WO2015126169A2 - Combustion additive composition of solid fuel and method for using same - Google Patents

Combustion additive composition of solid fuel and method for using same Download PDF

Info

Publication number
WO2015126169A2
WO2015126169A2 PCT/KR2015/001646 KR2015001646W WO2015126169A2 WO 2015126169 A2 WO2015126169 A2 WO 2015126169A2 KR 2015001646 W KR2015001646 W KR 2015001646W WO 2015126169 A2 WO2015126169 A2 WO 2015126169A2
Authority
WO
WIPO (PCT)
Prior art keywords
weight
parts
combustion
solid fuel
magnesium
Prior art date
Application number
PCT/KR2015/001646
Other languages
French (fr)
Korean (ko)
Other versions
WO2015126169A3 (en
Inventor
류해윤
한진욱
한광수
길현호
Original Assignee
디에스티주식회사
한국남동발전 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 디에스티주식회사, 한국남동발전 주식회사 filed Critical 디에스티주식회사
Publication of WO2015126169A2 publication Critical patent/WO2015126169A2/en
Publication of WO2015126169A3 publication Critical patent/WO2015126169A3/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L9/00Treating solid fuels to improve their combustion
    • C10L9/10Treating solid fuels to improve their combustion by using additives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L10/00Use of additives to fuels or fires for particular purposes
    • C10L10/04Use of additives to fuels or fires for particular purposes for minimising corrosion or incrustation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2200/00Components of fuel compositions
    • C10L2200/02Inorganic or organic compounds containing atoms other than C, H or O, e.g. organic compounds containing heteroatoms or metal organic complexes
    • C10L2200/0204Metals or alloys
    • C10L2200/0209Group I metals: Li, Na, K, Rb, Cs, Fr, Cu, Ag, Au
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2200/00Components of fuel compositions
    • C10L2200/02Inorganic or organic compounds containing atoms other than C, H or O, e.g. organic compounds containing heteroatoms or metal organic complexes
    • C10L2200/0204Metals or alloys
    • C10L2200/0213Group II metals: Be, Mg, Ca, Sr, Ba, Ra, Zn, Cd, Hg
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2270/00Specifically adapted fuels
    • C10L2270/04Specifically adapted fuels for turbines, planes, power generation

Definitions

  • the present invention relates to a combustion additive composition of a solid fuel and a method of using the same, and more particularly, to prevent slag and fouling generated during the combustion of a solid fuel such as coal that can be used in a thermal power plant.
  • the present invention relates to a combustion additive composition of a solid fuel and a method of using the same, which are capable of delivering oxygen well even under combustion conditions in which oxygen is insufficient.
  • the minerals in the coal are not combusted but are coaled, and some or all of them are discharged along the gas stream in a molten state in a region higher than the melting point, before the boiler tube is radiated. It can solidify and adhere to the hot surface to form slag.
  • the alkali and volatile components in the ash are volatilized and condensed on the convective heat transfer surface such as superheater and reheater together with fly ash in the combustion gas to form fouling to corrode the heat transfer surface and to flow the combustion gas into the heat transfer surface. The worse the heat transfer, the lower the thermal efficiency, and in the worst case, the attached coal ash may fall and cause a tube rupture accident.
  • Korean Patent Laid-Open Publication No. 10-2012-0049000 discloses a technique in which a complex metal chelate compound composed of a metal such as Mg, Ca, Mn, Zn, Al and an alkali metal is used as a combustion catalyst composition. It is also described in accordance with the Patent Publication No. 10-0761065 provides a fuel additive that buys hydrogen peroxide, silicate, borax, sodium hydroxide as a composition.
  • alkali metals can increase the combustion efficiency because they assist in the activation of carbon, but in the case of containing alkali metals, they still remain in coal ash after combustion, which still leads to the possibility of causing slag or fouling problems. Done.
  • Coal ash is present in various types of coal, and it is known that SiO 2 , Al 2 O 3 , Na 2 O, Fe 2 O 3 , K 2 O, CaO, MgO, TiO 2 , and SO 3 are present.
  • materials that cause slagging and fouling are known as Fe 2 O 3 , KO, NaO, SO 3 , and the like.
  • components such as Na 2 O, K 2 O, CaO, MgO and the like are known to exist in a state in which silica and alumina are combined.
  • SO 3 which is a sulfuric acid component among the acidic compounds present in coal ash, is highly reactive with basic compounds of coal ash. Therefore, the basicity is easily converted to a large Na 2 O, K 2 O, and the reactivity is strong, low melting Na 2 SO 4, K 2 SO 4 is the primary cause of the slagging or fouling.
  • chlorine (Cl) component in coal, the more slagging and fouling may occur.
  • the chlorine component can be converted into hydrochloric acid during coal combustion, which reacts with the iron component of the heat exchanger and the surface of the iron chloride Is switched to.
  • the iron chloride is converted to iron oxide by the oxygen for combustion to form an iron oxide film.
  • the Na 2 SO 4 , K 2 SO 4 materials mentioned above reach the iron oxide film, and Na 3 Fe (SO 4 ) 3 and K 3 Fe (SO 4 ) 3 may be formed. Because of their low melting point, these materials exist as viscous liquids on the boiler tube surface, causing them to flow down to the bottom of the boiler where they cannot reach the heat, causing them to cool down and form a very large mass of bottom ash. Therefore, it is important to minimize the generation of Na 2 SO 4 , K 2 SO 4 which are sulfates of the alkali metal.
  • a catalyst system having a function of absorbing oxygen in an oxygen-rich region and releasing oxygen in an insufficient region is required.
  • Combustion assisted catalyst systems of this concept include CuO—Fe 2 O 3 [Baowon Wang, et. al., Procedia Engineering 16 (2011) 48-53], NiO / Al 2 O 3 [Laihong Shen, et, al., Coumbustion and Flame 156 (2009) 1377-1385], and the like. Problems have been reported.
  • the alkali metal may increase the combustion efficiency because it helps the activation of carbon, but may remain in the coal ash after combustion, causing a problem of slag or fouling.
  • Na 2 O which does not adhere to inorganic matters, readily reacts with silica and converts into water glass with a lower melting point.
  • low-melting compounds such as Na 2 SO 4 , which is a low-melting compound, are easily produced by reacting with sulfurous acid gas. Therefore, they have a possibility of becoming a major cause of slag and fouling.
  • K 2 O a coal ash produced by the combustion of inorganic components in coal, easily produces low melting point compounds such as K 2 SO 4 or K 3 Fe (SO 4 ) 3 .
  • the low melting point compound is a major factor material that causes slagging and fouling.
  • the present invention facilitates the absorption and release of oxygen and may have a function of releasing oxygen in the region lacking oxygen to prevent slag and fouling by increasing the temperature of the melting point and excellent desulfurization performance It is to provide a combustion additive composition of a solid fuel having a combustion method and a solid fuel using the same.
  • the present invention provides a combustion additive composition of a solid fuel comprising 0.1 to 20 parts by weight of copper precursor and 10 to 300 parts by weight of magnesium precursor, based on 100 parts by weight of water.
  • the magnesium precursor may include magnesium hydroxide
  • the content of the magnesium hydroxide may include 10 to 100 parts by weight with respect to 100 parts by weight of water.
  • the combustion additive composition may include particles having copper hydroxide coated on the surface of magnesium hydroxide.
  • the magnesium precursor may further include magnesium nitrate in addition to magnesium hydroxide, and the additionally included magnesium precursor may be 1 to 100 parts by weight of 100 parts by weight of water.
  • the copper precursor may be any one selected from copper nitrate, copper sulfate, copper chloride or a mixture thereof.
  • the combustion additive composition may be included in an amount of 0.5 parts by weight or less based on 100 parts by weight of water.
  • the combustion additive composition may be added 0.0001 ⁇ 2 parts by weight to 100 parts by weight of the solid fuel.
  • the present invention also provides a solid fuel comprising 10 to 100 parts by weight of magnesium hydroxide powder having a specific surface area of 5 to 80 m 2 / g, 0.1 to 20 parts by weight of copper precursor, and 10 to 100 parts by weight of magnesium nitrate, based on 100 parts by weight of water.
  • a combustion additive composition comprising 10 to 100 parts by weight of magnesium hydroxide powder having a specific surface area of 5 to 80 m 2 / g, 0.1 to 20 parts by weight of copper precursor, and 10 to 100 parts by weight of magnesium nitrate, based on 100 parts by weight of water.
  • the present invention also adds 0.0001 to 2 parts by weight of the combustion additive composition described above to 100 parts by weight of the solid fuel, and then injects the solid fuel injected with the combustion additive composition after the injection into the solid fuel. To provide.
  • the combustion additive composition of the solid fuel obtained in the present invention can prevent slag and fouling that may be formed in a combustion furnace or a boiler or a pipe during the combustion of solid fuel such as coal, has excellent desulfurization performance, and also has oxygen In the region lacking, it may have a function of releasing oxygen, thereby increasing the combustion efficiency.
  • 1 is a diagram showing the results of TGA analysis showing the effect of copper oxide in the present invention.
  • Figure 2a is a SEM analysis of the dried composition obtained by the embodiment of the present invention
  • Figure 2b) is an EDX analysis of the composition.
  • the present invention provides a combustion additive composition of a solid fuel comprising 0.1 to 20 parts by weight of copper precursor and 10 to 300 parts by weight of magnesium precursor based on 100 parts by weight of water.
  • the copper precursor as the first component of the combustion additive composition of the solid fuel may form copper oxide by combining with oxygen contained in the air under oxidizing conditions including air at high temperature, which is the combustion condition of the solid fuel. If it is, the type is not limited.
  • CuO was found to be the most useful material. Therefore, it is easily understood that the material capable of easily releasing oxygen under combustion conditions is CuO.
  • FIG. 1 shows the TGA analysis results.
  • CuO—Fe 2 O 3 a material known as a combustion catalyst [Baowen Wang, et. al., Procedia Engineering 16], it was difficult to prove the effect of iron oxide as a result of observing the oxygen release by mixing the two materials. Therefore, it is easily understood that the material capable of easily releasing oxygen under reducing conditions is CuO.
  • the copper oxide component serves to supply oxygen to oxygen-deficient materials by releasing oxygen as the second copper oxide is converted to the first copper oxide in the reduction zone during coal combustion.
  • CuSO 4 is first formed on the surface, which is easily decomposed at 560 °C.
  • the decomposition products are converted into copper oxide and SO 3, and SO 3 is converted by reaction with added magnesium component of magnesium oxide (MgO) of the components of which will be described later with the use of magnesium sulfate (MgSO 4).
  • MgO magnesium oxide
  • reverse reaction does not proceed and magnesium oxide (MgO) is consumed.
  • copper oxide reacts with sulfurous acid gas and is easily converted to sulfuric acid gas, copper oxide has a desulfurization function in a combustion furnace, so it is suitable for use as a dry desulfurization agent.
  • the part which can substantially act as a catalyst for the solid fuel may be copper oxide, but the copper oxide (CuO) is less dispersible in the solid fuel because of its low solubility in water, so It is necessary to use a material having high solubility as a precursor.
  • CuO copper oxide
  • the copper precursor may be a copper salt compound including copper, and preferably, any one or a mixture thereof may be selected from copper nitrate, copper sulfate, and copper chloride.
  • the copper precursor is sprayed with water on solid fuel such as coal, so that the solid fuel containing the copper precursor can be converted to copper oxide under combustion conditions, the copper oxide can facilitate the absorption and release of oxygen. Function.
  • combustion at a temperature of about 1000 ° C. in a combustion power plant in a thermal power plant often lacks oxygen, and locally burned oxygen and rich regions coexist while burning solid fuel. In this case, incomplete combustion is performed in the region where oxygen is insufficient, so efficient oxygen supply is required.
  • copper (II) becomes copper oxide (I) in the reduction region, and thus it is effective to burn oxygen.
  • CuSO 4 is first formed on the surface, which is easily decomposed at 560 ° C.
  • the decomposition products are converted into copper oxide and SO 3, and SO 3 will react with the MgO it is converted to MgSO 4. In the case of this reaction, the reverse reaction does not proceed and MgO is consumed.
  • copper oxide since copper oxide reacts with sulfurous acid gas and is easily converted to sulfuric acid gas, copper oxide has a desulfurization function in a combustion furnace, so it is suitable for use as a dry desulfurization agent.
  • the composition ratio of the content of the copper precursor is preferably in the range of 0.1 to 20 parts by weight based on 100 parts by weight of water.
  • copper nitrate (Cu (NO 3 ) 2 ) may be preferably used among the copper precursors.
  • the copper sulfate may be reactive with alkali metals to cause slag and fouling, and copper chloride may include chlorine ion or chlorine gas after combustion.
  • copper chloride may include chlorine ion or chlorine gas after combustion.
  • the surface may be converted to iron chloride by reacting with the iron component in the pipe, so that the iron oxide film may be formed by conversion to iron oxide by oxygen in the combustion air, but this may not be a problem depending on the combustion conditions of the combustion furnace. It may be.
  • the copper nitrate dissolves well in an aqueous solution, and when the aqueous solution is sprayed under a high temperature and oxygen atmosphere, nanoparticles are formed, and thus the CuO activity is greatly increased.
  • the copper nitrate content that can be used in the present invention is preferably in the range of 0.1 to 20 parts by weight based on the water used as the solvent.
  • 0.1-20 weight part of copper precursors can be used with respect to 100 weight part of water, Preferably 0.2-15 weight part can be used.
  • the content of the copper precursor is lower than 0.1 parts by weight, the oxygen release effect due to the copper precursor is insignificant, and when the content of the copper precursor is higher than 20 parts by weight, the economical efficiency is lowered, the above range is preferable.
  • Copper oxide finally reacts with silica and is converted to copper silicate, resulting in higher crystallinity than viscous materials in coal ash. As a result, the viscosity of the particles is reduced, so that the aggregation of particles is reduced, so that a large amount of coal ash does not occur.
  • Magnesium precursor may be used as the second component of the combustion additive composition of the solid fuel of the present invention.
  • Alkaline metals may be added and used to remove sulfur compounds present in the coal ash more efficiently.
  • Magnesium or calcium can be used for this purpose, but magnesium oxide as a magnesium component can be easily reacted with SO 3 and converted to high melting point MgSO 4 to control slagging or fouling.
  • the pre-generated Na 2 SO 4 may also be converted to MgSO 4 , thus remaining at the level of surface corrosion and alleviating serious slagging problems.
  • the calcium component as another alkaline metal component may cause gypsum formation, which may cause another fouling problem, and thus the magnesium component is preferable.
  • the magnesium precursor is not limited as long as the magnesium precursor can form magnesium oxide by combining with oxygen contained in the air under oxidizing conditions including air at high temperature, which is a combustion condition of solid fuel.
  • the role of the magnesium precursor is used to effectively remove sulfur compounds such as sulfur nitrous oxide which may be generated after combustion of the solid fuel.
  • the magnesium precursor is a magnesium compound containing magnesium, magnesium oxide, magnesium hydroxide, magnesium nitrate, magnesium sulfate, magnesium carbonate and the like can be used, in the present invention, any one or a mixture thereof can be used, preferably Preferably, magnesium hydroxide may be used as the magnesium precursor.
  • the magnesium precursor may exhibit some degree of desulfurization performance when used alone without using a copper precursor, but may not satisfy the effects of slagging and fouling, and reducing coal, carbon monoxide, sulfur dioxide, and sulfuric acid gas.
  • the magnesium hydroxide may be used only with magnesium hydroxide or a copper precursor, or may be used by mixing any one compound of the magnesium hydroxide with magnesium oxide, magnesium hydroxide, magnesium nitrate, magnesium sulfate, and magnesium carbonate. .
  • the magnesium hydroxide used in this case can use what has a specific surface area in the range of 3-150m ⁇ 2> / g, Preferably it can use what exists in the range of 5-80m ⁇ 2> / g.
  • Magnesium hydroxide is inexpensive in terms of price, and it is easy to discharge by dissolving magnesium sulfate, a product obtained by desulfurization, in an aqueous solution phase, and the absorbent liquid has weak alkalinity, which is low in corrosiveness and thus damages the combustion furnace or boiler tube. It has the advantage of being reduced.
  • the magnesium component of the magnesium hydroxide component serves to increase the IDT (melting point) of the inorganic material, it can be used for combustion by combining in the form of a complex ion with the alkali metal in the ionic state.
  • hydroxide-based compounds of metal components increase combustion efficiency by increasing carbon conversion efficiency as hydroxide is decomposed during combustion, and lowers its melting point when alumina oxide is contained in solid fuel during combustion. By removing the fusion or suppressing the formation can reduce the slag and fouling.
  • the content of the magnesium precursor that can be used in the present invention may be used 10 to 200 parts by weight, preferably 15 to 150 parts by weight based on 100 parts by weight of water.
  • magnesium hydroxide when magnesium hydroxide is mixed with magnesium precursor other than magnesium hydroxide as a magnesium precursor, any one of magnesium oxide, magnesium hydroxide, magnesium nitrate, magnesium sulfate, and magnesium carbonate may be used as a precursor other than magnesium hydroxide. This can be used.
  • the amount of each precursor used is 10 to 100 parts by weight of magnesium hydroxide and 10 to 200 parts by weight of magnesium precursor other than magnesium hydroxide, based on 100 parts by weight of water. Can be used.
  • magnesium nitrate may be used as the magnesium precursor other than the magnesium hydroxide.
  • the copper precursor or magnesium precursor used in the present invention may be used in the form of a hydrate or in the form of an anhydride.
  • the content of the copper precursor or magnesium precursor used in this case is determined based on the anhydride except for the coordinated H 2 O molecules.
  • magnesium nitrate When magnesium nitrate is additionally included in the combustion additive composition according to the present invention, the magnesium nitrate is decomposed at high temperature to convert MgO and NOx, and MgO is converted to MgSO 4 , which is a high melting point, by reacting with SO 3, and NOx is reacted with CO Can be converted to nitrogen and carbon dioxide. At this time, since NO 3 acts as an oxygen provider, it can give an excellent effect of suppressing the production of coal briquettes than using ordinary magnesium oxide.
  • magnesium nitrate is used in the above range, the effect is increased, but it is not preferable to use it alone for economic reasons.
  • the solid fuel in the present invention can be burned to further include 3 to 50 parts by weight of fatty acid ester and 5 to 30 parts by weight of liquid paraffin based on 100 parts by weight of the combustion additive composition.
  • Fatty acid ester and liquid paraffin added to the solid fuel lowers the ignition temperature of the fuel to help the initial ignition, and serves to improve the calorific value of the fuel, stabilize the reaction of the fuel and the combustion state in the combustion chamber.
  • the fatty acid ester may be a methyl ester of vegetable oil selected from soybean oil, rapeseed oil, palm oil, sunflower oil or corn oil.
  • the methyl ester of the vegetable oil may further include a pitch oil generated during the production of biodiesel oil using the vegetable oil.
  • the content of the fatty acid ester and the liquid paraffin may have a range of 3 to 50 parts by weight of fatty acid ester and 5 to 30 parts by weight of liquid paraffin based on 100 parts by weight of the combustion additive composition, but is not limited thereto.
  • the combustion additive composition may include 5 to 30 parts by weight of fatty acid esters and 5 to 20 parts by weight of liquid paraffin.
  • the type of solid fuel used in the present invention is generally a solid fuel used in a thermal power plant, and is not limited to a specific type of solid fuel.
  • coal for example, as the type of solid fuel that can be used in the present invention, there are coal, coke, and the like, of which coal is most used. Coal is classified into carbonaceous anthracite, volatile bituminous coal and lignite, depending on the degree of carbonization. Bituminous coal is an effective fuel for power generation because its calorific value is lower than that of anthracite.
  • the components of these solid fuels mainly include carbon, hydrogen, oxygen, and other heteroatoms such as nitrogen and sulfur, and other inorganic substances.
  • the sulfur component is likely to be converted to sulfur dioxide or sulfuric acid gas after combustion, and thus an effective suppression thereof is required.
  • the precursor components of the combustion additive composition in the present invention may be used dissolved or dispersed in water.
  • the combustion additive composition in the present invention may be used 0.0001 ⁇ 2 parts by weight, more preferably 0.0005 ⁇ 1.5 parts by weight, 100 parts by weight of solid fuel Preferably 0.001 to 1.2 parts by weight can be used.
  • the combustion additive composition When the combustion additive composition is used less than 0.0001 parts by weight, the effect is negligible at the time of combustion and when used more than 2 parts by weight it is economically disadvantageous to have a content in the above range.
  • the combustion additive composition of the present invention may be prepared by using the combustion additive composition of solid fuel using 10 to 100 parts by weight of magnesium hydroxide powder, 0.1 to 20 parts by weight of copper precursor, and 10 to 100 parts by weight of magnesium nitrate based on 100 parts by weight of water. I can make it.
  • the specific surface area of the magnesium hydroxide may have a range of 5 to 80 m 2 / g.
  • a copper oxide (CuO) component in order to introduce a copper oxide (CuO) component to the combustion additive composition of the present invention, when copper nitrate (Cu (NO 3 ) 2 ) is added to a slurry obtained by dispersing magnesium hydroxide in water as a precursor component, magnesium hydroxide Copper precursors are adsorbed to the particles.
  • CuO copper oxide
  • Cu (NO 3 ) 2 copper nitrate
  • magnesium hydroxide Copper precursors are adsorbed to the particles.
  • magnesium hydroxide particles (Mg (OH) 2 ) are dissolved in water in a small amount of about 0.0014g / 100ml to release hydroxyl groups. At this time, the released hydroxyl groups cause exchange reaction with nitro anions of Cu (NO 3 ) 2 . . Cu (OH) 2 is automatically coated on the surface of magnesium hydroxide to adsorb copper. Copper oxide made in this way has a great synergistic effect on the formation of copper oxide catalyst, desulfurization, and silica copper together with magnesium oxide.
  • the slurry has a feature that easily sinks, if the material such as a cellulose-based viscosity modifier is applied to 0.5 parts by weight or less can be obtained dispersion stability.
  • combustion additive composition in the present invention can be used as a dispersed form injected into a solid fuel.
  • the combustion additive composition may be sprayed onto a solid fuel such as coal and uniformly dispersed in a large area, and then burned in a combustion chamber.
  • the combustion additive composition may be pre-injected into solid fuel such as coal used in a thermal power plant, and the dispersed solid fuel may be put into a combustion furnace and combusted.
  • the pre-injected and dispersed combustion additive composition may uniformly disperse the surface of the solid fuel to give an effect of the present invention when the solid fuel is burned.
  • the combustion additive composition may be used by spraying in the combustion furnace in the process of the solid fuel is burned.
  • copper nitrate which is a copper precursor in the combustion additive composition, has a property of becoming nanoparticles at a high temperature, it becomes a condition for supplying oxygen more effectively.
  • Example 312 g of the composition of Example 1 (Example 2-1), 1560 g in 1000 kg of Dawson having carbon 74.2%, oxygen 3.1%, nitrogen 1.8%, sulfur 0.5%, ash 15.9%, and calorific value 6106 kcal (Example 2-2) and 3120 g (Example 2-3) were added to the combustion furnace and IDT (mineral melting point of inorganic matter), CO content and SO 2 were added to the combustion furnace and the result of not adding the produced combustion additive.
  • IDT mineral melting point of inorganic matter

Abstract

The present invention relates to a combustion additive composition of a solid fuel, comprising 0.1-20 parts by weight of a copper precursor, and 10-300 parts by weight of a magnesium precursor with respect to 100 parts by weight of water. The composition according to the present invention has advantages in preventing slag and fouling generated during combustion of a solid fuel, such as coal, which can be used in a thermoelectric power plant, and also in increasing the combustion efficiency by delivering oxygen well even in an oxygen-poor condition.

Description

고체연료의 연소 첨가제 조성물 및 이의 이용방법Combustion additive composition of solid fuel and method of using the same
본 발명은 고체연료의 연소 첨가제 조성물 및 이의 이용방법에 관한 것으로, 보다 상세하게는 화력발전소에서 사용될 수 있는 석탄 등의 고체 연료의 연소시 발생되는 슬래그(slag)와 파울링(fouling)을 방지해 줄 수 있으며, 또한 산소가 부족한 연소조건에서도 산소를 잘 전달해 줄 수 있는 고체 연료의 연소 첨가제 조성물 및 이의 이용 방법에 관한 것이다.The present invention relates to a combustion additive composition of a solid fuel and a method of using the same, and more particularly, to prevent slag and fouling generated during the combustion of a solid fuel such as coal that can be used in a thermal power plant. The present invention relates to a combustion additive composition of a solid fuel and a method of using the same, which are capable of delivering oxygen well even under combustion conditions in which oxygen is insufficient.
화력발전소 등에서 석탄과 같은 고체연료의 연소를 촉진하고 연소로 또는 배기관내의 불완전 연소 또는 저용융점을 갖는 고체 등에 의해 고착되는 슬래그 및 파울링의 형성으로 열효율이 열악해지는 단점을 개선하기 위한 여러 가지 수단들이 현재까지 지속적으로 연구되어 왔다.Various means to promote the combustion of solid fuels such as coal in thermal power plants and to improve the disadvantages of poor thermal efficiency due to the formation of slag and fouling, which is fixed by incomplete combustion or solids with low melting point in the combustion furnace or exhaust pipe Have been continuously studied to date.
보다 구체적으로, 석탄 등의 고체연료가 연소하는 경우 석탄 내에 있는 무기질이 연소되지 않고 석탄회로 되어 그의 일부 또는 전부가 회융점보다 높은 영역에서 용융된 상태로 가스흐름을 따라 배출되다가 보일러 튜브의 복사 전열면에 응고, 부착되어 슬래그를 형성할 수 있다. 또한 회성분 중 알칼리 및 휘발성 성분이 휘발하여 연소가스중의 비산회와 함께 과열기, 재열기 등의 대류 전열면에 응축 부착하여 파울링을 형성함으로써 전열면을 부식시키고 연소가스의 흐름과 전열면으로의 열전달을 나쁘게 하여 열효율 저하는 물론 최악의 경우에 있어 부착된 석탄회 등이 떨어져 튜브 파열사고를 일으킬 여지가 있어 대응방법이 강구된다.More specifically, when solid fuel such as coal is combusted, the minerals in the coal are not combusted but are coaled, and some or all of them are discharged along the gas stream in a molten state in a region higher than the melting point, before the boiler tube is radiated. It can solidify and adhere to the hot surface to form slag. In addition, the alkali and volatile components in the ash are volatilized and condensed on the convective heat transfer surface such as superheater and reheater together with fly ash in the combustion gas to form fouling to corrode the heat transfer surface and to flow the combustion gas into the heat transfer surface. The worse the heat transfer, the lower the thermal efficiency, and in the worst case, the attached coal ash may fall and cause a tube rupture accident.
이러한 연소 첨가제 조성물에 관한 종래기술로서, 공개특허공보 제10-2012-0049000호에서는 Mg, Ca, Mn, Zn, Al 등의 금속과 알카리 금속으로 구성된 복합금속킬레이트화합물을 연소촉매 조성물로 사용한 기술에 관해 기재되어 있고, 또한 등록특허공보 제10-0761065에 따르면 과산화수소, 규산염, 붕사, 수산화나트륨을 조성물로 사는 연료용 첨가제를 제공하고 있다.As a related art for such a combustion additive composition, Korean Patent Laid-Open Publication No. 10-2012-0049000 discloses a technique in which a complex metal chelate compound composed of a metal such as Mg, Ca, Mn, Zn, Al and an alkali metal is used as a combustion catalyst composition. It is also described in accordance with the Patent Publication No. 10-0761065 provides a fuel additive that buys hydrogen peroxide, silicate, borax, sodium hydroxide as a composition.
그러나 상기와 같은 선행문헌을 포함하는 종래기술에서는 산소가 부족한 영역에서의 산소방출을 도와줄 수 있는 기능이 없으며, 또한 알카리 금속을 포함하는 단점이 있고, 과산화수소를 이용하는 경우에 이는 낮은 온도에서 쉽게 분해되어 고온의 보일러에서 원하는 곳까지 산소를 제공하는 데 어려움이 있을 것으로 예상된다. However, in the prior art including the prior literature as described above, there is no function to help the oxygen release in the region lacking oxygen, and also has the disadvantage of including alkali metal, when using hydrogen peroxide, it is easily decomposed at low temperature Therefore, it is expected to have difficulty in providing oxygen to a desired place in a high temperature boiler.
일반적으로 알카리 금속은 탄소의 활성화에 도움이 되기 때문에 연소효율은 증대시킬 수 있으나, 알카리 금속을 포함하는 경우에 이는 연소후 석탄회에 잔존하게 되어 슬래그나 파울링의 문제를 유발할 수 있는 가능성을 여전히 내제하게 된다.In general, alkali metals can increase the combustion efficiency because they assist in the activation of carbon, but in the case of containing alkali metals, they still remain in coal ash after combustion, which still leads to the possibility of causing slag or fouling problems. Done.
석탄회의 성분은 석탄종류별로 다양하게 존재하며 통상적으로 SiO2, Al2O3, Na2O, Fe2O3, K2O, CaO, MgO, TiO2, SO3 등이 존재한다고 알려져 있다. 이러한 물질중에서 슬래깅과 파울링을 유발하는 물질들은 Fe2O3, KO, NaO, SO3 등으로 알려져 있다. 이들 중 Na2O, K2O, CaO, MgO 등의 성분은 실리카와 알루미나와 결합된 상태로 존재한다고 알려져 있다. 또한 석탄회에 존재하는 산성화합물의 성분 중 황산 성분인 SO3는 석탄회의 염기성 화합물과의 반응성이 매우 높다. 따라서 염기도가 큰 Na2O, K2O와 반응성이 강하여 저융점인 Na2SO4, K2SO4로 쉽게 전환되어 슬래깅이나 파울링의 주 원인이 된다. Coal ash is present in various types of coal, and it is known that SiO 2 , Al 2 O 3 , Na 2 O, Fe 2 O 3 , K 2 O, CaO, MgO, TiO 2 , and SO 3 are present. Among these materials, materials that cause slagging and fouling are known as Fe 2 O 3 , KO, NaO, SO 3 , and the like. Among them, components such as Na 2 O, K 2 O, CaO, MgO and the like are known to exist in a state in which silica and alumina are combined. In addition, SO 3, which is a sulfuric acid component among the acidic compounds present in coal ash, is highly reactive with basic compounds of coal ash. Therefore, the basicity is easily converted to a large Na 2 O, K 2 O, and the reactivity is strong, low melting Na 2 SO 4, K 2 SO 4 is the primary cause of the slagging or fouling.
또한 석탄에 염소(Cl)성분의 함량이 높을수록 슬래깅과 파울링 현상이 많이 발생할 수 있는데, 상기 염소 성분은 석탄 연소시 염산으로 변환가능하게 되고 이는 열교환기의 철 성분과 반응하여 표면이 염화철로 전환된다. 한편, 연소용 산소에 의해서 상기 염화철은 산화철로 전환되어서 산화철 피막이 형성된다. In addition, the higher the content of chlorine (Cl) component in coal, the more slagging and fouling may occur. The chlorine component can be converted into hydrochloric acid during coal combustion, which reacts with the iron component of the heat exchanger and the surface of the iron chloride Is switched to. On the other hand, the iron chloride is converted to iron oxide by the oxygen for combustion to form an iron oxide film.
이때 앞서 언급된 Na2SO4, K2SO4 물질들이 산화철 피막에 도달하게 되면서 Na3Fe(SO4)3, K3Fe(SO4)3가 형성가능하다. 이 물질들은 융점이 낮기 때문에 보일러 튜브 표면에서 점성이 큰 액체로 존재하며, 열기가 닿지 않는 보일러 하부로 흘러내리면서 점차 식어 고체로 진행되는 과정에서 매우 큰 덩어리 형태의 바텀애쉬 문제를 야기하기도 한다. 따라서 상기 알카리 금속의 황산염들인 Na2SO4, K2SO4 발생을 최소화시키는 것이 중요한 요소이다. At this time, the Na 2 SO 4 , K 2 SO 4 materials mentioned above reach the iron oxide film, and Na 3 Fe (SO 4 ) 3 and K 3 Fe (SO 4 ) 3 may be formed. Because of their low melting point, these materials exist as viscous liquids on the boiler tube surface, causing them to flow down to the bottom of the boiler where they cannot reach the heat, causing them to cool down and form a very large mass of bottom ash. Therefore, it is important to minimize the generation of Na 2 SO 4 , K 2 SO 4 which are sulfates of the alkali metal.
또한 석탄회에 존재하는 알카리 산화물은 주로 장석형태 M2Al2Si6O16 (M=Na, K)로 존재하할 수 있다. 이들은 순수한 형태로 존재하면 파울링 문제는 발생하지 않지만, 이때 강산성인 SO3가 많이 존재할수록 알카리산화물은 따로 떨어져서 알카리 금속염의 황산염 형태로 전환될 가능성이 증가한다. In addition, the alkali oxides present in the coal ash may exist mainly in feldspar form M 2 Al 2 Si 6 O 16 (M = Na, K). If they exist in pure form, fouling problems do not occur, but the more acidic SO 3 is present, the more likely the alkali oxides are separated and converted to the sulfate form of alkali metal salts.
따라서 상기 알카리 금속의 황산염 성분의 생성을 억제하기 위해 우수한 탈황성능을 갖는 연소 첨가제 조성물이 필요되고 있다. Therefore, in order to suppress the formation of the sulfate component of the alkali metal, there is a need for a combustion additive composition having excellent desulfurization performance.
한편, 석탄과 같은 고체연료의 연소시 고체연료의 내부에서는 국부적으로 산소가 풍부한 영역과 부족한 영역을 구분될 수 있다. On the other hand, in the combustion of solid fuel, such as coal, it is possible to distinguish between a region rich in oxygen and a region lacking locally in the solid fuel.
이 경우에 산소가 풍부한 영역에서는 산소를 흡수하고, 부족한 영역에서는 산소를 방출하는 기능의 촉매계가 필요하다. 이러한 개념의 연소 보조 촉매계로는 CuO-Fe2O3 [Baowon Wang, et. al., Procedia Engineering 16 (2011) 48-53], NiO/Al2O3 [Laihong Shen, et, al., Coumbustion and Flame 156 (2009) 1377-1385] 등이 알려져 있으며 상기 연소 보조제의 퇴화로 인한 문제점이 보고되고 있다.In this case, a catalyst system having a function of absorbing oxygen in an oxygen-rich region and releasing oxygen in an insufficient region is required. Combustion assisted catalyst systems of this concept include CuO—Fe 2 O 3 [Baowon Wang, et. al., Procedia Engineering 16 (2011) 48-53], NiO / Al 2 O 3 [Laihong Shen, et, al., Coumbustion and Flame 156 (2009) 1377-1385], and the like. Problems have been reported.
한편, 앞서 설명한 바와 같이 알카리 금속은 탄소의 활성화에 도움이 되기 때문에 연소 효율은 증대시킬 수 있으나, 연소 후 석탄회에 잔존하게 되어서 슬래그나 파울링의 문제를 유발하는 인자가 될 수 있다. 예를 들면 무기물에 부착되지 않는 Na2O는 실리카와 쉽게 반응하여 융점이 낮은 물유리로 전환된다. 또한 아황산가스와 반응하여 저융점 화합물인 Na2SO4와 같은 저융점 화합물이 쉽게 만들어지기 때문에 슬래그와 파울링의 주요원인이 될 가능성을 내재하고 있다. On the other hand, as described above, the alkali metal may increase the combustion efficiency because it helps the activation of carbon, but may remain in the coal ash after combustion, causing a problem of slag or fouling. For example, Na 2 O, which does not adhere to inorganic matters, readily reacts with silica and converts into water glass with a lower melting point. In addition, low-melting compounds such as Na 2 SO 4 , which is a low-melting compound, are easily produced by reacting with sulfurous acid gas. Therefore, they have a possibility of becoming a major cause of slag and fouling.
또한, 석탄에 있는 무기물 성분이 연소하면서 생성된 석탄회인 K2O는 K2SO4 혹은 K3Fe(SO4)3와 같은 저융점 화합물이 쉽게 만들어진다. 상기 저융점 화합물은 슬래깅과 파울링을 발생시키는 주요인자 물질이다. In addition, K 2 O, a coal ash produced by the combustion of inorganic components in coal, easily produces low melting point compounds such as K 2 SO 4 or K 3 Fe (SO 4 ) 3 . The low melting point compound is a major factor material that causes slagging and fouling.
상기의 저융점 화합물로 인하여 회용융점이 낮아지게 되면 생성된 석탄회가 녹아 연소로에 붙으면서 연소 효율이 떨어지고 심하면 크랭커가 되어서 연소로 주변의 배관을 폐쇄하여 연소를 방해하게 되고 수리, 청소 등의 관리 비용을 더 많이 유발시키는 등 석탄 연소로의 운용에 큰 문제점을 가져온다. When the ash melting point is lowered due to the low melting point compound, the produced coal ash melts and attaches to the combustion furnace, and the combustion efficiency decreases, and if it is severe, it becomes a cranker to close the pipe around the combustion furnace and obstruct the combustion. It causes major problems in the operation of coal-fired furnaces, such as incurring higher management costs.
따라서, 회용융점의 온도를 높여서 슬래그와 파울링을 방지할 수 있으며 또한 산소의 흡수와 방출을 용이하게 하는 금속촉매제를 선택하여 온도가 낮은 1000℃ 이하에서 산소를 쉽게 방출하는 기능을 가질 수 있으며, 우수한 탈황성능을 가지는 고체연료의 연소 첨가제 조성물의 제조에 관한 연구의 필요성이 지속적으로 요구되고 있다. Therefore, it is possible to prevent slag and fouling by increasing the temperature of the ash melting point, and to select a metal catalyst that facilitates the absorption and release of oxygen, and has a function of easily releasing oxygen at a temperature below 1000 ° C., There is a continuing need for research on the preparation of combustion additive compositions of solid fuels having good desulfurization performance.
상기와 같은 문제점을 해결하기 위해, 본 발명은 산소의 흡수와 방출을 용이하게 하여 산소가 부족한 영역에서는 산소를 방출하는 기능을 가질 수 있으며 용융점의 온도를 높여서 슬래그와 파울링을 방지하고 우수한 탈황성능을 갖는 고체연료의 연소 첨가제 조성물 및 이를 이용한 고체 연료의 연소방법을 제공하고자 한다.In order to solve the above problems, the present invention facilitates the absorption and release of oxygen and may have a function of releasing oxygen in the region lacking oxygen to prevent slag and fouling by increasing the temperature of the melting point and excellent desulfurization performance It is to provide a combustion additive composition of a solid fuel having a combustion method and a solid fuel using the same.
본 발명은 물 100 중량부에 대하여, 구리전구체 0.1 ~ 20 중량부, 마그네슘 전구체 10 ~ 300 중량부를 포함하는 고체연료의 연소 첨가제 조성물을 제공한다.The present invention provides a combustion additive composition of a solid fuel comprising 0.1 to 20 parts by weight of copper precursor and 10 to 300 parts by weight of magnesium precursor, based on 100 parts by weight of water.
일 실시예로서, 상기 마그네슘 전구체는 수산화마그네슘을 포함할 수 있고, 상기 수산화마그네슘의 함량은 물 100 중량부에 대하여, 10 ~ 100 중량부로 포함할 수 있다. In one embodiment, the magnesium precursor may include magnesium hydroxide, the content of the magnesium hydroxide may include 10 to 100 parts by weight with respect to 100 parts by weight of water.
일 실시예로서, 상기 연소 첨가제 조성물은 수산화마그네슘의 표면에 수산화구리가 코팅되어 있는 입자를 포함할 수 있다.In one embodiment, the combustion additive composition may include particles having copper hydroxide coated on the surface of magnesium hydroxide.
일 실시예로서, 상기 마그네슘 전구체는 수산화마그네슘이외에 추가적으로 질산마그네슘을 포함할 수 있고, 상기 추가적으로 포함되는 마그네슘 전구체는 물 100 중량부에 1 ~ 100 중량부일 수 있다. As an example, the magnesium precursor may further include magnesium nitrate in addition to magnesium hydroxide, and the additionally included magnesium precursor may be 1 to 100 parts by weight of 100 parts by weight of water.
일 실시예로서, 상기 구리전구체는 질산구리, 황산구리, 염화구리로부터 선택되는 어느 하나 또는 이들의 혼합물일 수 있다.In one embodiment, the copper precursor may be any one selected from copper nitrate, copper sulfate, copper chloride or a mixture thereof.
일 실시예로서, 상기 연소 첨가제 조성물은 물 100 중량부에 대하여, 점도조절제가 0.5 중량부 이하로 포함될 수 있다. In one embodiment, the combustion additive composition may be included in an amount of 0.5 parts by weight or less based on 100 parts by weight of water.
일 실시예로서, 상기 연소 첨가제 조성물은 고체 연료 100 중량부에 0.0001 ~ 2 중량부 첨가될 수 있다.In one embodiment, the combustion additive composition may be added 0.0001 ~ 2 parts by weight to 100 parts by weight of the solid fuel.
본 발명은 또한 물 100 중량부에 대하여, 비표면적이 5 ~ 80 m2/g의 수산화마그네슘 분말 10 ~ 100 중량부, 구리전구체 0.1 ~ 20 중량부, 질산마그네슘 10 ~ 100 중량부를 포함하는 고체연료의 연소 첨가제 조성물을 제공한다.The present invention also provides a solid fuel comprising 10 to 100 parts by weight of magnesium hydroxide powder having a specific surface area of 5 to 80 m 2 / g, 0.1 to 20 parts by weight of copper precursor, and 10 to 100 parts by weight of magnesium nitrate, based on 100 parts by weight of water. To provide a combustion additive composition.
또한 본 발명은 상기 기재된 연소 첨가제 조성물을 고체 연료 100 중량부에 0.0001 ~ 2 중량부 첨가하여 고체 연료에 분사한 후에 상기 연소 첨가제 조성물이 분사된 고체 연료를 연소시키는 것을 특징으로 하는 고체 연료의 연소방법을 제공한다. The present invention also adds 0.0001 to 2 parts by weight of the combustion additive composition described above to 100 parts by weight of the solid fuel, and then injects the solid fuel injected with the combustion additive composition after the injection into the solid fuel. To provide.
본 발명에서 얻어지는 고체연료의 연소 첨가제 조성물은 석탄 등의 고체연료의 연소시 연소로 또는 보일러의 내부 또는 배관에 형성될 수 있는 슬래그와 파울링을 방지할 수 있고, 우수한 탈황 성능을 가지며, 또한 산소가 부족한 영역에서는 산소를 방출하는 기능을 가질 수 있어 연소효율을 증대시킬 수 있는 장점이 있다.The combustion additive composition of the solid fuel obtained in the present invention can prevent slag and fouling that may be formed in a combustion furnace or a boiler or a pipe during the combustion of solid fuel such as coal, has excellent desulfurization performance, and also has oxygen In the region lacking, it may have a function of releasing oxygen, thereby increasing the combustion efficiency.
도 1은 본 발명에서의 산화구리의 효과를 보여주는 TGA 분석 결과를 나타낸 그림이다.1 is a diagram showing the results of TGA analysis showing the effect of copper oxide in the present invention.
도 2a)는 본 발명의 실시예에 의해 얻어지는 조성물을 건조하여 분석한 SEM 분석결과이고, 도 2b)는 상기 조성물의 EDX 분석결과이다.Figure 2a) is a SEM analysis of the dried composition obtained by the embodiment of the present invention, Figure 2b) is an EDX analysis of the composition.
이하, 본 발명이 속하는 기술분야에서 통상의 기술자가 본 발명을 용이하게 실시할 수 있도록 발명의 구성을 상세히 설명한다. 본 발명의 바람직한 실시예에 대한 원리를 상세하게 설명함에 있어서 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략한다. Hereinafter, the configuration of the invention will be described in detail so that those skilled in the art to easily carry out the invention. In describing the principles of preferred embodiments of the present invention in detail, detailed descriptions of well-known functions or configurations will be omitted if they are determined to unnecessarily obscure the subject matter of the present invention.
본 발명은 물 100 중량부에 대하여 구리전구체 0.1 ~ 20 중량부, 마그네슘전구체 10 ~ 300 중량부를 포함하는 고체연료의 연소 첨가제 조성물을 제공한다. The present invention provides a combustion additive composition of a solid fuel comprising 0.1 to 20 parts by weight of copper precursor and 10 to 300 parts by weight of magnesium precursor based on 100 parts by weight of water.
본 발명에서 상기 고체연료의 연소 첨가제 조성물의 제1 성분으로서 구리전구체는 고체연료의 연소 조건인 고온상태에서의 공기를 포함하는 산화조건에서 공기내에 포함된 산소와 결합하여 산화구리를 형성할 수 있는 것이면 그 종류에 제한을 두지 않는다.In the present invention, the copper precursor as the first component of the combustion additive composition of the solid fuel may form copper oxide by combining with oxygen contained in the air under oxidizing conditions including air at high temperature, which is the combustion condition of the solid fuel. If it is, the type is not limited.
상기 구리 성분의 산소 방출 효과와 관련하여, 종래의 연소촉매제로 알려진 물질인 CuO, Fe2O3, V2O5를 선택하여 TGA 분석을 통하여 1000℃ 이하에서 산소를 자유롭게 방출하는 물질은 비교 물질 중에서 CuO가 가장 유용한 물질임을 확인할 수 있었다. 따라서 연소조건에서 산소를 쉽게 방출할 수 있는 물질은 CuO임을 쉽게 이해할 수 있다. Regarding the oxygen release effect of the copper component, a material which freely releases oxygen at 1000 ° C. or lower through TGA analysis by selecting CuO, Fe 2 O 3 , and V 2 O 5 , which are known as a conventional combustion catalyst, is a comparative material. CuO was found to be the most useful material. Therefore, it is easily understood that the material capable of easily releasing oxygen under combustion conditions is CuO.
도 1에서는 상기 TGA 분석 결과를 도시하였다. Figure 1 shows the TGA analysis results.
또한, 연소촉매제로 알려진 물질인 CuO-Fe2O3 [Baowen Wang, et. al., Procedia Engineering 16]에 대해서 두 물질을 섞어서 산소방출 정도를 관찰한 결과 산화철의 효과를 입증하기 어려웠다. 따라서 환원조건하에서 산소를 쉽게 방출할 수 있는 물질은 CuO임을 쉽게 이해할 수 있다. In addition, CuO—Fe 2 O 3 , a material known as a combustion catalyst [Baowen Wang, et. al., Procedia Engineering 16], it was difficult to prove the effect of iron oxide as a result of observing the oxygen release by mixing the two materials. Therefore, it is easily understood that the material capable of easily releasing oxygen under reducing conditions is CuO.
상기 산화구리성분은 석탄 연소시 환원영역에서 제2산화구리는 제1산화구리로 전환되면서 산소를 방출하며 산소가 부족한 물질에 산소를 공급해 주는 역할을 하게 된다. 또한 황산가스가 존재할 경우 표면에 CuSO4가 먼저 만들어지게 되는데 이 물질은 560℃에서 쉽게 분해된다. 분해된 물질은 산화구리와 SO3로 전환되며 SO3는 후술하는 추가의 성분인 마그네슘 성분중 산화마그네슘(MgO)과 반응하여 황산마그네슘(MgSO4)으로 전환된다. 이러한 반응을 한 경우에는 역반응이 진행되지 않고 산화마그네슘(MgO)는 소모되는 특징이 있다. 또한 산화구리는 아황산가스와 반응하여 황산가스로 쉽게 전환시키는 성질이 있으므로 연소로 내에서 탈황 기능을 가지고 있어서 건식탈황제로 사용하기에 적합하다. The copper oxide component serves to supply oxygen to oxygen-deficient materials by releasing oxygen as the second copper oxide is converted to the first copper oxide in the reduction zone during coal combustion. In the presence of sulfuric acid gas, CuSO 4 is first formed on the surface, which is easily decomposed at 560 ℃. The decomposition products are converted into copper oxide and SO 3, and SO 3 is converted by reaction with added magnesium component of magnesium oxide (MgO) of the components of which will be described later with the use of magnesium sulfate (MgSO 4). In the case of such a reaction, reverse reaction does not proceed and magnesium oxide (MgO) is consumed. In addition, since copper oxide reacts with sulfurous acid gas and is easily converted to sulfuric acid gas, copper oxide has a desulfurization function in a combustion furnace, so it is suitable for use as a dry desulfurization agent.
본 발명에서 고체 연료에 촉매로서 실질적으로 작용할 수 있는 부분은 산화구리일 수 있으나, 상기 산화구리(CuO)는 물에 대한 용해도가 상당히 떨어지기 때문에 고체 연료에 분산성이 떨어지게 되어 이들 액체 성분에 대한 용해도가 높은 물질을 전구체로 사용할 필요가 있다.In the present invention, the part which can substantially act as a catalyst for the solid fuel may be copper oxide, but the copper oxide (CuO) is less dispersible in the solid fuel because of its low solubility in water, so It is necessary to use a material having high solubility as a precursor.
상기 구리전구체는 구리를 포함하는 구리 염 화합물을 예로 들 수 있으며, 바람직하게는 질산구리, 황산구리, 염화구리로부터 선택되는 어느 하나 또는 이들의 혼합물일 수 있다.The copper precursor may be a copper salt compound including copper, and preferably, any one or a mixture thereof may be selected from copper nitrate, copper sulfate, and copper chloride.
상기 구리전구체는 석탄 등의 고체연료에 물과 함께 분사시킴으로써, 상기 구리 전구체를 포함하는 고체연료는 연소 조건하에서 산화구리로 변환이 가능하며, 상기 산화구리는 산소의 흡수와 방출을 용이하게 할 수 있는 기능을 한다. The copper precursor is sprayed with water on solid fuel such as coal, so that the solid fuel containing the copper precursor can be converted to copper oxide under combustion conditions, the copper oxide can facilitate the absorption and release of oxygen. Function.
예컨대, 화력발전소내 연소실내에서 1000℃정도의 온도에서 연소는 산소가 부족한 경우가 많이 있으며, 고체연료를 연소하는 동안에 국부적으로 산소가 부족한 영역과 풍부한 영역이 공존하게 된다. 이때, 산소가 부족한 영역에서는 불완전한 연소가 이루어지기 때문에 효율적인 산소공급이 필요한데 본 발명의 연소 첨가제의 경우 환원영역에서 산화구리(II)가 산화구리(I)으로 되면서 산소를 방출하기에 효과적으로 연소를 할 수 있으며, 또한 황산가스가 존재할 경우 표면에 CuSO4가 먼저 만들어지게 되는데 이 물질은 560℃에서 쉽게 분해된다. For example, combustion at a temperature of about 1000 ° C. in a combustion power plant in a thermal power plant often lacks oxygen, and locally burned oxygen and rich regions coexist while burning solid fuel. In this case, incomplete combustion is performed in the region where oxygen is insufficient, so efficient oxygen supply is required. In the case of the combustion additive of the present invention, copper (II) becomes copper oxide (I) in the reduction region, and thus it is effective to burn oxygen. In addition, in the presence of sulfuric acid gas, CuSO 4 is first formed on the surface, which is easily decomposed at 560 ° C.
상기 분해된 물질은 산화구리와 SO3로 전환되며 SO3는 MgO와 반응하여 MgSO4로 전환된다. 이렇게 반응을 한 경우에는 역반응이 진행되지 않고 MgO는 소모되는 특징이 있다. 또한 산화구리는 아황산가스와 반응하여 황산가스로 쉽게 전환시키는 성질이 있으므로 연소로 내에서 탈황 기능을 가지고 있어서 건식탈황제로 사용하기에 적합하다. Wherein the decomposition products are converted into copper oxide and SO 3, and SO 3 will react with the MgO it is converted to MgSO 4. In the case of this reaction, the reverse reaction does not proceed and MgO is consumed. In addition, since copper oxide reacts with sulfurous acid gas and is easily converted to sulfuric acid gas, copper oxide has a desulfurization function in a combustion furnace, so it is suitable for use as a dry desulfurization agent.
이러한 목적을 달성하기 위해서는 구리 전구체의 함량의 조성비는 물 100 중량부에 대하여, 0.1 ~ 20 중량부 범위내가 바람직하다. In order to achieve this object, the composition ratio of the content of the copper precursor is preferably in the range of 0.1 to 20 parts by weight based on 100 parts by weight of water.
그리고 Westmoreland와 Harrion의 탈황실험(Westmoreland, P. R. and Harrison, D. P. : "Evaluation of Candidate Solids for High-Temperature Desulfurization of Low-Btu Gases", Environmental Science & Technology, 10, 659 (1976))에 의하면 400 ~ 1200℃의 온도 범위에서 유용한 10가지 원소를 발표하였는데 그 중의 구리가 포함되어 있다. 이로 인하여 본 발명에서 사용된 상기 구리 전구체는 산소를 방출하는 역할을 하는 동시에 탈황성능도 갖추고 있다. And 400 to 1200, according to Westmoreland and Harrion desulfurization experiments (Westmoreland, PR and Harrison, DP: "Evaluation of Candidate Solids for High-Temperature Desulfurization of Low-Btu Gases", Environmental Science & Technology, 10, 659 (1976)). Ten elements that are useful in the temperature range of ℃ have been published, including copper. For this reason, the copper precursor used in the present invention serves to release oxygen and also has desulfurization performance.
본 발명에서 바람직하게는, 상기 구리 전구체 중 특히 질산구리(Cu(NO3)2)가 바람직하게 사용될 수 있다. In the present invention, preferably, copper nitrate (Cu (NO 3 ) 2 ) may be preferably used among the copper precursors.
한편, 상기 질산구리 이외에 황산구리, 또는 염화구리를 사용하게 되는 경우에는 상기 황산구리는 알카리금속과 반응성이 있어 슬래그와 파울링을 유발할 가능성이 존재하며, 염화구리는 연소후에 염소이온 또는 염소가스가 포함될 수 있고, 이는 배관내의 철 성분과 반응하여 표면이 염화철로 전환 될 수 있어 연소용 공기내 산소에 의해서 산화철로 전환되어 산화철 피막이 형성될 수 있는 문제점이 있으나, 이는 연소로의 연소 조건에 따라 문제시되지 않을 수도 있다. Meanwhile, when copper sulfate or copper chloride is used in addition to the copper nitrate, the copper sulfate may be reactive with alkali metals to cause slag and fouling, and copper chloride may include chlorine ion or chlorine gas after combustion. This is a problem that the surface may be converted to iron chloride by reacting with the iron component in the pipe, so that the iron oxide film may be formed by conversion to iron oxide by oxygen in the combustion air, but this may not be a problem depending on the combustion conditions of the combustion furnace. It may be.
상기 질산구리는 수용액상에서 잘 용해하며, 이의 수용액을 고온, 산소 분위기 하에서 분사시킬 경우 나노입자화되는 특징이 있어서 CuO의 활성도가 매우 증가하게 된다. The copper nitrate dissolves well in an aqueous solution, and when the aqueous solution is sprayed under a high temperature and oxygen atmosphere, nanoparticles are formed, and thus the CuO activity is greatly increased.
한편, 본 발명에서 사용될 수 있는 질산구리 함량은 사용되는 용매인 물에 대해 0.1 ~ 20 중량부의 범위내가 바람직하다. On the other hand, the copper nitrate content that can be used in the present invention is preferably in the range of 0.1 to 20 parts by weight based on the water used as the solvent.
상기 구리전구체의 함량으로서는 물 100 중량부에 대하여, 구리전구체 0.1 ~ 20 중량부를 사용할 수 있고, 바람직하게는 0.2 ~ 15 중량부를 사용할 수 있다. 상기 구리전구체의 함량이 0.1 중량부보다 낮은 경우에는 구리 전구체로 인한 산소 방출 효과가 미미하며, 또한 상기 구리전구체의 함량이 20 중량부 보다 높은 경우에는 경제성이 떨어지게 되어 상기 범위가 바람직하다. As content of the said copper precursor, 0.1-20 weight part of copper precursors can be used with respect to 100 weight part of water, Preferably 0.2-15 weight part can be used. When the content of the copper precursor is lower than 0.1 parts by weight, the oxygen release effect due to the copper precursor is insignificant, and when the content of the copper precursor is higher than 20 parts by weight, the economical efficiency is lowered, the above range is preferable.
산화구리는 최종적으로 실리카와 반응하여 실리카구리(copper silicate)로 전환되어서 석탄회내의 점성물질들보다 결정성이 높아지게 된다. 결과적으로 입자들의 점성이 떨어지므로 입자뭉침현상이 줄어들어서 큰 덩어리의 석탄회가 발생하지 않도록 도움을 주는 특징이 있다. Copper oxide finally reacts with silica and is converted to copper silicate, resulting in higher crystallinity than viscous materials in coal ash. As a result, the viscosity of the particles is reduced, so that the aggregation of particles is reduced, so that a large amount of coal ash does not occur.
본 발명의 고체연료의 연소 첨가제 조성물의 제2 성분으로 마그네슘 전구체가 사용될 수 있다. Magnesium precursor may be used as the second component of the combustion additive composition of the solid fuel of the present invention.
석탄회에 존재하는 황화합물을 보다 효율적으로 제거하기 위해서는 알카리토금속을 첨가하여 사용할 수 있다. 이를 위해 마그네슘, 또는 칼슘이 사용가능하나, 마그네슘 성분으로서 산화마그네슘은 SO3와 쉽게 반응하여 고융점인 MgSO4로 전환되기 때문에 슬래깅이나 파울링을 제어할 수 있다. Alkaline metals may be added and used to remove sulfur compounds present in the coal ash more efficiently. Magnesium or calcium can be used for this purpose, but magnesium oxide as a magnesium component can be easily reacted with SO 3 and converted to high melting point MgSO 4 to control slagging or fouling.
또한 상기 마그네슘 산화물이 사용되는 경우 기 생성된 Na2SO4도 MgSO4로 전환될 수 있으므로 표면부식 수준에 머물고, 심각한 슬래깅 문제는 완화될 수 있다. In addition, when the magnesium oxide is used, the pre-generated Na 2 SO 4 may also be converted to MgSO 4 , thus remaining at the level of surface corrosion and alleviating serious slagging problems.
한편, 또 다른 알카리토금속 성분으로서 칼슘성분은 석고화가 일어날 가능성이 있으므로 또 다른 파울링의 문제를 야기할 수 있어 마그네슘 성분이 바람직하다. On the other hand, the calcium component as another alkaline metal component may cause gypsum formation, which may cause another fouling problem, and thus the magnesium component is preferable.
상기 마그네슘 전구체도 고체연료의 연소 조건인 고온상태에서의 공기를 포함하는 산화조건에서 공기내에 포함된 산소와 결합하여 산화마그네슘을 형성할 수 있는 것이면 그 종류에 제한을 두지 않는다. The magnesium precursor is not limited as long as the magnesium precursor can form magnesium oxide by combining with oxygen contained in the air under oxidizing conditions including air at high temperature, which is a combustion condition of solid fuel.
상기 마그네슘 전구체의 역할은 고체연료의 연소이후에 생성될 수 있는 아산화황과 같은 황화합물을 효과적으로 제거하기 위하여 사용된다.The role of the magnesium precursor is used to effectively remove sulfur compounds such as sulfur nitrous oxide which may be generated after combustion of the solid fuel.
즉, 앞서 기재된 바와 같이 연소반응에 의해 SO3가 생성되는 경우에 상기 SO3는 마그네슘 성분과 반응하여 황산마그네슘(MgSO4)으로 전환가능하며, 이러한 반응을 한 경우에는 역반응이 진행되지 않고 산화마그네슘(MgO)이 소모되는 특징이 있다. That is, it can be converted to the SO 3 reacts with the magnesium components of magnesium sulfate (MgSO 4) in the case where SO 3 is produced by the combustion reaction, as previously described, when such a reaction without the reverse reaction not proceed magnesium oxide (MgO) is consumed.
상기 마그네슘 전구체는 마그네슘을 포함하고 있는 마그네슘 화합물로서, 산화마그네슘, 수산화마그네슘, 질산마그네슘, 황산마그네슘, 탄산마그네슘 등이 사용될 수 있고, 본 발명에서는 이들 중 어느 하나 또는 이들의 혼합물을 사용할 수 있으며, 바람직하게는 상기 마그네슘 전구체로서 수산화마그네슘이 사용될 수 있다. The magnesium precursor is a magnesium compound containing magnesium, magnesium oxide, magnesium hydroxide, magnesium nitrate, magnesium sulfate, magnesium carbonate and the like can be used, in the present invention, any one or a mixture thereof can be used, preferably Preferably, magnesium hydroxide may be used as the magnesium precursor.
상기 마그네슘 전구체는 구리전구체와 함께 사용하지 않고 단독으로 사용하는 경우에 탈황성능은 어느 정도 발휘되지만 슬래깅과 파울링 및 미연탄과 일산화탄소, 아황산가스, 황산가스의 저감효과를 만족시키지 못할 수 있다.The magnesium precursor may exhibit some degree of desulfurization performance when used alone without using a copper precursor, but may not satisfy the effects of slagging and fouling, and reducing coal, carbon monoxide, sulfur dioxide, and sulfuric acid gas.
한편, 본 발명에서 상기 수산화마그네슘은 구리 전구체와 함께 수산화마그네슘만이 사용하되나 또는 상기 수산화마그네슘과 산화마그네슘, 수산화마그네슘, 질산마그네슘, 황산마그네슘, 탄산마그네슘 중 어느 하나의 화합물을 혼합하여 사용할 수 있다. Meanwhile, in the present invention, the magnesium hydroxide may be used only with magnesium hydroxide or a copper precursor, or may be used by mixing any one compound of the magnesium hydroxide with magnesium oxide, magnesium hydroxide, magnesium nitrate, magnesium sulfate, and magnesium carbonate. .
이 경우에 사용되는 수산화마그네슘은 비표면적이 3 ~ 150m2/g의 범위내에 있는 것을 사용할 수 있으며, 바람직하게는 5~80m2/g의 범위에 있는 것을 사용할 수 있다. The magnesium hydroxide used in this case can use what has a specific surface area in the range of 3-150m <2> / g, Preferably it can use what exists in the range of 5-80m <2> / g.
상기 수산화마그네슘은 가격적인 면에서 저가이며, 탈황반응에 의해 얻어지는 산물인 황산마그네슘이 수용액상에 용해됨으로써의 배출이 용이하다는 점과 흡수액은 약알칼리성을 가지고 있어서 부식성이 낮아 연소로나 보일러 튜브의 손상을 줄일 수 있다는 장점을 갖고 있다. Magnesium hydroxide is inexpensive in terms of price, and it is easy to discharge by dissolving magnesium sulfate, a product obtained by desulfurization, in an aqueous solution phase, and the absorbent liquid has weak alkalinity, which is low in corrosiveness and thus damages the combustion furnace or boiler tube. It has the advantage of being reduced.
또한, 상기 수산화마그네슘의 성분 중에서 마그네슘 성분은 무기물의 IDT(회융점)을 높이는 역할을 하며, 이온 상태의 알칼리 금속과 착이온 형태로 결합하여 연소에 사용될 수 있다. In addition, the magnesium component of the magnesium hydroxide component serves to increase the IDT (melting point) of the inorganic material, it can be used for combustion by combining in the form of a complex ion with the alkali metal in the ionic state.
한편, 일반적으로 금속성분의 수산화물 계열의 화합물은 연소시 수산화물이 분해되면서 탄소전화효율을 증가시켜 연소효율을 높이고, 연소시 고체연료내에 알루미나 산화물이 함유된 경우에 이의 녹는점을 낮춰 연소시 생성되는 융착물을 제거하거나 생성을 억제함으로서 슬래그나 파울링을 줄일 수 있는 효과를 줄 수 있다. On the other hand, in general, hydroxide-based compounds of metal components increase combustion efficiency by increasing carbon conversion efficiency as hydroxide is decomposed during combustion, and lowers its melting point when alumina oxide is contained in solid fuel during combustion. By removing the fusion or suppressing the formation can reduce the slag and fouling.
본 발명에서 사용될 수 있는 상기 마그네슘 전구체의 함량으로서는 물 100 중량부에 대하여 10 ~ 200 중량부를 사용할 수 있으며, 바람직하게는 15 ~ 150 중량부를 사용할 수 있다. As the content of the magnesium precursor that can be used in the present invention may be used 10 to 200 parts by weight, preferably 15 to 150 parts by weight based on 100 parts by weight of water.
상기 수산화마그네슘의 함량이 너무 낮으면 황산가스와 반응성이 떨어지고 높을수록 유리하지만 단가와 분산에 문제가 있을 수 있다. If the content of the magnesium hydroxide is too low, the lower the reactivity with sulfuric acid gas, the higher the advantage, but there may be a problem in unit cost and dispersion.
한편, 본 발명에서 마그네슘 전구체로서 수산화마그네슘을 수산화마그네슘이외의 마그네슘 전구체와 혼합하여 사용하는 경우에는 수산화마그네슘 이외의 전구체로서, 산화마그네슘, 수산화마그네슘, 질산마그네슘, 황산마그네슘, 탄산마그네슘 중 어느 하나의 화합물이 사용될 수 있다.In the present invention, when magnesium hydroxide is mixed with magnesium precursor other than magnesium hydroxide as a magnesium precursor, any one of magnesium oxide, magnesium hydroxide, magnesium nitrate, magnesium sulfate, and magnesium carbonate may be used as a precursor other than magnesium hydroxide. This can be used.
상기 수산화마그네슘을 수산화마그네슘이외의 마그네슘 전구체와 혼합하여 사용하는 경우에 각각의 전구체의 사용되는 함량은 물 100 중량부에 대하여 수산화마그네슘 10 ~ 100 중량부 및 수산화마그네슘이외의 마그네슘 전구체 10 ~ 200 중량부를 사용할 수 있다. When the magnesium hydroxide is mixed with a magnesium precursor other than magnesium hydroxide, the amount of each precursor used is 10 to 100 parts by weight of magnesium hydroxide and 10 to 200 parts by weight of magnesium precursor other than magnesium hydroxide, based on 100 parts by weight of water. Can be used.
이 경우에 상기 수산화마그네슘이외의 마그네슘 전구체로서 바람직하게는 질산마그네슘이 사용될 수 있다. In this case, preferably magnesium nitrate may be used as the magnesium precursor other than the magnesium hydroxide.
한편, 본 발명에서 사용되는 구리전구체 또는 마그네슘 전구체는 수화물형태로 사용할 수 있고, 또는 무수물 형태로 사용될 수 있다. 이 경우에 사용되는 구리전구체 또는 마그네슘 전구체의 함량은 배위된 H2O 분자를 제외한 무수물을 기준으로 함량의 범위를 정한다. Meanwhile, the copper precursor or magnesium precursor used in the present invention may be used in the form of a hydrate or in the form of an anhydride. The content of the copper precursor or magnesium precursor used in this case is determined based on the anhydride except for the coordinated H 2 O molecules.
본 발명에서의 연소 첨가제 조성물에 질산 마그네슘이 추가적으로 포함되는 경우 상기 질산마그네슘은 고온에서 분해되어 MgO, NOx 전환되며, MgO는 SO3와 반응하여 고융점인 MgSO4로 전환되고, NOx는 CO와 반응하여 질소와 이산화탄소로 전환될 수 있다. 이때 NO3는 산소제공자 역할을 하게 되므로 일반적인 산화마그네슘만을 사용하는 것보다 미연탄분의 생성을 억제하는데 우수한 효과를 줄 수 있다.When magnesium nitrate is additionally included in the combustion additive composition according to the present invention, the magnesium nitrate is decomposed at high temperature to convert MgO and NOx, and MgO is converted to MgSO 4 , which is a high melting point, by reacting with SO 3, and NOx is reacted with CO Can be converted to nitrogen and carbon dioxide. At this time, since NO 3 acts as an oxygen provider, it can give an excellent effect of suppressing the production of coal briquettes than using ordinary magnesium oxide.
상기 질산마그네슘을 상기 범위 이상으로 사용하게 되면 그 효과는 증대되지만 경제적인 이유로 인해서 단독 사용하는 것은 바람직하지 않다.If the magnesium nitrate is used in the above range, the effect is increased, but it is not preferable to use it alone for economic reasons.
한편, 본 발명에서의 고체연료에는 추가적으로 연소 첨가제 조성물 100 중량부를 기준으로 지방산에스테르 3 ~ 50 중량부 및 유동파라핀 5 ~ 30 중량부를 더 포함하도록 하여 연소시킬 수 있다. On the other hand, the solid fuel in the present invention can be burned to further include 3 to 50 parts by weight of fatty acid ester and 5 to 30 parts by weight of liquid paraffin based on 100 parts by weight of the combustion additive composition.
상기 고체연료에 추가되는 지방산에스테르 및 유동파라핀은 연료의 착화온도를 낮추어 초기 착화를 도우며, 연료의 발열량 향상, 연료의 반응 안정화 및 연소실 내에서의 연소 상태를 안정화하는 역할을 한다. Fatty acid ester and liquid paraffin added to the solid fuel lowers the ignition temperature of the fuel to help the initial ignition, and serves to improve the calorific value of the fuel, stabilize the reaction of the fuel and the combustion state in the combustion chamber.
여기서, 상기 지방산에스테르는 대두유, 유채유, 팜유, 해바라기유 또는 옥수수유 중에서 선택되는 식물성 오일의 메틸에스테르가 사용가능하다. 또한 상기 식물성 오일의 메틸에스테르는 식물성 오일을 이용한 바이오디젤유의 생산과정에서 발생하는 피치유를 추가적으로 포함할 수 있다. 상기 지방산에스테르 및 유동파라핀의 함량은 연소 첨가제 조성물 100 중량부를 기준으로지방산에스테르 3 ~ 50 중량부 및 유동파라핀 5 ~ 30 중량부의 범위를 가질 수 있으나, 이에 제한되지 않는다. Here, the fatty acid ester may be a methyl ester of vegetable oil selected from soybean oil, rapeseed oil, palm oil, sunflower oil or corn oil. In addition, the methyl ester of the vegetable oil may further include a pitch oil generated during the production of biodiesel oil using the vegetable oil. The content of the fatty acid ester and the liquid paraffin may have a range of 3 to 50 parts by weight of fatty acid ester and 5 to 30 parts by weight of liquid paraffin based on 100 parts by weight of the combustion additive composition, but is not limited thereto.
바람직하게는 상기 연소 첨가제 조성물 100 중량부를 기준으로 고체연료에 지방산에스테르 5 ~ 30 중량부 및 유동파라핀 5 ~ 20 중량부를 포함시킬 수 있다. Preferably, based on 100 parts by weight of the combustion additive composition may include 5 to 30 parts by weight of fatty acid esters and 5 to 20 parts by weight of liquid paraffin.
본 발명에 사용되는 고체연료의 종류는 일반적으로 화력발전소에 사용되는 고체연료로 대상으로 하고 있으며, 특정 종류의 고체연료로 제한을 두지 않는다. The type of solid fuel used in the present invention is generally a solid fuel used in a thermal power plant, and is not limited to a specific type of solid fuel.
예컨대, 본 발명에서 사용될 수 있는 고체연료의 종류로는 석탄, 코크스 등이 있으며, 이중에서는 석탄이 가장 많이 사용된다. 석탄은 탄화된 정도에 따라 탄소가 많은 무연탄, 휘발성분이 많은 역청탄, 갈탄 등으로 분류된다. 역청탄은 발열량이 무연탄보다 떨어지나 휘발성분이 많기 때문에 발전용으로 효과적인 연료이다. For example, as the type of solid fuel that can be used in the present invention, there are coal, coke, and the like, of which coal is most used. Coal is classified into carbonaceous anthracite, volatile bituminous coal and lignite, depending on the degree of carbonization. Bituminous coal is an effective fuel for power generation because its calorific value is lower than that of anthracite.
이들 고체연료의 성분은 주로 탄소 및 수소와 산소, 기타 헤테로원자로서 질소, 황이 포함되며, 그밖에 무기물 등이 추가적으로 포함되어 있다. The components of these solid fuels mainly include carbon, hydrogen, oxygen, and other heteroatoms such as nitrogen and sulfur, and other inorganic substances.
상기 황 성분은 연소후에 이산화황 또는 황산가스로 변환될 가능성이 있어 이의 효과적인 억제가 필요하다.The sulfur component is likely to be converted to sulfur dioxide or sulfuric acid gas after combustion, and thus an effective suppression thereof is required.
본 발명에서의 연소 첨가제 조성물의 전구체 성분들은 물에 용해되거나 또는 분산되어져 사용될 수 있다.The precursor components of the combustion additive composition in the present invention may be used dissolved or dispersed in water.
한편, 본 발명에서의 상기 연소 첨가제 조성물이 연소시 사용될 수 있는 함량으로서, 상기 연소 첨가제 조성물은 고체 연료 100 중량부에 0.0001 ~ 2 중량부를 사용할 수 있으며, 보다 바람직하게는 0.0005 ~ 1.5 중량부, 더욱 바람직하게는 0.001 ~ 1.2 중량부를 사용할 수 있다. On the other hand, as the content of the combustion additive composition in the present invention can be used during combustion, the combustion additive composition may be used 0.0001 ~ 2 parts by weight, more preferably 0.0005 ~ 1.5 parts by weight, 100 parts by weight of solid fuel Preferably 0.001 to 1.2 parts by weight can be used.
상기 연소 첨가제 조성물이 0.0001 중량부보다 낮게 사용되는 경우 연소시 그 효과가 미미하고 2 중량부 이상을 사용하게 되면 경제적으로 불리하게 되어 상기 범위내의 함량을 가지는 것이 바람직하다. When the combustion additive composition is used less than 0.0001 parts by weight, the effect is negligible at the time of combustion and when used more than 2 parts by weight it is economically disadvantageous to have a content in the above range.
예시적으로, 본 발명의 연소 첨가제 조성물은 물 100 중량부에 대하여 수산화마그네슘 분말 10 ~ 100 중량부, 구리 전구체 0.1 ~ 20 중량부, 질산마그네슘 10 ~ 100 중량부를 사용하여 고체연료의 연소 첨가제 조성물을 만들 수 있다. 이 경우에 상기 수산화마그네슘의 비표면적은 5 ~ 80 m2/g의 범위를 가질 수 있다. For example, the combustion additive composition of the present invention may be prepared by using the combustion additive composition of solid fuel using 10 to 100 parts by weight of magnesium hydroxide powder, 0.1 to 20 parts by weight of copper precursor, and 10 to 100 parts by weight of magnesium nitrate based on 100 parts by weight of water. I can make it. In this case, the specific surface area of the magnesium hydroxide may have a range of 5 to 80 m 2 / g.
일 실시예로서, 본 발명의 연소첨가제 조성물에 산화구리(CuO) 성분을 도입하기 위해서는 물에 수산화마그네슘을 분산하여 얻어지는 슬러리에 전구체 성분으로서 질산구리(Cu(NO3)2)를 첨가하면 수산화마그네슘 입자에 구리전구체가 흡착하게 된다. As an example, in order to introduce a copper oxide (CuO) component to the combustion additive composition of the present invention, when copper nitrate (Cu (NO 3 ) 2 ) is added to a slurry obtained by dispersing magnesium hydroxide in water as a precursor component, magnesium hydroxide Copper precursors are adsorbed to the particles.
즉, 수산화마그네슘 입자(Mg(OH)2)는 0.0014g/100㎖ 정도로 소량이나마 물에 녹아서 수산화기를 방출하게 된다, 이때 방출된 수산화기는 Cu(NO3)2의 니트로 음이온과 교환반응을 일으키게 된다. 자동적으로 수산화마그네슘 표면에 Cu(OH)2가 코팅되어 구리성분을 흡착시킬 수 있게 된다. 이러한 방식으로 만들어진 산화구리는 산화마그네슘과 함께 구리의 산화촉매, 탈황, 실리카구리 등의 형성 작용에 큰 상승효과를 가져 온다.That is, magnesium hydroxide particles (Mg (OH) 2 ) are dissolved in water in a small amount of about 0.0014g / 100ml to release hydroxyl groups. At this time, the released hydroxyl groups cause exchange reaction with nitro anions of Cu (NO 3 ) 2 . . Cu (OH) 2 is automatically coated on the surface of magnesium hydroxide to adsorb copper. Copper oxide made in this way has a great synergistic effect on the formation of copper oxide catalyst, desulfurization, and silica copper together with magnesium oxide.
이때 추가적으로 질산마그네슘을 투여함으로써 상기와 같은 연소 첨가제 조성물을 제조할 수 있다. 한편, 상기 슬러리는 쉽게 가라앉는 특징이 있어서 점도조절제인 셀룰로오스계와 같은 물질을 0.5중량부 이하로 적용하면 분산안정성을 얻을 수 있다. At this time, by administering magnesium nitrate it can be prepared such a combustion additive composition. On the other hand, the slurry has a feature that easily sinks, if the material such as a cellulose-based viscosity modifier is applied to 0.5 parts by weight or less can be obtained dispersion stability.
한편, 본 발명에서의 연소 첨가제 조성물은 고체 연료에 분사되어 분산된 형태로서 사용될 수 있다. On the other hand, the combustion additive composition in the present invention can be used as a dispersed form injected into a solid fuel.
즉, 석탄과 같은 고체연료에 상기 연소 첨가제 조성물을 분사하여 넓은 면적에 균일하게 분산시킨 후에 이를 연소실내에서 연소시킬 수 있다. That is, the combustion additive composition may be sprayed onto a solid fuel such as coal and uniformly dispersed in a large area, and then burned in a combustion chamber.
보다 구체적으로, 상기 연소 첨가제 조성물을 슬러리 형태로 제조한 후에 화력발전소에서 사용되는 석탄 등의 고체연료에 이를 미리 분사하고 상기 분산된 고체연료를 연소로에 넣고 연소할 수 있다. 상기 미리 분사되어 분산된 연소 첨가제 조성물은 고체연료의 표면에 균일하게 분산시킴으로써 고체연료가 연소시 본 발명이 주는 효과를 줄 수 있다. More specifically, after the combustion additive composition is prepared in the form of a slurry, it may be pre-injected into solid fuel such as coal used in a thermal power plant, and the dispersed solid fuel may be put into a combustion furnace and combusted. The pre-injected and dispersed combustion additive composition may uniformly disperse the surface of the solid fuel to give an effect of the present invention when the solid fuel is burned.
또한, 상기 연소 첨가제 조성물은 고체연료가 연소가 되는 과정 중에서 연소로 내에서 분사시켜 사용할 수 있다. 이 경우, 연소 첨가제 조성물 중 구리전구체인 질산구리가 고온에서 나노입자가 되는 특성이 있기 때문에 보다 효과적으로 산소를 공급할 수 있는 조건이 된다. In addition, the combustion additive composition may be used by spraying in the combustion furnace in the process of the solid fuel is burned. In this case, since copper nitrate, which is a copper precursor in the combustion additive composition, has a property of becoming nanoparticles at a high temperature, it becomes a condition for supplying oxygen more effectively.
또한, 연소실 후단쪽에서 분사함으로써, 배가스에 포함된 아황산가스를 흡수할 수 있고, 고체 연료에 직접 분사하지 않고 공기 중에서 분사를 하여 고체연료와 접촉시킴으로써 분산되는 경우에는 접촉면이 넓어져서 탈황성능을 높일 수 있다는 장점이 있다. In addition, by discharging from the rear end of the combustion chamber, sulfur dioxide contained in the exhaust gas can be absorbed, and in case of being dispersed by contacting with solid fuel by spraying in the air instead of directly injecting the solid fuel, the contact surface is widened to increase the desulfurization performance. There is an advantage.
이하 본 발명의 일 실시예에 따른 고체연료의 연소 첨가제 조성물의 제조방법을 설명한다. Hereinafter will be described a method for producing a combustion additive composition of a solid fuel according to an embodiment of the present invention.
<실시예 1><Example 1>
36% 수산화마그네슘 슬러리 (평균입경 2.5㎛) 100중량부에 Mg(NO3)2·6H2O (분자량 256.41) 60 중량부, Cu(NO3)2·4H2O 6중량부를 첨가하여 24시간 교반하여 조성물을 완성하였다. 이 조성물은 MgO 기준으로 약 20% 함량의 조성을 갖게 되는 슬러리 형태이다. 또한 Cu(OH)2는 Mg(OH)2 입자에 골고루 분산되어 있음을 도 2의 EDX 측정결과로 입증할 수 있다. To 60 parts by weight of Mg (NO 3 ) 2 · 6H 2 O (molecular weight 256.41) and 6 parts by weight of Cu (NO 3 ) 2 · 4H 2 O were added to 100 parts by weight of 36% magnesium hydroxide slurry (average particle size 2.5 μm) for 24 hours. Stirring completed the composition. The composition is in the form of a slurry which will have a composition of about 20% content on a MgO basis. In addition, Cu (OH) 2 It can be proved by the EDX measurement results of Figure 2 that the evenly dispersed in the Mg (OH) 2 particles.
<실시예 2><Example 2>
탄소 74.2%, 산소 3.1%, 질소 1.8%, 황 0.5%, 회분 15.9%, 발열량 6,106kcal 의 특성을 갖고 있는 석탄(Dawson) 1000kg에 실시예 1의 조성물을 312g(실시예 2-1), 1560g(실시예 2-2) 및 3120g(실시예 2-3)을 각각 첨가하여 연소로에 투입한 것과 제조된 연소 첨가제를 투입하지 않은 결과에 대하여 IDT(무기물의 회융점), CO함량 및 SO2 함량에 관해 아래의 표 1에 정리를 하였다. 312 g of the composition of Example 1 (Example 2-1), 1560 g in 1000 kg of Dawson having carbon 74.2%, oxygen 3.1%, nitrogen 1.8%, sulfur 0.5%, ash 15.9%, and calorific value 6106 kcal (Example 2-2) and 3120 g (Example 2-3) were added to the combustion furnace and IDT (mineral melting point of inorganic matter), CO content and SO 2 were added to the combustion furnace and the result of not adding the produced combustion additive. The content is summarized in Table 1 below.
표 1
구분 IDT(무기물의 회융점) CO(ppm) SO2(ppm)
미첨가 연료(석탄 1,000kg) 1200℃ 102 110
실시예 2-1(석탄 1,000kg+첨가제 312g) 1320℃ 65 109
실시예 2-2(석탄 1,000kg+첨가제 1560g) 1410℃ 35 105
실시예 2-3(석탄 1,000kg+첨가제 3120g) 1420℃ 29 100
Table 1
division IDT (melting point of minerals) CO (ppm) SO 2 (ppm)
Unadded fuel (1,000 kg of coal) 1200 ℃ 102 110
Example 2-1 (1,000 kg of coal + 312 g of additive) 1320 ℃ 65 109
Example 2-2 (1,000 kg of coal + 1560 g of additive) 1410 ℃ 35 105
Example 2-3 (1,000 kg of coal + 3120 g of additive) 1420 ℃ 29 100
상기 표 1의 결과를 통하여 IDT가 증가함에 따라서 연소로의 열교환기에 축척되는 클링커의 생성량이 현저히 감소하였다는 것을 확인할 수 있으며, CO도 상당히 감소하는 경향을 볼 수 있다. 또한 아황산가스의 함량은 첨가량이 증가함에 따라 감소하는 결과를 보여주고 있다. Through the results of Table 1, it can be seen that as the IDT increases, the amount of clinker accumulated in the heat exchanger of the combustion furnace is significantly reduced, and the CO is also considerably reduced. In addition, the content of sulfurous acid gas decreases as the amount added increases.
결과적으로 연소로 내에서 열교환성능이 향상되어 연료절감효과뿐만 아니라 환경문제 해결에도 상당한 도움을 줄 수 있다는 것을 알 수 있다.As a result, it can be seen that the heat exchange performance is improved in the furnace, which can greatly help not only fuel saving effect but also environmental problems.

Claims (10)

  1. 물 100 중량부에 대하여, 구리전구체 0.1 ~ 20 중량부 및 마그네슘 전구체 10 ~ 300 중량부를 포함하는 고체연료의 연소 첨가제 조성물.Combustion additive composition of a solid fuel comprising 0.1 to 20 parts by weight of copper precursor and 10 to 300 parts by weight of magnesium precursor with respect to 100 parts by weight of water.
  2. 제1항에 있어서, The method of claim 1,
    상기 마그네슘 전구체는 수산화마그네슘을 포함하는 것을 특징으로 하는 고체연료의 연소 첨가제 조성물. Combustion additive composition of a solid fuel, characterized in that the magnesium precursor comprises magnesium hydroxide.
  3. 제2항에 있어서, The method of claim 2,
    상기 수산화마그네슘은 물 100 중량부에 대하여, 10 ~ 100 중량부를 포함하는 것을 특징으로 하는 고체연료의 연소 첨가제 조성물. The magnesium hydroxide is 10 to 100 parts by weight based on 100 parts by weight of water, the combustion additive composition of solid fuel.
  4. 제1항에 있어서, The method of claim 1,
    상기 구리전구체는 질산구리, 황산구리 및 염화구리로부터 선택되는 어느 하나 또는 이들의 혼합물인 것을 특징으로 하는 고체연료의 연소 첨가제 조성물. The copper precursor is any one or a mixture thereof selected from copper nitrate, copper sulfate and copper chloride.
  5. 제3항에 있어서, The method of claim 3,
    상기 마그네슘 전구체는 추가적으로 질산마그네슘을 포함하는 것을 특징으로 하는 고체연료의 연소 첨가제 조성물. Combustion additive composition of a solid fuel, characterized in that the magnesium precursor further comprises magnesium nitrate.
  6. 제5항에 있어서, The method of claim 5,
    상기 추가적으로 포함되는 마그네슘 전구체는 물 100 중량부에 1 내지 100 중량부를 포함하는 것을 특징으로 하는 고체연료의 연소 첨가제 조성물.The additionally included magnesium precursor comprises from 1 to 100 parts by weight of 100 parts by weight of water, the combustion additive composition of a solid fuel.
  7. 제1항에 있어서,The method of claim 1,
    상기 연소 첨가제 조성물은 수산화마그네슘의 표면에 수산화구리가 코팅되어 있는 입자를 포함하는 것을 특징으로 하는 고체연료의 연소 첨가제 조성물.The combustion additive composition is a combustion additive composition of a solid fuel, characterized in that it comprises particles having copper hydroxide coated on the surface of magnesium hydroxide.
  8. 제1항에 있어서,The method of claim 1,
    상기 연소 첨가제 조성물은 물 100 중량부에 대하여, 점도조절제가 0.5 중량부 이하로 포함되는 것을 특징으로 하는 고체연료의 연소 첨가제 조성물.The combustion additive composition is a combustion additive composition of a solid fuel, characterized in that the viscosity modifier is contained in 0.5 parts by weight or less based on 100 parts by weight of water.
  9. 물 100 중량부에 대하여, 비표면적이 5 ~ 80 m2/g의 수산화마그네슘 분말 10 ~ 100 중량부, 구리전구체 0.1 ~ 20 중량부 및 질산마그네슘 10 ~ 100 중량부를 포함하는 고체연료의 연소 첨가제 조성물.Combustion additive composition of solid fuel comprising 10 to 100 parts by weight of magnesium hydroxide powder having a specific surface area of 5 to 80 m 2 / g, 0.1 to 20 parts by weight of copper precursor and 10 to 100 parts by weight of magnesium nitrate, based on 100 parts by weight of water. .
  10. 제1항 내지 제9항 중 어느 한 항에 기재된 연소 첨가제 조성물을 고체 연료 100 중량부에 0.0001 ~ 2 중량부 첨가하여 분사한 후에, 상기 연소 첨가제 조성물이 분사된 고체 연료를 연소시키는 것을 특징으로 하는 고체 연료의 연소 방법.After the injection additive composition according to any one of claims 1 to 9 is added by injecting 0.0001 to 2 parts by weight to 100 parts by weight of the solid fuel, the combustion additive composition is characterized by burning the injected solid fuel. Method of combustion of solid fuels.
PCT/KR2015/001646 2014-02-20 2015-02-17 Combustion additive composition of solid fuel and method for using same WO2015126169A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020140019750A KR101542076B1 (en) 2014-02-20 2014-02-20 Composite for combusition of solide fuel and methode for using the same
KR10-2014-0019750 2014-02-20

Publications (2)

Publication Number Publication Date
WO2015126169A2 true WO2015126169A2 (en) 2015-08-27
WO2015126169A3 WO2015126169A3 (en) 2017-05-18

Family

ID=53879198

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/001646 WO2015126169A2 (en) 2014-02-20 2015-02-17 Combustion additive composition of solid fuel and method for using same

Country Status (2)

Country Link
KR (1) KR101542076B1 (en)
WO (1) WO2015126169A2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101697716B1 (en) * 2016-04-07 2017-01-19 주식회사 자단 Additive composition for solid fuel
CN106433854A (en) * 2016-10-24 2017-02-22 马鞍山科宇环境工程有限公司 Coal desulfurization and decoking process
KR102231686B1 (en) 2020-11-09 2021-03-24 주식회사 이비알 Combustion additive composition for preventing fouling and corrosion of biomass and waste incineration boilers using coal ash and sulfuric acid
KR102354218B1 (en) 2021-08-05 2022-02-08 주식회사 이비알 Materials for obstacle resolve of fluidized bed boiler and fluidized bed boiler system therefor

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR900003895B1 (en) * 1987-01-06 1990-06-04 이상근 A process for the manufacture of high calorie briquet with low quality birquet & its material
KR970010866B1 (en) * 1993-06-01 1997-07-01 김종식 Addition for preventing forming 0f clinker at coal combustion
JP3011326B2 (en) * 1995-02-10 2000-02-21 株式会社ジャパンエナジー Fuel additives and fuels
JP2002038169A (en) * 2000-05-19 2002-02-06 Taiho Ind Co Ltd Fuel additive for bitumen heavy oil o/w emulsion fuel
JP3745973B2 (en) * 2001-03-23 2006-02-15 タイホー工業株式会社 Coal additive for preventing slagging and coal combustion method

Also Published As

Publication number Publication date
WO2015126169A3 (en) 2017-05-18
KR101542076B1 (en) 2015-08-13

Similar Documents

Publication Publication Date Title
CN101348743B (en) Clean synergistic agent for coal-saving, devulcanizing and coke cleaning, and preparation technique thereof
WO2019054659A1 (en) Desulfurization system using desulfurization catalyst
CN102041131B (en) High-temperature sulfur solidifying agent for desulfurization in coal blending burner
CN103194292B (en) Boiler coal combustion-improving desulfurizing and denitrifying agent composition and preparation method thereof
WO2015126169A2 (en) Combustion additive composition of solid fuel and method for using same
CN100387693C (en) Formulation and preparation method of desulfurization agent for assisting combustion of fire coal
CN102517120B (en) Fuel coal additive
US4517165A (en) Combustion method
CN107236580B (en) High-efficiency sulfur fixation catalytic composition for coal
KR101697716B1 (en) Additive composition for solid fuel
CN101275095B (en) Coal burning additive
WO2017018628A1 (en) Fossil fuel and livestock manure combustion promoter for harmful discharge gas and clinker inhibition and for complete combustion, and preparation method therefor
WO2020091296A1 (en) Additive composition using alumina for preventing fouling, slagging, and corrosion of biomass co-firing or dedicated boiler
US4523532A (en) Combustion method
CN103160356A (en) Integration fire coal additive of combustion supporting, sulfur fixation, denitration and decoking, preparation method thereof and application thereof
CN110240123B (en) Method for preparing sulfuric acid by using rotary kiln incineration waste sulfur and sulfur-containing waste liquid
KR102332238B1 (en) Fluidized-bed boiler interior and tube surface slagging or fouling combustion additives using lime and biomass as fuel
CN101531942A (en) Additive having functions of combustion supporting of coal, desulphurizing and denitrifying and preparation method
CN101020855B (en) Assistant for coal burning furnace and kiln
CN105950258A (en) Nano sulfur-fixing agent
CN101955818B (en) Coke-removing and soot-cleaning combustion improver for boiler
CN102643705B (en) Coal combustion-supporting hydrogel as well as preparation method and application thereof
WO2012053835A2 (en) Liquid combustion catalyst composition comprising an ionized metal compound
US8048243B2 (en) Combustion catalyst
CN103031174B (en) Liquid state coal-saving additive

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15752200

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15752200

Country of ref document: EP

Kind code of ref document: A2