WO2015129076A1 - Drying device - Google Patents

Drying device Download PDF

Info

Publication number
WO2015129076A1
WO2015129076A1 PCT/JP2014/071452 JP2014071452W WO2015129076A1 WO 2015129076 A1 WO2015129076 A1 WO 2015129076A1 JP 2014071452 W JP2014071452 W JP 2014071452W WO 2015129076 A1 WO2015129076 A1 WO 2015129076A1
Authority
WO
WIPO (PCT)
Prior art keywords
nozzle
nozzle hole
drying apparatus
inflow surface
stepped portion
Prior art date
Application number
PCT/JP2014/071452
Other languages
French (fr)
Japanese (ja)
Inventor
秋吉 雅夫
誠 谷島
菊地 仁
一輝 岡本
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201480076406.6A priority Critical patent/CN106028892B/en
Priority to JP2016504989A priority patent/JP6270985B2/en
Priority to TW103143786A priority patent/TWI593376B/en
Publication of WO2015129076A1 publication Critical patent/WO2015129076A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47KSANITARY EQUIPMENT NOT OTHERWISE PROVIDED FOR; TOILET ACCESSORIES
    • A47K10/00Body-drying implements; Toilet paper; Holders therefor
    • A47K10/48Drying by means of hot air

Definitions

  • the present invention relates to a drying apparatus.
  • the drying device that dries wet hands by the air flow blown out from the nozzle holes is cheaper than paper towels and rental towels, and is hygienic and can be used without contact. There is.
  • the drying device blows out an air flow generated by a fan or the like from an air outlet (corresponding to the nozzle hole described below), and noise increases when the air flow speed is increased to improve the drying performance. There is a problem of doing.
  • Patent Document 1 discloses a drying apparatus that includes a jet port in which stepped irregularities that are continuous in the air flow direction are formed inside a wall surface that forms the jet port. An apparatus is disclosed.
  • the present invention has been made in order to solve the above-described problems, and an object of the present invention is to provide a drying apparatus capable of reducing noise while suppressing a decrease in drying performance.
  • the drying apparatus has a main body in which a concave hand insertion part is formed, an air flow generation part provided in the main body, and a nozzle hole through which air fed from the air flow generation part is blown out,
  • a nozzle portion formed in the manual insertion portion of the main body, the nozzle portion has an inflow surface extending along the forming direction of the nozzle hole, and a step portion provided to protrude from the inflow surface,
  • the upper surface of the stepped portion has a flat surface formed so as to extend from the inflow surface side to the outlet of the nozzle hole.
  • the drying apparatus according to the present invention has the above-described configuration, it is possible to reduce noise while suppressing a decrease in drying performance.
  • FIG. 1 It is an external appearance perspective view of the drying apparatus shown in FIG. It is a longitudinal cross-sectional view of the nozzle hole of the nozzle part of the drying apparatus which concerns on Embodiment 1 of this invention. It is a perspective view of the periphery of the nozzle hole shown in FIG. It is modification 1 of the drying apparatus which concerns on Embodiment 1 of this invention. It is the modification 2 of the drying apparatus which concerns on Embodiment 1 of this invention. It is a front view of the part of the nozzle hole of the nozzle of the drying apparatus which concerns on Embodiment 2 of this invention.
  • FIG. 7 It is sectional drawing of A1, A2, and A3 of Fig.7 (a). It is a longitudinal cross-sectional view of the drying apparatus which concerns on Embodiment 3 of this invention. It is a front view of the rectangular nozzle arrange
  • FIG. 1 is a cross-sectional view showing a schematic configuration of a drying apparatus 200 according to the first embodiment.
  • FIG. 2 is an external perspective view of the drying apparatus 200 shown in FIG.
  • the Z direction corresponds to the vertical direction.
  • the drying apparatus 200 includes a main body 1 in which a hand insertion portion 2 into which a finger is inserted is formed, an air flow generation portion 6 provided in the main body 1, A hand detection sensor 30 that detects whether or not a finger has been inserted into the hand insertion unit 2 and a control device 31 that drives the airflow generation unit 6 based on the detection result of the hand detection sensor 30 are provided.
  • the main body 1 has a hand insertion portion 2 formed in a concave shape for inserting a finger at the top, and a nozzle hole 5 from which air fed from the air flow generation portion 6 is blown out and extends in the first direction X.
  • the first direction X corresponds to the longitudinal direction of the nozzle hole 5.
  • the manual insertion portion 2 is a concave portion formed so as to open the upper side of the main body 1 and the opposite side surfaces.
  • the manual insertion portion 2 includes an upper opening 2A formed on the upper side, and a side opening 2B and a side opening 2C formed on the side. Therefore, fingers can be inserted into the hand insertion portion 2 not only from the upper opening 2A side of the main body 1 but also from the side opening 2B and the side opening 2C.
  • the hand insertion portion 2 is formed with an inner wall 2D on the side where fingers are inserted.
  • the inner wall 2D is impregnated with a water-repellent coating such as silicon or fluorine, a hydrophilic coating such as titanium oxide, or an antibacterial agent.
  • the inner wall 2D has a first inner wall 2D1 in which the nozzle portion 4a is formed, and a second inner wall 2D2 in which the nozzle portion 4b is formed and faces the first inner wall 2D1. That is, the nozzle part 4a is provided in the 1st inner wall 2D1 which is a front wall surface among the mutually opposing inner walls 2D of the manual insertion part 2, and the 2nd inner wall 2D2 which is a wall surface on the back side is provided.
  • the nozzle part 4b is provided.
  • the first inner wall 2D1 is formed, for example, so as to extend in the Z direction, and an upper portion provided with the nozzle portion 4a is, for example, a vertical surface, and a lower side of the vertical surface is an inclined surface.
  • the second inner wall 2D2 is formed so as to extend in the Z direction, for example.
  • the upper portion where the nozzle portion 4b is provided is an inclined surface
  • the lower side of the inclined surface is a vertical surface.
  • a drain port for draining water scattered from the hand is provided on the bottom surface of the hand insertion portion 2, and a drain pipe (not shown) is connected to the drain port.
  • a drain tank (not shown) for collecting drain water flowing out from the tank is connected.
  • the nozzle portion 4 a and the nozzle portion 4 b are provided at positions facing each other, and are provided on both the back side and the palm side of the hand (not shown) inserted into the hand insertion portion 2. Wind can be applied simultaneously, and fingers can be dried with high efficiency.
  • an elongated nozzle hole 5 opened in a slit shape is formed in the nozzle part 4a and the nozzle part 4b. Then, the air flow formed by the operation of the air flow generation unit 6 passes through the nozzle hole 5 and is discharged to the hand insertion unit 2 so that the hand can be dried.
  • the nozzle part 4a is formed below the nozzle part 4b.
  • the nozzle portion 4a is provided on the first inner wall 2D1 so as to face in the horizontal direction.
  • the nozzle portion 4b is formed on the inclined surface portion of the second inner wall 2D2, and the nozzle portion 4b is provided so that the air flow flowing out from the nozzle portion 4b is directed toward the inside of the manual insertion portion 2. It has been. For this reason, in the drying apparatus 200, the traveling direction of the air blown from the nozzle portion 4a and the traveling direction of the air blown from the nozzle portion 4b intersect each other.
  • the suction port 9 is formed on the bottom side of the main body 1.
  • the suction port 9 communicates with the air path A formed in the main body 1. For this reason, when the air flow generating unit 6 is driven, air is taken into the air passage A of the main body 1 through the suction port 9, and the taken-in air is manually inserted through the nozzle part 4a and the nozzle part 4b. 2 is released.
  • the formation position of the suction port 9 is not limited to the bottom side of the main body 1, but if it is formed on the bottom portion, it is difficult for dust and the like to be taken into the main body 1, and the user accidentally puts a finger on the suction port 9. It is possible to prevent the insertion and the like, and it is possible to suppress the reduction in design properties.
  • the air passage member 32 constitutes a part of the air passage A formed in the main body 1.
  • the air passage member 32 includes an upstream air passage member 32A, a midstream air passage member 32B, and a downstream air passage member 32C.
  • the upstream air passage member 32A, the middle air passage member 32B, and the downstream air passage member 32C are provided in the main body 1 so as to be parallel to the horizontal direction, for example.
  • the upstream air passage member 32A, the middle air passage member 32B, and the downstream air passage member 32C are arranged in the main body 1 in order from the bottom.
  • an air flow generation unit 6 is disposed between the midstream air passage member 32B and the downstream air passage member 32C.
  • the air flow generation unit 6 in the air path A On the upstream side of the air flow generation unit 6 in the air path A, a curved flow path is formed. Thereby, although it becomes a little resistance with respect to the air which flows in from the suction inlet 9, it has the effect that the noise which generate
  • the air flow branches off into the nozzle part 4 a side inside the main body 1 and the nozzle part 4 b side inside the main body 1.
  • the airflow generation unit 6 generates an airflow and discharges air from the nozzle hole 5 to the manual insertion unit 2.
  • the main body 1 is provided with nozzle portions 4 a and 4 b at the air flow outlet portion, and the pressure on the inlet side of the nozzle hole 5 is increased by the action of the air flow generation portion 6. That is, the airflow generation part 6 is installed inside the main body 1 as a pressurizing device as shown in FIG.
  • the airflow generator 6 is composed of, for example, a motor and a fan attached to the motor shaft.
  • the airflow generator 6 can be constituted by, for example, a drive circuit (not shown) for driving a DC brushless motor, a turbo fan (not shown) rotated by the DC brushless motor, and the like.
  • the air flow generator 6 sucks air into the main body 1 from the suction port 9 and outputs a high-pressure air flow to the space 8.
  • the air flow discharged from the air flow generation unit 6 branches into two paths in the downstream space 7 and is discharged to the outside of the main body 1 from the nozzle hole 5 of the nozzle unit 4a and the nozzle hole 5 of the nozzle unit 4b. Is done. In addition, it is good to set the space
  • the hand detection sensor 30 detects a finger and is provided on the inner wall 2D of the hand insertion portion 2. As shown in FIG. 1, the hand detection sensor 30 is provided, for example, at the upper part and the lower part of the first inner wall 2D1, and is provided at the upper part of the second inner wall 2D2. The hand detection sensor 30 is electrically connected to the control device 31, and the detection result is output to the control device 31.
  • Control device 31 The control device 31 controls the air flow generator 6 based on the detection result of the hand detection sensor 30.
  • the control device 31 processes a signal from the hand detection sensor 30 and appropriately controls the operation of the airflow generation unit 6 based on the processing result.
  • the control device 31 drives the air flow generation unit 6 when the hand detection sensor 30 detects a finger, and stops the air flow generation unit 6 when the hand detection sensor 30 stops detecting the finger.
  • the installation position of the control apparatus 31 is not specifically limited, In this Embodiment 1, the example installed in the lower part side in the main body 1 is shown, as shown in FIG.
  • the air flow sucked from the suction port 9 passes through the space 8 of the air passage A and flows into the air flow generation unit 6, and becomes a high-pressure air flow by the air flow generation unit 6.
  • the high-pressure air flow branches into two in the space 7 of the air passage A and is discharged from the nozzle holes 5 provided in the nozzle portion 4a and the nozzle portion 4b.
  • the discharged air flow hits both the back side and the palm side of the hand inserted into the hand insertion part 2, and the water attached to the hand is scattered and vaporized.
  • the air flow generation unit 6 is stopped by the control device 31 when the hand detection signal from the hand detection sensor 30 disappears.
  • noise generating elements include the nozzle hole 5 in which a high-speed air flow flows in the vicinity of a stationary wall surface, and the high-speed air flow discharged from the nozzle holes 5 of the nozzle portion 4a and the nozzle portion 4b.
  • the hand insertion part 2 that collides with the air flow generation part 6 having a high-speed rotating body.
  • the drying device 200 has a configuration that suppresses noise in the nozzle hole 5 and the manual insertion portion 2.
  • the noise caused by the noise in the nozzle hole 5 and the collision of the high-speed air flow emitted from the nozzle hole 5 at the manual insertion portion 2 is greatly influenced by the shape of the nozzle hole 5.
  • FIG. 3 is a longitudinal cross-sectional view of the nozzle part 4a and the nozzle hole 5 of the nozzle part 4b of the drying apparatus 200 according to the first embodiment.
  • FIG. 4 is a perspective view of the periphery of the nozzle hole 5 shown in FIG.
  • the shape of the opening of the nozzle hole 5 of the nozzle portion 4a and the nozzle portion 4b (the shape of the outlet 10) is a linear slit shape extending in the first direction X.
  • the shape of the nozzle hole 5 of the nozzle part 4a and the nozzle part 4b is formed so that the upper surface side and the lower surface side facing an upper surface side may become symmetrical.
  • the nozzle part 4a and the nozzle part 4b are named generically, and are demonstrated.
  • the nozzle portion 4 includes a curved surface portion 13 formed on the inflow side, an inflow surface 17 extending along the forming direction of the nozzle hole 5, and a step portion 40 formed to protrude from the inflow surface 17.
  • the inflow surface 17 is a flat surface extending from the side connected to the curved surface portion 13 to the side connected to the stepped portion 40, and the stepped portion 40 protrudes upward with respect to the height position of the inflow surface 17. It is a part.
  • the formation direction of the nozzle hole 5 corresponds to the Y direction shown in FIGS. 3 and 4.
  • the curved surface portion 13 is formed on the inlet side of the nozzle portion 4. In the curved surface portion 13, air flowing from the air flow generation unit 6 through the air path A flows.
  • the upper and lower curved surface portions 13 are formed so as to face each other in the nozzle hole 5.
  • the curved surface portions 13 are formed so that the interval between the curved surface portions 13 becomes narrower toward the downstream side. That is, on the upstream side of the nozzle hole 5 of the nozzle portion 4, the facing distance between the upper surface and the lower surface is gradually reduced from the upstream side to the downstream side so that air smoothly flows into the nozzle hole 5. It is the formed R part.
  • the nozzle hole does not have the curved surface portion 13, it is difficult for air to smoothly flow into the nozzle hole 5, so that an area that reduces the flow area of the main flow 15 passing through the nozzle hole 5 is formed on the upstream side. It becomes easy to be done. Thereby, a pressure loss becomes large, a flow rate falls, and it becomes difficult to obtain desired drying performance.
  • the drying apparatus 200 according to the first embodiment since the curved surface portions 13 are formed on both the upper and lower surfaces, the air smoothly flows into the nozzle hole 5 and the pressure loss is suppressed from increasing. Can be suppressed, and desired drying performance can be obtained.
  • the inflow surface 17 has one end connected to the curved surface portion 13 and the other end connected to the stepped portion 40.
  • the inflow surface 17 is a portion through which air flowing through the curved surface portion 13 flows.
  • the inflow surface 17 has a flat surface formed so as to extend in the second direction Y. That is, the nozzle portion 4 has an inflow surface 17 that is opposed to the top and bottom and is a flat surface in the slit-like longitudinal direction (width direction) of the nozzle hole 5.
  • Step 40 The step portion 40 is formed so as to protrude from the inflow surface 17, and a flat surface is formed on the step portion upper surface 41. 3 and FIG. 4, the stepped portion 40 is connected to the inflow surface 17 and extends from the inflow surface 17 side to the outlet 10 side of the nozzle hole 5. One end side of the stepped portion 40 is connected to the inflow surface 17. Further, the stepped portion 40 has a projecting surface 44 orthogonal to the inflow surface 17 and a stepped portion upper surface 41 extending to the outlet 10 side of the nozzle hole 5. Further, the step portion 40 is formed so as to extend in the first direction X as shown in FIG. That is, the stepped portion 40 is provided so as to extend in the slit-like longitudinal direction of the nozzle hole 5.
  • the stepped portion upper surface 41 is a flat surface formed so as to extend in the second direction Y from the inlet surface 17 side to the outlet 10 (tip 16) side of the nozzle hole 5. That is, the nozzle portion 4 is formed such that the stepped portion upper surface 41 which is a flat surface is opposed to the upper and lower sides. The stepped portion upper surface 41 is formed in parallel with the inflow surface 17.
  • the opposing upper and lower surfaces in the nozzle hole 5 are parallel, and the height between the upper and lower surfaces in the nozzle hole 5 is kept constant up to the tip 16. That is, the air flow path passing through the step portion 40 to the tip 16 has a fixed shape.
  • a curved surface portion 13 is provided at the inlet of the nozzle hole 5, and the air gradually increased by the curved surface portion 13 reaches the inflow surface 17.
  • an inflow surface 17 that is linear and parallel to the main flow 15, and the air flow 50 in the vicinity of the wall surface of the inflow surface 17 faces the main flow 15. .
  • step 40 that narrows the flow path of the air.
  • an inclined flow 52 having an angle with the main flow 15 is generated in order to get over the stepped portion 40.
  • a first peeling region 51 is formed at the bottom 40 b of the stepped portion 40.
  • a stepped portion upper surface 41 that is linear and parallel to the main flow 15.
  • the inclined flow 52 having an angle with respect to the direction of the main flow 15 cannot flow along the shape of the stepped portion 40, and a second separation region 53 is formed in the vicinity of the wall surface on the top 40 a side of the stepped portion 40. Then, the flow 54 is parallel to the main flow 15 outside the second separation region 53.
  • the second peeling region 53 disappears before the reattachment point 56 in the middle of the stepped portion upper surface 41. Then, the parallel flow 54 on the second peeling region 53 side approaches the wall surface of the nozzle hole 5 at the reattachment point 56.
  • the air flow in the vicinity of the wall surface increases in speed.
  • the pressure in the second peeling region 53 is lower than the surroundings, and the pressure between the reattachment point 56 and the tip 16 is higher than the surroundings. Therefore, the vicinity of the reattachment point 56 has a pressure gradient against the flow, and an increase in the velocity of air near the wall surface from the reattachment point 56 to the tip 16 is suppressed.
  • the drying apparatus 200 according to the first embodiment divides the flat portion to form the inflow surface 17 and the stepped portion upper surface 41, and the stepped portion upper surface 41 protrudes toward the center side of the nozzle hole 5 from the inflow surface 17. By doing so, the flow increasing from the curved surface portion 13 toward the outlet (tip 16) of the nozzle hole 5 in the vicinity of the wall surface of the nozzle portion 4 can be decelerated between the inflow surface 17 and the stepped portion upper surface 41.
  • the drying apparatus 200 according to the first embodiment includes the inflow surface 17 extending along the forming direction of the nozzle hole 5 and the step portion 40 formed so as to protrude from the inflow surface 17.
  • the top 40a of the step and the tip 16 of the nozzle hole 5 are located on the same plane (on the upper surface 41 of the step). That is, the drying apparatus 200 according to the first embodiment can suppress the speed of the air 55 flowing through the nozzle unit 4 from the reattachment point 56 to the tip 16, thereby generating vortices (turbulence) that are noise sources. Since the strength can be reduced, boundary layer noise and eddy noise generated from the nozzle hole 5 can be suppressed. Therefore, the drying apparatus 200 according to the first embodiment can reduce noise while suppressing a decrease in drying performance.
  • the drying apparatus 200 can suppress the speed of the air 55 flowing through the nozzle portion 4 from the reattachment point 56 to the tip 16 and release the high pressure in the nozzle hole 5 to the atmosphere. It is possible to suppress fluctuations in the pressure of the air in the vicinity of the tip 16 that generates the largest noise, and noise can be suppressed.
  • the length of the top 40a and the bottom 40b of the step 40 is preferably 40% or less of the width T1 through which the main flow 15 of the nozzle hole 5 passes. That is, the step portion 40 is formed such that the length between the top portion 40a and the bottom portion 40b, which is the connection portion of the inflow surface 17, is 40% or less of the opposing width T1 of the opposing step portion upper surface 41.
  • the air flow 50 between the top 40a and the bottom 40b of the step 40 on the inflow surface 17 The air volume increases, the speed of the inclined flow 52 increases, and the air hardly flows along the shape of the stepped portion 40.
  • the reattachment point 56 approaches the tip 16 of the nozzle hole 5 as the thickness of the second peeling region 53 increases.
  • the reattachment point 56 has a large pressure fluctuation, and when the pressure fluctuation comes close to the tip 16 of the nozzle hole 5, it becomes a factor that generates a large noise.
  • the length of the stepped portion upper surface 41 is 20% or more of the length T2 in the main flow 15 direction in which the inflow surface 17 and the stepped portion upper surface 41 are combined. That is, the width in the formation direction of the nozzle hole 5 on the stepped portion upper surface 41 is a width T2 of 20 which is the sum of the width in the nozzle hole 5 forming direction on the stepped portion upper surface 41 and the width of the inflow surface 17 in the nozzle hole forming direction It is desirable that it is formed to be not more than%.
  • a method of suppressing noise by providing a protrusion on the straight line portion from the inlet of the nozzle hole is disclosed. Since the protrusion and the tip of the nozzle are not on the same plane, a region corresponding to the second separation region of the first embodiment is increased, and noise is suppressed, but a large pressure loss occurs in the flow. Therefore, conventionally, it is necessary to increase the rotational speed (input) of the blower in order to secure a necessary air volume for efficiently drying the hands. As the rotational speed of the blower increases, the noise of the blower increases and the noise of the nozzle hole is suppressed, but the noise reduction effect as a drying device may be reduced.
  • the step portion 40 is described as being formed over the entire width in the first direction X in the nozzle hole 5 of the nozzle portion 4, but is not limited thereto. Absent. It is possible to obtain a noise reduction effect when the stepped portion 40 is formed over the entire width in the first direction X in the nozzle hole 5 of the nozzle portion 4. A part may be interrupted, for example, the level
  • the drying device 200 may be configured such that the stepped portion 40 is formed only on the lower surface shown in FIGS. 3 and 4. However, it is possible to reduce the noise while suppressing the deterioration of the drying performance when formed on both the upper and lower surfaces.
  • the overall configuration of the drying apparatus 200 according to the first embodiment is not limited to the above, and any configuration that can dry a wet hand by ejecting an air flow from the nozzle hole 5 may be used.
  • the main body 1 has been described as having the opening 2a and the opening 2b, but these may be closed. Even in the closed mode, it is possible to obtain a drying performance equivalent to that in the case of being opened.
  • the drying apparatus 200 which concerns on this Embodiment 1 demonstrated as the thing in which the inflow surface 17 and the level
  • the inflow surface 17 may be formed to extend to the tip 16 side, and the stepped portion 40 may be provided in the extended portion.
  • FIG. 5 shows a first modification of the drying apparatus 200 according to the first embodiment.
  • the position of the stepped portion 40 ⁇ / b> B ⁇ b> 1 of the lower nozzle portion 4 and the stepped portion 40 ⁇ / b> B ⁇ b> 2 of the upper nozzle portion 4 is located from the inflow surface 17 side to the outlet 10 side of the nozzle hole 5. You may form so that it may shift
  • one inflow surface 17B1 is longer in the Y direction than the other inflow surface 17B2, and accordingly, one stepped portion upper surface 41B1 is more in the Y direction than the other stepped portion upper surface 41B2.
  • the length at may be shorter.
  • the nozzle part 4B is formed so that the position of the top part 40a is shifted in the direction from the stepped part 40B1 and the stepped part 40B2 side toward the tip 16 side of the nozzle hole 5.
  • the flow velocity in the vicinity of the tip 16 can be reduced as described above, and further, a difference occurs in the flow velocity between the tip 16B1 and the tip 16B2 facing each other, so that a shift occurs in the pressure fluctuation period, and the tips 16B1 and 16B2 Since the noise generated in is no longer strengthened, the noise can be further suppressed.
  • FIG. 6 is a second modification of the drying apparatus 200 according to the first embodiment.
  • the first embodiment the case where the inflow surface 17 and the stepped portion upper surface 41 and the stepped portion 40 are orthogonal to each other has been described.
  • the present invention is not limited to this.
  • the stepped portion 40 ⁇ / b> C of the nozzle portion 4 ⁇ / b> C has a protruding surface 44 that is connected to the inflow surface 17 at one end and connected to the upper surface 41 at the other end and inclined with respect to the inflow surface 17. It is what.
  • the protruding surface 44C which is an inclined surface, forms a preset angle between the direction connecting the top 40a and the bottom 40b and the direction of the main flow 15. Thereby, the area
  • FIG. FIG. 7 is a front view of a portion of the nozzle hole 5D of the nozzle of the drying apparatus according to the second embodiment.
  • the nozzle hole 5D has a wave shape when viewed from the front. That is, in the first embodiment, the nozzle hole 5 has a straight slit shape, but in the second embodiment, the case where the shape of the opening viewed from the outlet side of the nozzle hole 5D is wavy is described. To do.
  • parts similar to those in the first embodiment are denoted by the same reference numerals, and differences will be mainly described.
  • the nozzle hole 5D is a wavy (substantially sinusoidal) slit having a plurality of peaks and valleys in the left-right direction.
  • the valley portion of the nozzle hole 5D is composed of an upper outline 60a and a lower outline 60b, and is surrounded by the outline 60a.
  • the crest portion of the nozzle hole 5D is composed of an upper outline 62a and a lower outline 62b, and there is a space 63 surrounded by the outline 62b.
  • the noise reduction effect by the wavy nozzle hole 5D will be described.
  • the first is boundary layer noise generated from the boundary layer formed on the surface of the nozzle hole 5D.
  • the second is vortex noise generated by vortex shedding from the downstream outlet of the nozzle hole 5D.
  • the third is a jet generated from the shear flow of the turbulent diffusion layer generated by the velocity difference between the main flow of the potential core that is not affected by the stirring and the surrounding static air among the air flow discharged from the nozzle hole 5D. Noise.
  • the noise can be reduced by reducing the difference in speed between the surrounding stationary air and the high-speed air flow. That is, in the drying apparatus according to the second embodiment, the front view shape of the nozzle hole 5D is wavy, so that the speed difference between the discharged air flow and the surrounding stationary air can be reduced. It has become.
  • the nozzle hole 5D in the second embodiment has a wave shape, and includes a space 61 between adjacent mountain portions and a space 63 between adjacent valley portions.
  • energy is supplied by the air flow discharged from the gap between the outer shell 60a and the outer shell 60b of the nozzle hole 5D, and air is induced.
  • the velocity of the air flow induced in the space 61 is larger than the velocity of the surrounding space in the case of the linear nozzle hole.
  • the speed difference between the high-speed air flow directly discharged from the nozzle hole 5D and the air flow in the surrounding space is smaller than in the case of the straight nozzle hole, and the generated jet noise can be suppressed.
  • the air flow in the space 63 has a small speed difference from the air flow directly discharged from the nozzle hole 5D, so that the generated jet noise can be suppressed.
  • the space around the space 64 below the outer shell 60b is not surrounded by the nozzle hole 5D, the air flow directly discharged from the nozzle hole 5D and the surrounding air flow are the same as in the case of the linear nozzle hole. The speed difference becomes large and noise is not reduced.
  • the space 61 in which noise is reduced and the space 64 in which noise is not reduced are formed in the vertical direction of the nozzle hole 5D, the phase of the flow change (pressure fluctuation) serving as a noise source is Does not match the direction. Therefore, the correlation area of sound becomes small and noise can be suppressed.
  • the phase of the air flow is the same in both the vertical direction and the width direction of the nozzle hole, and noise increases due to the phase match.
  • the noise state of the space 65 above the outer shell 62a is the same as that of the space 64 described above.
  • FIG. 8 is a cross-sectional view of A1, A2, and A3 of FIG.
  • A1 is a line passing through the center of the peak portion of the nozzle hole 5D
  • A2 is a line passing through the boundary between the peak portion and the valley portion
  • A3 is a line passing through the center of the valley portion.
  • the length (length in the depth direction) of the stepped portion upper surface 41D of the nozzle hole 5D is longer in the order of A1, A2, and A3, and is different in the mainstream 15 direction.
  • the stepped portion upper surface 41D extends from the portion corresponding to the wavy crest of the nozzle hole 5D to the portion facing the wavy trough of the nozzle hole 5D from the inflow surface 17D side to the outlet 10 side (tip) of the nozzle hole 5D.
  • the width in the direction toward (16 side) is increased.
  • the development state of the flow to the tip 16 of the nozzle hole 5D is different, and the velocity distribution in the nozzle hole 5D can be changed in the longitudinal direction of the nozzle hole 5D.
  • the phase of pressure fluctuation that becomes a sound source of vortex noise generated in the nozzle hole 5D can be shifted in the longitudinal direction of the nozzle hole 5D, the sound correlation area can be reduced, and noise can be suppressed.
  • the drying apparatus according to the second embodiment has the following effects in addition to the same effects as the drying apparatus 200 according to the first embodiment. That is, the nozzle hole 5 of the nozzle of the drying apparatus according to the second embodiment has a wave shape when viewed from the front (see FIG. 7). For this reason, the speed difference between the high-speed air flow directly discharged from the nozzle hole 5D and the air flow in the surrounding space is reduced, and the generated jet noise can be suppressed.
  • the length (length in the depth direction) of the stepped portion upper surface 41D of the nozzle hole 5D becomes longer in the order of A1, A2, and A3. For this reason, the development state of the flow up to the tip 16 of the nozzle hole 5D is different, the velocity distribution in the nozzle hole 5D can be changed in the longitudinal direction of the nozzle hole 5D, and the correlation area of sound can be reduced. And noise can be suppressed. As shown in FIG. 11, the same noise reduction effect can be obtained by providing the stepped portion 40 even when the wave-like nozzles are intermittently arranged in the first direction X.
  • FIG. 9 is a longitudinal sectional view of the drying device 203 according to the third embodiment.
  • the main body 101 forming the outer shell has a hand insertion port 102 on the front surface, and is provided with a hand insertion part 103 as a processing space following the hand insertion port 102 so that a hand can be inserted and removed. .
  • the manual insertion portion 103 is formed as an open sink-like recess with the front and both sides open at the lower front of the main body 101, and the water receiving portion 104 forming the lower portion and the back side have a curved surface configuration
  • a barrier structure 105 is provided to prevent water from splashing sideways or forward.
  • the bottom of the water receiving portion 104 is inclined downward toward the front, and a drain port 106 is provided at the lower end of the inclination.
  • a drain container 107 for storing water dripping from the drain port 106 is provided below the water receiving portion 104 so as to be freely inserted and removed.
  • the inner surface of the manual insertion portion 103 is impregnated with a water-repellent coating such as silicon or fluorine, a hydrophilic coating such as titanium oxide, or an antibacterial agent. Thereby, it is possible to reduce the adhesion of dirt to the inner surface of the manual insertion portion 103 and to suppress the growth of bacteria.
  • An air flow generation unit 108 is incorporated in the main body 101, and includes a DC brushless motor, a drive circuit that drives the DC brushless motor, a turbo fan that is rotated by the DC brushless motor, and the like. Is attached.
  • a DC brushless motor is adopted as the airflow generator 108 has been described as an example, but the present invention is not limited to this, and may be a commutator motor, an induction motor, or the like.
  • the intake side of the air flow generation unit 108 faces the intake passage 110 having an open lower end provided in the vertical direction on the back side of the main body 101 and in the vicinity of the back side of the hand insertion unit 103. Air can be sucked in through a removable air filter 111 from the lower end of 110.
  • a plurality of air outlets of the air flow generation unit 108 are opened in the radial direction at intervals in the circumferential direction on the outer periphery of the circular cup-shaped fan casing.
  • the outside of the fan casing is covered by a circular cup-shaped casing 109 provided with a guide path in a direction along the rotational direction of the turbofan, and is sent from the air flow generator 108 to the end of the guide path of the casing 109.
  • a nozzle that converts high-pressure air into a high-speed air flow and blows it out to the manual insertion portion 103 is connected.
  • the nozzle part 112 is attached to the upper part of the hand insertion part 103 near the hand insertion port so that the nozzle hole 115 faces downward. From the nozzle hole 115 formed in the nozzle portion 112, a high-speed airflow that blows off moisture adhering to the hand inserted into the hand insertion portion 103 is released, and for example, water droplets can be handed without having to slide the hands together. Can be peeled off and blown away from the surface.
  • a hand detection sensor 114 that detects insertion / extraction of the hand is provided behind the nozzle portion 112 so as to face the hand insertion portion 103.
  • the nozzle holes 115 formed in the nozzle portion 112 are arranged in the X direction of the main body 101 (direction perpendicular to the paper surface of FIG. 9).
  • the nozzle part 112 may use the nozzle part 4 having a rectangular shape in front view described in the first embodiment, or may use the nozzle part 4D having a wavy shape in front view described in the second embodiment. You can also.
  • the nozzle holes 115 are provided in a plurality of rows in the front-rear direction of the main body 101 (Y direction in FIG. 9).
  • a case where two rows of nozzle holes 115 are provided is shown as an example. That is, the nozzle hole 115 has a first nozzle hole 113a and a second nozzle hole 113b.
  • the nozzle holes 115 may be in one row or in three or more rows.
  • the noise of the drying apparatus 203 having such a configuration is dominated by vortex noise and jet noise generated from the nozzle hole 115 and collision sound generated when the jet collides with the hand insertion portion 103. Therefore, although not shown in FIG. 9, the nozzle portion 4 having the rectangular shape in front view described in the first embodiment is adopted as the nozzle hole 115, or the shape in front view described in the second embodiment is used. By adopting the wavy nozzle portion 4D, it is possible to reduce boundary layer noise, vortex noise, and jet noise generated from the nozzle hole 115. Thereby, the drying apparatus 203 according to the third embodiment can reduce noise while suppressing a decrease in flow rate and a decrease in drying performance.
  • the drying apparatus according to the third embodiment has the same effects as the drying apparatus 200 according to the first embodiment and the drying apparatus according to the second embodiment.

Landscapes

  • Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Detail Structures Of Washing Machines And Dryers (AREA)
  • Main Body Construction Of Washing Machines And Laundry Dryers (AREA)
  • Drying Of Solid Materials (AREA)

Abstract

 The purpose of the present invention is to provide a drying device that can reduce noise while suppressing decreases in drying performance. The drying device is provided with a body in which a concave hand insertion part is formed, an airflow-generating part provided inside the body, and a nozzle part formed in the hand insertion part of the body, the nozzle part having a nozzle hole through which air fed in from the airflow-generating part is blown out; the nozzle part has an inflow surface extending along the direction in which the nozzle hole is formed, and an uneven part provided so as to protrude from the inflow surface, the top surface of the uneven part having a flat surface formed so as to extend from the side of the inflow surface to an outlet of the nozzle hole.

Description

乾燥装置Drying equipment
 本発明は、乾燥装置に関するものである。 The present invention relates to a drying apparatus.
 ノズル孔から噴き出される空気流により濡れた手を乾燥させる乾燥装置は、ペーパータオルやレンタルタオルと比べ、ランニングコストが安く、非接触で使用できるため衛生的であり、省メンテナンス性に優れるなどの特徴がある。 The drying device that dries wet hands by the air flow blown out from the nozzle holes is cheaper than paper towels and rental towels, and is hygienic and can be used without contact. There is.
 しかしながら、乾燥装置は、ファンなどにより生成される空気流を吹出し口(以下に記載するノズル孔に相当)から噴出させるものであり、乾燥性能を高めるために空気流を高速化すると、騒音が増加するという課題がある。 However, the drying device blows out an air flow generated by a fan or the like from an air outlet (corresponding to the nozzle hole described below), and noise increases when the air flow speed is increased to improve the drying performance. There is a problem of doing.
 また、上記の課題を解決する乾燥装置として、たとえば特許文献1には、噴出口を形成する壁面の内側に、空気流の流れ方向に連なる階段状の凹凸を形成させた噴出口を具備する乾燥装置が開示されている。 In addition, as a drying apparatus that solves the above-described problem, for example, Patent Document 1 discloses a drying apparatus that includes a jet port in which stepped irregularities that are continuous in the air flow direction are formed inside a wall surface that forms the jet port. An apparatus is disclosed.
特開2003-180556号公報(たとえば、図12参照)Japanese Patent Laying-Open No. 2003-180556 (for example, see FIG. 12)
 しかしながら、特許文献1のような乾燥装置においては、流れ方向に連なる階段状の凹凸が存在するため、上流側で発生した乱れが下流の凹部(または凸部)に衝突し、さらに乱れが増幅される場合がある。このような流れが出口まで複数回繰り返されることによって、乱れの存在する領域は下流に行くほど拡大し、流路として機能する有効幅は狭くなる。その結果、流れの抵抗が大きくなり、流量が低下し、所望の乾燥性能を得られないという課題がある。 However, in a drying apparatus such as Patent Document 1, since there are step-like irregularities that continue in the flow direction, the disturbance generated on the upstream side collides with the concave part (or convex part) on the downstream side, and the disturbance is further amplified. There is a case. By repeating such a flow a plurality of times until the outlet, the region where the turbulence exists becomes larger as it goes downstream, and the effective width that functions as the flow path becomes narrower. As a result, there is a problem that the flow resistance increases, the flow rate decreases, and the desired drying performance cannot be obtained.
 本発明は、以上のような課題を解決するためになされたもので、乾燥性能の低下を抑えつつ騒音の低下を図ることのできる乾燥装置を提供することを目的としている。 The present invention has been made in order to solve the above-described problems, and an object of the present invention is to provide a drying apparatus capable of reducing noise while suppressing a decrease in drying performance.
 本発明に係る乾燥装置は、凹状の手挿入部が形成された本体と、本体内に設けられた空気流発生部と、空気流発生部から送り込まれる空気が吹き出されるノズル孔を有し、本体の手挿入部に形成されたノズル部と、を備え、ノズル部は、ノズル孔の形成方向に沿って延びる流入面と、流入面から突出するように設けられた段差部とを有し、段差部の上面は、流入面側からノズル孔の出口まで延びるように形成された平坦面を有するものである。 The drying apparatus according to the present invention has a main body in which a concave hand insertion part is formed, an air flow generation part provided in the main body, and a nozzle hole through which air fed from the air flow generation part is blown out, A nozzle portion formed in the manual insertion portion of the main body, the nozzle portion has an inflow surface extending along the forming direction of the nozzle hole, and a step portion provided to protrude from the inflow surface, The upper surface of the stepped portion has a flat surface formed so as to extend from the inflow surface side to the outlet of the nozzle hole.
 本発明に係る乾燥装置によれば、上記構成を有しているため、乾燥性能の低下を抑えつつ騒音の低下を図ることができる。 Since the drying apparatus according to the present invention has the above-described configuration, it is possible to reduce noise while suppressing a decrease in drying performance.
本発明の実施の形態1に係る乾燥装置の概略構成を示す断面図である。It is sectional drawing which shows schematic structure of the drying apparatus which concerns on Embodiment 1 of this invention. 図1に示す乾燥装置の外観斜視図である。It is an external appearance perspective view of the drying apparatus shown in FIG. 本発明の実施の形態1に係る乾燥装置のノズル部のノズル孔の縦断面図である。It is a longitudinal cross-sectional view of the nozzle hole of the nozzle part of the drying apparatus which concerns on Embodiment 1 of this invention. 図3に示すノズル孔の周辺の斜視図である。It is a perspective view of the periphery of the nozzle hole shown in FIG. 本発明の実施の形態1に係る乾燥装置の変形例1である。It is modification 1 of the drying apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る乾燥装置の変形例2である。It is the modification 2 of the drying apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態2に係る乾燥装置のノズルのノズル孔の部分の正面図である。It is a front view of the part of the nozzle hole of the nozzle of the drying apparatus which concerns on Embodiment 2 of this invention. 図7(a)のA1、A2及びA3の断面図である。It is sectional drawing of A1, A2, and A3 of Fig.7 (a). 本発明の実施の形態3に係る乾燥装置の縦断面図である。It is a longitudinal cross-sectional view of the drying apparatus which concerns on Embodiment 3 of this invention. 第1の方向に断続的に配置された矩形状のノズルの正面図である。It is a front view of the rectangular nozzle arrange | positioned intermittently in a 1st direction. 第1の方向に断続的に配置された波状のノズルの正面図である。It is a front view of the wavy nozzle arrange | positioned intermittently in a 1st direction.
 以下、本発明に係る乾燥装置の実施の形態について、図面を参照しながら説明する。なお、以下に説明する実施の形態によって本発明が限定されるものではない。また、図1を含め、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。 Hereinafter, embodiments of a drying apparatus according to the present invention will be described with reference to the drawings. The present invention is not limited to the embodiments described below. Moreover, in the following drawings including FIG. 1, the relationship of the size of each component may be different from the actual one.
実施の形態1.
 図1は、本実施の形態1に係る乾燥装置200の概略構成を示す断面図である。図2は、図1に示す乾燥装置200の外観斜視図である。なお、以下に説明する図面において、Z方向は上下方向に対応している。
Embodiment 1 FIG.
FIG. 1 is a cross-sectional view showing a schematic configuration of a drying apparatus 200 according to the first embodiment. FIG. 2 is an external perspective view of the drying apparatus 200 shown in FIG. In the drawings described below, the Z direction corresponds to the vertical direction.
[構成説明]
 図1に示すように、本実施の形態1における乾燥装置200は、手指が挿入される手挿入部2が形成されている本体1と、本体1内に設けられた空気流発生部6と、手挿入部2に手指が挿入されたか否かを検出する手検出センサー30と、手検出センサー30の検出結果に基づいて空気流発生部6を駆動する制御装置31とを有している。
[Description of configuration]
As shown in FIG. 1, the drying apparatus 200 according to the first embodiment includes a main body 1 in which a hand insertion portion 2 into which a finger is inserted is formed, an air flow generation portion 6 provided in the main body 1, A hand detection sensor 30 that detects whether or not a finger has been inserted into the hand insertion unit 2 and a control device 31 that drives the airflow generation unit 6 based on the detection result of the hand detection sensor 30 are provided.
(本体1)
 本体1は、上部に手指を挿入する凹状に形成された手挿入部2と、空気流発生部6から送り込まれる空気が吹き出され、第1の方向Xに延びるノズル孔5を有し、本体1の手挿入部2に形成されたノズル部4a及びノズル部4bと、本体1内に空気を取り込むのに利用される吸込口9と、本体1内に設けられた風路部材32とを有しているものである。なお、第1の方向Xは、ノズル孔5の長手方向に対応している。
(Main unit 1)
The main body 1 has a hand insertion portion 2 formed in a concave shape for inserting a finger at the top, and a nozzle hole 5 from which air fed from the air flow generation portion 6 is blown out and extends in the first direction X. The nozzle portion 4a and the nozzle portion 4b formed in the hand insertion portion 2, the suction port 9 used for taking air into the main body 1, and the air passage member 32 provided in the main body 1 It is what. The first direction X corresponds to the longitudinal direction of the nozzle hole 5.
 手挿入部2は、本体1の上部側及び対向する両側面側を開放するように形成された凹状部である。手挿入部2は、上部側に形成された上開口部2Aと、側面側に形成された側面開口部2B及び側面開口部2Cとが形成されている。このため、手挿入部2には、本体1の上開口部2A側だけでなく、側面開口部2B及び側面開口部2C側からも手指を挿入できるようになっている。手挿入部2には、手指が挿入される側となる内壁2Dが形成されている。この内壁2Dは、たとえばシリコン系、もしくはフッ素系などの撥水性コーティング、酸化チタンなどの親水性を有するコーティング、又は抗菌剤が含浸させられている。これにより、手挿入部2の内壁2Dに汚れが付着するのを軽減すること、及び細菌が繁殖するのを抑制することなどができる。内壁2Dは、ノズル部4aが形成された第1の内壁2D1と、ノズル部4bが形成され、第1の内壁2D1に対向する第2の内壁2D2とを有している。すなわち、手挿入部2の互いに対向する内壁2Dのうち、正面側の壁面である第1の内壁2D1には、ノズル部4aが設けられており、背面側の壁面である第2の内壁2D2には、ノズル部4bが設けられている。
 第1の内壁2D1は、たとえばZ方向に延びるように形成され、ノズル部4aが設けられている上部が、たとえば垂直面となっており、その垂直面の下側が傾斜面となっている。また、第2の内壁2D2は、たとえばZ方向に延びるように形成され、たとえばノズル部4bが設けられている上部が傾斜面となっており、その傾斜面の下側は垂直面となっている。
The manual insertion portion 2 is a concave portion formed so as to open the upper side of the main body 1 and the opposite side surfaces. The manual insertion portion 2 includes an upper opening 2A formed on the upper side, and a side opening 2B and a side opening 2C formed on the side. Therefore, fingers can be inserted into the hand insertion portion 2 not only from the upper opening 2A side of the main body 1 but also from the side opening 2B and the side opening 2C. The hand insertion portion 2 is formed with an inner wall 2D on the side where fingers are inserted. The inner wall 2D is impregnated with a water-repellent coating such as silicon or fluorine, a hydrophilic coating such as titanium oxide, or an antibacterial agent. Thereby, it can reduce that dirt adheres to inner wall 2D of hand insertion part 2, and it can control that bacteria breed. The inner wall 2D has a first inner wall 2D1 in which the nozzle portion 4a is formed, and a second inner wall 2D2 in which the nozzle portion 4b is formed and faces the first inner wall 2D1. That is, the nozzle part 4a is provided in the 1st inner wall 2D1 which is a front wall surface among the mutually opposing inner walls 2D of the manual insertion part 2, and the 2nd inner wall 2D2 which is a wall surface on the back side is provided. The nozzle part 4b is provided.
The first inner wall 2D1 is formed, for example, so as to extend in the Z direction, and an upper portion provided with the nozzle portion 4a is, for example, a vertical surface, and a lower side of the vertical surface is an inclined surface. The second inner wall 2D2 is formed so as to extend in the Z direction, for example. For example, the upper portion where the nozzle portion 4b is provided is an inclined surface, and the lower side of the inclined surface is a vertical surface. .
 また、手挿入部2の底面には、手から飛散した水を排水する排水口(図示省略)が設けられており、排水口には排水管(図示省略)が接続され、排水管にはここから流出するドレン水を溜めるドレンタンク(図示省略)が接続されている。 In addition, a drain port (not shown) for draining water scattered from the hand is provided on the bottom surface of the hand insertion portion 2, and a drain pipe (not shown) is connected to the drain port. A drain tank (not shown) for collecting drain water flowing out from the tank is connected.
 図1に示すように、ノズル部4a及びノズル部4bは、互いに対向する位置に設けられているものであり、手挿入部2に挿入した手(図示省略)の甲側と掌側の双方に風を同時に当てることができ、高効率に手指を乾燥させることができるものである。ノズル部4a及びノズル部4bには、スリット形状に開口された長尺状のノズル孔5が形成されている。そして、空気流発生部6の動作によって形成される空気流は、ノズル孔5を通過して手挿入部2に放出されることで手を乾燥させることができる。
 ノズル部4aは、ノズル部4bよりも下側に形成されている。ノズル部4aは、第1の内壁2D1に水平方向に向くように設けられているものである。一方、ノズル部4bは、第2の内壁2D2のうちの傾斜面の部分に形成されており、ノズル部4bは、ノズル部4bから流出した空気流が手挿入部2の内部に向かうように設けられている。このため、乾燥装置200では、ノズル部4aから吹き出された空気の進行方向と、ノズル部4bから吹き出された空気の進行方向とが交差するようになっている。
As shown in FIG. 1, the nozzle portion 4 a and the nozzle portion 4 b are provided at positions facing each other, and are provided on both the back side and the palm side of the hand (not shown) inserted into the hand insertion portion 2. Wind can be applied simultaneously, and fingers can be dried with high efficiency. In the nozzle part 4a and the nozzle part 4b, an elongated nozzle hole 5 opened in a slit shape is formed. Then, the air flow formed by the operation of the air flow generation unit 6 passes through the nozzle hole 5 and is discharged to the hand insertion unit 2 so that the hand can be dried.
The nozzle part 4a is formed below the nozzle part 4b. The nozzle portion 4a is provided on the first inner wall 2D1 so as to face in the horizontal direction. On the other hand, the nozzle portion 4b is formed on the inclined surface portion of the second inner wall 2D2, and the nozzle portion 4b is provided so that the air flow flowing out from the nozzle portion 4b is directed toward the inside of the manual insertion portion 2. It has been. For this reason, in the drying apparatus 200, the traveling direction of the air blown from the nozzle portion 4a and the traveling direction of the air blown from the nozzle portion 4b intersect each other.
(吸込口9)
 吸込口9は、本体1の底部側に形成されているものである。吸込口9は、本体1内に形成された風路Aと連通している。このため、空気流発生部6が駆動すると吸込口9を介して本体1の風路A内に空気が取り込まれ、その取り込まれた空気は、ノズル部4a及びノズル部4bを介して手挿入部2に放出される。吸込口9の形成位置は、本体1の底部側に限定されるものではないが、底部に形成すると、塵埃などが本体1内に取り込まれにくく、また、ユーザーが誤って吸込口9に手指を入れてしまうことなどを防止することができ、さらに、意匠性が低減することを抑制することができる。
(Suction port 9)
The suction port 9 is formed on the bottom side of the main body 1. The suction port 9 communicates with the air path A formed in the main body 1. For this reason, when the air flow generating unit 6 is driven, air is taken into the air passage A of the main body 1 through the suction port 9, and the taken-in air is manually inserted through the nozzle part 4a and the nozzle part 4b. 2 is released. The formation position of the suction port 9 is not limited to the bottom side of the main body 1, but if it is formed on the bottom portion, it is difficult for dust and the like to be taken into the main body 1, and the user accidentally puts a finger on the suction port 9. It is possible to prevent the insertion and the like, and it is possible to suppress the reduction in design properties.
(風路部材32)
 風路部材32は、本体1に形成された風路Aの一部を構成するものである。風路部材32は、上流風路部材32A、中流風路部材32B及び下流風路部材32Cを有しているものである。上流風路部材32A、中流風路部材32B及び下流風路部材32Cは、たとえば水平方向に平行となるように本体1内に設けられている。なお、下から順番に、上流風路部材32A、中流風路部材32B及び下流風路部材32Cが本体1内に配置されている。また、中流風路部材32Bと下流風路部材32Cとの間には空気流発生部6が配設されている。風路Aのうち空気流発生部6の上流側では、曲がり流路になっている。これにより、吸込口9から流入する空気にとってわずかな抵抗にはなるが、空気流発生部6で発生した騒音が周囲に放射されにくくなる効果がある。ここで、風路Aのうち空気流発生部6の下流側では、本体1の内部のノズル部4a側と、本体1の内部のノズル部4b側とに分岐している。
(Airway member 32)
The air passage member 32 constitutes a part of the air passage A formed in the main body 1. The air passage member 32 includes an upstream air passage member 32A, a midstream air passage member 32B, and a downstream air passage member 32C. The upstream air passage member 32A, the middle air passage member 32B, and the downstream air passage member 32C are provided in the main body 1 so as to be parallel to the horizontal direction, for example. Note that the upstream air passage member 32A, the middle air passage member 32B, and the downstream air passage member 32C are arranged in the main body 1 in order from the bottom. In addition, an air flow generation unit 6 is disposed between the midstream air passage member 32B and the downstream air passage member 32C. On the upstream side of the air flow generation unit 6 in the air path A, a curved flow path is formed. Thereby, although it becomes a little resistance with respect to the air which flows in from the suction inlet 9, it has the effect that the noise which generate | occur | produced in the airflow generation part 6 becomes difficult to be radiated | emitted to the circumference | surroundings. Here, on the downstream side of the air flow generation unit 6 in the air path A, the air flow branches off into the nozzle part 4 a side inside the main body 1 and the nozzle part 4 b side inside the main body 1.
(空気流発生部6)
 空気流発生部6は、空気流を生成するものであってノズル孔5から手挿入部2に空気を放出させるものである。なお、本体1は、空気流の出口部分に、ノズル部4a及び4bが設けられており、空気流発生部6の作用によってノズル孔5の入口側の圧力が高くなる。すなわち、空気流発生部6は、加圧装置として、図1に示すように、本体1の内部に設置されているものである。
(Air flow generator 6)
The airflow generation unit 6 generates an airflow and discharges air from the nozzle hole 5 to the manual insertion unit 2. The main body 1 is provided with nozzle portions 4 a and 4 b at the air flow outlet portion, and the pressure on the inlet side of the nozzle hole 5 is increased by the action of the air flow generation portion 6. That is, the airflow generation part 6 is installed inside the main body 1 as a pressurizing device as shown in FIG.
 空気流発生部6は、たとえばモーター及びモーターのシャフトに取り付けられたファンなどから構成されるものである。また、空気流発生部6は、たとえばDCブラシレスモーターを駆動させるための駆動回路(図示省略)、及び、DCブラシレスモーターによって回転するターボファン(図示省略)などにより構成することができる。 The airflow generator 6 is composed of, for example, a motor and a fan attached to the motor shaft. The airflow generator 6 can be constituted by, for example, a drive circuit (not shown) for driving a DC brushless motor, a turbo fan (not shown) rotated by the DC brushless motor, and the like.
 本体1の内部では、空気流発生部6よりも上流側の空間8と下流側の空間7とに仕切られており、空間8に通じる吸込口9を有する。空気流発生部6は、吸込口9から空気を本体1内に吸い込み、空間8へ高圧の空気流を出力する。そして、空気流発生部6から放出される空気流は、下流側の空間7において2つの経路に分岐し、ノズル部4aのノズル孔5及びノズル部4bのノズル孔5から本体1の外部に放出される。なお、手乾燥時間をより短縮できるように、ノズル部4a及びノズル部4bの間隔、空気流発生部6の回転数などを設定するとよい。 Inside the main body 1, it is partitioned into a space 8 upstream of the air flow generator 6 and a space 7 downstream of the air flow generator 6, and has a suction port 9 that leads to the space 8. The air flow generator 6 sucks air into the main body 1 from the suction port 9 and outputs a high-pressure air flow to the space 8. The air flow discharged from the air flow generation unit 6 branches into two paths in the downstream space 7 and is discharged to the outside of the main body 1 from the nozzle hole 5 of the nozzle unit 4a and the nozzle hole 5 of the nozzle unit 4b. Is done. In addition, it is good to set the space | interval of the nozzle part 4a and the nozzle part 4b, the rotation speed of the airflow generation part 6, etc. so that hand drying time can be shortened more.
(手検出センサー30)
 手検出センサー30は、手指を検出するものであって、手挿入部2の内壁2Dに設けられている。手検出センサー30は、図1に示すように、たとえば、第1の内壁2D1のうちの上部及び下部に設けられ、第2の内壁2D2の上部に設けられているものである。手検出センサー30は、制御装置31に電気的に接続されており、検出結果が制御装置31に出力されるようになっている。
(Hand detection sensor 30)
The hand detection sensor 30 detects a finger and is provided on the inner wall 2D of the hand insertion portion 2. As shown in FIG. 1, the hand detection sensor 30 is provided, for example, at the upper part and the lower part of the first inner wall 2D1, and is provided at the upper part of the second inner wall 2D2. The hand detection sensor 30 is electrically connected to the control device 31, and the detection result is output to the control device 31.
(制御装置31)
 制御装置31は、手検出センサー30の検出結果に基づいて空気流発生部6を制御するものである。制御装置31は、手検出センサー30からの信号を処理し、その処理結果に基づいて空気流発生部6の運転などを適宜制御している。たとえば、制御装置31は、手検出センサー30が手指を検出すると空気流発生部6を駆動させ、また、手検出センサー30が手指を検出しなくなると空気流発生部6を停止させる。なお、制御装置31の設置位置は、特に限定されるものではないが、本実施の形態1では図2に示すように本体1内の下部側に設置した例を示している。
(Control device 31)
The control device 31 controls the air flow generator 6 based on the detection result of the hand detection sensor 30. The control device 31 processes a signal from the hand detection sensor 30 and appropriately controls the operation of the airflow generation unit 6 based on the processing result. For example, the control device 31 drives the air flow generation unit 6 when the hand detection sensor 30 detects a finger, and stops the air flow generation unit 6 when the hand detection sensor 30 stops detecting the finger. In addition, although the installation position of the control apparatus 31 is not specifically limited, In this Embodiment 1, the example installed in the lower part side in the main body 1 is shown, as shown in FIG.
[動作説明]
 次に、本実施の形態1に係る乾燥装置200の動作について説明する。たとえば手挿入部2へ濡れた手が挿入され、その手を手検出センサー30が検出すると、制御装置31へ手検出信号が送られる。そして制御装置31は、空気流発生部6を始動させ、空気流発生部6のターボファンが回転する。
[Description of operation]
Next, the operation of the drying apparatus 200 according to the first embodiment will be described. For example, when a wet hand is inserted into the hand insertion unit 2 and the hand detection sensor 30 detects the hand, a hand detection signal is sent to the control device 31. And the control apparatus 31 starts the air flow generation part 6, and the turbo fan of the air flow generation part 6 rotates.
 そして、吸込口9から吸い込まれた空気流は、風路Aの空間8を通過し空気流発生部6に流入し、空気流発生部6により高圧の空気流になる。そして、高圧になった空気流は、風路Aの空間7で2つに分岐し、ノズル部4a及びノズル部4bに設けられたノズル孔5から放出される。 The air flow sucked from the suction port 9 passes through the space 8 of the air passage A and flows into the air flow generation unit 6, and becomes a high-pressure air flow by the air flow generation unit 6. The high-pressure air flow branches into two in the space 7 of the air passage A and is discharged from the nozzle holes 5 provided in the nozzle portion 4a and the nozzle portion 4b.
 放出された空気流は、手挿入部2に挿入された手の甲側と掌側の双方に当たり、手に付いた水を飛散及び気化させる。そして、ユーザーの手が手挿入部2から抜けると、手検出センサー30の手検出信号がなくなったとき、制御装置31により空気流発生部6が停止する。 The discharged air flow hits both the back side and the palm side of the hand inserted into the hand insertion part 2, and the water attached to the hand is scattered and vaporized. When the user's hand comes out of the hand insertion unit 2, the air flow generation unit 6 is stopped by the control device 31 when the hand detection signal from the hand detection sensor 30 disappears.
 上記の乾燥装置200において、騒音を発生する要素としては、静止した壁面近傍を高速な空気流が流れるノズル孔5と、ノズル部4a及びノズル部4bのノズル孔5から放出された高速な空気流が衝突する手挿入部2と、高速回転体を有する空気流発生部6との3つがある。 In the drying apparatus 200 described above, noise generating elements include the nozzle hole 5 in which a high-speed air flow flows in the vicinity of a stationary wall surface, and the high-speed air flow discharged from the nozzle holes 5 of the nozzle portion 4a and the nozzle portion 4b. Are the hand insertion part 2 that collides with the air flow generation part 6 having a high-speed rotating body.
 空気流発生部6は、本体1の内部に収納されているため、他の2つよりも騒音のオーバーオール値に与える影響は小さい。乾燥装置200では、ノズル孔5及び手挿入部2における騒音を抑制する構成を有している。ここで、ノズル孔5における騒音及びノズル孔5から放出された高速な空気流が、手挿入部2で衝突することによる騒音は、ノズル孔5の形状による影響が大きい。 Since the air flow generation unit 6 is housed inside the main body 1, the influence on the overall noise value is smaller than the other two. The drying device 200 has a configuration that suppresses noise in the nozzle hole 5 and the manual insertion portion 2. Here, the noise caused by the noise in the nozzle hole 5 and the collision of the high-speed air flow emitted from the nozzle hole 5 at the manual insertion portion 2 is greatly influenced by the shape of the nozzle hole 5.
[ノズル部4a及びノズル部4bのノズル孔5の詳細説明]
 図3は、実施の形態1に係る乾燥装置200のノズル部4a及びノズル部4bのノズル孔5の縦断面図である。図4は、図3に示すノズル孔5の周辺の斜視図である。ノズル部4a及びノズル部4bのノズル孔5の開口の形状(出口10の形状)は、第1の方向Xに延びる直線状のスリット形状である。そして、ノズル部4a及びノズル部4bのノズル孔5の形状は、上面側と上面側に対向する下面側とが対称となるように形成されている。
 以下では、ノズル部4a及びノズル部4bをノズル部4と総称し、説明する。
[Detailed Description of Nozzle Portion 4a and Nozzle Hole 5 of Nozzle Portion 4b]
FIG. 3 is a longitudinal cross-sectional view of the nozzle part 4a and the nozzle hole 5 of the nozzle part 4b of the drying apparatus 200 according to the first embodiment. FIG. 4 is a perspective view of the periphery of the nozzle hole 5 shown in FIG. The shape of the opening of the nozzle hole 5 of the nozzle portion 4a and the nozzle portion 4b (the shape of the outlet 10) is a linear slit shape extending in the first direction X. And the shape of the nozzle hole 5 of the nozzle part 4a and the nozzle part 4b is formed so that the upper surface side and the lower surface side facing an upper surface side may become symmetrical.
Below, the nozzle part 4a and the nozzle part 4b are named generically, and are demonstrated.
 ノズル部4は、流入側に形成された曲面部13と、ノズル孔5の形成方向に沿って延びる流入面17と、流入面17から突出するように形成された段差部40とを有している。すなわち、流入面17は、曲面部13に接続される側から段差部40に接続される側まで延びる平坦面であり、段差部40は、流入面17の高さ位置に対して上側に突出している部分である。ここで、ノズル孔5の形成方向は、図3及び図4に示すY方向に対応している。 The nozzle portion 4 includes a curved surface portion 13 formed on the inflow side, an inflow surface 17 extending along the forming direction of the nozzle hole 5, and a step portion 40 formed to protrude from the inflow surface 17. Yes. That is, the inflow surface 17 is a flat surface extending from the side connected to the curved surface portion 13 to the side connected to the stepped portion 40, and the stepped portion 40 protrudes upward with respect to the height position of the inflow surface 17. It is a part. Here, the formation direction of the nozzle hole 5 corresponds to the Y direction shown in FIGS. 3 and 4.
(曲面部13)
 曲面部13は、ノズル部4の入口側に形成されているものである。曲面部13は、空気流発生部6から風路Aを通ってくる空気が流入する。上下の曲面部13は、ノズル孔5において、対向するように形成されている。曲面部13同士は、下流に向けて互いの間隔が狭くなるように形成されている。
 すなわち、ノズル部4のノズル孔5の上流側には、空気がスムーズにノズル孔5に流入するように、上流側から下流側に向かって少しずつ上面と下面との対向間隔が小さくなるように形成されたR部である。
(Curved surface portion 13)
The curved surface portion 13 is formed on the inlet side of the nozzle portion 4. In the curved surface portion 13, air flowing from the air flow generation unit 6 through the air path A flows. The upper and lower curved surface portions 13 are formed so as to face each other in the nozzle hole 5. The curved surface portions 13 are formed so that the interval between the curved surface portions 13 becomes narrower toward the downstream side.
That is, on the upstream side of the nozzle hole 5 of the nozzle portion 4, the facing distance between the upper surface and the lower surface is gradually reduced from the upstream side to the downstream side so that air smoothly flows into the nozzle hole 5. It is the formed R part.
 仮に、曲面部13がないノズル孔では、空気がスムーズにノズル孔5に流入しにくくなるため、上流側に剥離域というノズル孔5を通る主流15の流路面積を縮小するような領域が形成されやすくなる。これにより、圧力損失が大きくなり、流量が低下し、所望の乾燥性能を得にくくなる。一方、本実施の形態1に係る乾燥装置200では、上下の両面に曲面部13が形成されているので、空気がスムーズにノズル孔5に流入し、圧力損失が大きくなることを抑制し、空気の流量低下を抑制することができ、所望の乾燥性能を得ることができる。 If the nozzle hole does not have the curved surface portion 13, it is difficult for air to smoothly flow into the nozzle hole 5, so that an area that reduces the flow area of the main flow 15 passing through the nozzle hole 5 is formed on the upstream side. It becomes easy to be done. Thereby, a pressure loss becomes large, a flow rate falls, and it becomes difficult to obtain desired drying performance. On the other hand, in the drying apparatus 200 according to the first embodiment, since the curved surface portions 13 are formed on both the upper and lower surfaces, the air smoothly flows into the nozzle hole 5 and the pressure loss is suppressed from increasing. Can be suppressed, and desired drying performance can be obtained.
(流入面17)
 流入面17は、一端側が曲面部13に接続され、他端側が段差部40に接続されているものである。流入面17は、曲面部13を流れてきた空気が流れる部分である。流入面17は、第2の方向Yに延びるように形成された平坦面を有している。すなわち、ノズル部4は、上下に対向し、ノズル孔5のスリット状の長手方向(幅方向)に平坦な面である流入面17を有している。
(Inflow surface 17)
The inflow surface 17 has one end connected to the curved surface portion 13 and the other end connected to the stepped portion 40. The inflow surface 17 is a portion through which air flowing through the curved surface portion 13 flows. The inflow surface 17 has a flat surface formed so as to extend in the second direction Y. That is, the nozzle portion 4 has an inflow surface 17 that is opposed to the top and bottom and is a flat surface in the slit-like longitudinal direction (width direction) of the nozzle hole 5.
(段差部40)
 段差部40は、流入面17から突出するように形成され、段差部上面41に平坦面が形成されているものである。段差部40は、図3及び図4に示す下側のものについては、流入面17に接続され、流入面17側からノズル孔5の出口10側まで延びるように形成されているものである。段差部40は、一端側が流入面17に接続されている。また、段差部40は、流入面17に対して直交する突出面44及びノズル孔5の出口10側まで延びる段差部上面41を有しているものである。また、段差部40は、図4に示すように、第1の方向Xに延びるように形成されている。すなわち、段差部40は、ノズル孔5のスリット状の長手方向に延びるように設けられている。
(Step 40)
The step portion 40 is formed so as to protrude from the inflow surface 17, and a flat surface is formed on the step portion upper surface 41. 3 and FIG. 4, the stepped portion 40 is connected to the inflow surface 17 and extends from the inflow surface 17 side to the outlet 10 side of the nozzle hole 5. One end side of the stepped portion 40 is connected to the inflow surface 17. Further, the stepped portion 40 has a projecting surface 44 orthogonal to the inflow surface 17 and a stepped portion upper surface 41 extending to the outlet 10 side of the nozzle hole 5. Further, the step portion 40 is formed so as to extend in the first direction X as shown in FIG. That is, the stepped portion 40 is provided so as to extend in the slit-like longitudinal direction of the nozzle hole 5.
 段差部上面41は、流入面17側からノズル孔5の出口10(先端16)側まで、第2の方向Yに延びるように形成された平坦面である。すなわち、ノズル部4は、平坦面である段差部上面41が、上下に対向するように形成されているものである。段差部上面41は、流入面17と平行に形成されている。 The stepped portion upper surface 41 is a flat surface formed so as to extend in the second direction Y from the inlet surface 17 side to the outlet 10 (tip 16) side of the nozzle hole 5. That is, the nozzle portion 4 is formed such that the stepped portion upper surface 41 which is a flat surface is opposed to the upper and lower sides. The stepped portion upper surface 41 is formed in parallel with the inflow surface 17.
 ノズル部4のうちの段差部上面41の部分では、ノズル孔5内の対向する上下面は平行であり、ノズル孔5における上下面間の高さは、先端16まで一定に保たれる。すなわち、段差部40を過ぎて先端16までの空気の流路は一定の形状である。 In the portion of the stepped portion upper surface 41 in the nozzle portion 4, the opposing upper and lower surfaces in the nozzle hole 5 are parallel, and the height between the upper and lower surfaces in the nozzle hole 5 is kept constant up to the tip 16. That is, the air flow path passing through the step portion 40 to the tip 16 has a fixed shape.
(空気の流れについて)
 次に、騒音発生にかかわるノズル孔5の壁面近傍の空気の流れなどについて説明する。
 ノズル孔5の入口には曲面部13があり、曲面部13により少しずつ増速した空気は、流入面17に到達する。曲面部13の端部から段差部40の底部40bまでの間は直線状で主流15と平行な流入面17であり、流入面17の壁面近傍の空気の流れ50は、主流15を向いている。
(About air flow)
Next, the flow of air near the wall surface of the nozzle hole 5 involved in noise generation will be described.
A curved surface portion 13 is provided at the inlet of the nozzle hole 5, and the air gradually increased by the curved surface portion 13 reaches the inflow surface 17. Between the end of the curved surface portion 13 and the bottom portion 40b of the stepped portion 40 is an inflow surface 17 that is linear and parallel to the main flow 15, and the air flow 50 in the vicinity of the wall surface of the inflow surface 17 faces the main flow 15. .
 流入面17の出口10側の端部(段差部40の底部40b)には、空気の流れる流路を狭くする段差部40がある。段差部40の流入面17側において、段差部40を乗り越えるために主流15と角度を有する傾斜流れ52が生じる。段差部40の底部40bには、第1の剥離域51が形成される。段差部40の頂部40aとノズル孔5の出口10の先端16との間には、直線状で主流15と平行の段差部上面41がある。 At the end of the inflow surface 17 on the outlet 10 side (the bottom 40b of the step 40), there is a step 40 that narrows the flow path of the air. On the inflow surface 17 side of the stepped portion 40, an inclined flow 52 having an angle with the main flow 15 is generated in order to get over the stepped portion 40. A first peeling region 51 is formed at the bottom 40 b of the stepped portion 40. Between the top 40 a of the stepped portion 40 and the tip 16 of the outlet 10 of the nozzle hole 5, there is a stepped portion upper surface 41 that is linear and parallel to the main flow 15.
 主流15方向に対し角度を持った傾斜流れ52は、段差部40の形状に沿って流れることはできず、段差部40の頂部40a側の壁面近傍において第2の剥離域53が形成される。そして、第2の剥離域53よりも外側で主流15と平行な流れ54となる。第2の剥離域53は、段差部上面41の途中の再付着点56の手前で消滅する。そして、第2の剥離域53側における平行な流れ54は、再付着点56でノズル孔5の壁面に近づく。 The inclined flow 52 having an angle with respect to the direction of the main flow 15 cannot flow along the shape of the stepped portion 40, and a second separation region 53 is formed in the vicinity of the wall surface on the top 40 a side of the stepped portion 40. Then, the flow 54 is parallel to the main flow 15 outside the second separation region 53. The second peeling region 53 disappears before the reattachment point 56 in the middle of the stepped portion upper surface 41. Then, the parallel flow 54 on the second peeling region 53 side approaches the wall surface of the nozzle hole 5 at the reattachment point 56.
 再付着点56からノズル孔5の先端16の間において、壁面近傍の空気流は、速度を増加させていく。ここで、第2の剥離域53の圧力は、周囲よりも低く、再付着点56から先端16の間の圧力は周囲よりも高い。このため、再付着点56付近は、流れに抗する圧力勾配となり、再付着点56から先端16までの壁面近傍の空気の速度増加が抑制される。 Between the reattachment point 56 and the tip 16 of the nozzle hole 5, the air flow in the vicinity of the wall surface increases in speed. Here, the pressure in the second peeling region 53 is lower than the surroundings, and the pressure between the reattachment point 56 and the tip 16 is higher than the surroundings. Therefore, the vicinity of the reattachment point 56 has a pressure gradient against the flow, and an increase in the velocity of air near the wall surface from the reattachment point 56 to the tip 16 is suppressed.
[本実施の形態1に係る乾燥装置200の有する効果]
 本実施の形態1に係る乾燥装置200は、平面部を分割して流入面17及び段差部上面41を形成し、流入面17よりも段差部上面41の方をノズル孔5の中心側に突出させることで、ノズル部4の壁面近傍において曲面部13からノズル孔5の出口(先端16)に向かって増速する流れを流入面17と段差部上面41との間で減速させることができる。それによって、段差部上面41において、再びノズル孔5の出口に向かって増速するものの、ノズル孔5の出口の壁面近傍の速度上昇を抑制し、騒音源となるノズル孔5の壁面と壁面近傍の流れとの速度差によって生じる乱れを減少させることができる。これにより、本実施の形態1に係る乾燥装置200は、乾燥性能の低下を抑えつつ騒音の低減を図ることができる。
[Effects of drying apparatus 200 according to Embodiment 1]
The drying apparatus 200 according to the first embodiment divides the flat portion to form the inflow surface 17 and the stepped portion upper surface 41, and the stepped portion upper surface 41 protrudes toward the center side of the nozzle hole 5 from the inflow surface 17. By doing so, the flow increasing from the curved surface portion 13 toward the outlet (tip 16) of the nozzle hole 5 in the vicinity of the wall surface of the nozzle portion 4 can be decelerated between the inflow surface 17 and the stepped portion upper surface 41. As a result, although the speed is increased again toward the outlet of the nozzle hole 5 on the stepped portion upper surface 41, an increase in speed in the vicinity of the wall surface of the outlet of the nozzle hole 5 is suppressed, and the wall surface of the nozzle hole 5 serving as a noise source and the vicinity of the wall surface are suppressed. The turbulence caused by the difference in speed from the flow of the water can be reduced. Thereby, the drying apparatus 200 which concerns on this Embodiment 1 can aim at reduction of a noise, suppressing the fall of drying performance.
 ノズル孔から発生する騒音には、ノズル孔の先端付近において、ノズル孔の静止した壁面と壁面近傍の速度を持った空気の流れとの速度差によって空気流にせん断力が働き、空気の流れの中にそのせん断力によって渦(乱れ)が生じ、その渦の変形によって発生する(1)境界層騒音と、それらの渦がノズル孔の下流側出口から放出されることによって発生する(2)渦騒音と、ノズル孔から放出された気流のうち攪拌の影響を受けないポテンシャルコアの主流とその周囲の静止した空気との速度差によって生じた乱流拡散層のせん断流から発生する(3)噴流騒音がある。 In the noise generated from the nozzle hole, shear force acts on the air flow near the tip of the nozzle hole due to the difference in velocity between the stationary wall surface of the nozzle hole and the air flow having a velocity near the wall surface. Vortex (disturbance) is generated by the shearing force in the inside, and (1) boundary layer noise generated by deformation of the vortex and those vortices generated by being discharged from the downstream outlet of the nozzle hole (2) vortex (3) Jet generated from noise and shear flow in the turbulent diffusion layer caused by the difference in velocity between the main flow of the potential core that is not affected by stirring and the surrounding static air. There is noise.
 本実施の形態1に係る乾燥装置200は、ノズル孔5の形成方向に沿って延びる流入面17と、流入面17から突出するように形成された段差部40とを有し、段差部上面41が流入面17側からノズル孔5の出口10側まで延びるように形成された平坦面を有するものである。ここで、段差の頂部40aとノズル孔5の先端16とは、同一平面上(段差部上面41上)に位置している。
 すなわち、本実施の形態1に係る乾燥装置200は、再付着点56から先端16までにおけるノズル部4を流れる空気55の速度を抑制することができ、それによって騒音源となる渦(乱れ)の強さを低減できるため、ノズル孔5から発生する境界層騒音及び渦騒音を抑制することができる。したがって、本実施の形態1に係る乾燥装置200は、乾燥性能の低下を抑えつつ騒音の低下を図ることができる。
The drying apparatus 200 according to the first embodiment includes the inflow surface 17 extending along the forming direction of the nozzle hole 5 and the step portion 40 formed so as to protrude from the inflow surface 17. Has a flat surface formed so as to extend from the inflow surface 17 side to the outlet 10 side of the nozzle hole 5. Here, the top 40a of the step and the tip 16 of the nozzle hole 5 are located on the same plane (on the upper surface 41 of the step).
That is, the drying apparatus 200 according to the first embodiment can suppress the speed of the air 55 flowing through the nozzle unit 4 from the reattachment point 56 to the tip 16, thereby generating vortices (turbulence) that are noise sources. Since the strength can be reduced, boundary layer noise and eddy noise generated from the nozzle hole 5 can be suppressed. Therefore, the drying apparatus 200 according to the first embodiment can reduce noise while suppressing a decrease in drying performance.
 また、本実施の形態1に係る乾燥装置200は、再付着点56から先端16までにおけるノズル部4を流れる空気55の速度を抑制することができ、ノズル孔5内の高い圧力を大気に開放することができ、最も大きな騒音を発生する先端16近傍の空気の圧力の変動を抑制することができ、騒音を抑制することができる。 In addition, the drying apparatus 200 according to the first embodiment can suppress the speed of the air 55 flowing through the nozzle portion 4 from the reattachment point 56 to the tip 16 and release the high pressure in the nozzle hole 5 to the atmosphere. It is possible to suppress fluctuations in the pressure of the air in the vicinity of the tip 16 that generates the largest noise, and noise can be suppressed.
 なお、段差部40の頂部40aと底部40bの長さは、ノズル孔5の主流15が通過する幅T1の40%以下であることが望ましい。すなわち、段差部40は、頂部40aと流入面17との接続部分である底部40bとの間の長さが、対向する段差部上面41の対向幅T1の40%以下となるように形成されていることが望ましい。段差部40の頂部40aと底部40bの距離が、主流が通過する幅T1の40%以上になると、流入面17上で、段差部40の頂部40aと底部40bとの間の空気の流れ50の風量が増加し、傾斜流れ52の速度が増し、より段差部40の形状に沿って空気が流れにくくなる。そして、第2の剥離域53の厚みが大きくなることによって再付着点56がノズル孔5の先端16に近づく。再付着点56は、圧力の変動が大きく、その圧力の変動がノズル孔5の先端16に近くなると大きな騒音を発生する要因となる。 It should be noted that the length of the top 40a and the bottom 40b of the step 40 is preferably 40% or less of the width T1 through which the main flow 15 of the nozzle hole 5 passes. That is, the step portion 40 is formed such that the length between the top portion 40a and the bottom portion 40b, which is the connection portion of the inflow surface 17, is 40% or less of the opposing width T1 of the opposing step portion upper surface 41. It is desirable that When the distance between the top 40a and the bottom 40b of the step 40 is 40% or more of the width T1 through which the main flow passes, the air flow 50 between the top 40a and the bottom 40b of the step 40 on the inflow surface 17 The air volume increases, the speed of the inclined flow 52 increases, and the air hardly flows along the shape of the stepped portion 40. The reattachment point 56 approaches the tip 16 of the nozzle hole 5 as the thickness of the second peeling region 53 increases. The reattachment point 56 has a large pressure fluctuation, and when the pressure fluctuation comes close to the tip 16 of the nozzle hole 5, it becomes a factor that generates a large noise.
 また、段差部上面41の長さは、流入面17と段差部上面41を合計した主流15方向長さT2の20%以上であることが望ましい。すなわち、段差部上面41のノズル孔5の形成方向の幅が、段差部上面41のノズル孔5の形成方向の幅と流入面17のノズル孔の形成方向の幅とを合わせた幅T2の20%以下となるように形成されていることが望ましい。段差部上面41が20%より小さくなると、圧力の変動が大きい再付着点56がノズル孔5の先端16に近づき、その圧力の変動がノズル孔5の先端16に近くなると大きな騒音を発生する要因となる。 Further, it is desirable that the length of the stepped portion upper surface 41 is 20% or more of the length T2 in the main flow 15 direction in which the inflow surface 17 and the stepped portion upper surface 41 are combined. That is, the width in the formation direction of the nozzle hole 5 on the stepped portion upper surface 41 is a width T2 of 20 which is the sum of the width in the nozzle hole 5 forming direction on the stepped portion upper surface 41 and the width of the inflow surface 17 in the nozzle hole forming direction It is desirable that it is formed to be not more than%. When the upper surface 41 of the stepped portion is smaller than 20%, the reattachment point 56 having a large pressure fluctuation approaches the tip 16 of the nozzle hole 5, and when the pressure fluctuation approaches the tip 16 of the nozzle hole 5, a factor that generates a large noise It becomes.
 なお、従来では、ノズル孔の入口から直線部に突起を設けることで騒音を抑制する方法が開示されている。突起とノズル先端が同一平面上にないため、本実施の形態1の第2の剥離域に相当する領域が大きくなり、騒音は抑制するものの、流れに大きな圧力損失が生じる。そのため、従来においては、効率的に手の乾燥をするための必要な風量を確保するには、ブロアの回転数(入力)を増加させる必要がある。ブロアの回転数の増加に伴って、ブロアの騒音が増加し、ノズル孔の騒音は抑制するが、乾燥装置としての騒音の低減効果が小さくなることがある。 In addition, conventionally, a method of suppressing noise by providing a protrusion on the straight line portion from the inlet of the nozzle hole is disclosed. Since the protrusion and the tip of the nozzle are not on the same plane, a region corresponding to the second separation region of the first embodiment is increased, and noise is suppressed, but a large pressure loss occurs in the flow. Therefore, conventionally, it is necessary to increase the rotational speed (input) of the blower in order to secure a necessary air volume for efficiently drying the hands. As the rotational speed of the blower increases, the noise of the blower increases and the noise of the nozzle hole is suppressed, but the noise reduction effect as a drying device may be reduced.
 なお、本実施の形態1では、段差部40が、ノズル部4のノズル孔5のうち、第1の方向Xの全幅に渡って形成されているものとして説明したが、それに限定されるものではない。段差部40が、ノズル部4のノズル孔5のうち、第1の方向Xの全幅に渡って形成されている方が、より騒音低下の効果を得ることができるが、たとえば、段差部40の一部が途切れていてもよいし、たとえば、ノズル部4の両端部に段差部40が形成されていなくてもよい。さらに、図10のように、第1の方向Xにノズルが断続的に配置された場合でも、段差部40を設けることで、同様の騒音低下の効果を得ることができる。 In the first embodiment, the step portion 40 is described as being formed over the entire width in the first direction X in the nozzle hole 5 of the nozzle portion 4, but is not limited thereto. Absent. It is possible to obtain a noise reduction effect when the stepped portion 40 is formed over the entire width in the first direction X in the nozzle hole 5 of the nozzle portion 4. A part may be interrupted, for example, the level | step-difference part 40 does not need to be formed in the both ends of the nozzle part 4. FIG. Furthermore, even when the nozzles are intermittently arranged in the first direction X as shown in FIG. 10, the same noise reduction effect can be obtained by providing the stepped portion 40.
 また、ノズル部4は、ノズル孔5における対向する内壁面の両方に段差部40が形成された場合を一例として説明したが、それに限定されるものではない。乾燥装置200は、たとえば、図3及び図4に示す下側の面のみに段差部40が形成されている態様であってもよい。ただし、上下面の両方に形成されている方が、乾燥性能の低下を抑えつつ騒音の低下を図ることができる。 Moreover, although the nozzle part 4 demonstrated as an example the case where the level | step-difference part 40 was formed in both the inner wall surfaces which oppose in the nozzle hole 5, it is not limited to it. For example, the drying device 200 may be configured such that the stepped portion 40 is formed only on the lower surface shown in FIGS. 3 and 4. However, it is possible to reduce the noise while suppressing the deterioration of the drying performance when formed on both the upper and lower surfaces.
 さらに、本実施の形態1に係る乾燥装置200の全体構成は、上記に限られるものではなく、ノズル孔5から空気流を噴出させて、濡れた手を乾燥させることができる構成であればよい。たとえば、本体1には開口部2a及び開口部2bが形成されているものとして説明したが、これらは塞がれている態様であってもよい。塞がれている態様であっても、開放されていた場合と同等の乾燥性能を得ることができる。 Furthermore, the overall configuration of the drying apparatus 200 according to the first embodiment is not limited to the above, and any configuration that can dry a wet hand by ejecting an air flow from the nozzle hole 5 may be used. . For example, the main body 1 has been described as having the opening 2a and the opening 2b, but these may be closed. Even in the closed mode, it is possible to obtain a drying performance equivalent to that in the case of being opened.
 なお、本実施の形態1に係る乾燥装置200は、流入面17及び段差部40が一体的に形成されているものとして説明したが、別体でもよい。たとえば、流入面17を先端16側まで延長して形成し、この延長した部分に段差部40を設けてもよい。 In addition, although the drying apparatus 200 which concerns on this Embodiment 1 demonstrated as the thing in which the inflow surface 17 and the level | step-difference part 40 were integrally formed, a different body may be sufficient. For example, the inflow surface 17 may be formed to extend to the tip 16 side, and the stepped portion 40 may be provided in the extended portion.
[実施の形態1に係る乾燥装置200の変形例1]
 図5は、本実施の形態1に係る乾燥装置200の変形例1である。本実施の形態1では、対向するノズル孔5の形状が対称の場合についてのみ説明したが、それに限定されるものではない。図5に示すように、ノズル部4Bは、下側のノズル部4の段差部40B1と上側のノズル部4の段差部40B2との位置が、流入面17側からノズル孔5の出口10側に向かう方向にずれるように形成してもよい。
[Variation 1 of the drying apparatus 200 according to Embodiment 1]
FIG. 5 shows a first modification of the drying apparatus 200 according to the first embodiment. In the first embodiment, only the case where the shapes of the opposed nozzle holes 5 are symmetrical has been described. However, the present invention is not limited to this. As shown in FIG. 5, the position of the stepped portion 40 </ b> B <b> 1 of the lower nozzle portion 4 and the stepped portion 40 </ b> B <b> 2 of the upper nozzle portion 4 is located from the inflow surface 17 side to the outlet 10 side of the nozzle hole 5. You may form so that it may shift | deviate to the direction to go.
 すなわち、一方の流入面17B1の方が他方の流入面17B2よりもY方向における長さが長くなっており、その分、一方の段差部上面41B1の方が他方の段差部上面41B2よりもY方向における長さが短くなっているものであってもよい。このように、ノズル部4Bは、頂部40aの位置が、段差部40B1及び段差部40B2側からノズル孔5の先端16側に向かう方向にずれるように形成されている。 That is, one inflow surface 17B1 is longer in the Y direction than the other inflow surface 17B2, and accordingly, one stepped portion upper surface 41B1 is more in the Y direction than the other stepped portion upper surface 41B2. The length at may be shorter. Thus, the nozzle part 4B is formed so that the position of the top part 40a is shifted in the direction from the stepped part 40B1 and the stepped part 40B2 side toward the tip 16 side of the nozzle hole 5.
 これにより、上述したように先端16付近の流速を低減でき、さらに対向する先端16B1と先端16B2との間で流速に差が生じるため、圧力の変動する周期にずれが生じ、先端16B1及び先端16B2で発生する騒音が強め合わなくなることで、さらに騒音を抑制することができる。 As a result, the flow velocity in the vicinity of the tip 16 can be reduced as described above, and further, a difference occurs in the flow velocity between the tip 16B1 and the tip 16B2 facing each other, so that a shift occurs in the pressure fluctuation period, and the tips 16B1 and 16B2 Since the noise generated in is no longer strengthened, the noise can be further suppressed.
[実施の形態1に係る乾燥装置200の変形例2]
 図6は、本実施の形態1に係る乾燥装置200の変形例2である。本実施の形態1では、流入面17及び段差部上面41と段差部40とが直交する場合について説明したが、それに限定されるものではない。
 図6に示すように、ノズル部4Cの段差部40Cは、一端側が流入面17に接続され、他端側が段差部上面41に接続され、流入面17に対して傾斜する突出面44を有しているものである。この傾斜面である突出面44Cは、頂部40aと底部40bとを結ぶ方向が主流15方向との間には予め設定された角度が形成されることとなる。これにより、第1の剥離域51の領域を縮小し、圧力損失を抑制することができる。圧力損失が低減できれば、手の乾燥に必要な風量を確保するため、空気流発生部6の入力及び回転数を低下でき、回転数の低下に伴って騒音を抑制することができる。
[Modification 2 of drying apparatus 200 according to Embodiment 1]
FIG. 6 is a second modification of the drying apparatus 200 according to the first embodiment. In the first embodiment, the case where the inflow surface 17 and the stepped portion upper surface 41 and the stepped portion 40 are orthogonal to each other has been described. However, the present invention is not limited to this.
As shown in FIG. 6, the stepped portion 40 </ b> C of the nozzle portion 4 </ b> C has a protruding surface 44 that is connected to the inflow surface 17 at one end and connected to the upper surface 41 at the other end and inclined with respect to the inflow surface 17. It is what. The protruding surface 44C, which is an inclined surface, forms a preset angle between the direction connecting the top 40a and the bottom 40b and the direction of the main flow 15. Thereby, the area | region of the 1st peeling area 51 can be shrunk | reduced and a pressure loss can be suppressed. If the pressure loss can be reduced, the air flow necessary for hand drying can be secured, so that the input and the rotational speed of the air flow generator 6 can be reduced, and noise can be suppressed as the rotational speed decreases.
実施の形態2.
 図7は、本実施の形態2に係る乾燥装置のノズルのノズル孔5Dの部分の正面図である。ノズル孔5Dは、正面視形状が波状となっている。すなわち、実施の形態1では、ノズル孔5の形状がストレートなスリット状のものについて説明したが、本実施の形態2では、ノズル孔5Dの出口側から見た開口の形状が波状の場合について説明する。なお、本実施の形態2では、実施の形態1と共通する部分には同様の符号を付し、相違点について中心に説明する。
Embodiment 2. FIG.
FIG. 7 is a front view of a portion of the nozzle hole 5D of the nozzle of the drying apparatus according to the second embodiment. The nozzle hole 5D has a wave shape when viewed from the front. That is, in the first embodiment, the nozzle hole 5 has a straight slit shape, but in the second embodiment, the case where the shape of the opening viewed from the outlet side of the nozzle hole 5D is wavy is described. To do. In the second embodiment, parts similar to those in the first embodiment are denoted by the same reference numerals, and differences will be mainly described.
 図7(a)に示すようにノズル孔5Dは、左右方向に複数の山と谷がある波状(略正弦波状)のスリットとなっている。そして、図7(b)に示す図7(a)のA部拡大図に示すように、ノズル孔5Dの谷の部分は、上端の外郭60aと下端の外郭60bから成り、その外郭60aに囲まれた空間61がある。そして、ノズル孔5Dの山の部分は、上端の外郭62aと下端の外郭62bから成り、その外郭62bに囲まれた空間63がある。 7A, the nozzle hole 5D is a wavy (substantially sinusoidal) slit having a plurality of peaks and valleys in the left-right direction. Then, as shown in FIG. 7 (b), which is an enlarged view of part A of FIG. 7 (a), the valley portion of the nozzle hole 5D is composed of an upper outline 60a and a lower outline 60b, and is surrounded by the outline 60a. There is a space 61 formed. The crest portion of the nozzle hole 5D is composed of an upper outline 62a and a lower outline 62b, and there is a space 63 surrounded by the outline 62b.
 次に、波状のノズル孔5Dによる騒音低減効果について説明する。
 前述したように高速な気流がノズル孔5Dから放出されたときに発生する騒音の源は、大きく分けると三つある。一つ目は、ノズル孔5Dの表面に形成される境界層から発生する境界層騒音である。二つ目は、ノズル孔5Dの下流側出口から渦の放出によって発生する渦騒音である。三つ目は、ノズル孔5Dから放出された気流のうち攪拌の影響を受けないポテンシャルコアの主流とその周囲の静止した空気との速度差によって生じた乱流拡散層のせん断流から発生する噴流騒音である。
Next, the noise reduction effect by the wavy nozzle hole 5D will be described.
As described above, there are three main sources of noise generated when a high-speed air flow is emitted from the nozzle hole 5D. The first is boundary layer noise generated from the boundary layer formed on the surface of the nozzle hole 5D. The second is vortex noise generated by vortex shedding from the downstream outlet of the nozzle hole 5D. The third is a jet generated from the shear flow of the turbulent diffusion layer generated by the velocity difference between the main flow of the potential core that is not affected by the stirring and the surrounding static air among the air flow discharged from the nozzle hole 5D. Noise.
 ここで、噴流騒音に着目すると、周囲の静止した空気と高速な空気の流れの速度差を小さくすることによって騒音を低減できる。つまり、本実施の形態2における乾燥装置では、ノズル孔5Dの正面視形状が波状となっているため、放出される空気流と周囲の静止した空気との速度差を小さくすることができるようになっている。 Here, paying attention to jet noise, the noise can be reduced by reducing the difference in speed between the surrounding stationary air and the high-speed air flow. That is, in the drying apparatus according to the second embodiment, the front view shape of the nozzle hole 5D is wavy, so that the speed difference between the discharged air flow and the surrounding stationary air can be reduced. It has become.
 本実施の形態2におけるノズル孔5Dは、前述したように波状であり、隣接する山部分の間の空間61及び隣接する谷部分の間の空間63がある。たとえば、空間61においては、ノズル孔5Dの外郭60a及び外郭60bの間の隙間から放出された空気流によってエネルギーが供給され、空気が誘起される。 As described above, the nozzle hole 5D in the second embodiment has a wave shape, and includes a space 61 between adjacent mountain portions and a space 63 between adjacent valley portions. For example, in the space 61, energy is supplied by the air flow discharged from the gap between the outer shell 60a and the outer shell 60b of the nozzle hole 5D, and air is induced.
 この場合、空間61の誘起された空気流の速度は、直線状のノズル孔の場合の周辺の空間の速度より大きくなる。その結果、直線状のノズル孔の場合よりも、ノズル孔5Dから直接放出された高速な空気流と周辺の空間の空気流との速度差が小さくなり、発生する噴流騒音を抑制することができる。なお、空間63における空気流についても同様にノズル孔5Dから直接放出された空気流との速度差が小さいため、発生する噴流騒音を抑制することができる。 In this case, the velocity of the air flow induced in the space 61 is larger than the velocity of the surrounding space in the case of the linear nozzle hole. As a result, the speed difference between the high-speed air flow directly discharged from the nozzle hole 5D and the air flow in the surrounding space is smaller than in the case of the straight nozzle hole, and the generated jet noise can be suppressed. . Similarly, the air flow in the space 63 has a small speed difference from the air flow directly discharged from the nozzle hole 5D, so that the generated jet noise can be suppressed.
 ただし、外郭60bの下方の空間64周囲をノズル孔5Dで囲まれていないため、直線状のノズル孔の場合と同じように、ノズル孔5Dから直接放出された空気流と周辺の空気流との速度差が大きくなり、騒音は低減しない。
 しかし、ノズル孔5Dの上下方向に騒音が低減した空間61及び騒音が低減しない空間64が形成されているので、騒音源となる流れの変化(圧力変動)の位相が、手挿入部2において上下方向に一致しなくなる。
 そのため、音の相関面積が小さくなり、騒音を抑制することができる。これに対し、直線状のノズル孔の場合は、ノズル孔の上下方向、幅方向ともに空気流の位相が一致した状態であり、位相の一致によって騒音が増大する。なお、外郭62aの上方の空間65についても騒音の状態は上述した空間64の状態と同様である。
However, since the space around the space 64 below the outer shell 60b is not surrounded by the nozzle hole 5D, the air flow directly discharged from the nozzle hole 5D and the surrounding air flow are the same as in the case of the linear nozzle hole. The speed difference becomes large and noise is not reduced.
However, since the space 61 in which noise is reduced and the space 64 in which noise is not reduced are formed in the vertical direction of the nozzle hole 5D, the phase of the flow change (pressure fluctuation) serving as a noise source is Does not match the direction.
Therefore, the correlation area of sound becomes small and noise can be suppressed. On the other hand, in the case of a linear nozzle hole, the phase of the air flow is the same in both the vertical direction and the width direction of the nozzle hole, and noise increases due to the phase match. Note that the noise state of the space 65 above the outer shell 62a is the same as that of the space 64 described above.
 図8は、図7(a)のA1、A2及びA3の断面図である。ここでA1は、ノズル孔5Dの山部分の中心を通る線であり、A2は、山部分と谷部分の境界を通る線であり、A3は、谷部分の中心を通る線である。図8に示すように、ノズル孔5Dの段差部上面41Dの長さ(奥行き方向の長さ)はA1、A2、A3の順に長く、主流15方向に異なる長さとしている。すなわち、段差部上面41Dは、ノズル孔5Dの波状の山に対応する部分から、ノズル孔5Dの波状の谷に対向する部分に向かうにしたがって流入面17D側からノズル孔5Dの出口10側(先端16側)に向かう方向の幅が長くなるように形成されている。 FIG. 8 is a cross-sectional view of A1, A2, and A3 of FIG. Here, A1 is a line passing through the center of the peak portion of the nozzle hole 5D, A2 is a line passing through the boundary between the peak portion and the valley portion, and A3 is a line passing through the center of the valley portion. As shown in FIG. 8, the length (length in the depth direction) of the stepped portion upper surface 41D of the nozzle hole 5D is longer in the order of A1, A2, and A3, and is different in the mainstream 15 direction. That is, the stepped portion upper surface 41D extends from the portion corresponding to the wavy crest of the nozzle hole 5D to the portion facing the wavy trough of the nozzle hole 5D from the inflow surface 17D side to the outlet 10 side (tip) of the nozzle hole 5D. The width in the direction toward (16 side) is increased.
 これにより、ノズル孔5Dの先端16までの流れの発達状態が異なることとなり、ノズル孔5Dでの速度分布をノズル孔5Dの長手方向に変化させることができる。その結果、ノズル孔5Dで発生する渦騒音の音源となる圧力変動の位相をノズル孔5Dの長手方向にずらし、音の相関面積を小さくすることができ、騒音を抑制することができる。 Thereby, the development state of the flow to the tip 16 of the nozzle hole 5D is different, and the velocity distribution in the nozzle hole 5D can be changed in the longitudinal direction of the nozzle hole 5D. As a result, the phase of pressure fluctuation that becomes a sound source of vortex noise generated in the nozzle hole 5D can be shifted in the longitudinal direction of the nozzle hole 5D, the sound correlation area can be reduced, and noise can be suppressed.
[本実施の形態2に係る乾燥装置の有する効果]
 本実施の形態2に係る乾燥装置は、実施の形態1に係る乾燥装置200と同様の効果を有することに加えて次の効果を有する。すなわち、本実施の形態2に係る乾燥装置のノズルのノズル孔5は、正面視形状が波状となっている(図7参照)。このため、ノズル孔5Dから直接放出された高速な空気流と周辺の空間の空気流との速度差が小さくなり、発生する噴流騒音を抑制することができる。
[Effects of the drying apparatus according to the second embodiment]
The drying apparatus according to the second embodiment has the following effects in addition to the same effects as the drying apparatus 200 according to the first embodiment. That is, the nozzle hole 5 of the nozzle of the drying apparatus according to the second embodiment has a wave shape when viewed from the front (see FIG. 7). For this reason, the speed difference between the high-speed air flow directly discharged from the nozzle hole 5D and the air flow in the surrounding space is reduced, and the generated jet noise can be suppressed.
 また、本実施の形態2に係る乾燥装置は、ノズル孔5Dの段差部上面41Dの長さ(奥行き方向の長さ)はA1、A2、A3の順に長くなっている。このため、ノズル孔5Dの先端16までの流れの発達状態が異なることとなり、ノズル孔5Dでの速度分布をノズル孔5Dの長手方向に変化させることができ、音の相関面積を小さくすることができ、騒音を抑制することができる。なお、図11のように、第1の方向Xに波状のノズルが断続的に配置された場合でも段差部40を設けることで、同様の騒音低下の効果を得ることができる。 Further, in the drying apparatus according to the second embodiment, the length (length in the depth direction) of the stepped portion upper surface 41D of the nozzle hole 5D becomes longer in the order of A1, A2, and A3. For this reason, the development state of the flow up to the tip 16 of the nozzle hole 5D is different, the velocity distribution in the nozzle hole 5D can be changed in the longitudinal direction of the nozzle hole 5D, and the correlation area of sound can be reduced. And noise can be suppressed. As shown in FIG. 11, the same noise reduction effect can be obtained by providing the stepped portion 40 even when the wave-like nozzles are intermittently arranged in the first direction X.
実施の形態3.
 図9は、本実施の形態3に係る乾燥装置203の縦断面図である。図9に示すように、外郭をなす本体101は、正面に手挿入口102を有し、手挿入口102に続く処理空間として手挿入部103を備えており、手を挿抜できるようにしてある。
Embodiment 3 FIG.
FIG. 9 is a longitudinal sectional view of the drying device 203 according to the third embodiment. As shown in FIG. 9, the main body 101 forming the outer shell has a hand insertion port 102 on the front surface, and is provided with a hand insertion part 103 as a processing space following the hand insertion port 102 so that a hand can be inserted and removed. .
 手挿入部103は、本体101の正面下部に、正面と両側面が開放した開放シンク状の凹部として形成され、下部を形成する水受け部104と奥側とにはその端縁部に曲面構成の立ち上がりによる防壁構造105が設けられ、側方や前方に水が飛散しないようになっている。水受け部104の底部は前方に向かって下傾していて、その傾斜下端に排水口106が設けられている。 The manual insertion portion 103 is formed as an open sink-like recess with the front and both sides open at the lower front of the main body 101, and the water receiving portion 104 forming the lower portion and the back side have a curved surface configuration A barrier structure 105 is provided to prevent water from splashing sideways or forward. The bottom of the water receiving portion 104 is inclined downward toward the front, and a drain port 106 is provided at the lower end of the inclination.
 水受け部104の下方には排水口106から滴下する水を貯留するドレン容器107が抜き差し自在に設けられている。なお、手挿入部103の内面には、たとえばシリコン系、もしくはフッ素系などの撥水性コーティング、酸化チタンなどの親水性を有するコーティング、又は抗菌剤が含浸させられている。これにより、手挿入部103の内面に汚れが付着するのを軽減し、細菌が繁殖してしまうことを抑制することができるようになっている。 A drain container 107 for storing water dripping from the drain port 106 is provided below the water receiving portion 104 so as to be freely inserted and removed. Note that the inner surface of the manual insertion portion 103 is impregnated with a water-repellent coating such as silicon or fluorine, a hydrophilic coating such as titanium oxide, or an antibacterial agent. Thereby, it is possible to reduce the adhesion of dirt to the inner surface of the manual insertion portion 103 and to suppress the growth of bacteria.
 本体101内には空気流発生部108が組み込まれており、DCブラシレスモーター、これを駆動させる駆動回路及びDCブラシレスモーターによって回転するターボファンなどにより構成され、本体101の手挿入部103の真上に取り付けられている。なお、ここでは、空気流発生部108にDCブラシレスモーターを採用した場合を例に説明したが、それに限定されるものではなく、たとえば整流子モーター、誘導電動機などであってもよい。 An air flow generation unit 108 is incorporated in the main body 101, and includes a DC brushless motor, a drive circuit that drives the DC brushless motor, a turbo fan that is rotated by the DC brushless motor, and the like. Is attached. Here, the case where a DC brushless motor is adopted as the airflow generator 108 has been described as an example, but the present invention is not limited to this, and may be a commutator motor, an induction motor, or the like.
 空気流発生部108の吸気側は、本体101の背面側であって手挿入部103の奥側背面に近接して縦方向に設けられた下端の開放した吸気通路110に臨んでおり、吸気通路110の下端から着脱可能のエアーフィルター111を通じて空気を吸込むことができるようになっている。 The intake side of the air flow generation unit 108 faces the intake passage 110 having an open lower end provided in the vertical direction on the back side of the main body 101 and in the vicinity of the back side of the hand insertion unit 103. Air can be sucked in through a removable air filter 111 from the lower end of 110.
 空気流発生部108の吹出口は、円形カップ状のファンケーシングの外周に、周方向に間隔を置いて、複数個が半径方向に向かって開設されている。このファンケーシングの外側は、ターボファンの回転方向に沿う方向に誘導路を設けた円形カップ状のケーシング109によって覆われ、ケーシング109の誘導路の端に、空気流発生部108から送られてくる高圧空気を高速の気流に変換して手挿入部103に吹出すノズルが接続されている。 A plurality of air outlets of the air flow generation unit 108 are opened in the radial direction at intervals in the circumferential direction on the outer periphery of the circular cup-shaped fan casing. The outside of the fan casing is covered by a circular cup-shaped casing 109 provided with a guide path in a direction along the rotational direction of the turbofan, and is sent from the air flow generator 108 to the end of the guide path of the casing 109. A nozzle that converts high-pressure air into a high-speed air flow and blows it out to the manual insertion portion 103 is connected.
 ノズル部112には、手挿入部103の手挿入口近傍の上部に、ノズル孔115が下向きとなるように取り付けられている。ノズル部112に形成されたノズル孔115からは、手挿入部103内に挿入した手に付着した水分を吹飛ばす高速の気流が放出され、たとえば手を摺り合わせることをしなくても水滴を手の表面から剥離して吹飛ばすことができる。なお、ノズル部112の背後には、手挿入部103に面して手の挿抜を検出する手検出センサー114が設けられている。 The nozzle part 112 is attached to the upper part of the hand insertion part 103 near the hand insertion port so that the nozzle hole 115 faces downward. From the nozzle hole 115 formed in the nozzle portion 112, a high-speed airflow that blows off moisture adhering to the hand inserted into the hand insertion portion 103 is released, and for example, water droplets can be handed without having to slide the hands together. Can be peeled off and blown away from the surface. A hand detection sensor 114 that detects insertion / extraction of the hand is provided behind the nozzle portion 112 so as to face the hand insertion portion 103.
 ノズル部112に形成されたノズル孔115は、本体101のX方向(図9の紙面と垂直な方向)に配設されている。ノズル部112は、たとえば、実施の形態1で説明した正面視形状が矩形状のノズル部4を用いることもできるし、実施の形態2で説明した正面視形状が波状のノズル部4Dを用いることもできる。 The nozzle holes 115 formed in the nozzle portion 112 are arranged in the X direction of the main body 101 (direction perpendicular to the paper surface of FIG. 9). For example, the nozzle part 112 may use the nozzle part 4 having a rectangular shape in front view described in the first embodiment, or may use the nozzle part 4D having a wavy shape in front view described in the second embodiment. You can also.
 ノズル孔115は、本体101の前後方向(図9のY方向)に複数列設けられているものである。本実施の形態3では、ノズル孔115が2列設けられている場合を例に示している。すなわち、ノズル孔115は、第1のノズル孔113a及び第2のノズル孔113bを有している。なお、ノズル孔115は、1列であってもよいし、3列以上であってもよい。 The nozzle holes 115 are provided in a plurality of rows in the front-rear direction of the main body 101 (Y direction in FIG. 9). In the third embodiment, a case where two rows of nozzle holes 115 are provided is shown as an example. That is, the nozzle hole 115 has a first nozzle hole 113a and a second nozzle hole 113b. The nozzle holes 115 may be in one row or in three or more rows.
 このような構成を持つ乾燥装置203の騒音は、ノズル孔115から発生する渦騒音や噴流騒音、及び、噴流が手挿入部103に衝突して発生する衝突音が支配的である。そこで、図9では図示を省略しているが、ノズル孔115として実施の形態1で説明した正面視形状が矩形状のノズル部4を採用したり、実施の形態2で説明した正面視形状が波状のノズル部4Dを採用することで、ノズル孔115から発生する境界層騒音、渦騒音及び噴出騒音などの低減を図ることができる。これにより、本実施の形態3に係る乾燥装置203は、流量の低下を抑えて乾燥性能の低下を抑えつつ、騒音の低減を図ることができる。 The noise of the drying apparatus 203 having such a configuration is dominated by vortex noise and jet noise generated from the nozzle hole 115 and collision sound generated when the jet collides with the hand insertion portion 103. Therefore, although not shown in FIG. 9, the nozzle portion 4 having the rectangular shape in front view described in the first embodiment is adopted as the nozzle hole 115, or the shape in front view described in the second embodiment is used. By adopting the wavy nozzle portion 4D, it is possible to reduce boundary layer noise, vortex noise, and jet noise generated from the nozzle hole 115. Thereby, the drying apparatus 203 according to the third embodiment can reduce noise while suppressing a decrease in flow rate and a decrease in drying performance.
[本実施の形態3に係る乾燥装置の有する効果]
 本実施の形態3に係る乾燥装置は、実施の形態1に係る乾燥装置200及び実施の形態2に係る乾燥装置と同様の効果を有する。
[Effects of the drying apparatus according to the third embodiment]
The drying apparatus according to the third embodiment has the same effects as the drying apparatus 200 according to the first embodiment and the drying apparatus according to the second embodiment.
 1 本体、2 手挿入部、2A 上開口部、2B 側面開口部、2C 側面開口部、2D 内壁、2D1 第1の内壁、2D2 第2の内壁、2a 開口部、2b 開口部、4 ノズル部、4B ノズル部、4C ノズル部、4D ノズル部、4a ノズル部、4b ノズル部、5 ノズル孔、5D ノズル孔、6 空気流発生部、7 空間、8 空間、9 吸込口、10 出口、13 曲面部、15 主流、16 先端、16B1 先端、16B2 先端、17 流入面、17B1 流入面、17B2 流入面、17D 流入面、30 手検出センサー、31 制御装置、32 風路部材、32A 上流風路部材、32B 中流風路部材、32C 下流風路部材、40 段差部、40B1 段差部、40B2 段差部、40C 段差部、40a 頂部、40b 底部、41 段差部上面、41B1 段差部上面、41B2 段差部上面、41D 段差部上面、44 突出面、44C 突出面、51 第1の剥離域、53 第2の剥離域、55 空気、56 再付着点、60a 外郭、60b 外郭、61 空間、62a 外郭、62b 外郭、63 空間、64 空間、65 空間、101 本体、102 手挿入口、103 手挿入部、104 水受け部、105 防壁構造、106 排水口、107 ドレン容器、108 空気流発生部、109 ケーシング、110 吸気通路、111 エアーフィルター、112 ノズル部、113a 第1のノズル孔、113b 第2のノズル孔、114 手検出センサー、115 ノズル孔、200 乾燥装置、203 乾燥装置、A 風路。 1 Main body, 2 Manual insertion part, 2A upper opening part, 2B side opening part, 2C side opening part, 2D inner wall, 2D1 first inner wall, 2D2, second inner wall, 2a opening part, 2b opening part, 4 nozzle part, 4B nozzle part, 4C nozzle part, 4D nozzle part, 4a nozzle part, 4b nozzle part, 5 nozzle hole, 5D nozzle hole, 6 air flow generating part, 7 space, 8 space, 9 suction port, 10 outlet, 13 curved surface part 15 mainstream, 16 tip, 16B1 tip, 16B2 tip, 17 inflow surface, 17B1 inflow surface, 17B2 inflow surface, 17D inflow surface, 30 hand detection sensor, 31 control device, 32 airway member, 32A upstream airway member, 32B Midstream airway member, 32C downstream airway member, 40 stepped portion, 40B1 stepped portion, 40B2 stepped portion, 40C stepped portion, 0a top, 40b bottom, 41 step top surface, 41B1 step top surface, 41B2 step top surface, 41D step top surface, 44 projecting surface, 44C projecting surface, 51 first stripping zone, 53 second stripping zone, 55 air 56, Reattachment point, 60a shell, 60b shell, 61 space, 62a shell, 62b shell, 63 space, 64 space, 65 space, 101 body, 102 hand insertion port, 103 hand insertion portion, 104 water receiving portion, 105 barrier Structure, 106 drain port, 107 drain container, 108 air flow generation part, 109 casing, 110 intake passage, 111 air filter, 112 nozzle part, 113a first nozzle hole, 113b second nozzle hole, 114 hand detection sensor, 115 nozzle hole, 200 drying device, 203 drying device A air passage.

Claims (10)

  1.  凹状の手挿入部が形成された本体と、
     前記本体内に設けられた空気流発生部と、
     前記空気流発生部から送り込まれる空気が吹き出されるノズル孔を有し、前記本体の前記手挿入部に形成されたノズル部と、
     を備え、
     前記ノズル部は、
     前記ノズル孔の形成方向に沿って延びる流入面と、
     前記流入面から突出するように設けられた段差部とを有し、
     前記段差部の上面は、
     前記流入面側から前記ノズル孔の出口まで延びるように形成された平坦面を有する
     ことを特徴とする乾燥装置。
    A body formed with a concave hand insertion portion;
    An air flow generator provided in the main body;
    Having a nozzle hole through which air fed from the air flow generating part is blown, and a nozzle part formed in the manual insertion part of the main body;
    With
    The nozzle part is
    An inflow surface extending along the forming direction of the nozzle hole;
    A step portion provided so as to protrude from the inflow surface,
    The upper surface of the stepped portion is
    A drying apparatus having a flat surface formed so as to extend from the inflow surface side to the outlet of the nozzle hole.
  2.  前記流入面と前記段差部の上面とは、平行に形成され、
     前記段差部は、
     一端側が前記流入面に接続され、他端側が前記段差部の上面に接続され、前記流入面に対して直交する突出面を有している
     ことを特徴とする請求項1に記載の乾燥装置。
    The inflow surface and the upper surface of the stepped portion are formed in parallel,
    The step portion is
    2. The drying apparatus according to claim 1, wherein one end side is connected to the inflow surface, the other end side is connected to an upper surface of the stepped portion, and a protruding surface orthogonal to the inflow surface is provided.
  3.  前記流入面及び前記段差部の上面は、互いに平行に形成され、
     前記段差部は、
     一端側が前記流入面に接続され、他端側が前記段差部の上面に接続され、前記流入面に対して傾斜する突出面を有している
     ことを特徴とする請求項1に記載の乾燥装置。
    The inflow surface and the upper surface of the stepped portion are formed in parallel to each other,
    The step portion is
    The drying apparatus according to claim 1, wherein one end side is connected to the inflow surface, the other end side is connected to an upper surface of the stepped portion, and a protruding surface is inclined with respect to the inflow surface.
  4.  前記ノズル部は、
     前記ノズル孔における対向する内壁面の両方に前記段差部が形成されている
     ことを特徴とする請求項1~3のいずれか一項に記載の乾燥装置。
    The nozzle part is
    The drying apparatus according to any one of claims 1 to 3, wherein the stepped portions are formed on both opposing inner wall surfaces of the nozzle hole.
  5.  対向する前記段差部は、
     頂部の位置が、前記流入面側から前記ノズル孔の出口側に向かう方向にずれるように形成されている
     ことを特徴とする請求項4に記載の乾燥装置。
    The stepped portions facing each other are
    The drying apparatus according to claim 4, wherein a position of the top portion is formed so as to be shifted in a direction from the inflow surface side toward the outlet side of the nozzle hole.
  6.  前記段差部は、
     前記頂部と前記流入面との接続部分である底部との間の長さが、対向する前記段差部の上面の対向幅の40%以下となるように形成されている
     ことを特徴とする請求項4又は5に記載の乾燥装置。
    The step portion is
    The length between the top part and the bottom part which is a connection part of the said inflow surface is formed so that it may become 40% or less of the opposing width of the upper surface of the said level | step difference part which opposes. The drying apparatus according to 4 or 5.
  7.  前記段差部は、
     前記段差部の上面のノズルの形成方向の幅が、前記段差部の上面のノズルの形成方向の幅と前記流入面のノズルの形成方向の幅とを合わせた幅の20%以下となるように形成されている
     ことを特徴とする請求項4~6のいずれか一項に記載の乾燥装置。
    The step portion is
    The width in the nozzle formation direction on the upper surface of the stepped portion is 20% or less of the total width of the nozzle formation direction on the upper surface of the stepped portion and the width in the nozzle forming direction on the inflow surface. The drying apparatus according to any one of claims 4 to 6, wherein the drying apparatus is formed.
  8.  前記ノズル孔は、
     開口の形状が波状に形成されている
     ことを特徴とする請求項1~7のいずれか一項に記載の乾燥装置。
    The nozzle hole is
    The drying apparatus according to any one of claims 1 to 7, wherein the opening is formed in a wave shape.
  9.  前記段差部の上面は、
     前記ノズル孔の波状の山に対応する部分から、前記ノズル孔の波状の谷に対向する部分に向かうにしたがって前記流入面側から前記ノズル孔の出口側に向かう方向の幅が長くなるように形成されている
     ことを特徴とする請求項8に記載の乾燥装置。
    The upper surface of the stepped portion is
    Formed such that the width in the direction from the inflow surface side toward the outlet side of the nozzle hole increases from the portion corresponding to the wavy crest of the nozzle hole toward the portion facing the wavy trough of the nozzle hole. The drying apparatus according to claim 8, wherein:
  10.  前記ノズル孔は、長尺状に形成され、
     前記段差部は、前記ノズル孔の長手方向の全幅に渡って形成されている
     ことを特徴とする請求項1~9のいずれか一項に記載の乾燥装置。
    The nozzle hole is formed in a long shape,
    The drying device according to any one of claims 1 to 9, wherein the stepped portion is formed over the entire width of the nozzle hole in the longitudinal direction.
PCT/JP2014/071452 2014-02-27 2014-08-14 Drying device WO2015129076A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201480076406.6A CN106028892B (en) 2014-02-27 2014-08-14 Drying device
JP2016504989A JP6270985B2 (en) 2014-02-27 2014-08-14 Drying equipment
TW103143786A TWI593376B (en) 2014-02-27 2014-12-16 Drying device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014036242 2014-02-27
JP2014-036242 2014-02-27

Publications (1)

Publication Number Publication Date
WO2015129076A1 true WO2015129076A1 (en) 2015-09-03

Family

ID=54008425

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/071452 WO2015129076A1 (en) 2014-02-27 2014-08-14 Drying device

Country Status (4)

Country Link
JP (1) JP6270985B2 (en)
CN (1) CN106028892B (en)
TW (1) TWI593376B (en)
WO (1) WO2015129076A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0526762A (en) * 1991-07-18 1993-02-02 Ebara Corp Low noise nozzle for wind tunnel
JPH0662977A (en) * 1992-08-25 1994-03-08 Mitsubishi Electric Corp Hand dryer
JP2003180556A (en) * 2001-12-19 2003-07-02 Mitsubishi Electric Corp Airblow nozzle and hand drier
JP2004105511A (en) * 2002-09-19 2004-04-08 Mitsubishi Electric Corp Dryer
JP2008036113A (en) * 2006-08-07 2008-02-21 Matsushita Electric Ind Co Ltd Hand-drying apparatus
WO2012017570A1 (en) * 2010-08-05 2012-02-09 三菱電機株式会社 Hand dryer device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2104514C (en) * 1992-08-25 1998-08-25 Toshio Tatsutani Hand dryer
JP5836380B2 (en) * 2011-07-21 2015-12-24 三菱電機株式会社 Hand dryer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0526762A (en) * 1991-07-18 1993-02-02 Ebara Corp Low noise nozzle for wind tunnel
JPH0662977A (en) * 1992-08-25 1994-03-08 Mitsubishi Electric Corp Hand dryer
JP2003180556A (en) * 2001-12-19 2003-07-02 Mitsubishi Electric Corp Airblow nozzle and hand drier
JP2004105511A (en) * 2002-09-19 2004-04-08 Mitsubishi Electric Corp Dryer
JP2008036113A (en) * 2006-08-07 2008-02-21 Matsushita Electric Ind Co Ltd Hand-drying apparatus
WO2012017570A1 (en) * 2010-08-05 2012-02-09 三菱電機株式会社 Hand dryer device

Also Published As

Publication number Publication date
JP6270985B2 (en) 2018-01-31
CN106028892B (en) 2018-12-04
JPWO2015129076A1 (en) 2017-03-30
TW201544061A (en) 2015-12-01
CN106028892A (en) 2016-10-12
TWI593376B (en) 2017-08-01

Similar Documents

Publication Publication Date Title
KR101597404B1 (en) Hand dryer device
JP4087894B2 (en) Hand dryer
JP4677034B2 (en) Drying equipment
JP5138089B2 (en) Hand dryer
JP5100885B2 (en) Hand dryer
JP5546607B2 (en) Fan assembly
KR20080026642A (en) Drying apparatus
JP2009502390A (en) Drying equipment
JP2013022226A (en) Hand dryer
JP6270985B2 (en) Drying equipment
CA2617083A1 (en) Drying apparatus
JP2013085563A (en) Hand dryer
KR200454204Y1 (en) Drying apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14883983

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016504989

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14883983

Country of ref document: EP

Kind code of ref document: A1