WO2015129082A1 - Burner, and wet bottom furnace equipped with same - Google Patents

Burner, and wet bottom furnace equipped with same Download PDF

Info

Publication number
WO2015129082A1
WO2015129082A1 PCT/JP2014/074232 JP2014074232W WO2015129082A1 WO 2015129082 A1 WO2015129082 A1 WO 2015129082A1 JP 2014074232 W JP2014074232 W JP 2014074232W WO 2015129082 A1 WO2015129082 A1 WO 2015129082A1
Authority
WO
WIPO (PCT)
Prior art keywords
burner
ceramic film
cooling pipe
burner body
furnace
Prior art date
Application number
PCT/JP2014/074232
Other languages
French (fr)
Japanese (ja)
Inventor
亀山 達也
中馬 康晴
榊原 紀幸
小山 智規
潤一郎 山本
Original Assignee
三菱日立パワーシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱日立パワーシステムズ株式会社 filed Critical 三菱日立パワーシステムズ株式会社
Publication of WO2015129082A1 publication Critical patent/WO2015129082A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D1/00Burners for combustion of pulverulent fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C5/00Disposition of burners with respect to the combustion chamber or to one another; Mounting of burners in combustion apparatus
    • F23C5/08Disposition of burners
    • F23C5/32Disposition of burners to obtain rotating flames, i.e. flames moving helically or spirally
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2214/00Cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2900/00Special features of, or arrangements for burners using fluid fuels or solid fuels suspended in a carrier gas
    • F23D2900/00018Means for protecting parts of the burner, e.g. ceramic lining outside of the flame tube

Definitions

  • the present invention relates to a burner installed in a wet furnace containing a molten slag inside such as a gasification furnace, a melting furnace, a gasification melting furnace, and a wet furnace equipped with the burner.
  • An opening is installed in the furnace wall of these wet furnaces, and a burner is inserted from this opening.
  • the burner is subjected to a large heat load in the furnace.
  • the burner body is made of a metal such as austenitic steel.
  • the outer periphery of the burner body is surrounded by a cooling pipe, and the burner body is cooled by a cooling medium (cooling water) flowing through the cooling pipe (for example, Patent Document 1).
  • a sprayed layer of Al 2 O 3 —Cr 2 O 3 is formed at the burner tip. The thermal sprayed layer prevents cracks due to thermal stress at the tip of the burner and wear due to pulverized coal injected from the burner.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a burner structure excellent in corrosion resistance, heat resistance and wear resistance, and a wet furnace equipped with the burner.
  • One aspect of the present invention includes a burner body that is installed through an opening formed in a furnace wall of a wet furnace containing molten slag, and surrounds the burner body in a state of being in contact with the periphery of the burner body.
  • a cooling pipe that cools the burner body with a cooling medium that circulates in the interior, and at least a surface of the cooling pipe and the burner body that contacts the molten slag is in contact with the molten slag
  • a ceramic film is formed at least on the surface of the burner body and the cooling pipe in contact with the molten slag. Since this ceramic film is thin, the cooling effect by the cooling medium is high, and the surface of the ceramic film is sufficiently cooled. That is, the ceramic film formed on the burner of the present invention has an excellent heat shielding effect. Further, the reaction between the slag and the ceramic film can be suppressed, and the disappearance of the ceramic film can be suppressed.
  • the ceramic film of the present invention is excellent in wettability with molten slag, the molten slag tends to adhere to the ceramic film. Since the ceramic film is sufficiently cooled, the molten slag adhering to the surface of the ceramic film is cooled. Thereby, solid phase slag is formed on the surface of the burner body and the cooling pipe to which the ceramic film is applied. Since this solid phase slag has good adhesion to the ceramic film, it is difficult to peel off from the surface of the burner body and the cooling pipe, and is held on the surface of the burner body and cooling pipe.
  • an excellent heat shielding effect and anticorrosion effect can be obtained by the ceramic film and the solid slag, and damage to the base material of the burner body and the cooling pipe can be prevented.
  • the tip of the burner is exposed to molten slag, and when pulverized coal or char is burned, pulverized coal or char collides and thinning due to wear of the tip occurs. Since the ceramic film is excellent in wear resistance, thinning due to wear of the burner tip is suppressed.
  • an intermediate layer is further provided between the cooling pipe and the surface of the burner body and the ceramic film, and each material of the cooling pipe, the burner body, the intermediate layer, and the ceramic film is formed of the cooling pipe. It is preferable that the thermal expansion coefficient gradually decreases from the tube side or the burner body side toward the ceramic film side. In this case, it is preferable that the intermediate layer includes a layer made of a metal material.
  • the base material of the burner body and the cooling pipe is generally a metal material.
  • thermal stress is generated in the burner body and the cooling pipe when the burner is exposed to high temperature. If the intermediate layer of the above aspect is formed, stress applied to the ceramic film can be relieved, damage to the ceramic film can be suppressed, and solid phase slag can be effectively peeled from the surface of the ceramic film. Can be prevented.
  • Another aspect of the present invention is a wet furnace equipped with the above burner.
  • the burner of the present invention is protected by a ceramic film and solid phase slag, and the occurrence of damage is suppressed. For this reason, it is possible to operate the wet furnace continuously for a long time.
  • the ceramic film is excellent in wettability with the molten slag, so the molten slag easily adheres to the ceramic film, and since the ceramic film is sufficiently thin, it is cooled and adhered to the surface to form solid phase slag. .
  • the solid phase slag and the ceramic coating protect the burner body and the base material of the cooling pipe from heat and corrosive environments. Further, a burner having good wear resistance at the tip can be obtained by the ceramic film. Since the burner is prevented from being damaged by the protective structure, the wet furnace of the present invention can withstand long-time operation.
  • FIG. 1 It is a section schematic diagram of a gasifier. It is the schematic which expanded the burner installation position in the gasification furnace of FIG. It is a cross-sectional enlarged view of the outer surface of the burner main body or cooling pipe in 1st Embodiment. It is a cross-sectional enlarged view of the outer surface of the burner main body or cooling pipe in 2nd Embodiment.
  • a coal gasification furnace is mentioned as an example and 1st Embodiment of this invention is described.
  • the present invention is not limited to a gasification furnace, and can be applied to any wet furnace that accommodates molten slag, such as a gasification melting furnace or a melting furnace installed in an industrial waste melting plant. .
  • the molten slag in the present invention is slag discharged from a coal gasification furnace, slag generated from industrial waste, or the like.
  • the composition of the slag is SiO 2 : 50 to 60 wt%, Al 2 O 3 : 10 to 30 wt%, CaO: about 5 wt%, Fe 2 O 3 : about 5 wt%, and others: the balance.
  • FIG. 1 is a schematic cross-sectional view of a gasification furnace installed in a gasification system.
  • a gasification chamber 2 is formed inside the gasification furnace 1.
  • the furnace wall of the gasification chamber 2 is made of a metal such as austenitic steel.
  • a water-cooled tube (not shown) for cooling the furnace wall is installed on the outer periphery of the furnace wall of the gasification chamber 2.
  • a burner 6 is installed on the furnace wall of the gasification chamber 2.
  • Connected to the burner 6 are a pulverized coal supply path 3 for supplying pulverized coal (pulverized coal) and an oxidant supply path 5 for supplying air (oxygen-containing gas) as an oxidant.
  • the pulverized coal supply path 3 is provided above the burner 6 and connected to the gasification chamber 2.
  • a char supply channel 4 for supplying char (unburned particles) is connected to the gasification chamber 2.
  • the pulverized coal, char and air are supplied from the pulverized coal supply path 3, the char supply path 4 and the oxidant supply path 5, respectively.
  • the burner 6 burns pulverized coal and char at a high temperature of about 1800 ° C. to generate combustible gas and molten slag (liquid phase).
  • Combustible gas including char is discharged from the upper part of the gasification chamber 2.
  • a discharge port 7 is formed in the lower part of the gasification chamber 2.
  • the molten slag is discharged from the discharge port 7 along the furnace wall inner surface of the gasification chamber 2. Water is stored at the bottom of the gasification furnace 1.
  • the molten slag discharged from the discharge port 7 comes into contact with water to become a granulated slag, and is discharged outside the furnace.
  • FIG. 2 is a schematic cross-sectional view enlarging the burner installation position in the gasification furnace of FIG.
  • the burner 6 includes a burner body 11 and a cooling pipe 12 wound around the burner body 11.
  • the base material of the burner body 11 and the cooling pipe 12 is a metal having high thermal conductivity (for example, copper, aluminum, SUS, etc.).
  • a fuel supply path 13 through which pulverized coal and a transfer gas flow and an oxidant supply path 14 through which an oxidant flows are provided. Jet holes 15a and 15b are provided at the tip of the burner body 11, and pulverized coal and oxidant are jetted from the jet holes 15a and 15b.
  • the cooling pipe 12 is configured such that cooling water (cooling medium) flows therein.
  • the furnace wall 10 of the gasification chamber is bent toward the outside of the furnace at the position where the burner 6 is installed.
  • An opening is provided in the furnace wall 10 protruding toward the outside of the furnace, and the burner main body 11 is inserted through the opening with the burner tip provided with the ejection holes 15a and 15b facing the inside of the gasification furnace.
  • a seal box (not shown) is provided on the outside of the gasification furnace so as to cover the opening.
  • the seal box is filled with a refractory material.
  • the refractory material is, for example, alumina or SiC.
  • the gap between the furnace wall 10 and the burner 6 is filled with the refractory material 16 in the opening.
  • the burner body 11 and the cooling pipe 12 at the tip are exposed in the internal space of the gasification furnace.
  • the part exposed to the internal space of the gasifier is the part that contacts the molten slag in the gasifier.
  • a ceramic film 21 is formed on the outer surface (surface opposite to the cooling water flow side) of the base material 20 of the burner body 11 and the cooling pipe 12.
  • the ceramic film 21 may be formed on the entire outer surface of the cooling pipe 12 (including a portion not exposed in the furnace). Or the ceramic membrane
  • coat 21 may be formed only in the part (part exposed in the furnace in FIG. 2) which contacts a molten slag at least. When the ceramic film is formed only on the contact portion with the molten slag, the ceramic film 21 may be formed on the entire outer surface of the cooling pipe 12. Alternatively, the ceramic coating 21 may be provided only on the outer surface of the cooling pipe 12 on the surface facing the inside of the furnace, that is, on the portion that receives the radiant heat and corrosion from the inside of the furnace.
  • the ceramic film 21 is formed to a thickness of 5 ⁇ m or more and 1000 ⁇ m or less, preferably 150 ⁇ m or more and 500 ⁇ m or less.
  • the ceramic film 21 is formed by atmospheric pressure plasma spraying, electron beam physical vapor deposition, or the like.
  • the ceramic film 21 is a ceramic that has a contact angle with the molten slag at 90 ° C. or less, more preferably 60 ° or less, at or above the slag softening point (specifically 1000 ° C. to 1500 ° C.). With the contact angle, sufficient wettability can be secured between the molten slag and the ceramic film 21.
  • the material of the ceramic film 21 is SiO 2 —Al 2 O 3 (for example, mullite) based material, SiO 2 —Al 2 O 3 —MgO (for example cordierite) based material, Al 2 O 3 , CrO 3 based.
  • the ceramic film 21 of the present embodiment is thin, the cooling effect of the burner body 11 and the cooling pipe 12 by the cooling medium is great. For this reason, while being able to acquire the outstanding heat insulation effect, reaction with the ceramic membrane
  • the wet slag is good and the molten slag is likely to adhere to the surface of the ceramic film 21. Since the burner body 11 and the cooling pipe 12 are cooled by the cooling medium flowing through the cooling pipe 12, the molten slag adhering to the ceramic film 21 is cooled to become solid phase slag. Since this solid phase slag is made of the same material as the molten slag, the molten slag is more likely to adhere to the surface of the solid phase slag. In addition, the solid phase slag has good adhesion to the ceramic film, and thus is difficult to peel off from the burner body 11 and the cooling pipe 12. Accordingly, the base material of the burner body 11 and the cooling pipe 12 is protected from the corrosive environment by the ceramic film 21 and the solid phase slag.
  • the base material of the burner body 11 and the cooling pipe 12 and the ceramic film 21 expand due to the influence of heat from the molten slag. If there is a difference in the thermal expansion coefficient between the base material (metal material) and the ceramic film 21, the ceramic film A crack may occur on the surface of 21. Although slag enters this crack, since the ceramic film 21 is thin and sufficiently cooled, the slag solidifies in the crack. That is, even if the ceramic film 21 is damaged, the burner body 11 and the cooling pipe 12 are protected from the corrosive environment by the solid phase slag.
  • the cooling pipe 12 facing the ejection hole 15a side of the burner main body 11 and the ejection hole 15a causes a reduction in thickness due to wear due to collision of particles such as pulverized coal ejected from the ejection hole 15a of the burner 6.
  • Cheap since the ceramic film 21 is also formed on the portion where the thinning due to wear occurs, the wear resistance of the burner body 11 and the cooling pipe 12 is improved.
  • the burner of this embodiment is protected by the ceramic film 21 and the solid phase slag, and the occurrence of damage is suppressed. For this reason, it is possible to operate the wet furnace continuously for a long time.
  • the surface of the ceramic film 21 may be roughened by blasting or the like. By doing so, the contact area with the solid phase slag increases, and the slag becomes difficult to peel from the ceramic film 21. As a result, it is possible to further improve the heat shielding effect and the anticorrosion effect.
  • FIG. 4 is an enlarged cross-sectional view of the outer surface of the burner body or the cooling pipe in the second embodiment.
  • the base material of the burner body and the cooling pipe is made of a metal material.
  • the ceramic film may peel off.
  • an intermediate layer 22 is formed between the ceramic film 21 and the outer surface of the base material 20 of the burner body 11 and the cooling pipe 12.
  • the intermediate layer 22 is represented by one layer, but a plurality of intermediate layers may be laminated.
  • the materials of the furnace wall 10, the intermediate layer 22, and the ceramic film 21 are selected so that the thermal expansion coefficient gradually decreases from the base material 20 side toward the ceramic film 21 side.
  • the intermediate layer 22 that can achieve the above-described relationship of thermal expansion coefficients, a metal material such as a CoNiCrAlY alloy or a NiCoCrAlY alloy can be applied.
  • the intermediate layer 22 may be a single layer as shown in FIG. 4 or a plurality of layers may be formed.
  • the material of each intermediate layer 22 is changed so that the thermal expansion coefficient gradually decreases from the base material 20 side toward the ceramic film 21 side.
  • an intermediate layer made of a metal material is formed on the base material 20 side, and the thermal expansion coefficient is higher on the ceramic film 21 side than the material used for the ceramic film 21.
  • An intermediate layer made of a large ceramic material is formed.
  • each material of the plurality of intermediate layers 22 may be selected so that the thermal expansion differences among the base material 20, the ceramic film 21, and the intermediate layer 22 are approximately the same.
  • Table 2 is an example of material selection in the burner of the second embodiment.
  • the difference in the thermal expansion coefficient between the intermediate layer 22 and the base material 20 and the difference in the thermal expansion coefficient between the ceramic film 21 and the intermediate layer 22. are designed to be almost the same.
  • the stress generated in the ceramic film 21 when the molten slag is accommodated in the furnace can be reduced as compared with the first embodiment.
  • peeling of the ceramic film 21 and the solid phase slag is effectively prevented, a burner having excellent heat resistance, corrosion resistance, and wear resistance can be obtained.
  • the occurrence of damage is suppressed as in the first embodiment. For this reason, it is possible to operate the wet furnace continuously for a long time.
  • the surface of the ceramic film 21 may be roughened by blasting or the like. By doing so, the contact area with the solid phase slag increases, and the slag becomes difficult to peel from the ceramic film 21. As a result, it is possible to further improve the heat shielding effect and the anticorrosion effect.

Abstract

 Provided are a structure for a burner having exceptional corrosion resistance, heat resistance, and wear resistance, and a wet bottom furnace equipped with the burner. The burner is provided with a burner body installed by being passed through an opening formed in the furnace wall of a wet bottom furnace that contains molten slag, and a cooling pipe arranged so as to surround the burner body while contacting the circumference of the burner body, for cooling the burner body by a cooling medium that flows through the interior. The cooling pipe and burner body surfaces, on at least the faces thereof that contact the molten slag, have formed thereon a ceramic film (21) having a thickness of 5 to 1,000 μm, inclusive, and having a contact angle of 90° or less with respect to the molten slag.

Description

バーナ及びこれを備える湿式炉Burner and wet furnace equipped with the same
 本発明は、ガス化炉、溶融炉、ガス化溶融炉など、内部に溶融スラグを収容する湿式炉に設置されるバーナ、及びこれを備える湿式炉に関する。 The present invention relates to a burner installed in a wet furnace containing a molten slag inside such as a gasification furnace, a melting furnace, a gasification melting furnace, and a wet furnace equipped with the burner.
 溶融炉やガス化炉、ガス化溶融炉では、残渣や灰などを高温で溶かすことにより液状化し、溶融スラグを生成させている。溶融スラグの流動性を確保するために、炉内の温度は高温に保たれている。例えばガス化炉の場合は、1800℃程度で残渣等の溶融が行われる。 In melting furnaces, gasification furnaces, and gasification melting furnaces, residues and ash are liquefied by melting them at a high temperature to generate molten slag. In order to ensure the fluidity of the molten slag, the temperature in the furnace is kept high. For example, in the case of a gasification furnace, the residue and the like are melted at about 1800 ° C.
 これらの湿式炉の炉壁に開口部が設置され、この開口部からバーナが挿入される。バーナは炉内で大きな熱負荷を受ける。バーナ本体はオーステナイト鋼などの金属で形成されている。熱負荷による損傷を防止するため、バーナ本体の外周は冷却管により取り囲まれ、冷却管内部を流通する冷却媒体(冷却水)によりバーナ本体が冷却される構成となっている(例えば特許文献1)。また、特許文献1ではバーナ先端部にAl-Crの溶射層が形成されている。溶射層により、バーナ先端部での熱応力による亀裂の発生やバーナから噴射される微粉炭等による摩耗が防止されている。 An opening is installed in the furnace wall of these wet furnaces, and a burner is inserted from this opening. The burner is subjected to a large heat load in the furnace. The burner body is made of a metal such as austenitic steel. In order to prevent damage due to heat load, the outer periphery of the burner body is surrounded by a cooling pipe, and the burner body is cooled by a cooling medium (cooling water) flowing through the cooling pipe (for example, Patent Document 1). . In Patent Document 1, a sprayed layer of Al 2 O 3 —Cr 2 O 3 is formed at the burner tip. The thermal sprayed layer prevents cracks due to thermal stress at the tip of the burner and wear due to pulverized coal injected from the burner.
特開平10-288311号公報Japanese Patent Laid-Open No. 10-288311
 しかしながら、特開2010-255892号公報の段落[0030]に特許文献1の溶射層の問題点が指摘されている。すなわち、長時間の運転により特許文献1の溶射層が溶融スラグに侵食されて薄くなり、ひいては剥離してしまうことが問題となっていた。また、特許文献1のバーナ先端部に形成される溶射層は2mmと厚い上に、バーナ先端部は高温に曝されるため、バーナ本体の母材と溶射層との間の熱膨張差による熱応力が大きくなり、溶射層の剥離が発生しやすい状況であった。溶射層が消失することにより、熱遮蔽効果が失われるとともに、バーナ本体の母材が腐食性のある環境に曝されて、バーナが損傷してしまう。 However, the problem of the sprayed layer of Patent Document 1 is pointed out in paragraph [0030] of JP 2010-258992 A. That is, there has been a problem that the sprayed layer of Patent Document 1 is eroded by the molten slag and becomes thin due to long-time operation, and eventually peels off. Moreover, since the thermal spray layer formed at the tip of the burner of Patent Document 1 is as thick as 2 mm and the tip of the burner is exposed to a high temperature, the heat due to the difference in thermal expansion between the base material of the burner body and the thermal spray layer. The stress was increased, and the thermal sprayed layer was easily peeled off. When the sprayed layer disappears, the heat shielding effect is lost, and the base material of the burner body is exposed to a corrosive environment, and the burner is damaged.
 本発明は上記課題に鑑みなされたものであり、耐腐食性、耐熱性及び耐摩耗性に優れるバーナの構造及び当該バーナを備えた湿式炉を提供することを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a burner structure excellent in corrosion resistance, heat resistance and wear resistance, and a wet furnace equipped with the burner.
 本発明の一態様は、溶融スラグを収容する湿式炉の炉壁に形成された開口部を貫通して設置されるバーナ本体と、前記バーナ本体の周囲に接した状態で前記バーナ本体を取り囲むように設けられ、内部を流通する冷却媒体によって前記バーナ本体を冷却する冷却管と、を備え、前記冷却管及び前記バーナ本体の表面において少なくとも前記溶融スラグと接触する面に、前記溶融スラグとの接触角が90度以下であり、厚さが5μm以上1000μm以下であるセラミックス皮膜が形成されるバーナである。 One aspect of the present invention includes a burner body that is installed through an opening formed in a furnace wall of a wet furnace containing molten slag, and surrounds the burner body in a state of being in contact with the periphery of the burner body. A cooling pipe that cools the burner body with a cooling medium that circulates in the interior, and at least a surface of the cooling pipe and the burner body that contacts the molten slag is in contact with the molten slag A burner on which a ceramic film having an angle of 90 degrees or less and a thickness of 5 μm or more and 1000 μm or less is formed.
 本発明のバーナは、バーナ本体及び冷却管の表面のうち、少なくとも溶融スラグと接触する部分にセラミックス皮膜が形成されている。このセラミックス皮膜は薄いために、冷却媒体による冷却効果が高く、セラミックス皮膜表面が十分に冷却される。すなわち、本発明のバーナに形成されるセラミックス皮膜は優れた遮熱効果を有する。また、スラグとセラミックス皮膜との反応が抑制されてセラミックス皮膜の消失を抑制することが可能である。 In the burner of the present invention, a ceramic film is formed at least on the surface of the burner body and the cooling pipe in contact with the molten slag. Since this ceramic film is thin, the cooling effect by the cooling medium is high, and the surface of the ceramic film is sufficiently cooled. That is, the ceramic film formed on the burner of the present invention has an excellent heat shielding effect. Further, the reaction between the slag and the ceramic film can be suppressed, and the disappearance of the ceramic film can be suppressed.
 本発明のセラミックス皮膜は溶融スラグとの濡れ性に優れるため、溶融スラグがセラミックス皮膜に付着しやすい。セラミックス皮膜が十分に冷却されているため、セラミックス皮膜表面に付着した溶融スラグが冷却される。これにより、セラミックス皮膜が施されたバーナ本体及び冷却管の表面に固相スラグが形成される。この固相スラグはセラミックス皮膜との密着性が良好となるため、バーナ本体及び冷却管の表面から剥離しにくく、バーナ本体及び冷却管の表面に保持される。 Since the ceramic film of the present invention is excellent in wettability with molten slag, the molten slag tends to adhere to the ceramic film. Since the ceramic film is sufficiently cooled, the molten slag adhering to the surface of the ceramic film is cooled. Thereby, solid phase slag is formed on the surface of the burner body and the cooling pipe to which the ceramic film is applied. Since this solid phase slag has good adhesion to the ceramic film, it is difficult to peel off from the surface of the burner body and the cooling pipe, and is held on the surface of the burner body and cooling pipe.
 このように本発明では、セラミックス皮膜及び固体スラグにより優れた遮熱効果及び防食効果が得られ、バーナ本体や冷却管の母材の損傷を防止することができる。 As described above, in the present invention, an excellent heat shielding effect and anticorrosion effect can be obtained by the ceramic film and the solid slag, and damage to the base material of the burner body and the cooling pipe can be prevented.
 また、バーナ先端は溶融スラグに曝されるとともに、微粉炭やチャーを燃焼させる場合には微粉炭やチャーが衝突して先端の摩耗による減肉が発生する。セラミックス皮膜は耐摩耗性に優れるため、バーナ先端の摩耗による減肉が抑制される。 Also, the tip of the burner is exposed to molten slag, and when pulverized coal or char is burned, pulverized coal or char collides and thinning due to wear of the tip occurs. Since the ceramic film is excellent in wear resistance, thinning due to wear of the burner tip is suppressed.
 上記態様において、前記冷却管及び前記バーナ本体の前記表面と前記セラミックス皮膜との間に中間層を更に備え、前記冷却管、前記バーナ本体、前記中間層及び前記セラミックス皮膜の各材料は、前記冷却管側または前記バーナ本体側から前記セラミックス皮膜側に向かって熱膨張係数が段階的に減少する関係であることが好ましい。この場合、前記中間層が金属材料からなる層を含むことが好ましい。 In the above aspect, an intermediate layer is further provided between the cooling pipe and the surface of the burner body and the ceramic film, and each material of the cooling pipe, the burner body, the intermediate layer, and the ceramic film is formed of the cooling pipe. It is preferable that the thermal expansion coefficient gradually decreases from the tube side or the burner body side toward the ceramic film side. In this case, it is preferable that the intermediate layer includes a layer made of a metal material.
 バーナ本体や冷却管の母材は一般に金属材料である。母材とセラミックス皮膜との熱膨張係数差が大きい場合には、バーナが高温に曝されたときにバーナ本体や冷却管内に熱応力が発生する。
 上記態様の中間層を形成すれば、セラミックス皮膜に負荷される応力を緩和することができ、セラミックス皮膜の損傷を抑制することができるとともに、セラミックス皮膜表面からの固相スラグの剥離を効果的に防止することができる。
The base material of the burner body and the cooling pipe is generally a metal material. When the difference in thermal expansion coefficient between the base material and the ceramic film is large, thermal stress is generated in the burner body and the cooling pipe when the burner is exposed to high temperature.
If the intermediate layer of the above aspect is formed, stress applied to the ceramic film can be relieved, damage to the ceramic film can be suppressed, and solid phase slag can be effectively peeled from the surface of the ceramic film. Can be prevented.
 本発明の別の一態様は、上記のバーナを備える湿式炉である。本発明のバーナはセラミックス皮膜及び固相スラグによって保護されて損傷の発生が抑制されている。このため、湿式炉を長時間継続して運転することが可能である。 Another aspect of the present invention is a wet furnace equipped with the above burner. The burner of the present invention is protected by a ceramic film and solid phase slag, and the occurrence of damage is suppressed. For this reason, it is possible to operate the wet furnace continuously for a long time.
 本発明のバーナでは、セラミックス皮膜は溶融スラグとの濡れ性に優れるため溶融スラグがセラミックス皮膜に付着しやすく、またセラミックス皮膜が十分に薄いので表面に付着した冷却されて固相スラグが形成される。固相スラグとセラミックス皮膜とにより、バーナ本体及び冷却管の母材が熱及び腐食性環境から保護される。また、セラミックス皮膜により先端部での耐摩耗性が良好なバーナを得ることができる。
 上記保護構造によりバーナの損傷が抑制されているため、本発明の湿式炉は長時間の運転に耐え得るものとなる。
In the burner of the present invention, the ceramic film is excellent in wettability with the molten slag, so the molten slag easily adheres to the ceramic film, and since the ceramic film is sufficiently thin, it is cooled and adhered to the surface to form solid phase slag. . The solid phase slag and the ceramic coating protect the burner body and the base material of the cooling pipe from heat and corrosive environments. Further, a burner having good wear resistance at the tip can be obtained by the ceramic film.
Since the burner is prevented from being damaged by the protective structure, the wet furnace of the present invention can withstand long-time operation.
ガス化炉の断面概略図である。It is a section schematic diagram of a gasifier. 図1のガス化炉におけるバーナ設置位置を拡大した概略図である。It is the schematic which expanded the burner installation position in the gasification furnace of FIG. 第1実施形態におけるバーナ本体または冷却管の外側表面の断面拡大図である。It is a cross-sectional enlarged view of the outer surface of the burner main body or cooling pipe in 1st Embodiment. 第2実施形態におけるバーナ本体または冷却管の外側表面の断面拡大図である。It is a cross-sectional enlarged view of the outer surface of the burner main body or cooling pipe in 2nd Embodiment.
[第1実施形態]
 以下では、石炭ガス化炉を例に挙げて本発明の第1実施形態を説明する。なお、本発明はガス化炉に限定されず、ガス化溶融炉、産業廃棄物の溶融プラントに設置される溶融炉と言った、溶融スラグを内部に収容する湿式炉であれば適用可能である。
[First Embodiment]
Below, a coal gasification furnace is mentioned as an example and 1st Embodiment of this invention is described. The present invention is not limited to a gasification furnace, and can be applied to any wet furnace that accommodates molten slag, such as a gasification melting furnace or a melting furnace installed in an industrial waste melting plant. .
 本発明における溶融スラグは、石炭ガス化炉から排出されるスラグや産業廃棄物から発生するスラグ等である。一例として、スラグの組成はSiO:50~60wt%、Al:10~30wt%、CaO:約5wt%、Fe:約5wt%、その他:残部である。 The molten slag in the present invention is slag discharged from a coal gasification furnace, slag generated from industrial waste, or the like. As an example, the composition of the slag is SiO 2 : 50 to 60 wt%, Al 2 O 3 : 10 to 30 wt%, CaO: about 5 wt%, Fe 2 O 3 : about 5 wt%, and others: the balance.
 図1は、ガス化システムに設置されるガス化炉の断面概略図である。ガス化炉1内部にはガス化室2が形成されている。ガス化室2の炉壁は、オーステナイト鋼などの金属で作製されている。ガス化室2の炉壁の外側外周には、炉壁を冷却する水冷管(図示せず)が設置されている。
 ガス化室2の炉壁にバーナ6が設置される。バーナ6には、微粉状にされた石炭(微粉炭)を供給する微粉炭供給経路3と、酸化剤としての空気(酸素含有ガス)を供給する酸化剤供給経路5とが接続する。微粉炭供給経路3は、バーナ6よりも上方でガス化室2にも接続して設けられる。チャー(未燃粒子)を供給するチャー供給流路4が、ガス化室2に接続する。
FIG. 1 is a schematic cross-sectional view of a gasification furnace installed in a gasification system. A gasification chamber 2 is formed inside the gasification furnace 1. The furnace wall of the gasification chamber 2 is made of a metal such as austenitic steel. A water-cooled tube (not shown) for cooling the furnace wall is installed on the outer periphery of the furnace wall of the gasification chamber 2.
A burner 6 is installed on the furnace wall of the gasification chamber 2. Connected to the burner 6 are a pulverized coal supply path 3 for supplying pulverized coal (pulverized coal) and an oxidant supply path 5 for supplying air (oxygen-containing gas) as an oxidant. The pulverized coal supply path 3 is provided above the burner 6 and connected to the gasification chamber 2. A char supply channel 4 for supplying char (unburned particles) is connected to the gasification chamber 2.
 微粉炭供給経路3、チャー供給流路4及び酸化剤供給経路5から、それぞれ微粉炭、チャー及び空気が供給される。バーナ6により1800℃程度の高温で微粉炭及びチャーが燃焼し、可燃性ガス及び溶融スラグ(液相)が生成される。 The pulverized coal, char and air are supplied from the pulverized coal supply path 3, the char supply path 4 and the oxidant supply path 5, respectively. The burner 6 burns pulverized coal and char at a high temperature of about 1800 ° C. to generate combustible gas and molten slag (liquid phase).
 チャーを含む可燃性ガスは、ガス化室2上部から排出される。ガス化室2の下部には排出口7が形成されている。溶融スラグはガス化室2の炉壁内面を伝って排出口7から排出される。ガス化炉1の底部に水が貯留されている。排出口7から排出される溶融スラグは、水と接触して水砕スラグとなり、炉外に排出される。 Combustible gas including char is discharged from the upper part of the gasification chamber 2. A discharge port 7 is formed in the lower part of the gasification chamber 2. The molten slag is discharged from the discharge port 7 along the furnace wall inner surface of the gasification chamber 2. Water is stored at the bottom of the gasification furnace 1. The molten slag discharged from the discharge port 7 comes into contact with water to become a granulated slag, and is discharged outside the furnace.
 図2は図1のガス化炉におけるバーナ設置位置を拡大した断面概略図である。
 バーナ6は、バーナ本体11と、バーナ本体11の周囲に巻回された冷却管12とを備える。バーナ本体11及び冷却管12の母材は熱伝導率が高い金属(例えば、銅、アルミ、SUSなど)である。
FIG. 2 is a schematic cross-sectional view enlarging the burner installation position in the gasification furnace of FIG.
The burner 6 includes a burner body 11 and a cooling pipe 12 wound around the burner body 11. The base material of the burner body 11 and the cooling pipe 12 is a metal having high thermal conductivity (for example, copper, aluminum, SUS, etc.).
 バーナ本体11内には、微粉炭と搬送用の気体とが流通する燃料供給路13と、酸化剤が流通する酸化剤供給路14とが設けられる。バーナ本体11の先端部に噴出孔15a,15bが設けられ、噴出孔15a,15bから微粉炭及び酸化剤が噴出される。
 冷却管12は、内部に冷却水(冷却媒体)が流通するようになっている。
In the burner body 11, a fuel supply path 13 through which pulverized coal and a transfer gas flow and an oxidant supply path 14 through which an oxidant flows are provided. Jet holes 15a and 15b are provided at the tip of the burner body 11, and pulverized coal and oxidant are jetted from the jet holes 15a and 15b.
The cooling pipe 12 is configured such that cooling water (cooling medium) flows therein.
 ガス化室の炉壁10は、バーナ6が設置される位置で炉外側に向かって曲成されている。炉外側に向かって突出している炉壁10に開口部が設けられ、噴出孔15a,15bが設けられたバーナ先端がガス化炉内側に向けられてバーナ本体11が開口部に挿通される。 The furnace wall 10 of the gasification chamber is bent toward the outside of the furnace at the position where the burner 6 is installed. An opening is provided in the furnace wall 10 protruding toward the outside of the furnace, and the burner main body 11 is inserted through the opening with the burner tip provided with the ejection holes 15a and 15b facing the inside of the gasification furnace.
 ガス化炉の炉外側に開口部を覆うようにシールボックス(不図示)が設けられる。シールボックス内には耐火材が充填されている。耐火材は、例えばアルミナ、SiCである。図2に示すように、開口部において炉壁10とバーナ6との隙間が耐火材16で埋められる。 A seal box (not shown) is provided on the outside of the gasification furnace so as to cover the opening. The seal box is filled with a refractory material. The refractory material is, for example, alumina or SiC. As shown in FIG. 2, the gap between the furnace wall 10 and the burner 6 is filled with the refractory material 16 in the opening.
 図2に示すように、先端部のバーナ本体11及び冷却管12が、ガス化炉の内部空間に露出している。ガス化炉の内部空間に露出している部分はガス化炉内の溶融スラグと接触する部分である。本実施形態では、図3に示すように、バーナ本体11及び冷却管12の母材20の外側表面(冷却水の流通側と反対側の表面)にセラミックス皮膜21が形成される。 As shown in FIG. 2, the burner body 11 and the cooling pipe 12 at the tip are exposed in the internal space of the gasification furnace. The part exposed to the internal space of the gasifier is the part that contacts the molten slag in the gasifier. In the present embodiment, as shown in FIG. 3, a ceramic film 21 is formed on the outer surface (surface opposite to the cooling water flow side) of the base material 20 of the burner body 11 and the cooling pipe 12.
 冷却管12に関しては、冷却管12の外側表面の全て(炉内に露出していない部分を含む)にセラミックス皮膜21が形成されていても良い。または、少なくとも溶融スラグと接触する部分(図2で炉内に露出した部分)にのみセラミックス皮膜21が形成されていても良い。溶融スラグとの接触部分のみにセラミックス皮膜を形成する場合は、冷却管12の外側表面全体にセラミックス皮膜21が形成されていても良い。または、冷却管12の外側表面のうち炉内に面する側の表面、すなわち、炉内からの輻射熱及び腐食を受ける部分にのみにセラミックス皮膜21が設けられていても良い。 Regarding the cooling pipe 12, the ceramic film 21 may be formed on the entire outer surface of the cooling pipe 12 (including a portion not exposed in the furnace). Or the ceramic membrane | film | coat 21 may be formed only in the part (part exposed in the furnace in FIG. 2) which contacts a molten slag at least. When the ceramic film is formed only on the contact portion with the molten slag, the ceramic film 21 may be formed on the entire outer surface of the cooling pipe 12. Alternatively, the ceramic coating 21 may be provided only on the outer surface of the cooling pipe 12 on the surface facing the inside of the furnace, that is, on the portion that receives the radiant heat and corrosion from the inside of the furnace.
 セラミックス皮膜21は、5μm以上1000μm以下、好ましくは150μm以上500μm以下の膜厚に形成される。セラミックス皮膜21は、大気圧プラズマ溶射、電子ビーム物理蒸着などによって成膜される。 The ceramic film 21 is formed to a thickness of 5 μm or more and 1000 μm or less, preferably 150 μm or more and 500 μm or less. The ceramic film 21 is formed by atmospheric pressure plasma spraying, electron beam physical vapor deposition, or the like.
 セラミックス皮膜21は、スラグの軟化点以上(具体的に1000℃~1500℃)における溶融スラグと接触角が90度以下、より好ましくは60度以下となるセラミックスである。上記接触角であれば、溶融スラグとセラミックス皮膜21との間で十分な濡れ性が確保できる。具体的に、セラミックス皮膜21の材質は、SiO-Al(例えばムライト)系材料、SiO-Al-MgO(例えばコージェライト)系材料、Al、CrO系材料、MgO系材料、ZrO系材料(例えばCaO-ZrO系材料)、ZrO系材料(例えばY-ZrO系材料(8wt%Y安定化ジルコニア))、SiC系材料である。表1に、各材料から作製した皮膜と溶融スラグとの接触角をまとめる。 The ceramic film 21 is a ceramic that has a contact angle with the molten slag at 90 ° C. or less, more preferably 60 ° or less, at or above the slag softening point (specifically 1000 ° C. to 1500 ° C.). With the contact angle, sufficient wettability can be secured between the molten slag and the ceramic film 21. Specifically, the material of the ceramic film 21 is SiO 2 —Al 2 O 3 (for example, mullite) based material, SiO 2 —Al 2 O 3 —MgO (for example cordierite) based material, Al 2 O 3 , CrO 3 based. Material, MgO-based material, ZrO 3 -based material (for example, CaO—ZrO 3 -based material), ZrO 2 -based material (for example, Y 2 O 3 —ZrO 2 -based material (8 wt% Y 2 O 3 stabilized zirconia)), SiC-based Material. Table 1 summarizes the contact angles between the film prepared from each material and the molten slag.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 本実施形態のセラミックス皮膜21は薄いため、冷却媒体によるバーナ本体11及び冷却管12の冷却効果が大きい。このため、優れた遮熱効果を得ることができるとともに、セラミックス皮膜21と溶融スラグとの反応を抑制することができる。 Since the ceramic film 21 of the present embodiment is thin, the cooling effect of the burner body 11 and the cooling pipe 12 by the cooling medium is great. For this reason, while being able to acquire the outstanding heat insulation effect, reaction with the ceramic membrane | film | coat 21 and molten slag can be suppressed.
 上述の接触角を有するセラミックス皮膜21をバーナ本体11及び冷却管12の母材表面に形成すると、溶融スラグとの濡れ性が良好であるので、溶融スラグがセラミックス皮膜21表面に付着しやすくなる。バーナ本体11及び冷却管12は冷却管12内を流通する冷却媒体により冷却されているため、セラミックス皮膜21に付着した溶融スラグは冷却されて固相スラグとなる。この固相スラグは溶融スラグと同じ材質であるから、固相スラグの表面に更に溶融スラグが付着しやすい。また、固相スラグはセラミックス皮膜との密着性が良好となるため、バーナ本体11及び冷却管12から剥離しにくい。従って、バーナ本体11及び冷却管12の母材はセラミックス皮膜21及び固相スラグによって腐食性環境から保護される。 When the ceramic film 21 having the contact angle described above is formed on the surface of the base material of the burner body 11 and the cooling pipe 12, the wet slag is good and the molten slag is likely to adhere to the surface of the ceramic film 21. Since the burner body 11 and the cooling pipe 12 are cooled by the cooling medium flowing through the cooling pipe 12, the molten slag adhering to the ceramic film 21 is cooled to become solid phase slag. Since this solid phase slag is made of the same material as the molten slag, the molten slag is more likely to adhere to the surface of the solid phase slag. In addition, the solid phase slag has good adhesion to the ceramic film, and thus is difficult to peel off from the burner body 11 and the cooling pipe 12. Accordingly, the base material of the burner body 11 and the cooling pipe 12 is protected from the corrosive environment by the ceramic film 21 and the solid phase slag.
 バーナ本体11や冷却管12の母材及びセラミックス皮膜21は溶融スラグからの熱の影響により膨張するが、母材(金属材料)とセラミックス皮膜21との熱膨張係数に差があると、セラミックス皮膜21の表面に亀裂が発生する場合がある。この亀裂にスラグが入り込むが、セラミックス皮膜21は薄く十分に冷却されているため、亀裂内でスラグが固化する。つまり、セラミックス皮膜21が損傷してもバーナ本体11や冷却管12が固相スラグにより腐食性環境から保護される。 The base material of the burner body 11 and the cooling pipe 12 and the ceramic film 21 expand due to the influence of heat from the molten slag. If there is a difference in the thermal expansion coefficient between the base material (metal material) and the ceramic film 21, the ceramic film A crack may occur on the surface of 21. Although slag enters this crack, since the ceramic film 21 is thin and sufficiently cooled, the slag solidifies in the crack. That is, even if the ceramic film 21 is damaged, the burner body 11 and the cooling pipe 12 are protected from the corrosive environment by the solid phase slag.
 また、バーナ本体11の噴出孔15a側先端や噴出孔15aに向いている冷却管12は、バーナ6の噴出孔15aから噴出される微粉炭等の粒子が衝突して摩耗による減肉が発生しやすい。本実施形態は、摩耗による減肉が発生する部分にもセラミックス皮膜21が形成されているので、バーナ本体11や冷却管12の耐摩耗性が向上する。 Further, the cooling pipe 12 facing the ejection hole 15a side of the burner main body 11 and the ejection hole 15a causes a reduction in thickness due to wear due to collision of particles such as pulverized coal ejected from the ejection hole 15a of the burner 6. Cheap. In the present embodiment, since the ceramic film 21 is also formed on the portion where the thinning due to wear occurs, the wear resistance of the burner body 11 and the cooling pipe 12 is improved.
 本実施形態のバーナはセラミックス皮膜21及び固相スラグによって保護されて損傷の発生が抑制されている。このため、湿式炉を長時間継続して運転することが可能である。 The burner of this embodiment is protected by the ceramic film 21 and the solid phase slag, and the occurrence of damage is suppressed. For this reason, it is possible to operate the wet furnace continuously for a long time.
 なお、第1実施形態において、セラミックス皮膜21の表面はブラスト処理などにより粗面化されていても良い。こうすることにより、固相スラグとの接触面積が増大し、スラグがセラミックス皮膜21から剥離しにくくなる。この結果、遮熱効果及び防食効果を更に向上させることが可能となる。 In the first embodiment, the surface of the ceramic film 21 may be roughened by blasting or the like. By doing so, the contact area with the solid phase slag increases, and the slag becomes difficult to peel from the ceramic film 21. As a result, it is possible to further improve the heat shielding effect and the anticorrosion effect.
[第2実施形態]
 図4は、第2実施形態におけるバーナ本体または冷却管の外側表面の断面拡大図である。上記で説明したように、バーナ本体及び冷却管の母材は金属材料からなる。セラミックス皮膜材料と母材の材料との熱膨張係数差が大きい場合には、セラミックス皮膜が剥離する可能性がある。このような場合は、セラミックス皮膜21とバーナ本体11及び冷却管12の母材20の外側表面との間に中間層22が形成される。
 図4では中間層22は1層で表しているが、複数の中間層が積層されていても良い。
[Second Embodiment]
FIG. 4 is an enlarged cross-sectional view of the outer surface of the burner body or the cooling pipe in the second embodiment. As explained above, the base material of the burner body and the cooling pipe is made of a metal material. When the difference in thermal expansion coefficient between the ceramic film material and the base material is large, the ceramic film may peel off. In such a case, an intermediate layer 22 is formed between the ceramic film 21 and the outer surface of the base material 20 of the burner body 11 and the cooling pipe 12.
In FIG. 4, the intermediate layer 22 is represented by one layer, but a plurality of intermediate layers may be laminated.
 第2実施形態では、母材20側からセラミックス皮膜21側に向かって熱膨張係数が段階的に減少するように、炉壁10、中間層22、及び、セラミックス皮膜21の材質が選定される。 In the second embodiment, the materials of the furnace wall 10, the intermediate layer 22, and the ceramic film 21 are selected so that the thermal expansion coefficient gradually decreases from the base material 20 side toward the ceramic film 21 side.
 上述の熱膨張係数の関係が達成できる中間層22としては、CoNiCrAlY合金やNiCoCrAlY合金などの金属材料が適用できる。
 中間層22は図4に示すように1層でも良いし、複数層が形成されていても良い。複数の中間層22では、母材20側からセラミックス皮膜21側に向かって熱膨張係数が段階的に減少するように、各中間層22の材質を変える。このように複数の中間層を形成する場合には、例えば、母材20側には金属材料からなる中間層が形成され、セラミックス皮膜21側にはセラミックス皮膜21に用いた材料よりも熱膨張係数が大きいセラミックス材料からなる中間層が形成される。このとき、母材20、セラミックス皮膜21、中間層22の間の熱膨張差がそれぞれ同程度となるように、複数の中間層22の各材質が選定されると良い。
As the intermediate layer 22 that can achieve the above-described relationship of thermal expansion coefficients, a metal material such as a CoNiCrAlY alloy or a NiCoCrAlY alloy can be applied.
The intermediate layer 22 may be a single layer as shown in FIG. 4 or a plurality of layers may be formed. In the plurality of intermediate layers 22, the material of each intermediate layer 22 is changed so that the thermal expansion coefficient gradually decreases from the base material 20 side toward the ceramic film 21 side. When a plurality of intermediate layers are formed in this way, for example, an intermediate layer made of a metal material is formed on the base material 20 side, and the thermal expansion coefficient is higher on the ceramic film 21 side than the material used for the ceramic film 21. An intermediate layer made of a large ceramic material is formed. At this time, each material of the plurality of intermediate layers 22 may be selected so that the thermal expansion differences among the base material 20, the ceramic film 21, and the intermediate layer 22 are approximately the same.
 表2は第2実施形態のバーナにおける材料選定の例である。表2の例では、冷却効果と炉内の熱負荷とを考慮して、中間層22と母材20との熱膨張係数の差、及び、セラミックス皮膜21と中間層22の熱膨張係数の差がほぼ同じとなるように設計されている。 Table 2 is an example of material selection in the burner of the second embodiment. In the example of Table 2, in consideration of the cooling effect and the heat load in the furnace, the difference in the thermal expansion coefficient between the intermediate layer 22 and the base material 20 and the difference in the thermal expansion coefficient between the ceramic film 21 and the intermediate layer 22. Are designed to be almost the same.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 本実施形態のセラミックス皮膜21及び中間層22を設ければ、第1実施形態と比較して、炉内に溶融スラグが収容された場合にセラミックス皮膜21に生じる応力を緩和させることができる。この結果、セラミックス皮膜21及び固相スラグの剥離が効果的に防止されるので、耐熱性、耐腐食性及び耐摩耗性に優れるバーナとすることができる。 If the ceramic film 21 and the intermediate layer 22 of the present embodiment are provided, the stress generated in the ceramic film 21 when the molten slag is accommodated in the furnace can be reduced as compared with the first embodiment. As a result, since peeling of the ceramic film 21 and the solid phase slag is effectively prevented, a burner having excellent heat resistance, corrosion resistance, and wear resistance can be obtained.
 本実施形態のバーナも第1実施形態と同様に損傷の発生が抑制されている。このため、湿式炉を長時間継続して運転することが可能である。 In the burner of this embodiment, the occurrence of damage is suppressed as in the first embodiment. For this reason, it is possible to operate the wet furnace continuously for a long time.
 第2実施形態においても、セラミックス皮膜21の表面はブラスト処理などにより粗面化されていても良い。こうすることにより、固相スラグとの接触面積が増大し、スラグがセラミックス皮膜21から剥離しにくくなる。この結果、遮熱効果及び防食効果を更に向上させることが可能となる。 Also in the second embodiment, the surface of the ceramic film 21 may be roughened by blasting or the like. By doing so, the contact area with the solid phase slag increases, and the slag becomes difficult to peel from the ceramic film 21. As a result, it is possible to further improve the heat shielding effect and the anticorrosion effect.
1 ガス化炉
2 ガス化室
3 微粉炭供給経路
4 チャー供給流路
5 酸化剤供給経路
6 バーナ
7 排出口
10 炉壁
11 バーナ本体
12 冷却管
13 燃料供給路
14 酸化剤供給路
15 噴出孔
16 耐火材
20 母材
21 セラミックス皮膜
22 中間層
DESCRIPTION OF SYMBOLS 1 Gasification furnace 2 Gasification chamber 3 Pulverized coal supply path 4 Char supply path 5 Oxidant supply path 6 Burner 7 Discharge port 10 Furnace wall 11 Burner main body 12 Cooling pipe 13 Fuel supply path 14 Oxidant supply path 15 Ejection hole 16 Refractory material 20 Base material 21 Ceramic film 22 Intermediate layer

Claims (4)

  1.  溶融スラグを収容する湿式炉の炉壁に形成された開口部を貫通して設置されるバーナ本体と、
     前記バーナ本体の周囲に接した状態で前記バーナ本体を取り囲むように設けられ、内部を流通する冷却媒体によって前記バーナ本体を冷却する冷却管と、
    を備え、
     前記冷却管及び前記バーナ本体の表面において少なくとも前記溶融スラグと接触する面に、前記溶融スラグとの接触角が90度以下であり、厚さが5μm以上1000μm以下であるセラミックス皮膜が形成されるバーナ。
    A burner body installed through the opening formed in the furnace wall of the wet furnace containing the molten slag;
    A cooling pipe that is provided so as to surround the burner body in a state of being in contact with the periphery of the burner body, and that cools the burner body with a cooling medium flowing through the interior;
    With
    A burner in which a ceramic film having a contact angle with the molten slag of 90 ° or less and a thickness of 5 μm or more and 1000 μm or less is formed on at least the surface of the cooling pipe and the burner main body that is in contact with the molten slag. .
  2.  前記冷却管及び前記バーナ本体の前記表面と前記セラミックス皮膜との間に中間層を更に備え、
     前記冷却管、前記バーナ本体、前記中間層及び前記セラミックス皮膜の各材料は、前記冷却管側または前記バーナ本体側から前記セラミックス皮膜側に向かって熱膨張係数が段階的に減少する関係である請求項1に記載のバーナ。
    Further comprising an intermediate layer between the cooling pipe and the surface of the burner body and the ceramic film,
    The respective materials of the cooling pipe, the burner body, the intermediate layer, and the ceramic film have a relationship in which a coefficient of thermal expansion gradually decreases from the cooling pipe side or the burner body side toward the ceramic film side. Item 2. The burner according to item 1.
  3.  前記中間層が金属材料からなる層を含む請求項2に記載のバーナ。 The burner according to claim 2, wherein the intermediate layer includes a layer made of a metal material.
  4.  請求項1乃至請求項3のいずれかに記載のバーナを備える湿式炉。
     
    A wet furnace comprising the burner according to any one of claims 1 to 3.
PCT/JP2014/074232 2014-02-27 2014-09-12 Burner, and wet bottom furnace equipped with same WO2015129082A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-037560 2014-02-27
JP2014037560A JP2015161462A (en) 2014-02-27 2014-02-27 Burner and wet furnace including the same

Publications (1)

Publication Number Publication Date
WO2015129082A1 true WO2015129082A1 (en) 2015-09-03

Family

ID=54008430

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/074232 WO2015129082A1 (en) 2014-02-27 2014-09-12 Burner, and wet bottom furnace equipped with same

Country Status (2)

Country Link
JP (1) JP2015161462A (en)
WO (1) WO2015129082A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6716422B2 (en) * 2016-10-21 2020-07-01 三菱日立パワーシステムズ株式会社 Burner apparatus, cooling pipe damage detection method for burner apparatus, and cooling medium control method for burner apparatus

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1054516A (en) * 1996-08-07 1998-02-24 Tocalo Co Ltd Gasifying furnace burner
JPH10288311A (en) * 1997-04-10 1998-10-27 Babcock Hitachi Kk Burner for gassifying furnace
JP2000301655A (en) * 1999-04-22 2000-10-31 Tocalo Co Ltd Heat barrier film-coated member and formation of heat barrier film
JP2001215085A (en) * 2000-02-02 2001-08-10 Mitsubishi Heavy Ind Ltd Melting furnace and method for protecting its furnace wall surface
JP2001280635A (en) * 2000-03-31 2001-10-10 Mitsui Eng & Shipbuild Co Ltd Surface treatment method for material of melting part for waste combustion ash
JP2002146508A (en) * 2000-11-07 2002-05-22 Nkk Corp Water cooled steel structure
JP2009234830A (en) * 2008-03-26 2009-10-15 Kurosaki Harima Corp Chromium free monolithic refractory and waste melting furnace
JP2010255892A (en) * 2009-04-22 2010-11-11 Electric Power Dev Co Ltd Gasification burner, and method of supplying fuel for gasification burner
JP2013024451A (en) * 2011-07-19 2013-02-04 Electric Power Dev Co Ltd Gasification burner

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1054516A (en) * 1996-08-07 1998-02-24 Tocalo Co Ltd Gasifying furnace burner
JPH10288311A (en) * 1997-04-10 1998-10-27 Babcock Hitachi Kk Burner for gassifying furnace
JP2000301655A (en) * 1999-04-22 2000-10-31 Tocalo Co Ltd Heat barrier film-coated member and formation of heat barrier film
JP2001215085A (en) * 2000-02-02 2001-08-10 Mitsubishi Heavy Ind Ltd Melting furnace and method for protecting its furnace wall surface
JP2001280635A (en) * 2000-03-31 2001-10-10 Mitsui Eng & Shipbuild Co Ltd Surface treatment method for material of melting part for waste combustion ash
JP2002146508A (en) * 2000-11-07 2002-05-22 Nkk Corp Water cooled steel structure
JP2009234830A (en) * 2008-03-26 2009-10-15 Kurosaki Harima Corp Chromium free monolithic refractory and waste melting furnace
JP2010255892A (en) * 2009-04-22 2010-11-11 Electric Power Dev Co Ltd Gasification burner, and method of supplying fuel for gasification burner
JP2013024451A (en) * 2011-07-19 2013-02-04 Electric Power Dev Co Ltd Gasification burner

Also Published As

Publication number Publication date
JP2015161462A (en) 2015-09-07

Similar Documents

Publication Publication Date Title
WO2011148515A1 (en) Object produced by thermal spraying and method of thermal spraying therefor
UA80723C2 (en) Chipping-resistant metal article (variants), method for reduction of chipping in metal articles
WO2008101164A3 (en) Thermal spray coatings and applications therefor
WO2015129083A1 (en) Wet bottom furnace
EP2518027B1 (en) Electrode holder for electric glass melting
JP2010156327A (en) Method and system for enhancing heat transfer of turbine engine component
WO2015129082A1 (en) Burner, and wet bottom furnace equipped with same
US20150064430A1 (en) Heat insulation layer system with corrosion and erosion protection
EP0356943B1 (en) Wear resistant metallurgical tuyere
CN102159732A (en) Oxygen blowing lance with protection element
JPH11217611A (en) Tuyere for blast furnace
KR20080082283A (en) Plasma spray coating method
JP4294736B2 (en) Gas turbine equipment with combustion chamber lined with ceramic blocks
JP5265168B2 (en) Melting furnace
CA2491526A1 (en) Coatings for articles used with molten metal
CN105108403A (en) Vulnerable part of welding gun and surface treatment method of vulnerable part
CN110062815B (en) Boiler water pipe of waste incinerator and manufacturing method thereof
CN1045635C (en) Cermet coating preventing liquid sludge-removing furnace from iron-separating corrosion
CN108917401B (en) Spout brick assembly for smelting equipment
JP7017290B2 (en) Corrosion resistant furnace wall member
JP2018169112A (en) Burner
KR100321048B1 (en) Ceramic Lined Copper Nozzle for COREX
KR100415643B1 (en) Refractory compositions for ceramic lined copper nozzle for corex
JP7457633B2 (en) Thermal barrier coatings and heat-resistant components
CN205021054U (en) Welder vulnerable part

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14883848

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14883848

Country of ref document: EP

Kind code of ref document: A1