WO2015125697A1 - Polyelectrolyte film - Google Patents

Polyelectrolyte film Download PDF

Info

Publication number
WO2015125697A1
WO2015125697A1 PCT/JP2015/053909 JP2015053909W WO2015125697A1 WO 2015125697 A1 WO2015125697 A1 WO 2015125697A1 JP 2015053909 W JP2015053909 W JP 2015053909W WO 2015125697 A1 WO2015125697 A1 WO 2015125697A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
polymer
electrolyte membrane
polymer electrolyte
block
Prior art date
Application number
PCT/JP2015/053909
Other languages
French (fr)
Japanese (ja)
Inventor
謙太 俊成
小野 友裕
須郷 望
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Publication of WO2015125697A1 publication Critical patent/WO2015125697A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/122Ionic conductors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2231Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds
    • C08J5/2243Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds obtained by introduction of active groups capable of ion-exchange into compounds of the type C08J5/2231
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1041Polymer electrolyte composites, mixtures or blends
    • H01M8/1044Mixtures of polymers, of which at least one is ionically conductive
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1072Polymeric electrolyte materials characterised by the manufacturing processes by chemical reactions, e.g. insitu polymerisation or insitu crosslinking
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2309/00Characterised by the use of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08J2309/06Copolymers with styrene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1032Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having sulfur, e.g. sulfonated-polyethersulfones [S-PES]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1034Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having phosphorus, e.g. sulfonated polyphosphazenes [S-PPh]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a polymer electrolyte membrane useful for a polymer electrolyte fuel cell.
  • Fuel cells have attracted attention as highly efficient power generation systems. Fuel cells are classified into molten carbonate type, solid oxide type, phosphoric acid type, solid polymer type, etc., depending on the type of electrolyte. Of these, a polymer electrolyte membrane is sandwiched between electrodes (anode and cathode), a fuel made of a reducing agent (usually hydrogen or methanol) at the anode, and an oxidant (usually air) at the cathode.
  • Solid polymer fuel cells that generate electricity by supplying power are being considered for application to automotive power supplies, portable equipment power supplies, household cogeneration systems, and the like from the viewpoints of low temperature operability, small size, and light weight.
  • Perfluorocarbon sulfonic acid polymers are often used as the material for polymer electrolyte membranes used in polymer electrolyte fuel cells because of their chemical stability. Environmental load becomes a problem.
  • a polymer electrolyte membrane made of a material not containing fluorine has been demanded.
  • a polymer electrolyte membrane made of polyether ether ketone (PEEK) into which a sulfonic acid group is introduced is known (see Patent Document 1).
  • PEEK polyether ether ketone
  • a polymer electrolyte membrane comprising a block unit comprising a polymer block having an ion conductive group and a flexible polymer block, which comprises a structural unit derived from an aromatic vinyl compound (Patent Document 2). reference).
  • Patent Document 2 a polymer electrolyte membrane is flexible and difficult to break, and the polymer block having the ion conductive group forms an ion conductive channel by microphase separation from the flexible polymer block, and thus has excellent ion conductivity.
  • hot water of the polymer electrolyte membrane (for example, 90 ° C. or higher) Measures to improve durability (hot water resistance) against water, specifically, suppression of elution of polymer electrolyte membranes by hot water, and suppression of voltage drop during long-time operation associated with this are being studied .
  • a polymer electrolyte membrane comprising, as a main component, a block copolymer in which the flexible polymer block is a structural unit derived from a vinyl compound and the flexible polymer block is crosslinked with 1,2-polybutadiene or the like. It is known that the hot water resistance of water increases (see Patent Document 3).
  • an object of the present invention is to provide a polymer electrolyte membrane that is made of a non-fluorine material, is flexible and hardly cracked, and has excellent hot water resistance.
  • the above object is a polymer block (A) (hereinafter simply referred to as “polymer block (A)”) comprising a structural unit derived from an aromatic vinyl compound and having an ion conductive group.
  • An amorphous polymer block (B) comprising a structural unit derived from an unsaturated aliphatic hydrocarbon and having no ion conductive group (hereinafter simply referred to as “polymer block (B)”)
  • a composition comprising a block copolymer (Z) containing and a compound (X) represented by the following general formula (1) (hereinafter simply referred to as “compound (X)”) is subjected to a crosslinking treatment after molding. This is accomplished by providing a molecular electrolyte membrane.
  • R 1 represents a hydrogen atom, a hydroxyl group or an alkyl group having 1 to 4 carbon atoms
  • R 2 represents a hydrogen atom, a hydroxyl group, an alkyl group having 1 to 4 carbon atoms or an alkoxy group having 1 to 4 carbon atoms
  • R 3 represents a hydroxyalkyl group having 1 to 4 carbon atoms.
  • a polymer electrolyte membrane which is made of a non-fluorine material and is flexible, hard to break and excellent in hot water resistance.
  • the polymer electrolyte membrane of the present invention is obtained by subjecting a composition containing a block copolymer (Z) containing a polymer block (A) and a polymer block (B) and a compound (X) to a crosslinking treatment after molding. Become.
  • the polymer block (A) and the polymer block (B) form a microphase separation structure.
  • the phase containing the polymer block (A) forms an ion conductive channel, it exhibits good ion conductivity.
  • microphase separation means phase separation in a microscopic sense, and more specifically, means phase separation in which the formed domain size is less than or equal to the wavelength of visible light (3800 to 7800 mm). It shall be.
  • the film thickness of the polymer electrolyte membrane of the present invention is preferably in the range of 4 to 170 ⁇ m, more preferably in the range of 8 to 115 ⁇ m, still more preferably in the range of 10 to 70 ⁇ m, from the viewpoint of mechanical strength, handling properties, and the like. A range of ⁇ 50 ⁇ m is particularly preferred. If the film thickness is 4 ⁇ m or more, the mechanical strength of the polymer electrolyte membrane, the fuel blocking property and the handling property are good, and if the film thickness is 170 ⁇ m or less, the ion conductivity of the polymer electrolyte membrane is good. is there.
  • the polymer electrolyte membrane of the present invention is obtained by subjecting a composition containing a block copolymer (Z) containing a polymer block (A) and a polymer block (B) and a compound (X) to a crosslinking treatment after molding. It may be a multilayer film including at least one polymer electrolyte layer.
  • Block copolymer (Z) The block copolymer (Z) is composed of a structural unit derived from an aromatic vinyl compound, and has a polymer block (A 0 ) (hereinafter simply referred to as “polymer block (A 0 )”) having no ion conductive group. And an ion conductive group introduced into the polymer block (A 0 ) of the block copolymer (Z 0 ) containing the polymer block (B).
  • the number average molecular weight (Mn) of the block copolymer (Z 0 ) is not particularly limited, but is usually preferably in the range of 10,000 to 300,000, more preferably in the range of 15,000 to 250,000, and 40,000. The range of ⁇ 200,000 is more preferred, and the range of 70,000 to 180,000 is particularly preferred.
  • Mn of the block copolymer (Z 0 ) is 10,000 or more, especially 70,000 or more, the resulting polymer electrolyte membrane has high tensile elongation at break and is 300,000 or less, particularly 180,000 or less.
  • the composition containing the block copolymer (Z) and the compound (X) is excellent in moldability and is advantageous in production.
  • Mn means the standard polystyrene conversion value measured by the gel permeation chromatography (GPC) method.
  • the ion exchange capacity of the block copolymer (Z) is preferably in the range of 0.4 to 4.5 meq / g, more preferably in the range of 0.8 to 3.2 meq / g, and 1.3 to 3.0 meq / g. Is more preferable, and a range of 1.8 to 2.8 meq / g is particularly preferable.
  • the polymer electrolyte membrane obtained by the present invention has good ion conductivity when the ion exchange capacity is 0.4 meq / g or more, and hardly swells when it is 4.5 meq / g or less.
  • the ion exchange capacity of the block copolymer (Z) can be calculated using an acid value titration method.
  • the block copolymer (Z) may have one or more polymer blocks (A) and polymer blocks (B), respectively.
  • their structures kind of structural unit, degree of polymerization, kind of ion conductive group, introduction ratio, etc.
  • those structures kind of a structural unit, a polymerization degree, etc.
  • the polymer block (A) and the polymer block (B) may be side chains, that is, the block copolymer (Z) includes a graft copolymer.
  • an AB type diblock copolymer (A and B are each a polymer block ( A) represents a polymer block (B), the same applies hereinafter), an ABA type triblock copolymer, a BAB type triblock copolymer, an ABAB type tetrablock.
  • total amount of polymer block (A 0 )) :( total amount of polymer block (B)) is in the range of 95: 5 to 5:95 by mass ratio. Preferably, it is in the range of 75:25 to 15:85, more preferably in the range of 65:35 to 20:80, and particularly preferably in the range of 50:50 to 25:75. If the mass ratio is within the above range, the obtained polymer electrolyte membrane has ion conductivity, mechanical strength, and durability when it is repeatedly wetted and dried along with starting and stopping of the polymer electrolyte fuel cell (starting and stopping) Durability) tends to be excellent.
  • the polymer block (A) can be formed by introducing an ion conductive group into the polymer block (A 0 ).
  • the ion conductive group is usually introduced into the aromatic ring of the polymer block (A 0 ).
  • the polymer block (A 0 ) is composed of a structural unit derived from an aromatic vinyl compound, and the aromatic ring of the aromatic vinyl compound is a carbocyclic aromatic ring such as a benzene ring, a naphthalene ring, an anthracene ring, or a pyrene ring. Preferably, there is a benzene ring.
  • Examples of the aromatic vinyl compound that can form the polymer block (A 0 ) include styrene, 2-methylstyrene, 3-methylstyrene, 4-methylstyrene, 4-ethylstyrene, 2,3-dimethylstyrene, 2, 4-dimethylstyrene, 2,5-dimethylstyrene, 3,5-dimethylstyrene, 2-methoxystyrene, 3-methoxystyrene, 4-methoxystyrene, vinylbiphenyl, vinylterphenyl, vinylnaphthalene, vinylanthracene, 4-phenoxy Examples include styrene.
  • the hydrogen atom bonded to the ⁇ -position carbon ( ⁇ -carbon) of the aromatic ring may be substituted with another substituent.
  • substituents include methyl groups, ethyl groups, n-propyl groups, isopropyl groups, n-butyl groups, isobutyl groups, sec-butyl groups, tert-butyl groups and other alkyl groups having 1 to 4 carbon atoms; chloromethyl Group, a halogenated alkyl group having 1 to 4 carbon atoms such as a 2-chloroethyl group and a 3-chloroethyl group; or a phenyl group.
  • Aromatic vinyl compounds in which the hydrogen atom bonded to the ⁇ -carbon is substituted with these substituents include ⁇ -methylstyrene, ⁇ -methyl-4-methylstyrene, ⁇ -methyl-2-methylstyrene, ⁇ -methyl Examples include -4-ethylstyrene and 1,1-diphenylethylene.
  • aromatic vinyl compounds that can form the polymer block (A 0 )
  • styrene, ⁇ -methylstyrene, 4-methylstyrene, 4-ethylstyrene, ⁇ -methyl-4-methylstyrene, ⁇ -methyl-2 -Methylstyrene, vinylbiphenyl and 1,1-diphenylethylene are preferred, styrene, ⁇ -methylstyrene, 4-methylstyrene and 1,1-diphenylethylene are more preferred, and styrene and ⁇ -methylstyrene are more preferred.
  • a polymer block (A 0 ) can be formed by polymerizing these aromatic vinyl compounds as monomers and using one kind alone or two or more kinds in combination. Random copolymerization is preferred as the copolymerization form when two or more aromatic vinyl compounds are used in combination.
  • the polymer block (A 0 ) may contain other structural units not derived from one or more aromatic vinyl compounds within a range not impairing the effects of the present invention.
  • the monomer capable of forming such other structural units include butadiene, 1,3-pentadiene, isoprene, 1,3-hexadiene, 2,3-dimethyl-1,3-butadiene, 2-ethyl-1,3.
  • a conjugated diene having 4 to 8 carbon atoms such as butadiene and 1,3-heptadiene; 2 or more carbon atoms such as ethylene, propylene, 1-butene, isobutene, 1-pentene, 1-hexene, 1-heptene and 1-octene 8 Alkenes; (Meth) acrylates such as methyl (meth) acrylate, ethyl (meth) acrylate, and butyl (meth) acrylate; Vinyl esters such as vinyl acetate, vinyl propionate, vinyl butyrate, and vinyl pivalate And vinyl ethers such as methyl vinyl ether and isobutyl vinyl ether.
  • these other monomers and the above-described aromatic vinyl compound are mixed and then subjected to polymerization.
  • These other structural units are preferably 5 mol% or less of the structural units forming the polymer block (A 0 ). That is, it is preferable that 95 mol% or more of the structural units forming the polymer block (A 0 ) is a structural unit derived from an aromatic vinyl compound.
  • the Mn per polymer block (A 0 ) is usually preferably in the range of 1,000 to 100,000, more preferably in the range of 2,000 to 70,000, and further in the range of 4,000 to 50,000.
  • the range of 6,000 to 30,000 is particularly preferable.
  • Mn is 1,000 or more, particularly 6,000 or more, the ion conductivity is good.
  • Mn is 100,000 or less, particularly 30,000 or less, the hot water resistance is good, and the composition containing the block copolymer (Z) and the compound (X) is excellent in moldability and advantageous in production. It becomes.
  • the ion conductive group possessed by the polymer block (A 0 ) is preferably a proton conductive group, and —SO 3 M or PO 3 HM (wherein M represents a hydrogen atom, an ammonium ion or an alkali metal ion).
  • M represents a hydrogen atom, an ammonium ion or an alkali metal ion.
  • One or more selected from the sulfonic acid groups, phosphonic acid groups and salts thereof represented are more preferred, and sulfonic acid groups are more preferred.
  • the polymer block (B) is an amorphous polymer block composed of a structural unit derived from an unsaturated aliphatic hydrocarbon and having no ion conductive group.
  • the amorphous property of a polymer block (B) can be confirmed by measuring the dynamic viscoelasticity of a block copolymer (Z), and not having the change of the storage elastic modulus derived from a crystalline olefin polymer.
  • Examples of the unsaturated aliphatic hydrocarbon that can form the polymer block (B) include ethylene, propylene, 1-butene, isobutene, 1-pentene, 1-hexene, 1-heptene, 1-octene and the like having 2 to 2 carbon atoms.
  • alkenes 7 to 10 carbon cycloalkanes such as vinyl cyclopentane, vinyl cyclohexane, vinyl cycloheptane and vinyl cyclooctane; 7 to 7 carbon atoms such as vinyl cyclopentene, vinyl cyclohexene, vinyl cycloheptene and vinyl cyclooctene 10 vinylcycloalkenes; butadiene, 1,3-pentadiene, isoprene, 1,3-hexadiene, 2,3-dimethyl-1,3-butadiene, 2-ethyl-1,3-butadiene, 1,3-heptadiene, etc.
  • cycloalkanes such as vinyl cyclopentane, vinyl cyclohexane, vinyl cycloheptane and vinyl cyclooctane
  • 7 to 7 carbon atoms such as vinyl cyclopentene, vinyl cyclohexene, vinyl cycloheptene
  • Conjugated dienes having 4 to 8 carbon atoms are preferred, alkenes having 4 to 8 carbon atoms and conjugated dienes having 4 to 8 carbon atoms are more preferred, isobutene, butadiene and isoprene are more preferred, and butadiene and isoprene are particularly preferred.
  • unsaturated aliphatic hydrocarbons one type is polymerized alone or in combination of two or more types to form a polymer block (B). Random copolymerization is preferred as the copolymerization form when two or more unsaturated aliphatic hydrocarbons are used in combination.
  • the polymer block (B) is not derived from an unsaturated aliphatic hydrocarbon as long as the effect of the polymer block (B) that gives the block copolymer (Z) flexibility in the use temperature range is not impaired.
  • Other structural units may be included. Examples of monomers that can form such other structural units include aromatic vinyl compounds such as styrene and vinyl naphthalene; halogen-containing vinyl compounds such as vinyl chloride; vinyl acetate, vinyl propionate, vinyl butyrate, and vinyl pivalate. Vinyl esters; vinyl ethers such as methyl vinyl ether and isobutyl vinyl ether; and the like.
  • these other monomers and the unsaturated aliphatic hydrocarbon described above are mixed and then subjected to polymerization.
  • These other structural units are preferably 5 mol% or less of the structural units forming the polymer block (B). That is, it is preferable that 95 mol% or more of the structural units forming the polymer block (B) are structural units derived from unsaturated aliphatic hydrocarbons.
  • the unsaturated aliphatic hydrocarbon has a plurality of carbon-carbon double bonds
  • any of them may be used for polymerization.
  • a conjugated diene either 1,2-bond or 1,4-bond It may be.
  • carbon-carbon double bonds usually remain, but from the viewpoint of improving the heat resistance deterioration of the resulting polymer electrolyte membrane, the block copolymer After polymerizing the polymer (Z 0 ), a hydrogenation reaction (hereinafter referred to as “hydrogenation reaction”) is performed, and the carbon-carbon double bond is hydrogenated (hereinafter referred to as “hydrogenation”).
  • the hydrogenation rate of such a carbon-carbon double bond (hereinafter referred to as “hydrogenation rate”) is preferably 30 mol% or more, more preferably 50 mol% or more, and even more preferably 95 mol% or more.
  • the polymer block (B) is a saturated hydrocarbon structure
  • introduction of an ion conductive group into the combined block (B) hardly occurs. Therefore, when the hydrogenation reaction of the carbon-carbon double bond remaining in the polymer block (B) after polymerizing the block copolymer (Z 0 ) is carried out before introducing the ion conductive group. desirable.
  • the hydrogenation rate of the carbon-carbon double bond can be calculated by 1 H-NMR measurement.
  • the Mn per polymer block (B) is usually preferably in the range of 5,000 to 250,000, more preferably in the range of 7,000 to 200,000, and 15,000 to 150,000. More preferably, it is in the range of 000, and particularly preferably in the range of 30,000 to 100,000.
  • Mn is 5,000 or more, particularly 30,000 or more
  • the mechanical strength is particularly good, and the start / stop durability of repeating wet (start) and dry (stop) in the fuel cell is excellent.
  • Mn is 250,000 or less, particularly 100,000 or less, the block copolymer (Z) is excellent in moldability and advantageous in production.
  • the block copolymer (Z) is composed of a structural unit derived from an aromatic vinyl compound, and may further include a polymer block (C) having no ion conductive group.
  • the polymer block (C) forms a microphase separation structure with the polymer block (A) and the polymer block (B).
  • the polymer block (C) is preferably composed of a structural unit derived from an aromatic vinyl compound represented by the following general formula (2) because of superiority in production.
  • R 4 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms
  • R 5 represents an alkyl group having 3 to 8 carbon atoms
  • R 6 and R 7 each independently represents a hydrogen atom or a carbon number. Represents an alkyl group of 3 to 8.
  • the block copolymer (Z 0 ) has ion conductivity.
  • an ion conductive group can be selectively introduced into the polymer block (A 0 ).
  • Examples of the aromatic vinyl compound for forming the structural unit represented by the general formula (2) include 4-propylstyrene, 4-isopropylstyrene, 4-butylstyrene, 4-isobutylstyrene, 4-tert-butylstyrene, Examples include 4-octylstyrene, ⁇ -methyl-4-tert-butylstyrene, ⁇ -methyl-4-isopropylstyrene, and the like.
  • 4-tert-butylstyrene, 4-isopropylstyrene, ⁇ -methyl-4-tert-butyl Styrene and ⁇ -methyl-isopropylstyrene are more preferable, and 4-tert-butylstyrene is more preferable. These may be used alone or in combination of two or more. Random copolymerization is preferred as the copolymerization form when two or more aromatic vinyl compounds are used in combination.
  • the polymer block (C) may contain other structural units not derived from one or more aromatic vinyl compounds within a range not impairing the effects of the present invention.
  • monomers that can form such other structural units include butadiene, 1,3-pentadiene, isoprene, 1,3-hexadiene, 2,4-hexadiene, 2,3-dimethyl-1,3-butadiene, 2 Conjugated diene having 4 to 8 carbon atoms such as ethyl-1,3-butadiene, 1,3-heptadiene; ethylene, propylene, 1-butene, isobutene, 1-pentene, 1-hexene, 1-heptene, 1-octene Alkenes having 2 to 8 carbon atoms such as: (meth) acrylic acid esters such as methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate; vinyl acetate, vinyl propionate, vinyl but
  • the copolymerization form of these other monomers and the above-described aromatic vinyl compound is preferably random copolymerization.
  • These other structural units are preferably 5 mol% or less of the structural units forming the polymer block (C). That is, it is preferable that 95 mol% or more of the structural units forming the polymer block (C) are structural units derived from an aromatic vinyl compound.
  • the Mn per polymer block (C) is usually preferably in the range of 1,000 to 50,000, more preferably in the range of 1,500 to 30,000, and 2,000 to 20,000. More preferably, it is in the range of 000. If the Mn is 1,000 or more, the mechanical strength of the polymer electrolyte membrane obtained in the present invention tends to be excellent, and if it is 50,000 or less, the block copolymer (Z) and the compound (X) are added. The composition to be contained is excellent in moldability and advantageous in production.
  • the block copolymer (Z) used in the present invention contains a polymer block (C)
  • ABC type triblock copolymer (A, B and C are each a polymer block)
  • A) represents a polymer block (B) and a polymer block (C)
  • ABCA type tetrablock copolymer an ABCA type tetrablock copolymer.
  • Polymer BABC type tetrablock copolymer, ABCBC type tetrablock copolymer, ABCBC type tetrablock copolymer, CABB AC type pentablock copolymer, CBABC type pentablock copolymer, ABCBC type pentablock copolymer, ACBAA- C-type pentablock copolymer, ABCBCAC type hexablock copolymer, CABC AC type hexablock copolymer, ACCABCBC type hexablock copolymer, ACCABCBC type heptablock copolymer, A- CBCBCBC type heptablock copolymer, CACBCBCAC type heptablock copolymer, ACACABCBC A-C type octablock copolymer, ACBCCBCCAC type octablock copolymer, ABCBCCABCBC type octablock A copolymer etc.
  • ABC type triblock copolymer ABCA type tetrablock copolymer, and ABC type tetrablock copolymer are used.
  • the content of the polymer block (C) in the block copolymer (Z 0 ) is from 5 to It is preferably in the range of 50% by mass, more preferably in the range of 7-40% by mass, and still more preferably in the range of 10-30% by mass.
  • the content is 5% by mass or more, the obtained polymer electrolyte membrane tends to be excellent in hot water resistance, and when it is 50% by mass or less, the obtained polymer electrolyte membrane tends to be excellent in start / stop durability. .
  • the block copolymer (Z) constituting the polymer electrolyte membrane of the present invention is a block copolymer comprising a polymer block (A 0 ) and a polymer block (B) by polymerizing each of the aforementioned monomers. After producing the coalescence (Z 0 ), it can be produced by a method of introducing an ion conductive group into the polymer block (A 0 ).
  • the production method of the block copolymer (Z 0 ) can be selected as appropriate, but a method of polymerizing each monomer described above by a polymerization method selected from a living radical polymerization method, a living anion polymerization method and a living cation polymerization method is preferable. .
  • a polymer block (A 0 ) composed of a structural unit derived from an aromatic vinyl compound and a polymer block (B) composed of a structural unit derived from a conjugated diene As a method for producing a block copolymer (Z 0 ) containing as a component, (1) An aromatic vinyl compound, a conjugated diene, and an aromatic vinyl compound are sequentially anionic polymerized using an anionic polymerization initiator in a cyclohexane solvent at a temperature of 20 to 100 ° C.
  • a method of obtaining a polymer (2) An anionic polymerization initiator is used in a cyclohexane solvent, and an aromatic vinyl compound and a conjugated diene are sequentially anionic polymerized at a temperature of 20 to 100 ° C., and then a coupling agent such as phenyl benzoate is added. To obtain an ABA type block copolymer; (3) An aromatic compound having a concentration of 5 to 50% by mass in a nonpolar solvent using an organolithium compound as an initiator and in the presence of a polar compound having a concentration of 0.1 to 10% by mass at a temperature of ⁇ 30 to 30 ° C.
  • a block copolymer (Z 0 ) comprising a polymer block (A 0 ) composed of a structural unit derived from an aromatic vinyl compound and a polymer block (B) composed of a structural unit derived from isobutene as components.
  • a polymer block (C) can be added as a component of a block copolymer by changing or adding the component made to react in the said anionic polymerization or cationic polymerization as needed.
  • a method for introducing a sulfonic acid group into the block copolymer (Z 0 ) will be described.
  • Introduction of a sulfonic acid group (sulfonation) can be performed by a known method.
  • the block copolymer (Z 0) the organic solvent solution or suspension is prepared and such solutions and a method of mixing by adding a sulfonating agent to be described later to the suspension, the block copolymer (Z 0) And a method of directly adding a gaseous sulfonating agent.
  • sulfuric acid As the sulfonating agent, sulfuric acid; a mixture system of sulfuric acid and acid anhydride; chlorosulfonic acid; a mixture system of chlorosulfonic acid and trimethylsilyl chloride; sulfur trioxide; a mixture system of sulfur trioxide and triethyl phosphate; Examples thereof include aromatic organic sulfonic acids represented by 4,6-trimethylbenzenesulfonic acid. Of these, a mixture system of sulfuric acid and acid anhydride is preferable.
  • organic solvent to be used examples include halogenated hydrocarbons such as methylene chloride, linear aliphatic hydrocarbons such as hexane, cyclic aliphatic hydrocarbons such as cyclohexane, aromatic compounds having an electron withdrawing group such as nitrobenzene, etc. Can be illustrated.
  • a method for introducing a phosphonic acid group into the block copolymer (Z 0 ) will be described.
  • Introduction (phosphonation) of a phosphonic acid group can be performed by a known method.
  • the aromatic ring of the polymer block (A 0 ) is reacted with halomethyl ether in the presence of aluminum chloride to introduce a halomethyl group, and then reacted with phosphorus trichloride and aluminum chloride to be substituted with a phosphorus derivative.
  • a method of converting to a phosphonic acid group by decomposition and a method of converting a phosphinic acid group introduced by reacting an aromatic ring of the aromatic vinyl compound with phosphorus trichloride and anhydrous aluminum chloride to a phosphonic acid group by oxidizing with nitric acid.
  • a method of converting to a phosphonic acid group by decomposition and a method of converting a phosphinic acid group introduced by reacting an aromatic ring of the aromatic vinyl compound with phosphorus trichloride and anhydrous aluminum chloride to a phosphonic acid group by oxidizing with nitric acid.
  • the introduction rate (sulfonation rate, phosphonation rate, etc.) of the ion conductive group with respect to the structural unit derived from the aromatic vinyl compound of the polymer block (A) is 1 H-NMR. Can be used to calculate.
  • Compound (X) is a compound represented by the following general formula (1).
  • R 1 represents a hydrogen atom, a hydroxyl group or an alkyl group having 1 to 4 carbon atoms
  • R 2 represents a hydrogen atom, a hydroxyl group, an alkyl group having 1 to 4 carbon atoms or an alkoxy group having 1 to 4 carbon atoms
  • R 3 represents a hydroxyalkyl group having 1 to 4 carbon atoms.
  • hydroxyalkyl group having 1 to 4 carbon atoms examples include hydroxymethyl group, 1-hydroxyethyl group, 2-hydroxyethyl group, 1-hydroxypropyl group, 2-hydroxypropyl group, 3-hydroxypropyl group, 1-hydroxy- 1-methylethyl group, 2-hydroxy-1-methylethyl group, 1-hydroxybutyl group, 2-hydroxybutyl group, 3-hydroxybutyl group, 4-hydroxybutyl group, and the like.
  • a hydroxyalkyl group is preferred, and a hydroxymethyl group, a 1-hydroxyethyl group and a 2-hydroxyethyl group are preferred.
  • the compound (X) has a hydroxyphenyl group and a hydroxyalkyl group having 1 to 4 carbon atoms, preferably a hydroxyalkyl group having 1 or 2 carbon atoms, the compound (X) is selectively added to the phase containing the hydrophilic polymer block (A). For this reason, it is considered that the hot water resistance is improved without deteriorating the flexibility of the polymer electrolyte membrane by selectively crosslinking the hydrophilic polymer block (A).
  • the compound (X) include 4-hydroxybenzyl alcohol, vanillyl alcohol, 3,4-dihydroxybenzyl alcohol, 2,6-ditert-butyl-4-hydroxymethylphenol, 2- (4-hydroxyphenyl) ) Ethanol, 2- (3,4-dihydroxyphenyl) ethyl alcohol, 4-hydroxy-3-methoxy- ⁇ -methylbenzyl alcohol, 3- (4-hydroxyphenyl) -1-propanol, 1- (4-hydroxyphenyl) ) -2-propanol, 1- (4-hydroxyphenyl) -1-propanol, 2- (4-hydroxyphenyl) -2-propanol, 4- (4-hydroxyphenyl) -1-butanol, 4- (4- Hydroxyphenyl) -2-butanol, 3- (4-hydroxyphenyl) 2-methylpropanol, 3- (4-hydroxyphenyl) -1-butanol, 1- (4-hydroxyphenyl) -2-methyl-2-propanol, 3- (4-hydroxyphenyl)
  • 4-hydroxybenzyl alcohol vanillyl alcohol, 3,4-dihydroxybenzyl alcohol, 2,6-ditert-butyl-4-hydroxymethylphenol, 2- (3 , 4-dihydroxyphenyl) ethyl alcohol, 2- (4-hydroxyphenyl) ethanol, 4-hydroxy-3-methoxy- ⁇ -methylbenzyl alcohol are preferred, and vanillyl alcohol or 2- (4-hydroxyphenyl) ethanol is more preferred. preferable.
  • Compound (X) may be used alone or in combination of two or more.
  • the content of the compound (X) in the composition is preferably in the range of 0.01 to 25 parts by mass with respect to 100 parts by mass of the block copolymer (Z), from the viewpoint of hot water resistance of the polymer electrolyte membrane.
  • the range of 1 to 20 parts by mass is more preferable, the range of 1 to 10 parts by mass is more preferable, and the range of 4 to 6 parts by mass is particularly preferable.
  • a polymer electrolyte membrane is prepared by preparing a fluid composition containing a block copolymer (Z), a compound (X), and a solvent, which are polymer electrolytes, and coating the fluid composition on a substrate. By removing the solvent, a molded product comprising the composition containing the block copolymer (Z) and the compound (X) is obtained, and the molded product is obtained by crosslinking treatment.
  • Solvents that can be used in the fluid composition include halogenated hydrocarbons such as methylene chloride; aromatic hydrocarbons such as toluene, xylene, and benzene; linear aliphatic hydrocarbons such as hexane, heptane, and octane; cyclohexane And cycloaliphatic hydrocarbons such as ether; ethers such as tetrahydrofuran, alcohols such as methanol, ethanol, propanol, isopropanol, butanol and isobutanol.
  • halogenated hydrocarbons such as methylene chloride
  • aromatic hydrocarbons such as toluene, xylene, and benzene
  • linear aliphatic hydrocarbons such as hexane, heptane, and octane
  • cyclohexane And cycloaliphatic hydrocarbons such as ether
  • ethers such as t
  • Preferred mixed solvents include a mixed solvent of toluene and isobutanol, a mixed solvent of xylene and isobutanol, a mixed solvent of toluene and isopropanol, a mixed solvent of cyclohexane and isopropanol, a mixed solvent of cyclohexane and isobutanol, tetrahydrofuran solvent, tetrahydrofuran Mixed solvent of methanol and methanol, mixed solvent of toluene, isobutanol and octane, mixed solvent of toluene, isopropanol and octane, mixed solvent of toluene and isobutanol, mixed solvent of xylene and isobutanol, mixed solvent of xylene and isobutanobut
  • the fluid composition is prepared by dissolving or dispersing the block copolymer (Z) and the compound (X) in a solvent.
  • various stabilizers such as a crosslinking agent, a softening agent, a phenol-based stabilizer, a sulfur-based stabilizer, and a phosphorus-based stabilizer, an inorganic filler, a light stabilizer, and a charge, as long as the effects of the present invention are not impaired.
  • Various additives such as an inhibitor, a release agent, a flame retardant, a foaming agent, a pigment, a dye, a bleaching agent, and carbon fiber may be dissolved or dispersed together.
  • the content of the block copolymer (Z) in the component (solid content) other than the solvent in the fluid composition is preferably 50% by mass or more from the viewpoint of ion conductivity of the obtained polymer electrolyte membrane. 70% by mass or more, more preferably 85% by mass or more.
  • Stabilizers that can be used in the flowable composition include 2,6-ditert-butyl-p-cresol, pentaerythrityl-tetrakis [3- (3,5-ditert-butyl-4-hydroxyphenyl).
  • inorganic filler examples include talc, calcium carbonate, silica, glass fiber, mica, kaolin, titanium oxide, montmorillonite, and alumina. These may be used alone or in combination of two or more.
  • the concentration of the block copolymer (Z) in the fluid composition can be appropriately selected depending on the molecular weight, composition, and ion exchange group capacity, but is preferably 5 to 20% by mass from the viewpoint of productivity. .
  • the fluid composition is usually applied on a smooth substrate made of polyethylene terephthalate (PET), glass or the like.
  • PET polyethylene terephthalate
  • the fluid composition may be applied onto a porous substrate (porous substrate) by, for example, a dip nip method, a method using a coater, an applicator, or the like.
  • the porous substrate is usually impregnated with at least a part of the fluid composition.
  • the porous substrate impregnated with at least a part of the fluid composition functions as a reinforcing material by constituting a part of the polymer electrolyte membrane after crosslinking.
  • a fibrous base material such as a woven fabric or a non-woven fabric, a film-like base material having fine through holes, or the like can be used.
  • the film-like substrate include a fuel cell pore filling membrane.
  • the porous substrate is preferably a fibrous base material, more preferably a non-woven fabric.
  • the fibers constituting the fibrous base material include aramid fibers, glass fibers, cellulose fibers, nylon fibers, vinylon fibers, polyester fibers, polyolefin fibers, and rayon fibers, and wholly aromatic polyesters from the viewpoint of strength. Fibers and aramid fibers are more preferable, and wholly aromatic liquid crystal polyester fibers are more preferable.
  • the fluid composition After the fluid composition is applied onto the substrate as described above, it can be formed into a film by removing the solvent.
  • the temperature at which the solvent is removed can be arbitrarily selected as long as the block copolymer (Z) is not decomposed, and a plurality of temperatures may be arbitrarily combined.
  • the removal of the solvent can be performed under a ventilation condition or a vacuum condition, and these may be combined arbitrarily. Specifically, the solvent is removed by drying at 60 to 120 ° C. for 4 minutes or longer in a hot air dryer; the solvent is removed by drying at 120 to 140 ° C. for 2 to 4 minutes in a hot air dryer. Method: Pre-drying at 25 ° C. for 1 to 3 hours, followed by drying in a hot air dryer at 80 to 120 ° C.
  • the solvent is removed by drying in a hot air dryer at 60 to 120 ° C. over 4 minutes; at 25 ° C. for 1 to 3 hours, A method of pre-drying and then drying in a hot air dryer at about 80-120 ° C. for 5-10 minutes; after pre-drying at 25 ° C. for 1-3 hours, under an atmosphere of 25-40 ° C.
  • a method of drying for 1 to 12 hours under a reduced pressure condition of 1.3 kPa or less is preferably used.
  • the polymer electrolyte membrane is a multilayer membrane
  • another polymer electrolyte is further formed on the first layer.
  • the second layer is formed by applying a fluid composition containing, and removing the solvent.
  • the third and subsequent layers may be formed.
  • the produced polymer electrolyte membranes may be bonded to form a multilayer film.
  • the polymer electrolyte membrane of the present invention can be formed by coating the fluid composition on a substrate and subjecting the membrane-like molded product obtained by removing the solvent to a crosslinking treatment.
  • a crosslinking treatment method heating, irradiation with active energy rays such as an electron beam, and the like can be suitably employed.
  • the crosslinking treatment by heating or active energy ray irradiation may be performed simultaneously with the removal of the solvent or after the removal of the solvent. Further, after removing the solvent while performing a crosslinking treatment by heating or active energy ray irradiation, heating or active energy ray irradiation may be further performed.
  • the heating temperature is preferably 50 to 250 ° C, more preferably 60 to 200 ° C, further preferably 70 to 180 ° C, and particularly preferably 100 to 150 ° C.
  • the heating time is preferably 0.1 to 400 hours, more preferably 0.2 to 200 hours, further preferably 0.4 to 100 hours, and particularly preferably 0.5 to 30 hours. Heating can be performed in the air, in a nitrogen atmosphere, or the like, and is preferably performed in a nitrogen atmosphere.
  • the active energy irradiation for example, when crosslinking is performed with an electron beam, the acceleration voltage is preferably in the range of 50 to 250 kV, and the dose is preferably in the range of 100 to 800 kGy.
  • the gel fraction of the polymer electrolyte membrane can be measured by the method described in Examples below, and is preferably 1% or more, more preferably 20% or more, further preferably 50% or more, and particularly preferably 80% or more. If the gel fraction is 80% or more, the hot water resistance tends to be particularly good.
  • the crosslink density of the polymer electrolyte membrane can be calculated by the method described in Examples below, and is preferably in the range of 0.1 ⁇ 10 ⁇ 5 to 100 ⁇ 10 ⁇ 5 mol / ml, and 0.5 ⁇ 10 ⁇ 5 to 50
  • the range of ⁇ 10 ⁇ 5 mol / ml is more preferable, the range of 1 ⁇ 10 ⁇ 5 to 40 ⁇ 10 ⁇ 5 mol / ml is more preferable, and the range of 2 ⁇ 10 ⁇ 5 to 30 ⁇ 10 ⁇ 5 mol / ml is more preferable.
  • Particularly preferred is a range of 3 ⁇ 10 ⁇ 5 to 15 ⁇ 10 ⁇ 5 mol / ml.
  • the crosslinking density is 3 ⁇ 10 ⁇ 5 mol / ml or more, the hot water resistance tends to be good, and if it is 15 ⁇ 10 ⁇ 5 mol / ml or less, the tensile elongation at break after crosslinking tends to improve. Thus, the start / stop durability tends to be good.
  • the polymer electrolyte membrane When the polymer electrolyte membrane is formed on a smooth substrate made of polyethylene terephthalate (PET), glass or the like, the polymer electrolyte membrane is usually peeled from the substrate. In the case where a polymer electrolyte membrane is formed on a porous substrate and the porous substrate is used as a part of the polymer electrolyte membrane, peeling is not necessary.
  • PET polyethylene terephthalate
  • Mn was measured by the GPC method under the following conditions and calculated in terms of standard polystyrene.
  • Device manufactured by Tosoh Corporation, trade name: HLC-8220GPC Eluent: Tetrahydrofuran
  • Solvent deuterated tetrahydrofuran / deuterated methanol (mass ratio 80/20) mixed solvent Measurement temperature: 50 ° C Accumulation count: 32 times The sulfonation rate of the sulfonated polyetheretherketone obtained in Production Example 4 was calculated from the result of 1 H-NMR measurement under the following conditions. Solvent: heavy dimethyl sulfoxide Measurement temperature: 30 ° C Integration count: 32 times
  • the resulting molded body was heated at a rate of temperature increase of 3 ° C./min in the tension mode (frequency: 11 Hz). The temperature was raised from ⁇ 80 ° C. to 250 ° C., and the storage elastic modulus (E ′), loss elastic modulus (E ′′), and loss tangent (tan ⁇ ) were measured. Based on the fact that there was no change in storage modulus at 80 to 100 ° C. derived from the crystallized olefin polymer, the amorphous nature of the polymer block (B) was judged. As a result, regarding the block copolymer (Z-1) and the block copolymer (Z-2), the polymer block (B) was amorphous.
  • a block copolymer (Z 0 ) [polystyrene-b-hydrogenated polybutadiene-b comprising a polystyrene polymer block (polymer block (A 0 )) and a hydrogenated polybutadiene polymer block (polymer block (B)).
  • block copolymer (Z 0 -1) was obtained.
  • the hydrogenation rate of the hydrogenated polybutadiene block of the obtained block copolymer (Z 0 -1) was 99% or more.
  • the ratio of the sulfonic acid group to the structural unit derived from styrene was 100 mol%, and the ion exchange capacity was 2.3 meq / g.
  • the resulting block copolymer had an Mn of 130,000, a 1,4-bond content of the polyisoprene block of 93.7%, a content of structural units derived from styrene of 35.6% by mass, 4-tert- The content rate of the structural unit derived from butylstyrene was 24.8 mass%.
  • a cyclohexane solution of the above block copolymer is prepared and placed in a pressure vessel that is purged with nitrogen. Using a Ni / Al Ziegler catalyst, a hydrogenation reaction is performed at 0.5 to 1 MPa at 70 ° C. under hydrogen pressure for 18 hours.
  • Block copolymerization [polystyrene-b-poly (4-tert-butylstyrene) -b-polystyrene-b-poly (4-tert-butylstyrene) -b-hydrogenated polyisoprene- b-poly (4-tert-butylstyrene) -b-polystyrene-b-poly (4-tert-butylstyrene) (hereinafter “block copolymerization”) (Referred to as the body (Z 0 -2) ”).
  • block copolymerization [polystyrene-b-poly (4-tert-butylstyrene) -b-polystyrene-b-poly (4-tert-butylstyrene) (hereinafter “block copolymerization”) (Referred to as the body (Z 0 -2) ”).
  • block copolymer (Z) was obtained (hereinafter referred to as “block copolymer (Z-2)”).
  • block copolymer (Z-2) the ratio of the sulfonic acid group to the structural unit derived from styrene (sulfonation rate) was 100 mol%, and the ion exchange capacity was 2.6 meq / g.
  • SPEEK sulfonated polyether ether ketone
  • Example 1 (Production of polymer electrolyte membrane) After preparing a 11.7% by mass toluene / isobutanol (mass ratio 65/35) solution of the block copolymer (Z-1) obtained in Production Example 1, vanillyl alcohol (Tokyo) Kasei Kogyo Co., Ltd.) was added so that the mass ratio of block copolymer (Z-1) / vanillyl alcohol was 100/5 to prepare a fluid composition. Next, the flowable composition was applied to a release-treated PET film (trade name: K1504, manufactured by Toyobo Co., Ltd.) with a thickness of about 300 ⁇ m, and dried at 100 ° C. for 4 minutes in a hot air dryer.
  • a release-treated PET film trade name: K1504, manufactured by Toyobo Co., Ltd.
  • a molded body having a thickness of 20 ⁇ m was obtained.
  • the obtained molded body was crosslinked by heat treatment in a constant temperature bath at 140 ° C. for 3 hours to produce a polymer electrolyte membrane of the present invention.
  • Example 2 (Production of polymer electrolyte membrane) After preparing a 11.5 mass% toluene / isobutanol (mass ratio 77/23) solution of the block copolymer (Z-2) obtained in Production Example 2, vanillyl alcohol (Tokyo Chemical Industry Co., Ltd.) Was added so that the mass ratio of the block copolymer (Z-2) / vanillyl alcohol was 100/5 to prepare a fluid composition. Next, the flowable composition was coated on a release-treated PET film (trade name: MRV, manufactured by Mitsubishi Resin Co., Ltd.) with a thickness of about 300 ⁇ m, and dried at 100 ° C. for 4 minutes with a hot air dryer.
  • a release-treated PET film trade name: MRV, manufactured by Mitsubishi Resin Co., Ltd.
  • a molded body having a thickness of 20 ⁇ m was obtained.
  • the obtained molded body was crosslinked by heat treatment in a constant temperature bath at 140 ° C. for 3 hours to produce a polymer electrolyte membrane of the present invention.
  • Example 3 (Production of polymer electrolyte membrane) Instead of vanillyl alcohol, 2- (4-hydroxyphenyl) ethanol (manufactured by Tokyo Chemical Industry Co., Ltd.) is used, and the mass ratio of block copolymer (Z-2) / 2- (4-hydroxyphenyl) ethanol is A molded body having a thickness of 20 ⁇ m was obtained in the same manner as in Example 2 except that it was added so as to be 100/5. The obtained molded body was cross-linked by heat treatment for 1 hour in a 140 ° C. constant temperature bath to produce a polymer electrolyte membrane of the present invention.
  • Example 4 (Production of polymer electrolyte membrane) After preparing a 11.7% by mass toluene / isobutanol (mass ratio 65/35) solution of the block copolymer (Z-1) obtained in Production Example 1, vanillyl alcohol (Tokyo) Kasei Kogyo Co., Ltd.) was added so that the mass ratio of block copolymer (Z-1) / vanillyl alcohol was 100/5 to prepare a fluid composition.
  • the flowable composition was coated on a release-treated PET film (product name: K1504, manufactured by Toyobo Co., Ltd.) with a thickness of about 150 ⁇ m, and then a non-woven fabric (manufactured by Kuralek Laurex Co., Ltd.). , Vecrus (registered trademark), average fiber diameter of 7 ⁇ m, basis weight of 3 g / cm 2 , porosity of 76.2%, thickness of 9 ⁇ m) are laminated in parallel with the coated surface so as not to cause wrinkles from above, After impregnating the fluid composition, it was dried with a hot air dryer at 100 ° C. for 4 minutes.
  • the flowable composition was further coated thereon with a thickness of about 125 ⁇ m, and dried at 100 ° C. for 4 minutes with a hot air dryer to obtain the block copolymer (Z-1) and the compound (X).
  • a polymer electrolyte composed of a molded body of the contained composition and a 20 ⁇ m thick joined body composed of a nonwoven fabric were obtained.
  • the obtained joined body was heat-treated under a nitrogen stream at 140 ° C. for 3 hours to crosslink the molded body, thereby producing a polymer electrolyte membrane of the present invention.
  • the fluid composition was coated on a release-treated PET film (trade name: K1504, manufactured by Toyobo Co., Ltd.) at a thickness of about 350 ⁇ m, and then heated at 100 ° C. for 4 minutes with a hot air dryer. By drying, a molded body having a thickness of 30 ⁇ m was obtained.
  • the obtained molded body was irradiated with an electron beam at an acceleration voltage of 150 kV, a beam current of 8.6 mA, and a dose of 300 kGy using an electro curtain type electron beam irradiation apparatus (trade name: CB250 / 30/20 mA, manufactured by Iwasaki Electric Co., Ltd.).
  • the polymer electrolyte membrane of Comparative Example 1 was produced.
  • Example 4 (Production of polymer electrolyte membrane) Example 2 except that diethylene glycol (manufactured by Wako Pure Chemical Industries, Ltd.) was added in place of vanillyl alcohol so that the mass ratio of block copolymer (Z-2) / diethylene glycol was 100/4. Thus, a molded body having a thickness of 20 ⁇ m was obtained. The obtained molded body was heat-treated in a constant temperature bath at 140 ° C. for 1 hour, thereby producing a polymer electrolyte membrane of Comparative Example 4.
  • diethylene glycol manufactured by Wako Pure Chemical Industries, Ltd.
  • the tensile break strength and tensile break elongation of the obtained polymer electrolyte membrane were measured by the following methods.
  • a dumbbell-shaped test piece is cut out from the polymer electrolyte membrane, adjusted to a humidity of 25 ° C. and a relative humidity of 40%, and set in a tensile tester (5566 type manufactured by Instron Japan). Under the conditions of 40% and a tensile speed of 500 mm / min, the tensile breaking strength and the tensile breaking elongation were measured.
  • the obtained MEA was sandwiched between two 200- ⁇ m-thick gaskets of 9 cm ⁇ 9 cm with the inside cut out to 5.3 cm ⁇ 5.3 cm, and then the GDL with MPL of 5.3 cm ⁇ 5.3 cm (JNT20 ⁇ (A1, manufactured by Sato Light Industry Co., Ltd.) After sandwiching the MPL surface and the catalyst layer surface so that they face each other, sandwich them with two conductive separators that also serve as the gas supply flow path. An evaluation cell was fabricated by sandwiching the two clamping plates.
  • the polymer electrolyte membrane of the present invention is excellent in hot water resistance. Since the polymer electrolyte membranes of Comparative Examples 1 to 4 are polymer electrolyte membranes containing a compound other than the compound (X), they are inferior in hot water resistance to the polymer electrolyte membrane of the present invention. It can be seen that the polymer electrolyte membrane of Comparative Example 5 cannot be crosslinked because it uses a polymer electrolyte other than the block copolymer (Z). From Example 1, it can be seen that the polymer electrolyte membrane of the present invention shows little decrease in voltage when operated by being incorporated in a fuel cell. This can be presumed to be based on the excellent hot water resistance of the polymer electrolyte membrane of the present invention.
  • the polymer electrolyte membrane of the present invention is made of a non-fluorine material, has a low environmental impact during production and disposal, and is flexible, resistant to cracking and excellent in hot water resistance. Therefore, the polymer electrolyte membrane for a solid polymer fuel cell Is preferably used.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Conductive Materials (AREA)
  • Fuel Cell (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Provided is a polyelectrolyte film that is obtained by performing a crosslinking treatment after forming a composition that contains: a block copolymer (Z) comprising a polymer block (A) that has an ion-conducting group and that comprises a structural unit that is derived from an aromatic vinyl compound and an amorphous polymer block (B) that does not have an ion-conducting group and that comprises a structural unit that is derived from an unsaturated aliphatic hydrocarbon; and a compound (X) that is represented by formula (1) (in the formula, R1 represents a hydrogen atom, a hydroxyl group, or an alkyl group that has 1-4 carbon atoms, R2 represents a hydrogen atom, a hydroxyl group, an alkyl group that has 1-4 carbon atoms, or an alkoxy group that has 1-4 carbon atoms, and R3 represents a hydroxyalkyl group that has 1-4 carbon atoms).

Description

高分子電解質膜Polymer electrolyte membrane
 本発明は、固体高分子型燃料電池に有用な高分子電解質膜に関する。 The present invention relates to a polymer electrolyte membrane useful for a polymer electrolyte fuel cell.
 近年、効率の高い発電システムとして燃料電池が注目されている。燃料電池は、電解質の種類によって、溶融炭酸塩型、固体酸化物型、リン酸型、固体高分子型等に分類される。これらのうち、高分子電解質膜を電極(アノードおよびカソード)で挟んだ構造からなり、アノードに還元剤からなる燃料(通常は水素またはメタノール)を、カソードに酸化剤(通常は空気)を、それぞれ供給して発電する固体高分子型燃料電池は、低温作動性、小型軽量化等の観点から、自動車用電源、ポータブル機器電源、家庭用コージェネレーションシステム等への適用が検討されている。 In recent years, fuel cells have attracted attention as highly efficient power generation systems. Fuel cells are classified into molten carbonate type, solid oxide type, phosphoric acid type, solid polymer type, etc., depending on the type of electrolyte. Of these, a polymer electrolyte membrane is sandwiched between electrodes (anode and cathode), a fuel made of a reducing agent (usually hydrogen or methanol) at the anode, and an oxidant (usually air) at the cathode. Solid polymer fuel cells that generate electricity by supplying power are being considered for application to automotive power supplies, portable equipment power supplies, household cogeneration systems, and the like from the viewpoints of low temperature operability, small size, and light weight.
 固体高分子型燃料電池に用いる高分子電解質膜の材料としては、化学的な安定性からパーフルオロカーボンスルホン酸系高分子がしばしば用いられているが、フッ素を含有するため、生産時および廃棄時の環境負荷が課題となる。 Perfluorocarbon sulfonic acid polymers are often used as the material for polymer electrolyte membranes used in polymer electrolyte fuel cells because of their chemical stability. Environmental load becomes a problem.
 このような事情から近年、フッ素を含有しない材料(非フッ素系材料)からなる高分子電解質膜が求められている。例えば、スルホン酸基を導入したポリエーテルエーテルケトン(PEEK)からなる高分子電解質膜が知られている(特許文献1参照)。かかる高分子電解質膜は耐熱性に優れるものの、硬質で脆いことから、割れやすく実用性に乏しい。 For these reasons, in recent years, a polymer electrolyte membrane made of a material not containing fluorine (non-fluorine-based material) has been demanded. For example, a polymer electrolyte membrane made of polyether ether ketone (PEEK) into which a sulfonic acid group is introduced is known (see Patent Document 1). Although such a polymer electrolyte membrane is excellent in heat resistance, it is hard and brittle, so it is easily broken and lacks practical utility.
 一方、芳香族ビニル化合物に由来する構造単位からなり、イオン伝導性基を有する重合体ブロックおよびフレキシブルな重合体ブロックを含むブロック共重合体からなる高分子電解質膜が知られている(特許文献2参照)。かかる高分子電解質膜は柔軟で割れにくく、上記イオン伝導性基を有する重合体ブロックがフレキシブルな重合体ブロックとミクロ相分離してイオン伝導性チャンネルを形成するため、イオン伝導性に優れる。 On the other hand, there is known a polymer electrolyte membrane comprising a block unit comprising a polymer block having an ion conductive group and a flexible polymer block, which comprises a structural unit derived from an aromatic vinyl compound (Patent Document 2). reference). Such a polymer electrolyte membrane is flexible and difficult to break, and the polymer block having the ion conductive group forms an ion conductive channel by microphase separation from the flexible polymer block, and thus has excellent ion conductivity.
 一方、水素を燃料とする固体高分子型燃料電池において、高出力化のために使用温度を上げることが要求されており、かかる要求に応えるため高分子電解質膜の熱水(たとえば90℃以上)に対する耐久性(耐熱水性)の向上、具体的には熱水による高分子電解質膜の溶出の抑制や、これに伴う高温下での長時間の運転における電圧低下を抑制する方策が検討されている。 On the other hand, in a polymer electrolyte fuel cell using hydrogen as a fuel, it is required to increase the operating temperature in order to increase the output, and in order to meet such a requirement, hot water of the polymer electrolyte membrane (for example, 90 ° C. or higher) Measures to improve durability (hot water resistance) against water, specifically, suppression of elution of polymer electrolyte membranes by hot water, and suppression of voltage drop during long-time operation associated with this are being studied .
 例えば、上記フレキシブルな重合体ブロックをビニル系化合物に由来する構造単位として、該フレキシブルな重合体ブロックを1,2-ポリブタジエンなどで架橋したブロック共重合体を主成分とすることで高分子電解質膜の耐熱水性が高まることが知られている(特許文献3参照)。 For example, a polymer electrolyte membrane comprising, as a main component, a block copolymer in which the flexible polymer block is a structural unit derived from a vinyl compound and the flexible polymer block is crosslinked with 1,2-polybutadiene or the like. It is known that the hot water resistance of water increases (see Patent Document 3).
特開平6-93114号公報JP-A-6-93114 国際公開第2006/070929号International Publication No. 2006/070929 国際公開第2012/043400号International Publication No. 2012/043400
 しかしながら、固体高分子型燃料電池のさらなる高出力化に向けて、なお耐熱水性を改善する余地がある。 However, there is still room for improvement in hot water resistance for higher output of the polymer electrolyte fuel cell.
 したがって、本発明の目的は、非フッ素系材料からなり、柔軟で割れにくく、耐熱水性に優れる高分子電解質膜を提供することにある。 Therefore, an object of the present invention is to provide a polymer electrolyte membrane that is made of a non-fluorine material, is flexible and hardly cracked, and has excellent hot water resistance.
 本発明によれば上記の目的は、芳香族ビニル化合物に由来する構造単位からなり、イオン伝導性基を有する重合体ブロック(A)(以下、単に「重合体ブロック(A)」と称する)と、不飽和脂肪族炭化水素に由来する構造単位からなり、イオン伝導性基を有さない非晶性の重合体ブロック(B)(以下、単に「重合体ブロック(B)」と称する)とを含むブロック共重合体(Z)および下記一般式(1)で示される化合物(X)(以下、単に「化合物(X)」と称する)を含有する組成物を、成形後に架橋処理してなる高分子電解質膜を提供することで達成される。 According to the present invention, the above object is a polymer block (A) (hereinafter simply referred to as “polymer block (A)”) comprising a structural unit derived from an aromatic vinyl compound and having an ion conductive group. An amorphous polymer block (B) comprising a structural unit derived from an unsaturated aliphatic hydrocarbon and having no ion conductive group (hereinafter simply referred to as “polymer block (B)”) A composition comprising a block copolymer (Z) containing and a compound (X) represented by the following general formula (1) (hereinafter simply referred to as “compound (X)”) is subjected to a crosslinking treatment after molding. This is accomplished by providing a molecular electrolyte membrane.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
(式中、Rは水素原子、水酸基または炭素数1~4のアルキル基を表し、Rは水素原子、水酸基、炭素数1~4のアルキル基または炭素数1~4のアルコキシ基を表し、Rは炭素数1~4のヒドロキシアルキル基を表す。) Wherein R 1 represents a hydrogen atom, a hydroxyl group or an alkyl group having 1 to 4 carbon atoms, and R 2 represents a hydrogen atom, a hydroxyl group, an alkyl group having 1 to 4 carbon atoms or an alkoxy group having 1 to 4 carbon atoms. R 3 represents a hydroxyalkyl group having 1 to 4 carbon atoms.)
 本発明によれば、非フッ素系材料からなり、柔軟で割れにくく耐熱水性に優れる高分子電解質膜を提供できる。 According to the present invention, it is possible to provide a polymer electrolyte membrane which is made of a non-fluorine material and is flexible, hard to break and excellent in hot water resistance.
本発明の固体高分子型燃料電池の、運転時間と電圧との関係を表すグラフである。It is a graph showing the relationship between operation time and a voltage of the polymer electrolyte fuel cell of this invention.
[高分子電解質膜]
 本発明の高分子電解質膜は、重合体ブロック(A)と重合体ブロック(B)とを含むブロック共重合体(Z)および化合物(X)を含有する組成物を、成形後に架橋処理してなる。
[Polymer electrolyte membrane]
The polymer electrolyte membrane of the present invention is obtained by subjecting a composition containing a block copolymer (Z) containing a polymer block (A) and a polymer block (B) and a compound (X) to a crosslinking treatment after molding. Become.
 本発明の高分子電解質膜において、重合体ブロック(A)および重合体ブロック(B)は、ミクロ相分離構造を形成している。この結果、重合体ブロック(A)を含む相がイオン伝導性チャンネルを形成するので、良好なイオン伝導性を示す。
 なおここで、「ミクロ相分離」とは微視的な意味での相分離を意味し、より詳しくは、形成されるドメインサイズが可視光の波長(3800~7800Å)以下である相分離を意味するものとする。
In the polymer electrolyte membrane of the present invention, the polymer block (A) and the polymer block (B) form a microphase separation structure. As a result, since the phase containing the polymer block (A) forms an ion conductive channel, it exhibits good ion conductivity.
Here, “microphase separation” means phase separation in a microscopic sense, and more specifically, means phase separation in which the formed domain size is less than or equal to the wavelength of visible light (3800 to 7800 mm). It shall be.
 本発明の高分子電解質膜の膜厚は、機械的強度、ハンドリング性等の観点から、4~170μmの範囲が好ましく、8~115μmの範囲がより好ましく、10~70μmの範囲がさらに好ましく、12~50μmの範囲が特に好ましい。膜厚が4μm以上であれば、高分子電解質膜の機械的強度、燃料の遮断性およびハンドリング性が良好であり、膜厚が170μm以下であれば、高分子電解質膜のイオン伝導性が良好である。 The film thickness of the polymer electrolyte membrane of the present invention is preferably in the range of 4 to 170 μm, more preferably in the range of 8 to 115 μm, still more preferably in the range of 10 to 70 μm, from the viewpoint of mechanical strength, handling properties, and the like. A range of ˜50 μm is particularly preferred. If the film thickness is 4 μm or more, the mechanical strength of the polymer electrolyte membrane, the fuel blocking property and the handling property are good, and if the film thickness is 170 μm or less, the ion conductivity of the polymer electrolyte membrane is good. is there.
 本発明の高分子電解質膜は、重合体ブロック(A)と重合体ブロック(B)とを含むブロック共重合体(Z)および化合物(X)を含有する組成物を、成形後に架橋処理してなる少なくとも1層の高分子電解質層を含む複層膜であってもよい。 The polymer electrolyte membrane of the present invention is obtained by subjecting a composition containing a block copolymer (Z) containing a polymer block (A) and a polymer block (B) and a compound (X) to a crosslinking treatment after molding. It may be a multilayer film including at least one polymer electrolyte layer.
(ブロック共重合体(Z))
 ブロック共重合体(Z)は、芳香族ビニル化合物に由来する構造単位からなり、イオン伝導性基を有さない重合体ブロック(A)(以下、単に「重合体ブロック(A)」と称する)と重合体ブロック(B)とを含むブロック共重合体(Z)の、重合体ブロック(A)にイオン伝導性基を導入することで得られる。
(Block copolymer (Z))
The block copolymer (Z) is composed of a structural unit derived from an aromatic vinyl compound, and has a polymer block (A 0 ) (hereinafter simply referred to as “polymer block (A 0 )”) having no ion conductive group. And an ion conductive group introduced into the polymer block (A 0 ) of the block copolymer (Z 0 ) containing the polymer block (B).
 ブロック共重合体(Z)の数平均分子量(Mn)は特に制限されないが、通常10,000~300,000の範囲が好ましく、15,000~250,000の範囲がより好ましく、40,000~200,000の範囲がさらに好ましく、70,000~180,000の範囲が特に好ましい。ブロック共重合体(Z)のMnが10,000以上、特に70,000以上であると、得られる高分子電解質膜の引張破断伸び性能が高く、300,000以下、特に180,000以下であるとブロック共重合体(Z)および化合物(X)を含有する組成物は成形性に優れ、製造上も有利になる。なお、本明細書中においてMnは、ゲルパーミエーションクロマトグラフィー(GPC)法により測定された標準ポリスチレン換算値を意味する。 The number average molecular weight (Mn) of the block copolymer (Z 0 ) is not particularly limited, but is usually preferably in the range of 10,000 to 300,000, more preferably in the range of 15,000 to 250,000, and 40,000. The range of ˜200,000 is more preferred, and the range of 70,000 to 180,000 is particularly preferred. When the Mn of the block copolymer (Z 0 ) is 10,000 or more, especially 70,000 or more, the resulting polymer electrolyte membrane has high tensile elongation at break and is 300,000 or less, particularly 180,000 or less. If present, the composition containing the block copolymer (Z) and the compound (X) is excellent in moldability and is advantageous in production. In addition, in this specification, Mn means the standard polystyrene conversion value measured by the gel permeation chromatography (GPC) method.
 ブロック共重合体(Z)のイオン交換容量は0.4~4.5meq/gの範囲が好ましく、0.8~3.2meq/gの範囲がより好ましく、1.3~3.0meq/gの範囲がさらに好ましく、1.8~2.8meq/gの範囲が特に好ましい。本発明で得られる高分子電解質膜は、かかるイオン交換容量が0.4meq/g以上であることでイオン伝導性が良好であり、4.5meq/g以下であることで膨潤しにくい。ブロック共重合体(Z)のイオン交換容量は、酸価滴定法を用いて算出できる。 The ion exchange capacity of the block copolymer (Z) is preferably in the range of 0.4 to 4.5 meq / g, more preferably in the range of 0.8 to 3.2 meq / g, and 1.3 to 3.0 meq / g. Is more preferable, and a range of 1.8 to 2.8 meq / g is particularly preferable. The polymer electrolyte membrane obtained by the present invention has good ion conductivity when the ion exchange capacity is 0.4 meq / g or more, and hardly swells when it is 4.5 meq / g or less. The ion exchange capacity of the block copolymer (Z) can be calculated using an acid value titration method.
 また、ブロック共重合体(Z)は、重合体ブロック(A)および重合体ブロック(B)を、それぞれ1つ有していてもよいし、複数有していてもよい。重合体ブロック(A)を複数有する場合、それらの構造(構造単位の種類、重合度、イオン伝導性基の種類や導入割合等)は、互いに同じであってもよく、異なっていてもよい。また、重合体ブロック(B)を複数有する場合、それらの構造(構造単位の種類、重合度等)は、互いに同じであってもよく、異なっていてもよい。 Further, the block copolymer (Z) may have one or more polymer blocks (A) and polymer blocks (B), respectively. When there are a plurality of polymer blocks (A), their structures (kind of structural unit, degree of polymerization, kind of ion conductive group, introduction ratio, etc.) may be the same or different. Moreover, when it has two or more polymer blocks (B), those structures (kind of a structural unit, a polymerization degree, etc.) may mutually be the same, and may differ.
 ブロック共重合体(Z)における重合体ブロック(A)および重合体ブロック(B)の結合配列に特に制限はない。なお、重合体ブロック(A)および重合体ブロック(B)は側鎖であってもよく、すなわちブロック共重合体(Z)はグラフト共重合体を包含する。
 当該ブロック共重合体(Z)における、重合体ブロック(A)および重合体ブロック(B)の結合配列の例として、A-B型ジブロック共重合体(A、Bはそれぞれ、重合体ブロック(A)、重合体ブロック(B)を表す。以下同様)、A-B-A型トリブロック共重合体、B-A-B型トリブロック共重合体、A-B-A-B型テトラブロック共重合体、A-B-A-B-A型ペンタブロック共重合体、B-A-B-A-B型ペンタブロック共重合体、(A-B)D型星形共重合体(Dはカップリング剤残基、nは2以上の整数を表す。以下、同様)、(B-A)D型星形共重合体等が挙げられ、本発明で得られる高分子電解質膜の機械的強度、イオン伝導性の観点から、A-B-A型トリブロック共重合体、A-B-A-B-A型ペンタブロック共重合体、(A-B)D型星形共重合体が好ましく、A-B-A型トリブロック共重合体がより好ましい。本発明の高分子電解質膜においては、これらのブロック共重合体は、1種を単独で用いても、2種以上を併用してもよい。
There is no restriction | limiting in particular in the coupling | bonding arrangement | sequence of the polymer block (A) and polymer block (B) in a block copolymer (Z). The polymer block (A) and the polymer block (B) may be side chains, that is, the block copolymer (Z) includes a graft copolymer.
In the block copolymer (Z), as an example of the bond arrangement of the polymer block (A) and the polymer block (B), an AB type diblock copolymer (A and B are each a polymer block ( A) represents a polymer block (B), the same applies hereinafter), an ABA type triblock copolymer, a BAB type triblock copolymer, an ABAB type tetrablock. Copolymer, ABABABA type pentablock copolymer, BABBAB type pentablock copolymer, (AB) n D type star copolymer ( D represents a coupling agent residue, n represents an integer of 2 or more, the same applies hereinafter), (BA) n D-type star copolymer, and the like. From the viewpoint of mechanical strength and ionic conductivity, ABA type triblock copolymer, ABABABA type A pentablock copolymer, (AB) n D type star copolymer is preferred, and an AB type triblock copolymer is more preferred. In the polymer electrolyte membrane of the present invention, these block copolymers may be used alone or in combination of two or more.
 ブロック共重合体(Z)における(重合体ブロック(A)の合計量):(重合体ブロック(B)の合計量)は質量比で95:5~5:95の範囲であるのが好ましく、75:25~15:85の範囲であるのがより好ましく、65:35~20:80の範囲であるのがさらに好ましく、50:50~25:75の範囲であるのが特に好ましい。質量比が前記範囲であれば、得られる高分子電解質膜はイオン伝導性、機械的強度および固体高分子型燃料電池の起動と停止に伴って湿潤と乾燥を繰り返した場合の耐久性(起動停止耐久性)に優れる傾向となる。 In the block copolymer (Z 0 ), (total amount of polymer block (A 0 )) :( total amount of polymer block (B)) is in the range of 95: 5 to 5:95 by mass ratio. Preferably, it is in the range of 75:25 to 15:85, more preferably in the range of 65:35 to 20:80, and particularly preferably in the range of 50:50 to 25:75. If the mass ratio is within the above range, the obtained polymer electrolyte membrane has ion conductivity, mechanical strength, and durability when it is repeatedly wetted and dried along with starting and stopping of the polymer electrolyte fuel cell (starting and stopping) Durability) tends to be excellent.
<重合体ブロック(A)>
 重合体ブロック(A)は、重合体ブロック(A)にイオン伝導性基を導入することで形成できる。イオン伝導性基は通常、重合体ブロック(A)の芳香環に導入する。
<Polymer block (A)>
The polymer block (A) can be formed by introducing an ion conductive group into the polymer block (A 0 ). The ion conductive group is usually introduced into the aromatic ring of the polymer block (A 0 ).
 重合体ブロック(A)は芳香族ビニル化合物に由来する構造単位からなり、かかる芳香族ビニル化合物が有する芳香環は、ベンゼン環、ナフタレン環、アントラセン環、ピレン環等の炭素環式芳香環であるのが好ましく、ベンゼン環がより好ましい。 The polymer block (A 0 ) is composed of a structural unit derived from an aromatic vinyl compound, and the aromatic ring of the aromatic vinyl compound is a carbocyclic aromatic ring such as a benzene ring, a naphthalene ring, an anthracene ring, or a pyrene ring. Preferably, there is a benzene ring.
 前記重合体ブロック(A)を形成できる芳香族ビニル化合物としては、例えばスチレン、2-メチルスチレン、3-メチルスチレン、4-メチルスチレン、4-エチルスチレン、2,3-ジメチルスチレン、2,4-ジメチルスチレン、2,5-ジメチルスチレン、3,5-ジメチルスチレン、2-メトキシスチレン、3-メトキシスチレン、4-メトキシスチレン、ビニルビフェニル、ビニルターフェニル、ビニルナフタレン、ビニルアントラセン、4-フェノキシスチレン等が挙げられる。 Examples of the aromatic vinyl compound that can form the polymer block (A 0 ) include styrene, 2-methylstyrene, 3-methylstyrene, 4-methylstyrene, 4-ethylstyrene, 2,3-dimethylstyrene, 2, 4-dimethylstyrene, 2,5-dimethylstyrene, 3,5-dimethylstyrene, 2-methoxystyrene, 3-methoxystyrene, 4-methoxystyrene, vinylbiphenyl, vinylterphenyl, vinylnaphthalene, vinylanthracene, 4-phenoxy Examples include styrene.
 また、上記の芳香族ビニル化合物のビニル基上の水素原子のうち、芳香環のα-位の炭素(α-炭素)に結合した水素原子が他の置換基で置換されていてもよい。かかる置換基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基等の炭素数1~4のアルキル基;クロロメチル基、2-クロロエチル基、3-クロロエチル基等の炭素数1~4のハロゲン化アルキル基;またはフェニル基等が挙げられる。α-炭素に結合した水素原子がこれらの置換基で置換された芳香族ビニル化合物としては、α-メチルスチレン、α-メチル-4-メチルスチレン、α-メチル-2-メチルスチレン、α-メチル-4-エチルスチレン、1,1-ジフェニルエチレン等が挙げられる。 In addition, among the hydrogen atoms on the vinyl group of the aromatic vinyl compound, the hydrogen atom bonded to the α-position carbon (α-carbon) of the aromatic ring may be substituted with another substituent. Examples of such substituents include methyl groups, ethyl groups, n-propyl groups, isopropyl groups, n-butyl groups, isobutyl groups, sec-butyl groups, tert-butyl groups and other alkyl groups having 1 to 4 carbon atoms; chloromethyl Group, a halogenated alkyl group having 1 to 4 carbon atoms such as a 2-chloroethyl group and a 3-chloroethyl group; or a phenyl group. Aromatic vinyl compounds in which the hydrogen atom bonded to the α-carbon is substituted with these substituents include α-methylstyrene, α-methyl-4-methylstyrene, α-methyl-2-methylstyrene, α-methyl Examples include -4-ethylstyrene and 1,1-diphenylethylene.
 上記した重合体ブロック(A)を形成できる芳香族ビニル化合物のうち、スチレン、α-メチルスチレン、4-メチルスチレン、4-エチルスチレン、α-メチル-4-メチルスチレン、α-メチル-2-メチルスチレン、ビニルビフェニルおよび1,1-ジフェニルエチレンが好ましく、スチレン、α-メチルスチレン、4-メチルスチレンおよび1,1-ジフェニルエチレンがより好ましく、スチレンおよびα-メチルスチレンがさらに好ましい。 Of the aromatic vinyl compounds that can form the polymer block (A 0 ), styrene, α-methylstyrene, 4-methylstyrene, 4-ethylstyrene, α-methyl-4-methylstyrene, α-methyl-2 -Methylstyrene, vinylbiphenyl and 1,1-diphenylethylene are preferred, styrene, α-methylstyrene, 4-methylstyrene and 1,1-diphenylethylene are more preferred, and styrene and α-methylstyrene are more preferred.
 これら芳香族ビニル化合物を単量体として、1種を単独で、または2種以上を併用して重合することで重合体ブロック(A)を形成できる。2種以上の芳香族ビニル化合物を併用する場合の共重合形態はランダム共重合が好ましい。 A polymer block (A 0 ) can be formed by polymerizing these aromatic vinyl compounds as monomers and using one kind alone or two or more kinds in combination. Random copolymerization is preferred as the copolymerization form when two or more aromatic vinyl compounds are used in combination.
 本発明において重合体ブロック(A)は、本発明の効果を損なわない範囲内で1種または2種以上の芳香族ビニル化合物に由来しない他の構造単位を含んでいてもよい。かかる他の構造単位を形成できる単量体としては、例えばブタジエン、1,3-ペンタジエン、イソプレン、1,3-ヘキサジエン、2,3-ジメチル-1,3-ブタジエン、2-エチル-1,3-ブタジエン、1,3-ヘプタジエン等の炭素数4~8の共役ジエン;エチレン、プロピレン、1-ブテン、イソブテン、1-ペンテン、1-ヘキセン、1-ヘプテン、1-オクテン等の炭素数2~8のアルケン;(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル等の(メタ)アクリル酸エステル;酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、ピバリン酸ビニル等のビニルエステル;メチルビニルエーテル、イソブチルビニルエーテル等のビニルエーテル;が挙げられる。この場合、これら他の単量体と、前述した芳香族ビニル化合物とを混合した後、重合に供するのが好ましい。これら他の構造単位は、重合体ブロック(A)を形成している構造単位の5モル%以下であることが好ましい。すなわち、重合体ブロック(A)を形成している構造単位のうち、95モル%以上が芳香族ビニル化合物に由来する構造単位であることが好ましい。 In the present invention, the polymer block (A 0 ) may contain other structural units not derived from one or more aromatic vinyl compounds within a range not impairing the effects of the present invention. Examples of the monomer capable of forming such other structural units include butadiene, 1,3-pentadiene, isoprene, 1,3-hexadiene, 2,3-dimethyl-1,3-butadiene, 2-ethyl-1,3. A conjugated diene having 4 to 8 carbon atoms such as butadiene and 1,3-heptadiene; 2 or more carbon atoms such as ethylene, propylene, 1-butene, isobutene, 1-pentene, 1-hexene, 1-heptene and 1-octene 8 Alkenes; (Meth) acrylates such as methyl (meth) acrylate, ethyl (meth) acrylate, and butyl (meth) acrylate; Vinyl esters such as vinyl acetate, vinyl propionate, vinyl butyrate, and vinyl pivalate And vinyl ethers such as methyl vinyl ether and isobutyl vinyl ether. In this case, it is preferable that these other monomers and the above-described aromatic vinyl compound are mixed and then subjected to polymerization. These other structural units are preferably 5 mol% or less of the structural units forming the polymer block (A 0 ). That is, it is preferable that 95 mol% or more of the structural units forming the polymer block (A 0 ) is a structural unit derived from an aromatic vinyl compound.
 重合体ブロック(A)1つあたりのMnは通常1,000~100,000の範囲が好ましく、2,000~70,000の範囲がより好ましく、4,000~50,000の範囲がさらに好ましく、6,000~30,000の範囲が特に好ましい。Mnが1,000以上、特に6,000以上であればイオン伝導性が良好となる。Mnが100,000以下、特に30,000以下であれば耐熱水性が良好となり、且つブロック共重合体(Z)および化合物(X)を含有する上記組成物は成形性に優れ、製造上も有利となる。 The Mn per polymer block (A 0 ) is usually preferably in the range of 1,000 to 100,000, more preferably in the range of 2,000 to 70,000, and further in the range of 4,000 to 50,000. The range of 6,000 to 30,000 is particularly preferable. When Mn is 1,000 or more, particularly 6,000 or more, the ion conductivity is good. When Mn is 100,000 or less, particularly 30,000 or less, the hot water resistance is good, and the composition containing the block copolymer (Z) and the compound (X) is excellent in moldability and advantageous in production. It becomes.
 重合体ブロック(A)の有するイオン伝導性基としては、プロトン伝導性基が好ましく、-SOMまたはPOHM(式中、Mは水素原子、アンモニウムイオンまたはアルカリ金属イオンを表す)で表されるスルホン酸基、ホスホン酸基およびそれらの塩から選ばれる1種以上がより好ましく、スルホン酸基がさらに好ましい。 The ion conductive group possessed by the polymer block (A 0 ) is preferably a proton conductive group, and —SO 3 M or PO 3 HM (wherein M represents a hydrogen atom, an ammonium ion or an alkali metal ion). One or more selected from the sulfonic acid groups, phosphonic acid groups and salts thereof represented are more preferred, and sulfonic acid groups are more preferred.
<重合体ブロック(B)>
 重合体ブロック(B)は、不飽和脂肪族炭化水素に由来する構造単位からなり、イオン伝導性基を有さない非晶性の重合体ブロックである。なお、重合体ブロック(B)の非晶性は、ブロック共重合体(Z)の動的粘弾性を測定して、結晶性オレフィン重合体由来の貯蔵弾性率の変化がないことで確認できる。
<Polymer block (B)>
The polymer block (B) is an amorphous polymer block composed of a structural unit derived from an unsaturated aliphatic hydrocarbon and having no ion conductive group. In addition, the amorphous property of a polymer block (B) can be confirmed by measuring the dynamic viscoelasticity of a block copolymer (Z), and not having the change of the storage elastic modulus derived from a crystalline olefin polymer.
 上記重合体ブロック(B)を形成できる不飽和脂肪族炭化水素としては、エチレン、プロピレン、1-ブテン、イソブテン、1-ペンテン、1-ヘキセン、1-ヘプテン、1-オクテン等の炭素数2~8のアルケン;ビニルシクロペンタン、ビニルシクロヘキサン、ビニルシクロヘプタン、ビニルシクロオクタン等の炭素数7~10のビニルシクロアルカン;ビニルシクロペンテン、ビニルシクロヘキセン、ビニルシクロヘプテン、ビニルシクロオクテン等の炭素数7~10のビニルシクロアルケン;ブタジエン、1,3-ペンタジエン、イソプレン、1,3-ヘキサジエン、2,3-ジメチル-1,3-ブタジエン、2-エチル-1,3-ブタジエン、1,3-ヘプタジエン等の炭素数4~8の共役ジエン;シクロペンタジエン、1,3-シクロヘキサジエン等の炭素数5~8の共役シクロアルカジエン;等が挙げられ、エチレン、プロピレン、1-ブテン、イソブテン、1-ペンテン、1-ヘキセン、1-ヘプテン、1-オクテン等の炭素数2~8のアルケン;ブタジエン、1,3-ペンタジエン、イソプレン、1,3-ヘキサジエン、2,3-ジメチル-1,3-ブタジエン、2-エチル-1,3-ブタジエン、1,3-ヘプタジエン等の炭素数4~8の共役ジエン;が好ましく、炭素数4~8のアルケンおよび炭素数4~8の共役ジエンがより好ましく、イソブテン、ブタジエンおよびイソプレンがさらに好ましく、ブタジエンおよびイソプレンが特に好ましい。これら不飽和脂肪族炭化水素を単量体として、1種を単独で、または2種以上を併用して重合して重合体ブロック(B)を形成する。2種以上の不飽和脂肪族炭化水素を併用する場合の共重合形態はランダム共重合が好ましい。 Examples of the unsaturated aliphatic hydrocarbon that can form the polymer block (B) include ethylene, propylene, 1-butene, isobutene, 1-pentene, 1-hexene, 1-heptene, 1-octene and the like having 2 to 2 carbon atoms. 8 alkenes; 7 to 10 carbon cycloalkanes such as vinyl cyclopentane, vinyl cyclohexane, vinyl cycloheptane and vinyl cyclooctane; 7 to 7 carbon atoms such as vinyl cyclopentene, vinyl cyclohexene, vinyl cycloheptene and vinyl cyclooctene 10 vinylcycloalkenes; butadiene, 1,3-pentadiene, isoprene, 1,3-hexadiene, 2,3-dimethyl-1,3-butadiene, 2-ethyl-1,3-butadiene, 1,3-heptadiene, etc. A conjugated diene having 4 to 8 carbon atoms; cyclopentadiene, 1,3 Conjugated cycloalkadiene having 5 to 8 carbon atoms such as cyclohexadiene; and the like, and 2 carbon atoms such as ethylene, propylene, 1-butene, isobutene, 1-pentene, 1-hexene, 1-heptene, 1-octene ~ 8 alkenes; butadiene, 1,3-pentadiene, isoprene, 1,3-hexadiene, 2,3-dimethyl-1,3-butadiene, 2-ethyl-1,3-butadiene, 1,3-heptadiene, etc. Conjugated dienes having 4 to 8 carbon atoms are preferred, alkenes having 4 to 8 carbon atoms and conjugated dienes having 4 to 8 carbon atoms are more preferred, isobutene, butadiene and isoprene are more preferred, and butadiene and isoprene are particularly preferred. Using these unsaturated aliphatic hydrocarbons as a monomer, one type is polymerized alone or in combination of two or more types to form a polymer block (B). Random copolymerization is preferred as the copolymerization form when two or more unsaturated aliphatic hydrocarbons are used in combination.
 また、重合体ブロック(B)は、使用温度領域においてブロック共重合体(Z)に柔軟性を与えるという重合体ブロック(B)の効果を損なわない範囲で、不飽和脂肪族炭化水素に由来しない他の構造単位を含んでいてもよい。かかる他の構造単位を形成できる単量体としては、例えばスチレン、ビニルナフタレン等の芳香族ビニル化合物;塩化ビニル等のハロゲン含有ビニル化合物;酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、ピバリン酸ビニル等のビニルエステル;メチルビニルエーテル、イソブチルビニルエーテル等のビニルエーテル;等が挙げられる。この場合、これら他の単量体と、前述した不飽和脂肪族炭化水素とを混合した後、重合に供するのが好ましい。これら他の構造単位は、重合体ブロック(B)を形成している構造単位の5モル%以下であることが好ましい。すなわち、重合体ブロック(B)を形成している構造単位のうち、95モル%以上が不飽和脂肪族炭化水素に由来する構造単位であることが好ましい。 Further, the polymer block (B) is not derived from an unsaturated aliphatic hydrocarbon as long as the effect of the polymer block (B) that gives the block copolymer (Z) flexibility in the use temperature range is not impaired. Other structural units may be included. Examples of monomers that can form such other structural units include aromatic vinyl compounds such as styrene and vinyl naphthalene; halogen-containing vinyl compounds such as vinyl chloride; vinyl acetate, vinyl propionate, vinyl butyrate, and vinyl pivalate. Vinyl esters; vinyl ethers such as methyl vinyl ether and isobutyl vinyl ether; and the like. In this case, it is preferable that these other monomers and the unsaturated aliphatic hydrocarbon described above are mixed and then subjected to polymerization. These other structural units are preferably 5 mol% or less of the structural units forming the polymer block (B). That is, it is preferable that 95 mol% or more of the structural units forming the polymer block (B) are structural units derived from unsaturated aliphatic hydrocarbons.
 上記不飽和脂肪族炭化水素が炭素-炭素二重結合を複数有する場合、そのいずれが重合に用いられてもよく、例えば共役ジエンの場合には1,2-結合または1,4-結合のいずれであってもよい。共役ジエンを重合して形成した重合体ブロック(B)には通常、炭素-炭素二重結合が残存しているが、得られる高分子電解質膜の耐熱劣化性の向上等の観点から、ブロック共重合体(Z)を重合した後に水素添加反応(以下、「水添反応」と称する)を行い、かかる炭素-炭素二重結合を水素添加(以下、「水添」と称する)することが好ましい。かかる炭素-炭素二重結合の水素添加率(以下、「水添率」と称する)は30モル%以上が好ましく、50モル%以上がより好ましく、95モル%以上がさらに好ましい。 When the unsaturated aliphatic hydrocarbon has a plurality of carbon-carbon double bonds, any of them may be used for polymerization. For example, in the case of a conjugated diene, either 1,2-bond or 1,4-bond It may be. In the polymer block (B) formed by polymerizing the conjugated diene, carbon-carbon double bonds usually remain, but from the viewpoint of improving the heat resistance deterioration of the resulting polymer electrolyte membrane, the block copolymer After polymerizing the polymer (Z 0 ), a hydrogenation reaction (hereinafter referred to as “hydrogenation reaction”) is performed, and the carbon-carbon double bond is hydrogenated (hereinafter referred to as “hydrogenation”). preferable. The hydrogenation rate of such a carbon-carbon double bond (hereinafter referred to as “hydrogenation rate”) is preferably 30 mol% or more, more preferably 50 mol% or more, and even more preferably 95 mol% or more.
 また、ブロック共重合体(Z)を重合した後にイオン伝導性基を導入してブロック共重合体(Z)とする場合に、重合体ブロック(B)が飽和炭化水素構造であれば、重合体ブロック(B)へのイオン伝導性基の導入が起こりにくいため好ましい。したがって、ブロック共重合体(Z)を重合した後に重合体ブロック(B)に残存する炭素-炭素二重結合の水添反応を行う場合は、イオン伝導性基を導入する前に行うことが望ましい。
 なお、炭素-炭素二重結合の水添率は、H-NMR測定によって算出できる。
Further, when an ion conductive group is introduced after polymerizing the block copolymer (Z 0 ) to form the block copolymer (Z), if the polymer block (B) is a saturated hydrocarbon structure, It is preferable because introduction of an ion conductive group into the combined block (B) hardly occurs. Therefore, when the hydrogenation reaction of the carbon-carbon double bond remaining in the polymer block (B) after polymerizing the block copolymer (Z 0 ) is carried out before introducing the ion conductive group. desirable.
The hydrogenation rate of the carbon-carbon double bond can be calculated by 1 H-NMR measurement.
 重合体ブロック(B)1つあたりのMnは通常5,000~250,000の範囲であるのが好ましく、7,000~200,000の範囲であるのがより好ましく、15,000~150,000の範囲であるのがさらに好ましく、30,000~100,000の範囲であるのが特に好ましい。Mnが5,000以上、特に30,000以上であれば機械的強度が特に良好となり、燃料電池内で湿潤(起動)と乾燥(停止)を繰り返す起動停止耐久性に優れる。Mnが250,000以下、特に100,000以下であればブロック共重合体(Z)は成形性に優れ、製造上も有利となる。 The Mn per polymer block (B) is usually preferably in the range of 5,000 to 250,000, more preferably in the range of 7,000 to 200,000, and 15,000 to 150,000. More preferably, it is in the range of 000, and particularly preferably in the range of 30,000 to 100,000. When the Mn is 5,000 or more, particularly 30,000 or more, the mechanical strength is particularly good, and the start / stop durability of repeating wet (start) and dry (stop) in the fuel cell is excellent. When Mn is 250,000 or less, particularly 100,000 or less, the block copolymer (Z) is excellent in moldability and advantageous in production.
<他の重合体ブロック(C)>
 ブロック共重合体(Z)は、芳香族ビニル化合物に由来する構造単位からなり、イオン伝導性基を有さない重合体ブロック(C)をさらに含んでいてもよい。本発明の高分子電解質膜において、重合体ブロック(C)は、重合体ブロック(A)および重合体ブロック(B)とミクロ相分離構造を形成する。
<Other polymer block (C)>
The block copolymer (Z) is composed of a structural unit derived from an aromatic vinyl compound, and may further include a polymer block (C) having no ion conductive group. In the polymer electrolyte membrane of the present invention, the polymer block (C) forms a microphase separation structure with the polymer block (A) and the polymer block (B).
 重合体ブロック(C)は、製造上の優位性から、下記の一般式(2)で示される芳香族ビニル化合物に由来する構造単位からなることが好ましい。 The polymer block (C) is preferably composed of a structural unit derived from an aromatic vinyl compound represented by the following general formula (2) because of superiority in production.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
(式中、Rは水素原子または炭素数1~4のアルキル基を表し、Rは炭素数3~8のアルキル基を表し、RおよびRはそれぞれ独立して水素原子または炭素数3~8のアルキル基を表す。) (Wherein R 4 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, R 5 represents an alkyl group having 3 to 8 carbon atoms, and R 6 and R 7 each independently represents a hydrogen atom or a carbon number. Represents an alkyl group of 3 to 8.)
 重合体ブロック(C)が、芳香環上に少なくとも1つの炭素数3~8のアルキル基を有する芳香族ビニル化合物に由来する構造単位であると、ブロック共重合体(Z)にイオン伝導性基を導入してブロック共重合体(Z)を製造する際に、重合体ブロック(A)に選択的にイオン伝導性基を導入することができる。 When the polymer block (C) is a structural unit derived from an aromatic vinyl compound having at least one alkyl group having 3 to 8 carbon atoms on the aromatic ring, the block copolymer (Z 0 ) has ion conductivity. When the group is introduced to produce the block copolymer (Z), an ion conductive group can be selectively introduced into the polymer block (A 0 ).
 上記一般式(2)で示される構造単位を形成するための芳香族ビニル化合物としては、4-プロピルスチレン、4-イソプロピルスチレン、4-ブチルスチレン、4-イソブチルスチレン、4-tert-ブチルスチレン、4-オクチルスチレン、α-メチル-4-tert-ブチルスチレン、α-メチル-4-イソプロピルスチレン等が挙げられ、4-tert-ブチルスチレン、4-イソプロピルスチレン、α-メチル-4-tert-ブチルスチレン、α-メチル-イソプロピルスチレンがより好ましく、4-tert-ブチルスチレンがさらに好ましい。これらは1種を単独で用いても、2種以上を併用してもよい。2種以上の芳香族ビニル化合物を併用する場合の共重合形態はランダム共重合が好ましい。 Examples of the aromatic vinyl compound for forming the structural unit represented by the general formula (2) include 4-propylstyrene, 4-isopropylstyrene, 4-butylstyrene, 4-isobutylstyrene, 4-tert-butylstyrene, Examples include 4-octylstyrene, α-methyl-4-tert-butylstyrene, α-methyl-4-isopropylstyrene, and the like. 4-tert-butylstyrene, 4-isopropylstyrene, α-methyl-4-tert-butyl Styrene and α-methyl-isopropylstyrene are more preferable, and 4-tert-butylstyrene is more preferable. These may be used alone or in combination of two or more. Random copolymerization is preferred as the copolymerization form when two or more aromatic vinyl compounds are used in combination.
 重合体ブロック(C)は、本発明の効果を損なわない範囲内で、1種または2種以上の芳香族ビニル化合物に由来しない他の構造単位を含んでいてもよい。かかる他の構造単位を形成できる単量体としては、例えばブタジエン、1,3-ペンタジエン、イソプレン、1,3-ヘキサジエン、2,4-ヘキサジエン、2,3-ジメチル-1,3-ブタジエン、2-エチル-1,3-ブタジエン、1,3-ヘプタジエン等の炭素数4~8の共役ジエン;エチレン、プロピレン、1-ブテン、イソブテン、1-ペンテン、1-ヘキセン、1-ヘプテン、1-オクテン等の炭素数2~8のアルケン;(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル等の(メタ)アクリル酸エステル;酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、ピバリン酸ビニル等のビニルエステル;メチルビニルエーテル、イソブチルビニルエーテル等のビニルエーテル;が挙げられる。この場合、これら他の単量体と、前述した芳香族ビニル化合物との共重合形態はランダム共重合が好ましい。これら他の構造単位は、重合体ブロック(C)を形成している構造単位の5モル%以下であることが好ましい。すなわち、重合体ブロック(C)を形成している構造単位のうち、95モル%以上が芳香族ビニル化合物に由来する構造単位であることが好ましい。 The polymer block (C) may contain other structural units not derived from one or more aromatic vinyl compounds within a range not impairing the effects of the present invention. Examples of monomers that can form such other structural units include butadiene, 1,3-pentadiene, isoprene, 1,3-hexadiene, 2,4-hexadiene, 2,3-dimethyl-1,3-butadiene, 2 Conjugated diene having 4 to 8 carbon atoms such as ethyl-1,3-butadiene, 1,3-heptadiene; ethylene, propylene, 1-butene, isobutene, 1-pentene, 1-hexene, 1-heptene, 1-octene Alkenes having 2 to 8 carbon atoms such as: (meth) acrylic acid esters such as methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate; vinyl acetate, vinyl propionate, vinyl butyrate, pivalin Vinyl esters such as vinyl acid; vinyl ethers such as methyl vinyl ether and isobutyl vinyl ether. In this case, the copolymerization form of these other monomers and the above-described aromatic vinyl compound is preferably random copolymerization. These other structural units are preferably 5 mol% or less of the structural units forming the polymer block (C). That is, it is preferable that 95 mol% or more of the structural units forming the polymer block (C) are structural units derived from an aromatic vinyl compound.
 重合体ブロック(C)1つあたりのMnは通常1,000~50,000の範囲であるのが好ましく、1,500~30,000の範囲であるのがより好ましく、2,000~20,000の範囲であるのがさらに好ましい。かかるMnが1,000以上であれば、本発明で得られる高分子電解質膜の機械的強度が優れる傾向となり、50,000以下であれば、ブロック共重合体(Z)および化合物(X)を含有する上記組成物は成形性に優れ、製造上も有利になる。 The Mn per polymer block (C) is usually preferably in the range of 1,000 to 50,000, more preferably in the range of 1,500 to 30,000, and 2,000 to 20,000. More preferably, it is in the range of 000. If the Mn is 1,000 or more, the mechanical strength of the polymer electrolyte membrane obtained in the present invention tends to be excellent, and if it is 50,000 or less, the block copolymer (Z) and the compound (X) are added. The composition to be contained is excellent in moldability and advantageous in production.
 本発明で用いるブロック共重合体(Z)が重合体ブロック(C)を含む場合の配列の例として、A-B-C型トリブロック共重合体(A、B、Cはそれぞれ、重合体ブロック(A)、重合体ブロック(B)、重合体ブロック(C)を表す。以下同様)、A-B-C-A型テトラブロック共重合体、A-B-A-C型テトラブロック共重合体、B-A-B-C型テトラブロック共重合体、A-B-C-B型テトラブロック共重合体、A-C-B-C型テトラブロック共重合体、C-A-B-A-C型ペンタブロック共重合体、C-B-A-B-C型ペンタブロック共重合体、A-C-B-C-A型ペンタブロック共重合体、A-C-B-A-C型ペンタブロック共重合体、A-C-B-C-A-C型ヘキサブロック共重合体、C-A-B-C-A-C型ヘキサブロック共重合体、A-C-A-C-B-C型ヘキサブロック共重合体、A-C-A-C-B-C-A型ヘプタブロック共重合体、A-C-B-C-B-C-A型ヘプタブロック共重合体、C-A-C-B-C-A-C型ヘプタブロック共重合体、A-C-A-C-B-C-A-C型オクタブロック共重合体、A-C-B-C-B-C-A-C型オクタブロック共重合体、A-C-B-C-A-C-B-C型オクタブロック共重合体等が挙げられる。中でも、機械的強度、イオン伝導性の観点から、A-B-C型トリブロック共重合体、A-B-C-A型テトラブロック共重合体、A-B-A-C型テトラブロック共重合体、A-C-B-C型テトラブロック共重合体、C-A-B-A-C型ペンタブロック共重合体、C-B-A-B-C型ペンタブロック共重合体、A-C-B-C-A型ペンタブロック共重合体、A-C-B-A-C型ペンタブロック共重合体、A-C-B-C-A-C型ヘキサブロック共重合体、C-A-B-C-A-C型ヘキサブロック共重合体、A-C-A-C-B-C型ヘキサブロック共重合体、A-C-A-C-B-C-A型ヘプタブロック共重合体、A-C-B-C-B-C-A型ヘプタブロック共重合体、C-A-C-B-C-A-C型ヘプタブロック共重合体、A-C-A-C-B-C-A-C型オクタブロック共重合体、A-C-B-C-B-C-A-C型オクタブロック共重合体、A-C-B-C-A-C-B-C型オクタブロック共重合体が好ましく、A-C-B-C型テトラブロック共重合体、A-C-B-C-A型ペンタブロック共重合体、A-C-B-C-A-C型ヘキサブロック共重合体、A-C-A-C-B-C-A-C型オクタブロック共重合体がより好ましく、A-C-B-C-A型ペンタブロック共重合体、A-C-A-C-B-C-A-C型オクタブロック共重合体がさらに好ましい。本発明の高分子電解質膜においては、これらのブロック共重合体は、1種を単独で用いても、2種以上を併用してもよい。 As an example of the arrangement in the case where the block copolymer (Z) used in the present invention contains a polymer block (C), ABC type triblock copolymer (A, B and C are each a polymer block) (A) represents a polymer block (B) and a polymer block (C), the same shall apply hereinafter), an ABCA type tetrablock copolymer, an ABCA type tetrablock copolymer. Polymer, BABC type tetrablock copolymer, ABCBC type tetrablock copolymer, ABCBC type tetrablock copolymer, CABB AC type pentablock copolymer, CBABC type pentablock copolymer, ABCBC type pentablock copolymer, ACBAA- C-type pentablock copolymer, ABCBCAC type hexablock copolymer, CABC AC type hexablock copolymer, ACCABCBC type hexablock copolymer, ACCABCBC type heptablock copolymer, A- CBCBCBC type heptablock copolymer, CACBCBCAC type heptablock copolymer, ACACABCBC A-C type octablock copolymer, ACBCCBCCAC type octablock copolymer, ABCBCCABCBC type octablock A copolymer etc. are mentioned. Among these, from the viewpoint of mechanical strength and ion conductivity, ABC type triblock copolymer, ABCA type tetrablock copolymer, and ABC type tetrablock copolymer are used. Polymer, ABCBC tetrablock copolymer, CABBC type pentablock copolymer, CBABC type pentablock copolymer, A -C—B—C—A type pentablock copolymer, A—C—B—A—C type penta block copolymer, A—C—B—C—A—C type hexablock copolymer, C -ABCCA type hexablock copolymer, ACCABCBC type hexablock copolymer, ACCABCBC type hepta Block copolymer, ACCBBCCA type heptablock copolymer, CABCBCCA type heptablock copolymer Copolymer, ACACBCBCAC type octablock copolymer, ACCBBCBCAC type octablock copolymer, AC- B-C-A-C-B-C type octablock copolymer is preferable, and A-C-B-C-C type tetra-block copolymer, A-C-B-C-A type penta-block copolymer, ABCBCAC type hexablock copolymer and ACCABCBC type AC block octablock copolymer are more preferable, and ABCBC An -A type pentablock copolymer and an ACCABCBC type octablock copolymer are more preferable. In the polymer electrolyte membrane of the present invention, these block copolymers may be used alone or in combination of two or more.
 本発明の高分子電解質膜を構成するブロック共重合体(Z)が重合体ブロック(C)を含む場合、ブロック共重合体(Z)に占める重合体ブロック(C)の含有量は5~50質量%の範囲であるのが好ましく、7~40質量%の範囲であるのがより好ましく、10~30質量%の範囲であるのがさらに好ましい。かかる含有量が5質量%以上であると、得られる高分子電解質膜は耐熱水性に優れる傾向となり、50質量%以下であると、得られる高分子電解質膜は起動停止耐久性に優れる傾向となる。 When the block copolymer (Z) constituting the polymer electrolyte membrane of the present invention contains the polymer block (C), the content of the polymer block (C) in the block copolymer (Z 0 ) is from 5 to It is preferably in the range of 50% by mass, more preferably in the range of 7-40% by mass, and still more preferably in the range of 10-30% by mass. When the content is 5% by mass or more, the obtained polymer electrolyte membrane tends to be excellent in hot water resistance, and when it is 50% by mass or less, the obtained polymer electrolyte membrane tends to be excellent in start / stop durability. .
<ブロック共重合体(Z)の製造>
 本発明の高分子電解質膜を構成するブロック共重合体(Z)は、前述した各単量体を重合して、重合体ブロック(A)と重合体ブロック(B)とを含むブロック共重合体(Z)を製造した後、重合体ブロック(A)にイオン伝導性基を導入する方法によって製造できる。
<Production of block copolymer (Z 0 )>
The block copolymer (Z) constituting the polymer electrolyte membrane of the present invention is a block copolymer comprising a polymer block (A 0 ) and a polymer block (B) by polymerizing each of the aforementioned monomers. After producing the coalescence (Z 0 ), it can be produced by a method of introducing an ion conductive group into the polymer block (A 0 ).
 ブロック共重合体(Z)の製造方法は適宜選択できるが、リビングラジカル重合法、リビングアニオン重合法およびリビングカチオン重合法から選ばれる重合法によって、前述した各単量体を重合する方法が好ましい。 The production method of the block copolymer (Z 0 ) can be selected as appropriate, but a method of polymerizing each monomer described above by a polymerization method selected from a living radical polymerization method, a living anion polymerization method and a living cation polymerization method is preferable. .
 ブロック共重合体(Z)の製造方法の具体例として、芳香族ビニル化合物に由来する構造単位からなる重合体ブロック(A)と、共役ジエンに由来する構造単位からなる重合体ブロック(B)を成分とするブロック共重合体(Z)を製造する方法としては、
(1)シクロヘキサン溶媒中でアニオン重合開始剤を用いて、20~100℃の温度条件下で、芳香族ビニル化合物、共役ジエン、芳香族ビニル化合物を逐次アニオン重合させA-B-A型ブロック共重合体を得る方法;
(2)シクロヘキサン溶媒中でアニオン重合開始剤を用いて、20~100℃の温度条件下で芳香族ビニル化合物、共役ジエンを逐次アニオン重合させた後、安息香酸フェニル等のカップリング剤を添加してA-B-A型ブロック共重合体を得る方法;
(3)非極性溶媒中、有機リチウム化合物を開始剤として用い、0.1~10質量%濃度の極性化合物の存在下、-30~30℃の温度にて、5~50質量%濃度の芳香族ビニル化合物をアニオン重合させ、得られるリビングポリマーに共役ジエンをアニオン重合させた後、安息香酸フェニル等のカップリング剤を添加して、A-B-A型ブロック共重合体を得る方法;
等が挙げられる。
 また、芳香族ビニル化合物に由来する構造単位からなる重合体ブロック(A)と、イソブテンに由来する構造単位からなる重合体ブロック(B)を成分とするブロック共重合体(Z)を製造する方法としては、
(4)ハロゲン系/炭化水素系混合溶媒中、-78℃で、2官能性ハロゲン化開始剤を用いて、ルイス酸存在下でイソブテンをカチオン重合させた後、芳香族ビニル化合物をカチオン重合させて、A-B-A型ブロック共重合体を得る方法;
等が挙げられる。
 なお、必要に応じて、上記アニオン重合やカチオン重合において反応させる成分を変えたり、追加したりすることによって、ブロック共重合体の成分として、重合体ブロック(C)を加えることができる。
As a specific example of the production method of the block copolymer (Z 0 ), a polymer block (A 0 ) composed of a structural unit derived from an aromatic vinyl compound and a polymer block (B) composed of a structural unit derived from a conjugated diene As a method for producing a block copolymer (Z 0 ) containing as a component,
(1) An aromatic vinyl compound, a conjugated diene, and an aromatic vinyl compound are sequentially anionic polymerized using an anionic polymerization initiator in a cyclohexane solvent at a temperature of 20 to 100 ° C. A method of obtaining a polymer;
(2) An anionic polymerization initiator is used in a cyclohexane solvent, and an aromatic vinyl compound and a conjugated diene are sequentially anionic polymerized at a temperature of 20 to 100 ° C., and then a coupling agent such as phenyl benzoate is added. To obtain an ABA type block copolymer;
(3) An aromatic compound having a concentration of 5 to 50% by mass in a nonpolar solvent using an organolithium compound as an initiator and in the presence of a polar compound having a concentration of 0.1 to 10% by mass at a temperature of −30 to 30 ° C. A method of obtaining an ABA type block copolymer by anionic polymerization of an aromatic vinyl compound, anionic polymerization of a conjugated diene to the resulting living polymer, and then adding a coupling agent such as phenyl benzoate;
Etc.
In addition, a block copolymer (Z 0 ) comprising a polymer block (A 0 ) composed of a structural unit derived from an aromatic vinyl compound and a polymer block (B) composed of a structural unit derived from isobutene as components. As a way to
(4) Cationic polymerization of isobutene in the presence of Lewis acid using a bifunctional halogenation initiator in a halogen / hydrocarbon mixed solvent at −78 ° C., followed by cationic polymerization of an aromatic vinyl compound A method of obtaining an ABA type block copolymer;
Etc.
In addition, a polymer block (C) can be added as a component of a block copolymer by changing or adding the component made to react in the said anionic polymerization or cationic polymerization as needed.
<ブロック共重合体(Z)の製造>
 ブロック共重合体(Z)にイオン伝導性基を導入して、ブロック共重合体(Z)を製造する方法について以下に述べる。
<Production of block copolymer (Z)>
A method for producing a block copolymer (Z) by introducing an ion conductive group into the block copolymer (Z 0 ) will be described below.
 まず、該ブロック共重合体(Z)にスルホン酸基を導入する方法について述べる。スルホン酸基の導入(スルホン化)は、公知の方法で行える。例えば、ブロック共重合体(Z)の有機溶媒溶液や懸濁液を調製し、かかる溶液や懸濁液に後述するスルホン化剤を添加し混合する方法や、ブロック共重合体(Z)に直接ガス状のスルホン化剤を添加する方法が挙げられる。 First, a method for introducing a sulfonic acid group into the block copolymer (Z 0 ) will be described. Introduction of a sulfonic acid group (sulfonation) can be performed by a known method. For example, the block copolymer (Z 0) the organic solvent solution or suspension is prepared and such solutions and a method of mixing by adding a sulfonating agent to be described later to the suspension, the block copolymer (Z 0) And a method of directly adding a gaseous sulfonating agent.
 スルホン化剤としては、硫酸;硫酸と酸無水物との混合物系;クロロスルホン酸;クロロスルホン酸と塩化トリメチルシリルとの混合物系;三酸化硫黄;三酸化硫黄とトリエチルホスフェートとの混合物系;2,4,6-トリメチルベンゼンスルホン酸に代表される芳香族有機スルホン酸等が例示される。これらのうち、硫酸と酸無水物との混合物系が好ましい。また、使用する有機溶媒としては、塩化メチレン等のハロゲン化炭化水素、ヘキサン等の直鎖脂肪族炭化水素、シクロヘキサン等の環状脂肪族炭化水素、ニトロベンゼン等の電子求引基を有する芳香族化合物等が例示できる。 As the sulfonating agent, sulfuric acid; a mixture system of sulfuric acid and acid anhydride; chlorosulfonic acid; a mixture system of chlorosulfonic acid and trimethylsilyl chloride; sulfur trioxide; a mixture system of sulfur trioxide and triethyl phosphate; Examples thereof include aromatic organic sulfonic acids represented by 4,6-trimethylbenzenesulfonic acid. Of these, a mixture system of sulfuric acid and acid anhydride is preferable. Examples of the organic solvent to be used include halogenated hydrocarbons such as methylene chloride, linear aliphatic hydrocarbons such as hexane, cyclic aliphatic hydrocarbons such as cyclohexane, aromatic compounds having an electron withdrawing group such as nitrobenzene, etc. Can be illustrated.
 次に、ブロック共重合体(Z)にホスホン酸基を導入する方法について述べる。ホスホン酸基の導入(ホスホン化)は、公知の方法で行える。例えば、重合体ブロック(A)の芳香環に塩化アルミニウム存在下でハロメチルエーテルを反応させてハロメチル基を導入し、次いで三塩化リンおよび塩化アルミニウムと反応させてリン誘導体に置換したのち、加水分解によってホスホン酸基に変換する方法;および前記芳香族ビニル化合物の芳香環に三塩化リンと無水塩化アルミニウムを反応させて導入したホスフィン酸基を硝酸により酸化してホスホン酸基に変換する方法が挙げられる。 Next, a method for introducing a phosphonic acid group into the block copolymer (Z 0 ) will be described. Introduction (phosphonation) of a phosphonic acid group can be performed by a known method. For example, the aromatic ring of the polymer block (A 0 ) is reacted with halomethyl ether in the presence of aluminum chloride to introduce a halomethyl group, and then reacted with phosphorus trichloride and aluminum chloride to be substituted with a phosphorus derivative. A method of converting to a phosphonic acid group by decomposition; and a method of converting a phosphinic acid group introduced by reacting an aromatic ring of the aromatic vinyl compound with phosphorus trichloride and anhydrous aluminum chloride to a phosphonic acid group by oxidizing with nitric acid. Can be mentioned.
 ブロック共重合体(Z)における、重合体ブロック(A)が有する芳香族ビニル化合物に由来する構造単位に対するイオン伝導性基の導入率(スルホン化率、ホスホン化率等)は、H-NMRを用いて算出することができる。 In the block copolymer (Z), the introduction rate (sulfonation rate, phosphonation rate, etc.) of the ion conductive group with respect to the structural unit derived from the aromatic vinyl compound of the polymer block (A) is 1 H-NMR. Can be used to calculate.
<化合物(X)>
 化合物(X)は、下記一般式(1)で示される化合物である。
<Compound (X)>
Compound (X) is a compound represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
(式中、Rは水素原子、水酸基または炭素数1~4のアルキル基を表し、Rは水素原子、水酸基、炭素数1~4のアルキル基または炭素数1~4のアルコキシ基を表し、Rは炭素数1~4のヒドロキシアルキル基を表す。) Wherein R 1 represents a hydrogen atom, a hydroxyl group or an alkyl group having 1 to 4 carbon atoms, and R 2 represents a hydrogen atom, a hydroxyl group, an alkyl group having 1 to 4 carbon atoms or an alkoxy group having 1 to 4 carbon atoms. R 3 represents a hydroxyalkyl group having 1 to 4 carbon atoms.)
 炭素数1~4のヒドロキシアルキル基としては、ヒドロキシメチル基、1-ヒドロキシエチル基、2-ヒドロキシエチル基、1-ヒドロキシプロピル基、2-ヒドロキシプロピル基、3-ヒドロキシプロピル基、1-ヒドロキシ-1-メチルエチル基、2-ヒドロキシ-1-メチルエチル基、1-ヒドロキシブチル基、2-ヒドロキシブチル基、3-ヒドロキシブチル基、4-ヒドロキシブチル基等が挙げられ、炭素数1または2のヒドロキシアルキル基が好ましく、ヒドロキシメチル基、1-ヒドロキシエチル基および2-ヒドロキシエチル基が好ましい。 Examples of the hydroxyalkyl group having 1 to 4 carbon atoms include hydroxymethyl group, 1-hydroxyethyl group, 2-hydroxyethyl group, 1-hydroxypropyl group, 2-hydroxypropyl group, 3-hydroxypropyl group, 1-hydroxy- 1-methylethyl group, 2-hydroxy-1-methylethyl group, 1-hydroxybutyl group, 2-hydroxybutyl group, 3-hydroxybutyl group, 4-hydroxybutyl group, and the like. A hydroxyalkyl group is preferred, and a hydroxymethyl group, a 1-hydroxyethyl group and a 2-hydroxyethyl group are preferred.
 化合物(X)はヒドロキシフェニル基と炭素数1~4のヒドロキシアルキル基、好ましくは炭素数1または2のヒドロキシアルキル基を有するので、親水性の重合体ブロック(A)を含む相に選択的に存在すると推定され、このため、親水性の重合体ブロック(A)が選択的に架橋することで高分子電解質膜の柔軟性を損なうことなく、耐熱水性が向上すると考えられる。 Since the compound (X) has a hydroxyphenyl group and a hydroxyalkyl group having 1 to 4 carbon atoms, preferably a hydroxyalkyl group having 1 or 2 carbon atoms, the compound (X) is selectively added to the phase containing the hydrophilic polymer block (A). For this reason, it is considered that the hot water resistance is improved without deteriorating the flexibility of the polymer electrolyte membrane by selectively crosslinking the hydrophilic polymer block (A).
 化合物(X)の具体例としては、4-ヒドロキシベンジルアルコール、バニリルアルコール、3,4-ジヒドロキシベンジルアルコール、2,6-ジtert-ブチル-4-ヒドロキシメチルフェノール、2-(4-ヒドロキシフェニル)エタノール、2-(3,4-ジヒドロキシフェニル)エチルアルコール、4-ヒドロキシ-3-メトキシ-α-メチルベンジルアルコール、3-(4-ヒドロキシフェニル)-1-プロパノール、1-(4-ヒドロキシフェニル)-2-プロパノール、1-(4-ヒドロキシフェニル)-1-プロパノール、2-(4-ヒドロキシフェニル)-2-プロパノール、4-(4-ヒドロキシフェニル)-1-ブタノール、4-(4-ヒドロキシフェニル)-2-ブタノール、3-(4-ヒドロキシフェニル)-2-メチルプロパノール、3-(4-ヒドロキシフェニル)-1-ブタノール、1-(4-ヒドロキシフェニル)-2-メチル-2-プロパノール、3-(4-ヒドロキシフェニル)-2-ブタノール、2-(4-ヒドロキシフェニル)-2-メチル-1-プロパノールなどが挙げられる。
 中でも、高分子電解質膜の耐熱水性の観点から、4-ヒドロキシベンジルアルコール、バニリルアルコール、3,4-ジヒドロキシベンジルアルコール、2,6-ジtert-ブチル-4-ヒドロキシメチルフェノール、2-(3,4-ジヒドロキシフェニル)エチルアルコール、2-(4-ヒドロキシフェニル)エタノール、4-ヒドロキシ-3-メトキシ-α-メチルベンジルアルコールが好ましく、バニリルアルコールまたは2-(4-ヒドロキシフェニル)エタノールがより好ましい。
Specific examples of the compound (X) include 4-hydroxybenzyl alcohol, vanillyl alcohol, 3,4-dihydroxybenzyl alcohol, 2,6-ditert-butyl-4-hydroxymethylphenol, 2- (4-hydroxyphenyl) ) Ethanol, 2- (3,4-dihydroxyphenyl) ethyl alcohol, 4-hydroxy-3-methoxy-α-methylbenzyl alcohol, 3- (4-hydroxyphenyl) -1-propanol, 1- (4-hydroxyphenyl) ) -2-propanol, 1- (4-hydroxyphenyl) -1-propanol, 2- (4-hydroxyphenyl) -2-propanol, 4- (4-hydroxyphenyl) -1-butanol, 4- (4- Hydroxyphenyl) -2-butanol, 3- (4-hydroxyphenyl) 2-methylpropanol, 3- (4-hydroxyphenyl) -1-butanol, 1- (4-hydroxyphenyl) -2-methyl-2-propanol, 3- (4-hydroxyphenyl) -2-butanol, 2- (4-hydroxyphenyl) -2-methyl-1-propanol and the like.
Among them, from the viewpoint of hot water resistance of the polymer electrolyte membrane, 4-hydroxybenzyl alcohol, vanillyl alcohol, 3,4-dihydroxybenzyl alcohol, 2,6-ditert-butyl-4-hydroxymethylphenol, 2- (3 , 4-dihydroxyphenyl) ethyl alcohol, 2- (4-hydroxyphenyl) ethanol, 4-hydroxy-3-methoxy-α-methylbenzyl alcohol are preferred, and vanillyl alcohol or 2- (4-hydroxyphenyl) ethanol is more preferred. preferable.
 化合物(X)は1種を単独で用いても、2種以上を併用してもよい。
 組成物中の化合物(X)の含有量は、高分子電解質膜の耐熱水性の観点から、ブロック共重合体(Z)100質量部に対して0.01~25質量部の範囲が好ましく、0.1~20質量部の範囲がより好ましく、1~10質量部の範囲がさらに好ましく、4~6質量部の範囲が特に好ましい。
Compound (X) may be used alone or in combination of two or more.
The content of the compound (X) in the composition is preferably in the range of 0.01 to 25 parts by mass with respect to 100 parts by mass of the block copolymer (Z), from the viewpoint of hot water resistance of the polymer electrolyte membrane. The range of 1 to 20 parts by mass is more preferable, the range of 1 to 10 parts by mass is more preferable, and the range of 4 to 6 parts by mass is particularly preferable.
<高分子電解質膜の製造方法>
 次に、本発明の高分子電解質膜の製造方法について説明する。通常、高分子電解質膜は高分子電解質であるブロック共重合体(Z)、化合物(X)および溶媒を含有する流動性組成物を調製し、該流動性組成物を基板上に塗工した後、溶媒を除去することで、ブロック共重合体(Z)および化合物(X)を含有する組成物よりなる成形体を得、該成形体を架橋処理することで得られる。
<Method for producing polymer electrolyte membrane>
Next, the manufacturing method of the polymer electrolyte membrane of this invention is demonstrated. Usually, a polymer electrolyte membrane is prepared by preparing a fluid composition containing a block copolymer (Z), a compound (X), and a solvent, which are polymer electrolytes, and coating the fluid composition on a substrate. By removing the solvent, a molded product comprising the composition containing the block copolymer (Z) and the compound (X) is obtained, and the molded product is obtained by crosslinking treatment.
 上記流動性組成物に用いることができる溶媒としては、塩化メチレン等のハロゲン化炭化水素;トルエン、キシレン、ベンゼン等の芳香族炭化水素;ヘキサン、ヘプタン、オクタン等の直鎖脂肪族炭化水素;シクロヘキサン等の環式脂肪族炭化水素;テトラヒドロフラン等のエーテル、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、イソブタノール等のアルコール;が挙げられる。これらは1種を単独で用いても、2種以上を併用してもよいが、各ブロック共重合体(Z)が含む重合体ブロックの溶解性または分散性の観点から、混合溶媒を用いることが好ましい。好ましい組み合わせの混合溶媒としては、トルエンとイソブタノールの混合溶媒、キシレンとイソブタノールの混合溶媒、トルエンとイソプロパノールの混合溶媒、シクロヘキサンとイソプロパノールの混合溶媒、シクロヘキサンとイソブタノールの混合溶媒、テトラヒドロフラン溶媒、テトラヒドロフランとメタノールの混合溶媒、トルエンとイソブタノールとオクタンの混合溶媒、トルエンとイソプロパノールとオクタンの混合溶媒が挙げられ、トルエンとイソブタノールの混合溶媒、キシレンとイソブタノールの混合溶媒、トルエンとイソプロパノールの混合溶媒、トルエンとイソブタノールとオクタンの混合溶媒、トルエンとイソプロパノールとオクタンの混合溶媒がより好ましい。 Solvents that can be used in the fluid composition include halogenated hydrocarbons such as methylene chloride; aromatic hydrocarbons such as toluene, xylene, and benzene; linear aliphatic hydrocarbons such as hexane, heptane, and octane; cyclohexane And cycloaliphatic hydrocarbons such as ether; ethers such as tetrahydrofuran, alcohols such as methanol, ethanol, propanol, isopropanol, butanol and isobutanol. These may be used alone or in combination of two or more, but from the viewpoint of the solubility or dispersibility of the polymer block contained in each block copolymer (Z), a mixed solvent should be used. Is preferred. Preferred mixed solvents include a mixed solvent of toluene and isobutanol, a mixed solvent of xylene and isobutanol, a mixed solvent of toluene and isopropanol, a mixed solvent of cyclohexane and isopropanol, a mixed solvent of cyclohexane and isobutanol, tetrahydrofuran solvent, tetrahydrofuran Mixed solvent of methanol and methanol, mixed solvent of toluene, isobutanol and octane, mixed solvent of toluene, isopropanol and octane, mixed solvent of toluene and isobutanol, mixed solvent of xylene and isobutanol, mixed solvent of toluene and isopropanol More preferred are a mixed solvent of toluene, isobutanol and octane, and a mixed solvent of toluene, isopropanol and octane.
 上記流動性組成物は、溶媒中に、ブロック共重合体(Z)および化合物(X)を溶解または分散させて調製する。必要に応じて、本発明の効果を損なわない範囲で、架橋剤、軟化剤、フェノール系安定剤、イオウ系安定剤、リン系安定剤等の各種安定剤、無機充填剤、光安定剤、帯電防止剤、離型剤、難燃剤、発泡剤、顔料、染料、漂白剤、カーボン繊維等の各種添加剤を併せて溶解または分散させてもよい。流動性組成物中の溶媒以外の成分(固形分)中のブロック共重合体(Z)の含有量は、得られる高分子電解質膜のイオン伝導性観点から、50質量%以上であることが好ましく、70質量%以上であることがより好ましく、85質量%以上であることがさらに好ましい。 The fluid composition is prepared by dissolving or dispersing the block copolymer (Z) and the compound (X) in a solvent. As necessary, various stabilizers such as a crosslinking agent, a softening agent, a phenol-based stabilizer, a sulfur-based stabilizer, and a phosphorus-based stabilizer, an inorganic filler, a light stabilizer, and a charge, as long as the effects of the present invention are not impaired. Various additives such as an inhibitor, a release agent, a flame retardant, a foaming agent, a pigment, a dye, a bleaching agent, and carbon fiber may be dissolved or dispersed together. The content of the block copolymer (Z) in the component (solid content) other than the solvent in the fluid composition is preferably 50% by mass or more from the viewpoint of ion conductivity of the obtained polymer electrolyte membrane. 70% by mass or more, more preferably 85% by mass or more.
 上記流動性組成物に用いることができる軟化剤としては、パラフィン系、ナフテン系、アロマ系のプロセスオイル等の石油系軟化剤;流動パラフィン、植物油系軟化剤、可塑剤等が挙げられる。これらは1種を単独で用いても、2種以上を併用してもよい。 Examples of softeners that can be used in the fluid composition include petroleum softeners such as paraffinic, naphthenic, and aromatic process oils; liquid paraffin, vegetable oil softeners, plasticizers, and the like. These may be used alone or in combination of two or more.
 上記流動性組成物に用いることができる安定剤としては、2,6-ジtert-ブチル-p-クレゾール、ペンタエリスリチル-テトラキス[3-(3,5-ジtert-ブチル-4-ヒドロキシフェニル)プロピオネート]、1,3,5-トリメチル-2,4,6-トリス(3,5-ジtert-ブチル-4-ヒドロキシベンジル)ベンゼン、オクタデシル-3-(3,5-ジtert-ブチル-4-ヒドロキシフェニル)プロピオネート、トリエチレングリコール-ビス[3-(3-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、2,4-ビス-(n-オクチルチオ)-6-(4-ヒドロキシ-3,5-ジtert-ブチルアニリノ)-1,3,5-トリアジン、2,2-チオ-ジエチレンビス[3-(3,5-ジtert-ブチル-4-ヒドロキシフェニル)プロピオネート]、3,5-ジtert-ブチル-4-ヒドロキシ-ベンジルホスホネート-ジエチルエステル、トリス-(3,5-ジtert-ブチル-4-ヒドロキシベンジル)-イソシアヌレート、3,9-ビス[2-[3-(3-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ]-1,1-ジメチルエチル]-2,4,8,10-テトラオキサスピロ[5.5]ウンデカン等のフェノール系安定剤;ペンタエリスリチルテトラキス(3-ラウリルチオプロピオネート)、ジステアリル3,3’-チオジプロピオネート、ジラウリル3,3’-チオジプロピオネート、ジミリスチル3,3’-チオジプロピオネート等のイオウ系安定剤;トリス(ノニルフェニル)ホスファイト、トリス(2,4-ジtert-ブチルフェニル)ホスファイト、ジステアリルペンタエリスリトールジホスファイト等のリン系安定剤が挙げられる。これらは1種を単独で用いても、2種以上を併用してもよい。 Stabilizers that can be used in the flowable composition include 2,6-ditert-butyl-p-cresol, pentaerythrityl-tetrakis [3- (3,5-ditert-butyl-4-hydroxyphenyl). ) Propionate], 1,3,5-trimethyl-2,4,6-tris (3,5-ditert-butyl-4-hydroxybenzyl) benzene, octadecyl-3- (3,5-ditert-butyl-) 4-hydroxyphenyl) propionate, triethylene glycol-bis [3- (3-tert-butyl-4-hydroxyphenyl) propionate], 2,4-bis- (n-octylthio) -6- (4-hydroxy-3 , 5-Ditert-butylanilino) -1,3,5-triazine, 2,2-thio-diethylenebis [3- (3,5-di ert-butyl-4-hydroxyphenyl) propionate], 3,5-ditert-butyl-4-hydroxy-benzylphosphonate-diethyl ester, tris- (3,5-ditert-butyl-4-hydroxybenzyl) -isocyanate Nurate, 3,9-bis [2- [3- (3-tert-butyl-4-hydroxy-5-methylphenyl) propionyloxy] -1,1-dimethylethyl] -2,4,8,10-tetra Phenolic stabilizers such as oxaspiro [5.5] undecane; pentaerythrityltetrakis (3-laurylthiopropionate), distearyl 3,3′-thiodipropionate, dilauryl 3,3′-thiodipropio And sulfur stabilizers such as dimyristyl 3,3′-thiodipropionate; Yl) phosphite, tris (2,4-di-tert- butylphenyl) phosphite, phosphorus-based stabilizers such as distearyl pentaerythritol phosphite. These may be used alone or in combination of two or more.
 上記流動性組成物に用いることができる無機充填剤としては、タルク、炭酸カルシウム、シリカ、ガラス繊維、マイカ、カオリン、酸化チタン、モンモリロナイト、アルミナが挙げられる。これらは1種を単独で用いても、2種以上を併用してもよい。 Examples of the inorganic filler that can be used for the fluid composition include talc, calcium carbonate, silica, glass fiber, mica, kaolin, titanium oxide, montmorillonite, and alumina. These may be used alone or in combination of two or more.
 流動性組成物中のブロック共重合体(Z)の濃度は、分子量、組成、イオン交換基容量によって適宜選択することができるが、生産性の観点から、5~20質量%であることが好ましい。 The concentration of the block copolymer (Z) in the fluid composition can be appropriately selected depending on the molecular weight, composition, and ion exchange group capacity, but is preferably 5 to 20% by mass from the viewpoint of productivity. .
 上記流動性組成物は、通常、ポリエチレンテレフタレート(PET)、ガラス等からなる平滑な基板上に塗工する。塗工方法としては、コーターやアプリケーター等を用いて塗工する方法が挙げられる。 The fluid composition is usually applied on a smooth substrate made of polyethylene terephthalate (PET), glass or the like. As a coating method, the method of coating using a coater, an applicator, etc. is mentioned.
 また流動性組成物を多孔質の基板(多孔質基板)上に例えばディップニップ法、コーターやアプリケーター等を用いる方法等で塗工してもよい。この場合、通常、多孔質基板に流動性組成物の少なくとも一部が含浸する。流動性組成物の少なくとも一部が含浸した多孔質基板は、架橋後に、高分子電解質膜の一部を構成することで補強材として機能する。多孔質基板としては、織布、不織布等の繊維状基材や、微細な貫通孔を有するフィルム状基材等を用いることができる。フィルム状基材としては燃料電池用細孔フィリング用膜等が挙げられる。強度の観点から多孔質基板は繊維状基材が好ましく、不織布がより好ましい。該繊維状基材を構成する繊維としては、アラミド繊維、ガラス繊維、セルロース繊維、ナイロン繊維、ビニロン繊維、ポリエステル繊維、ポリオレフィン繊維、レーヨン繊維が挙げられ、強度上の観点から全芳香族系のポリエステル繊維やアラミド繊維がより好ましく、全芳香族系の液晶ポリエステル繊維がさらに好ましい。 Further, the fluid composition may be applied onto a porous substrate (porous substrate) by, for example, a dip nip method, a method using a coater, an applicator, or the like. In this case, the porous substrate is usually impregnated with at least a part of the fluid composition. The porous substrate impregnated with at least a part of the fluid composition functions as a reinforcing material by constituting a part of the polymer electrolyte membrane after crosslinking. As the porous substrate, a fibrous base material such as a woven fabric or a non-woven fabric, a film-like base material having fine through holes, or the like can be used. Examples of the film-like substrate include a fuel cell pore filling membrane. From the viewpoint of strength, the porous substrate is preferably a fibrous base material, more preferably a non-woven fabric. Examples of the fibers constituting the fibrous base material include aramid fibers, glass fibers, cellulose fibers, nylon fibers, vinylon fibers, polyester fibers, polyolefin fibers, and rayon fibers, and wholly aromatic polyesters from the viewpoint of strength. Fibers and aramid fibers are more preferable, and wholly aromatic liquid crystal polyester fibers are more preferable.
 上記流動性組成物を上記のようにして基板上に塗工した後、溶媒を除去することで膜状に成形できる。溶媒を除去する温度は、ブロック共重合体(Z)が分解しない範囲で任意に選択でき、複数の温度を任意に組み合わせてもよい。溶媒の除去は、通風条件下または真空条件下等で行うことができ、これらを任意に組み合わせてもよい。具体的には、熱風乾燥機中にて60~120℃で4分間以上乾燥させて溶媒を除去する方法;熱風乾燥機中にて120~140℃で2~4分間乾燥させて溶媒を除去する方法;25℃で1~3時間、予備乾燥させた後、熱風乾燥機中にて80~120℃で5~10分間かけて乾燥する方法;25℃で1~3時間、予備乾燥させた後、25~40℃の雰囲気下、減圧条件下で1~12時間乾燥させる方法等が挙げられる。
 良好な強靭性を有する高分子電解質膜を調製しやすい観点から、溶媒の除去は、熱風乾燥機中にて60~120℃で4分間以上かけて乾燥させる方法;25℃で1~3時間、予備乾燥させた後、熱風乾燥機中にて80~120℃程度で5~10分間かけて乾燥させる方法;25℃で1~3時間、予備乾燥させた後、25~40℃の雰囲気下、1.3kPa以下の減圧条件下で1~12時間乾燥させる方法等が好適に用いられる。
After the fluid composition is applied onto the substrate as described above, it can be formed into a film by removing the solvent. The temperature at which the solvent is removed can be arbitrarily selected as long as the block copolymer (Z) is not decomposed, and a plurality of temperatures may be arbitrarily combined. The removal of the solvent can be performed under a ventilation condition or a vacuum condition, and these may be combined arbitrarily. Specifically, the solvent is removed by drying at 60 to 120 ° C. for 4 minutes or longer in a hot air dryer; the solvent is removed by drying at 120 to 140 ° C. for 2 to 4 minutes in a hot air dryer. Method: Pre-drying at 25 ° C. for 1 to 3 hours, followed by drying in a hot air dryer at 80 to 120 ° C. for 5 to 10 minutes; After pre-drying at 25 ° C. for 1 to 3 hours And a method of drying under a reduced pressure condition for 1 to 12 hours in an atmosphere of 25 to 40 ° C.
From the viewpoint of easy preparation of a polymer electrolyte membrane having good toughness, the solvent is removed by drying in a hot air dryer at 60 to 120 ° C. over 4 minutes; at 25 ° C. for 1 to 3 hours, A method of pre-drying and then drying in a hot air dryer at about 80-120 ° C. for 5-10 minutes; after pre-drying at 25 ° C. for 1-3 hours, under an atmosphere of 25-40 ° C. A method of drying for 1 to 12 hours under a reduced pressure condition of 1.3 kPa or less is preferably used.
 高分子電解質膜を複層膜とする場合、例えば流動性組成物を基板に塗工した後、溶媒を除去して1層目を形成したのち、さらに該1層目上に別の高分子電解質を含む流動性組成物を塗工し、溶媒を除去することで2層目を形成する。同様に3層目以降を形成してもよい。また、それぞれ作製した高分子電解質膜を貼りあわせて複層膜としてもよい。 When the polymer electrolyte membrane is a multilayer membrane, for example, after applying the fluid composition to the substrate, after removing the solvent to form the first layer, another polymer electrolyte is further formed on the first layer. The second layer is formed by applying a fluid composition containing, and removing the solvent. Similarly, the third and subsequent layers may be formed. Alternatively, the produced polymer electrolyte membranes may be bonded to form a multilayer film.
 上記流動性組成物を基板上に塗工し、溶媒を除去して得られる膜状の成形体を架橋処理することで、本発明の高分子電解質膜を形成できる。架橋処理方法としては、加熱、電子線などの活性エネルギー線照射などを好適に採用できる。また、上記加熱または活性エネルギー線照射による架橋処理は、溶媒の除去と同時に行っても、溶媒の除去後に行ってもよい。また、加熱または活性エネルギー線照射により架橋処理しながら溶媒除去を行った後に、さらに加熱または活性エネルギー線照射を行ってもよい。
 加熱により架橋を行う場合、加熱温度としては50~250℃が好ましく、60~200℃がより好ましく、70~180℃がさらに好ましく、100~150℃が特に好ましい。また加熱時間としては0.1~400時間が好ましく、0.2~200時間がより好ましく、0.4~100時間がさらに好ましく、0.5~30時間が特に好ましい。加熱は大気下、窒素雰囲気下等で行うことができ、窒素雰囲気下で行うことが好ましい。
 活性エネルギー照射として、例えば電子線で架橋を行う場合、加速電圧は50~250kVの範囲、線量は100~800kGyの範囲とすることが好ましい。
 なお、得られた高分子電解質膜が架橋されていることは、後述の耐熱水性の向上、ゲル分率の上昇、架橋密度の上昇等により確認することができる。
The polymer electrolyte membrane of the present invention can be formed by coating the fluid composition on a substrate and subjecting the membrane-like molded product obtained by removing the solvent to a crosslinking treatment. As the crosslinking treatment method, heating, irradiation with active energy rays such as an electron beam, and the like can be suitably employed. The crosslinking treatment by heating or active energy ray irradiation may be performed simultaneously with the removal of the solvent or after the removal of the solvent. Further, after removing the solvent while performing a crosslinking treatment by heating or active energy ray irradiation, heating or active energy ray irradiation may be further performed.
When crosslinking is performed by heating, the heating temperature is preferably 50 to 250 ° C, more preferably 60 to 200 ° C, further preferably 70 to 180 ° C, and particularly preferably 100 to 150 ° C. The heating time is preferably 0.1 to 400 hours, more preferably 0.2 to 200 hours, further preferably 0.4 to 100 hours, and particularly preferably 0.5 to 30 hours. Heating can be performed in the air, in a nitrogen atmosphere, or the like, and is preferably performed in a nitrogen atmosphere.
As the active energy irradiation, for example, when crosslinking is performed with an electron beam, the acceleration voltage is preferably in the range of 50 to 250 kV, and the dose is preferably in the range of 100 to 800 kGy.
In addition, it can confirm that the obtained polymer electrolyte membrane is bridge | crosslinked by the improvement of below-mentioned hot water resistance, the raise of a gel fraction, the raise of a crosslinking density, etc.
 高分子電解質膜のゲル分率は後述の実施例に記載の方法で測定でき、1%以上が好ましく、20%以上がより好ましく、50%以上がさらに好ましく、80%以上が特に好ましい。ゲル分率が80%以上であれば、耐熱水性が特に良好となる傾向にある。 The gel fraction of the polymer electrolyte membrane can be measured by the method described in Examples below, and is preferably 1% or more, more preferably 20% or more, further preferably 50% or more, and particularly preferably 80% or more. If the gel fraction is 80% or more, the hot water resistance tends to be particularly good.
 高分子電解質膜の架橋密度は後述の実施例に記載の方法で算出でき、0.1×10-5~100×10-5mol/mlの範囲が好ましく、0.5×10-5~50×10-5mol/mlの範囲がより好ましく、1×10-5~40×10-5mol/mlの範囲がさらに好ましく、2×10-5~30×10-5mol/mlの範囲が特に好ましく、3×10-5~15×10-5mol/mlの範囲が最も好ましい。架橋密度が3×10-5mol/ml以上であれば、耐熱水性が良好となる傾向にあり、15×10-5mol/ml以下であれば、架橋後の引張破断伸び性能が向上する傾向となり、起動停止耐久性も良好となる傾向にある。 The crosslink density of the polymer electrolyte membrane can be calculated by the method described in Examples below, and is preferably in the range of 0.1 × 10 −5 to 100 × 10 −5 mol / ml, and 0.5 × 10 −5 to 50 The range of × 10 −5 mol / ml is more preferable, the range of 1 × 10 −5 to 40 × 10 −5 mol / ml is more preferable, and the range of 2 × 10 −5 to 30 × 10 −5 mol / ml is more preferable. Particularly preferred is a range of 3 × 10 −5 to 15 × 10 −5 mol / ml. If the crosslinking density is 3 × 10 −5 mol / ml or more, the hot water resistance tends to be good, and if it is 15 × 10 −5 mol / ml or less, the tensile elongation at break after crosslinking tends to improve. Thus, the start / stop durability tends to be good.
 ポリエチレンテレフタレート(PET)、ガラス等からなる平滑な基板上に高分子電解質膜を形成した場合は、通常高分子電解質膜を基板から剥離する。なお、多孔質基板上に高分子電解質膜を形成し、該多孔質基板を高分子電解質膜の一部とする場合は剥離は不要である。 When the polymer electrolyte membrane is formed on a smooth substrate made of polyethylene terephthalate (PET), glass or the like, the polymer electrolyte membrane is usually peeled from the substrate. In the case where a polymer electrolyte membrane is formed on a porous substrate and the porous substrate is used as a part of the polymer electrolyte membrane, peeling is not necessary.
 以下、実施例及び比較例を挙げて、本発明をさらに具体的に説明するが、本発明はこれらの実施例に制限されない。 Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples, but the present invention is not limited to these examples.
(ブロック共重合体(Z)のイオン交換容量の測定)
 ガラス容器中にブロック共重合体(Z)を秤量(秤量値a(g))し、過剰量の塩化ナトリウム飽和水溶液((300~500)×a(ml))を添加して12時間攪拌した。フェノールフタレインを指示薬として、水中に発生した塩化水素を0.01規定のNaOH標準水溶液(力価f)にて滴定(滴定量b(ml))した。
 イオン交換容量は次式により求めた。
イオン交換容量(meq/g)=(0.01×b×f)/a
(Measurement of ion exchange capacity of block copolymer (Z))
The block copolymer (Z) was weighed in a glass container (weighing value a (g)), an excess amount of a saturated aqueous sodium chloride solution ((300 to 500) × a (ml)) was added, and the mixture was stirred for 12 hours. . Using phenolphthalein as an indicator, hydrogen chloride generated in water was titrated (a titration b (ml)) with a 0.01 N NaOH standard aqueous solution (titer f).
The ion exchange capacity was determined by the following formula.
Ion exchange capacity (meq / g) = (0.01 × b × f) / a
(ブロック共重合体(Z)のMnの測定)
 MnはGPC法により下記の条件で測定し、標準ポリスチレン換算で算出した。
  装置:東ソー(株)製、商品名:HLC-8220GPC
  溶離液:テトラヒドロフラン
  カラム:東ソー(株)製、商品名:TSK-GEL(TSKgel G3000HxL(76mml.D.×30cm)を1本、TSKgel Super Multipore HZ-M(46mml.D.×15cm)を2本の計3本を直列で接続)
  カラム温度:40℃
  検出器:RI
  送液量:0.35ml/分
(Measurement of Mn of block copolymer (Z 0 ))
Mn was measured by the GPC method under the following conditions and calculated in terms of standard polystyrene.
Device: manufactured by Tosoh Corporation, trade name: HLC-8220GPC
Eluent: Tetrahydrofuran Column: manufactured by Tosoh Corporation, trade name: 1 TSK-GEL (TSKgel G3000HxL (76 ml.D. × 30 cm), 2 TSKgel Supermultipore HZ-M (46 ml.D. × 15 cm) 3 in total)
Column temperature: 40 ° C
Detector: RI
Feed rate: 0.35 ml / min
H-NMRの測定条件)
 後述する製造例1~3で得られたブロック共重合体(Z)における各構造単位の含有率、並びに重合体ブロック(B)における1,4-結合率及び水添率は下記の条件でH-NMRを測定した結果から算出した。
  溶媒:重クロロホルム
  測定温度:室温
  積算回数:32回
 また、上記製造例1~3で得られたブロック共重合体(Z)のスルホン化率は下記の条件でH-NMRを測定した結果から算出した。
  溶媒:重テトラヒドロフラン/重メタノール(質量比80/20)混合溶媒
  測定温度:50℃
  積算回数:32回
 また、製造例4で得られたスルホン化ポリエーテルエーテルケトンのスルホン化率は下記の条件でH-NMRを測定した結果から算出した。
  溶媒:重ジメチルスルホキシド
  測定温度:30℃
  積算回数:32回
(Measurement conditions for 1 H-NMR)
The content of each structural unit in the block copolymers (Z 0 ) obtained in Production Examples 1 to 3 described later, and the 1,4-bonding rate and hydrogenation rate in the polymer block (B) are as follows. It was calculated from the result of measuring 1 H-NMR.
Solvent: Deuterated chloroform Measurement temperature: Room temperature Accumulation count: 32 times The sulfonation rate of the block copolymers (Z) obtained in the above production examples 1 to 3 is based on the result of 1 H-NMR measurement under the following conditions. Calculated.
Solvent: deuterated tetrahydrofuran / deuterated methanol (mass ratio 80/20) mixed solvent Measurement temperature: 50 ° C
Accumulation count: 32 times The sulfonation rate of the sulfonated polyetheretherketone obtained in Production Example 4 was calculated from the result of 1 H-NMR measurement under the following conditions.
Solvent: heavy dimethyl sulfoxide Measurement temperature: 30 ° C
Integration count: 32 times
(貯蔵弾性率の測定)
 製造例1および2で得られたブロック共重合体(Z-1)およびブロック共重合体(Z-2)の11.5質量%のトルエン/イソブタノール(質量比65/35)溶液をそれぞれ調製し、離型処理済みPETフィルム(東洋紡績(株)製、商品名:K1504)上に約300μmの厚さで塗工し、熱風乾燥機にて100℃で4分間乾燥させることで、厚さ20μmの成形体を得た。
 得られた成形体を、広域動的粘弾性測定装置(レオロジ社製「DVE-V4FTレオスペクトラー」)を使用して、引張りモード(周波数:11Hz)で、昇温速度を3℃/分、-80℃から250℃まで昇温して、貯蔵弾性率(E’)、損失弾性率(E’’)及び損失正接(tanδ)を測定した。結晶化オレフィン重合体に由来する、80~100℃における貯蔵弾性率の変化がないことに基づき、重合体ブロック(B)の非晶性を判断した。この結果、ブロック共重合体(Z-1)およびブロック共重合体(Z-2)について、重合体ブロック(B)は非晶性であった。
(Measurement of storage modulus)
Prepare 11.5 mass% toluene / isobutanol (mass ratio 65/35) solutions of the block copolymer (Z-1) and the block copolymer (Z-2) obtained in Production Examples 1 and 2, respectively. Then, it is coated on the release-treated PET film (trade name: K1504, manufactured by Toyobo Co., Ltd.) with a thickness of about 300 μm, and dried at 100 ° C. for 4 minutes with a hot air dryer. A 20 μm shaped body was obtained.
Using the wide-range dynamic viscoelasticity measuring device (“DVE-V4FT Rheospectr” manufactured by Rheology Co., Ltd.), the resulting molded body was heated at a rate of temperature increase of 3 ° C./min in the tension mode (frequency: 11 Hz). The temperature was raised from −80 ° C. to 250 ° C., and the storage elastic modulus (E ′), loss elastic modulus (E ″), and loss tangent (tan δ) were measured. Based on the fact that there was no change in storage modulus at 80 to 100 ° C. derived from the crystallized olefin polymer, the amorphous nature of the polymer block (B) was judged. As a result, regarding the block copolymer (Z-1) and the block copolymer (Z-2), the polymer block (B) was amorphous.
[製造例1]
(ブロック共重合体(Z-1)の製造)
 乾燥後、窒素置換した内容積1.4Lのオートクレーブに、脱水したシクロヘキサン461ml、sec-ブチルリチウム(1.0mol/Lシクロヘキサン溶液)2.60mlを添加した後、60℃にて攪拌しつつ、スチレン19.8ml、ブタジエン135mlおよびスチレン19.8mlを順次添加して重合し、ポリスチレン-b-ポリブタジエン-b-ポリスチレンを合成した。得られたブロック共重合体のMnは76,000、ポリブタジエンブロックの1,4-結合量は59.9%、スチレンに由来する構造単位の含有率は30.0質量%であった。
[Production Example 1]
(Production of block copolymer (Z 0 -1))
After drying, 461 ml of dehydrated cyclohexane and 2.60 ml of sec-butyllithium (1.0 mol / L cyclohexane solution) were added to an autoclave with an internal volume of 1.4 L purged with nitrogen, and then stirred at 60 ° C. 19.8 ml, butadiene 135 ml and styrene 19.8 ml were sequentially added and polymerized to synthesize polystyrene-b-polybutadiene-b-polystyrene. The obtained block copolymer had an Mn of 76,000, a 1,4-bond content of the polybutadiene block of 59.9%, and a content of structural units derived from styrene of 30.0% by mass.
 上記ブロック共重合体のシクロヘキサン溶液を調製して、窒素置換した耐圧容器に入れ、Ni/Al系のチーグラー系触媒を用いて、水素圧下0.5~1MPa、70℃で15時間水添反応を行い、ポリスチレン重合体ブロック(重合体ブロック(A))および水添ポリブタジエン重合体ブロック(重合体ブロック(B))からなるブロック共重合体(Z)[ポリスチレン-b-水添ポリブタジエン-b-ポリスチレン(以下「ブロック共重合体(Z-1)」と称する)]を得た。
 得られたブロック共重合体(Z-1)の水添ポリブタジエンブロックの水添率は99%以上であった。
Prepare a cyclohexane solution of the above block copolymer, put it in a pressure vessel that is purged with nitrogen, and use a Ni / Al Ziegler catalyst for hydrogenation reaction at 0.5 to 1 MPa under hydrogen pressure at 70 ° C. for 15 hours. A block copolymer (Z 0 ) [polystyrene-b-hydrogenated polybutadiene-b comprising a polystyrene polymer block (polymer block (A 0 )) and a hydrogenated polybutadiene polymer block (polymer block (B)). -Polystyrene (hereinafter referred to as "block copolymer (Z 0 -1)") was obtained.
The hydrogenation rate of the hydrogenated polybutadiene block of the obtained block copolymer (Z 0 -1) was 99% or more.
(ブロック共重合体(Z-1)の製造)
 塩化メチレン389ml中、0℃にて無水酢酸195mlと硫酸87.0mlとを混合し、スルホン化剤を調製した。一方、ブロック共重合体(Z-1)100gを、攪拌機を備えた容量5Lのガラス製反応容器に入れ、系内を真空とし窒素導入する操作を3回繰り返した後、窒素を導入した状態で塩化メチレン1000mlを加え、常温にて4時間攪拌して溶解させた後、前記スルホン化剤610mlを5分間かけて滴下した。滴下終了後、常温にて48時間攪拌後、攪拌下で蒸留水720mlを滴下して、反応を停止するとともに固形分を凝固析出させた。
 塩化メチレンを常圧留去にて除去した後、濾過し、得られた固形分をビーカーに移し、蒸留水1Lを添加して攪拌下で洗浄を行った後、濾過により固形分を回収した。かかる洗浄および濾過を洗浄水のpHに変化がなくなるまで繰り返した後、回収した固形分を1.3kPa、30℃にて24時間乾燥して、本発明の高分子電解質膜に用いるブロック共重合体(Z)を得た(以下「ブロック共重合体(Z-1)」と称する)。得られたブロック共重合体(Z-1)のスチレンに由来する構造単位に対するスルホン酸基の割合(スルホン化率)は100mol%、イオン交換容量は2.3meq/gであった。
(Production of block copolymer (Z-1))
In 389 ml of methylene chloride, 195 ml of acetic anhydride and 87.0 ml of sulfuric acid were mixed at 0 ° C. to prepare a sulfonating agent. On the other hand, 100 g of block copolymer (Z 0 -1) was put into a 5 L glass reaction vessel equipped with a stirrer, and the operation of evacuating the system and introducing nitrogen was repeated three times, and then nitrogen was introduced. After adding 1000 ml of methylene chloride and stirring for 4 hours at room temperature to dissolve, 610 ml of the sulfonating agent was added dropwise over 5 minutes. After completion of the dropping, the mixture was stirred at room temperature for 48 hours, and then 720 ml of distilled water was added dropwise with stirring to stop the reaction and solidify and precipitate the solid content.
Methylene chloride was removed by distillation at normal pressure, followed by filtration. The obtained solid content was transferred to a beaker, 1 L of distilled water was added and washing was performed with stirring, and then the solid content was collected by filtration. After repeating such washing and filtration until there is no change in the pH of the washing water, the recovered solid content is dried at 1.3 kPa, 30 ° C. for 24 hours, and used for the polymer electrolyte membrane of the present invention. (Z) was obtained (hereinafter referred to as “block copolymer (Z-1)”). In the obtained block copolymer (Z-1), the ratio of the sulfonic acid group to the structural unit derived from styrene (sulfonation rate) was 100 mol%, and the ion exchange capacity was 2.3 meq / g.
[製造例2]
(ブロック共重合体(Z-2)の製造)
 乾燥後、窒素置換した内容積2Lのオートクレーブに、脱水したシクロヘキサン737mlおよびsec-ブチルリチウム(0.70mol/Lシクロヘキサン溶液)2.06mlを添加した後、60℃にて撹拌しつつ、スチレン28.6ml、4-tert-ブチルスチレン14.4ml、スチレン28.6ml、4-tert-ブチルスチレン14.4ml、イソプレン114.9ml、4-tert-ブチルスチレン14.4ml、スチレン28.6mlおよび4-tert-ブチルスチレン14.4mlを順次添加して重合し、ポリスチレン-b-ポリ(4-tert-ブチルスチレン)-b-ポリスチレン-b-ポリ(4-tert-ブチルスチレン)-b-ポリイソプレン-b-ポリ(4-tert-ブチルスチレン)-b-ポリスチレン-b-ポリ(4-tert-ブチルスチレン)を得た。得られたブロック共重合体のMnは130,000、ポリイソプレンブロックの1,4-結合量は93.7%、スチレンに由来する構造単位の含有率は35.6質量%、4-tert-ブチルスチレンに由来する構造単位の含有率は24.8質量%であった。
[Production Example 2]
(Production of block copolymer (Z 0 -2))
After drying, 737 ml of dehydrated cyclohexane and 2.06 ml of dehydrated cyclohexane (0.70 mol / L cyclohexane solution) were added to an autoclave with an internal volume of 2 L, which was purged with nitrogen, and then stirred at 60 ° C. with 28.styrene. 6 ml, 4-tert-butylstyrene 14.4 ml, styrene 28.6 ml, 4-tert-butylstyrene 14.4 ml, isoprene 114.9 ml, 4-tert-butylstyrene 14.4 ml, styrene 28.6 ml and 4-tert -14.4 ml of butyl styrene are sequentially added and polymerized to obtain polystyrene-b-poly (4-tert-butylstyrene) -b-polystyrene-b-poly (4-tert-butylstyrene) -b-polyisoprene-b -Poly (4-tert-butylstyrene) -b-Po To obtain a styrene -b- poly (4-tert-butylstyrene). The resulting block copolymer had an Mn of 130,000, a 1,4-bond content of the polyisoprene block of 93.7%, a content of structural units derived from styrene of 35.6% by mass, 4-tert- The content rate of the structural unit derived from butylstyrene was 24.8 mass%.
 上記ブロック共重合体のシクロヘキサン溶液を調製して、窒素置換した耐圧容器に入れ、Ni/Al系のチーグラー系触媒を用いて、水素圧下0.5~1MPa、70℃で18時間水添反応を行い、ポリスチレン重合体ブロック(重合体ブロック(A))、水添ポリイソプレン重合体ブロック(重合体ブロック(B))およびポリ(4-tert-ブチルスチレン)重合体ブロック(重合体ブロック(C))からなるブロック共重合体(Z)[ポリスチレン-b-ポリ(4-tert-ブチルスチレン)-b-ポリスチレン-b-ポリ(4-tert-ブチルスチレン)-b-水添ポリイソプレン-b-ポリ(4-tert-ブチルスチレン)-b-ポリスチレン-b-ポリ(4-tert-ブチルスチレン)(以下「ブロック共重合体(Z-2)」と称する)]を得た。
 得られたブロック共重合体(Z-2)の水添ポリイソプレンブロックの水添率は99%以上であった。
A cyclohexane solution of the above block copolymer is prepared and placed in a pressure vessel that is purged with nitrogen. Using a Ni / Al Ziegler catalyst, a hydrogenation reaction is performed at 0.5 to 1 MPa at 70 ° C. under hydrogen pressure for 18 hours. Polystyrene polymer block (polymer block (A 0 )), hydrogenated polyisoprene polymer block (polymer block (B)) and poly (4-tert-butylstyrene) polymer block (polymer block (C )) Block copolymer (Z 0 ) [polystyrene-b-poly (4-tert-butylstyrene) -b-polystyrene-b-poly (4-tert-butylstyrene) -b-hydrogenated polyisoprene- b-poly (4-tert-butylstyrene) -b-polystyrene-b-poly (4-tert-butylstyrene) (hereinafter “block copolymerization”) (Referred to as the body (Z 0 -2) ”).
The hydrogenation rate of the hydrogenated polyisoprene block of the obtained block copolymer (Z 0 -2) was 99% or more.
(ブロック共重合体(Z-2)の製造)
 乾燥後、窒素置換した内容積1Lの三口フラスコに、塩化メチレン270mlおよび無水酢酸149mlを添加し、0℃にて撹拌しつつ濃硫酸を67ml滴下し、さらに0℃にて60分間攪拌してスルホン化剤を調製した。一方、72gのブロック共重合体(Z-2)を、攪拌機を備えた容量5Lのガラス製反応容器に入れ、系内を窒素置換した後、塩化メチレン1600mlを加えて常温にて4時間攪拌して溶解させた。この溶液に、先に調製したスルホン化剤486mlを、5分かけて滴下した。常温にて48時間攪拌後、蒸留水100mlを加えて反応を停止し、攪拌しながらさらに蒸留水1000mlを徐々に滴下して、固形分を析出させた。この混合液から塩化メチレンを常圧留去にて除去した後、濾過して、回収した固形分をビーカーに移し、蒸留水を1L添加して、攪拌下で洗浄を行った後、濾過により固形分を再び回収した。この洗浄およびろ過を、洗浄水のpHに変化がなくなるまで繰り返し、得られた固形分を1.3kPa、30℃にて24時間乾燥して、本発明の高分子電解質膜に用いるブロック共重合体(Z)を得た(以下「ブロック共重合体(Z-2)」と称する)。得られたブロック共重合体(Z-2)のスチレンに由来する構造単位に対するスルホン酸基の割合(スルホン化率)は100mol%、イオン交換容量は2.6meq/gであった。
(Production of block copolymer (Z-2))
After drying, 270 ml of methylene chloride and 149 ml of acetic anhydride were added to a three-necked flask with an internal volume of 1 L purged with nitrogen, 67 ml of concentrated sulfuric acid was added dropwise with stirring at 0 ° C., and the mixture was further stirred at 0 ° C. for 60 minutes. An agent was prepared. On the other hand, 72 g of the block copolymer (Z 0 -2) was placed in a 5 L glass reaction vessel equipped with a stirrer, the inside of the system was purged with nitrogen, 1600 ml of methylene chloride was added, and the mixture was stirred at room temperature for 4 hours. And dissolved. To this solution, 486 ml of the previously prepared sulfonating agent was added dropwise over 5 minutes. After stirring at room temperature for 48 hours, 100 ml of distilled water was added to stop the reaction, and 1000 ml of distilled water was gradually added dropwise while stirring to precipitate a solid. After removing methylene chloride from this mixed solution by distilling off under normal pressure, the mixture was filtered, and the collected solid was transferred to a beaker, 1 L of distilled water was added, washed with stirring, and then solidified by filtration. Minutes were collected again. This washing and filtration is repeated until there is no change in the pH of the washing water, and the obtained solid content is dried at 1.3 kPa and 30 ° C. for 24 hours to obtain a block copolymer used for the polymer electrolyte membrane of the present invention. (Z) was obtained (hereinafter referred to as “block copolymer (Z-2)”). In the obtained block copolymer (Z-2), the ratio of the sulfonic acid group to the structural unit derived from styrene (sulfonation rate) was 100 mol%, and the ion exchange capacity was 2.6 meq / g.
[製造例3]
(スルホン化ポリエーテルエーテルケトンの製造)
 ポリエーテルエーテルケトン樹脂(VICTREX社製PEEK、450P)30gを、撹拌機付きのガラス製反応容器にて窒素置換した後、濃硫酸550gを加え、室温にて攪拌して溶解させた。室温にて110時間撹拌後、氷冷した水中に反応物を注ぎ、重合体を凝固析出させた。固形分をろ過し、得られた固形分をビーカーに移して蒸留水を2L添加して、撹拌下で洗浄を行った後、ろ過回収を行った。この洗浄およびろ過の操作を洗浄水のpHに変化がなくなるまで繰り返し、最後にろ集した重合体を真空乾燥してスルホン化ポリエーテルエーテルケトン(以下「SPEEK」と称する)を得た。得られたSPEEKの単量体単位でのスルホン化率はH-NMR分析から69%、該スルホン化ポリエーテルエーテルケトンのイオン交換容量は2.0meq/gであった。
[Production Example 3]
(Production of sulfonated polyether ether ketone)
After 30 g of polyetheretherketone resin (PEEK, 450P, manufactured by VICTREX) was replaced with nitrogen in a glass reaction vessel equipped with a stirrer, 550 g of concentrated sulfuric acid was added, and the mixture was stirred and dissolved at room temperature. After stirring at room temperature for 110 hours, the reaction product was poured into ice-cooled water to coagulate and precipitate the polymer. The solid content was filtered, the obtained solid content was transferred to a beaker, 2 L of distilled water was added, and the mixture was washed with stirring, and then recovered by filtration. This washing and filtration operation was repeated until there was no change in the pH of the washing water, and the finally collected polymer was vacuum-dried to obtain a sulfonated polyether ether ketone (hereinafter referred to as “SPEEK”). The sulfonation rate of the obtained SPEEK in monomer units was 69% from 1 H-NMR analysis, and the ion exchange capacity of the sulfonated polyetheretherketone was 2.0 meq / g.
[実施例1]
(高分子電解質膜の作製)
 製造例1で得られたブロック共重合体(Z-1)の11.7質量%のトルエン/イソブタノール(質量比65/35)溶液を調製した後、化合物(X)としてバニリルアルコール(東京化成工業(株)製)を、ブロック共重合体(Z-1)/バニリルアルコールの質量比が100/5になるように添加し、流動性組成物を調製した。次いで、該流動性組成物を離型処理済みPETフィルム(東洋紡績(株)製、商品名:K1504)上に約300μmの厚さで塗工し、熱風乾燥機にて100℃で4分間乾燥させることで、厚さ20μmの成形体を得た。得られた成形体を140℃の恒温槽で3時間加熱処理をすることで架橋し、本発明の高分子電解質膜を作製した。
[Example 1]
(Production of polymer electrolyte membrane)
After preparing a 11.7% by mass toluene / isobutanol (mass ratio 65/35) solution of the block copolymer (Z-1) obtained in Production Example 1, vanillyl alcohol (Tokyo) Kasei Kogyo Co., Ltd.) was added so that the mass ratio of block copolymer (Z-1) / vanillyl alcohol was 100/5 to prepare a fluid composition. Next, the flowable composition was applied to a release-treated PET film (trade name: K1504, manufactured by Toyobo Co., Ltd.) with a thickness of about 300 μm, and dried at 100 ° C. for 4 minutes in a hot air dryer. As a result, a molded body having a thickness of 20 μm was obtained. The obtained molded body was crosslinked by heat treatment in a constant temperature bath at 140 ° C. for 3 hours to produce a polymer electrolyte membrane of the present invention.
[実施例2]
(高分子電解質膜の作製)
 製造例2で得られたブロック共重合体(Z-2)の11.5質量%のトルエン/イソブタノール(質量比77/23)溶液を調製した後、バニリルアルコール(東京化成工業(株)製)を、ブロック共重合体(Z-2)/バニリルアルコールの質量比が100/5になるように添加し、流動性組成物を調製した。次いで、該流動性組成物を離型処理済みPETフィルム(三菱樹脂(株)製、商品名:MRV)上に約300μmの厚さで塗工し、熱風乾燥機にて100℃で4分間乾燥させることで、厚さ20μmの成形体を得た。得られた成形体を140℃の恒温槽で3時間加熱処理をすることで架橋し、本発明の高分子電解質膜を作製した。
[Example 2]
(Production of polymer electrolyte membrane)
After preparing a 11.5 mass% toluene / isobutanol (mass ratio 77/23) solution of the block copolymer (Z-2) obtained in Production Example 2, vanillyl alcohol (Tokyo Chemical Industry Co., Ltd.) Was added so that the mass ratio of the block copolymer (Z-2) / vanillyl alcohol was 100/5 to prepare a fluid composition. Next, the flowable composition was coated on a release-treated PET film (trade name: MRV, manufactured by Mitsubishi Resin Co., Ltd.) with a thickness of about 300 μm, and dried at 100 ° C. for 4 minutes with a hot air dryer. As a result, a molded body having a thickness of 20 μm was obtained. The obtained molded body was crosslinked by heat treatment in a constant temperature bath at 140 ° C. for 3 hours to produce a polymer electrolyte membrane of the present invention.
[実施例3]
(高分子電解質膜の作製)
 バニリルアルコールの代わりに、2-(4-ヒドロキシフェニル)エタノール(東京化成工業(株)製)を、ブロック共重合体(Z-2)/2-(4-ヒドロキシフェニル)エタノールの質量比が100/5になるように添加した以外は、実施例2と同様にして厚さ20μmの成形体を得た。得られた成形体を、140℃の恒温槽で1時間加熱処理をすることで架橋し、本発明の高分子電解質膜を作製した。
[Example 3]
(Production of polymer electrolyte membrane)
Instead of vanillyl alcohol, 2- (4-hydroxyphenyl) ethanol (manufactured by Tokyo Chemical Industry Co., Ltd.) is used, and the mass ratio of block copolymer (Z-2) / 2- (4-hydroxyphenyl) ethanol is A molded body having a thickness of 20 μm was obtained in the same manner as in Example 2 except that it was added so as to be 100/5. The obtained molded body was cross-linked by heat treatment for 1 hour in a 140 ° C. constant temperature bath to produce a polymer electrolyte membrane of the present invention.
[実施例4]
(高分子電解質膜の作製)
 製造例1で得られたブロック共重合体(Z-1)の11.7質量%のトルエン/イソブタノール(質量比65/35)溶液を調製した後、化合物(X)としてバニリルアルコール(東京化成工業(株)製)を、ブロック共重合体(Z-1)/バニリルアルコールの質量比が100/5になるように添加し、流動性組成物を調製した。
 次いで、該流動性組成物を離型処理済みPETフィルム(東洋紡績(株)製、商品名:K1504)上に約150μmの厚さで塗工した後、、不織布(クラレクラフレックス(株)製、ベクルス(登録商標)、平均繊維径7μm、坪量3g/cm、空孔率76.2%、厚さ9μm)を上から皺が入らないように塗工面と平行に重ねて、不織布に該流動性組成物を含浸させた後、熱風乾燥機にて100℃で4分間乾燥させた。この上にさらに上記流動性組成物を約125μmの厚さで塗工し、熱風乾燥機にて100℃で4分間乾燥させることで、ブロック共重合体(Z-1)および化合物(X)を含有する組成物の成形体からなる高分子電解質と、不織布からなる厚さ20μmの接合体を得た。得られた接合体を140℃窒素気流下で3時間加熱処理して上記成形体を架橋し、本発明の高分子電解質膜を作製した。
[Example 4]
(Production of polymer electrolyte membrane)
After preparing a 11.7% by mass toluene / isobutanol (mass ratio 65/35) solution of the block copolymer (Z-1) obtained in Production Example 1, vanillyl alcohol (Tokyo) Kasei Kogyo Co., Ltd.) was added so that the mass ratio of block copolymer (Z-1) / vanillyl alcohol was 100/5 to prepare a fluid composition.
Next, the flowable composition was coated on a release-treated PET film (product name: K1504, manufactured by Toyobo Co., Ltd.) with a thickness of about 150 μm, and then a non-woven fabric (manufactured by Kuralek Laurex Co., Ltd.). , Vecrus (registered trademark), average fiber diameter of 7 μm, basis weight of 3 g / cm 2 , porosity of 76.2%, thickness of 9 μm) are laminated in parallel with the coated surface so as not to cause wrinkles from above, After impregnating the fluid composition, it was dried with a hot air dryer at 100 ° C. for 4 minutes. The flowable composition was further coated thereon with a thickness of about 125 μm, and dried at 100 ° C. for 4 minutes with a hot air dryer to obtain the block copolymer (Z-1) and the compound (X). A polymer electrolyte composed of a molded body of the contained composition and a 20 μm thick joined body composed of a nonwoven fabric were obtained. The obtained joined body was heat-treated under a nitrogen stream at 140 ° C. for 3 hours to crosslink the molded body, thereby producing a polymer electrolyte membrane of the present invention.
[比較例1]
(高分子電解質膜の作製)
 製造例1で得られたブロック共重合体(Z-1)の16質量%のトルエン/イソブタノール(質量比70/30)溶液を調製した後、架橋剤として1,2-ポリブタジエン(日本曹達(株)製、商品名:PB-1000;Mn1,000、重合度19)の40質量%トルエン溶液を、ブロック共重合体(Z-1)/1,2-ポリブタジエンの質量比が100/5になるように添加し、流動性組成物を調製した。次いで、該流動性組成物を離型処理済みPETフィルム(東洋紡績(株)製、商品名:K1504)上に約350μmの厚さで塗工し、熱風乾燥機にて、100℃で4分間乾燥させることで、厚さ30μmの成形体を得た。得られた成形体をエレクトロカーテン型電子線照射装置(岩崎電気(株)製、商品名:CB250/30/20mA)を用いて、加速電圧150kV、ビーム電流8.6mA、線量300kGyの電子線照射を施すことで架橋し、比較例1の高分子電解質膜を作製した。
[Comparative Example 1]
(Production of polymer electrolyte membrane)
After preparing a 16% by mass toluene / isobutanol (mass ratio 70/30) solution of the block copolymer (Z-1) obtained in Production Example 1, 1,2-polybutadiene (Nippon Soda ( Co., Ltd., trade name: PB-1000; Mn 1,000, degree of polymerization 19) in a 40% by weight toluene solution with a mass ratio of block copolymer (Z-1) / 1,2-polybutadiene of 100/5 Was added to prepare a flowable composition. Next, the fluid composition was coated on a release-treated PET film (trade name: K1504, manufactured by Toyobo Co., Ltd.) at a thickness of about 350 μm, and then heated at 100 ° C. for 4 minutes with a hot air dryer. By drying, a molded body having a thickness of 30 μm was obtained. The obtained molded body was irradiated with an electron beam at an acceleration voltage of 150 kV, a beam current of 8.6 mA, and a dose of 300 kGy using an electro curtain type electron beam irradiation apparatus (trade name: CB250 / 30/20 mA, manufactured by Iwasaki Electric Co., Ltd.). The polymer electrolyte membrane of Comparative Example 1 was produced.
[比較例2]
(高分子電解質膜の作製)
 バニリルアルコールの代わりにα,α’-ジヒドロキシ-1,4-ジイソプロピルベンゼン(東京化成工業(株)製)を、ブロック共重合体(Z-2)/α,α’-ジヒドロキシ-1,4-ジイソプロピルベンゼンの質量比が100/7になるように添加した以外は実施例2と同様にして、厚さ20μmの成形体を得た。得られた成形体を140℃の恒温槽で5時間加熱処理をすることで、比較例2の高分子電解質膜を作製した。
[Comparative Example 2]
(Production of polymer electrolyte membrane)
Instead of vanillyl alcohol, α, α'-dihydroxy-1,4-diisopropylbenzene (manufactured by Tokyo Chemical Industry Co., Ltd.) is used as a block copolymer (Z-2) / α, α'-dihydroxy-1,4. A molded body having a thickness of 20 μm was obtained in the same manner as in Example 2 except that the mass ratio of diisopropylbenzene was 100/7. The obtained molded body was heat-treated in a 140 ° C. constant temperature bath for 5 hours to produce a polymer electrolyte membrane of Comparative Example 2.
[比較例3]
(高分子電解質膜の作製)
 バニリルアルコールの代わりに1,3-ジフェノキシベンゼン(東京化成工業(株)製)を、ブロック共重合体(Z-2)/1,3-ジフェノキシベンゼンの質量比が100/9.3になるように添加した以外は、実施例2と同様にして、厚さ20μmの成形体を得た。得られた成形体を140℃の恒温槽で1時間加熱処理をすることで、比較例3の高分子電解質膜を作製した。
[Comparative Example 3]
(Production of polymer electrolyte membrane)
Instead of vanillyl alcohol, 1,3-diphenoxybenzene (manufactured by Tokyo Chemical Industry Co., Ltd.) was used, and the block copolymer (Z-2) / 1,3-diphenoxybenzene had a mass ratio of 100 / 9.3. A molded body having a thickness of 20 μm was obtained in the same manner as in Example 2 except that the addition was performed. The obtained molded body was heat-treated in a constant temperature bath at 140 ° C. for 1 hour to produce a polymer electrolyte membrane of Comparative Example 3.
[比較例4]
(高分子電解質膜の作製)
 バニリルアルコールの代わりにジエチレングリコール(和光純薬工業(株)製)を、ブロック共重合体(Z-2)/ジエチレングリコールの質量比が100/4になるように添加した以外は実施例2と同様にして、厚さ20μmの成形体を得た。得られた成形体を140℃の恒温槽で1時間加熱処理をすることで、比較例4の高分子電解質膜を作製した。
[Comparative Example 4]
(Production of polymer electrolyte membrane)
Example 2 except that diethylene glycol (manufactured by Wako Pure Chemical Industries, Ltd.) was added in place of vanillyl alcohol so that the mass ratio of block copolymer (Z-2) / diethylene glycol was 100/4. Thus, a molded body having a thickness of 20 μm was obtained. The obtained molded body was heat-treated in a constant temperature bath at 140 ° C. for 1 hour, thereby producing a polymer electrolyte membrane of Comparative Example 4.
[比較例5]
(高分子電解質膜の作製)
 製造例3で得られたSPEEKの5.3質量%のジメチルスルホキシド溶液を調製した後、2-(4-ヒドロキシフェニル)エタノール(東京化成工業(株)製)を、SPEEK/2-(4-ヒドロキシフェニル)エタノールの質量比が100/7.2になるように添加し、流動性組成物を調製した。次いで、該流動性組成物166mgを、内寸8cm×8cmの正方形の底面を有する高さ3cmのポリテトラフルオロエチレン製容器内に注ぎ、室温で十分乾燥させた後、真空乾燥機で30℃、72時間乾燥させることで厚さ20μmの成形体を得た。得られた成形体を140℃の恒温槽で24時間加熱処理をすることで、比較例5の高分子電解質膜を作製した。
[Comparative Example 5]
(Production of polymer electrolyte membrane)
After preparing a 5.3 mass% dimethyl sulfoxide solution of SPEEK obtained in Production Example 3, 2- (4-hydroxyphenyl) ethanol (manufactured by Tokyo Chemical Industry Co., Ltd.) was added to SPEEK / 2- (4- Hydroxyphenyl) ethanol was added so that the mass ratio was 100 / 7.2 to prepare a fluid composition. Next, 166 mg of the flowable composition was poured into a 3 cm high polytetrafluoroethylene container having a square bottom surface with an internal size of 8 cm × 8 cm, sufficiently dried at room temperature, and then dried at 30 ° C. with a vacuum dryer. A molded body having a thickness of 20 μm was obtained by drying for 72 hours. The obtained molded body was heat-treated in a constant temperature bath at 140 ° C. for 24 hours to produce a polymer electrolyte membrane of Comparative Example 5.
(高分子電解質膜の性能試験およびその結果)
 下記の測定・評価方法によって高分子電解質膜の性能を評価した。結果を表1に示す。
(Performance test and results of polymer electrolyte membrane)
The performance of the polymer electrolyte membrane was evaluated by the following measurement / evaluation method. The results are shown in Table 1.
(耐熱水性試験)
 実施例1~4および比較例1~5で得られた高分子電解質膜から3cm×5cmの試験片を切り出し、1.3kPa、50℃にて12時間乾燥し、質量(質量mとする)を測定後、110mLのスクリュー管に入れ、蒸留水を60mL添加した後、SUS製の金属容器内に収納して密封し、110℃の恒温槽内にて96時間静置した。次いで、スクリュー管内の試験片の表面の状態を目視で確認した(目視試験)後、1.3kPa、50℃にて12時間乾燥し、質量(質量mとする)を測定した。
 次式により不溶分残存率を求めた。
 不溶分残存率(a)(%)=m/m×100
 また、同じ高分子電解質膜から得た別の試験片を用いて同様の試験を実施し、不溶分残存率(b)を求めた。
 このようにして得られた不溶分残存率(a)および不溶分残存率(b)を算術平均して不溶分残存率とした。不溶分残存率が高いほど、耐熱水性に優れると判断した。
(Heat resistance test)
A 3 cm × 5 cm test piece was cut out from the polymer electrolyte membranes obtained in Examples 1 to 4 and Comparative Examples 1 to 5, dried at 1.3 kPa and 50 ° C. for 12 hours, and mass (referred to as mass m 1 ). After the measurement, the solution was placed in a 110 mL screw tube, and 60 mL of distilled water was added. The sample was then housed in a SUS metal container, sealed, and allowed to stand in a 110 ° C. constant temperature bath for 96 hours. Next, the surface state of the test piece in the screw tube was visually confirmed (visual test), and then dried at 1.3 kPa and 50 ° C. for 12 hours, and the mass (referred to as mass m 2 ) was measured.
The insoluble matter residual ratio was determined by the following formula.
Insoluble matter residual ratio (a) (%) = m 2 / m 1 × 100
Moreover, the same test was implemented using another test piece obtained from the same polymer electrolyte membrane, and insoluble matter residual ratio (b) was calculated | required.
The insoluble matter residual rate (a) and the insoluble matter residual rate (b) thus obtained were arithmetically averaged to obtain an insoluble content residual rate. It was judged that the higher the insoluble matter residual ratio, the better the hot water resistance.
(架橋密度とゲル分率の測定)
 実施例1~4および比較例1~5で得られた高分子電解質膜から3cm×5cmの試験片を切り出し、1.3kPa、50℃にて12時間乾燥し、質量(質量mとする)を測定した後、30mlの溶媒に3時間浸漬させ、膜を取り出して溶媒を含んだ状態で膜の質量(質量mとする)を測定した。その後、1.3kPa、50℃にて12時間乾燥し、質量(質量mとする)を測定した。
 Flory Rehnerの式より架橋密度(ν)を算出した。
  ν={ln(1-m/m)+m/m+0.4×(m/m}/[102×{(m/m1/3-(m/m)/2}]
 また、ゲル分率は下記式によって算出した。
  ゲル分率=m/m×100(%)
 なお上記溶媒としては、未架橋の高分子電解質膜が良好な溶解性を示す溶媒を選択する必要があることから、実施例1~4および比較例1~4については、トルエン/イソブタノール(質量比70/30)混合溶媒を、比較例5では、ジメチルスルホキシドを用いた。
(Measurement of crosslink density and gel fraction)
A 3 cm × 5 cm test piece was cut out from the polymer electrolyte membranes obtained in Examples 1 to 4 and Comparative Examples 1 to 5, dried at 1.3 kPa and 50 ° C. for 12 hours, and mass (assumed to be mass m 3 ). After being measured, the film was immersed in 30 ml of solvent for 3 hours, the film was taken out, and the mass of the film (mass m 4 ) was measured in a state containing the solvent. Thereafter, 1.3 kPa, and dried 12 hours at 50 ° C., the mass was measured (the mass m 5).
The crosslinking density (ν) was calculated from the Flory Rehner equation.
ν = {ln (1-m 5 / m 4 ) + m 5 / m 4 + 0.4 × (m 5 / m 4 ) 2 } / [102 × {(m 5 / m 4 ) 1/3 − (m 5 / M 4 ) / 2}]
Moreover, the gel fraction was computed by the following formula.
Gel fraction = m 5 / m 3 × 100 (%)
As the solvent, it is necessary to select a solvent in which the uncrosslinked polymer electrolyte membrane exhibits good solubility. Therefore, in Examples 1 to 4 and Comparative Examples 1 to 4, toluene / isobutanol (mass In the comparative example 5, dimethyl sulfoxide was used as the mixed solvent.
(引張破断試験)
 本発明の高分子電解質膜が柔軟で割れにくいことを確認する目的で、得られた高分子電解質膜の引張破断強度および引張破断伸度を、以下の方法で測定した。
 高分子電解質膜から、ダンベル状の試験片を切り出し、25℃、相対湿度40%の条件で調湿したのち、引張試験機(インストロンジャパン社製5566型)にセットし、25℃、相対湿度40%、引張速度500mm/分の条件において、引張破断強度および引張破断伸度を測定した。
(Tensile fracture test)
For the purpose of confirming that the polymer electrolyte membrane of the present invention is flexible and difficult to break, the tensile break strength and tensile break elongation of the obtained polymer electrolyte membrane were measured by the following methods.
A dumbbell-shaped test piece is cut out from the polymer electrolyte membrane, adjusted to a humidity of 25 ° C. and a relative humidity of 40%, and set in a tensile tester (5566 type manufactured by Instron Japan). Under the conditions of 40% and a tensile speed of 500 mm / min, the tensile breaking strength and the tensile breaking elongation were measured.
(燃料電池の電圧低下速度)
 得られた高分子電解質膜の燃料電池性能への影響を評価する目的として、該高分子電解質膜を組み込んだ評価用燃料電池にて、高温下での電圧低下速度を測定した。
 まず、得られた高分子電解質膜を9cm×9cmに切り出し、内側を5cm×5cmに切り抜いた9cm×9cmのPETフィルムUTS-20BAF(日東電工(株)製(商品名))2枚で挟んだ。
 次いで、内側を5.3cm×5.3cmに切り抜いた9cm×9cmの再剥離フィルムCT100(パナック(株)製(商品名))2枚で挟んだ後、5.3cm×5.3cmのPt触媒担持カーボンを含む触媒層付きPTFEシート(ジョンソンマッセイ社製)2枚で触媒層面と高分子電解質膜とが対向するように挟み、さらに9cm×9cmの再剥離フィルムCT100(パナック(株)製(商品名))で挟んだ。次いで、厚さ100μmのPTFEシート2枚で挟んだ後、2枚の鏡面板で挟み、ホットプレスにより加熱処理(150℃、40kg/cm、10分)を行って、触媒層を高分子電解質膜に転写し、膜-電極接合体(MEA)を作製した。次いで、得られたMEAに、内側を5.3cm×5.3cmに切り抜いた9cm×9cmの厚さ200μmのガスケット2枚で挟んだ後、5.3cm×5.3cmのMPL付きGDL(JNT20-A1、佐藤ライト工業(株)製)2枚でMPL表面と触媒層面が対向するように挟んだ後、2枚のガス供給流路の役割を兼ねた導電性のセパレータで挟み、さらにその外側を2枚の締付板で挟み評価セルを作製した。
 作製した評価セルにガス供給用ホース、ドレンホース、ヒータ電源、熱電対、発電特性分析器((株)エヌエフ回路設計ブロック製)に接続された負荷電流制御用端子と電圧検出用端子を接続して評価用燃料電池を組み立てた。
 この評価用燃料電池の一方の電極(アノード)に261cc/分で水素を、他方の電極(カソード)に878cc/分で空気を供給し、下記の条件で運転した。運転時間と電圧の関係を図1に示す。
 セル温度:80℃
 相対湿度:80%
 電流密度:1.0A/cm
(Fuel cell voltage drop rate)
For the purpose of evaluating the influence of the obtained polymer electrolyte membrane on the performance of the fuel cell, the rate of voltage drop at high temperature was measured with an evaluation fuel cell incorporating the polymer electrolyte membrane.
First, the obtained polymer electrolyte membrane was cut out into 9 cm × 9 cm, and sandwiched between two 9 cm × 9 cm PET films UTS-20BAF (Nitto Denko Corporation (trade name)) cut out inside to 5 cm × 5 cm .
Next, after sandwiching between two re-peeled films CT100 (manufactured by Panac Co., Ltd. (trade name)) of 9 cm × 9 cm with the inside cut out to 5.3 cm × 5.3 cm, a Pt catalyst of 5.3 cm × 5.3 cm A PTFE sheet with a catalyst layer containing supported carbon (manufactured by Johnson Matthey) was sandwiched so that the catalyst layer surface and the polymer electrolyte membrane face each other, and a 9 cm × 9 cm re-peeling film CT100 (manufactured by Panac Corporation (product) Name)). Next, sandwiched between two PTFE sheets having a thickness of 100 μm, sandwiched between two mirror plates, and subjected to heat treatment by hot pressing (150 ° C., 40 kg / cm 2 , 10 minutes) to form the catalyst layer as a polymer electrolyte. The film was transferred to a membrane to prepare a membrane-electrode assembly (MEA). Next, the obtained MEA was sandwiched between two 200-μm-thick gaskets of 9 cm × 9 cm with the inside cut out to 5.3 cm × 5.3 cm, and then the GDL with MPL of 5.3 cm × 5.3 cm (JNT20− (A1, manufactured by Sato Light Industry Co., Ltd.) After sandwiching the MPL surface and the catalyst layer surface so that they face each other, sandwich them with two conductive separators that also serve as the gas supply flow path. An evaluation cell was fabricated by sandwiching the two clamping plates.
Connect the load current control terminal and voltage detection terminal connected to the gas supply hose, drain hose, heater power supply, thermocouple, and power generation characteristic analyzer (manufactured by NF Circuit Design Block Co., Ltd.) to the manufactured evaluation cell. A fuel cell for evaluation was assembled.
Hydrogen was supplied to one electrode (anode) of this evaluation fuel cell at 261 cc / min, and air was supplied to the other electrode (cathode) at 878 cc / min, and the fuel cell was operated under the following conditions. The relationship between operation time and voltage is shown in FIG.
Cell temperature: 80 ° C
Relative humidity: 80%
Current density: 1.0 A / cm 2
 運転中の上記評価用燃料電池に接続された電圧検出用端子により、50時間運転後の電圧値V(V)、84時間運転後の電圧値V(V)を測定し、電圧低下速度を次式より算出した。
 電圧低下速度(mV/時間)={(V-V)/(84-50)}×10
The voltage value V 1 (V) after 50 hours of operation and the voltage value V 2 (V) after 84 hours of operation are measured by the voltage detection terminal connected to the evaluation fuel cell during operation, and the voltage drop rate Was calculated from the following equation.
Voltage drop rate (mV / hour) = {(V 1 −V 2 ) / (84−50)} × 10 3
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表1に示すとおり、本発明の高分子電解質膜は耐熱水性に優れる。
 比較例1~4の高分子電解質膜は化合物(X)以外の化合物を含有する高分子電解質膜であるため、本発明の高分子電解質膜よりも耐熱水性に劣る。
 比較例5の高分子電解質膜は、ブロック共重合体(Z)以外の高分子電解質を用いているため、架橋できないことがわかる。
 実施例1より、本発明の高分子電解質膜は、燃料電池に組み込んで運転した場合に電圧の低下が少ないことがわかる。これは、本発明の高分子電解質膜の優れた耐熱水性に基づくものと推定できる。
As shown in Table 1, the polymer electrolyte membrane of the present invention is excellent in hot water resistance.
Since the polymer electrolyte membranes of Comparative Examples 1 to 4 are polymer electrolyte membranes containing a compound other than the compound (X), they are inferior in hot water resistance to the polymer electrolyte membrane of the present invention.
It can be seen that the polymer electrolyte membrane of Comparative Example 5 cannot be crosslinked because it uses a polymer electrolyte other than the block copolymer (Z).
From Example 1, it can be seen that the polymer electrolyte membrane of the present invention shows little decrease in voltage when operated by being incorporated in a fuel cell. This can be presumed to be based on the excellent hot water resistance of the polymer electrolyte membrane of the present invention.
 本発明の高分子電解質膜は、非フッ素系材料からなり、生産時および廃棄時の環境負荷が少ない上、柔軟で割れにくく耐熱水性に優れるため、固体高分子型燃料電池用の高分子電解質膜として好適に用いられる。
 
The polymer electrolyte membrane of the present invention is made of a non-fluorine material, has a low environmental impact during production and disposal, and is flexible, resistant to cracking and excellent in hot water resistance. Therefore, the polymer electrolyte membrane for a solid polymer fuel cell Is preferably used.

Claims (7)

  1.  芳香族ビニル化合物に由来する構造単位からなり、イオン伝導性基を有する重合体ブロック(A)と、不飽和脂肪族炭化水素に由来する構造単位からなり、イオン伝導性基を有さない非晶性の重合体ブロック(B)とを含むブロック共重合体(Z)および下記一般式(1)で示される化合物(X)を含有する組成物を、成形後に架橋処理してなる高分子電解質膜。
    Figure JPOXMLDOC01-appb-C000001
    (式中、Rは水素原子、水酸基または炭素数1~4のアルキル基を表し、Rは水素原子、水酸基、炭素数1~4のアルキル基または炭素数1~4のアルコキシ基を表し、Rは炭素数1~4のヒドロキシアルキル基を表す。)
    Amorphous vinyl compound comprising a structural unit derived from a polymer block (A) having an ion conductive group and a structural unit derived from an unsaturated aliphatic hydrocarbon and having no ion conductive group Polymer block membrane (Z) containing a functional polymer block (B) and a composition containing a compound (X) represented by the following general formula (1), followed by a crosslinking treatment after molding .
    Figure JPOXMLDOC01-appb-C000001
    Wherein R 1 represents a hydrogen atom, a hydroxyl group or an alkyl group having 1 to 4 carbon atoms, and R 2 represents a hydrogen atom, a hydroxyl group, an alkyl group having 1 to 4 carbon atoms or an alkoxy group having 1 to 4 carbon atoms. R 3 represents a hydroxyalkyl group having 1 to 4 carbon atoms.)
  2.  前記不飽和脂肪族炭化水素が炭素数4~8の共役ジエンである、請求項1に記載の高分子電解質膜。 2. The polymer electrolyte membrane according to claim 1, wherein the unsaturated aliphatic hydrocarbon is a conjugated diene having 4 to 8 carbon atoms.
  3.  前記イオン伝導性基が-SOMまたはPOHM(式中、Mは水素原子、アンモニウムイオンまたはアルカリ金属イオンを表す)で表されるスルホン酸基、ホスホン酸基およびそれらの塩から選ばれる1種以上である、請求項1または2に記載の高分子電解質膜。 The ion conductive group is selected from a sulfonic acid group, a phosphonic acid group and a salt thereof represented by —SO 3 M or PO 3 HM (wherein M represents a hydrogen atom, an ammonium ion or an alkali metal ion). The polymer electrolyte membrane according to claim 1 or 2, wherein the polymer electrolyte membrane is one or more.
  4.  前記一般式(1)におけるRがヒドロキシメチル基、1-ヒドロキシエチル基または2-ヒドロキシエチル基である、請求項1~3のいずれかに記載の高分子電解質膜。 The polymer electrolyte membrane according to any one of claims 1 to 3, wherein R 3 in the general formula (1) is a hydroxymethyl group, a 1-hydroxyethyl group or a 2-hydroxyethyl group.
  5.  前記組成物中の化合物(X)の含有量が前記ブロック共重合体(Z)100質量部に対して0.01~25質量部である、請求項1~4のいずれかに記載の高分子電解質膜。 The polymer according to any one of claims 1 to 4, wherein the content of the compound (X) in the composition is 0.01 to 25 parts by mass with respect to 100 parts by mass of the block copolymer (Z). Electrolyte membrane.
  6.  前記ブロック共重合体(Z)が、さらに、芳香族ビニル化合物に由来する構造単位からなり、イオン伝導性基を有さない重合体ブロック(C)を含む、請求項1~5のいずれかに記載の高分子電解質膜。 The block copolymer (Z) further comprises a polymer block (C) made of a structural unit derived from an aromatic vinyl compound and having no ion conductive group. The polymer electrolyte membrane as described.
  7.  請求項1~6のいずれかに記載の高分子電解質膜を有する固体高分子型燃料電池。 A solid polymer fuel cell having the polymer electrolyte membrane according to any one of claims 1 to 6.
PCT/JP2015/053909 2014-02-20 2015-02-13 Polyelectrolyte film WO2015125697A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-031018 2014-02-20
JP2014031018 2014-02-20

Publications (1)

Publication Number Publication Date
WO2015125697A1 true WO2015125697A1 (en) 2015-08-27

Family

ID=53878202

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/053909 WO2015125697A1 (en) 2014-02-20 2015-02-13 Polyelectrolyte film

Country Status (2)

Country Link
TW (1) TW201537817A (en)
WO (1) WO2015125697A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001210336A (en) * 2000-01-28 2001-08-03 Kanegafuchi Chem Ind Co Ltd Membrane for a fuel cell and fuel cell using it
JP2006507653A (en) * 2002-11-07 2006-03-02 ガス、テクノロジー、インスティチュート High stability membrane for proton exchange membrane fuel cells
JP2013206669A (en) * 2012-03-28 2013-10-07 Kuraray Co Ltd Polymer electrolyte membrane
WO2014030573A1 (en) * 2012-08-23 2014-02-27 株式会社クラレ Polyelectrolyte film

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001210336A (en) * 2000-01-28 2001-08-03 Kanegafuchi Chem Ind Co Ltd Membrane for a fuel cell and fuel cell using it
JP2006507653A (en) * 2002-11-07 2006-03-02 ガス、テクノロジー、インスティチュート High stability membrane for proton exchange membrane fuel cells
JP2013206669A (en) * 2012-03-28 2013-10-07 Kuraray Co Ltd Polymer electrolyte membrane
WO2014030573A1 (en) * 2012-08-23 2014-02-27 株式会社クラレ Polyelectrolyte film

Also Published As

Publication number Publication date
TW201537817A (en) 2015-10-01

Similar Documents

Publication Publication Date Title
JP5276442B2 (en) Polymer electrolyte, polymer electrolyte membrane, membrane-electrode assembly, and solid polymer fuel cell
JP5191139B2 (en) Polymer electrolyte, polymer electrolyte membrane, membrane-electrode assembly, and solid polymer fuel cell
WO2014030573A1 (en) Polyelectrolyte film
WO2007086309A1 (en) Electrolyte multilayer membrane for solid polymer fuel cell, membrane-electrode assembly, and fuel cell
WO2007094185A1 (en) Polyelectrolyte film, film-electrode assembly, and solid-polymer-type fuel cell
JP5629692B2 (en) Polymer electrolyte, polymer electrolyte membrane, membrane-electrode assembly, and solid polymer fuel cell
JP2006210326A (en) Polymer electrolyte film for solid polymer fuel cells, membrane-electrode assembly, and fuel cell
JP2010232121A (en) Electrolyte composite membrane, membrane-electrode assembly, and solid polymer fuel cell
JP2013206669A (en) Polymer electrolyte membrane
JP5188025B2 (en) POLYMER ELECTROLYTE MEMBRANE FOR SOLID POLYMER FUEL CELL, MEMBRANE-ELECTRODE ASSEMBLY AND FUEL CELL
JP2007258003A (en) Polymer electrolyte membrane, membrane electrode assembly, and polymer electrolyte fuel cell
JPWO2013031634A1 (en) Block copolymer, polymer electrolyte membrane, membrane-electrode assembly, and polymer electrolyte fuel cell
JP2010135130A (en) Polymer electrolyte membrane for solid polymer electrolyte fuel cell, membrane-electrode assembly, and fuel cell
JP5706906B2 (en) Polymer electrolyte membrane, membrane-electrode assembly, and solid polymer fuel cell
JP2014032811A (en) Polymer electrolyte membrane
WO2015125694A1 (en) Polymer electrolyte membrane
JP5629761B2 (en) Polymer electrolyte, polymer electrolyte membrane, membrane-electrode assembly, and solid polymer fuel cell
JPWO2010067743A1 (en) Electrolyte laminated film, membrane-electrode assembly, and fuel cell
WO2015125697A1 (en) Polyelectrolyte film
WO2015125695A1 (en) Polymer electrolyte membrane
JP5792018B2 (en) Polymer electrolyte membrane, membrane-electrode assembly, and polymer electrolyte fuel cell
WO2015125696A1 (en) Polymer electrolyte membrane
JP2015156315A (en) Method for manufacturing polymer electrolytic film
JP2010067526A (en) Polyelectrolyte membrane for solid polymer fuel cell, membrane-electrode assembly, and fuel cell
WO2011145588A1 (en) Polymer electrolyte and polymer electrolyte film comprising same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15751625

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15751625

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP