により判定した。初期膨らみ率が小さいほど、負極の耐膨らみ性(初期)に優れることを示す。
A:初期膨らみ率が30%未満
B:初期膨らみ率が30%以上35%未満
C:初期膨らみ率が35%以上40%未満
D:初期膨らみ率が40%以上
<サイクル特性>
作製したラミネートセル型のリチウムイオン二次電池を25℃の環境下で24時間静置させた後、25℃の環境下で、4.2V、0.5Cの充放電レートにて充放電の操作を行い、初期容量C1を測定した。さらに、45℃の環境下で充放電を繰り返し、300サイクル後の容量C2を測定した。
サイクル特性は、ΔC=(C2/C1)×100(%)で示す容量変化率ΔCを算出し、以下の基準で評価した。この容量変化率ΔCの値が高いほど、サイクル特性に優れることを示す。
A:容量変化率ΔCが75%以上
B:容量変化率ΔCが70%以上75%未満
C:容量変化率ΔCが65%以上70%未満
D:容量変化率ΔCが65%未満
<負極の耐膨らみ性(サイクル後)>
上述のようにしてサイクル特性を評価した後のリチウムイオン二次電池について、25℃環境下で、0.5Cにて充電を行い、充電状態のセルを解体して負極を取り出し、負極合材層の厚み(d2)を測定した。そして、リチウムイオン二次電池の作製前の負極合材層の厚み(d0)に対する変化率(サイクル後膨らみ率={(d2-d0)/d0}×100(%))を求め、以下の基準により判定した。サイクル後膨らみ率が小さいほど、負極の耐膨らみ性(サイクル後)に優れることを示す。
A:サイクル後膨らみ率が35%未満
B:サイクル後膨らみ率が35%以上40%未満
C:サイクル後膨らみ率が40%以上45%未満
D:サイクル後膨らみ率が45%以上
<集電体に対する負極合材層の結着強度>
作製した負極を、幅1.0cm×長さ10cmの矩形に切って試験片とした。そして、試験片の負極合材層側の表面を上にして固定し、試験片の負極合材層側の表面にセロハンテープを貼り付けた。この際、セロハンテープはJIS Z1522に規定されるものを用いた。その後、試験片の一端からセロハンテープを50mm/分の速度で180°方向(試験片の他端側)に引き剥がしたときの応力を測定した。測定を10回行い、応力の平均値を求めて、これをピール強度(N/m)とした。ピール強度が大きいほど、集電体に対する負極合材層の結着強度が優れていることを示す。
A:ピール強度が5N/m以上
B:ピール強度が3N/m以上5N/m未満
C:ピール強度が2N/m以上3N/m未満
D:ピール強度が2N/m未満 <Surface acid amount and acid amount in aqueous phase>
In a glass container having a capacity of 150 mL washed with distilled water, 50 g of an aqueous dispersion containing the prepared particulate polymer (adjusted to a solid content concentration of 2%) was added, and a solution conductivity meter was set and stirred. Stirring was continued until the addition of hydrochloric acid described later was completed.
A 0.1 N aqueous sodium hydroxide solution was added to the aqueous dispersion containing the particulate polymer so that the electrical conductivity of the aqueous dispersion containing the particulate polymer was 2.5 to 3.0 mS. Thereafter, after 6 minutes, the electrical conductivity was measured. This value was taken as the electrical conductivity at the start of measurement.
Further, 0.5 mL of 0.1 N hydrochloric acid was added to the aqueous dispersion containing the particulate polymer, and the electrical conductivity was measured after 30 seconds. Thereafter, 0.5 mL of 0.1 N hydrochloric acid was added again, and the electrical conductivity was measured after 30 seconds. This operation was repeated at intervals of 30 seconds until the electrical conductivity of the aqueous dispersion containing the particulate polymer was equal to or higher than the electrical conductivity at the start of measurement.
The obtained electric conductivity data is plotted on a graph with the electric conductivity (unit “mS”) on the vertical axis (Y coordinate axis) and the cumulative amount of added hydrochloric acid (unit “mmol”) on the horizontal axis (X coordinate axis). Plotted. Thereby, a hydrochloric acid addition amount-electric conductivity curve having three inflection points as shown in FIG. 1 was obtained. The X coordinate of the three inflection points and the X coordinate at the end of the addition of hydrochloric acid were P1, P2, P3, and P4 in order from the smallest value. For the data in the four sections of the X coordinate from zero to the coordinate P1, from the coordinate P1 to the coordinate P2, from the coordinate P2 to the coordinate P3, and from the coordinate P3 to the coordinate P4, the approximate straight line L1 by the least square method, respectively. , L2, L3 and L4 were determined. The X coordinate of the intersection of the approximate line L1 and the approximate line L2 is A1 (mmol), the X coordinate of the intersection of the approximate line L2 and the approximate line L3 is A2 (mmol), and the X point of the intersection of the approximate line L3 and the approximate line L4 The coordinates were A3 (mmol).
The surface acid amount per 1 g of the particulate polymer and the acid amount in the aqueous phase per 1 g of the particulate polymer were each determined as a value (mmol / g) converted to hydrochloric acid from the following formula.
Surface acid amount per gram of particulate polymer = A2-A1
Acid amount in aqueous phase per gram of particulate polymer = A3-A2
<Gel content>
An aqueous dispersion containing a particulate polymer was prepared, and the aqueous dispersion was dried in an environment of 50% humidity and a temperature of 23 to 25 ° C. to form a film having a thickness of 1 ± 0.3 mm. This film was dried with a vacuum dryer at a temperature of 60 ° C. for 10 hours. Thereafter, the dried film was cut into 3 to 5 mm square, and about 1 g was precisely weighed. The mass of the film piece obtained by cutting is defined as w0.
This film piece was immersed in 50 g of tetrahydrofuran (THF) for 24 hours. Then, the film piece pulled up from THF was vacuum-dried at 105 degreeC for 3 hours, and the mass w1 of insoluble matter was measured.
And gel content (mass%) was computed according to the following formula.
Gel content (mass%) = (w1 / w0) × 100
<Number average particle diameter>
For the aqueous dispersion containing the particulate polymer, the particle size-number cumulative distribution of the particulate polymer is measured using a laser diffraction / scattering particle size distribution analyzer (LS230, manufactured by Beckman Coulter, Inc.) The particle diameter at which the value was 50% was taken as the number average particle diameter of the particulate polymer.
<Swelling resistance of negative electrode (initial)>
The produced laminate cell type lithium ion secondary battery was allowed to stand in a 25 ° C. environment for 5 hours, and then charged at a rate of 4.2 V and 0.5 C in a 25 ° C. environment.
Thereafter, the charged cell was disassembled, the negative electrode was taken out, and the thickness (d1) of the negative electrode mixture layer was measured. Then, a change rate (initial swelling ratio = {(d1−d0) / d0} × 100 (%)) with respect to the thickness (d0) of the negative electrode mixture layer before the production of the lithium ion secondary battery was obtained, and the following criteria were used. Judged. It shows that it is excellent in the swelling resistance (initial) of a negative electrode, so that an initial swelling rate is small.
A: Initial swell rate is less than 30% B: Initial swell rate is 30% to less than 35% C: Initial swell rate is 35% to less than 40% D: Initial swell rate is 40% or more <Cycle characteristics>
The prepared laminate cell type lithium ion secondary battery was allowed to stand for 24 hours in an environment of 25 ° C., and then charged and discharged at a charge / discharge rate of 4.2 V and 0.5 C in an environment of 25 ° C. The initial capacity C1 was measured. Furthermore, charge / discharge was repeated under an environment of 45 ° C., and the capacity C2 after 300 cycles was measured.
For the cycle characteristics, a capacity change rate ΔC represented by ΔC = (C2 / C1) × 100 (%) was calculated and evaluated according to the following criteria. It shows that it is excellent in cycle characteristics, so that the value of this capacity | capacitance change rate (DELTA) C is high.
A: Capacity change rate ΔC is 75% or more B: Capacity change rate ΔC is 70% or more and less than 75% C: Capacity change rate ΔC is 65% or more and less than 70% D: Capacity change rate ΔC is less than 65% Swelling (after cycle)>
The lithium ion secondary battery after the cycle characteristics were evaluated as described above was charged at 0.5 C in a 25 ° C. environment, the charged cell was disassembled, the negative electrode was taken out, and the negative electrode mixture layer The thickness (d2) of was measured. Then, the rate of change with respect to the thickness (d0) of the negative electrode mixture layer before the production of the lithium ion secondary battery (swell rate after cycle = {(d2−d0) / d0} × 100 (%)) was obtained, and the following criteria were obtained: Judged by. It shows that it is excellent in the swelling resistance (after a cycle) of a negative electrode, so that the swelling rate after a cycle is small.
A: Swelling rate after cycle is less than 35% B: Swelling rate after cycle is 35% or more and less than 40% C: Swelling rate after cycle is 40% or more and less than 45% D: Swelling rate after cycle is 45% or more <Current collector Bonding strength of negative electrode composite layer to
The produced negative electrode was cut into a rectangle having a width of 1.0 cm and a length of 10 cm to obtain a test piece. Then, the negative electrode composite layer side surface of the test piece was fixed upward, and a cellophane tape was attached to the negative electrode composite layer side surface of the test piece. At this time, the cellophane tape defined in JIS Z1522 was used. Thereafter, the stress was measured when the cellophane tape was peeled from the one end of the test piece in the 180 ° direction (the other end side of the test piece) at a speed of 50 mm / min. The measurement was performed 10 times, the average value of the stress was determined, and this was defined as the peel strength (N / m). It shows that the binding strength of the negative mix layer with respect to a collector is excellent, so that peel strength is large.
A: Peel strength is 5 N / m or more B: Peel strength is 3 N / m or more and less than 5 N / m C: Peel strength is 2 N / m or more and less than 3 N / m D: Peel strength is less than 2 N / m
(実施例1)
<リチウムイオン二次電池電極用バインダー組成物の調製>
芳香族ビニル単量体としてスチレン33部、脂肪族共役ジエン単量体として1,3-ブタジエン46部、酸性基含有単量体としてアクリル酸20部、連鎖移動剤としてtert-ドデシルメルカプタン0.25部、乳化剤としてラウリル硫酸ナトリウム0.35部の混合物を入れた容器Aから、これらの混合物の耐圧容器Bへの添加を開始し、これと同時に、重合開始剤として過硫酸カリウム1部の耐圧容器Bへの添加を開始することで重合を開始した。反応温度は75℃を維持した。
また、重合開始から4時間後(単量体組成物全体のうち70%添加後)、耐圧容器Bに水酸基含有(メタ)アクリル酸エステル単量体として2―ヒドロキシエチルアクリレートを1部、1時間半に亘って加えた。
重合開始から5時間半後、これら単量体組成物の全量添加が完了し、その後、さらに85℃に加温して6時間反応させた。
重合転化率が97%になった時点で冷却し反応を停止して、粒子状重合体を含む混合物を得た。この粒子状重合体を含む混合物に、5%水酸化ナトリウム水溶液を添加して、pH8に調整した。その後、加熱減圧蒸留によって未反応単量体の除去を行った。さらにその後冷却し、所望の粒子状重合体を含む水分散液(リチウムイオン二次電池電極用バインダー組成物、固形分濃度:30%)を得た。この粒子状重合体を含む水分散液を用いて、表面酸量および水相中の酸量、ゲル含有量、並びに個数平均粒子径を測定した。結果を表1に示す。 Example 1
<Preparation of binder composition for lithium ion secondary battery electrode>
33 parts of styrene as an aromatic vinyl monomer, 46 parts of 1,3-butadiene as an aliphatic conjugated diene monomer, 20 parts of acrylic acid as an acidic group-containing monomer, 0.25 tert-dodecyl mercaptan as a chain transfer agent The addition of these mixtures to the pressure vessel B from a container A containing 0.35 parts of sodium lauryl sulfate as an emulsifier, and at the same time, a pressure vessel of 1 part of potassium persulfate as a polymerization initiator The polymerization was started by starting the addition to B. The reaction temperature was maintained at 75 ° C.
Also, 4 hours after the start of polymerization (after 70% of the entire monomer composition was added), 1 part of 2-hydroxyethyl acrylate was added to the pressure vessel B as a hydroxyl group-containing (meth) acrylic acid ester monomer for 1 hour. Added over half.
After 5 and a half hours from the start of polymerization, the addition of all of these monomer compositions was completed, and then the mixture was further heated to 85 ° C. and reacted for 6 hours.
When the polymerization conversion reached 97%, the reaction was stopped by cooling to obtain a mixture containing a particulate polymer. A 5% aqueous sodium hydroxide solution was added to the mixture containing the particulate polymer to adjust the pH to 8. Then, the unreacted monomer was removed by heating under reduced pressure. Furthermore, it cooled after that and the aqueous dispersion (Binder composition for lithium ion secondary battery electrodes, solid content concentration: 30%) containing the desired particulate polymer was obtained. Using the aqueous dispersion containing the particulate polymer, the surface acid amount, the acid amount in the aqueous phase, the gel content, and the number average particle diameter were measured. The results are shown in Table 1.
<リチウムイオン二次電池電極用バインダー組成物の調製>
芳香族ビニル単量体としてスチレン33部、脂肪族共役ジエン単量体として1,3-ブタジエン46部、酸性基含有単量体としてアクリル酸20部、連鎖移動剤としてtert-ドデシルメルカプタン0.25部、乳化剤としてラウリル硫酸ナトリウム0.35部の混合物を入れた容器Aから、これらの混合物の耐圧容器Bへの添加を開始し、これと同時に、重合開始剤として過硫酸カリウム1部の耐圧容器Bへの添加を開始することで重合を開始した。反応温度は75℃を維持した。
また、重合開始から4時間後(単量体組成物全体のうち70%添加後)、耐圧容器Bに水酸基含有(メタ)アクリル酸エステル単量体として2―ヒドロキシエチルアクリレートを1部、1時間半に亘って加えた。
重合開始から5時間半後、これら単量体組成物の全量添加が完了し、その後、さらに85℃に加温して6時間反応させた。
重合転化率が97%になった時点で冷却し反応を停止して、粒子状重合体を含む混合物を得た。この粒子状重合体を含む混合物に、5%水酸化ナトリウム水溶液を添加して、pH8に調整した。その後、加熱減圧蒸留によって未反応単量体の除去を行った。さらにその後冷却し、所望の粒子状重合体を含む水分散液(リチウムイオン二次電池電極用バインダー組成物、固形分濃度:30%)を得た。この粒子状重合体を含む水分散液を用いて、表面酸量および水相中の酸量、ゲル含有量、並びに個数平均粒子径を測定した。結果を表1に示す。 Example 1
<Preparation of binder composition for lithium ion secondary battery electrode>
33 parts of styrene as an aromatic vinyl monomer, 46 parts of 1,3-butadiene as an aliphatic conjugated diene monomer, 20 parts of acrylic acid as an acidic group-containing monomer, 0.25 tert-dodecyl mercaptan as a chain transfer agent The addition of these mixtures to the pressure vessel B from a container A containing 0.35 parts of sodium lauryl sulfate as an emulsifier, and at the same time, a pressure vessel of 1 part of potassium persulfate as a polymerization initiator The polymerization was started by starting the addition to B. The reaction temperature was maintained at 75 ° C.
Also, 4 hours after the start of polymerization (after 70% of the entire monomer composition was added), 1 part of 2-hydroxyethyl acrylate was added to the pressure vessel B as a hydroxyl group-containing (meth) acrylic acid ester monomer for 1 hour. Added over half.
After 5 and a half hours from the start of polymerization, the addition of all of these monomer compositions was completed, and then the mixture was further heated to 85 ° C. and reacted for 6 hours.
When the polymerization conversion reached 97%, the reaction was stopped by cooling to obtain a mixture containing a particulate polymer. A 5% aqueous sodium hydroxide solution was added to the mixture containing the particulate polymer to adjust the pH to 8. Then, the unreacted monomer was removed by heating under reduced pressure. Furthermore, it cooled after that and the aqueous dispersion (Binder composition for lithium ion secondary battery electrodes, solid content concentration: 30%) containing the desired particulate polymer was obtained. Using the aqueous dispersion containing the particulate polymer, the surface acid amount, the acid amount in the aqueous phase, the gel content, and the number average particle diameter were measured. The results are shown in Table 1.
<リチウムイオン二次電池負極用スラリー組成物の調製>
まず、一酸化珪素((株)大阪チタニウムテクノロジー製)100部およびポリビニルアルコール(東京化成工業(株)試薬グレード)20部をビーズミルに加え、湿式粉砕および一酸化珪素粒子の表面コーティングを行った。その後、窒素雰囲気下でケーク状に乾燥させた後に、アルゴン雰囲気下950℃で加熱処理を施し、分級して325メッシュ未満のカーボンコートSiOx(x=1.1、体積平均粒子径:5μm)を作製した。
次に、ディスパー付きのプラネタリーミキサーに、負極活物質として人造黒鉛(比表面積:4m2/g、体積平均粒子径:24.5μm)を95部、及び上述の作製したカーボンコートSiOxを5部、水溶性高分子としてカルボキシメチルセルロースの1%水溶液を固形分換算で1部を加えた。これらの混合物をイオン交換水で固形分濃度60%に調整した後、25℃で60分間混合した。次に、イオン交換水で固形分濃度52%に調整した後、さらに25℃で15分間混合し混合液を得た。
上記の混合液に、粒子状重合体を含む水分散液(リチウムイオン二次電池電極用バインダー組成物)を、粒子状重合体の固形分換算で1.5部、及びイオン交換水を入れ、最終固形分濃度50%となるように調整し、さらに10分間混合した。これを減圧下で脱泡処理して、リチウムイオン二次電池負極用スラリー組成物を得た。 <Preparation of slurry composition for negative electrode of lithium ion secondary battery>
First, 100 parts of silicon monoxide (manufactured by Osaka Titanium Technology Co., Ltd.) and 20 parts of polyvinyl alcohol (reagent grade of Tokyo Chemical Industry Co., Ltd.) were added to a bead mill, and wet pulverization and surface coating of silicon monoxide particles were performed. Thereafter, after drying in a cake shape in a nitrogen atmosphere, heat treatment was performed at 950 ° C. in an argon atmosphere, and classification was performed to obtain a carbon coat SiOx (x = 1.1, volume average particle size: 5 μm) of less than 325 mesh. Produced.
Next, in a planetary mixer with a disper, 95 parts of artificial graphite (specific surface area: 4 m 2 / g, volume average particle diameter: 24.5 μm) as a negative electrode active material, and 5 parts of the above-prepared carbon-coated SiOx As a water-soluble polymer, 1 part of a 1% aqueous solution of carboxymethyl cellulose in terms of solid content was added. These mixtures were adjusted to a solid content concentration of 60% with ion-exchanged water, and then mixed at 25 ° C. for 60 minutes. Next, after adjusting the solid content concentration to 52% with ion-exchanged water, the mixture was further mixed at 25 ° C. for 15 minutes to obtain a mixed solution.
In the above mixed liquid, an aqueous dispersion containing a particulate polymer (binder composition for a lithium ion secondary battery electrode), 1.5 parts in terms of solid content of the particulate polymer, and ion-exchanged water are added, The final solid concentration was adjusted to 50%, and the mixture was further mixed for 10 minutes. This was defoamed under reduced pressure to obtain a slurry composition for a negative electrode of a lithium ion secondary battery.
まず、一酸化珪素((株)大阪チタニウムテクノロジー製)100部およびポリビニルアルコール(東京化成工業(株)試薬グレード)20部をビーズミルに加え、湿式粉砕および一酸化珪素粒子の表面コーティングを行った。その後、窒素雰囲気下でケーク状に乾燥させた後に、アルゴン雰囲気下950℃で加熱処理を施し、分級して325メッシュ未満のカーボンコートSiOx(x=1.1、体積平均粒子径:5μm)を作製した。
次に、ディスパー付きのプラネタリーミキサーに、負極活物質として人造黒鉛(比表面積:4m2/g、体積平均粒子径:24.5μm)を95部、及び上述の作製したカーボンコートSiOxを5部、水溶性高分子としてカルボキシメチルセルロースの1%水溶液を固形分換算で1部を加えた。これらの混合物をイオン交換水で固形分濃度60%に調整した後、25℃で60分間混合した。次に、イオン交換水で固形分濃度52%に調整した後、さらに25℃で15分間混合し混合液を得た。
上記の混合液に、粒子状重合体を含む水分散液(リチウムイオン二次電池電極用バインダー組成物)を、粒子状重合体の固形分換算で1.5部、及びイオン交換水を入れ、最終固形分濃度50%となるように調整し、さらに10分間混合した。これを減圧下で脱泡処理して、リチウムイオン二次電池負極用スラリー組成物を得た。 <Preparation of slurry composition for negative electrode of lithium ion secondary battery>
First, 100 parts of silicon monoxide (manufactured by Osaka Titanium Technology Co., Ltd.) and 20 parts of polyvinyl alcohol (reagent grade of Tokyo Chemical Industry Co., Ltd.) were added to a bead mill, and wet pulverization and surface coating of silicon monoxide particles were performed. Thereafter, after drying in a cake shape in a nitrogen atmosphere, heat treatment was performed at 950 ° C. in an argon atmosphere, and classification was performed to obtain a carbon coat SiOx (x = 1.1, volume average particle size: 5 μm) of less than 325 mesh. Produced.
Next, in a planetary mixer with a disper, 95 parts of artificial graphite (specific surface area: 4 m 2 / g, volume average particle diameter: 24.5 μm) as a negative electrode active material, and 5 parts of the above-prepared carbon-coated SiOx As a water-soluble polymer, 1 part of a 1% aqueous solution of carboxymethyl cellulose in terms of solid content was added. These mixtures were adjusted to a solid content concentration of 60% with ion-exchanged water, and then mixed at 25 ° C. for 60 minutes. Next, after adjusting the solid content concentration to 52% with ion-exchanged water, the mixture was further mixed at 25 ° C. for 15 minutes to obtain a mixed solution.
In the above mixed liquid, an aqueous dispersion containing a particulate polymer (binder composition for a lithium ion secondary battery electrode), 1.5 parts in terms of solid content of the particulate polymer, and ion-exchanged water are added, The final solid concentration was adjusted to 50%, and the mixture was further mixed for 10 minutes. This was defoamed under reduced pressure to obtain a slurry composition for a negative electrode of a lithium ion secondary battery.
<リチウムイオン二次電池用負極の製造>
上記リチウムイオン二次電池負極用スラリー組成物を、コンマコーターで、集電体である厚さ15μmの銅箔の上に塗付量が9~10mg/cm2となるように塗布した。このリチウムイオン二次電池負極用スラリー組成物が塗布された銅箔を、0.5m/分の速度で、温度60℃のオーブン内を2分間かけて搬送することにより、乾燥させた。その後、温度120℃のオーブン内で2分間加熱処理して負極原反を得た。
得られた負極原反をロールプレス機にて負極合材層の密度が1.6~1.7g/cm3となるようプレスを行い、リチウムイオン二次電池用負極を得た。このリチウムイオン二次電池用負極を用いて、集電体に対する負極合材層の結着強度を評価した。結果を表1に示す。 <Manufacture of negative electrode for lithium ion secondary battery>
The slurry composition for a negative electrode of a lithium ion secondary battery was applied with a comma coater onto a 15 μm thick copper foil as a current collector so that the amount applied was 9 to 10 mg / cm 2 . The copper foil coated with the lithium ion secondary battery negative electrode slurry composition was dried at a rate of 0.5 m / min in an oven at a temperature of 60 ° C. over 2 minutes. Thereafter, heat treatment was performed in an oven at a temperature of 120 ° C. for 2 minutes to obtain a negative electrode original fabric.
The obtained negative electrode original fabric was pressed with a roll press machine so that the density of the negative electrode mixture layer was 1.6 to 1.7 g / cm 3 , thereby obtaining a negative electrode for a lithium ion secondary battery. Using this negative electrode for a lithium ion secondary battery, the binding strength of the negative electrode mixture layer to the current collector was evaluated. The results are shown in Table 1.
上記リチウムイオン二次電池負極用スラリー組成物を、コンマコーターで、集電体である厚さ15μmの銅箔の上に塗付量が9~10mg/cm2となるように塗布した。このリチウムイオン二次電池負極用スラリー組成物が塗布された銅箔を、0.5m/分の速度で、温度60℃のオーブン内を2分間かけて搬送することにより、乾燥させた。その後、温度120℃のオーブン内で2分間加熱処理して負極原反を得た。
得られた負極原反をロールプレス機にて負極合材層の密度が1.6~1.7g/cm3となるようプレスを行い、リチウムイオン二次電池用負極を得た。このリチウムイオン二次電池用負極を用いて、集電体に対する負極合材層の結着強度を評価した。結果を表1に示す。 <Manufacture of negative electrode for lithium ion secondary battery>
The slurry composition for a negative electrode of a lithium ion secondary battery was applied with a comma coater onto a 15 μm thick copper foil as a current collector so that the amount applied was 9 to 10 mg / cm 2 . The copper foil coated with the lithium ion secondary battery negative electrode slurry composition was dried at a rate of 0.5 m / min in an oven at a temperature of 60 ° C. over 2 minutes. Thereafter, heat treatment was performed in an oven at a temperature of 120 ° C. for 2 minutes to obtain a negative electrode original fabric.
The obtained negative electrode original fabric was pressed with a roll press machine so that the density of the negative electrode mixture layer was 1.6 to 1.7 g / cm 3 , thereby obtaining a negative electrode for a lithium ion secondary battery. Using this negative electrode for a lithium ion secondary battery, the binding strength of the negative electrode mixture layer to the current collector was evaluated. The results are shown in Table 1.
<リチウムイオン二次電池用正極の製造>
プラネタリーミキサーに、正極活物質としてのLiCoO2100部、導電材としてのアセチレンブラック2部(電気化学工業(株)製、HS-100)、結着材としてのPVDF(ポリフッ化ビニリデン、(株)クレハ化学製、KF-1100)2部、さらに全固形分濃度が67%となるように2-メチルピリロドンを加えて混合し、リチウムイオン二次電池正極用スラリー組成物を調製した。
得られたリチウムイオン二次電池正極用スラリー組成物を、コンマコーターで、集電体である厚さ20μmのアルミ箔の上に塗布した。このリチウムイオン二次電池正極用スラリー組成物が塗布されたアルミ箔を、0.5m/分の速度で温度60℃のオーブン内を2分間かけて搬送することにより、乾燥させた。その後、温度120℃のオーブン内で2分間加熱処理して、正極原反を得た。
得られた正極原反をロールプレス機にて正極合材層の密度が3.40~3.50g/cm3になるようにプレスを行い、リチウムイオン二次電池用正極を得た。 <Manufacture of positive electrode for lithium ion secondary battery>
In a planetary mixer, 100 parts of LiCoO 2 as a positive electrode active material, 2 parts of acetylene black as a conductive material (HS-100, manufactured by Denki Kagaku Kogyo Co., Ltd.), PVDF (polyvinylidene fluoride, as a binder) 2 parts of Kureha Chemical Co., Ltd., KF-1100), and further added 2-methylpyrrhodone so that the total solid content concentration was 67%, and mixed to prepare a slurry composition for a lithium ion secondary battery positive electrode.
The obtained slurry composition for a lithium ion secondary battery positive electrode was applied onto an aluminum foil having a thickness of 20 μm as a current collector with a comma coater. The aluminum foil coated with the lithium ion secondary battery positive electrode slurry composition was dried by transporting it in an oven at a temperature of 60 ° C. for 2 minutes at a speed of 0.5 m / min. Thereafter, heat treatment was performed for 2 minutes in an oven at a temperature of 120 ° C. to obtain a positive electrode raw material.
The obtained positive electrode fabric was pressed with a roll press machine so that the density of the positive electrode mixture layer was 3.40 to 3.50 g / cm 3 to obtain a positive electrode for a lithium ion secondary battery.
プラネタリーミキサーに、正極活物質としてのLiCoO2100部、導電材としてのアセチレンブラック2部(電気化学工業(株)製、HS-100)、結着材としてのPVDF(ポリフッ化ビニリデン、(株)クレハ化学製、KF-1100)2部、さらに全固形分濃度が67%となるように2-メチルピリロドンを加えて混合し、リチウムイオン二次電池正極用スラリー組成物を調製した。
得られたリチウムイオン二次電池正極用スラリー組成物を、コンマコーターで、集電体である厚さ20μmのアルミ箔の上に塗布した。このリチウムイオン二次電池正極用スラリー組成物が塗布されたアルミ箔を、0.5m/分の速度で温度60℃のオーブン内を2分間かけて搬送することにより、乾燥させた。その後、温度120℃のオーブン内で2分間加熱処理して、正極原反を得た。
得られた正極原反をロールプレス機にて正極合材層の密度が3.40~3.50g/cm3になるようにプレスを行い、リチウムイオン二次電池用正極を得た。 <Manufacture of positive electrode for lithium ion secondary battery>
In a planetary mixer, 100 parts of LiCoO 2 as a positive electrode active material, 2 parts of acetylene black as a conductive material (HS-100, manufactured by Denki Kagaku Kogyo Co., Ltd.), PVDF (polyvinylidene fluoride, as a binder) 2 parts of Kureha Chemical Co., Ltd., KF-1100), and further added 2-methylpyrrhodone so that the total solid content concentration was 67%, and mixed to prepare a slurry composition for a lithium ion secondary battery positive electrode.
The obtained slurry composition for a lithium ion secondary battery positive electrode was applied onto an aluminum foil having a thickness of 20 μm as a current collector with a comma coater. The aluminum foil coated with the lithium ion secondary battery positive electrode slurry composition was dried by transporting it in an oven at a temperature of 60 ° C. for 2 minutes at a speed of 0.5 m / min. Thereafter, heat treatment was performed for 2 minutes in an oven at a temperature of 120 ° C. to obtain a positive electrode raw material.
The obtained positive electrode fabric was pressed with a roll press machine so that the density of the positive electrode mixture layer was 3.40 to 3.50 g / cm 3 to obtain a positive electrode for a lithium ion secondary battery.
<リチウムイオン二次電池の製造>
単層のポリプロピレン製セパレーター(幅65mm、長さ500mm、厚さ25μm;乾式法により製造;気孔率55%)を用意し、5cm×5cmの正方形に切り抜いた。また、電池の外装として、アルミ包材外装を用意した。
そして、作製した正極を、4cm×4cmの正方形に切り出し、集電体側の表面がアルミ包材外装に接するように配置した。次に、正極の正極合材層の面上に、上記の正方形のセパレーターを配置した。さらに、作製した負極を、4.2cm×4.2cmの正方形に切り出し、これをセパレーター上に、負極合材層側の表面がセパレーターに向かい合うよう配置した。その後、電解液として濃度1.0MのLiPF6溶液(溶媒はエチレンカーボネート(EC)/エチルメチルカーボネート(EMC)=3/7(体積比)の混合溶媒、添加剤としてビニレンカーボネート2質量%含有)を充填した。さらに、150℃のヒートシールをしてアルミ包材外装の開口を密封閉口し、リチウムイオン二次電池を製造した。得られたリチウムイオン二次電池を用いて、負極の耐膨らみ性(初期)、サイクル特性および負極の耐膨らみ性(サイクル後)を評価した。結果を表1に示す。 <Manufacture of lithium ion secondary batteries>
A single-layer polypropylene separator (width 65 mm, length 500 mm, thickness 25 μm; manufactured by a dry method; porosity 55%) was prepared and cut into a 5 cm × 5 cm square. Moreover, the aluminum packaging material exterior was prepared as a battery exterior.
And the produced positive electrode was cut out into a 4 cm x 4 cm square, and it has arrange | positioned so that the surface at the side of a collector may contact | connect the aluminum packaging material exterior. Next, the above-described square separator was disposed on the surface of the positive electrode mixture layer of the positive electrode. Furthermore, the produced negative electrode was cut out into a square of 4.2 cm × 4.2 cm, and this was arranged on the separator so that the surface on the negative electrode mixture layer side faces the separator. Thereafter, a LiPF 6 solution having a concentration of 1.0 M as an electrolytic solution (a solvent is a mixed solvent of ethylene carbonate (EC) / ethyl methyl carbonate (EMC) = 3/7 (volume ratio), and 2% by mass of vinylene carbonate is added as an additive)) Filled. Further, heat sealing at 150 ° C. was performed to seal the opening of the aluminum packaging material exterior, and a lithium ion secondary battery was manufactured. Using the obtained lithium ion secondary battery, the swell resistance (initial) of the negative electrode, the cycle characteristics, and the swell resistance (after cycling) of the negative electrode were evaluated. The results are shown in Table 1.
単層のポリプロピレン製セパレーター(幅65mm、長さ500mm、厚さ25μm;乾式法により製造;気孔率55%)を用意し、5cm×5cmの正方形に切り抜いた。また、電池の外装として、アルミ包材外装を用意した。
そして、作製した正極を、4cm×4cmの正方形に切り出し、集電体側の表面がアルミ包材外装に接するように配置した。次に、正極の正極合材層の面上に、上記の正方形のセパレーターを配置した。さらに、作製した負極を、4.2cm×4.2cmの正方形に切り出し、これをセパレーター上に、負極合材層側の表面がセパレーターに向かい合うよう配置した。その後、電解液として濃度1.0MのLiPF6溶液(溶媒はエチレンカーボネート(EC)/エチルメチルカーボネート(EMC)=3/7(体積比)の混合溶媒、添加剤としてビニレンカーボネート2質量%含有)を充填した。さらに、150℃のヒートシールをしてアルミ包材外装の開口を密封閉口し、リチウムイオン二次電池を製造した。得られたリチウムイオン二次電池を用いて、負極の耐膨らみ性(初期)、サイクル特性および負極の耐膨らみ性(サイクル後)を評価した。結果を表1に示す。 <Manufacture of lithium ion secondary batteries>
A single-layer polypropylene separator (width 65 mm, length 500 mm, thickness 25 μm; manufactured by a dry method; porosity 55%) was prepared and cut into a 5 cm × 5 cm square. Moreover, the aluminum packaging material exterior was prepared as a battery exterior.
And the produced positive electrode was cut out into a 4 cm x 4 cm square, and it has arrange | positioned so that the surface at the side of a collector may contact | connect the aluminum packaging material exterior. Next, the above-described square separator was disposed on the surface of the positive electrode mixture layer of the positive electrode. Furthermore, the produced negative electrode was cut out into a square of 4.2 cm × 4.2 cm, and this was arranged on the separator so that the surface on the negative electrode mixture layer side faces the separator. Thereafter, a LiPF 6 solution having a concentration of 1.0 M as an electrolytic solution (a solvent is a mixed solvent of ethylene carbonate (EC) / ethyl methyl carbonate (EMC) = 3/7 (volume ratio), and 2% by mass of vinylene carbonate is added as an additive)) Filled. Further, heat sealing at 150 ° C. was performed to seal the opening of the aluminum packaging material exterior, and a lithium ion secondary battery was manufactured. Using the obtained lithium ion secondary battery, the swell resistance (initial) of the negative electrode, the cycle characteristics, and the swell resistance (after cycling) of the negative electrode were evaluated. The results are shown in Table 1.
(実施例2~4)
リチウムイオン二次電池電極用バインダー組成物調製時に1,3-ブタジエンとアクリル酸の配合量を表1のように変更した以外は、実施例1と同様にしてリチウムイオン二次電池電極用バインダー組成物、リチウムイオン二次電池負極用スラリー組成物、リチウムイオン二次電池用負極、リチウムイオン二次電池用正極およびリチウムイオン二次電池を製造し、そして上述の方法で評価を行なった。結果を表1に示す。 (Examples 2 to 4)
A binder composition for a lithium ion secondary battery electrode in the same manner as in Example 1 except that the blending amount of 1,3-butadiene and acrylic acid was changed as shown in Table 1 when preparing the binder composition for a lithium ion secondary battery electrode. Product, a slurry composition for a negative electrode of a lithium ion secondary battery, a negative electrode for a lithium ion secondary battery, a positive electrode for a lithium ion secondary battery, and a lithium ion secondary battery were manufactured and evaluated by the method described above. The results are shown in Table 1.
リチウムイオン二次電池電極用バインダー組成物調製時に1,3-ブタジエンとアクリル酸の配合量を表1のように変更した以外は、実施例1と同様にしてリチウムイオン二次電池電極用バインダー組成物、リチウムイオン二次電池負極用スラリー組成物、リチウムイオン二次電池用負極、リチウムイオン二次電池用正極およびリチウムイオン二次電池を製造し、そして上述の方法で評価を行なった。結果を表1に示す。 (Examples 2 to 4)
A binder composition for a lithium ion secondary battery electrode in the same manner as in Example 1 except that the blending amount of 1,3-butadiene and acrylic acid was changed as shown in Table 1 when preparing the binder composition for a lithium ion secondary battery electrode. Product, a slurry composition for a negative electrode of a lithium ion secondary battery, a negative electrode for a lithium ion secondary battery, a positive electrode for a lithium ion secondary battery, and a lithium ion secondary battery were manufactured and evaluated by the method described above. The results are shown in Table 1.
(実施例5、6)
リチウムイオン二次電池電極用バインダー組成物調製時に1,3-ブタジエンと2-ヒドロキシエチルアクリレートの配合量を表1のように変更した以外は、実施例1と同様にしてリチウムイオン二次電池電極用バインダー組成物、リチウムイオン二次電池負極用スラリー組成物、リチウムイオン二次電池用負極、リチウムイオン二次電池用正極およびリチウムイオン二次電池を製造し、そして上述の方法で評価を行なった。結果を表1に示す。 (Examples 5 and 6)
A lithium ion secondary battery electrode was prepared in the same manner as in Example 1 except that the blending amounts of 1,3-butadiene and 2-hydroxyethyl acrylate were changed as shown in Table 1 when preparing the binder composition for a lithium ion secondary battery electrode. Binder composition, slurry composition for negative electrode of lithium ion secondary battery, negative electrode for lithium ion secondary battery, positive electrode for lithium ion secondary battery and lithium ion secondary battery, and evaluated by the method described above . The results are shown in Table 1.
リチウムイオン二次電池電極用バインダー組成物調製時に1,3-ブタジエンと2-ヒドロキシエチルアクリレートの配合量を表1のように変更した以外は、実施例1と同様にしてリチウムイオン二次電池電極用バインダー組成物、リチウムイオン二次電池負極用スラリー組成物、リチウムイオン二次電池用負極、リチウムイオン二次電池用正極およびリチウムイオン二次電池を製造し、そして上述の方法で評価を行なった。結果を表1に示す。 (Examples 5 and 6)
A lithium ion secondary battery electrode was prepared in the same manner as in Example 1 except that the blending amounts of 1,3-butadiene and 2-hydroxyethyl acrylate were changed as shown in Table 1 when preparing the binder composition for a lithium ion secondary battery electrode. Binder composition, slurry composition for negative electrode of lithium ion secondary battery, negative electrode for lithium ion secondary battery, positive electrode for lithium ion secondary battery and lithium ion secondary battery, and evaluated by the method described above . The results are shown in Table 1.
(実施例7)
リチウムイオン二次電池電極用バインダー組成物を下記の方法で調製した以外は、実施例1と同様にしてリチウムイオン二次電池負極用スラリー組成物、リチウムイオン二次電池用負極、リチウムイオン二次電池用正極およびリチウムイオン二次電池を製造し、そして上述の方法で評価を行なった。結果を表1に示す。
<リチウムイオン二次電池電極用バインダー組成物の調製>
芳香族ビニル単量体としてスチレン33部、脂肪族共役ジエン単量体として1,3-ブタジエン46部、酸性基含有単量体としてアクリル酸20部、(メタ)アクリル酸エステル単量体として2―ヒドロキシエチルアクリレート1部、連鎖移動剤としてtert-ドデシルメルカプタン0.25部、乳化剤としてラウリル硫酸ナトリウム0.35部の混合物を入れた容器Aから、これらの混合物の耐圧容器Bへの添加を開始し、これと同時に、重合開始剤として過硫酸カリウム1部の耐圧容器Bへの添加を開始することで重合を開始した。反応温度は75℃を維持した。
重合開始から5時間半後、これら単量体組成物を含む混合物の全量添加が完了し、その後、さらに85℃に加温して6時間反応させた。
重合転化率が97%になった時点で冷却し反応を停止して、粒子状重合体を含む混合物を得た。この粒子状重合体を含む混合物に、5%水酸化ナトリウム水溶液を添加して、pH8に調整した。その後、加熱減圧蒸留によって未反応単量体の除去を行った。さらにその後冷却し、所望の粒子状重合体を含む水分散液(リチウムイオン二次電池電極用バインダー組成物 固形分濃度:30%)を得た。 (Example 7)
A slurry composition for a lithium ion secondary battery negative electrode, a negative electrode for a lithium ion secondary battery, a lithium ion secondary battery, as in Example 1, except that the binder composition for a lithium ion secondary battery electrode was prepared by the following method. A positive electrode for a battery and a lithium ion secondary battery were produced and evaluated by the method described above. The results are shown in Table 1.
<Preparation of binder composition for lithium ion secondary battery electrode>
33 parts of styrene as an aromatic vinyl monomer, 46 parts of 1,3-butadiene as an aliphatic conjugated diene monomer, 20 parts of acrylic acid as an acidic group-containing monomer, 2 parts as a (meth) acrylic acid ester monomer -Starting addition of these mixtures to pressure vessel B from container A containing 1 part of hydroxyethyl acrylate, 0.25 parts of tert-dodecyl mercaptan as chain transfer agent and 0.35 parts of sodium lauryl sulfate as emulsifier At the same time, the polymerization was started by starting the addition of 1 part of potassium persulfate to the pressure vessel B as a polymerization initiator. The reaction temperature was maintained at 75 ° C.
Five and a half hours after the start of the polymerization, the addition of the entire amount of the mixture containing these monomer compositions was completed, and then the mixture was further heated to 85 ° C. and reacted for 6 hours.
When the polymerization conversion reached 97%, the reaction was stopped by cooling to obtain a mixture containing a particulate polymer. A 5% aqueous sodium hydroxide solution was added to the mixture containing the particulate polymer to adjust the pH to 8. Then, the unreacted monomer was removed by heating under reduced pressure. Furthermore, it cooled after that and the aqueous dispersion (Binder composition for lithium ion secondary battery electrodes solid content concentration: 30%) containing the desired particulate polymer was obtained.
リチウムイオン二次電池電極用バインダー組成物を下記の方法で調製した以外は、実施例1と同様にしてリチウムイオン二次電池負極用スラリー組成物、リチウムイオン二次電池用負極、リチウムイオン二次電池用正極およびリチウムイオン二次電池を製造し、そして上述の方法で評価を行なった。結果を表1に示す。
<リチウムイオン二次電池電極用バインダー組成物の調製>
芳香族ビニル単量体としてスチレン33部、脂肪族共役ジエン単量体として1,3-ブタジエン46部、酸性基含有単量体としてアクリル酸20部、(メタ)アクリル酸エステル単量体として2―ヒドロキシエチルアクリレート1部、連鎖移動剤としてtert-ドデシルメルカプタン0.25部、乳化剤としてラウリル硫酸ナトリウム0.35部の混合物を入れた容器Aから、これらの混合物の耐圧容器Bへの添加を開始し、これと同時に、重合開始剤として過硫酸カリウム1部の耐圧容器Bへの添加を開始することで重合を開始した。反応温度は75℃を維持した。
重合開始から5時間半後、これら単量体組成物を含む混合物の全量添加が完了し、その後、さらに85℃に加温して6時間反応させた。
重合転化率が97%になった時点で冷却し反応を停止して、粒子状重合体を含む混合物を得た。この粒子状重合体を含む混合物に、5%水酸化ナトリウム水溶液を添加して、pH8に調整した。その後、加熱減圧蒸留によって未反応単量体の除去を行った。さらにその後冷却し、所望の粒子状重合体を含む水分散液(リチウムイオン二次電池電極用バインダー組成物 固形分濃度:30%)を得た。 (Example 7)
A slurry composition for a lithium ion secondary battery negative electrode, a negative electrode for a lithium ion secondary battery, a lithium ion secondary battery, as in Example 1, except that the binder composition for a lithium ion secondary battery electrode was prepared by the following method. A positive electrode for a battery and a lithium ion secondary battery were produced and evaluated by the method described above. The results are shown in Table 1.
<Preparation of binder composition for lithium ion secondary battery electrode>
33 parts of styrene as an aromatic vinyl monomer, 46 parts of 1,3-butadiene as an aliphatic conjugated diene monomer, 20 parts of acrylic acid as an acidic group-containing monomer, 2 parts as a (meth) acrylic acid ester monomer -Starting addition of these mixtures to pressure vessel B from container A containing 1 part of hydroxyethyl acrylate, 0.25 parts of tert-dodecyl mercaptan as chain transfer agent and 0.35 parts of sodium lauryl sulfate as emulsifier At the same time, the polymerization was started by starting the addition of 1 part of potassium persulfate to the pressure vessel B as a polymerization initiator. The reaction temperature was maintained at 75 ° C.
Five and a half hours after the start of the polymerization, the addition of the entire amount of the mixture containing these monomer compositions was completed, and then the mixture was further heated to 85 ° C. and reacted for 6 hours.
When the polymerization conversion reached 97%, the reaction was stopped by cooling to obtain a mixture containing a particulate polymer. A 5% aqueous sodium hydroxide solution was added to the mixture containing the particulate polymer to adjust the pH to 8. Then, the unreacted monomer was removed by heating under reduced pressure. Furthermore, it cooled after that and the aqueous dispersion (Binder composition for lithium ion secondary battery electrodes solid content concentration: 30%) containing the desired particulate polymer was obtained.
(実施例8)
リチウムイオン二次電池負極用スラリー組成物の調整時に、負極活物質として、人造黒鉛95部およびカーボンコートSiOx5部に替えて、人造黒鉛100部を使用した以外は、実施例1と同様にしてリチウムイオン二次電池電極用バインダー組成物、リチウムイオン二次電池負極用スラリー組成物、リチウムイオン二次電池用負極、リチウムイオン二次電池用正極およびリチウムイオン二次電池を製造し、そして上述の方法で評価を行なった。結果を表1に示す。 (Example 8)
Lithium ion secondary battery negative electrode was prepared in the same manner as in Example 1 except that artificial graphite 100 parts was used instead of artificial graphite 95 parts and carbon-coated SiOx 5 parts as the negative electrode active material when preparing the negative electrode slurry composition. Binder composition for ion secondary battery electrode, slurry composition for negative electrode of lithium ion secondary battery, negative electrode for lithium ion secondary battery, positive electrode for lithium ion secondary battery and lithium ion secondary battery, and the method described above Evaluation was performed. The results are shown in Table 1.
リチウムイオン二次電池負極用スラリー組成物の調整時に、負極活物質として、人造黒鉛95部およびカーボンコートSiOx5部に替えて、人造黒鉛100部を使用した以外は、実施例1と同様にしてリチウムイオン二次電池電極用バインダー組成物、リチウムイオン二次電池負極用スラリー組成物、リチウムイオン二次電池用負極、リチウムイオン二次電池用正極およびリチウムイオン二次電池を製造し、そして上述の方法で評価を行なった。結果を表1に示す。 (Example 8)
Lithium ion secondary battery negative electrode was prepared in the same manner as in Example 1 except that artificial graphite 100 parts was used instead of artificial graphite 95 parts and carbon-coated SiOx 5 parts as the negative electrode active material when preparing the negative electrode slurry composition. Binder composition for ion secondary battery electrode, slurry composition for negative electrode of lithium ion secondary battery, negative electrode for lithium ion secondary battery, positive electrode for lithium ion secondary battery and lithium ion secondary battery, and the method described above Evaluation was performed. The results are shown in Table 1.
(比較例1)
リチウムイオン二次電池電極用バインダー組成物調製時に1,3-ブタジエンとアクリル酸の配合量を表1のように変更し、2-ヒドロキシエチルアクリレートを使用しなかった以外は、実施例1と同様にしてリチウムイオン二次電池電極用バインダー組成物、リチウムイオン二次電池負極用スラリー組成物、リチウムイオン二次電池用負極、リチウムイオン二次電池用正極およびリチウムイオン二次電池を製造し、そして上述の方法で評価を行なった。結果を表1に示す。 (Comparative Example 1)
The same as Example 1 except that the blending amount of 1,3-butadiene and acrylic acid was changed as shown in Table 1 and 2-hydroxyethyl acrylate was not used when preparing the binder composition for lithium ion secondary battery electrodes. A lithium ion secondary battery electrode binder composition, a lithium ion secondary battery negative electrode slurry composition, a lithium ion secondary battery negative electrode, a lithium ion secondary battery positive electrode and a lithium ion secondary battery, and Evaluation was performed by the method described above. The results are shown in Table 1.
リチウムイオン二次電池電極用バインダー組成物調製時に1,3-ブタジエンとアクリル酸の配合量を表1のように変更し、2-ヒドロキシエチルアクリレートを使用しなかった以外は、実施例1と同様にしてリチウムイオン二次電池電極用バインダー組成物、リチウムイオン二次電池負極用スラリー組成物、リチウムイオン二次電池用負極、リチウムイオン二次電池用正極およびリチウムイオン二次電池を製造し、そして上述の方法で評価を行なった。結果を表1に示す。 (Comparative Example 1)
The same as Example 1 except that the blending amount of 1,3-butadiene and acrylic acid was changed as shown in Table 1 and 2-hydroxyethyl acrylate was not used when preparing the binder composition for lithium ion secondary battery electrodes. A lithium ion secondary battery electrode binder composition, a lithium ion secondary battery negative electrode slurry composition, a lithium ion secondary battery negative electrode, a lithium ion secondary battery positive electrode and a lithium ion secondary battery, and Evaluation was performed by the method described above. The results are shown in Table 1.
(比較例2)
リチウムイオン二次電池電極用バインダー組成物調製時に1,3-ブタジエンの配合量を表1のように変更し、アクリル酸20部に替えてイタコン酸を1部使用した以外は、実施例1と同様にしてリチウムイオン二次電池電極用バインダー組成物、リチウムイオン二次電池負極用スラリー組成物、リチウムイオン二次電池用負極、リチウムイオン二次電池用正極およびリチウムイオン二次電池を製造し、そして上述の方法で評価を行なった。結果を表1に示す。 (Comparative Example 2)
Example 1 except that the blending amount of 1,3-butadiene was changed as shown in Table 1 and 1 part of itaconic acid was used instead of 20 parts of acrylic acid when preparing the binder composition for lithium ion secondary battery electrodes. Similarly, a lithium ion secondary battery electrode binder composition, a lithium ion secondary battery negative electrode slurry composition, a lithium ion secondary battery negative electrode, a lithium ion secondary battery positive electrode, and a lithium ion secondary battery are manufactured. And evaluation was performed by the above-mentioned method. The results are shown in Table 1.
リチウムイオン二次電池電極用バインダー組成物調製時に1,3-ブタジエンの配合量を表1のように変更し、アクリル酸20部に替えてイタコン酸を1部使用した以外は、実施例1と同様にしてリチウムイオン二次電池電極用バインダー組成物、リチウムイオン二次電池負極用スラリー組成物、リチウムイオン二次電池用負極、リチウムイオン二次電池用正極およびリチウムイオン二次電池を製造し、そして上述の方法で評価を行なった。結果を表1に示す。 (Comparative Example 2)
Example 1 except that the blending amount of 1,3-butadiene was changed as shown in Table 1 and 1 part of itaconic acid was used instead of 20 parts of acrylic acid when preparing the binder composition for lithium ion secondary battery electrodes. Similarly, a lithium ion secondary battery electrode binder composition, a lithium ion secondary battery negative electrode slurry composition, a lithium ion secondary battery negative electrode, a lithium ion secondary battery positive electrode, and a lithium ion secondary battery are manufactured. And evaluation was performed by the above-mentioned method. The results are shown in Table 1.
(比較例3)
リチウムイオン二次電池電極用バインダー組成物調製時に1,3-ブタジエンの配合量を表1のように変更し、アクリル酸20部に替えてメタクリル酸を30部使用した以外は、実施例1と同様にしてリチウムイオン二次電池電極用バインダー組成物、リチウムイオン二次電池負極用スラリー組成物、リチウムイオン二次電池用負極、リチウムイオン二次電池用正極およびリチウムイオン二次電池を製造し、そして上述の方法で評価を行なった。結果を表1に示す。 (Comparative Example 3)
Example 1 except that the blending amount of 1,3-butadiene was changed as shown in Table 1 and 30 parts of methacrylic acid was used instead of 20 parts of acrylic acid when preparing the binder composition for lithium ion secondary battery electrodes. Similarly, a lithium ion secondary battery electrode binder composition, a lithium ion secondary battery negative electrode slurry composition, a lithium ion secondary battery negative electrode, a lithium ion secondary battery positive electrode, and a lithium ion secondary battery are manufactured. And evaluation was performed by the above-mentioned method. The results are shown in Table 1.
リチウムイオン二次電池電極用バインダー組成物調製時に1,3-ブタジエンの配合量を表1のように変更し、アクリル酸20部に替えてメタクリル酸を30部使用した以外は、実施例1と同様にしてリチウムイオン二次電池電極用バインダー組成物、リチウムイオン二次電池負極用スラリー組成物、リチウムイオン二次電池用負極、リチウムイオン二次電池用正極およびリチウムイオン二次電池を製造し、そして上述の方法で評価を行なった。結果を表1に示す。 (Comparative Example 3)
Example 1 except that the blending amount of 1,3-butadiene was changed as shown in Table 1 and 30 parts of methacrylic acid was used instead of 20 parts of acrylic acid when preparing the binder composition for lithium ion secondary battery electrodes. Similarly, a lithium ion secondary battery electrode binder composition, a lithium ion secondary battery negative electrode slurry composition, a lithium ion secondary battery negative electrode, a lithium ion secondary battery positive electrode, and a lithium ion secondary battery are manufactured. And evaluation was performed by the above-mentioned method. The results are shown in Table 1.
(比較例4)
以下の手順でバインダー組成物を調製した。
ブチルアクリレート35部、エチルアクリレート35部、酸性基含有単量体としてメタクリル酸30部、連鎖移動剤としてtert-ドデシルメルカプタン0.25部、乳化剤としてラウリル硫酸ナトリウム0.35部の混合物を入れた容器Aから、これらの混合物の耐圧容器Bへの添加を開始し、これと同時に、重合開始剤として過硫酸カリウム1部の耐圧容器Bへの添加を開始することで重合を開始した。反応温度は75℃を維持した。
重合開始から5時間半後、これら単量体組成物を含む混合物の全量添加が完了し、その後、さらに85℃に加温して6時間反応させた。
重合転化率が97%になった時点で冷却し反応を停止し、重合体を含む混合物を得た。この重合体を含む混合物に、5%水酸化ナトリウム水溶液を添加して、pH8に調整した。その後、加熱減圧蒸留によって未反応単量体の除去を行い、さらにその後冷却し、バインダー組成物とした。得られたバインダー組成物中の重合体は水溶性であり、粒子状重合体を形成しなかった。この水溶性重合体のゲル含有量を測定した。
また、個数平均粒子径は、重合体が粒子状を呈していないため測定することができなかった。
同様に、表面酸量および水相中の酸量は、重合体が水中で溶解してしまうため、全て水相中の酸量として換算されてしまい(すなわち図1中のA2の値を特定することができず)、表面酸量を算出することができなかった。
この水溶性重合体を含むバインダー組成物をリチウムイオン二次電池電極用バインダー組成物に替えて使用した以外は、実施例1と同様にしてリチウムイオン二次電池負極用スラリー組成物、リチウムイオン二次電池用負極、リチウムイオン二次電池用正極およびリチウムイオン二次電池を製造し、そして上述の方法で評価を行なった。結果を表1に示す。 (Comparative Example 4)
A binder composition was prepared by the following procedure.
Container containing 35 parts of butyl acrylate, 35 parts of ethyl acrylate, 30 parts of methacrylic acid as an acidic group-containing monomer, 0.25 part of tert-dodecyl mercaptan as a chain transfer agent, and 0.35 part of sodium lauryl sulfate as an emulsifier From A, addition of these mixtures to the pressure vessel B was started, and at the same time, addition of 1 part of potassium persulfate as a polymerization initiator to the pressure vessel B was started to initiate polymerization. The reaction temperature was maintained at 75 ° C.
Five and a half hours after the start of the polymerization, the addition of the entire amount of the mixture containing these monomer compositions was completed, and then the mixture was further heated to 85 ° C. and reacted for 6 hours.
When the polymerization conversion rate reached 97%, the reaction was stopped by cooling to obtain a mixture containing a polymer. The mixture containing this polymer was adjusted to pH 8 by adding a 5% aqueous sodium hydroxide solution. Then, the unreacted monomer was removed by heating under reduced pressure, and then cooled to obtain a binder composition. The polymer in the obtained binder composition was water-soluble and did not form a particulate polymer. The gel content of this water-soluble polymer was measured.
Further, the number average particle diameter could not be measured because the polymer was not in the form of particles.
Similarly, the surface acid amount and the acid amount in the aqueous phase are all converted to the acid amount in the aqueous phase because the polymer is dissolved in water (that is, the value of A2 in FIG. 1 is specified). The surface acid amount could not be calculated.
A slurry composition for a lithium ion secondary battery negative electrode, a lithium ion secondary battery, and a lithium ion secondary battery negative electrode slurry, except that this water-soluble polymer-containing binder composition was used instead of the lithium ion secondary battery electrode binder composition. A negative electrode for a secondary battery, a positive electrode for a lithium ion secondary battery, and a lithium ion secondary battery were manufactured and evaluated by the above-described method. The results are shown in Table 1.
以下の手順でバインダー組成物を調製した。
ブチルアクリレート35部、エチルアクリレート35部、酸性基含有単量体としてメタクリル酸30部、連鎖移動剤としてtert-ドデシルメルカプタン0.25部、乳化剤としてラウリル硫酸ナトリウム0.35部の混合物を入れた容器Aから、これらの混合物の耐圧容器Bへの添加を開始し、これと同時に、重合開始剤として過硫酸カリウム1部の耐圧容器Bへの添加を開始することで重合を開始した。反応温度は75℃を維持した。
重合開始から5時間半後、これら単量体組成物を含む混合物の全量添加が完了し、その後、さらに85℃に加温して6時間反応させた。
重合転化率が97%になった時点で冷却し反応を停止し、重合体を含む混合物を得た。この重合体を含む混合物に、5%水酸化ナトリウム水溶液を添加して、pH8に調整した。その後、加熱減圧蒸留によって未反応単量体の除去を行い、さらにその後冷却し、バインダー組成物とした。得られたバインダー組成物中の重合体は水溶性であり、粒子状重合体を形成しなかった。この水溶性重合体のゲル含有量を測定した。
また、個数平均粒子径は、重合体が粒子状を呈していないため測定することができなかった。
同様に、表面酸量および水相中の酸量は、重合体が水中で溶解してしまうため、全て水相中の酸量として換算されてしまい(すなわち図1中のA2の値を特定することができず)、表面酸量を算出することができなかった。
この水溶性重合体を含むバインダー組成物をリチウムイオン二次電池電極用バインダー組成物に替えて使用した以外は、実施例1と同様にしてリチウムイオン二次電池負極用スラリー組成物、リチウムイオン二次電池用負極、リチウムイオン二次電池用正極およびリチウムイオン二次電池を製造し、そして上述の方法で評価を行なった。結果を表1に示す。 (Comparative Example 4)
A binder composition was prepared by the following procedure.
Container containing 35 parts of butyl acrylate, 35 parts of ethyl acrylate, 30 parts of methacrylic acid as an acidic group-containing monomer, 0.25 part of tert-dodecyl mercaptan as a chain transfer agent, and 0.35 part of sodium lauryl sulfate as an emulsifier From A, addition of these mixtures to the pressure vessel B was started, and at the same time, addition of 1 part of potassium persulfate as a polymerization initiator to the pressure vessel B was started to initiate polymerization. The reaction temperature was maintained at 75 ° C.
Five and a half hours after the start of the polymerization, the addition of the entire amount of the mixture containing these monomer compositions was completed, and then the mixture was further heated to 85 ° C. and reacted for 6 hours.
When the polymerization conversion rate reached 97%, the reaction was stopped by cooling to obtain a mixture containing a polymer. The mixture containing this polymer was adjusted to pH 8 by adding a 5% aqueous sodium hydroxide solution. Then, the unreacted monomer was removed by heating under reduced pressure, and then cooled to obtain a binder composition. The polymer in the obtained binder composition was water-soluble and did not form a particulate polymer. The gel content of this water-soluble polymer was measured.
Further, the number average particle diameter could not be measured because the polymer was not in the form of particles.
Similarly, the surface acid amount and the acid amount in the aqueous phase are all converted to the acid amount in the aqueous phase because the polymer is dissolved in water (that is, the value of A2 in FIG. 1 is specified). The surface acid amount could not be calculated.
A slurry composition for a lithium ion secondary battery negative electrode, a lithium ion secondary battery, and a lithium ion secondary battery negative electrode slurry, except that this water-soluble polymer-containing binder composition was used instead of the lithium ion secondary battery electrode binder composition. A negative electrode for a secondary battery, a positive electrode for a lithium ion secondary battery, and a lithium ion secondary battery were manufactured and evaluated by the above-described method. The results are shown in Table 1.
(比較例5)
リチウムイオン二次電池電極用バインダー組成物調製時にスチレンおよび1,3-ブタジエンの配合量を表1のように変更し、アクリル酸20部に替えてイタコン酸を1部使用した以外は、実施例1と同様にしてリチウムイオン二次電池電極用バインダー組成物、リチウムイオン二次電池負極用スラリー組成物、リチウムイオン二次電池用負極、リチウムイオン二次電池用正極およびリチウムイオン二次電池を製造し、そして上述の方法で評価を行なった。結果を表1に示す。 (Comparative Example 5)
Except that the amount of styrene and 1,3-butadiene was changed as shown in Table 1 when preparing the binder composition for lithium ion secondary battery electrodes, and 1 part of itaconic acid was used instead of 20 parts of acrylic acid. The lithium ion secondary battery electrode binder composition, the lithium ion secondary battery negative electrode slurry composition, the lithium ion secondary battery negative electrode, the lithium ion secondary battery positive electrode and the lithium ion secondary battery are produced in the same manner as in 1. Then, the evaluation was performed by the method described above. The results are shown in Table 1.
リチウムイオン二次電池電極用バインダー組成物調製時にスチレンおよび1,3-ブタジエンの配合量を表1のように変更し、アクリル酸20部に替えてイタコン酸を1部使用した以外は、実施例1と同様にしてリチウムイオン二次電池電極用バインダー組成物、リチウムイオン二次電池負極用スラリー組成物、リチウムイオン二次電池用負極、リチウムイオン二次電池用正極およびリチウムイオン二次電池を製造し、そして上述の方法で評価を行なった。結果を表1に示す。 (Comparative Example 5)
Except that the amount of styrene and 1,3-butadiene was changed as shown in Table 1 when preparing the binder composition for lithium ion secondary battery electrodes, and 1 part of itaconic acid was used instead of 20 parts of acrylic acid. The lithium ion secondary battery electrode binder composition, the lithium ion secondary battery negative electrode slurry composition, the lithium ion secondary battery negative electrode, the lithium ion secondary battery positive electrode and the lithium ion secondary battery are produced in the same manner as in 1. Then, the evaluation was performed by the method described above. The results are shown in Table 1.
なお、表1においてSTはスチレンを、BDは1,3-ブタジエンを、2-HEAは2-ヒドロキシエチルアクリレートを、AAはアクリル酸を、IAはイタコン酸を、MAAはメタクリル酸を、BAはブチルアクリレートを、EAはエチルアクリレートを示す。
In Table 1, ST is styrene, BD is 1,3-butadiene, 2-HEA is 2-hydroxyethyl acrylate, AA is acrylic acid, IA is itaconic acid, MAA is methacrylic acid, and BA is Butyl acrylate and EA indicate ethyl acrylate.
表1より、実施例1~8では、初期およびサイクル後の負極の膨らみが抑制され、集電体に対する負極合材層の結着強度並びにサイクル特性に優れるリチウムイオン二次電池が得られることが分かる。
一方、表1より、比較例1、2および5では、表面酸量が小さく、初期およびサイクル後の負極の膨らみが抑制されず、そしてサイクル特性に劣っていることが分かる。また、比較例3では、表面酸量が大きく、特にサイクル後の負極の膨らみが抑制されず、そして集電体に対する負極合材層の結着強度並びにサイクル特性に劣っていることが分かる。さらに比較例4では、結着材として用いる重合体が粒子状を呈しておらず、初期およびサイクル後の負極の膨らみが抑制されず、そして集電体に対する負極合材層の結着強度並びにサイクル特性に劣っていることが分かる。 From Table 1, in Examples 1 to 8, it is possible to obtain a lithium ion secondary battery in which swelling of the negative electrode at the initial stage and after the cycle is suppressed and the binding strength of the negative electrode mixture layer to the current collector and the cycle characteristics are excellent. I understand.
On the other hand, it can be seen from Table 1 that in Comparative Examples 1, 2, and 5, the surface acid amount is small, the swelling of the negative electrode after the initial stage and after the cycle is not suppressed, and the cycle characteristics are poor. Further, in Comparative Example 3, it can be seen that the surface acid amount is large, the swelling of the negative electrode after cycling is not particularly suppressed, and the binding strength and cycle characteristics of the negative electrode mixture layer to the current collector are inferior. Further, in Comparative Example 4, the polymer used as the binder is not in the form of particles, the swelling of the negative electrode at the initial stage and after the cycle is not suppressed, and the binding strength and cycle of the negative electrode mixture layer to the current collector It turns out that it is inferior to a characteristic.
一方、表1より、比較例1、2および5では、表面酸量が小さく、初期およびサイクル後の負極の膨らみが抑制されず、そしてサイクル特性に劣っていることが分かる。また、比較例3では、表面酸量が大きく、特にサイクル後の負極の膨らみが抑制されず、そして集電体に対する負極合材層の結着強度並びにサイクル特性に劣っていることが分かる。さらに比較例4では、結着材として用いる重合体が粒子状を呈しておらず、初期およびサイクル後の負極の膨らみが抑制されず、そして集電体に対する負極合材層の結着強度並びにサイクル特性に劣っていることが分かる。 From Table 1, in Examples 1 to 8, it is possible to obtain a lithium ion secondary battery in which swelling of the negative electrode at the initial stage and after the cycle is suppressed and the binding strength of the negative electrode mixture layer to the current collector and the cycle characteristics are excellent. I understand.
On the other hand, it can be seen from Table 1 that in Comparative Examples 1, 2, and 5, the surface acid amount is small, the swelling of the negative electrode after the initial stage and after the cycle is not suppressed, and the cycle characteristics are poor. Further, in Comparative Example 3, it can be seen that the surface acid amount is large, the swelling of the negative electrode after cycling is not particularly suppressed, and the binding strength and cycle characteristics of the negative electrode mixture layer to the current collector are inferior. Further, in Comparative Example 4, the polymer used as the binder is not in the form of particles, the swelling of the negative electrode at the initial stage and after the cycle is not suppressed, and the binding strength and cycle of the negative electrode mixture layer to the current collector It turns out that it is inferior to a characteristic.
なお、実施例1~7より、粒子状重合体の表面酸量、水相中の酸量、および表面酸量/水相中の酸量を変更することで、集電体に対する負極合材層の結着強度、負極の耐膨らみ性(サイクル後)およびサイクル特性を向上させ得ることが分かる。
From Examples 1 to 7, by changing the surface acid amount of the particulate polymer, the acid amount in the aqueous phase, and the surface acid amount / the acid amount in the aqueous phase, the negative electrode mixture layer for the current collector It can be seen that the binding strength, the swelling resistance (after cycle) of the negative electrode, and the cycle characteristics can be improved.
本発明によれば、リチウムイオン二次電池の電極の膨れを抑制しつつサイクル特性を向上させることができるリチウムイオン二次電池電極用バインダー組成物を提供することができる。
また、本発明によれば、リチウムイオン二次電池の負極の膨れを抑制しつつサイクル特性を向上させることができるリチウムイオン二次電池負極用スラリー組成物を提供することができる。
更に、本発明によれば、膨れが抑制され、リチウムイオン二次電池に優れたサイクル特性を発揮させることができるリチウムイオン二次電池用負極を提供することができる。
加えて、本発明によれば、サイクル特性に優れるリチウムイオン二次電池を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the binder composition for lithium ion secondary battery electrodes which can improve cycling characteristics, suppressing the swelling of the electrode of a lithium ion secondary battery can be provided.
Moreover, according to this invention, the slurry composition for lithium ion secondary battery negative electrodes which can improve cycling characteristics, suppressing the swelling of the negative electrode of a lithium ion secondary battery can be provided.
Furthermore, according to the present invention, it is possible to provide a negative electrode for a lithium ion secondary battery in which swelling is suppressed and the cycle characteristics excellent in the lithium ion secondary battery can be exhibited.
In addition, according to the present invention, a lithium ion secondary battery having excellent cycle characteristics can be provided.
また、本発明によれば、リチウムイオン二次電池の負極の膨れを抑制しつつサイクル特性を向上させることができるリチウムイオン二次電池負極用スラリー組成物を提供することができる。
更に、本発明によれば、膨れが抑制され、リチウムイオン二次電池に優れたサイクル特性を発揮させることができるリチウムイオン二次電池用負極を提供することができる。
加えて、本発明によれば、サイクル特性に優れるリチウムイオン二次電池を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the binder composition for lithium ion secondary battery electrodes which can improve cycling characteristics, suppressing the swelling of the electrode of a lithium ion secondary battery can be provided.
Moreover, according to this invention, the slurry composition for lithium ion secondary battery negative electrodes which can improve cycling characteristics, suppressing the swelling of the negative electrode of a lithium ion secondary battery can be provided.
Furthermore, according to the present invention, it is possible to provide a negative electrode for a lithium ion secondary battery in which swelling is suppressed and the cycle characteristics excellent in the lithium ion secondary battery can be exhibited.
In addition, according to the present invention, a lithium ion secondary battery having excellent cycle characteristics can be provided.
Claims (8)
- 粒子状重合体と水を含み、
前記粒子状重合体の表面酸量が0.5mmol/g以上3.0mmol/g以下である、リチウムイオン二次電池電極用バインダー組成物。 Containing particulate polymer and water,
The binder composition for lithium ion secondary battery electrodes whose surface acid amount of the said particulate polymer is 0.5 mmol / g or more and 3.0 mmol / g or less. - 前記粒子状重合体の水相中の酸量が0.1mmol/g以上0.7mmol/g以下である、請求項1に記載のリチウムイオン二次電池電極用バインダー組成物。 The binder composition for a lithium ion secondary battery electrode according to claim 1, wherein the acid amount in the aqueous phase of the particulate polymer is 0.1 mmol / g or more and 0.7 mmol / g or less.
- 前記粒子状重合体の表面酸量の値を水相中の酸量の値で除した値が2.5以上である、請求項1又は2に記載のリチウムイオン二次電池電極用バインダー組成物。 The binder composition for a lithium ion secondary battery electrode according to claim 1 or 2, wherein a value obtained by dividing the value of the surface acid amount of the particulate polymer by the value of the acid amount in the aqueous phase is 2.5 or more. .
- 前記粒子状重合体が、水酸基含有(メタ)アクリル酸エステル単量体単位を0.5質量%以上5質量%以下含む、請求項1~3の何れか1項に記載のリチウムイオン二次電池電極用バインダー組成物。 The lithium ion secondary battery according to any one of claims 1 to 3, wherein the particulate polymer contains a hydroxyl group-containing (meth) acrylic acid ester monomer unit in an amount of 0.5 mass% to 5 mass%. Electrode binder composition.
- 請求項1~4の何れか1項に記載のリチウムイオン二次電池電極用バインダー組成物および負極活物質を含む、リチウムイオン二次電池負極用スラリー組成物。 A slurry composition for a negative electrode of a lithium ion secondary battery, comprising the binder composition for a lithium ion secondary battery electrode according to any one of claims 1 to 4 and a negative electrode active material.
- 前記負極活物質がシリコン系負極活物質を含有する、請求項5に記載のリチウムイオン二次電池負極用スラリー組成物。 The slurry composition for a negative electrode of a lithium ion secondary battery according to claim 5, wherein the negative electrode active material contains a silicon-based negative electrode active material.
- 請求項5又は6に記載のリチウムイオン二次電池負極用スラリー組成物を用いて得られる負極合材層を有する、リチウムイオン二次電池用負極。 A negative electrode for a lithium ion secondary battery, comprising a negative electrode mixture layer obtained using the slurry composition for a negative electrode of a lithium ion secondary battery according to claim 5 or 6.
- 正極、負極、セパレーターおよび電解液を備え、
前記負極が請求項7に記載のリチウムイオン二次電池用負極である、リチウムイオン二次電池。 A positive electrode, a negative electrode, a separator and an electrolyte solution are provided.
The lithium ion secondary battery whose said negative electrode is a negative electrode for lithium ion secondary batteries of Claim 7.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016505067A JP6593320B2 (en) | 2014-02-27 | 2015-02-24 | Slurry composition for negative electrode of lithium ion secondary battery, negative electrode for lithium ion secondary battery and lithium ion secondary battery |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014037183 | 2014-02-27 | ||
JP2014-037183 | 2014-02-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015129257A1 true WO2015129257A1 (en) | 2015-09-03 |
Family
ID=54008591
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/000937 WO2015129257A1 (en) | 2014-02-27 | 2015-02-24 | Binder composition for lithium ion secondary battery electrode, slurry composition for lithium ion secondary battery negative electrode, negative electrode for lithium ion secondary battery, and lithium ion secondary battery |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6593320B2 (en) |
WO (1) | WO2015129257A1 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016084364A1 (en) * | 2014-11-25 | 2016-06-02 | 日本ゼオン株式会社 | Binder for nonaqueous secondary batteries, composition for nonaqueous secondary battery functional layers, functional layer for nonaqueous secondary batteries, and nonaqueous secondary battery |
WO2016199353A1 (en) * | 2015-06-08 | 2016-12-15 | 日本ゼオン株式会社 | Slurry composition for secondary battery negative electrode, negative electrode for secondary battery, and secondary battery |
JP2017123264A (en) * | 2016-01-07 | 2017-07-13 | 日本ゼオン株式会社 | Conductive composition for electrochemical element, composition for electrochemical element electrode, current collector with adhesive layer, and electrode for electrochemical element |
JPWO2017061468A1 (en) * | 2015-10-05 | 2018-07-26 | 積水化学工業株式会社 | Lithium ion secondary battery |
WO2018180472A1 (en) * | 2017-03-31 | 2018-10-04 | 日本ゼオン株式会社 | Binder composition for non-aqueous secondary battery porous membrane, slurry composition for non-aqueous secondary battery porous membrane, porous membrane for non-aqueous secondary battery, and non-aqueous secondary battery |
WO2019169217A3 (en) * | 2018-03-02 | 2019-10-24 | Arkema Inc. | Fluoropolymer binder coating for use in electrochemical devices |
CN110462898A (en) * | 2017-03-28 | 2019-11-15 | 日本瑞翁株式会社 | Binder composition for non-aqueous secondary battery electrode, non-aqueous secondary battery slurry composition for electrode, non-aqueous secondary battery electrode and non-aqueous secondary battery and non-aqueous secondary battery electrode manufacturing method |
JP2020126844A (en) * | 2015-08-28 | 2020-08-20 | Jsr株式会社 | Composition for power storage device, slurry for power storage device electrode, power storage device electrode, slurry for protective film, and power storage device |
EP4023687A4 (en) * | 2019-08-30 | 2023-08-23 | Zeon Corporation | Binder composition for non-aqueous secondary battery, production method for same, slurry composition for non-aqueous secondary battery electrode, non-aqueous secondary battery electrode, and non-aqueous secondary battery |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011108467A (en) * | 2009-11-17 | 2011-06-02 | Jsr Corp | Binder composition for electrochemical device electrode, slurry for the electrochemical device electrode, the electrochemical device electrode, and electrochemical device |
JP2012212537A (en) * | 2011-03-30 | 2012-11-01 | Nippon A&L Inc | Binder for battery electrode and composition for battery electrode |
JP2013098123A (en) * | 2011-11-04 | 2013-05-20 | Jsr Corp | Binder composition for electrode, slurry for electrode, electrode, and energy storage device |
JP2013161538A (en) * | 2012-02-01 | 2013-08-19 | Fujifilm Corp | Composition for secondary battery electrode, electrode mixture using the same and secondary battery |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3298960B2 (en) * | 1993-01-27 | 2002-07-08 | 株式会社ユアサコーポレーション | Battery |
WO2013146896A1 (en) * | 2012-03-28 | 2013-10-03 | 日本ゼオン株式会社 | All-solid-state secondary battery |
-
2015
- 2015-02-24 JP JP2016505067A patent/JP6593320B2/en active Active
- 2015-02-24 WO PCT/JP2015/000937 patent/WO2015129257A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011108467A (en) * | 2009-11-17 | 2011-06-02 | Jsr Corp | Binder composition for electrochemical device electrode, slurry for the electrochemical device electrode, the electrochemical device electrode, and electrochemical device |
JP2012212537A (en) * | 2011-03-30 | 2012-11-01 | Nippon A&L Inc | Binder for battery electrode and composition for battery electrode |
JP2013098123A (en) * | 2011-11-04 | 2013-05-20 | Jsr Corp | Binder composition for electrode, slurry for electrode, electrode, and energy storage device |
JP2013161538A (en) * | 2012-02-01 | 2013-08-19 | Fujifilm Corp | Composition for secondary battery electrode, electrode mixture using the same and secondary battery |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2016084364A1 (en) * | 2014-11-25 | 2017-08-31 | 日本ゼオン株式会社 | Non-aqueous secondary battery binder, non-aqueous secondary battery functional layer composition, non-aqueous secondary battery functional layer, and non-aqueous secondary battery |
WO2016084364A1 (en) * | 2014-11-25 | 2016-06-02 | 日本ゼオン株式会社 | Binder for nonaqueous secondary batteries, composition for nonaqueous secondary battery functional layers, functional layer for nonaqueous secondary batteries, and nonaqueous secondary battery |
WO2016199353A1 (en) * | 2015-06-08 | 2016-12-15 | 日本ゼオン株式会社 | Slurry composition for secondary battery negative electrode, negative electrode for secondary battery, and secondary battery |
JP2020126844A (en) * | 2015-08-28 | 2020-08-20 | Jsr株式会社 | Composition for power storage device, slurry for power storage device electrode, power storage device electrode, slurry for protective film, and power storage device |
JPWO2017061468A1 (en) * | 2015-10-05 | 2018-07-26 | 積水化学工業株式会社 | Lithium ion secondary battery |
JP2017123264A (en) * | 2016-01-07 | 2017-07-13 | 日本ゼオン株式会社 | Conductive composition for electrochemical element, composition for electrochemical element electrode, current collector with adhesive layer, and electrode for electrochemical element |
CN110462898A (en) * | 2017-03-28 | 2019-11-15 | 日本瑞翁株式会社 | Binder composition for non-aqueous secondary battery electrode, non-aqueous secondary battery slurry composition for electrode, non-aqueous secondary battery electrode and non-aqueous secondary battery and non-aqueous secondary battery electrode manufacturing method |
WO2018180472A1 (en) * | 2017-03-31 | 2018-10-04 | 日本ゼオン株式会社 | Binder composition for non-aqueous secondary battery porous membrane, slurry composition for non-aqueous secondary battery porous membrane, porous membrane for non-aqueous secondary battery, and non-aqueous secondary battery |
JPWO2018180472A1 (en) * | 2017-03-31 | 2020-02-06 | 日本ゼオン株式会社 | Binder composition for non-aqueous secondary battery porous membrane, slurry composition for non-aqueous secondary battery porous membrane, porous membrane for non-aqueous secondary battery, and non-aqueous secondary battery |
JP7063324B2 (en) | 2017-03-31 | 2022-05-09 | 日本ゼオン株式会社 | Binder composition for non-aqueous secondary battery porous membrane, slurry composition for non-aqueous secondary battery porous membrane, porous membrane for non-aqueous secondary battery, and non-aqueous secondary battery |
WO2019169217A3 (en) * | 2018-03-02 | 2019-10-24 | Arkema Inc. | Fluoropolymer binder coating for use in electrochemical devices |
CN112055883A (en) * | 2018-03-02 | 2020-12-08 | 阿科玛股份有限公司 | Fluoropolymer binder coatings for use in electrochemical devices |
EP4023687A4 (en) * | 2019-08-30 | 2023-08-23 | Zeon Corporation | Binder composition for non-aqueous secondary battery, production method for same, slurry composition for non-aqueous secondary battery electrode, non-aqueous secondary battery electrode, and non-aqueous secondary battery |
Also Published As
Publication number | Publication date |
---|---|
JP6593320B2 (en) | 2019-10-23 |
JPWO2015129257A1 (en) | 2017-03-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6593320B2 (en) | Slurry composition for negative electrode of lithium ion secondary battery, negative electrode for lithium ion secondary battery and lithium ion secondary battery | |
CN106463732B (en) | Binder composition for lithium ion secondary battery electrode, slurry composition, lithium ion secondary battery, and electrode for lithium ion secondary battery | |
JP6627763B2 (en) | Binder composition for secondary battery electrode, slurry composition for secondary battery electrode, electrode for secondary battery, and secondary battery | |
KR102178203B1 (en) | Slurry composition for negative electrode for lithium-ion secondary battery, negative electrode for lithium-ion secondary battery, and lithium-ion secondary battery | |
JP6007973B2 (en) | Composite particle for secondary battery negative electrode, its use and production method, and binder composition | |
JP6601413B2 (en) | Binder composition for secondary battery electrode, slurry composition for secondary battery electrode, electrode for secondary battery, and secondary battery | |
WO2015098008A1 (en) | Binder composition for negative electrode of lithium ion secondary cell, slurry composition for negative electrode of lithium ion secondary cell, negative electrode for lithium ion secondary cell, and lithium ion secondary cell | |
WO2017056466A1 (en) | Binder composition for nonaqueous secondary battery electrodes, slurry composition for nonaqueous secondary battery electrodes, electrode for nonaqueous secondary batteries, and nonaqueous secondary battery | |
WO2017170281A1 (en) | Binder composition for electrochemical element electrode, slurry composition for electrochemical element electrode, electrode for electrochemical element, and electrochemical element | |
JP6645430B2 (en) | Binder composition for secondary battery electrode, slurry composition for secondary battery electrode, electrode for secondary battery, and secondary battery | |
JP6428342B2 (en) | Binder composition for lithium ion secondary battery electrode, slurry composition for lithium ion secondary battery electrode, electrode for lithium ion secondary battery, and lithium ion secondary battery | |
KR102369485B1 (en) | Binder composition for secondary battery electrodes, slurry composition for secondary battery electrodes, electrode for secondary batteries, production method therefor, and secondary battery | |
WO2015133154A1 (en) | Binder composition for lithium ion secondary battery, slurry composition for lithium ion secondary battery electrode, slurry composition for lithium ion secondary battery porous membrane, electrode for lithium ion secondary battery, and lithium ion secondary battery | |
US10784502B2 (en) | Slurry composition for secondary battery negative electrode, negative electrode for secondary battery, and secondary battery | |
WO2015115089A1 (en) | Slurry composition for lithium ion secondary battery electrodes, electrode for lithium ion secondary batteries, and lithium ion secondary battery | |
WO2020196111A1 (en) | Slurry composition for nonaqueous secondary battery negative electrodes, negative electrode for nonaqueous secondary batteries, and nonaqueous secondary battery | |
WO2017110654A1 (en) | Binder composition for non-aqueous secondary battery electrode, slurry composition for non-aqueous secondary battery electrode, electrode for non-aqueous secondary battery, and non-aqueous secondary battery | |
JP6488592B2 (en) | Slurry composition for negative electrode of lithium ion secondary battery, negative electrode for lithium ion secondary battery and lithium ion secondary battery | |
WO2024219325A1 (en) | Binder composition for non-aqueous secondary battery electrodes, slurry composition for non-aqueous secondary battery electrodes, electrode for non-aqueous secondary batteries, and non-aqueous secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15754602 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2016505067 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15754602 Country of ref document: EP Kind code of ref document: A1 |