WO2015128902A1 - Method for producing solid active material, produced solid active material, and use therefor - Google Patents

Method for producing solid active material, produced solid active material, and use therefor Download PDF

Info

Publication number
WO2015128902A1
WO2015128902A1 PCT/JP2014/001098 JP2014001098W WO2015128902A1 WO 2015128902 A1 WO2015128902 A1 WO 2015128902A1 JP 2014001098 W JP2014001098 W JP 2014001098W WO 2015128902 A1 WO2015128902 A1 WO 2015128902A1
Authority
WO
WIPO (PCT)
Prior art keywords
vanadium
active material
solid active
battery
sulfuric acid
Prior art date
Application number
PCT/JP2014/001098
Other languages
French (fr)
Japanese (ja)
Inventor
完二 佐藤
平野 啓二
淳一 福島
Original Assignee
Leシステム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Leシステム株式会社 filed Critical Leシステム株式会社
Priority to PCT/JP2014/001098 priority Critical patent/WO2015128902A1/en
Priority to JP2016505081A priority patent/JP6406344B2/en
Priority to PCT/JP2015/001089 priority patent/WO2015129286A1/en
Publication of WO2015128902A1 publication Critical patent/WO2015128902A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G31/00Compounds of vanadium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/188Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to an active material used in a chemical battery.
  • JP 2004-711165 A Japanese Patent Laid-Open No. 11-11949 Japanese Patent Laid-Open No. 05-309773
  • the invention according to the present application includes a step of lowering the temperature of a sulfuric acid solution containing divalent vanadium ions to precipitate vanadium sulfate, and one drying step of drying the precipitated vanadium sulfate to obtain a solid.
  • the electrolyte solution for the flow battery is preferably one in which the active material in the solution is difficult to precipitate. Because of this premise, the precipitation phenomenon should be avoided in the field of flow batteries, and a technique for positively depositing deposits is not necessary. However, in the course of intensive research on electrolytes, there has been an opportunity for the idea to focus on precipitation. After further research, the inventors have come up with the present invention as described above.
  • a solid active material suitable as an active material for a vanadium battery can be manufactured easily and at low cost by using the precipitation that has been the object of avoidance.
  • the manufactured solid active material is superior in handleability, such as being less susceptible to quality deterioration and easier to transport than a liquid electrolyte. Therefore, for example, the solid active material of the present invention can be transported to a battery installation place in advance, and an electrolyte can be produced on the spot as needed. In this case, it is not necessary to transport an electrolytic solution that is heavier than a solid active material and is acidic and difficult to handle, and the transportation cost can be reduced. Moreover, since an electrolyte solution is manufactured on the spot as needed, a fresh electrolyte solution can always be supplied.
  • the method for producing a solid active material according to the present invention further includes a step of adjusting the sulfuric acid concentration of the sulfuric acid solution containing divalent vanadium ions.
  • the method further includes an electrolysis step of electrolyzing the vanadium-containing sulfuric acid solution to produce the sulfuric acid solution containing divalent vanadium ions.
  • the electrolysis step includes divalent vanadium ions on the negative electrode side by energization between the vanadium-containing solution on the negative electrode side of the electrolytic cell separated from the negative electrode side and the positive electrode side by the diaphragm and the sulfuric acid solution on the positive electrode side.
  • a step of producing a sulfuric acid solution containing further includes at least one of a step of impregnating the solid with an organic reducing agent or a step of covering at least a part of the solid.
  • the above-described electrolysis step is a step of generating a sulfuric acid solution containing pentavalent vanadium ions in the positive electrode chamber.
  • Still another invention according to the present application includes a step of increasing the temperature of the sulfuric acid solution containing the pentavalent vanadium ions produced here to precipitate vanadium sulfate (V), and drying the precipitated vanadium sulfate (V). And the other drying step of obtaining a solid substance, and a method for producing a solid active material. More specifically, the present invention further includes a step of adjusting the sulfuric acid concentration of the sulfuric acid solution containing pentavalent vanadium ions. In this invention, the precipitated vanadium sulfate is dried in the one drying step to obtain a solid used as a solid active material on the negative electrode side of the vanadium battery, and the precipitated vanadium sulfate (V) is obtained.
  • the present invention is a method for producing a solid active material, in which both a solid active material for a negative electrode and a solid active material for a positive electrode of a vanadium battery are produced.
  • it is a manufacturing method of a solid active material by which both the solid active material for negative electrodes of a vanadium battery and the solid active material for positive electrodes are manufactured.
  • the solid active material produced in this manner is suitable as a solid active material for a negative electrode of a vanadium battery and a solid active material for a positive electrode.
  • a negative electrode electrolyte for a redox flow battery in which a solid active material containing the solid active material manufactured by the above-described manufacturing method is dissolved to obtain an electrolyte. It is a manufacturing method.
  • the negative electrode solid active material manufactured by the manufacturing method in which both the negative electrode solid active material and the positive electrode solid active material are manufactured to obtain a negative electrode-side electrolyte solution, and the positive electrode solid active material is dissolved.
  • a negative electrode side electrolyte solution for a redox flow battery and a method for producing the positive electrode side electrolyte solution are obtained.
  • still another invention according to the present application is a vanadium battery manufactured through a battery manufacturing process including a step of supplying the negative electrode side electrolyte solution manufactured by the above-described manufacturing method to the battery negative electrode side. It is a vanadium battery that can be discharged before charging. More specifically, the present invention includes a step of supplying a pentavalent vanadium electrolyte solution to the battery positive electrode side as the battery manufacturing process.
  • dissolving the solid active material for negative electrodes manufactured by the manufacturing method with which both the solid active material for negative electrodes and the solid active material for positive electrodes are manufactured Is a vanadium battery manufactured through a battery manufacturing process including a step of supplying the negative electrode side to the battery negative electrode side and a step of supplying the positive electrode side electrolyte obtained by dissolving the positive electrode solid active material to the battery positive electrode side.
  • Still another invention according to the present application is directed to trivalent and / or tetravalent electrolysis by dissolving vanadium pentoxide and sulfuric acid in an electrolytic solution obtained by dissolving the solid active material produced by the production method described above. It is a manufacturing method of the electrolyte solution of a vanadium battery which manufactures a liquid.
  • a solid active material suitable as an active material for a vanadium battery can be manufactured easily and at low cost.
  • a vanadium battery is a battery using a vanadium compound as a positive electrode side active material and a negative electrode side active material, such as a vanadium redox flow battery (hereinafter sometimes simply referred to as a redox flow battery).
  • the active material for the vanadium battery include a solid material of vanadium sulfate (a divalent active material, vanadium sulfate (II) / nH 2 O), and vanadium sulfate (V) (a pentavalent active material, vanadium sulfate). (V) ⁇ nH 2 O).
  • Examples of the negative electrode active material of the vanadium redox flow battery include vanadium (II) sulfuric acid solution, and examples of the positive electrode active material include vanadium (V) sulfuric acid solution.
  • the sulfuric acid solution of vanadium (II) changes to a sulfuric acid solution of vanadium (III)
  • the sulfuric acid solution of vanadium (V) changes to a sulfuric acid solution of vanadium (IV).
  • a vanadium divalent sulfuric acid solution (a sulfuric acid solution containing divalent vanadium ions) is prepared.
  • vanadium sulfate is deposited in the prepared sulfuric acid solution (precipitation step).
  • the precipitated vanadium sulfate is dried (one drying step). Thereby, the solid substance, ie, the solid active material for negative electrodes, is obtained.
  • the vanadium divalent sulfuric acid solution can be prepared, for example, by electrolyzing a vanadium-containing sulfuric acid solution (electrolytic process).
  • the vanadium-containing sulfuric acid solution to be electrolyzed in this electrolysis step include a solution in which vanadium pentoxide or ammonium metavanadate is dissolved in sulfuric acid.
  • the vanadium-containing sulfuric acid solution is electrolyzed using an electrolytic cell separated into a negative electrode chamber side and a positive electrode chamber side by an ion exchange membrane (diaphragm). More specifically, the prepared vanadium-containing sulfuric acid solution is circulated to the negative electrode side, and separately prepared dilute sulfuric acid is circulated to the positive electrode side.
  • a current is passed between the solution in the negative electrode chamber and the solution in the positive electrode chamber. Electrolysis is then performed. As a result, a vanadium tetravalent sulfuric acid solution is generated on the negative electrode side. Thereafter, when electrolysis is further advanced, a vanadium trivalent sulfuric acid solution is generated, and finally a vanadium divalent sulfuric acid solution is generated on the negative electrode side.
  • a vanadium pentavalent sulfuric acid solution may be generated in the positive electrode chamber.
  • vanadium pentavalent sulfuric acid solution when a vanadium tetravalent sulfuric acid solution is produced on the negative electrode side during the electrolysis process, it is considered that a necessary amount of this solution is taken out. Then, when the sulfuric acid solution on the negative electrode side becomes a trivalent vanadium sulfuric acid solution in the subsequent electrolysis, the positive electrode side solution is replaced with the vanadium tetravalent sulfuric acid solution previously taken out for electrolysis. When this electrolysis proceeds, a vanadium divalent sulfuric acid solution is finally generated on the negative electrode side, and a sulfuric acid solution containing pentavalent vanadium ions is generated on the positive electrode side.
  • the produced vanadium divalent sulfuric acid solution and vanadium pentavalent sulfuric acid solution can be used in the production method described later for producing both vanadium sulfate and vanadium sulfate (V).
  • the step of adjusting the sulfuric acid concentration of the vanadium divalent sulfuric acid solution (concentration adjusting step) before the precipitation step (after the electrolysis step when performing the electrolysis step) ) Is preferable.
  • concentration adjusting step is a step of adjusting by increasing or decreasing the concentration of sulfuric acid.
  • the timing for performing this step is preferably before the low temperature precipitation treatment.
  • the concentration can be adjusted by, for example, adding 70% sulfuric acid, 90% sulfuric acid or pure water in small amounts.
  • the sulfuric acid concentration after concentration adjustment is preferably 1 mol / liter to 10 mol / liter.
  • the temperature of the vanadium divalent sulfuric acid solution is lowered by cooling, for example, to precipitate vanadium sulfate.
  • the temperature of the sulfuric acid solution after the temperature drop is preferably -20 ° C to 30 ° C, more preferably -20 ° C to 20 ° C, and further preferably -20 ° C to 10 ° C.
  • the precipitated vanadium sulfate is dried.
  • the dried solid active material is obtained.
  • the method of drying under reduced pressure using a vacuum dryer after filtration separation can be mentioned, for example.
  • a method of drying for example, drying under reduced pressure
  • a vanadium divalent sulfuric acid solution for example, a vanadium divalent sulfuric acid solution.
  • the vanadium sulfate obtained by this method is not necessarily optimal as a solid active material for an electrolyte solution of a vanadium battery.
  • the amount of drying energy is epoch-making.
  • a dried solid active material can be obtained.
  • the method for producing a solid material of vanadium sulfate (divalent active material) includes the following steps.
  • a filtration step of separating the precipitated vanadium sulfate For example, it is preferable to include a filtration step of separating the precipitated vanadium sulfate.
  • a filtering method for example, a method of performing centrifugation or vacuum filtration in a state in which air oxidation is suppressed by performing nitrogen sealing or the like can be used.
  • a step of impregnating the obtained solid with an organic reducing agent impregnation step
  • an organic reducing agent is contained in the solid material, an electrolytic solution that is more difficult to oxidize can be easily produced when these are dissolved to produce an electrolytic solution.
  • a solid substance is coat
  • the impregnation step is performed, for example, by immersing the divalent vanadium solid active material in saturated pure water or dilute sulfuric acid solution of an organic reducing agent and filtering.
  • the coating step is performed, for example, by an operation of spraying and mixing a divalent vanadium solid active material in a saturated pure water or dilute sulfuric acid solution of an organic reducing agent.
  • the organic reducing agent include ascorbic acid, ersorbic acid, oxalic acid, and the like.
  • the solid active material produced using the above-described steps can be used, for example, on the negative electrode side of a vanadium battery.
  • dissolved can be mentioned, for example.
  • this electrolyte solution is used, as will be described later, it is possible to manufacture a redox flow battery that can be discharged before charging after completion of the manufacture of the redox flow battery.
  • charging here is what is called preliminary
  • a vanadium pentavalent sulfuric acid solution is generated in the positive electrode chamber by the electrolysis process, and this is prepared.
  • vanadium sulfate (V) is precipitated from the vanadium pentavalent sulfuric acid solution (precipitation step).
  • vanadium sulfate (V) is vanadium sulfate (V) ⁇ nH 2 O.
  • the deposited vanadium sulfate (V) is dried (the other drying step). Thereby, the solid substance, ie, the solid active material for positive electrodes, is obtained.
  • concentration adjusting step is a step of reducing the sulfuric acid concentration.
  • the temperature of the vanadium pentavalent sulfuric acid solution is increased by heating or the like to precipitate vanadium sulfate (V).
  • the temperature of the sulfuric acid solution after the temperature rise is preferably 40 ° C to 100 ° C, more preferably 50 ° C to 80 ° C, and further preferably 50 ° C to 70 ° C.
  • the precipitated vanadium sulfate (V) is dried.
  • a drying method a method similar to the drying of vanadium sulfate can be used, but in addition, for example, ventilation drying at room temperature may be used.
  • the method for producing the precipitated vanadium sulfate (V) solid preferably includes a filtration step of extracting the deposited vanadium sulfate (V).
  • a filtration method the same method as the drying of vanadium sulfate can be used.
  • a solid active material for a positive electrode of a vanadium battery can be manufactured.
  • both the solid active material for a negative electrode and the solid active material for a positive electrode of a vanadium battery can be manufactured at the same time by using the manufacturing method described here. it can.
  • stable negative electrode side electrolyte solution and positive electrode side electrolyte solution for redox flow battery can be easily manufactured based on the manufactured solid active material for negative electrode and positive electrode. .
  • a solid active material can be conveyed to the installation place of a redox raw battery, and electrolyte solution can be manufactured after that.
  • electrolyte solution can be manufactured after that.
  • the solid active material of the present embodiment is solid and easy to transport.
  • an electrolyte solution can be produced by dissolving the solid active material transported to the installation location of the redox flow battery in pure water prepared on the spot, so that the transport of vanadium which is the main component of the electrolyte solution Efficiency is greatly improved. That is, not only is it easy to carry, it is also extremely excellent in terms of carrying efficiency. Furthermore, a fresh electrolyte immediately after preparation can always be supplied. And if a redox flow battery is manufactured using these electrolyte solutions, the redox flow battery which can be discharged after completion of manufacture and before charging can be manufactured.
  • a sulfuric acid solution in which vanadium pentoxide was dissolved, and an electrolytic cell separated into a negative electrode chamber and a positive electrode chamber by a diaphragm were prepared.
  • the amount of solution was 100 liters.
  • the sulfuric acid concentration was 4.55 mol / liter, and the solution temperature was 25 ° C.
  • a sulfuric acid solution in which vanadium pentoxide is dissolved (vanadium pentavalent sulfuric acid solution) is flowed to the negative electrode chamber side of the electrolytic cell, and a 4.5 mol / liter sulfuric acid solution is flowed to the positive electrode chamber side to perform electrolysis (electrolysis).
  • a vanadium tetravalent sulfuric acid solution was produced on the negative electrode side, and this sulfuric acid solution was further reduced to produce a vanadium trivalent sulfuric acid solution. And further reduction operation was performed to produce a divalent vanadium-containing sulfuric acid solution.
  • vanadium pentoxide was dissolved to 2.5 mol / liter, and further reduction was performed, and electrolysis was performed until the entire negative electrode side became a vanadium divalent sulfuric acid solution.
  • the electrolytic voltage was 5.0 volts and the current density was 4000 A / m 2 .
  • the electrolysis efficiency determined from the amount of oxygen and hydrogen gas generated at this time was 80%.
  • the divalent vanadium solution produced on the negative electrode chamber side was taken out, and 70% sulfuric acid was added to adjust the concentration.
  • the sulfuric acid concentration after adjustment was 4.5 mol / liter.
  • the obtained product was separated, and the separated product was coated with an organic reducing agent.
  • an organic reducing agent 30 grams of ascorbic acid dissolved in 100 milliliters of 4.5 molar dilute sulfuric acid was used. And this solution was sprayed and coat
  • vanadium pentoxide is dissolved in a vanadium divalent sulfuric acid solution (a divalent vanadium-containing sulfuric acid solution) to produce a vanadium tetravalent sulfuric acid solution.
  • a vanadium divalent sulfuric acid solution a divalent vanadium-containing sulfuric acid solution
  • vanadium tetravalent sulfuric acid solution is flowed to the positive electrode side of the electrolytic cell to perform electrolysis, and the vanadium pentavalent sulfuric acid solution generated on the positive electrode side is generated, This was taken out and the density was adjusted.
  • the sulfuric acid concentration after adjustment was 4.5 mol / liter, and the vanadium concentration was 2.5 mol / liter.
  • precipitation was performed by raising the solution temperature.
  • the solution temperature at the time of precipitation was 60 ° C.
  • filtration was performed using 5C filter paper.
  • the filtration method was suction filtration. And it dried and obtained the solid active material for positive electrodes. It was vacuum drying at room temperature. Furthermore, a part of the solid obtained by drying was separated, and the separated solid was pulverized. Here, the obtained solid was put into a mortar and carefully ground without giving any irritation.
  • the solid active material of this embodiment As a result, in all cases, all the active materials were dissolved and the water solubility was good. Thus, according to the manufacturing method of the solid active material of this embodiment, the solid active material excellent in water solubility can be manufactured. And if these active materials are used, the electrolyte solution for favorable vanadium redox flow batteries can be manufactured.
  • a vanadium redox flow battery can be manufactured using the negative electrode side electrolyte solution and positive electrode side electrolyte solution manufactured in Example 1.
  • the vanadium redox flow battery here refers to a positive electrode liquid tank in which a positive electrode electrolyte solution is stored, a negative electrode liquid tank in which a negative electrode electrolyte solution is stored, a cell stack, and a positive electrode solution sent from the positive electrode liquid tank to the cell stack.
  • a redox flow battery can be manufactured by supplying the negative electrode side electrolyte solution to the negative electrode chamber side of the vanadium redox flow battery having such a configuration and supplying the positive electrode side electrolyte solution to the positive electrode chamber side.
  • the manufactured redox flow battery can start discharging immediately without being charged after the battery is completed. That is, not only preliminary charging but also discharge can be started without receiving a supply operation of power generated by power generation means such as a solar battery panel or a wind power generator.
  • power generation means such as a solar battery panel or a wind power generator.
  • trivalent vanadium electrolyte 364 grams of the negative electrode solid active material obtained in Example 1, 60.7 grams of vanadium pentoxide, and 3.83 moles of sulfuric acid were prepared. The mixture was gradually poured into water and stirred to finally prepare 1 liter of electrolyte. Since the preparation method is the same as the procedure for preparing the electrolyte prepared to confirm the quality of water solubility, the description is omitted here.
  • tetravalent vanadium electrolyte 182 grams of the negative electrode solid active material obtained in Example 1, 121 grams of vanadium pentoxide, and 4.33 moles of sulfuric acid were prepared. The mixture was gradually poured into water and stirred to finally prepare 1 liter of electrolyte. As a result, a good trivalent vanadium electrolyte and a tetravalent vanadium electrolyte were produced.
  • a trivalent electrolyte solution and a tetravalent electrolyte solution can be produced by preparing vanadium pentoxide. it can.
  • a redox flow battery can be manufactured by supplying the manufactured trivalent electrolyte solution to the negative electrode chamber side of the Redox flow battery and supplying the tetravalent electrolyte solution to the positive electrode chamber side.
  • the manufactured redox flow battery can be supplied with electric power from a power generation means such as a solar battery panel or a wind power generator immediately after manufacturing, and can start a charging operation. That is, since there is no need for a preliminary charging operation, full-scale operation can be started immediately after the manufacture of the Redox flow battery.
  • the 3.5-valent vanadium electrolyte 273 grams of the negative electrode solid active material obtained in Example 1, 91 grams of vanadium pentoxide, and 2.5 moles of sulfuric acid were prepared. The pure water was gradually added and stirred to finally prepare 1 liter of electrolytic solution. As a result, a good 3.5 vanadium electrolyte and a tetravalent vanadium electrolyte were produced.
  • This electrolytic solution can be used as a general electrolytic solution that is initially supplied when manufacturing a vanadium redox flow battery.
  • the conventional electrolyte solution can also be manufactured by preparing vanadium pentoxide.

Abstract

[Problem] To provide a method for producing an active material which is favorable as a battery material. [Solution] A method for producing a solid active material for vanadium battery use, and having: a step for precipitating a vanadium sulfate by decreasing the temperature of a sulphuric acid solution containing a divalent vanadium ion; and a drying step for obtaining a solid by drying the precipitated vanadium sulfate. The present invention makes it possible to easily produce a solid active material suitable as an active material for a vanadium battery in a low-cost manner. The produced solid active material exhibits excellent handling properties such as better transportability than liquids, and makes it possible to reduce transportation costs.

Description

固体活物質の製造方法、製造された固体活物質およびその利用法Method for producing solid active material, produced solid active material and use thereof
 本発明は、化学電池で用いられる活物質に関する。 The present invention relates to an active material used in a chemical battery.
 近年、化学電池(特に二次電池)の需要が増大しており、化学電池で用いられる活物質の需要も増大している。このようなことから、より低コストの活物質製造技術の開発が望まれている。
 この点は、化学電池の一種であるレドックスフロー電池などのバナジウム電池においても同様である。そして、レドックスフロー電池用の電解液については、種々の製造方法が開示されている(例えば、特許文献参照)。
In recent years, the demand for chemical batteries (particularly secondary batteries) has increased, and the demand for active materials used in chemical batteries has also increased. For this reason, development of a lower cost active material manufacturing technique is desired.
This also applies to a vanadium battery such as a redox flow battery, which is a type of chemical battery. And about the electrolyte solution for redox flow batteries, the various manufacturing method is disclosed (for example, refer patent document).
特開2004-71165号公報JP 2004-711165 A 特開平11-11949号公報Japanese Patent Laid-Open No. 11-11949 特開平05-303973号公報Japanese Patent Laid-Open No. 05-309773
 ところが、所望の電池を開発するためには電解液について新たな技術が必要になり、開発を進めたところ、これまで開発が進んでいなかった電解液活物質の製造に関して技術開発が必要であることを見出し、本発明をするに至った。
 本発明はこのような問題点に鑑みてなされたものであり、電池の材料として好適な活物質の製造方法を提供することを課題とする。
However, in order to develop a desired battery, a new technology is required for the electrolytic solution. When the development is advanced, technical development is necessary for the production of an electrolytic solution active material that has not been developed so far. As a result, the present invention has been completed.
This invention is made | formed in view of such a problem, and makes it a subject to provide the manufacturing method of an active material suitable as a battery material.
 本出願に係る発明は、2価のバナジウムイオンを含む硫酸溶液を温度低下させてバナジウム硫酸塩を析出させる工程と、析出したバナジウム硫酸塩を乾燥して固形物を得る一方の乾燥工程とを有する、バナジウム電池用の固体活物質の製造方法である。 The invention according to the present application includes a step of lowering the temperature of a sulfuric acid solution containing divalent vanadium ions to precipitate vanadium sulfate, and one drying step of drying the precipitated vanadium sulfate to obtain a solid. The manufacturing method of the solid active material for vanadium batteries.
 バナジウムレドックスフロー電池など、電解液を流すフロー電池では、電解液中に析出物を生じさせることなく運転することが重要である。従って、フロー電池の電解液としては、液中の活物質が析出しにくいものが好ましい。このような前提があるため、フロー電池の分野において、析出現象は回避すべき対象であり、積極的に析出物を析出させる技術は不要であった。
 ところが、電解液について鋭意研究を重ねていく中で、析出に着目する発想が生じる機会があり、さらに研究を重ねた末、上記のような本発明に想到するに至った。
 本発明によれば、これまで回避の対象であった析出を利用することで、バナジウム電池用の活物質として適した固体活物質を容易且つ低コストで製造することができる。また、製造された固体活物質は、液体の電解液と比べて、品質劣化し難くしかも搬送しやすいなど、取扱い性に優れる。従って、例えば、本発明の固体活物質をあらかじめ電池設置場所に搬送しておき、必要に応じてその場で電解液を製造することができる。この場合、固体活物質よりも重量がかさみ、しかも酸性で取り扱いにくい電解液を搬送する必要がなく、搬送コストを低減できる。また、必要に応じてその場で電解液を製造するので、フレッシュな電解液を常に供給することができる。
In a flow battery in which an electrolytic solution flows such as a vanadium redox flow battery, it is important to operate without causing precipitates in the electrolytic solution. Therefore, the electrolyte solution for the flow battery is preferably one in which the active material in the solution is difficult to precipitate. Because of this premise, the precipitation phenomenon should be avoided in the field of flow batteries, and a technique for positively depositing deposits is not necessary.
However, in the course of intensive research on electrolytes, there has been an opportunity for the idea to focus on precipitation. After further research, the inventors have come up with the present invention as described above.
According to the present invention, a solid active material suitable as an active material for a vanadium battery can be manufactured easily and at low cost by using the precipitation that has been the object of avoidance. In addition, the manufactured solid active material is superior in handleability, such as being less susceptible to quality deterioration and easier to transport than a liquid electrolyte. Therefore, for example, the solid active material of the present invention can be transported to a battery installation place in advance, and an electrolyte can be produced on the spot as needed. In this case, it is not necessary to transport an electrolytic solution that is heavier than a solid active material and is acidic and difficult to handle, and the transportation cost can be reduced. Moreover, since an electrolyte solution is manufactured on the spot as needed, a fresh electrolyte solution can always be supplied.
 そして、本発明に係る固体活物質の製造方法は、より具体的には、2価のバナジウムイオンを含む前記硫酸溶液の硫酸濃度を調整する工程をさらに含む。
 また、バナジウム含有硫酸溶液を電解して2価のバナジウムイオンを含む前記硫酸溶液を生成する電解工程をさらに含む。
 また、前記電解工程は、隔膜によって負極側と正極側とに分離された電解槽の負極側のバナジウム含有溶液と正極側の硫酸溶液との間の通電によって、前記負極側に2価のバナジウムイオンを含む硫酸溶液を生成する工程である。
 また、前記固形物に有機還元剤を含浸させる工程、又は前記固形物の少なくとも一部を被覆する工程のうち、少なくともいずれか一方の工程をさらに含む。
The method for producing a solid active material according to the present invention further includes a step of adjusting the sulfuric acid concentration of the sulfuric acid solution containing divalent vanadium ions.
The method further includes an electrolysis step of electrolyzing the vanadium-containing sulfuric acid solution to produce the sulfuric acid solution containing divalent vanadium ions.
In addition, the electrolysis step includes divalent vanadium ions on the negative electrode side by energization between the vanadium-containing solution on the negative electrode side of the electrolytic cell separated from the negative electrode side and the positive electrode side by the diaphragm and the sulfuric acid solution on the positive electrode side. Is a step of producing a sulfuric acid solution containing
The method further includes at least one of a step of impregnating the solid with an organic reducing agent or a step of covering at least a part of the solid.
 そして、本出願に係る別の発明は、上述した製造方法によって製造される固体活物質であり、バナジウム電池の負極側で用いられるものである。 And another invention concerning this application is a solid active material manufactured by the manufacturing method mentioned above, and is used by the negative electrode side of a vanadium battery.
 また、上述した前記電解工程は、正極室内に5価のバナジウムイオンを含む硫酸溶液を生成する工程である。 Further, the above-described electrolysis step is a step of generating a sulfuric acid solution containing pentavalent vanadium ions in the positive electrode chamber.
 本出願に係るさらに別の発明は、ここで生成された5価のバナジウムイオンを含む硫酸溶液の温度を上昇させて硫酸バナジウム(V)を析出させる工程と、析出した硫酸バナジウム(V)を乾燥して固形物を得る他方の乾燥工程とを、さらに有する固体活物質の製造方法である。
 この発明は、より具体的には、5価のバナジウムイオンを含む前記硫酸溶液の硫酸濃度を調整する工程を、さらに含む。
 そして、この発明では、析出したバナジウム硫酸塩を前記一方の乾燥工程で乾燥して、バナジウム電池の負極側の固体活物質として用いられる固形物を得ていると共に、析出した硫酸バナジウム(V)を前記他方の乾燥工程で乾燥して、バナジウム電池の正極側の固体活物質として用いられる固形物が得られる。
 つまり、本発明は、バナジウム電池の負極用固体活物質及び正極用固体活物質の両方が製造される、固体活物質の製造方法である。
 このように、バナジウム電池の負極用固体活物質及び正極用固体活物質の両方が製造される、固体活物質の製造方法である。
 このようにして製造された固体活物質は、バナジウム電池の負極用の固体活物質及び正極用の固体活物質として好適である。
Still another invention according to the present application includes a step of increasing the temperature of the sulfuric acid solution containing the pentavalent vanadium ions produced here to precipitate vanadium sulfate (V), and drying the precipitated vanadium sulfate (V). And the other drying step of obtaining a solid substance, and a method for producing a solid active material.
More specifically, the present invention further includes a step of adjusting the sulfuric acid concentration of the sulfuric acid solution containing pentavalent vanadium ions.
In this invention, the precipitated vanadium sulfate is dried in the one drying step to obtain a solid used as a solid active material on the negative electrode side of the vanadium battery, and the precipitated vanadium sulfate (V) is obtained. By drying in the other drying step, a solid material used as a solid active material on the positive electrode side of the vanadium battery is obtained.
That is, the present invention is a method for producing a solid active material, in which both a solid active material for a negative electrode and a solid active material for a positive electrode of a vanadium battery are produced.
Thus, it is a manufacturing method of a solid active material by which both the solid active material for negative electrodes of a vanadium battery and the solid active material for positive electrodes are manufactured.
The solid active material produced in this manner is suitable as a solid active material for a negative electrode of a vanadium battery and a solid active material for a positive electrode.
 そして、本出願に係るさらに別の発明は、上述した製造方法で製造された固体活物質が含まれている固体活物質を溶解して電解液を得る、レドックスフロー電池用の負極側電解液の製造方法である。
 また、負極用固体活物質及び正極用固体活物質の両方が製造される製造方法で製造された負極用固体活物質を溶解して負極側電解液を得ると共に、正極用固体活物質を溶解して正極側電解液を得る、レドックスフロー電池用の負極側電解液及び正極側電解液の製造方法である。
According to still another aspect of the present application, there is provided a negative electrode electrolyte for a redox flow battery, in which a solid active material containing the solid active material manufactured by the above-described manufacturing method is dissolved to obtain an electrolyte. It is a manufacturing method.
In addition, the negative electrode solid active material manufactured by the manufacturing method in which both the negative electrode solid active material and the positive electrode solid active material are manufactured to obtain a negative electrode-side electrolyte solution, and the positive electrode solid active material is dissolved. Thus, a negative electrode side electrolyte solution for a redox flow battery and a method for producing the positive electrode side electrolyte solution are obtained.
 さらに、本出願に係るさらに別の発明は、上述した製造方法で製造された負極側電解液を電池負極側に供給する工程を含む電池製造過程を経て製造されるバナジウム電池であり、製造後、充電をする前に放電可能なバナジウム電池である。
 この発明は、より具体的には、前記電池製造過程として、電池正極側に5価のバナジウム電解液を供給する工程を含む。
Furthermore, still another invention according to the present application is a vanadium battery manufactured through a battery manufacturing process including a step of supplying the negative electrode side electrolyte solution manufactured by the above-described manufacturing method to the battery negative electrode side. It is a vanadium battery that can be discharged before charging.
More specifically, the present invention includes a step of supplying a pentavalent vanadium electrolyte solution to the battery positive electrode side as the battery manufacturing process.
 そして、本出願に係るさらに別の発明は、負極用固体活物質及び正極用固体活物質の両方が製造される製造方法で製造された負極用固体活物質を溶解して得た負極側電解液を電池負極側に供給する工程と、正極用固体活物質を溶解して得た正極側電解液を電池正極側に供給する工程と、を含む電池製造過程を経て製造されるバナジウム電池である。 And another invention concerning this application is the negative electrode side electrolyte solution obtained by melt | dissolving the solid active material for negative electrodes manufactured by the manufacturing method with which both the solid active material for negative electrodes and the solid active material for positive electrodes are manufactured Is a vanadium battery manufactured through a battery manufacturing process including a step of supplying the negative electrode side to the battery negative electrode side and a step of supplying the positive electrode side electrolyte obtained by dissolving the positive electrode solid active material to the battery positive electrode side.
 また、本出願に係るさらに別の発明は、上述した製造方法で製造された固体活物質を溶解して得た電解液に五酸化バナジウム及び硫酸を溶解させて3価及び/又は4価の電解液を製造する、バナジウム電池の電解液の製造方法である。 Still another invention according to the present application is directed to trivalent and / or tetravalent electrolysis by dissolving vanadium pentoxide and sulfuric acid in an electrolytic solution obtained by dissolving the solid active material produced by the production method described above. It is a manufacturing method of the electrolyte solution of a vanadium battery which manufactures a liquid.
 本出願に係る発明である活物質の製造方法によれば、バナジウム電池用の活物質として適した固体活物質を容易且つ低コストで製造することができる。 According to the active material manufacturing method of the present invention, a solid active material suitable as an active material for a vanadium battery can be manufactured easily and at low cost.
 次に、本発明に係るバナジウム電池用の固体活物質の製造方法について説明する。 Next, a method for producing a solid active material for a vanadium battery according to the present invention will be described.
 バナジウム電池とは、例えばバナジウムレドックスフロー電池(以下、単にレドックスフロー電池と称することがある)など、正極側活物質及び負極側活物質としてバナジウム化合物を用いた電池のことである。
 バナジウム電池用の活物質としては、バナジウム硫酸塩(2価の活物質である硫酸バナジウム(II)・nH2O)の固形物や、硫酸バナジウム(V)(5価の活物質である硫酸バナジウム(V)・nH2O)の固形物を挙げることができる。
 また、バナジウムレドックスフロー電池の負極活物質としては、例えばバナジウム(II)の硫酸溶液を挙げることができ、正極活物質としては、例えばバナジウム(V)の硫酸溶液を挙げることができる。なお、電池が充電状態から放電状態になると、バナジウム(II)の硫酸溶液はバナジウム(III)の硫酸溶液に変化し、バナジウム(V)の硫酸溶液はバナジウム(IV)の硫酸溶液に変化する。
A vanadium battery is a battery using a vanadium compound as a positive electrode side active material and a negative electrode side active material, such as a vanadium redox flow battery (hereinafter sometimes simply referred to as a redox flow battery).
Examples of the active material for the vanadium battery include a solid material of vanadium sulfate (a divalent active material, vanadium sulfate (II) / nH 2 O), and vanadium sulfate (V) (a pentavalent active material, vanadium sulfate). (V) · nH 2 O).
Examples of the negative electrode active material of the vanadium redox flow battery include vanadium (II) sulfuric acid solution, and examples of the positive electrode active material include vanadium (V) sulfuric acid solution. When the battery is changed from the charged state to the discharged state, the sulfuric acid solution of vanadium (II) changes to a sulfuric acid solution of vanadium (III), and the sulfuric acid solution of vanadium (V) changes to a sulfuric acid solution of vanadium (IV).
 ここでは、まず、バナジウム電池の負極用の固体活物質の製造方法として、バナジウム硫酸塩(2価の活物質である硫酸バナジウム(II)・nH2O)の固形物の製造方法を説明する。 Here, first, as a method for producing a solid active material for a negative electrode of a vanadium battery, a method for producing a solid material of vanadium sulfate (a divalent active material, vanadium sulfate (II) · nH 2 O) will be described.
 まず、バナジウム2価の硫酸溶液(2価のバナジウムイオンを含む硫酸溶液)を用意する。
 次に、用意した硫酸溶液中にバナジウム硫酸塩を析出させる(析出工程)。
 次に、析出したバナジウム硫酸塩を乾燥する(一方の乾燥工程)。これにより、固形物すなわち負極用の固体活物質が得られる。
First, a vanadium divalent sulfuric acid solution (a sulfuric acid solution containing divalent vanadium ions) is prepared.
Next, vanadium sulfate is deposited in the prepared sulfuric acid solution (precipitation step).
Next, the precipitated vanadium sulfate is dried (one drying step). Thereby, the solid substance, ie, the solid active material for negative electrodes, is obtained.
 なお、バナジウム2価の硫酸溶液は、例えば、バナジウム含有硫酸溶液を電解することによって用意できる(電解工程)。また、この電解工程で電解するバナジウム含有硫酸溶液としては、例えば五酸化バナジウムやメタバナジン酸アンモニウムを硫酸に溶解させた溶液を挙げることができる。
 電解工程では、例えば、イオン交換膜(隔膜)によって負極室側と正極室側とに分離された電解槽を用いてバナジウム含有硫酸溶液を電解する。より具体的に説明すると、用意したバナジウム含有硫酸溶液を負極側に流通させると共に、別途用意した希硫酸を正極側に流通させ、この状態で負極室内の溶液と正極室内の溶液との間に通電して電解を行う。これにより、負極側にはバナジウム4価の硫酸溶液が生成される。その後、さらに電解を進めると、バナジウム3価の硫酸溶液が生成され、最終的には負極側にバナジウム2価の硫酸溶液が生成される。なお、正極側の溶液については、電解工程の途中で必要に応じて、新たな希硫酸を供給して流通させるようにしてもよい。
 そして、この電解工程において、正極室内に、バナジウム5価の硫酸溶液を生成してもよい。バナジウム5価の硫酸溶液を生成する場合は、電解工程の途中で負極側にバナジウム4価の硫酸溶液が生成されたとき、この溶液を必要量取り出しておくことが考えられる。そして、その後の電解で負極側の硫酸溶液がバナジウム3価の硫酸溶液になったときに、正極側の溶液を、先ほど取り出しておいたバナジウム4価の硫酸溶液に入れ替えて、電解を行う。この電解を進めると、最終的に、負極側にバナジウム2価の硫酸溶液が生成されると共に、正極側に5価のバナジウムイオンを含む硫酸溶液が生成される。生成したバナジウム2価の硫酸溶液及びバナジウム5価の硫酸溶液は、バナジウム硫酸塩及び硫酸バナジウム(V)の両方を製造する後述の製造方法で用いることができる。
The vanadium divalent sulfuric acid solution can be prepared, for example, by electrolyzing a vanadium-containing sulfuric acid solution (electrolytic process). Examples of the vanadium-containing sulfuric acid solution to be electrolyzed in this electrolysis step include a solution in which vanadium pentoxide or ammonium metavanadate is dissolved in sulfuric acid.
In the electrolysis step, for example, the vanadium-containing sulfuric acid solution is electrolyzed using an electrolytic cell separated into a negative electrode chamber side and a positive electrode chamber side by an ion exchange membrane (diaphragm). More specifically, the prepared vanadium-containing sulfuric acid solution is circulated to the negative electrode side, and separately prepared dilute sulfuric acid is circulated to the positive electrode side. In this state, a current is passed between the solution in the negative electrode chamber and the solution in the positive electrode chamber. Electrolysis is then performed. As a result, a vanadium tetravalent sulfuric acid solution is generated on the negative electrode side. Thereafter, when electrolysis is further advanced, a vanadium trivalent sulfuric acid solution is generated, and finally a vanadium divalent sulfuric acid solution is generated on the negative electrode side. In addition, about the solution by the side of a positive electrode, you may make it distribute | circulate by supplying new dilute sulfuric acid as needed in the middle of an electrolysis process.
In this electrolysis step, a vanadium pentavalent sulfuric acid solution may be generated in the positive electrode chamber. In the case of producing a vanadium pentavalent sulfuric acid solution, when a vanadium tetravalent sulfuric acid solution is produced on the negative electrode side during the electrolysis process, it is considered that a necessary amount of this solution is taken out. Then, when the sulfuric acid solution on the negative electrode side becomes a trivalent vanadium sulfuric acid solution in the subsequent electrolysis, the positive electrode side solution is replaced with the vanadium tetravalent sulfuric acid solution previously taken out for electrolysis. When this electrolysis proceeds, a vanadium divalent sulfuric acid solution is finally generated on the negative electrode side, and a sulfuric acid solution containing pentavalent vanadium ions is generated on the positive electrode side. The produced vanadium divalent sulfuric acid solution and vanadium pentavalent sulfuric acid solution can be used in the production method described later for producing both vanadium sulfate and vanadium sulfate (V).
 また、バナジウム電池の負極用の固体活物質の製造では、析出工程の前(電解工程を行う場合は電解工程の後)に、バナジウム2価の硫酸溶液の硫酸濃度を調整する工程(濃度調整工程)を行うことが好ましい。
 濃度調整工程とは、硫酸の濃度を高めたり、低めたりして調整する工程である。この工程を行う時期としては、低温化析出処理前が好ましい。濃度調整は、例えば70%硫酸、90%硫酸又は純水を微量ずつ添加する操作によって行うことができる。濃度調整後の硫酸濃度としては、1モル/リットルから10モル/リットルが好ましい。
In the production of the solid active material for the negative electrode of the vanadium battery, the step of adjusting the sulfuric acid concentration of the vanadium divalent sulfuric acid solution (concentration adjusting step) before the precipitation step (after the electrolysis step when performing the electrolysis step) ) Is preferable.
The concentration adjusting step is a step of adjusting by increasing or decreasing the concentration of sulfuric acid. The timing for performing this step is preferably before the low temperature precipitation treatment. The concentration can be adjusted by, for example, adding 70% sulfuric acid, 90% sulfuric acid or pure water in small amounts. The sulfuric acid concentration after concentration adjustment is preferably 1 mol / liter to 10 mol / liter.
 析出工程では、バナジウム2価の硫酸溶液の温度を、例えば冷却によって低下させてバナジウム硫酸塩を析出させる。
 温度低下後の硫酸溶液の温度としては、-20℃から30℃が好ましく、-20℃ ~20℃がより好ましく、-20℃から10℃がさらに好ましい。
In the precipitation step, the temperature of the vanadium divalent sulfuric acid solution is lowered by cooling, for example, to precipitate vanadium sulfate.
The temperature of the sulfuric acid solution after the temperature drop is preferably -20 ° C to 30 ° C, more preferably -20 ° C to 20 ° C, and further preferably -20 ° C to 10 ° C.
 乾燥工程では、析出したバナジウム硫酸塩を乾燥させる。これにより、乾燥された固体活物質が得られる。なお、乾燥する方法としては、例えば、ろ過分離後に減圧乾燥器を用いて減圧乾燥を行う方法を挙げることができる。
 ところで、バナジウム硫酸塩を得る従来の方法としては、バナジウム2価の硫酸溶液を乾燥(例えば減圧乾燥)させる方法がある。ところが、この方法で得られたバナジウム硫酸塩は、バナジウム電池の電解液用の固体活物質としては必ずしも最適ではない。また、この方法によると、乾燥エネルギーとして比較的大量のエネルギーが必要であり、製造コストが問題になる場合があることがわかった。この点、本実施形態の製造方法のように、析出工程(及び必要に応じて用いられた後述のろ過工程)を経て得られた析出物を減圧乾燥すれば、画期的に少ない乾燥エネルギーで、乾燥された固体活物質を得ることができる。
In the drying step, the precipitated vanadium sulfate is dried. Thereby, the dried solid active material is obtained. In addition, as a method of drying, the method of drying under reduced pressure using a vacuum dryer after filtration separation can be mentioned, for example.
By the way, as a conventional method for obtaining vanadium sulfate, there is a method of drying (for example, drying under reduced pressure) a vanadium divalent sulfuric acid solution. However, the vanadium sulfate obtained by this method is not necessarily optimal as a solid active material for an electrolyte solution of a vanadium battery. Further, according to this method, it has been found that a relatively large amount of energy is required as the drying energy, and the production cost may be a problem. In this regard, like the manufacturing method of the present embodiment, if the precipitate obtained through the precipitation step (and the filtration step described later used as necessary) is dried under reduced pressure, the amount of drying energy is epoch-making. A dried solid active material can be obtained.
 また、バナジウム硫酸塩(2価の活物質)の固形物の製造方法としては、次に挙げる工程を含むことがより好ましい。 In addition, it is more preferable that the method for producing a solid material of vanadium sulfate (divalent active material) includes the following steps.
 例えば、析出したバナジウム硫酸塩を分離する、ろ過工程を含むことが好ましい。ろ過する方法としては、例えば、窒素封入を行うなどして空気酸化を抑えた状態で、遠心分離あるいは減圧濾過する方法を用いることができる。 For example, it is preferable to include a filtration step of separating the precipitated vanadium sulfate. As a filtering method, for example, a method of performing centrifugation or vacuum filtration in a state in which air oxidation is suppressed by performing nitrogen sealing or the like can be used.
 さらに、得られた固形物に有機還元剤を含浸させる工程(含浸工程)や、固形物の少なくとも一部を被覆する工程(被覆工程)のうち、少なくともいずれか一方の工程をさらに含むことが好ましい。
 固形物に有機還元剤を含有させると、これらを溶解して電解液を製造したときに、より酸化しにくい電解液を容易に製造することができる。また、固形物を有機還元剤で被覆すると、これらの物質の酸化を防止することができる。酸化が防止されたものは、長期保存に好適である。
 含浸工程は、例えば、有機還元剤の飽和純水あるいは希硫酸溶液に2価のバナジウム固体活物質を浸漬し、濾過する操作によって行われる。また、被覆工程は、例えば、有機還元剤の飽和純水あるいは希硫酸溶液に2価のバナジウム固体活物質を噴霧し混合する操作によって行われる。
 有機還元剤としては、例えば、アスコルビン酸、エルソルビン酸、シュウ酸などを挙げることができる。
Furthermore, it is preferable to further include at least one of a step of impregnating the obtained solid with an organic reducing agent (impregnation step) and a step of covering at least a part of the solid (coating step). .
When an organic reducing agent is contained in the solid material, an electrolytic solution that is more difficult to oxidize can be easily produced when these are dissolved to produce an electrolytic solution. Moreover, when a solid substance is coat | covered with an organic reducing agent, the oxidation of these substances can be prevented. Those in which oxidation is prevented are suitable for long-term storage.
The impregnation step is performed, for example, by immersing the divalent vanadium solid active material in saturated pure water or dilute sulfuric acid solution of an organic reducing agent and filtering. The coating step is performed, for example, by an operation of spraying and mixing a divalent vanadium solid active material in a saturated pure water or dilute sulfuric acid solution of an organic reducing agent.
Examples of the organic reducing agent include ascorbic acid, ersorbic acid, oxalic acid, and the like.
 上述のような工程を用いて製造された固体活物質は、例えば、バナジウム電池の負極側で用いることができる。具体例としては、例えば、この固体活物質が溶解されたレドックスフロー電池の負極側電解液を挙げることができる。また、この電解液を用いれば、後述するように、レドックスフロー電池の製造完了後、充電をする前に放電可能なレドックスフロー電池を製造することができる。なお、ここでいう充電とは、いわゆる予備充電及びレドックスフロー電池運転時の充電のことである。 The solid active material produced using the above-described steps can be used, for example, on the negative electrode side of a vanadium battery. As a specific example, the negative electrode side electrolyte solution of the redox flow battery by which this solid active material was melt | dissolved can be mentioned, for example. Moreover, if this electrolyte solution is used, as will be described later, it is possible to manufacture a redox flow battery that can be discharged before charging after completion of the manufacture of the redox flow battery. In addition, charging here is what is called preliminary | backup charge and the charge at the time of a redox flow battery driving | operation.
 次に、バナジウム電池の負極用の固体活物質の製造方法として、バナジウム硫酸塩(2価の活物質)の固形物と、硫酸バナジウム(V)(5価の活物質である硫酸バナジウム(V)・nH2O)の固形物を、両方とも製造する方法を説明する。 Next, as a method for producing a solid active material for a negative electrode of a vanadium battery, a solid of vanadium sulfate (a divalent active material) and vanadium sulfate (V) (a pentavalent active material, vanadium sulfate (V)). A method for producing both solids of nH 2 O) will be described.
 両方を製造する場合は、上述した電解工程において同時に生成されたバナジウム2価の硫酸溶液と、バナジウム5価の硫酸溶液を用いる。
 なお、これらの硫酸溶液を製造する工程については既に説明しているので、ここではその説明を省略する。また、バナジウム2価の硫酸溶液から負極用の固体活物質を製造する方法についても既に説明しているので、ここではその説明を省略する。
When both are produced, a vanadium divalent sulfuric acid solution and a vanadium pentavalent sulfuric acid solution generated simultaneously in the above-described electrolysis step are used.
In addition, since the process which manufactures these sulfuric acid solutions has already been demonstrated, the description is abbreviate | omitted here. In addition, since a method for producing a solid active material for a negative electrode from a vanadium divalent sulfuric acid solution has already been described, the description thereof is omitted here.
 そこで、ここでは、バナジウム電池の正極用の固体活物質(硫酸バナジウム(V)の固形物)の製造方法を説明する。 Therefore, here, a method for producing a solid active material for a positive electrode of a vanadium battery (a solid material of vanadium sulfate (V)) will be described.
 まず、電解工程によって正極室内にバナジウム5価の硫酸溶液が生成されているので、これを用意する。
 次に、バナジウム5価の硫酸溶液から硫酸バナジウム(V)を析出させる(析出工程)。なお、硫酸バナジウム(V)とは硫酸バナジウム(V)・nH2Oのことである。
 次に、析出した硫酸バナジウム(V)を乾燥する(他方の乾燥工程)。これにより、固形物すなわち正極用の固体活物質が得られる。
First, a vanadium pentavalent sulfuric acid solution is generated in the positive electrode chamber by the electrolysis process, and this is prepared.
Next, vanadium sulfate (V) is precipitated from the vanadium pentavalent sulfuric acid solution (precipitation step). In addition, vanadium sulfate (V) is vanadium sulfate (V) · nH 2 O.
Next, the deposited vanadium sulfate (V) is dried (the other drying step). Thereby, the solid substance, ie, the solid active material for positive electrodes, is obtained.
 また、バナジウム電池の正極用の固体活物質の製造では、バナジウム5価の硫酸溶液の硫酸濃度を調整する工程(濃度調整工程)を行うことが好ましい。
 濃度調整工程とは、硫酸濃度を低下させる工程である。
In the production of the solid active material for the positive electrode of the vanadium battery, it is preferable to perform a step of adjusting the sulfuric acid concentration of the vanadium pentavalent sulfuric acid solution (concentration adjusting step).
The concentration adjusting step is a step of reducing the sulfuric acid concentration.
 析出工程では、バナジウム5価の硫酸溶液の温度を、加熱などによって高めて硫酸バナジウム(V)を析出させる。温度上昇後の硫酸溶液の温度としては、40℃~100℃が好ましく、50℃~80℃がより好ましく、50℃~70℃がさらに好ましい。 In the precipitation step, the temperature of the vanadium pentavalent sulfuric acid solution is increased by heating or the like to precipitate vanadium sulfate (V). The temperature of the sulfuric acid solution after the temperature rise is preferably 40 ° C to 100 ° C, more preferably 50 ° C to 80 ° C, and further preferably 50 ° C to 70 ° C.
 乾燥工程では、析出した硫酸バナジウム(V)を乾燥させる。乾燥方法としては、バナジウム硫酸塩の乾燥と同様の方法を用いることができるが、そのほかに、例えば室温での通風乾燥を用いてもよい。 In the drying step, the precipitated vanadium sulfate (V) is dried. As a drying method, a method similar to the drying of vanadium sulfate can be used, but in addition, for example, ventilation drying at room temperature may be used.
 また、析出した硫酸バナジウム(V)の固形物の製造方法としては、析出した析出した硫酸バナジウム(V)を抽出する、ろ過工程を含むことが好ましい。ろ過方法としては、バナジウム硫酸塩の乾燥と同様の方法を用いることができる。 Further, the method for producing the precipitated vanadium sulfate (V) solid preferably includes a filtration step of extracting the deposited vanadium sulfate (V). As a filtration method, the same method as the drying of vanadium sulfate can be used.
 このような製造方法によって、バナジウム電池の正極用の固体活物質を製造することができる。また、上述したように、負極用の固体活物質も製造できるので、ここで説明した製造方法を用いれば、バナジウム電池の負極用固体活物質及び正極用固体活物質の両方を同時に製造することができる。
 そして、後述するように、製造された負極用及び正極用の固体活物質を基にして、安定した品質のレドックスフロー電池用の負極側電解液及び正極側電解液を容易に製造することができる。
 つまり、本実施形態の製造方法によって固体活物質を製造すれば、固体の活物質をレドックスロー電池の設置場所に搬送し、その後、電解液を製造することができる。
 これまでのように、予め製造された電解液をレドックスフロー電池の設置場所まで搬送して電池内に供給する場合、酸性で取り扱い難い電解液を特別なタンクローリーなどを用いて搬送する必要があるなど、搬送に手間がかかる。これに比べて、本実施形態の固体活物質は、固体であり搬送容易である。
 また、後述するように、レドックスフロー電池の設置場所に搬送した固体の活物質を、その場で用意した純水に溶解させて電解液を製造できるので、電解液の主要成分であるバナジウムの搬送効率が格段に向上する。つまり、搬送容易性に優れるだけでなく、搬送効率の点でも極めて優れている。さらに、常に調製直後のフレッシュな電解液を供給することができる。
 そして、これらの電解液を用いてレドックスフロー電池を製造すれば、製造完了後、充電をする前に放電可能なレドックスフロー電池を製造することができる。
By such a manufacturing method, a solid active material for a positive electrode of a vanadium battery can be manufactured. In addition, as described above, since a solid active material for a negative electrode can also be manufactured, both the solid active material for a negative electrode and the solid active material for a positive electrode of a vanadium battery can be manufactured at the same time by using the manufacturing method described here. it can.
And, as will be described later, stable negative electrode side electrolyte solution and positive electrode side electrolyte solution for redox flow battery can be easily manufactured based on the manufactured solid active material for negative electrode and positive electrode. .
That is, if a solid active material is manufactured by the manufacturing method of this embodiment, a solid active material can be conveyed to the installation place of a redox raw battery, and electrolyte solution can be manufactured after that.
As in the past, when a pre-manufactured electrolyte is transported to the installation location of the redox flow battery and supplied into the battery, it is necessary to transport the electrolyte that is acidic and difficult to handle using a special tank lorry etc. , It takes time to carry. Compared to this, the solid active material of the present embodiment is solid and easy to transport.
In addition, as described later, an electrolyte solution can be produced by dissolving the solid active material transported to the installation location of the redox flow battery in pure water prepared on the spot, so that the transport of vanadium which is the main component of the electrolyte solution Efficiency is greatly improved. That is, not only is it easy to carry, it is also extremely excellent in terms of carrying efficiency. Furthermore, a fresh electrolyte immediately after preparation can always be supplied.
And if a redox flow battery is manufactured using these electrolyte solutions, the redox flow battery which can be discharged after completion of manufacture and before charging can be manufactured.
 次に実施例について説明する。
 まず、五酸化バナジウムを溶解させた硫酸溶液と、隔膜によって負極室と正極室に分離された電解槽を用意した。溶液の量は100リットルであった。また硫酸濃度は4.55モル/リットルであり、溶液温度は25℃であった。
Next, examples will be described.
First, a sulfuric acid solution in which vanadium pentoxide was dissolved, and an electrolytic cell separated into a negative electrode chamber and a positive electrode chamber by a diaphragm were prepared. The amount of solution was 100 liters. The sulfuric acid concentration was 4.55 mol / liter, and the solution temperature was 25 ° C.
 次に、五酸化バナジウムを溶解した硫酸溶液(バナジウム5価の硫酸溶液)を電解槽の負極室側に流すと共に正極室側に4.5モル/リットルの硫酸溶液を流して電解を行い(電解工程)、負極側にバナジウム4価の硫酸溶液を生成し、この硫酸溶液をさらに還元してバナジウム3価の硫酸溶液を生成した。そして、さらに還元操作を行って2価のバナジウム含有硫酸溶液を生成した。このバナジウム電解液に五酸化バナジウムを2.5モル/リットルまで溶解し、さらに還元を進めて、負極側全体がバナジウム2価の硫酸溶液になるまで電解を行った。なお、電解電圧は5.0ボルトであり、電流密度は4000A/m2であった。また、この時発生した酸素と水素ガス量から求めた電解効率は80%であった。 Next, a sulfuric acid solution in which vanadium pentoxide is dissolved (vanadium pentavalent sulfuric acid solution) is flowed to the negative electrode chamber side of the electrolytic cell, and a 4.5 mol / liter sulfuric acid solution is flowed to the positive electrode chamber side to perform electrolysis (electrolysis). Step) A vanadium tetravalent sulfuric acid solution was produced on the negative electrode side, and this sulfuric acid solution was further reduced to produce a vanadium trivalent sulfuric acid solution. And further reduction operation was performed to produce a divalent vanadium-containing sulfuric acid solution. In this vanadium electrolyte, vanadium pentoxide was dissolved to 2.5 mol / liter, and further reduction was performed, and electrolysis was performed until the entire negative electrode side became a vanadium divalent sulfuric acid solution. The electrolytic voltage was 5.0 volts and the current density was 4000 A / m 2 . The electrolysis efficiency determined from the amount of oxygen and hydrogen gas generated at this time was 80%.
 電解工程後、負極室側に生成されたに2価のバナジウム溶液を取り出し、70%硫酸を添加して濃度調整を行った。調整後の硫酸濃度は4.5モル/リットルであった。 After the electrolysis step, the divalent vanadium solution produced on the negative electrode chamber side was taken out, and 70% sulfuric acid was added to adjust the concentration. The sulfuric acid concentration after adjustment was 4.5 mol / liter.
 次に、溶液温度を低下させて析出を行った。析出時の溶液温度は、0℃であった。
 続いて、ろ過を行った。ろ過は、酸化を防ぐ目的で窒素ガスを流しつつ、5Cのろ紙(JIS P 3801に規定の5種Cのろ紙)を用いて吸引濾過により行った。
 そして、次に乾燥を行った。これにより負極用の固体活物質を得た。得られた固体活物質には、一部として粉状物が含まれていた。窒素雰囲気で50℃に加熱し、10mmHgの減圧乾燥であった。
Next, precipitation was performed by lowering the solution temperature. The solution temperature at the time of precipitation was 0 ° C.
Subsequently, filtration was performed. Filtration was performed by suction filtration using 5C filter paper (5 type C filter paper defined in JIS P 3801) while flowing nitrogen gas for the purpose of preventing oxidation.
Then, drying was performed. This obtained the solid active material for negative electrodes. The obtained solid active material contained a powdery product as a part. Heated to 50 ° C. in a nitrogen atmosphere and dried under reduced pressure at 10 mmHg.
 次に、得られたものの一部を取り分け、取り分けたものについて有機還元剤で被覆する工程を行った。有機還元剤としてはアスコルビン酸30グラムを100ミリリットルの4.5モル希硫酸に溶解したものを用いた。そして、容器に入れた被覆対象の固体活物質をかき混ぜつつ、この溶液を噴霧して有機還元剤で被覆した。これにより、負極用の固体活物質を得た。 Next, a part of the obtained product was separated, and the separated product was coated with an organic reducing agent. As the organic reducing agent, 30 grams of ascorbic acid dissolved in 100 milliliters of 4.5 molar dilute sulfuric acid was used. And this solution was sprayed and coat | covered with the organic reducing agent, stirring the solid active material of the coating object put into the container. This obtained the solid active material for negative electrodes.
 また、正極用の固体活物質を得るために、バナジウム2価の硫酸溶液(2価のバナジウム含有硫酸溶液)に五酸化バナジウムを溶解してバナジウム4価の硫酸溶液を生成し、上記電解工程において、バナジウム3価の硫酸溶液が生成された段階で、このバナジウム4価の硫酸溶液を電解槽の正極側に流して電解を行い、正極側に生成されたバナジウム5価の硫酸溶液を生成し、これを取り出して濃度調整を行った。調整後の硫酸濃度は、4.5モル/リットル、バナジウム濃度は2.5モル/リットルであった。 Further, in order to obtain a solid active material for a positive electrode, vanadium pentoxide is dissolved in a vanadium divalent sulfuric acid solution (a divalent vanadium-containing sulfuric acid solution) to produce a vanadium tetravalent sulfuric acid solution. When the vanadium trivalent sulfuric acid solution is generated, the vanadium tetravalent sulfuric acid solution is flowed to the positive electrode side of the electrolytic cell to perform electrolysis, and the vanadium pentavalent sulfuric acid solution generated on the positive electrode side is generated, This was taken out and the density was adjusted. The sulfuric acid concentration after adjustment was 4.5 mol / liter, and the vanadium concentration was 2.5 mol / liter.
 次に、溶液温度を上昇させて析出を行った。析出時の溶液温度は60℃であった。
 続いて5Cのろ紙を用いてろ過を行った。ろ過方法は吸引濾過で行った。
 そして、乾燥を行い、正極用の固体活物質を得た。室温における減圧乾燥であった。
 さらに、乾燥により得られた固形物の一部を取り分け、取り分けた固形物を粉砕した。ここでは、得られた固形物を乳鉢に入れ、刺激を与えず慎重に粉砕した。
Next, precipitation was performed by raising the solution temperature. The solution temperature at the time of precipitation was 60 ° C.
Subsequently, filtration was performed using 5C filter paper. The filtration method was suction filtration.
And it dried and obtained the solid active material for positive electrodes. It was vacuum drying at room temperature.
Furthermore, a part of the solid obtained by drying was separated, and the separated solid was pulverized. Here, the obtained solid was put into a mortar and carefully ground without giving any irritation.
 このようにして得られた有機還元剤で被覆された負極用の固体活物質と、粉体である正極用の固体活物質について、水溶性の良否を確認した。
 まず、25℃である100ミリリットルの純水に25グラムの負極用固体活物質を徐々に投入し2時間撹拌して負極用電解液を調製した。なお、負極側の固体活物質の溶解では、窒素バブリングを実施して酸化を防ぎながら溶解を行った。
 また、25℃である100ミリリットルの純水に25グラムの正極用固体活物質の粉体を徐々に投入し2時間撹拌して正極用電解液を調製した。
 その結果、いずれの場合とも、全ての活物質が溶解し、水溶性は良好であった。このように、本実施形態の固体活物質の製造方法によれば、水溶性に優れた固体活物質を製造することができる。そして、これらの活物質を用いれば、良好なバナジウムレドックスフロー電池用の電解液を製造することができる。
About the solid active material for negative electrodes coat | covered with the organic reducing agent obtained in this way, and the solid active material for positive electrodes which are powders, the quality of water solubility was confirmed.
First, 25 grams of a solid active material for a negative electrode was gradually added to 100 ml of pure water at 25 ° C. and stirred for 2 hours to prepare a negative electrode electrolyte. In addition, in melt | dissolution of the solid active material by the side of a negative electrode, it melt | dissolved, implementing nitrogen bubbling, preventing oxidation.
Further, 25 g of the solid active material powder for positive electrode was gradually added to 100 ml of pure water at 25 ° C. and stirred for 2 hours to prepare a positive electrode electrolyte.
As a result, in all cases, all the active materials were dissolved and the water solubility was good. Thus, according to the manufacturing method of the solid active material of this embodiment, the solid active material excellent in water solubility can be manufactured. And if these active materials are used, the electrolyte solution for favorable vanadium redox flow batteries can be manufactured.
 また、実施例1で製造した負極側電解液及び正極側電解液を用いてバナジウムレドックスフロー電池を製造することができる。ここでいうバナジウムレドックスフロー電池は、正極電解液が貯蔵される正極液タンクと、負極電解液が貯蔵される負極液タンクと、セルスタックと、正極液タンクから送り出された正極液をセルスタックに送る正極往路配管と、セルスタックから流出した正極液を正極液タンクに戻す正極復路配管と、負極液タンクから送り出された負極電解液をセルスタックに送る負極往路配管と、セルスタックから流出した負極電解液を負極液タンクに戻す負極復路配管と、これらの配管に電解液を流すためのポンプと、電解液の流量や充放電状態を制御するコントローラとを備え、正極電解液と負極電解液との間の酸化還元反応によって充放電する周知のバナジウムレドックスフロー電池である。なお、この電池の原理は周知であるので、ここでは詳細な説明を省略する。
 従って、このような構成のバナジウムレッドクスフロー電池の負極室側に負極側電解液を供給すると共に正極室側に正極側電解液を供給することで、レドックスフロー電池を製造することができる。製造されたレドックスフロー電池は、電池完成後、充電をすることなく、すぐに放電運転を開始することができる。つまり、予備充電のみならず、太陽電池パネルや風力発電機などの発電手段で発電された電力の供給を受けて充電運転することなく、放電を開始することができる。これまで、レドックスフロー電池を運転する場合は、運転開始の前提として、まず最初に充電が必要であった。この点、本実施例のレドックスフロー電池では、まず最初に放電運転することが可能であり、運転開始条件がほとんどないという利点がある。
Moreover, a vanadium redox flow battery can be manufactured using the negative electrode side electrolyte solution and positive electrode side electrolyte solution manufactured in Example 1. The vanadium redox flow battery here refers to a positive electrode liquid tank in which a positive electrode electrolyte solution is stored, a negative electrode liquid tank in which a negative electrode electrolyte solution is stored, a cell stack, and a positive electrode solution sent from the positive electrode liquid tank to the cell stack. The positive electrode piping to be sent, the positive electrode returning piping to return the positive electrode solution flowing out from the cell stack to the positive electrode solution tank, the negative electrode outgoing piping to send the negative electrode electrolyte sent from the negative electrode solution tank to the cell stack, and the negative electrode flowing out from the cell stack A negative electrode return pipe for returning the electrolyte solution to the negative electrode solution tank, a pump for flowing the electrolyte solution through these pipes, and a controller for controlling the flow rate and charge / discharge state of the electrolyte solution. It is a known vanadium redox flow battery that is charged and discharged by an oxidation-reduction reaction during Since the principle of this battery is well known, detailed description is omitted here.
Therefore, a redox flow battery can be manufactured by supplying the negative electrode side electrolyte solution to the negative electrode chamber side of the vanadium redox flow battery having such a configuration and supplying the positive electrode side electrolyte solution to the positive electrode chamber side. The manufactured redox flow battery can start discharging immediately without being charged after the battery is completed. That is, not only preliminary charging but also discharge can be started without receiving a supply operation of power generated by power generation means such as a solar battery panel or a wind power generator. Until now, when operating a redox flow battery, charging was first required as a premise for starting operation. In this respect, the redox flow battery of the present embodiment has an advantage that the discharge operation can be performed first and there are almost no operation start conditions.
 次に、実施例1において得られた負極用の固体活物質を用いて、3価のバナジウム電解液と、4価のバナジウム電解液と、3.5価のバナジウム電解液を調製した。 Next, a trivalent vanadium electrolyte solution, a tetravalent vanadium electrolyte solution, and a 3.5 valent vanadium electrolyte solution were prepared using the negative electrode solid active material obtained in Example 1.
 3価のバナジウム電解液については、実施例1において得られた負極用の固体活物質364グラムと、五酸化バナジウム60.7グラムと、硫酸3.83モルとを用意し、これらを常温の純水に徐々に投入し撹拌して、最終的に1リットルの電解液を調製した。調製方法は、水溶性の良否を確認するために調製した電解液の調製手順と同様であるので、ここでは説明を省略する。
 また、4価のバナジウム電解液については、実施例1において得られた負極用の固体活物質182グラムと、五酸化バナジウム121グラムと、硫酸4.33モルとを用意し、これらを常温の純水に徐々に投入し撹拌して、最終的に1リットルの電解液を調製した。
 この結果、良好な3価のバナジウム電解液及び4価のバナジウム電解液が製造された。
For the trivalent vanadium electrolyte, 364 grams of the negative electrode solid active material obtained in Example 1, 60.7 grams of vanadium pentoxide, and 3.83 moles of sulfuric acid were prepared. The mixture was gradually poured into water and stirred to finally prepare 1 liter of electrolyte. Since the preparation method is the same as the procedure for preparing the electrolyte prepared to confirm the quality of water solubility, the description is omitted here.
For the tetravalent vanadium electrolyte, 182 grams of the negative electrode solid active material obtained in Example 1, 121 grams of vanadium pentoxide, and 4.33 moles of sulfuric acid were prepared. The mixture was gradually poured into water and stirred to finally prepare 1 liter of electrolyte.
As a result, a good trivalent vanadium electrolyte and a tetravalent vanadium electrolyte were produced.
 このように、実施例1の製造方法で製造した負極用の固体活物質があれば、五酸化バナジウムを用意しておくことで、3価の電解液および4価の電解液を製造することができる。
 そして、製造した3価の電解液をレッドクスフロー電池の負極室側に供給し、4価の電解液を正極室側に供給することでレドックスフロー電池を製造することができる。製造されたレドックスフロー電池は、製造後、すぐに、太陽電池パネルや風力発電機などの発電手段からの電力供給を受けて、充電運転を開始することができる。つまり、予備充電運転の必要がないので、レッドクスフロー電池製造後、すぐに、本格運用を開始することができる。
Thus, if there is a solid active material for a negative electrode produced by the production method of Example 1, a trivalent electrolyte solution and a tetravalent electrolyte solution can be produced by preparing vanadium pentoxide. it can.
And a redox flow battery can be manufactured by supplying the manufactured trivalent electrolyte solution to the negative electrode chamber side of the Redox flow battery and supplying the tetravalent electrolyte solution to the positive electrode chamber side. The manufactured redox flow battery can be supplied with electric power from a power generation means such as a solar battery panel or a wind power generator immediately after manufacturing, and can start a charging operation. That is, since there is no need for a preliminary charging operation, full-scale operation can be started immediately after the manufacture of the Redox flow battery.
 さらに、3.5価のバナジウム電解液については、実施例1において得られた負極用の固体活物質273グラムと、五酸化バナジウム91グラムと、硫酸2.5モルとを用意し、これらを常温の純水に徐々に投入し撹拌して、最終的に1リットルの電解液を調製した。
 この結果、良好な3.5バナジウム電解液及び4価のバナジウム電解液が製造された。
 この電解液は、バナジウムレドックスフロー電池製造時に最初に供給する一般的な電解液として用いることができる。このように、実施例1の製造方法で製造した負極用の固体活物質があれば、五酸化バナジウムを用意しておくことで、従来の電解液も製造することができる。
Further, for the 3.5-valent vanadium electrolyte, 273 grams of the negative electrode solid active material obtained in Example 1, 91 grams of vanadium pentoxide, and 2.5 moles of sulfuric acid were prepared. The pure water was gradually added and stirred to finally prepare 1 liter of electrolytic solution.
As a result, a good 3.5 vanadium electrolyte and a tetravalent vanadium electrolyte were produced.
This electrolytic solution can be used as a general electrolytic solution that is initially supplied when manufacturing a vanadium redox flow battery. Thus, if there exists the solid active material for negative electrodes manufactured with the manufacturing method of Example 1, the conventional electrolyte solution can also be manufactured by preparing vanadium pentoxide.

Claims (16)

  1.  2価のバナジウムイオンを含む硫酸溶液を温度低下させてバナジウム硫酸塩を析出させる工程と、析出したバナジウム硫酸塩を乾燥して固形物を得る一方の乾燥工程とを有する、バナジウム電池用の固体活物質の製造方法。 A solid activity for a vanadium battery, comprising: a step of precipitating vanadium sulfate by lowering the temperature of a sulfuric acid solution containing divalent vanadium ions; and a step of drying the precipitated vanadium sulfate to obtain a solid. A method for producing a substance.
  2.  2価のバナジウムイオンを含む前記硫酸溶液の硫酸濃度を調整する工程を、さらに含む請求項1に記載の固体活物質の製造方法。 The method for producing a solid active material according to claim 1, further comprising a step of adjusting the sulfuric acid concentration of the sulfuric acid solution containing divalent vanadium ions.
  3.  バナジウム含有硫酸溶液を電解して2価のバナジウムイオンを含む前記硫酸溶液を生成する電解工程をさらに含む、請求項1又は請求項2に記載の固体活物質の製造方法。 The manufacturing method of the solid active material of Claim 1 or Claim 2 which further includes the electrolysis process which electrolyzes a vanadium containing sulfuric acid solution and produces | generates the said sulfuric acid solution containing a bivalent vanadium ion.
  4.  前記電解工程は、隔膜によって負極側と正極側とに分離された電解槽の負極側のバナジウム含有溶液と正極側の硫酸溶液との間の通電によって、前記負極側に2価のバナジウムイオンを含む硫酸溶液を生成する工程である、請求項3に記載の固体活物質の製造方法。 The electrolysis step includes divalent vanadium ions on the negative electrode side by energization between the vanadium-containing solution on the negative electrode side of the electrolytic cell separated from the negative electrode side and the positive electrode side by the diaphragm and the sulfuric acid solution on the positive electrode side. The manufacturing method of the solid active material of Claim 3 which is a process of producing | generating a sulfuric acid solution.
  5.  前記固形物に有機還元剤を含浸させる工程、又は前記固形物の少なくとも一部を被覆する工程のうち、少なくともいずれか一方の工程をさらに含む、請求項1から請求項4のいずれか一項に記載の固体活物質の製造方法。 5. The method according to claim 1, further comprising at least one of a step of impregnating the solid with an organic reducing agent or a step of coating at least a part of the solid. The manufacturing method of the solid active material of description.
  6.  請求項1から請求項5のいずれか一項に記載の製造方法によって製造される固体活物質であり、バナジウム電池の負極側で用いられる固体活物質。 A solid active material produced by the production method according to any one of claims 1 to 5, and used on the negative electrode side of a vanadium battery.
  7.  前記電解工程は、正極室内に5価のバナジウムイオンを含む硫酸溶液を生成する工程であり、
     5価のバナジウムイオンを含む硫酸溶液の温度を上昇させて硫酸バナジウム(V)を析出させる工程と、析出した硫酸バナジウム(V)を乾燥して固形物を得る他方の乾燥工程とを、さらに有する、請求項4に記載の固体活物質の製造方法。
    The electrolysis step is a step of generating a sulfuric acid solution containing pentavalent vanadium ions in the positive electrode chamber,
    It further includes a step of increasing the temperature of the sulfuric acid solution containing pentavalent vanadium ions to precipitate vanadium sulfate (V), and another drying step of drying the precipitated vanadium sulfate (V) to obtain a solid. The manufacturing method of the solid active material of Claim 4.
  8.  5価のバナジウムイオンを含む前記硫酸溶液の硫酸濃度を調整する工程を、さらに含む請求項7に記載の固体活物質の製造方法。 The method for producing a solid active material according to claim 7, further comprising a step of adjusting the sulfuric acid concentration of the sulfuric acid solution containing pentavalent vanadium ions.
  9.  析出したバナジウム硫酸塩を前記一方の乾燥工程で乾燥して、バナジウム電池の負極側の固体活物質として用いられる固形物を得ていると共に、析出した硫酸バナジウム(V)を前記他方の乾燥工程で乾燥して、バナジウム電池の正極側の固体活物質として用いられる固形物を得ており、
     バナジウム電池の負極用固体活物質及び正極用固体活物質の両方が製造される、請求項7又は請求項8に記載の固体活物質の製造方法。
    The precipitated vanadium sulfate is dried in the one drying step to obtain a solid used as the solid active material on the negative electrode side of the vanadium battery, and the precipitated vanadium sulfate (V) is obtained in the other drying step. Dried to obtain a solid used as a solid active material on the positive electrode side of the vanadium battery,
    The method for producing a solid active material according to claim 7 or 8, wherein both the solid active material for negative electrode and the solid active material for positive electrode of the vanadium battery are produced.
  10.  請求項9に記載の製造方法によって製造される、バナジウム電池の負極用の固体活物質及び正極用の固体活物質。 A solid active material for a negative electrode of a vanadium battery and a solid active material for a positive electrode manufactured by the manufacturing method according to claim 9.
  11.  請求項1から請求項5に記載された製造方法で製造された固体活物質と、請求項6に記載の負極用の固体活物質のうちの少なくともいずれかが含まれている固体活物質を溶解して電解液を得る、レドックスフロー電池用の負極側電解液の製造方法。 A solid active material produced by the production method according to any one of claims 1 to 5 and a solid active material containing at least one of the solid active material for a negative electrode according to claim 6 are dissolved. The manufacturing method of the negative electrode side electrolyte solution for redox flow batteries which obtains electrolyte solution.
  12.  請求項9に記載の製造方法で製造された負極用固体活物質を溶解して負極側電解液を得ると共に、請求項9に記載の製造方法で製造された正極用固体活物質を溶解して正極側電解液を得る、レドックスフロー電池用の負極側電解液及び正極側電解液の製造方法。 The negative electrode solid active material produced by the production method according to claim 9 is dissolved to obtain a negative electrode side electrolyte, and the positive electrode solid active material produced by the production method according to claim 9 is dissolved. The negative electrode side electrolyte solution for redox flow batteries which obtains a positive electrode side electrolyte solution, and the manufacturing method of the positive electrode side electrolyte solution.
  13.  請求項11に記載の製造方法で製造された負極側電解液を電池負極側に供給する工程を含む電池製造過程を経て製造されるバナジウム電池であり、製造後、充電をする前に放電可能なバナジウム電池。 It is a vanadium battery manufactured through the battery manufacturing process including the process of supplying the negative electrode side electrolyte solution manufactured by the manufacturing method of Claim 11 to the battery negative electrode side, and can discharge before charging after manufacture. Vanadium battery.
  14.  前記電池製造過程として、電池正極側に5価のバナジウム電解液を供給する工程を含む、請求項13に記載のバナジウム電池。 The vanadium battery according to claim 13, wherein the battery manufacturing process includes a step of supplying a pentavalent vanadium electrolyte to the battery positive electrode side.
  15.  請求項9に記載の製造方法で製造された負極側電解液を電池負極側に供給する工程と、請求項9に記載の製造方法で製造された正極側電解液を電池正極側に供給する工程と、を含む電池製造過程を経て製造されるバナジウム電池であり、製造後、充電をする前に放電可能なバナジウム電池。 The process of supplying the negative electrode side electrolyte solution manufactured with the manufacturing method of Claim 9 to the battery negative electrode side, The process of supplying the positive electrode side electrolyte solution manufactured with the manufacturing method of Claim 9 to the battery positive electrode side A vanadium battery manufactured through a battery manufacturing process including: a vanadium battery that can be discharged after manufacturing and before charging.
  16.  請求項1から請求項5に記載された製造方法で製造された固体活物質と、請求項6に記載の固体活物質のうちの少なくともいずれかが含まれている固体活物質を溶解して得た電解液に五酸化バナジウム及び硫酸を溶解させて3価及び/又は4価の電解液を製造する、バナジウム電池の電解液の製造方法。 A solid active material produced by the production method according to claim 1 and a solid active material containing at least one of the solid active materials according to claim 6 is dissolved and obtained. A method for producing an electrolyte solution for a vanadium battery, wherein vanadium pentoxide and sulfuric acid are dissolved in the obtained electrolyte solution to produce a trivalent and / or tetravalent electrolyte solution.
PCT/JP2014/001098 2014-02-28 2014-02-28 Method for producing solid active material, produced solid active material, and use therefor WO2015128902A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2014/001098 WO2015128902A1 (en) 2014-02-28 2014-02-28 Method for producing solid active material, produced solid active material, and use therefor
JP2016505081A JP6406344B2 (en) 2014-02-28 2015-03-02 Method for producing solid active material and method for producing electrolyte using the same
PCT/JP2015/001089 WO2015129286A1 (en) 2014-02-28 2015-03-02 Method for manufacturing solid active material, manufactured solid active material, and method for using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/001098 WO2015128902A1 (en) 2014-02-28 2014-02-28 Method for producing solid active material, produced solid active material, and use therefor

Publications (1)

Publication Number Publication Date
WO2015128902A1 true WO2015128902A1 (en) 2015-09-03

Family

ID=54008276

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2014/001098 WO2015128902A1 (en) 2014-02-28 2014-02-28 Method for producing solid active material, produced solid active material, and use therefor
PCT/JP2015/001089 WO2015129286A1 (en) 2014-02-28 2015-03-02 Method for manufacturing solid active material, manufactured solid active material, and method for using same

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/001089 WO2015129286A1 (en) 2014-02-28 2015-03-02 Method for manufacturing solid active material, manufactured solid active material, and method for using same

Country Status (2)

Country Link
JP (1) JP6406344B2 (en)
WO (2) WO2015128902A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109273786A (en) * 2018-10-30 2019-01-25 成都先进金属材料产业技术研究院有限公司 Utilize the method for sulfuric acid system vanadium cell failure anode electrolyte regeneration V electrolyte

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000200618A (en) * 1999-01-07 2000-07-18 Kashimakita Kyodo Hatsuden Kk High-output vanadium redox battery
JP2001057223A (en) * 1999-06-09 2001-02-27 Nippon Chem Ind Co Ltd Manufacture for trivalent vanadium sulfate and manufacture for vanadium-based electrolyte
JP2001102080A (en) * 1999-09-30 2001-04-13 Kashimakita Kyodo Hatsuden Kk Redox cell
WO2011049103A1 (en) * 2009-10-20 2011-04-28 国立大学法人東北大学 Vanadium cell
WO2013054921A1 (en) * 2011-10-14 2013-04-18 株式会社ギャラキシー Vanadium electrolyte, production method therefor, and production device therefor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04149965A (en) * 1990-10-15 1992-05-22 Agency Of Ind Science & Technol Manufacture of vanadium electrolyte

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000200618A (en) * 1999-01-07 2000-07-18 Kashimakita Kyodo Hatsuden Kk High-output vanadium redox battery
JP2001057223A (en) * 1999-06-09 2001-02-27 Nippon Chem Ind Co Ltd Manufacture for trivalent vanadium sulfate and manufacture for vanadium-based electrolyte
JP2001102080A (en) * 1999-09-30 2001-04-13 Kashimakita Kyodo Hatsuden Kk Redox cell
WO2011049103A1 (en) * 2009-10-20 2011-04-28 国立大学法人東北大学 Vanadium cell
WO2013054921A1 (en) * 2011-10-14 2013-04-18 株式会社ギャラキシー Vanadium electrolyte, production method therefor, and production device therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109273786A (en) * 2018-10-30 2019-01-25 成都先进金属材料产业技术研究院有限公司 Utilize the method for sulfuric acid system vanadium cell failure anode electrolyte regeneration V electrolyte

Also Published As

Publication number Publication date
WO2015129286A1 (en) 2015-09-03
JP6406344B2 (en) 2018-10-17
JPWO2015129286A1 (en) 2017-06-01

Similar Documents

Publication Publication Date Title
CA2731677C (en) Recovery of lithium from aqueous solutions
CN103097586B (en) From lithium-containing solution, the method for high purity lithium is extracted by electrolysis
WO2013054921A1 (en) Vanadium electrolyte, production method therefor, and production device therefor
US10619257B2 (en) Method of treating liquid electrolyte solution
AU2012261548B2 (en) Recovery of lithium from aqueous solutions
KR101180770B1 (en) Redox flow battery electrolyte and production method thereof and redox flow battery produced thereby
WO2015182917A1 (en) Method for manufacturing positive electrode electrolyte for redox flow battery and redox flow battery
JP2004071165A (en) Production method for electrolyte for vanadium redox battery
JP6406344B2 (en) Method for producing solid active material and method for producing electrolyte using the same
CN102394308B (en) Manufacturing process of electrolyte for oxidation reduction cell
KR101506951B1 (en) Manufacturing equipment of electrolyte for redox flow battery and manufacturing method thereof
WO2018123963A1 (en) Redox-flow battery system and operating method thereof
WO2014021203A1 (en) Method for manufacturing vanadium electrolyte
JP2020087712A (en) Method for manufacturing catalyst-supporting negative electrode for redox flow battery
CN107873111A (en) The operating method of renewable bipolar membrane cell and its renewable bipolar membrane cell
KR102081767B1 (en) Electrolyte comprising hollow silica and vanadium redox flow battery comprising the same
JP6206382B2 (en) Method for producing indium hydroxide powder
EP3492628B1 (en) Electrolyte and electrolyzer system
TWI428279B (en) Recovery of lithium from aqueous solutions
TW201627227A (en) Method of producing vanadyl sulfate from vanadium pentoxide
JP6533013B2 (en) Method of producing battery active material liquid
EP3845493A1 (en) Titanyl sulfate hydrate powder, method for producing titanyl sulfate hydrate powder, method for producing aqueous titanyl sulfate solution, method of producing electrolyte solution, and method for producing redox flow battery
CN111200147A (en) All-vanadium redox flow battery electrolyte for inhibiting hydrogen evolution of electrolyte and preparation method thereof
Xie et al. Green coupling of 3, 5-diamino-1H-1, 2, 4-triazole into the azo compound
US20230203678A1 (en) Salt-splitting electrolysis system comprising flow electrodes and methods of operating such systems

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14883809

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14883809

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP