WO2015128515A1 - Pile having a profile with a monosymmetric cross-section for retaining land - Google Patents

Pile having a profile with a monosymmetric cross-section for retaining land Download PDF

Info

Publication number
WO2015128515A1
WO2015128515A1 PCT/ES2014/070155 ES2014070155W WO2015128515A1 WO 2015128515 A1 WO2015128515 A1 WO 2015128515A1 ES 2014070155 W ES2014070155 W ES 2014070155W WO 2015128515 A1 WO2015128515 A1 WO 2015128515A1
Authority
WO
WIPO (PCT)
Prior art keywords
profile
pile
section
wings
monosymmetric
Prior art date
Application number
PCT/ES2014/070155
Other languages
Spanish (es)
French (fr)
Inventor
Luisa María GIL MARTÍN
Enrique HERNÁNDEZ MONTES
Original Assignee
Universidad De Granada
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad De Granada filed Critical Universidad De Granada
Priority to ES201590135A priority Critical patent/ES2563214B1/en
Priority to PCT/ES2014/070155 priority patent/WO2015128515A1/en
Publication of WO2015128515A1 publication Critical patent/WO2015128515A1/en

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D5/00Bulkheads, piles, or other structural elements specially adapted to foundation engineering
    • E02D5/22Piles

Definitions

  • the present invention is part of the civil engineering sector. Specifically in the construction sector that requires land containment and more specifically in the design and manufacture of piles for land containment.
  • Piles with embedded profiles are usually executed by introducing, after the extraction of the cylindrical section of the earth (on-site execution), a metal profile with a section in the form of "double T", “I” or “H”, with equal wings (doubly symmetrical), and adding the concrete later, or filling the hole made of concrete and subsequently introducing the metal profile.
  • a metal profile with a section in the form of "double T", "I” or “H”, with equal wings (doubly symmetrical) and adding the concrete later, or filling the hole made of concrete and subsequently introducing the metal profile.
  • the only prior known by the applicant on the use of monosymmetric profiles in containment piles is the CN20072042973U patent that describes the use of more than one monosymmetric profile to achieve greater efficiency of the steel used as concrete reinforcement. Previously, the use of profiles with a monosymmetric section has not been considered.
  • the object of the present invention is a pile for the containment of land with an embedded metal profile characterized in that the section of the profile is monosymmetric, so as to optimize the structure of the retaining walls.
  • the profile embedded in the proposed pile has a cross section whose dimensions are smaller than the current solutions that employ a profile with bisimetric section of equal wings, thus achieving a significant reduction of the material used and, therefore, greater efficiency in The global energy consumption.
  • Figure 2. Shows a cross section of a pile with a double-symmetrical embedded profile.
  • P represents the outline of the pile, b f the width of the wings of the profile, f the thickness of the wings, t w the thickness of the soul, h the nominal height and h w the atura of the soul.
  • Figure 3. Shows a cross section of a pile with a monosymmetric embedded profile, whose wings have different widths (b f i and b f 2).
  • Figure 4. Shows a cross section of a pile with a monosymmetric embedded profile whose wings have different widths (b f i and b f 2) and thicknesses (t f iyt f ⁇ )
  • Figure 5. Shows the distribution of tensions in the cross-section defined by the angle frac that separates the fractionated fibers from the compressed.
  • Figure 6. Shows a representation of the different solutions obtained in the optimization process. In this diagram, the points corresponding to the minimum steel section for each core value, h w .
  • a laminated profile is called a metallic element whose cross section is made up of several rectangles (called "sheets").
  • sheets Depending on the number of plates and their relative orientation, different types of cross sections are obtained.
  • profiles with a T or L section are obtained; while using 3 plates, U, I, H, or Double T profiles are obtained. The connection between these plates is made by curved agreements.
  • Laminated profiles are produced from hot rolling of billet or billet until the desired shape is formed. Among its characteristics, its structural uniformity stands out because they do not have welds or seams and have a low level of accumulation of localized residual stresses. They are distinguished, basically in two large families: a.l. Parallel wing profiles:
  • Parallel wing profiles are produced in sections “I” and “H”, also called double T. They are also called “IPE profiles”. They are characterized by having wings perpendicular to the soul, with parallel, rectilinear faces and constant thickness.
  • profile with double section T includes the profile whose smaller wing has a width equal to the thickness of the soul, or T-profile. a.2. Sloped wing profiles:
  • the inclined wing profiles are basically produced in sections type "I”, "U” and “L” and are characterized by having the outer wings of the wings perpendicular to the soul, while the inner faces of the wings have an inclination with respect to the outer face, whereby the thicknesses of the wings are decreasing.
  • Fig. 1, A which has a single axis of symmetry (el) along the soul of the profile
  • Fig. 1, B it will be understood a profile that has a second axis of symmetry (e2) perpendicular to the previous one (el).
  • the profiles embedded in piles that are commonly used are steel profiles with a double-symmetric double T profile whose wings have the same width (Fig. 2, w) and thickness (Fig 2, t f ) dimensions.
  • a new type of pile comprising a single embedded monosymmetric laminated profile, so that the wings of the profile can have different widths (Fig. 4, Wi and W2) and / or different thickness (Fig. 5, t f iyt f 2), and whose dimensions allow to reduce the amount of steel needed without the pile stop resisting the required solicitations.
  • the dimensions of the profile are determined using the optimization method object of the invention. To execute this procedure, it is admitted that the midpoint of the core of the embedded profile coincides with the center of the concrete circle. Since the steel is completely embedded in the concrete section, instabilities will not appear and, therefore, the depletion of the mixed concrete-steel section will be plastic.
  • the maximum and minimum quantity of embedded steel is defined by the contribution coefficient defined in the mixed structure regulations (Eurocode 4).
  • N d N c (0) + N s (0)
  • N d is the design axil
  • M d is the design bending moment
  • ⁇ 3 ( ⁇ ) and ⁇ 3 ( ⁇ ) are the axil and flector weathered by concrete, respectively
  • ⁇ 3 ( ⁇ ) and M s ( ⁇ ) represent the axil and flector resisted by steel, respectively; and ⁇ is a variable that defines the angle of the fiber that separates the compressed and fractional parts of the cross section. ( Figure 5)
  • a s being the area of embedded steel
  • a c the area of concrete
  • f and d and f cd the calculation strengths of steel and concrete respectively.
  • the parameters involved in the procedure are: D diameter of the concrete section -pilot- f and d characteristic strength of the concrete
  • the optimization process is defined by the following reasoning: to optimize the capacity of both materials, the largest wing of the metal section, which requires a greater amount of steel, in the fractional part of the cross section and as far as possible from the center of gravity of the section.
  • the object procedure comprises the following steps:
  • the set of parameters t w , h w , b f i, b f 2, t f i and t f 2 will be determined by the dimensions of the sheets available for making laminated profiles.
  • the values t w fixing iyt t f f 2 at the beginning of the process so that the only parameters that vary are the high soul and width of the wings.
  • the procedure comprises the following steps:
  • the stored data can be plotted as a total area of steel versus height of the soul in one so that all possible solutions can be visualized.
  • the optimal profile to be embedded can be decided taking into account other factors.
  • the beam core can be replaced by a set of steel bars welded to the souls, also called latticework. The calculation method that is applied to size the profile of a Steel beam is also valid for sizing such a lattice.
  • the wing of greater area is concentrated in the part that does not give land, while the case of cantilever retaining wall, the wing of Greater area is concentrated in the part that is in contact with the contained earth.
  • the preferred embodiment consists of a pile (16) with a monosymmetric embedded profile where the wings of the profile are not equal and can even be a T if one of the wings is not necessary.
  • Pile with embedded monosymmetric profile that resists a bending moment of 515kN.m The following example shows the dimensioning of a pile with a diameter of 600mm to resist a bending moment of 515 kN-m.
  • N d 0 and M d
  • the optimal dimensions depending on the type of profile are:
  • the pile object of the invention can save a significant amount of steel with respect to the doubly symmetrical profile traditionally used (10% in the case of the monosymmetric profile and 16.6% in the case of the T-profile).

Abstract

The invention relates to a novel type of pile which comprises a single laminated monosymmetric drawn profile, such that the fins of the profile can be of a certain width and/or a certain thickness and the dimensions thereof allow the required quantity of steel to be reduced without causing the pile to stop resisting required loads.

Description

PILOTE CON PERFIL DE SECCIÓN MONOSIMETRICA PARA CONTENCIÓN  PILOT WITH MONOSYMMETRIC SECTION PROFILE FOR CONTAINMENT
DE TIERRAS  OF LAND
CAMPO DE LA INVENCIÓN FIELD OF THE INVENTION
La presente invención se enmarca en el sector de la ingeniería civil. Concretamente en el sector de las construcciones que requieren contención de tierras y más concretamente en el del diseño y la fabricación de pilotes para contención de tierras. The present invention is part of the civil engineering sector. Specifically in the construction sector that requires land containment and more specifically in the design and manufacture of piles for land containment.
ANTECEDENTES DE LA INVENCIÓN BACKGROUND OF THE INVENTION
Actualmente hay varios procedimientos de construcción para muros de contención de tierras. Uno de ellos es la ejecución de una línea de pilotes fabricados in situ. La línea de pilotes divide al terreno en una parte que se pretende vaciar, es decir, una zona a vaciar, y una parte que no se desea vaciar, es decir, una zona no excavada, que es la que ejerce un determinado empuje de tierras sobre el muro de contención, lo que produce sobre los pilotes una solicitación asimétrica de acciones en una representación M-N (Momento-Axil) . Los pilotes con perfiles embutidos se suelen ejecutar habitualmente introduciendo, tras la extracción de la sección cilindrica de tierra (ejecución in situ), un perfil metálico con sección en forma de "doble T", de "I" o de "H", con alas iguales (doblemente simétrico), y añadiendo el hormigón posteriormente, o bien rellenando de hormigón el agujero realizado e introduciendo posteriormente el perfil metálico. La única anterioridad conocida por el solicitante sobre el uso de perfiles monosimétricos en pilotes de contención es la patente CN20072042973U que describe el uso de más de un perfil monosimétrico para lograr una mayor eficiencia del acero empleado como refuerzo del hormigón. Anteriormente no se ha considerado la utilización de perfiles con sección monosimétrica . There are currently several construction procedures for land containment walls. One of them is the execution of a line of piles manufactured on site. The pile line divides the land into a part that is intended to be emptied, that is, an area to be emptied, and a part that is not desired to be emptied, that is, an area not excavated, which is the one that exerts a certain thrust on the retaining wall, which produces on the piles an asymmetric solicitation of actions in an MN representation (Moment-Axil). Piles with embedded profiles are usually executed by introducing, after the extraction of the cylindrical section of the earth (on-site execution), a metal profile with a section in the form of "double T", "I" or "H", with equal wings (doubly symmetrical), and adding the concrete later, or filling the hole made of concrete and subsequently introducing the metal profile. The only prior known by the applicant on the use of monosymmetric profiles in containment piles is the CN20072042973U patent that describes the use of more than one monosymmetric profile to achieve greater efficiency of the steel used as concrete reinforcement. Previously, the use of profiles with a monosymmetric section has not been considered.
OBJETO DE LA INVENCIÓN OBJECT OF THE INVENTION
El objeto de la presente invención es un pilote para la contención de tierras con un perfil metálico embutido caracterizado porque la sección del perfil es monosimétrica, de forma que permite optimizar la estructura de los muros de contención. En particular, el perfil embutido en el pilote propuesto posee una sección transversal cuyas dimensiones son inferiores a las soluciones actuales que emplean un perfil con sección bisimétrica de alas iguales, consiguiendo asi una importante reducción del material empleado y, por tanto, una mayor eficacia en el consumo de energía global. The object of the present invention is a pile for the containment of land with an embedded metal profile characterized in that the section of the profile is monosymmetric, so as to optimize the structure of the retaining walls. In particular, the profile embedded in the proposed pile has a cross section whose dimensions are smaller than the current solutions that employ a profile with bisimetric section of equal wings, thus achieving a significant reduction of the material used and, therefore, greater efficiency in The global energy consumption.
En la gran mayoría de obras de contención de tierras que utilizan pilotes de hormigón reforzados con perfiles metálicos embutidos, la aplicación de esta invención podría reducir la cantidad de material necesario para la fabricación de dichos perfiles teniendo en cuenta las solicitaciones reales a las que se encuentra sometido el muro de pilotes. Estas solicitaciones consisten en el empuje de tierras y a la acción introducida por elementos superiores, en el caso de que éstos existan. In the vast majority of land containment works that use reinforced concrete piles with embedded metal profiles, the application of this invention could reduce the amount of material necessary for the manufacture of such profiles taking into account the actual solicitations to which it is found submitted the pile wall. These solicitations consist of the thrust of lands and the action introduced by superior elements, in the event that they exist.
DESCRIPCIÓN DE LOS DIBUJOS Figura 1.— Muestra dos secciones transversales de perfiles laminados. La sección de la izquierda (A) es monosimétrica ya que sólo tiene un eje de simetría (el) . La sección de la derecha (B) es doblemente simétrica porque tiene dos ejes de simetría (el y e2) . DESCRIPTION OF THE DRAWINGS Figure 1.— Shows two cross sections of laminated profiles. The section on the left (A) is monosymmetric since it only has one axis of symmetry (el). The section on the right (B) is doubly symmetrical because it has two axes of symmetry (el and e2).
Figura 2.— Muestra una sección transversal de un pilote con perfil embutido doblemente simétrico. P representa el contorno del pilote, bf el ancho de las alas del perfil, f el grosor de las alas, tw el espesor del alma, h la altura nominal y hw la atura del alma. Figure 2.— Shows a cross section of a pile with a double-symmetrical embedded profile. P represents the outline of the pile, b f the width of the wings of the profile, f the thickness of the wings, t w the thickness of the soul, h the nominal height and h w the atura of the soul.
Figura 3.— Muestra una sección transversal de un pilote con perfil embutido monosimétrico, cuyas alas presentan anchos (bfi y bf2) distintos. Figure 3.— Shows a cross section of a pile with a monosymmetric embedded profile, whose wings have different widths (b f i and b f 2).
Figura 4.— Muestra una sección transversal de un pilote con perfil embutido monosimétrico cuyas alas presentan anchos (bfi y bf2) y espesores (tfi y tf∑) distintos Figure 4.— Shows a cross section of a pile with a monosymmetric embedded profile whose wings have different widths (b f i and b f 2) and thicknesses (t f iyt f∑ )
Figura 5.— Muestra la distribución de tensiones en la sección transversal definida mediante el ángulo Θ que separa las fibras fraccionadas de las comprimidas. Figure 5.— Shows the distribution of tensions in the cross-section defined by the angle frac that separates the fractionated fibers from the compressed.
Figura 6.— Muestra una representación de las distintas soluciones obtenidas en el proceso de optimización. En este diagrama se han unido los puntos correspondientes a la sección mínima de acero para cada valor de alma, hw. Figure 6.— Shows a representation of the different solutions obtained in the optimization process. In this diagram, the points corresponding to the minimum steel section for each core value, h w .
DESCRIPCIÓN DE LA INVENCIÓN En edificación y obra civil se denomina "perfil laminado" a un elemento metálico cuya sección transversal está constituida por varios rectángulos (denominados " chapas" ) . Según el número de chapas y su orientación relativa se obtienen distintos tipos de secciones transversales. Utilizando 2 chapas se obtienen perfiles con sección en T o en L;, mientras que utilizando 3 chapas se obtienen perfiles en forma de U, I, H, o Doble T. La unión entre estas chapas se realiza mediante acuerdos curvos. DESCRIPTION OF THE INVENTION In building and civil works, a laminated profile is called a metallic element whose cross section is made up of several rectangles (called "sheets"). Depending on the number of plates and their relative orientation, different types of cross sections are obtained. Using 2 plates, profiles with a T or L section are obtained; while using 3 plates, U, I, H, or Double T profiles are obtained. The connection between these plates is made by curved agreements.
Los perfiles laminados se producen a partir de la laminación en caliente de palanquillas o tochos hasta darle la conformación deseada. Entre sus características destaca su uniformidad estructural pues no presentan soldaduras o costuras y tienen un bajo nivel de acumulación de tensiones residuales localizadas. Se distinguen, básicamente en dos grandes familias : a.l. Perfiles de alas paralelas: Laminated profiles are produced from hot rolling of billet or billet until the desired shape is formed. Among its characteristics, its structural uniformity stands out because they do not have welds or seams and have a low level of accumulation of localized residual stresses. They are distinguished, basically in two large families: a.l. Parallel wing profiles:
Los perfiles de alas paralelas se producen en secciones tipo "I" y "H", también denominadas doble T. También se denominan "Perfiles IPE". Se caracterizan por tener alas perpendiculares al alma, de caras paralelas, rectilíneas y de espesor constante. En la presente invención el término "perfil con sección doble T" incluye al perfil cuya ala menor tenga un ancho igual al grosor del alma, o perfil en T . a.2. Perfiles de alas inclinadas:  Parallel wing profiles are produced in sections "I" and "H", also called double T. They are also called "IPE profiles". They are characterized by having wings perpendicular to the soul, with parallel, rectilinear faces and constant thickness. In the present invention the term "profile with double section T" includes the profile whose smaller wing has a width equal to the thickness of the soul, or T-profile. a.2. Sloped wing profiles:
Los perfiles de alas inclinadas se producen básicamente en secciones tipo "I", "U" y "L" y se caracterizan por tener los exteriores de las alas perpendiculares al alma, mientras las caras interiores de las alas presentan una inclinación respecto de la cara exterior, por lo que los espesores de las alas son decrecientes. The inclined wing profiles are basically produced in sections type "I", "U" and "L" and are characterized by having the outer wings of the wings perpendicular to the soul, while the inner faces of the wings have an inclination with respect to the outer face, whereby the thicknesses of the wings are decreasing.
En edificación y obra civil es también frecuente el empleo de vigas armadas, obtenidas uniendo varias chapas mediante soldadura o con tornillos. A lo largo de la invención se entenderá por "perfil monosimétri co" a un perfil (Fig 1, A), que presenta un único eje de simetría (el) a lo largo del alma del perfil, mientras que por "perfil doblemente simétrico" (Fig. 1, B) se entenderá a un perfil que presenta un segundo eje de simetría (e2) perpendiculares al anterior (el) . In construction and civil works the use of armed beams is also frequent, obtained by joining several plates by welding or with screws. Throughout the invention, "monosymmetric profile" means a profile (Fig. 1, A), which has a single axis of symmetry (el) along the soul of the profile, while "doubly symmetrical profile" (Fig. 1, B) it will be understood a profile that has a second axis of symmetry (e2) perpendicular to the previous one (el).
Los perfiles embutidos en pilotes que se utilizan habitualmente son perfiles de acero con un perfil de doble T doblemente simétrico cuyas alas tienen las mismas dimensiones de ancho (Fig. 2, w) y de espesor (Fig 2, tf) . The profiles embedded in piles that are commonly used are steel profiles with a double-symmetric double T profile whose wings have the same width (Fig. 2, w) and thickness (Fig 2, t f ) dimensions.
En la presente invención se propone un nuevo tipo de pilote que comprende un único perfil laminado monosimétrico embutido, de forma que las alas del perfil puedan tener distinto ancho (Fig. 4, Wi y W2) y/o distinto espesor (Fig. 5, tfi y tf2) , y cuyas dimensiones permiten reducir la cantidad de acero necesario sin que el pilote deje de resistir las solicitaciones requeridas. Las dimensiones del perfil se determinan utilizando el procedimiento de optimización objeto de la invención. Para ejecutar ese procedimiento se admite que el punto medio del alma del perfil embutido coincide con el centro del circulo de hormigón. Puesto que el acero está completamente embebido en la sección de hormigón no aparecerán inestabilidades y, por tanto, el agotamiento de la sección mixta hormigón-acero será plástico. La cantidad máxima y mínima de acero embutido se delimita a través del coeficiente de contribución definido en la normativa de estructura mixta (Eurocódigo 4) . In the present invention a new type of pile is proposed comprising a single embedded monosymmetric laminated profile, so that the wings of the profile can have different widths (Fig. 4, Wi and W2) and / or different thickness (Fig. 5, t f iyt f 2), and whose dimensions allow to reduce the amount of steel needed without the pile stop resisting the required solicitations. The dimensions of the profile are determined using the optimization method object of the invention. To execute this procedure, it is admitted that the midpoint of the core of the embedded profile coincides with the center of the concrete circle. Since the steel is completely embedded in the concrete section, instabilities will not appear and, therefore, the depletion of the mixed concrete-steel section will be plastic. The maximum and minimum quantity of embedded steel is defined by the contribution coefficient defined in the mixed structure regulations (Eurocode 4).
Las ecuaciones de resistencia aplicables a una sección transversal son muy conocidas. En ellas interviene las aportaciones resistentes tanto de la parte de como de la sección metálica embutida. Estas ecuaciones vienen dadas por las siguientes expresiones: The resistance equations applicable to a cross section are well known. In them the resistant contributions of both the part of and the embedded metal section intervene. These equations are given by the following expressions:
Nd=Nc(0) +Ns(0) N d = N c (0) + N s (0)
Eq. 1  Eq. one
Μά£{θ) +Μ5{θ) donde : Μ ά = Μ £ {θ) + Μ 5 {θ) where:
Nd es el axil de diseño N d is the design axil
Md es el momento flector de diseño M d is the design bending moment
Ν3(θ) y Μ3(θ) son el axil y flector resistidos por el hormigón, respectivamente Ν 3 (θ) and Μ 3 (θ) are the axil and flector weathered by concrete, respectively
Ν3(θ) y Ms (Θ) representan el axil y flector resistidos por el acero, respectivamente; y Θ es una variable que define el ángulo de la fibra que separa las partes comprimida y fraccionada de la sección transversal. (Figura 5) Ν 3 (θ) and M s (Θ) represent the axil and flector resisted by steel, respectively; and Θ is a variable that defines the angle of the fiber that separates the compressed and fractional parts of the cross section. (Figure 5)
Además, se han de tener en cuenta la normativa vigente y algunos condicionantes relativos al proceso constructivo: In addition, the current regulations and some conditions related to the construction process must be taken into account:
Es necesario elegir chapas manejables y que estén dentro de los estándares existentes. El recubriendo mínimo viene limitado por normativa. La cantidad de acero embutido también viene limitada por la normativa a través de una cota superior y otra inferior del factor de contribución, definido como: It is necessary to choose manageable plates and that are within the existing standards. The minimum coating is limited by regulations. The amount of embedded steel is also limited by the regulations through an upper and lower level of the contribution factor, defined as:
g_ Asfyd g_ A s f yd
Agfyd + Acfcd Agfyd + A c f cd
Siendo As el área de acero embebido, Ac el área de hormigón y fyd y fcd las resistencias de cálculo de acero y hormigón respectivamente. A s being the area of embedded steel, A c the area of concrete and f and d and f cd the calculation strengths of steel and concrete respectively.
Procedimiento de optimización Optimization procedure
Los parámetros involucrados en el procedimiento son: D diámetro de la sección de hormigón -pilote- fyd resistencia característica del hormigón The parameters involved in the procedure are: D diameter of the concrete section -pilot- f and d characteristic strength of the concrete
fcd resistencia característica del acero f cd characteristic strength of steel
tw espesor de la chapa del alma del perfil metálico t w sheet metal core thickness
Atw variación del espesor de la chapa del alma del perfil metálico en cada iteración (del bucle 1) At w variation of the thickness of the core of the metal profile in each iteration (of loop 1)
tfi y tf2 espesores de cada una de las alas del perfil metálico en cada iteración (del bucle 2) t f iyt f 2 thicknesses of each of the wings of the metal profile in each iteration (of loop 2)
Atfi y Atf2 variación de los espesores de las alas del perfil metálico At f i and At f 2 variation of the wings of the metal profile
Md Momento flector que solicita a la sección (valor de cálculo del momento flector) M d Bending moment requesting the section (calculation value of the bending moment)
Nd carga axil que solicita a la sección (valor de cálculo del axil) N d axil load requesting the section (calculation value of the axil)
bfi y bf2 anchos de las alas del perfil metálico b f i and bf2 wings of the metal profile wings
bfmax máximo valor del ancho del ala más grande para garantizar que el recubrimiento es el adecuado (el recubrimiento persigue proteger al acero de la corrosión y para ello el elemento metálico ha de quedar rodeado de hormigón) . b fma x maximum value of the width of the largest wing to ensure that the coating is adequate (the coating seeks to protect the steel from the corrosion and for this the metal element must be surrounded by concrete).
Abfi y Abf2 variación de los anchos de ambas alas del perfil metálico en cada iteración Ab f i and Ab f 2 variation of the widths of both wings of the metal profile in each iteration
hw altura del alma del perfil metálico. Toma valores entre d y D h w soul height of the metal profile. Take values between d and D
Ahw incremento de la altura del alma del perfil metálico hw min Valor mínimo de la altura del alma del perfil metálico El proceso de optimización viene definido por el siguiente razonamiento: para optimizar la capacidad de ambos materiales se dispondrá el ala más grande de la sección metálica, que requiere mayor cantidad de acero, en la parte fraccionada de la sección transversal y lo más alejada posible del centro de gravedad de la sección. Ah w increase in the height of the soul of the metal profile h w min Minimum value of the height of the soul of the metal profile The optimization process is defined by the following reasoning: to optimize the capacity of both materials, the largest wing of the metal section, which requires a greater amount of steel, in the fractional part of the cross section and as far as possible from the center of gravity of the section.
Así, para un pilote de diámetro D, dados los parámetros de resistencia del acero y del hormigón, fyd, y los valores de las acciones exteriores del diseño, Md y Nd, el procedimiento objeto comprende los siguientes pasos: Thus, for a pile of diameter D, given the strength parameters of steel and concrete, f and d , and the values of the external actions of the design, M d and N d , the object procedure comprises the following steps:
• Cálculo, para cada grupo de parámetros tw, hw, bfi, bf2, tfi y tf2, que determinan las dimensiones del perfil, seleccionados de entre un conjunto finito de parámetros, de los siguientes valores: • Calculation, for each parameter group t w , h w , b f i, b f 2, t f i and t f 2, which determine the profile dimensions, selected from a finite set of parameters, of the following values:
o Área del perfil  o Profile area
o Resistencia de la sección transversal del pilote  o Resistance of the cross section of the pile
o Factor de contribución.  o Contribution factor.
• Selección del conjunto de parámetros que, cumpliendo la solicitación definida y la normativa respecto al factor de contribución, ofrezcan el área de perfil mínima. En la práctica, el conjunto de parámetros tw, hw, bfi , bf2, tfi y tf2, estará determinado por las dimensiones de las chapas disponibles para la confección de los perfiles laminados. • Selection of the set of parameters that, fulfilling the defined request and the regulations regarding the contribution factor, offer the minimum profile area. In practice, the set of parameters t w , h w , b f i, b f 2, t f i and t f 2, will be determined by the dimensions of the sheets available for making laminated profiles.
En una realización particular del procedimiento, se fijan los valores tw, tfi y tf2 al inicio del proceso, de forma que los únicos parámetros que varían son el alto del alma y la anchura de las alas. Preferentemente, se considerará el espesor de las alas igual (tfi=tf2) In a particular embodiment of the method, the values t w fixing iyt t f f 2 at the beginning of the process, so that the only parameters that vary are the high soul and width of the wings. Preferably, the thickness of the wings will be considered equal (t f i = t f 2)
En una realización preferente, para un pilote de diámetro D, dados los parámetros de resistencia del acero y del hormigón, fyd, y los valores de las acciones exteriores del diseño, Md y Nd, el procedimiento comprende los siguientes pasos : In a preferred embodiment, for a pile of diameter D, given the strength parameters of steel and concrete, f and d , and the values of the external actions of the design, M d and N d , the procedure comprises the following steps:
Fijados los valores de tw, tfi y tf2, se ejecuta el siguiente subproceso: Once the values of t w , tfi and tf2 are set, the following thread is executed:
1. Se calcula el recubrimiento mínimo para obtener bfmax 1. The minimum coating is calculated to obtain b fmax
2. Se fijan bfi : = t„ , bf2 : = t„ y hw : = hw min 2. b f i: = t „, b f2 : = t„ yh w : = h w min
2.1. Se comprueba si el pilote cumple la solicitación.  2.1. It is checked if the pile meets the request.
2.1.1. El pilote no cumple con la solicitación. 2.1.1. The pile does not comply with the request.
2.1.1.1. Se incrementa el valor de bf2, f2:= bf2 + Abf2 . 2.1.1.1. The value of b f 2, f 2 is increased: = b f 2 + Ab f2 .
2.1.1.2. Si bf2 < bfmax, vuelve al paso 2.1 2.1.1.3. Si bf2 >= bfmax, se incrementa el valor de bfi , bfi : = bfi + Abfi y se define bf2:= tw. 2.1.1.2. If b f 2 <b fmax , go back to step 2.1 2.1.1.3. If bf2> = b fmax , the value of b f i is increased, b f i: = b f i + Ab f i and b f 2 is defined: = t w .
2.1.1.3.1. Si bfl < bfmax, vuelve al paso 2.12.1.1.3.1. If bfl <b fmax , go back to step 2.1
2.1.1.3.2. Si bfl >= bfmax ? se incrementa el valor de hw hw:= hw + Ahw se define bfi:= tw 2.1.1.3.2.1. Si hw <D , vuelve al paso 2.1. 2.1.1.3.2. If bfl> = b fmax? the value of h w h w : = h w + Ah w is defined b f i: = t w 2.1.1.3.2.1. If h w <D, return to step 2.1.
2.1.1.3.2.2. Si hw >= D, se finaliza el subproceso 2.1.2. El pilote cumple con la solicitación 2.1.1.3.2.2. If h w > = D, thread 2.1.2 is terminated. The pile meets the request
2.2. Se comprueba si el factor de contribución está entre los limites fijados por normativa. 2.2. It is checked if the contribution factor is within the limits set by regulations.
2.2.1. Si el factor de contribución está entre los limites fijados por la normativa, se almacenan las dimensiones del perfil.  2.2.1. If the contribution factor is within the limits set by the regulations, the profile dimensions are stored.
2.2.2. En caso negativo, se incrementa el valor de hw, hw:= hw + Δη„ y se define bfi : = tw y bf2:= tw, y se vuelve al paso 2.1 2.2.2. If not, increase the value of h w , h w : = h w + Δη „and define b f i: = t w and b f2 : = t w , and return to step 2.1
Una vez finalizado el subproceso, se modifican los valores de tfi, tf2 y/o tw, volviéndose a ejecutar el subproceso para los nuevos valores. De entre las soluciones almacenadas, se elige aquella que tenga menor área. Once the thread is finished, the values of tfi, tf 2 and / ot w are modified, and the thread is re-executed for the new values. Among the stored solutions, the one with the smallest area is chosen.
Opcionalmente , los datos almacenados se pueden representar gráficamente como área total de acero versus altura del alma en una de forma que se puedan visualizar todas las posibles soluciones. A partir de esta representación RSD se puede decidir el perfil óptimo a embutir teniendo en cuenta otros factores En una variante de realización, el alma de la viga puede ser sustituida por un conjunto de barras de acero soldadas a las almas, también denominado celosía. El método de cálculo que se aplica para dimensionar el perfil de una viga de acero es también válido para dimensionar una celosía de este tipo. Optionally, the stored data can be plotted as a total area of steel versus height of the soul in one so that all possible solutions can be visualized. From this RSD representation, the optimal profile to be embedded can be decided taking into account other factors. In a variant embodiment, the beam core can be replaced by a set of steel bars welded to the souls, also called latticework. The calculation method that is applied to size the profile of a Steel beam is also valid for sizing such a lattice.
En el caso en el que el muro pantalla se realice con losa encima, el ala de mayor área (espesor χ ancho) se concentra en la parte que no da a tierras, mientras que el caso de muro de contención en voladizo, el ala de mayor área se concentra en la parte que está en contacto con la tierra contenida . In the case where the screen wall is made with slab on top, the wing of greater area (thickness χ width) is concentrated in the part that does not give land, while the case of cantilever retaining wall, the wing of Greater area is concentrated in the part that is in contact with the contained earth.
El proceso que aquí se plantea es directamente aplicable perfiles laminados de alas paralelas y a vigas armadas. En el caso de perfiles laminados de alas inclinadas, puesto que los espesores no son constantes, habría que adaptar ligeramente el procedimiento ya que la asimetría, y el consiguiente ahorro de material, se obtendría recortando una de las alas del perfil (es decir, reduciendo su ancho) . The process presented here is directly applicable laminated profiles of parallel wings and reinforced beams. In the case of rolled profiles of inclined wings, since the thicknesses are not constant, the procedure would have to be adapted slightly since the asymmetry, and the consequent saving of material, would be obtained by cutting one of the wings of the profile (that is, reducing its width)
REALIZACIÓN PREFERENTE DE LA INVENCIÓN PREFERRED EMBODIMENT OF THE INVENTION
La realización preferente de la consiste en un pilote (16) con un perfil embutido monosimétrico donde las alas del perfil no son iguales e incluso puede ser una T si una de las alas no es necesaria. The preferred embodiment consists of a pile (16) with a monosymmetric embedded profile where the wings of the profile are not equal and can even be a T if one of the wings is not necessary.
Pilote con perfil monosimétrico embutido que resiste un momento flector de 515kN.m El siguiente ejemplo muestra el dimensionamiento de un pilote de 600mm de diámetro para resistir un momento flector de 515 kN-m. Pile with embedded monosymmetric profile that resists a bending moment of 515kN.m The following example shows the dimensioning of a pile with a diameter of 600mm to resist a bending moment of 515 kN-m.
Las condiciones consideradas son: Diámetro del pilote: 600 mm The conditions considered are: Pile diameter: 600 mm
Resistencia del Hormigón: fCk= 30 MPa Concrete Resistance: f Ck = 30 MPa
Resistencia del Acero: fyk= 235 MPa Steel Strength: f and k = 235 MPa
Solicitación a resistir es: Nd=0 y Md Request to resist is: N d = 0 and M d
En este caso, se fija el espesor del alma del perfil: tw=10.2 mm, que no variará a lo largo del proceso. In this case, the thickness of the profile core is set: t w = 10.2 mm, which will not vary throughout the process.
También se considera que el espesor de ambas alas del perfil metálico es igual, tf=tfi=tf2 y variará entre 10.2 mm y 2tw con pasos de 2mm. Es decir, Atfi = Atf2= 2 mm. It is also considered that the thickness of both wings of the metal profile is equal, t f = t f i = t f 2 and will vary between 10.2 mm and 2t w with 2mm steps. That is, At f i = At f 2 = 2 mm.
La altura del alma del perfil metálico, hw, se inicializa en 100 mm y variará con pasos de 25 mm. Es decir, hw min =100mm y Ahw=25mm. The height of the metal profile core, h w , is initialized at 100 mm and will vary with 25 mm steps. That is, h wm i n = 100mm and Ah w = 25mm.
Para cada combinación de anchos de alas, bfi y bf2 se calcula la resistencia de la sección, M. Si dicha resistencia es mayor que Md=515 kN*m, se almacena el vector que contiene las dimensiones del perfil, la resistencia obtenida y el área del perfil (hw, bfi , bf2 , tf , M , A, ) . For each combination of wing widths, bfi and bf2 the section resistance is calculated, M. If said resistance is greater than M d = 515 kN * m, the vector containing the dimensions of the profile, the resistance obtained and the profile area (h w , bfi, bf2, t f , M, A,).
Una vez finalizado el procedimiento se podría determinar el perfil que, cumpliendo con la normativa, ofrece el menor área y, por consiguiente, requiera el menos acero. Once the procedure is finished, the profile that, complying with the regulations, offers the smallest area and, therefore, requires the least steel could be determined.
No obstante, la elección final del perfil a utilizar depende de otros factores por lo que, para facilitar la elección se pueden presentar distintas opciones para cada espesor de las alas de ala o para determinadas alturas However, the final choice of the profile to be used depends on other factors so, to facilitate the choice, different options can be presented for each wing wing thickness or for certain heights
Para ello basta con representar las distintas soluciones en una gráfica donde el eje de abscisas representa alguno de los parámetros que influirán en la elección y el eje de ordenadas representa el área del perfil. For this, it is enough to represent the different solutions in a graph where the axis of abscissa represents some of the parameters that will influence the choice and the ordinate axis represents the area of the profile.
En la figura 6 se puede ver un conjunto de soluciones obtenidas de forma que el eje de abscisas representa la altura del alma del perfil. In figure 6 you can see a set of solutions obtained so that the axis of abscissa represents the height of the soul of the profile.
Para este ejemplo concreto, las dimensiones óptimas en función del tipo de perfil, son: For this specific example, the optimal dimensions depending on the type of profile are:
Figure imgf000014_0001
Figure imgf000014_0001
Se puede observar que el pilote objeto de la invención puede ahorrar una cantidad significante de acero respecto del perfil doblemente simétrico tradicionalmente empleado (10 % en el caso del perfil monosimétrico y 16.6 % en el caso del perfil en T) . It can be seen that the pile object of the invention can save a significant amount of steel with respect to the doubly symmetrical profile traditionally used (10% in the case of the monosymmetric profile and 16.6% in the case of the T-profile).

Claims

REIVINDICACIONES 1.- Pilote para contención de tierras, que comprende un único perfil laminado monosimétrico embutido en su interior . CLAIMS 1.- Pile for containment of land, which comprises a single monosymmetric laminated profile embedded inside.
2. - Pilote para contención de tierras según la reivindicación 1, caracterizado porque los anchos de las alas del perfil son diferentes. 2. - Pile for containment of land according to claim 1, characterized in that the widths of the wings of the profile are different.
3. - Pilote para contención de tierras según la reivindicaciones 1 o 2, caracterizado porque los espesores de las alas del perfil son diferentes. 3. - Pile for containment of land according to claims 1 or 2, characterized in that the thicknesses of the wings of the profile are different.
PCT/ES2014/070155 2014-02-28 2014-02-28 Pile having a profile with a monosymmetric cross-section for retaining land WO2015128515A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
ES201590135A ES2563214B1 (en) 2014-02-28 2014-02-28 PILOT WITH MONOSYMMETRIC SECTION PROFILE FOR GROUND CONTAINMENT
PCT/ES2014/070155 WO2015128515A1 (en) 2014-02-28 2014-02-28 Pile having a profile with a monosymmetric cross-section for retaining land

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/ES2014/070155 WO2015128515A1 (en) 2014-02-28 2014-02-28 Pile having a profile with a monosymmetric cross-section for retaining land

Publications (1)

Publication Number Publication Date
WO2015128515A1 true WO2015128515A1 (en) 2015-09-03

Family

ID=54008217

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2014/070155 WO2015128515A1 (en) 2014-02-28 2014-02-28 Pile having a profile with a monosymmetric cross-section for retaining land

Country Status (2)

Country Link
ES (1) ES2563214B1 (en)
WO (1) WO2015128515A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5988537A (en) * 1982-11-10 1984-05-22 Sekisui Plastics Co Ltd Drawing work of steel member for pillar-row sheathing
US4585678A (en) * 1984-07-11 1986-04-29 Kabushiki Kaisha Ask Kenkyusho Steel sheet pile, sheet pile assembly thereof and the method of constructing the assembly
EP1400633A2 (en) * 2002-09-19 2004-03-24 Sigma Consult GmbH Drill head
EP1418277A1 (en) * 2002-11-06 2004-05-12 Chiaverotti BVBA Method for constructing a retaining wall

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5988537A (en) * 1982-11-10 1984-05-22 Sekisui Plastics Co Ltd Drawing work of steel member for pillar-row sheathing
US4585678A (en) * 1984-07-11 1986-04-29 Kabushiki Kaisha Ask Kenkyusho Steel sheet pile, sheet pile assembly thereof and the method of constructing the assembly
EP1400633A2 (en) * 2002-09-19 2004-03-24 Sigma Consult GmbH Drill head
EP1418277A1 (en) * 2002-11-06 2004-05-12 Chiaverotti BVBA Method for constructing a retaining wall

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Week 200428, Derwent World Patents Index; Class q42, AN 2004-296983, RETRIEVED *
DATABASE WPI Week 200433, Derwent World Patents Index; Class q42, AN 2004-349819 *

Also Published As

Publication number Publication date
ES2563214B1 (en) 2016-12-27
ES2563214A1 (en) 2016-03-11

Similar Documents

Publication Publication Date Title
Yáñez et al. Behavior of confined masonry shear walls with large openings
Hechler et al. Continuous shear connectors in bridge construction
Sadek et al. Seismic performance of masonry walls with GFRP and Geogrid Bed joint reinforcement
Chen et al. Axial compressive behavior of through-beam connections between concrete-filled steel tubular columns and reinforced concrete beams
Patel et al. Analysis of CFT, RCC and steel building subjected to lateral loading
Orr et al. Design methods for flexibly formed concrete beams
WO2015128515A1 (en) Pile having a profile with a monosymmetric cross-section for retaining land
JP2003041708A (en) Member for structure
Filatov Evaluation of punching shear strength of flat slabs supported on rectangular columns
CN205822823U (en) A kind of Hollow Block Masonry Structure Anti-seismic ruggedized construction
Dancygier et al. Probabilistic model of the crack localization in axially loaded fibrous reinforced concrete bars
Kvočák et al. Analysis of encased steel beams with hollow cross-sections
JP6646206B2 (en) Joint structure of RC members
CN105369892B (en) A kind of steel tube concrete superposed frame structure system
Refaei et al. Seismic behavior of sandwich panel walls
Yang et al. Behavior of a novel circular HSC column with double high strength spirals
EP3158138A1 (en) A joint between beam elements and column elements made of prefabricated reinforced concrete
Oh et al. Experimental study on reinforced concrete column incased in prefabricated permanent thin-walled steel form
RU169617U1 (en) STEEL CONCRETE COMPOSITION BEAM
JP2017115371A (en) Steel pipe reinforcement structure and reinforcement method of steel pipe
RU2602251C1 (en) Reinforcement bar of periodic profile
RU2719678C1 (en) Method of increasing bearing strength of reinforced-stone masonry
Gorle et al. Optimum performance of diagrid structure
Singh et al. Use of Complex Iterative Method in Structural Design
JP5431213B2 (en) Concrete wall frame, building having the concrete wall frame, and concrete wall frame design method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14883857

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: P201590135

Country of ref document: ES

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14883857

Country of ref document: EP

Kind code of ref document: A1