WO2015129099A1 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
WO2015129099A1
WO2015129099A1 PCT/JP2014/078436 JP2014078436W WO2015129099A1 WO 2015129099 A1 WO2015129099 A1 WO 2015129099A1 JP 2014078436 W JP2014078436 W JP 2014078436W WO 2015129099 A1 WO2015129099 A1 WO 2015129099A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
air conditioner
heat source
air
blower
Prior art date
Application number
PCT/JP2014/078436
Other languages
French (fr)
Japanese (ja)
Inventor
遠藤 道子
坪江 宏明
Original Assignee
日立アプライアンス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立アプライアンス株式会社 filed Critical 日立アプライアンス株式会社
Priority to US15/117,240 priority Critical patent/US20160348927A1/en
Priority to CN201480074164.7A priority patent/CN106133452B/en
Priority to EP14883758.6A priority patent/EP3112768B1/en
Publication of WO2015129099A1 publication Critical patent/WO2015129099A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/20Electric components for separate outdoor units
    • F24F1/22Arrangement or mounting thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/20Electric components for separate outdoor units
    • F24F1/24Cooling of electric components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/26Refrigerant piping
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/46Component arrangements in separate outdoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/46Component arrangements in separate outdoor units
    • F24F1/48Component arrangements in separate outdoor units characterised by air airflow, e.g. inlet or outlet airflow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/005Arrangement or mounting of control or safety devices of safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/32Responding to malfunctions or emergencies
    • F24F11/36Responding to malfunctions or emergencies to leakage of heat-exchange fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2221/00Details or features not otherwise provided for
    • F24F2221/14Details or features not otherwise provided for mounted on the ceiling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/029Control issues
    • F25B2313/0294Control issues related to the outdoor fan, e.g. controlling speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/12Inflammable refrigerants
    • F25B2400/121Inflammable refrigerants using R1234
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/22Preventing, detecting or repairing leaks of refrigeration fluids
    • F25B2500/222Detecting refrigerant leaks

Definitions

  • the present invention relates to an air conditioner, and more particularly to an air conditioner that uses a refrigerant having a low global warming potential GWP (Global Warming Potential).
  • GWP Global Warming Potential
  • Patent Document 1 a hydrocarbon-based natural refrigerant is used.
  • An air conditioner was proposed.
  • this Patent Document 1 is provided with a refrigerant leakage detection means for detecting and outputting leakage of a flammable hydrocarbon-based natural refrigerant, and when refrigerant leakage is detected by the refrigerant leakage detection means, it is leaked by a fan or the like.
  • the refrigerant is agitated and diffused to prevent the leaked refrigerant from staying and forming a combustible region.
  • Patent Document 2 a gas detector that detects the leakage of refrigerant is provided in a room in which an indoor unit is installed.
  • an alarm device provided in the indoor unit issues an alarm, and the compressor and the outdoor fan The fan is operated, the outdoor expansion valve is closed, the four-way switching valve is set to the cooling operation side, the indoor expansion valve is opened, and the refrigerant is recovered to the outdoor unit.
  • these refrigerants such as HFO1234yf and HFO1234ze are used as the refrigerant of the air conditioner
  • the vapor specific volume assuming the suction part of the compressor is about 180% of R410A in the case of HFO1234yf and about 240% of R410A in the case of HFO1234ze.
  • coolant pressure loss by the low pressure side of an air conditioner becomes large (for example, 3 times or more of R410A compared with the same conditions), and the subject that the power consumption of the compressor of an air conditioner becomes large occurs.
  • these refrigerants HFO1234yf, HFO1234ze, R32
  • slightly flammable refrigerants which are weaker than hydrocarbon refrigerants
  • An object of the present invention is to obtain an air conditioner that can avoid the risk of ignition while using a refrigerant with a low global warming potential GWP and can also reduce the number of installed refrigerant leak detectors.
  • the present invention uses a flammable refrigerant with a low global warming potential, and houses refrigeration cycle element parts such as a heat exchanger in which the refrigerant flows, electrical parts, and the like in a casing.
  • refrigeration cycle element parts such as a heat exchanger in which the refrigerant flows, electrical parts, and the like in a casing.
  • an air conditioner including a heat source unit configured to accommodate an air blower driven by an electrical component box and a motor
  • the air flow is formed by the air blower in the housing
  • the refrigeration cycle element part through which the refrigerant flows is installed in the air flow in the casing, and the electric parts such as the electric box and the motor of the blower are upstream from the refrigeration cycle element part in the air flow. It is arranged on the side.
  • Example 1 of the air conditioner of this invention It is a schematic block diagram explaining Example 1 of the air conditioner of this invention. It is a refrigerating cycle block diagram of the air conditioner shown in FIG. It is a top view which shows the ceiling embedded type heat source machine in Example 1 of this invention. It is a perspective view explaining the example of the ceiling embedded type heat source machine as a conventional air conditioner. It is a top view explaining the flow of the air in the ceiling-embedded heat source machine shown in FIG.
  • FIG. 1 is a schematic configuration diagram for explaining a first embodiment of an air conditioner of the present invention
  • FIG. 2 is a configuration diagram of a refrigeration cycle of the air conditioner shown in FIG. 1
  • FIG. It is a top view which shows a heat source machine.
  • FIGS. 1 and 2 are schematic configuration diagrams for explaining a first embodiment of an air conditioner of the present invention
  • FIG. 2 is a configuration diagram of a refrigeration cycle of the air conditioner shown in FIG. 1
  • FIG. It is a top view which shows a heat source machine.
  • FIGS. 1 is a schematic configuration diagram for explaining a first embodiment of an air conditioner of the present invention
  • FIG. 2 is a configuration diagram of a refrigeration cycle of the air conditioner shown in FIG. 1
  • FIG. It is a top view which shows a heat source machine.
  • the flammable refrigerant is a slightly flammable refrigerant (for example, a flammable refrigerant having a combustion speed of 10 cm / s or less) that is less flammable than a hydrocarbon refrigerant such as propane or isobutane.
  • a slightly flammable refrigerant for example, a flammable refrigerant having a combustion speed of 10 cm / s or less
  • a hydrocarbon refrigerant such as propane or isobutane.
  • An example of an air conditioner using HFO1234yf or HFO1234ze will be described.
  • R32 is also included as a refrigerant having a relatively small global warming potential GWP.
  • HFO1234yf or HFO1234ze is used as the refrigerant will be described.
  • the refrigerants HFO1234yf and HFO1234ze have a low density and a large volume when they are steam, so that the refrigerant pressure loss on the low pressure side increases and the power consumption of the compressor of the air conditioner increases. was there. Therefore, in this embodiment, in order to reduce the refrigerant pressure loss on the low pressure side, the heat source unit is installed on the ceiling of the building so that the distance between the heat source unit and the indoor unit (that is, the length of the refrigerant pipe) can be shortened.
  • This is a ceiling-embedded heat source device that is installed in a room or the like and performs heat exchange by introducing outdoor air. The specific configuration will be described below with reference to FIG.
  • FIG. 1 is a schematic configuration diagram illustrating an example of an installation state of the air conditioner of the present embodiment having a ceiling-embedded heat source device.
  • reference numeral 1 denotes a building
  • 2 denotes a housing that houses a refrigeration cycle element component such as a heat exchanger through which the refrigerant flows, an electrical component box containing electrical components, and a blower driven by a motor.
  • the heat source machine configured as described above is a so-called ceiling-embedded heat source machine in which the heat source machine 2 is installed on the ceiling (back of the ceiling) 1 a in the building 1.
  • 3 is an indoor unit that air-conditions the room 1b, and the indoor unit 3 and the heat source unit 2 are connected by refrigerant pipes 4 and 5 (4: gas side refrigerant pipe, 5: liquid side refrigerant pipe).
  • the heat source unit 2 sucks outdoor air as indicated by an arrow 6, and heat is exchanged between the outdoor air and the refrigerant in a heat exchanger provided in the heat source unit 2. As shown by 7, it is configured to blow out to the outside.
  • the indoor unit 3 sucks the air in the room 1b as indicated by an arrow 8, and heat is exchanged between the indoor air and the refrigerant in the heat exchanger provided in the indoor unit 3, and the cooled air ( By blowing out air (during cooling) or heated air (during heating) into the room as indicated by an arrow 9, the room 1b where the occupant 10 is present is air-conditioned.
  • the heat source unit 2 is often installed as an outdoor unit on the roof of the building 1 or outside the wall of the building 1, but the ceiling part (distance from the indoor unit 3 is closer than the roof or the outdoor building)
  • the refrigerant pipes 4 and 5 that connect the indoor unit 3 and the heat source unit 2 can be made shorter than the outdoor heat source unit by installing the ceiling unit 1a on the ceiling 1a as the ceiling embedded heat source unit 2.
  • the length of the refrigerant pipes 4 and 5 connecting the heat source unit 2 and the indoor unit 3 is set to 10 m or less, and thus the refrigerant pipes 4 and 5 can be shortened.
  • the refrigerant pressure loss on the low pressure side of the compressor of the air conditioner can be reduced.
  • the refrigerant HFO1234yf and HFO1234ze have low density and large volume when they are vapors, so that the refrigerant pressure loss on the low pressure side tends to increase. Since the refrigerant pressure loss can be reduced, the power consumption of the compressor can be reduced, and even when HFO1234yf or HFO1234ze, which are refrigerants having a low global warming potential, is used, an air conditioner with high efficiency can be obtained.
  • the heat source device 2 is described as being in a state of being in direct contact with the air outside the building 1.
  • the outside air may be configured to be introduced into the heat source unit 2 through an air duct. If comprised in this way, it will become possible to comprise easily so that the length of the refrigerant
  • FIG. 2 is a configuration diagram of the refrigeration cycle of the air conditioner shown in FIG. 2 is a heat source unit, and 3 is an indoor unit.
  • the heat source unit 2 and the indoor unit 3 are connected by a gas side refrigerant pipe (gas side connection pipe) 4 and a liquid side refrigerant pipe (liquid side connection pipe) 5.
  • a compressor 20, a four-way switching valve 21, a heat source-side heat exchanger 22, and an expansion device 23 are sequentially connected by a refrigerant pipe.
  • Reference numeral 24 denotes an air blower for sucking outdoor air from the outdoor part of the building and blowing it out to the heat source side heat exchanger 22.
  • the heat source side heat exchanger 22 exchanges heat between the sucked outdoor air and the refrigerant flowing through the refrigerant piping of the heat exchanger 22, thereby condensing (cooling) or evaporating (heating) the refrigerant.
  • the indoor unit 3 is configured by connecting an indoor heat exchanger 30 and an expansion device 31 with a refrigerant pipe.
  • 32 is an air blower for sucking indoor air and blowing it out to the indoor heat exchanger 30.
  • heat exchange is performed between the sucked indoor air and the refrigerant flowing in the refrigerant pipe of the heat exchanger 30, and the refrigerant is evaporated (during cooling) or condensed (during heating),
  • the room can be air-conditioned by supplying cold air or hot air into the room.
  • a refrigerant leak detector (refrigerant leak detection means) 33 is installed in the indoor unit 3 so that when a refrigerant leak occurs in the indoor unit 3, this can be detected immediately.
  • the refrigerant leakage detector 33 may be installed outside the indoor unit 3 or in a room where the indoor unit 3 is installed.
  • the heat source unit 2 and the indoor unit 3 are connected to each other by a gas side refrigerant pipe 4 and a liquid side refrigerant pipe 5.
  • the gas side refrigerant pipe 4 includes a gas side blocking valve 25, and the liquid side refrigerant pipe 5 includes A liquid side blocking valve 26 is provided.
  • these stop valves 25 and 26 are provided on the heat source unit 2 side.
  • the arrow A in the heat source device 2 indicates the flow of the refrigerant during the heating operation, and the arrow B indicates the flow of the refrigerant during the cooling operation.
  • FIG. 4 is a perspective view for explaining an example of a ceiling-embedded heat source device as a conventional air conditioner
  • FIG. 5 is a plan view for explaining the flow of air in the ceiling-embedded heat source device shown in FIG. is there.
  • 2 is a conventional ceiling-embedded heat source device corresponding to the ceiling-embedded heat source device 2 shown in FIG.
  • Reference numeral 2a denotes a housing, and the inside of the housing 2a is divided into an upstream space 2c and a downstream space 2d by a partition plate 2b.
  • 2e is an air inlet for introducing outdoor air (outside air) into the upstream space 2c
  • 2f is an air outlet for blowing out the heat exchanged from the downstream space 2d to the outside of the building.
  • a heat exchanger (heat source side heat exchanger) 22 for exchanging heat between the refrigerant flowing in the heat transfer tube and the outdoor air introduced from the air suction port 2e is sucked into the upstream space 2c.
  • a blower 24 for supplying outdoor air to the heat exchanger 22 a compressor 20 for compressing the refrigerant, a liquid receiver 27 for storing excess refrigerant condensed in the heat exchanger 22, and the like.
  • Reference numeral 24a denotes a motor for driving the blower 24.
  • the downstream space 2d accommodates an electrical component box 28 that houses electrical components such as a control board on which electronic components are mounted and a terminal block.
  • R407C, R410A, or the like is used as the refrigerant.
  • the compressor 20, the heat exchanger 22, and the liquid receiver 27 are refrigeration cycle element components through which a refrigerant flows.
  • the four-way switching valve 21 and the expansion device 23 as shown in FIG. 2 are also refrigeration cycle component parts through which refrigerant flows.
  • an arrow C is an air flow in the housing 2 a of the heat source device 2.
  • refrigeration cycle elements such as the compressor 20, the heat exchanger 22, and the liquid receiver 27 are disposed upstream of the air flow C formed by the blower 24. Components are installed, and the air blower 24 and the electrical component box 28 are installed downstream of the air flow C. For this reason, when the refrigerant leaks from any of these refrigeration cycle component parts, the leaked refrigerant flows along the air flow C.
  • refrigerant such as HFO1234yf or HFO1234ze having a small global warming potential GWP or a refrigerant such as R32 having a relatively small GWP
  • these refrigerants are slightly flammable. It rides on the air flow C and comes into contact with the motor 24a of the blower 24 and the electrical component box 28. Since electrical parts are housed in the electrical component box 28, it has been found that there is a risk of combustion if combustible refrigerant is present around the electrical parts when heat generation or current leakage occurs. The same applies to the motor 24a of the blower 24.
  • the equipment arrangement inside the ceiling-embedded heat source unit 2 is configured as shown in FIG.
  • the same reference numerals are given to the components corresponding to those in the conventional ceiling-embedded heat source unit shown in FIGS. Only will be described.
  • the outdoor air suction air flow indicated by the white arrow 6 flows into the housing 2a from the air suction port 2e, and the air As shown by the flow C, the air flows in the housing 2a, is blown out from the air outlet 2f, and is discharged outside the building.
  • the refrigeration cycle element parts through which refrigerant such as the compressor 20, the heat exchanger 22 and the liquid receiver 27 flow are arranged in the downstream space 2d in the housing 2a, and the blower 24 and the electrical component box 28 are It arrange
  • the refrigeration cycle component is located downstream in the air flow, and the electrical component box 28 and the blower 24 are installed upstream of the refrigeration cycle component. Therefore, even if a refrigerant leak occurs from any of the refrigeration cycle element parts, the leaked refrigerant does not contact the electrical component box 28 or the air blower 24 and flows into the air flow C. It can be ridden outside the building. Therefore, even if a slightly flammable or combustible refrigerant leaks from the refrigeration cycle element parts, the refrigerant can become an ignition source, such as the electric parts in the electric component box 28 and the motor 24a of the blower 24. Contact with parts can be prevented, and fear of combustion can be avoided.
  • HFO1234yf, HFO1234ze, etc. which are slightly flammable refrigerants, are used, and the heat source machine is a ceiling-embedded heat source machine.
  • the heat source machine is a ceiling-embedded heat source machine.
  • the electrical component box 28 and the air blower 24 are installed upstream of the refrigeration cycle element component in order to deal with such problems.
  • the indoor unit since the indoor unit includes the refrigerant leakage detector 33, it is possible to avoid fear of occurrence of combustion in the room and prevention of oxygen deficiency. That is, in this embodiment, as shown in FIG. 2, since the refrigerant detector 33 is provided in the indoor unit 3, if refrigerant leakage occurs on the indoor unit 3 side, this is detected by the refrigerant detector. It is possible to prevent the occurrence of combustion and oxygen deficiency due to accumulation of the slightly flammable refrigerant in the indoor unit 3 or the indoor 1b by issuing an alarm or the like.
  • the refrigerant leak detector is arranged on the heat source machine side because the refrigerant leak detector from the heat source machine side is configured to prevent combustion and oxygen deficiency. There is no need to provide it. Therefore, the number of expensive refrigerant detectors installed can be reduced, and an inexpensive air conditioner can be obtained accordingly. That is, in the present embodiment, the heat source device 2 has the configuration described with reference to FIG. 3, and therefore, it is not necessary to install the refrigerant detector on the heat source device 2 side, so the number of expensive refrigerant detectors installed can be reduced. Therefore, an inexpensive air conditioner can be realized while suppressing cost increase.
  • HFO1234yf and HFO1234ze which are refrigerants with a low global warming potential GWP, are used as refrigerants for the air conditioner, so that the refrigerant pressure loss on the low pressure side of the air conditioner tends to increase.
  • the heat source unit 2 is a ceiling-embedded heat source unit in this embodiment, the length of the refrigerant pipe connecting the indoor unit and the heat source unit is short, for example, 10 m or less. it can.
  • the air blower 24 of the ceiling-embedded heat source unit 2 is configured to be driven periodically even when the air conditioner is not operating. In other words, even when the air conditioner is stopped, the air blower 24 is rotated periodically by using a timer or the like, for example, once to several times a day, several seconds to several minutes, and thus the heat source machine. The air flow C is generated in the second housing 2a. As a result, even if a refrigerant leak occurs while the air conditioner is stopped, the leaked refrigerant can be periodically discharged outside the building, so that the leaked refrigerant gradually accumulates in the housing 2a and there is a risk of combustion. The increase can be avoided.
  • the blower 24 is periodically driven even when the air conditioner is stopped, the leaked refrigerant stays in the heat source unit 2 and the concentration thereof is reduced. Since it is possible to prevent the leaked refrigerant from entering the room 1b, it is possible to reliably avoid the occurrence of combustion and oxygen deficiency due to leakage of the slightly flammable refrigerant.
  • the use of a slightly flammable refrigerant having a low global warming potential GWP can avoid the risk of ignition, and the number of installed refrigerant leak detectors can be reduced. Can be realized.
  • the refrigerant pressure loss on the low pressure side of the air conditioner can be reduced, an effect of obtaining an efficient air conditioner can be obtained.
  • this invention is not limited to an above-described Example, Various modifications are included.
  • the example of using the slightly-flammable HFO1234yf or HFO1234ze having a small global warming potential GWP as the refrigerant has been described.
  • the refrigerant having a relatively small GWP and using the slightly-flammable R32 or the like The same applies to the case of using other refrigerants or mixed refrigerants having properties.
  • the heat source unit is a ceiling-embedded heat source unit has been described, but the heat source unit is not limited to the ceiling-embedded type, and the technical concept of the present invention is applicable to an outdoor unit installed outside a building.
  • the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described.
  • 1 Building, 1a: Ceiling (back of ceiling), 1b: Indoor, 2: Ceiling embedded heat source machine, 2a: housing, 2b: partition plate, 2c: upstream space, 2d: downstream space, 2e: Air inlet, 2f: Air outlet, 3: Indoor unit 4: Gas side refrigerant piping, 5: Liquid side refrigerant piping, 6: Air flow into the heat source machine, 7: Air flow from the heat source machine, 8: Suction air flow of indoor unit, 9: Blowing air flow of indoor unit, 10: Attendees, 20: Compressor, 21: Four-way selector valve, 22: heat source side heat exchanger, 23: expansion device, 24: blower, 24a: motor, 25: Gas side blocking valve, 26: Liquid side blocking valve, 27: Liquid receiver, 28: Electrical box 30: Indoor heat exchanger, 31: Indoor expansion device, 32: Blower, 33: Refrigerant detector (refrigerant detection means), A: Refrigerant flow during heating operation, B: Ref

Abstract

An air conditioner able to avoid the risk of fire and able to have a reduced number of coolant leakage detectors while using a coolant having a low global warming potential (GWP) is obtained. The air conditioner is provided with a heat source (2) configured so as to use a combustible coolant having a low global warming potential, and configured by housing inside a case (2a) freeze cycle components such as a heat exchanger (22) in which the coolant flows, an electric part box (28) in which electric parts and the like are housed, and a blower (24) driven by a motor (24a). Also, in the case, airflow is formed by the blower, and the freeze cycle components in which the coolant flows are arranged in the airflow in the case, and the electric box and electric parts such as the motor of the blower are arranged upstream from the freeze cycle components in the airflow.

Description

空気調和機Air conditioner
 本発明は空気調和機に関し、特に地球温暖化係数GWP(Global Warming Potential)の小さい冷媒を使用する空気調和機に関する。 The present invention relates to an air conditioner, and more particularly to an air conditioner that uses a refrigerant having a low global warming potential GWP (Global Warming Potential).
 最近、地球温暖化を防止する観点から地球温暖化係数GWPの小さい冷媒の使用が検討されており、特開平11-37619号公報(特許文献1)のものでは、炭化水素系の自然冷媒を用いた空気調和機が提案されている。また、この特許文献1には、可燃性である炭化水素系の自然冷媒の漏洩を検知出力する冷媒漏洩検出手段を設け、該冷媒漏洩検出手段により冷媒漏洩が検知された場合、ファンなどにより漏洩冷媒に攪拌作用を付与してこれを拡散させ、漏洩冷媒が滞留して可燃領域を形成するのを防止するようにしている。 Recently, from the viewpoint of preventing global warming, the use of a refrigerant having a low global warming potential GWP has been studied. In JP-A-11-37619 (Patent Document 1), a hydrocarbon-based natural refrigerant is used. An air conditioner was proposed. Further, this Patent Document 1 is provided with a refrigerant leakage detection means for detecting and outputting leakage of a flammable hydrocarbon-based natural refrigerant, and when refrigerant leakage is detected by the refrigerant leakage detection means, it is leaked by a fan or the like. The refrigerant is agitated and diffused to prevent the leaked refrigerant from staying and forming a combustible region.
 また、冷媒漏洩対策に配慮した従来の空気調和機としては、特開2002-61996号公報(特許文献2)に記載のものがある。この特許文献2のものでは、室内機の設置された部屋に冷媒の漏洩を検知するガス検知器を設け、冷媒が漏洩すると室内機に設けた警報装置が警報を発すると共に、圧縮機並びに室外送風ファンを運転し、室外膨張弁を閉じ、四方切換弁を冷房運転側とし、室内膨張弁を開放して冷媒を室外機へ回収するようにしている。 Further, as a conventional air conditioner taking into consideration countermeasures against refrigerant leakage, there is one described in JP-A-2002-61996 (Patent Document 2). In this Patent Document 2, a gas detector that detects the leakage of refrigerant is provided in a room in which an indoor unit is installed. When the refrigerant leaks, an alarm device provided in the indoor unit issues an alarm, and the compressor and the outdoor fan The fan is operated, the outdoor expansion valve is closed, the four-way switching valve is set to the cooling operation side, the indoor expansion valve is opened, and the refrigerant is recovered to the outdoor unit.
特開2002-61996号公報Japanese Patent Laid-Open No. 2002-61996 特開平11-37619号公報Japanese Patent Laid-Open No. 11-37619
 上記特許文献1のものでは、空気調和機用の冷媒として炭化水素系の自然冷媒を使用しているので地球温暖化係数GWPは小さくなるが、炭化水素系の自然冷媒は燃焼性が強く、空気調和機用の冷媒としては利用し難い。 In the thing of the said patent document 1, although the hydrocarbon-type natural refrigerant | coolant is used as a refrigerant | coolant for air conditioners, global warming potential GWP becomes small, However, A hydrocarbon-type natural refrigerant | coolant is strong in combustibility, and air It is difficult to use as a refrigerant for a harmony machine.
 また、上記特許文献2のものは、地球温暖化係数GWPの小さい冷媒の使用については配慮されていない。 In the above-mentioned Patent Document 2, consideration is not given to the use of a refrigerant having a low global warming potential GWP.
 地球温暖化係数GWPの小さい冷媒として、最近、HFO1234yf(GWP=4)やHFO1234ze(GWP=6)などの冷媒が注目されている。これらHFO1234yfやHFO1234zeなどの冷媒を空気調和機の冷媒として利用する場合、これら冷媒HFO1234yfやHFO1234zeは蒸気であるときの密度が低く、体積が大きくなるという課題がある。例えば、冷媒R410Aと比較すると、圧縮機の吸入部を想定した蒸気比体積は、HFO1234yfの場合にはR410Aの180%程度、HFO1234zeの場合にはR410Aの240%程度と大きくなる。このため、空気調和機の低圧側での冷媒圧力損失が大きくなり(同条件で比較しR410Aの例えば3倍以上)、空気調和機の圧縮機の消費電力が大きくなる課題がある。 Recently, refrigerants such as HFO1234yf (GWP = 4) and HFO1234ze (GWP = 6) have attracted attention as refrigerants having a low global warming potential GWP. When these refrigerants such as HFO1234yf and HFO1234ze are used as the refrigerant of the air conditioner, there is a problem that these refrigerants HFO1234yf and HFO1234ze have a low density and a large volume when they are steam. For example, in comparison with the refrigerant R410A, the vapor specific volume assuming the suction part of the compressor is about 180% of R410A in the case of HFO1234yf and about 240% of R410A in the case of HFO1234ze. For this reason, the refrigerant | coolant pressure loss by the low pressure side of an air conditioner becomes large (for example, 3 times or more of R410A compared with the same conditions), and the subject that the power consumption of the compressor of an air conditioner becomes large occurs.
 また、地球温暖化係数GWPが比較的小さい冷媒としてはR32(GWP=675)も検討されている。 
 しかし、これらの冷媒(HFO1234yf、HFO1234ze、R32)は、何れも燃焼性は弱いものの可燃性の冷媒(以下、炭化水素系の冷媒よりも弱い可燃性の冷媒を微燃性の冷媒という)である。
Further, R32 (GWP = 675) has been studied as a refrigerant having a relatively small global warming potential GWP.
However, these refrigerants (HFO1234yf, HFO1234ze, R32) are all flammable refrigerants (hereinafter referred to as slightly flammable refrigerants, which are weaker than hydrocarbon refrigerants) although they are weakly combustible. .
 上記特許文献1及び2のものでは、冷媒漏洩を検知して、冷媒漏洩があった場合の対応策を講じているが、可燃性或いは微燃性冷媒の漏洩を検知してその発火等を防止するには室外機側と室内機側の両方に冷媒漏洩検知器を設ける必要があり、コストアップになるという課題もある。 In the above-mentioned Patent Documents 1 and 2, the refrigerant leakage is detected and countermeasures are taken when there is a refrigerant leakage, but the leakage of the flammable or slightly flammable refrigerant is detected to prevent the ignition thereof. In order to do so, it is necessary to provide refrigerant leakage detectors on both the outdoor unit side and the indoor unit side, which raises the problem of increased costs.
 本発明の目的は、地球温暖化係数GWPの小さい冷媒を使用しつつ、発火の危険性を回避でき、しかも冷媒漏洩検知器の設置個数も低減できる空気調和機を得ることにある。 An object of the present invention is to obtain an air conditioner that can avoid the risk of ignition while using a refrigerant with a low global warming potential GWP and can also reduce the number of installed refrigerant leak detectors.
 上記目的を達成するため、本発明は、地球温暖化係数が小さく可燃性のある冷媒を用いると共に、筐体内に、前記冷媒が流れる熱交換器などの冷凍サイクル要素部品、電気部品などを収納した電気品箱及びモータで駆動される送風装置を収容して構成された熱源機を備える空気調和機において、前記筐体内には前記送風装置により空気の流れが形成されるように構成すると共に、前記冷媒が流れる冷凍サイクル要素部品は、前記筐体内の空気の流れの中に設置され、前記電気品箱及び前記送風装置のモータなどの電気部品は、前記空気の流れにおける前記冷凍サイクル要素部品より上流側に配置されていることを特徴とする。 In order to achieve the above object, the present invention uses a flammable refrigerant with a low global warming potential, and houses refrigeration cycle element parts such as a heat exchanger in which the refrigerant flows, electrical parts, and the like in a casing. In an air conditioner including a heat source unit configured to accommodate an air blower driven by an electrical component box and a motor, the air flow is formed by the air blower in the housing, and The refrigeration cycle element part through which the refrigerant flows is installed in the air flow in the casing, and the electric parts such as the electric box and the motor of the blower are upstream from the refrigeration cycle element part in the air flow. It is arranged on the side.
 本発明によれば、地球温暖化係数GWPの小さい冷媒を使用しつつ、発火の危険性を回避でき、しかも冷媒漏洩検知器の設置個数も低減できる空気調和機を得ることができる効果がある。 According to the present invention, there is an effect that it is possible to obtain an air conditioner that can avoid the risk of ignition while using a refrigerant having a small global warming potential GWP and can also reduce the number of installed refrigerant leak detectors.
本発明の空気調和機の実施例1を説明する概略構成図である。It is a schematic block diagram explaining Example 1 of the air conditioner of this invention. 図1に示す空気調和機の冷凍サイクル構成図である。It is a refrigerating cycle block diagram of the air conditioner shown in FIG. 本発明の実施例1における天井埋込型熱源機を示す平面図である。It is a top view which shows the ceiling embedded type heat source machine in Example 1 of this invention. 従来の空気調和機としての天井埋込型熱源機の例を説明する斜視図である。It is a perspective view explaining the example of the ceiling embedded type heat source machine as a conventional air conditioner. 図4に示す天井埋込型熱源機での空気の流れを説明する平面図である。It is a top view explaining the flow of the air in the ceiling-embedded heat source machine shown in FIG.
 以下、本発明の空気調和機の具体的実施例を図面を用いて説明する。なお、各図において、同一符号を付した部分は同一或いは相当する部分を示している。 Hereinafter, specific examples of the air conditioner of the present invention will be described with reference to the drawings. Note that, in each drawing, the portions denoted by the same reference numerals indicate the same or corresponding portions.
 本発明の空気調和機の実施例1を図1~図3により説明する。図1は本発明の空気調和機の実施例1を説明する概略構成図、図2は図1に示す空気調和機の冷凍サイクル構成図、図3は本発明の実施例1における天井埋込型熱源機を示す平面図である。なお、比較のために従来の空気調和機の例も図4及び図5を用いて説明する。 Embodiment 1 of an air conditioner of the present invention will be described with reference to FIGS. FIG. 1 is a schematic configuration diagram for explaining a first embodiment of an air conditioner of the present invention, FIG. 2 is a configuration diagram of a refrigeration cycle of the air conditioner shown in FIG. 1, and FIG. It is a top view which shows a heat source machine. For comparison, an example of a conventional air conditioner will be described with reference to FIGS.
 本実施例では、可燃性冷媒であるプロパンやイソブタンのような炭化水素系の冷媒よりも燃焼性が弱い微燃性の冷媒(例えば、燃焼速度が10cm/s以下の微燃性冷媒)であるHFO1234yfまたはHFO1234zeを使用した空気調和機の例を説明する。なお、地球温暖化係数GWPが比較的小さい冷媒としては上述したようにR32も含まれるが、本実施例では、冷媒としてHFO1234yfまたはHFO1234zeを使用した例を説明する。 In this embodiment, the flammable refrigerant is a slightly flammable refrigerant (for example, a flammable refrigerant having a combustion speed of 10 cm / s or less) that is less flammable than a hydrocarbon refrigerant such as propane or isobutane. An example of an air conditioner using HFO1234yf or HFO1234ze will be described. As described above, R32 is also included as a refrigerant having a relatively small global warming potential GWP. In this embodiment, an example in which HFO1234yf or HFO1234ze is used as the refrigerant will be described.
 冷媒HFO1234yfやHFO1234zeは、上述したように、蒸気であるときの密度が低く、体積が大きくなるため、低圧側での冷媒圧力損失が大きくなり、空気調和機の圧縮機の消費電力が大きくなる課題があった。そこで、本実施例では、低圧側での冷媒圧力損失を低減するため、熱源機と室内機との距離(即ち、冷媒配管の長さ)を短くできるように、熱源機を、建屋内の天井部などに設置され且つ室外空気を導入して熱交換を行う天井埋込型熱源機としている。以下、図1によりこの具体的構成を説明する。 As described above, the refrigerants HFO1234yf and HFO1234ze have a low density and a large volume when they are steam, so that the refrigerant pressure loss on the low pressure side increases and the power consumption of the compressor of the air conditioner increases. was there. Therefore, in this embodiment, in order to reduce the refrigerant pressure loss on the low pressure side, the heat source unit is installed on the ceiling of the building so that the distance between the heat source unit and the indoor unit (that is, the length of the refrigerant pipe) can be shortened. This is a ceiling-embedded heat source device that is installed in a room or the like and performs heat exchange by introducing outdoor air. The specific configuration will be described below with reference to FIG.
 図1は、天井埋込型熱源機を持つ本実施例の空気調和機の設置状態の例を説明する概略構成図である。図1において、1は建屋、2は筐体内に、前記冷媒が流れる熱交換器などの冷凍サイクル要素部品、電気部品などを収納した電気品箱及びモータで駆動される送風装置などを収容して構成された熱源機で、本実施例では、この熱源機2を建屋1内の天井部(天井裏)1aに設置したいわゆる天井埋込型熱源機としている。3は室内1bを空調する室内機で、この室内機3と前記熱源機2とは冷媒配管4,5(4:ガス側冷媒配管、5:液側冷媒配管)で接続されている。 FIG. 1 is a schematic configuration diagram illustrating an example of an installation state of the air conditioner of the present embodiment having a ceiling-embedded heat source device. In FIG. 1, reference numeral 1 denotes a building, and 2 denotes a housing that houses a refrigeration cycle element component such as a heat exchanger through which the refrigerant flows, an electrical component box containing electrical components, and a blower driven by a motor. In the present embodiment, the heat source machine configured as described above is a so-called ceiling-embedded heat source machine in which the heat source machine 2 is installed on the ceiling (back of the ceiling) 1 a in the building 1. 3 is an indoor unit that air-conditions the room 1b, and the indoor unit 3 and the heat source unit 2 are connected by refrigerant pipes 4 and 5 (4: gas side refrigerant pipe, 5: liquid side refrigerant pipe).
 なお、前記熱源機2は、矢印6で示すように室外空気を吸い込み、熱源機2内に設けられた熱交換器で、室外空気と冷媒とを熱交換させ、この熱交換後の空気を矢印7で示すように室外に吹き出すように構成している。 The heat source unit 2 sucks outdoor air as indicated by an arrow 6, and heat is exchanged between the outdoor air and the refrigerant in a heat exchanger provided in the heat source unit 2. As shown by 7, it is configured to blow out to the outside.
 前記室内機3は矢印8で示すように室内1bの空気を吸い込み、室内機3内設けられた熱交換器で、室内空気と冷媒とを熱交換させ、この熱交換後の冷却された空気(冷房時)或いは加熱された空気(暖房時)を矢印9で示すように室内に吹き出すことで、在室者10のいる室内1bの空調を行う。 The indoor unit 3 sucks the air in the room 1b as indicated by an arrow 8, and heat is exchanged between the indoor air and the refrigerant in the heat exchanger provided in the indoor unit 3, and the cooled air ( By blowing out air (during cooling) or heated air (during heating) into the room as indicated by an arrow 9, the room 1b where the occupant 10 is present is air-conditioned.
 一般的には、熱源機2は室外機として建屋1の屋上或いは建屋1の壁の外などに設置されることが多いが、屋上や建屋外よりも室内機3からの距離が近い天井部(本実施例では天井裏1aに、天井埋込型熱源機2として設置することにより、室内機3と熱源機2を接続する冷媒配管4,5を室外設置の熱源機よりも短くすることができる。本実施例では、前記熱源機2と前記室内機3を接続する冷媒配管4,5の長さを10m以下となるように構成している。このように前記冷媒配管4,5を短くできることで、空気調和機の圧縮機の低圧側での冷媒圧力損失を低減することができる。 In general, the heat source unit 2 is often installed as an outdoor unit on the roof of the building 1 or outside the wall of the building 1, but the ceiling part (distance from the indoor unit 3 is closer than the roof or the outdoor building) In the present embodiment, the refrigerant pipes 4 and 5 that connect the indoor unit 3 and the heat source unit 2 can be made shorter than the outdoor heat source unit by installing the ceiling unit 1a on the ceiling 1a as the ceiling embedded heat source unit 2. In this embodiment, the length of the refrigerant pipes 4 and 5 connecting the heat source unit 2 and the indoor unit 3 is set to 10 m or less, and thus the refrigerant pipes 4 and 5 can be shortened. Thus, the refrigerant pressure loss on the low pressure side of the compressor of the air conditioner can be reduced.
 即ち、冷媒HFO1234yfやHFO1234zeは、蒸気であるときの密度が低く、体積が大きくなるため、低圧側での冷媒圧力損失が大きくなり易いが、本実施例のように構成することにより、低圧側の冷媒圧力損失を低減できるから、圧縮機の消費電力を低減することができ、地球温暖化係数の低い冷媒であるHFO1234yfやHFO1234zeを使用しても効率の高い空気調和機を得ることができる。 That is, the refrigerant HFO1234yf and HFO1234ze have low density and large volume when they are vapors, so that the refrigerant pressure loss on the low pressure side tends to increase. Since the refrigerant pressure loss can be reduced, the power consumption of the compressor can be reduced, and even when HFO1234yf or HFO1234ze, which are refrigerants having a low global warming potential, is used, an air conditioner with high efficiency can be obtained.
 なお、図1に示す実施例は、熱源機2が直接建屋1の外の空気と接している状態のもので説明したが、室内機3との距離をより短くするなどの理由で、熱源機2を建屋内部に設けることも考えられる。このような場合、熱源機2は直接建屋外の空気と接していないため、空気ダクトを介して外部の空気を前記熱源機2に導入するように構成すれば良い。このように構成すれば、前記熱源機2と前記室内機3を接続する冷媒配管4,5の長さを10m以下となるように構成することが容易に可能となり、冷媒としてHFO1234yfやHFO1234zeを使用した場合でも低圧側の冷媒圧力損失を容易に低減できる。 In the embodiment shown in FIG. 1, the heat source device 2 is described as being in a state of being in direct contact with the air outside the building 1. However, for the reason of shortening the distance from the indoor unit 3, etc. It is also possible to provide 2 in the building. In such a case, since the heat source unit 2 is not in direct contact with the air outside the building, the outside air may be configured to be introduced into the heat source unit 2 through an air duct. If comprised in this way, it will become possible to comprise easily so that the length of the refrigerant | coolant piping 4 and 5 which connect the said heat-source equipment 2 and the said indoor unit 3 may be 10 m or less, and HFO1234yf and HFO1234ze are used as a refrigerant | coolant. Even in this case, the refrigerant pressure loss on the low pressure side can be easily reduced.
 図2は図1に示す空気調和機の冷凍サイクル構成図である。2は熱源機、3は室内機で、これら熱源機2と室内機3とは、ガス側冷媒配管(ガス側接続配管)4と液側冷媒配管(液側接続配管)5により接続されている。 
 前記熱源機2は、圧縮機20、四方切換弁21、熱源側の熱交換器22、膨張装置23が順次冷媒配管で接続されている。24は建屋外部から室外空気を吸い込んで前記熱源側熱交換器22に吹き出すための送風装置である。前記熱源側熱交換器22では、吸い込んだ室外空気と熱交換器22の冷媒配管内を流れる冷媒とを熱交換させ、これにより冷媒を凝縮(冷房時)させたり蒸発(暖房時)させる。
FIG. 2 is a configuration diagram of the refrigeration cycle of the air conditioner shown in FIG. 2 is a heat source unit, and 3 is an indoor unit. The heat source unit 2 and the indoor unit 3 are connected by a gas side refrigerant pipe (gas side connection pipe) 4 and a liquid side refrigerant pipe (liquid side connection pipe) 5. .
In the heat source unit 2, a compressor 20, a four-way switching valve 21, a heat source-side heat exchanger 22, and an expansion device 23 are sequentially connected by a refrigerant pipe. Reference numeral 24 denotes an air blower for sucking outdoor air from the outdoor part of the building and blowing it out to the heat source side heat exchanger 22. The heat source side heat exchanger 22 exchanges heat between the sucked outdoor air and the refrigerant flowing through the refrigerant piping of the heat exchanger 22, thereby condensing (cooling) or evaporating (heating) the refrigerant.
 前記室内機3は、室内側の熱交換器30と膨張装置31とが冷媒配管で接続されて構成されている。32は室内の空気を吸い込んで前記室内側熱交換器30に吹き出すための送風装置である。前記室内側熱交換器30では、吸い込んだ室内空気と熱交換器30の冷媒配管内を流れる冷媒とを熱交換させ、冷媒を蒸発(冷房時)させたり、凝縮(暖房時)させることで、冷風や温風を室内に供給して室内を空調することができるようになっている。 The indoor unit 3 is configured by connecting an indoor heat exchanger 30 and an expansion device 31 with a refrigerant pipe. 32 is an air blower for sucking indoor air and blowing it out to the indoor heat exchanger 30. In the indoor heat exchanger 30, heat exchange is performed between the sucked indoor air and the refrigerant flowing in the refrigerant pipe of the heat exchanger 30, and the refrigerant is evaporated (during cooling) or condensed (during heating), The room can be air-conditioned by supplying cold air or hot air into the room.
 なお、本実施例では、室内機3内に冷媒漏洩検知器(冷媒漏洩検知手段)33を設置しており、室内機3内で冷媒漏洩が発生するとこれを即座に検知できるようにしている。この冷媒漏洩検知器33は室内機3の外部或いは室内機3を設置している室内に設置するようにしても良い。 In the present embodiment, a refrigerant leak detector (refrigerant leak detection means) 33 is installed in the indoor unit 3 so that when a refrigerant leak occurs in the indoor unit 3, this can be detected immediately. The refrigerant leakage detector 33 may be installed outside the indoor unit 3 or in a room where the indoor unit 3 is installed.
 前記熱源機2と前記室内機3とはガス側冷媒配管4及び液側冷媒配管5により互いに接続されており、前記ガス側冷媒配管4にはガス側阻止弁25、前記液側冷媒配管5には液側阻止弁26がそれぞれ設けられている。通常、これらの阻止弁25,26は熱源機2側に設けられている。 
 なお、前記熱源機2における矢印Aは暖房運転時の冷媒の流れを示し、矢印Bは冷房運転時の冷媒の流れを示している。
The heat source unit 2 and the indoor unit 3 are connected to each other by a gas side refrigerant pipe 4 and a liquid side refrigerant pipe 5. The gas side refrigerant pipe 4 includes a gas side blocking valve 25, and the liquid side refrigerant pipe 5 includes A liquid side blocking valve 26 is provided. Usually, these stop valves 25 and 26 are provided on the heat source unit 2 side.
The arrow A in the heat source device 2 indicates the flow of the refrigerant during the heating operation, and the arrow B indicates the flow of the refrigerant during the cooling operation.
 次に、前記熱源機2の構成を図3により説明するが、その前に、従来の天井埋込型熱源機の構成を、比較のために、図4及び図5により説明する。 
 図4は従来の空気調和機としての天井埋込型の熱源機の例を説明する斜視図、図5は図4に示す天井埋込型の熱源機での空気の流れを説明する平面図である。
Next, the configuration of the heat source unit 2 will be described with reference to FIG. 3, but before that, the configuration of a conventional ceiling-embedded heat source unit will be described with reference to FIGS. 4 and 5 for comparison.
4 is a perspective view for explaining an example of a ceiling-embedded heat source device as a conventional air conditioner, and FIG. 5 is a plan view for explaining the flow of air in the ceiling-embedded heat source device shown in FIG. is there.
 図4において、2は図1に示す天井埋込型熱源機2に相当する従来の天井埋込型熱源機である。2aは筐体で、この筐体2a内は仕切り板2bにより上流側の空間2cと下流側の空間2dに仕切られている。2eは前記上流側空間2cに室外空気(外気)を導入するための空気吸込口、2fは前記下流側空間2dから熱交換された空気を建屋外に吹き出すための空気吹出口である。 In FIG. 4, 2 is a conventional ceiling-embedded heat source device corresponding to the ceiling-embedded heat source device 2 shown in FIG. Reference numeral 2a denotes a housing, and the inside of the housing 2a is divided into an upstream space 2c and a downstream space 2d by a partition plate 2b. 2e is an air inlet for introducing outdoor air (outside air) into the upstream space 2c, and 2f is an air outlet for blowing out the heat exchanged from the downstream space 2d to the outside of the building.
 前記上流側空間2cには、伝熱管内を流れる冷媒と前記空気吸込口2eから導入された室外空気とを熱交換させるための熱交換器(熱源側熱交換器)22、前記室外空気を吸い込むことで前記熱交換器22に室外空気を供給するための送風装置24、冷媒を圧縮するための圧縮機20、前記熱交換器22などで凝縮した余剰冷媒を溜めるための受液器27などが収容されている。なお、24aは前記送風装置24を駆動するためのモータである。 A heat exchanger (heat source side heat exchanger) 22 for exchanging heat between the refrigerant flowing in the heat transfer tube and the outdoor air introduced from the air suction port 2e is sucked into the upstream space 2c. Thus, there are a blower 24 for supplying outdoor air to the heat exchanger 22, a compressor 20 for compressing the refrigerant, a liquid receiver 27 for storing excess refrigerant condensed in the heat exchanger 22, and the like. Contained. Reference numeral 24a denotes a motor for driving the blower 24.
 一方、前記下流側空間2dには、電子部品を搭載した制御基板や端子台等の電気部品などを収納している電気品箱28などが収容されている。 
 なお、従来の熱源機2においては、冷媒としては、R407CやR410Aなどが使用されている。また、図4において、圧縮機20、熱交換器22及び受液器27は冷媒が流れる冷凍サイクル要素部品である。図4には図示していないが、図2に示すような四方切換弁21や膨張装置23も、冷媒が流れる冷凍サイクル要素部品である。
On the other hand, the downstream space 2d accommodates an electrical component box 28 that houses electrical components such as a control board on which electronic components are mounted and a terminal block.
In the conventional heat source device 2, R407C, R410A, or the like is used as the refrigerant. Moreover, in FIG. 4, the compressor 20, the heat exchanger 22, and the liquid receiver 27 are refrigeration cycle element components through which a refrigerant flows. Although not shown in FIG. 4, the four-way switching valve 21 and the expansion device 23 as shown in FIG. 2 are also refrigeration cycle component parts through which refrigerant flows.
 次に、図4に示す従来の天井埋込型熱源機における空気の流れを図5により説明する。図5において、矢印Cが熱源機2の筐体2a内での空気の流れである。 
 従来の天井埋込型熱源機2においては、前記送風装置24によって形成される空気の流れCの上流側に、前記圧縮機20、前記熱交換器22及び前記受液器27などの冷凍サイクル要素部品が設置され、空気の流れCの下流側には前記送風装置24や前記電気品箱28が設置されている。このため、これら冷凍サイクル要素部品の何れかから冷媒が漏洩すると、漏洩した冷媒は空気の流れCに沿って流れることになる。
Next, the flow of air in the conventional ceiling-embedded heat source machine shown in FIG. 4 will be described with reference to FIG. In FIG. 5, an arrow C is an air flow in the housing 2 a of the heat source device 2.
In the conventional ceiling-embedded heat source device 2, refrigeration cycle elements such as the compressor 20, the heat exchanger 22, and the liquid receiver 27 are disposed upstream of the air flow C formed by the blower 24. Components are installed, and the air blower 24 and the electrical component box 28 are installed downstream of the air flow C. For this reason, when the refrigerant leaks from any of these refrigeration cycle component parts, the leaked refrigerant flows along the air flow C.
 しかし、冷媒として地球温暖化係数GWPの小さいHFO1234yfやHFO1234zeなどの冷媒、或いは前記GWPが比較的小さいR32などの冷媒を採用した場合、これらの冷媒は微燃性であるため、微燃性冷媒が空気の流れCに乗って前記送風装置24のモータ24aや前記電気品箱28と接触する。前記電気品箱28には電気部品が収められているため、電気部品の発熱や電流漏れが発生したときに、可燃性冷媒がそのまわりに存在すると燃焼の危惧があることがわかった。送風装置24の前記モータ24aに関しても同様である。 However, when a refrigerant such as HFO1234yf or HFO1234ze having a small global warming potential GWP or a refrigerant such as R32 having a relatively small GWP is employed as the refrigerant, these refrigerants are slightly flammable. It rides on the air flow C and comes into contact with the motor 24a of the blower 24 and the electrical component box 28. Since electrical parts are housed in the electrical component box 28, it has been found that there is a risk of combustion if combustible refrigerant is present around the electrical parts when heat generation or current leakage occurs. The same applies to the motor 24a of the blower 24.
 そこで、本実施例では、天井埋込型熱源機2の内部の機器配置を図3に示すように構成したものである。図3に示す天井埋込型熱源機において、図4、図5に示した従来の天井埋込型熱源機と対応する構成については同一符号で示し、重複する部分の説明は省略し、異なる部分についてのみ説明する。 Therefore, in this embodiment, the equipment arrangement inside the ceiling-embedded heat source unit 2 is configured as shown in FIG. In the ceiling-embedded heat source unit shown in FIG. 3, the same reference numerals are given to the components corresponding to those in the conventional ceiling-embedded heat source unit shown in FIGS. Only will be described.
 本実施例の天井埋込型熱源機2において、送風装置24が稼働すると、白抜き矢印6で示す室外空気の吸込空気流れが、空気吸込口2eから筐体2a内に流入して、空気の流れCで示すように、前記筐体2a内を流れ、空気吹出口2fから吹き出されて建屋外に排出される。 In the ceiling-embedded heat source unit 2 of the present embodiment, when the air blower 24 is operated, the outdoor air suction air flow indicated by the white arrow 6 flows into the housing 2a from the air suction port 2e, and the air As shown by the flow C, the air flows in the housing 2a, is blown out from the air outlet 2f, and is discharged outside the building.
 本実施例では、圧縮機20、熱交換器22及び受液器27などの冷媒が流れる冷凍サイクル要素部品を筐体2a内の下流側空間2dに配置し、送風装置24や電気品箱28は筐体2a内の上流側空間2cに配置している。 In the present embodiment, the refrigeration cycle element parts through which refrigerant such as the compressor 20, the heat exchanger 22 and the liquid receiver 27 flow are arranged in the downstream space 2d in the housing 2a, and the blower 24 and the electrical component box 28 are It arrange | positions in the upstream space 2c in the housing | casing 2a.
 このように構成することにより、前記冷凍サイクル要素部品は空気の流れの中の下流側にあり、前記電気品箱28や送風装置24は前記冷凍サイクル要素部品よりも空気の流れの上流側に設置されているため、仮に前記冷凍サイクル要素部品の何れかから冷媒漏洩が発生した場合であっても、漏洩冷媒は、前記電気品箱28や送風装置24に接触することなく、空気の流れCに乗って建屋外に流出させることができる。 
 従って、前記冷凍サイクル要素部品から微燃性或いは可燃性の冷媒が漏洩しても、該冷媒は着火源となりうる前記電気品箱28内の電気部品や前記送風装置24のモータ24aなどの電気部品に接触するのを防止でき、燃焼の危惧を回避することができる。
With this configuration, the refrigeration cycle component is located downstream in the air flow, and the electrical component box 28 and the blower 24 are installed upstream of the refrigeration cycle component. Therefore, even if a refrigerant leak occurs from any of the refrigeration cycle element parts, the leaked refrigerant does not contact the electrical component box 28 or the air blower 24 and flows into the air flow C. It can be ridden outside the building.
Therefore, even if a slightly flammable or combustible refrigerant leaks from the refrigeration cycle element parts, the refrigerant can become an ignition source, such as the electric parts in the electric component box 28 and the motor 24a of the blower 24. Contact with parts can be prevented, and fear of combustion can be avoided.
 更に詳しく説明する。本実施例では、微燃性冷媒であるHFO1234yfやHFO1234zeなどを使用し、熱源機を天井埋込型熱源機としているため、熱源機で冷媒漏洩すると次の危惧がある。つまり、熱源機内での燃焼の危惧、熱源機外に冷媒が漏洩すると天井裏など建屋内に冷媒が流出するおそれがあり、建物内での燃焼発生の危惧や、漏洩冷媒が室内に侵入した場合には室内が酸欠となる危惧がある。このような課題に対して、本実施例では、電気品箱28や送風装置24は冷凍サイクル要素部品よりも空気の流れの上流側に設置する構成としたことにより、仮に天井埋込型熱源機で冷媒漏洩が発生しても、漏洩冷媒を前記電気品箱28や送風装置24に接触させることなく建屋外に排出することができ、天井埋込型熱源機からの冷媒漏洩による燃焼や酸欠を防止することができる効果が得られる。 More detailed explanation. In this embodiment, HFO1234yf, HFO1234ze, etc., which are slightly flammable refrigerants, are used, and the heat source machine is a ceiling-embedded heat source machine. In other words, there is a risk of combustion in the heat source unit, and if refrigerant leaks outside the heat source unit, there is a risk that the refrigerant will flow out into the building, such as the back of the ceiling. There is a risk that the room will run out of oxygen. In this embodiment, the electrical component box 28 and the air blower 24 are installed upstream of the refrigeration cycle element component in order to deal with such problems. Even if refrigerant leakage occurs, the leaked refrigerant can be discharged to the outside of the building without being brought into contact with the electrical component box 28 or the blower 24, and combustion or oxygen deficiency due to refrigerant leakage from the ceiling-embedded heat source machine The effect which can prevent is acquired.
 なお、室内機からの冷媒漏洩に対しては、室内機に冷媒漏洩検知器33を備えているため、室内での燃焼発生や酸欠防止の危惧を回避することができる。即ち、本実施例では、図2に示すように、室内機3内に冷媒検知器33を備えているので、仮に室内機3側で冷媒漏洩が発生した場合には、これを前記冷媒検知器33で検知でき、警報などを発することにより、微燃性冷媒が室内機3や室内1bに堆積して燃焼や酸欠が発生するのを防止することができる。 In addition, with respect to refrigerant leakage from the indoor unit, since the indoor unit includes the refrigerant leakage detector 33, it is possible to avoid fear of occurrence of combustion in the room and prevention of oxygen deficiency. That is, in this embodiment, as shown in FIG. 2, since the refrigerant detector 33 is provided in the indoor unit 3, if refrigerant leakage occurs on the indoor unit 3 side, this is detected by the refrigerant detector. It is possible to prevent the occurrence of combustion and oxygen deficiency due to accumulation of the slightly flammable refrigerant in the indoor unit 3 or the indoor 1b by issuing an alarm or the like.
 また、前記冷媒検知器は高価なものであるが、本実施例では前記熱源機側からの冷媒漏洩に対しては燃焼や酸欠を防止できる構成としているので、冷媒漏洩検知器を熱源機側に設ける必要はない。従って、高価な冷媒検知器の設置個数を低減することができ、その分安価な空気調和機を得ることができる。即ち、本実施例では、前記熱源機2を図3で説明した構成としているので、冷媒検知器を熱源機2側には設置しなくて良いから、高価な冷媒検知器の設置個数を少なくでき、コストアップを抑えて安価な空気調和機を実現することができる。 In addition, although the refrigerant detector is expensive, in the present embodiment, the refrigerant leak detector is arranged on the heat source machine side because the refrigerant leak detector from the heat source machine side is configured to prevent combustion and oxygen deficiency. There is no need to provide it. Therefore, the number of expensive refrigerant detectors installed can be reduced, and an inexpensive air conditioner can be obtained accordingly. That is, in the present embodiment, the heat source device 2 has the configuration described with reference to FIG. 3, and therefore, it is not necessary to install the refrigerant detector on the heat source device 2 side, so the number of expensive refrigerant detectors installed can be reduced. Therefore, an inexpensive air conditioner can be realized while suppressing cost increase.
 更に、本実施例では、地球温暖化係数GWPの小さい冷媒である、HFO1234yfやHFO1234zeを空気調和機の冷媒として使用しているため、空気調和機の低圧側での冷媒圧力損失が大きくなり易いという課題がある。この課題に対しても、本実施例では前記熱源機2を天井埋込型熱源機としているので、室内機と熱源機を接続する冷媒配管の長さを短く、例えば10m以下に構成することができる。従って、蒸気であるときの密度が低く体積が大きくなるHFO1234yfやHFO1234zeなどの冷媒を使用しながら空気調和機の低圧側での冷媒圧力損失を低減することが可能となり、この結果、消費電力も低減できる効率の良い空気調和機を得ることができる。 Furthermore, in this embodiment, HFO1234yf and HFO1234ze, which are refrigerants with a low global warming potential GWP, are used as refrigerants for the air conditioner, so that the refrigerant pressure loss on the low pressure side of the air conditioner tends to increase. There are challenges. Against this problem, since the heat source unit 2 is a ceiling-embedded heat source unit in this embodiment, the length of the refrigerant pipe connecting the indoor unit and the heat source unit is short, for example, 10 m or less. it can. Therefore, it is possible to reduce the refrigerant pressure loss on the low pressure side of the air conditioner while using the refrigerant such as HFO1234yf and HFO1234ze whose density is low and the volume is large when it is steam, and as a result, power consumption is also reduced. An efficient air conditioner that can be obtained can be obtained.
 また、本実施例においては、前記天井埋込型の熱源機2の送風装置24を、空気調和機が運転していないときでも定期的に駆動するように構成している。即ち、空気調和機の停止中であっても、タイマーなどを使用して定期的に、例えば1日につき1回~数回、数秒~数分間づつ、前記送風装置24を回転させて、熱源機2の筐体2a内に空気の流れCを発生させる。これにより、空気調和機の停止中に冷媒漏洩が発生しても、この漏洩冷媒を定期的に建屋外に排出できるから、筐体2a内に漏洩冷媒が徐々に堆積して燃焼の危険性が増大していくのを回避することができる。 In this embodiment, the air blower 24 of the ceiling-embedded heat source unit 2 is configured to be driven periodically even when the air conditioner is not operating. In other words, even when the air conditioner is stopped, the air blower 24 is rotated periodically by using a timer or the like, for example, once to several times a day, several seconds to several minutes, and thus the heat source machine. The air flow C is generated in the second housing 2a. As a result, even if a refrigerant leak occurs while the air conditioner is stopped, the leaked refrigerant can be periodically discharged outside the building, so that the leaked refrigerant gradually accumulates in the housing 2a and there is a risk of combustion. The increase can be avoided.
 空気調和機の停止中に、本実施例のように、定期的に送風装置を運転しない場合、冷媒漏洩が発生すると、熱源機2内に微燃性の冷媒が滞留してその濃度が上昇し、発火の危険性を上昇させる。また、漏洩冷媒が熱源機2から天井裏などを伝わって、在室者10のいる室内1b(図1参照)に前記冷媒が侵入すると、室内での燃焼や酸欠の発生も危惧される。 When the air blower is not operated periodically as in the present embodiment while the air conditioner is stopped, if refrigerant leakage occurs, a slightly flammable refrigerant stays in the heat source unit 2 and its concentration increases. , Increase the risk of ignition. In addition, if the refrigerant leaks from the heat source device 2 through the ceiling or the like and enters the room 1b (see FIG. 1) where the occupant 10 is present, there is a concern that combustion or oxygen deficiency may occur in the room.
 これに対して、本実施例では、前述したように、空気調和機の停止中であっても定期的に送風装置24を駆動するので、熱源機2内に漏洩冷媒が滞留してその濃度を上昇させたり、漏洩冷媒が室内1bに侵入するのを防止できるから、微燃性冷媒の漏洩による燃焼や酸欠発生を確実に回避することができる。 On the other hand, in the present embodiment, as described above, since the blower 24 is periodically driven even when the air conditioner is stopped, the leaked refrigerant stays in the heat source unit 2 and the concentration thereof is reduced. Since it is possible to prevent the leaked refrigerant from entering the room 1b, it is possible to reliably avoid the occurrence of combustion and oxygen deficiency due to leakage of the slightly flammable refrigerant.
 以上説明したように本実施例によれば、地球温暖化係数GWPの小さい微燃性の冷媒を使用しつつ、発火の危惧を回避でき、しかも冷媒漏洩検知器の設置個数も少なくできるから低コスト化を実現できる。また、空気調和機の低圧側での冷媒圧力損失も小さくできるので、効率の良い空気調和機を得ることができる効果も得られる。 As described above, according to the present embodiment, the use of a slightly flammable refrigerant having a low global warming potential GWP can avoid the risk of ignition, and the number of installed refrigerant leak detectors can be reduced. Can be realized. In addition, since the refrigerant pressure loss on the low pressure side of the air conditioner can be reduced, an effect of obtaining an efficient air conditioner can be obtained.
 なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記実施例では冷媒として、地球温暖化係数GWPが小さく微燃性のHFO1234yfやHFO1234zeを使用する例で説明したが、GWPが比較的小さく微燃性のR32を使用するもの、或いは同様の性質をもつ他の冷媒や混合冷媒を使用する場合にも同様に適用できる。また、熱源機を天井埋込型熱源機とした場合について説明したが、熱源機は天井埋込型のものに限られず、建屋外に設置するタイプの室外機であっても本発明の技術思想は同様に適用できるものである。 
 更に、上記した実施例は本発明を分かり易く説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。
In addition, this invention is not limited to an above-described Example, Various modifications are included. For example, in the above-described embodiment, the example of using the slightly-flammable HFO1234yf or HFO1234ze having a small global warming potential GWP as the refrigerant has been described. However, the refrigerant having a relatively small GWP and using the slightly-flammable R32 or the like The same applies to the case of using other refrigerants or mixed refrigerants having properties. In addition, the case where the heat source unit is a ceiling-embedded heat source unit has been described, but the heat source unit is not limited to the ceiling-embedded type, and the technical concept of the present invention is applicable to an outdoor unit installed outside a building. Are applicable as well.
Further, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described.
1:建物、1a:天井部(天井裏)、1b:室内、
2:天井埋込型の熱源機、2a:筐体、2b:仕切り板、
2c:上流側空間、2d:下流側空間、
2e:空気吸込口、2f:空気吹出口、
3:室内機、
4:ガス側冷媒配管、5:液側冷媒配管、
6:熱源機への吸込空気流れ、7:熱源機からの吹出空気流れ、
8:室内機の吸込空気流れ、9:室内機の吹出空気流れ、
10:在席者、
20:圧縮機、21:四方切換弁、
22:熱源側の熱交換器、23:膨張装置、
24:送風装置、24a:モータ、
25:ガス側阻止弁、26:液側阻止弁、
27:受液器、28:電気品箱、
30:室内側の熱交換器、31:室内側の膨張装置、
32:送風装置、33:冷媒検知器(冷媒検知手段)、
A:暖房運転時の冷媒流れ、B:冷房運転時の冷媒流れ。
1: Building, 1a: Ceiling (back of ceiling), 1b: Indoor,
2: Ceiling embedded heat source machine, 2a: housing, 2b: partition plate,
2c: upstream space, 2d: downstream space,
2e: Air inlet, 2f: Air outlet,
3: Indoor unit
4: Gas side refrigerant piping, 5: Liquid side refrigerant piping,
6: Air flow into the heat source machine, 7: Air flow from the heat source machine,
8: Suction air flow of indoor unit, 9: Blowing air flow of indoor unit,
10: Attendees,
20: Compressor, 21: Four-way selector valve,
22: heat source side heat exchanger, 23: expansion device,
24: blower, 24a: motor,
25: Gas side blocking valve, 26: Liquid side blocking valve,
27: Liquid receiver, 28: Electrical box
30: Indoor heat exchanger, 31: Indoor expansion device,
32: Blower, 33: Refrigerant detector (refrigerant detection means),
A: Refrigerant flow during heating operation, B: Refrigerant flow during cooling operation.

Claims (7)

  1.  地球温暖化係数が小さく可燃性のある冷媒を用いると共に、筐体内に、前記冷媒が流れる熱交換器などの冷凍サイクル要素部品、電気部品などを収納した電気品箱及びモータで駆動される送風装置を収容して構成された熱源機を備える空気調和機において、
     前記筐体内には前記送風装置により空気の流れが形成されるように構成すると共に、前記冷媒が流れる冷凍サイクル要素部品は、前記筐体内の空気の流れの中に設置され、前記電気品箱及び前記送風装置のモータなどの電気部品は、前記空気の流れにおける前記冷凍サイクル要素部品より上流側に配置されている
     ことを特徴とする空気調和機。
    A refrigeration cycle component such as a heat exchanger in which the refrigerant flows, an electrical component box containing electrical components, and a blower driven by a motor while using a flammable refrigerant with a low global warming potential In an air conditioner including a heat source unit configured to accommodate
    The air flow is formed by the blower in the casing, and the refrigeration cycle element component through which the refrigerant flows is installed in the air flow in the casing, and the electrical component box and The air conditioner, wherein an electrical component such as a motor of the blower is disposed upstream of the refrigeration cycle element component in the air flow.
  2.  請求項1に記載の空気調和機において、前記冷媒は、炭化水素系の自然冷媒よりも燃焼性の弱い微燃性の冷媒であることを特徴とする空気調和機。 2. The air conditioner according to claim 1, wherein the refrigerant is a slightly flammable refrigerant that is less combustible than a hydrocarbon-based natural refrigerant.
  3.  請求項2に記載の空気調和機において、前記微燃性の冷媒は、HFO1234yf、HFO1234ze、R32のうちの少なくとも何れかであることを特徴とする空気調和機。 3. The air conditioner according to claim 2, wherein the slightly flammable refrigerant is at least one of HFO1234yf, HFO1234ze, and R32.
  4.  請求項3に記載の空気調和機において、前記微燃性の冷媒は、HFO1234yfまたはHFO1234zeの少なくとも何れかであり、前記熱源機は、建屋内の天井部などに設置され且つ室外空気を導入して熱交換を行う天井埋込型熱源機であることを特徴とする空気調和機。 The air conditioner according to claim 3, wherein the slightly flammable refrigerant is at least one of HFO1234yf and HFO1234ze, and the heat source unit is installed in a ceiling portion of a building and introduces outdoor air. An air conditioner that is a ceiling-embedded heat source that performs heat exchange.
  5.  請求項4に記載の空気調和機において、前記天井埋込型熱源機は室内を空調する室内機と冷媒配管で接続されると共に、前記熱源機と前記室内機間を接続する前記冷媒配管の長さが10m以下となるように構成していることを特徴とする空気調和機。 5. The air conditioner according to claim 4, wherein the ceiling-embedded heat source unit is connected to an indoor unit that air-conditions a room by a refrigerant pipe, and a length of the refrigerant pipe that connects the heat source unit and the indoor unit. An air conditioner characterized in that the air conditioner is configured to be 10 m or less.
  6.  請求項5に記載の空気調和機において、前記室内機或いは該室内機を設置している室内に冷媒漏洩検知手段を備えていることを特徴とする空気調和機。 6. The air conditioner according to claim 5, further comprising a refrigerant leak detection means in the indoor unit or a room in which the indoor unit is installed.
  7.  請求項1~6の何れか1項に記載の空気調和機において、空気調和機が停止中であっても、前記熱源機の送風装置を定期的に駆動する構成としていることを特徴とする空気調和機。 The air conditioner according to any one of claims 1 to 6, wherein the air blower of the heat source unit is periodically driven even when the air conditioner is stopped. Harmony machine.
PCT/JP2014/078436 2014-02-25 2014-10-27 Air conditioner WO2015129099A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/117,240 US20160348927A1 (en) 2014-02-25 2014-10-27 Air conditioner
CN201480074164.7A CN106133452B (en) 2014-02-25 2014-10-27 Air conditioner
EP14883758.6A EP3112768B1 (en) 2014-02-25 2014-10-27 Air conditioner

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014034164A JP6177158B2 (en) 2014-02-25 2014-02-25 Air conditioner
JP2014-034164 2014-02-25

Publications (1)

Publication Number Publication Date
WO2015129099A1 true WO2015129099A1 (en) 2015-09-03

Family

ID=54008444

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/078436 WO2015129099A1 (en) 2014-02-25 2014-10-27 Air conditioner

Country Status (5)

Country Link
US (1) US20160348927A1 (en)
EP (1) EP3112768B1 (en)
JP (1) JP6177158B2 (en)
CN (1) CN106133452B (en)
WO (1) WO2015129099A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109154447B (en) * 2016-05-12 2021-10-29 三菱电机株式会社 Outdoor unit of air conditioner
CN110892203B (en) * 2017-07-21 2021-12-31 三菱电机株式会社 Air conditioner
US11060746B2 (en) * 2017-12-01 2021-07-13 Johnson Controls Technology Company Systems and methods for detecting and responding to refrigerant leaks in heating, ventilating, and air conditioning systems
CN109405096B (en) * 2018-09-17 2021-04-20 青岛海尔空调器有限总公司 Air conditioner outdoor unit and control method thereof
JP6991369B2 (en) * 2019-01-09 2022-01-12 三菱電機株式会社 Air conditioner
US11686491B2 (en) 2019-02-20 2023-06-27 Johnson Controls Tyco IP Holdings LLP Systems for refrigerant leak detection and management
US11162705B2 (en) 2019-08-29 2021-11-02 Hitachi-Johnson Controls Air Conditioning, Inc Refrigeration cycle control
KR20220010865A (en) * 2020-07-20 2022-01-27 엘지전자 주식회사 Heat pump

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62218745A (en) * 1986-03-19 1987-09-26 Mitsubishi Electric Corp Outdoor unit for air conditioner
JPH02144334U (en) * 1989-05-09 1990-12-07
JPH09318208A (en) * 1996-06-03 1997-12-12 Daikin Ind Ltd Refrigerating plant using combustible refrigerant
JP3291407B2 (en) * 1995-01-31 2002-06-10 三洋電機株式会社 Cooling device
WO2013038703A1 (en) * 2011-09-16 2013-03-21 パナソニック株式会社 Air conditioner
JP2013064525A (en) * 2011-09-16 2013-04-11 Panasonic Corp Piping connection structure of air conditioner
WO2013145013A1 (en) * 2012-03-29 2013-10-03 三菱電機株式会社 Branch controller and air-conditioning device provided therewith

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5436050A (en) * 1977-08-26 1979-03-16 Gen Corp Air conditioner
JPH08189751A (en) * 1995-01-13 1996-07-23 Matsushita Refrig Co Ltd Refrigerator
US6110038A (en) * 1998-11-12 2000-08-29 Stern; David A. System for detecting and purging carbon monoxide
JP3159200B2 (en) * 1999-03-02 2001-04-23 ダイキン工業株式会社 Air conditioner
JP2005241121A (en) * 2004-02-26 2005-09-08 Mitsubishi Heavy Ind Ltd Air conditioner
US7434413B2 (en) * 2005-01-10 2008-10-14 Honeywell International Inc. Indoor air quality and economizer control methods and controllers
DE102007002181B3 (en) * 2007-01-15 2008-08-21 BSH Bosch und Siemens Hausgeräte GmbH Condensation dryer with a heat pump
EP2096365B1 (en) * 2008-02-29 2017-10-11 Johnson Controls-Hitachi Air Conditioning Technology (Hong Kong) Limited Heat source unit installed inside building
US8672670B2 (en) * 2009-11-11 2014-03-18 Trane International Inc. System and method for controlling a furnace
ES2882644T3 (en) * 2010-01-27 2021-12-02 Daikin Ind Ltd Use of refrigerant composition comprising difluoromethane (HFC32) and 2,3,3,3-tetrafluoropropene (HFO1234yf)
CN201652623U (en) * 2010-04-22 2010-11-24 广东美的电器股份有限公司 Air-conditioning outdoor machine for preventing flammable refrigerant from accumulating
WO2011161720A1 (en) * 2010-06-23 2011-12-29 三菱電機株式会社 Air-conditioning apparatus
CN201875842U (en) * 2010-07-07 2011-06-22 海尔集团公司 Air conditioner using combustible refrigerant
JP5673612B2 (en) * 2012-06-27 2015-02-18 三菱電機株式会社 Refrigeration cycle equipment
KR101678324B1 (en) * 2012-08-27 2016-11-21 다이킨 고교 가부시키가이샤 Refrigeration system
JP5665937B1 (en) * 2013-09-13 2015-02-04 三菱電機株式会社 Refrigeration cycle equipment

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62218745A (en) * 1986-03-19 1987-09-26 Mitsubishi Electric Corp Outdoor unit for air conditioner
JPH02144334U (en) * 1989-05-09 1990-12-07
JP3291407B2 (en) * 1995-01-31 2002-06-10 三洋電機株式会社 Cooling device
JPH09318208A (en) * 1996-06-03 1997-12-12 Daikin Ind Ltd Refrigerating plant using combustible refrigerant
WO2013038703A1 (en) * 2011-09-16 2013-03-21 パナソニック株式会社 Air conditioner
JP2013064525A (en) * 2011-09-16 2013-04-11 Panasonic Corp Piping connection structure of air conditioner
WO2013145013A1 (en) * 2012-03-29 2013-10-03 三菱電機株式会社 Branch controller and air-conditioning device provided therewith

Also Published As

Publication number Publication date
EP3112768A4 (en) 2017-10-18
EP3112768B1 (en) 2020-06-17
JP6177158B2 (en) 2017-08-09
US20160348927A1 (en) 2016-12-01
CN106133452B (en) 2019-11-05
EP3112768A1 (en) 2017-01-04
JP2015158338A (en) 2015-09-03
CN106133452A (en) 2016-11-16

Similar Documents

Publication Publication Date Title
JP6177158B2 (en) Air conditioner
JP6785883B2 (en) Air conditioner
US9459013B2 (en) Air-conditioning apparatus with safety measure for ventilation of inflammable refrigerant from heat exchanger
WO2018047265A1 (en) Heat pump device
WO2017187618A1 (en) Refrigeration cycle apparatus
JP6336121B2 (en) Refrigeration cycle equipment
CN108369048B (en) Refrigeration cycle device
WO2017006462A1 (en) Air conditioner
CN108351139B (en) Refrigeration cycle device and refrigerant leak detection method
WO2018092197A1 (en) Air conditioning apparatus and refrigerant leakage detection method
JP2016029322A (en) Air conditioner
WO2020179826A1 (en) Refrigerant cycle system and method
WO2020049646A1 (en) Water-cooled air conditioner
JP6876081B2 (en) Refrigerant cycle device
JPWO2019130383A1 (en) Air conditioner
JP6991369B2 (en) Air conditioner
JP2021036190A (en) Refrigerant cycle device
JP2015230109A (en) Air conditioning device
JP2013200105A (en) Air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14883758

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15117240

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2014883758

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014883758

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE