WO2015125399A1 - Wireless communication device, integrated circuit and wireless communication method - Google Patents

Wireless communication device, integrated circuit and wireless communication method Download PDF

Info

Publication number
WO2015125399A1
WO2015125399A1 PCT/JP2014/084152 JP2014084152W WO2015125399A1 WO 2015125399 A1 WO2015125399 A1 WO 2015125399A1 JP 2014084152 W JP2014084152 W JP 2014084152W WO 2015125399 A1 WO2015125399 A1 WO 2015125399A1
Authority
WO
WIPO (PCT)
Prior art keywords
wireless communication
signal
transmission
lte
wireless lan
Prior art date
Application number
PCT/JP2014/084152
Other languages
French (fr)
Japanese (ja)
Inventor
亜秀 青木
寿久 鍋谷
Original Assignee
株式会社東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社東芝 filed Critical 株式会社東芝
Publication of WO2015125399A1 publication Critical patent/WO2015125399A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1215Wireless traffic scheduling for collaboration of different radio technologies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/06Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals

Definitions

  • Embodiments described herein relate generally to a wireless communication device, an integrated circuit, and a wireless communication method.
  • the problem to be solved by the present invention is to provide a wireless communication device, an integrated circuit, and a wireless communication method capable of suppressing interference generated in a terminal in which a plurality of wireless communication systems are mounted.
  • the wireless communication apparatus includes a first wireless communication unit, a second wireless communication unit, and a control unit.
  • the first wireless communication unit performs wireless communication using the first wireless communication method.
  • the second wireless communication unit performs wireless communication using the second wireless communication method.
  • the control unit delays transmission of the signal using the first wireless communication unit.
  • FIG. 1 is a schematic block diagram illustrating a configuration of a wireless communication system 100 according to a first embodiment.
  • FIG. 2 is a schematic block diagram showing a configuration of a base station device 40.
  • 2 is a diagram illustrating an example of a hardware configuration of a base station 40.
  • FIG. 3 is a diagram illustrating another example of the hardware configuration of the base station 40.
  • FIG. 3 is a diagram illustrating another example of the hardware configuration of the base station 40.
  • FIG. 3 is a sequence diagram showing an operation of the wireless communication system 100.
  • FIG. 9 is a sequence diagram showing an operation of the wireless communication system 101.
  • FIG. 10 is a schematic block diagram illustrating a configuration related to transmission of a wireless LAN physical layer unit 202 and a wireless LAN antenna 203 according to a fourth embodiment.
  • the schematic diagram which shows the example of the directivity at the time of transmitting CTS / Self.
  • the table which shows the example of information of the multicast address which the wireless LAN scheduler 401 of 5th Embodiment has memorize
  • the schematic block diagram which shows the structure of the base station apparatus 40a of the modification of each embodiment.
  • FIG. 1 is a schematic block diagram illustrating a configuration of a wireless communication system 100 according to the first embodiment.
  • the wireless communication system 100 includes a PDN (Packet Data Network) gateway 20, a network 30, a base station device 40, a subscriber management device 50 (terminal management device), an LTE (Long Term Evolution) terminal device 60, and a plurality of devices.
  • Terminal device 70 partner device.
  • the external network 10 is an external network such as the Internet.
  • the PDN gateway 20 connects the external network 10 and the mobile communication network. For example, the PDN gateway 20 mediates communication between the LTE terminal device 60 and the terminal device 70 connected to the mobile communication network and the device connected to the external network 10.
  • the network 30 connects the PDN gateway 20, the base station device 40, and the subscriber management device 50 so that they can communicate with each other, thereby constituting a mobile communication network.
  • a plurality of base station devices 40 may be connected to the network 30.
  • the terminal device 70 may be single.
  • a serving gateway (not shown) connected to the base station device 40 may be provided in the network 30.
  • the base station device 40 is a wireless communication device having a base station function of LTE (first wireless communication system) and an access point function of wireless LAN (second wireless communication system).
  • the base station function is, for example, a function that mediates communication between the terminal device 70 that is connected to the base station device 40 via LTE and communication with other devices or an external network such as the Internet.
  • the access point function is, for example, a function that mediates communication between the terminal device 70 that is communicatively connected to the base station device 40 via a wireless LAN and communication with other devices or an external network such as the Internet. Examples of other devices include a server connected to the external network 10 or the network 30, and another terminal device 70 connected to another base station device 40.
  • the LTE base station is also called evolvedeNode B (eNB).
  • the subscriber management device 50 manages information on subscribers who subscribe to a communication service using the base station device 40. Specifically, the subscriber management device 50 stores identification information in LTE of the terminal device 70 used by each subscriber.
  • the LTE terminal device 60 is a wireless communication device having an LTE terminal function.
  • the LTE terminal is also called user equipment (UE).
  • the terminal device 70 is, for example, a smartphone, and is a wireless communication device having an LTE terminal function and a wireless LAN terminal function.
  • a wireless LAN terminal is also called a Station (STA).
  • the terminal device 70 uses wireless LAN communication for data communication and uses LTE communication for a telephone. In this way, the terminal device 70 communicates with the base station device 40 using both LTE and wireless LAN wireless communication schemes.
  • a SIM card Subscriber Identity Module Module Card
  • the subscriber management device 50 can store the ID of the terminal device 70 as the LTE terminal and the ID of the wireless LAN terminal in association with each other.
  • the frequency used differs between LTE and wireless LAN.
  • both are mounted in a small housing such as a smartphone, wraparound within the housing or wraparound through the antenna occurs.
  • an out-of-band signal caused by this transmission causes interference with the reception of LTE in the terminal device 70 and inhibits the reception of LTE.
  • FIG. 2 is a schematic block diagram showing the configuration of the base station device 40.
  • the base station device 40 includes a communication unit 41, a wireless LAN communication unit 42 (second wireless communication unit), an LTE communication unit 43 (first wireless communication unit), and a control unit 44.
  • the wireless LAN communication unit 42 includes a wireless LAN-MAC (Media Access Control) layer unit 201, a wireless LAN physical layer unit 202, and a wireless LAN antenna 203.
  • the LTE communication unit 43 includes an LTE-MAC layer unit 301, an LTE physical layer unit 302, and an LTE antenna 303.
  • the control unit 44 includes a wireless LAN scheduler 401, an LTE scheduler 402, and an association acquisition unit 403.
  • the communication unit 41 is connected to the network 30 and mediates communication between other units connected to the network 30 and each unit of the base station device 40.
  • the wireless LAN-MAC layer unit 201 performs control related to the MAC layer for transmission / reception via the wireless LAN. Specifically, the wireless LAN-MAC layer unit 201 generates a packet storing data or control information to be transmitted using the wireless LAN, restores a packet from a bit string demodulated by the wireless LAN physical layer unit 202, and the like. .
  • the wireless LAN-MAC layer unit 201 receives data to be transmitted using the wireless LAN from another device via the communication unit 41. Also, the wireless LAN-MAC layer unit 201 transmits the restored packet to the packet destination device via the communication unit 41.
  • the wireless LAN physical layer unit 202 performs control related to a physical layer for transmission / reception via the wireless LAN. Specifically, the wireless LAN physical layer unit 202 modulates the packet created by the wireless LAN-MAC layer unit 201, transmits using the wireless LAN antenna 203, receives using the wireless LAN antenna 203, and demodulates the received signal. And so on.
  • the wireless LAN antenna 203 is an antenna that transmits and receives signals via a wireless LAN.
  • the wireless LAN antenna 203 may have a plurality of antennas.
  • the LTE-MAC layer unit 301 performs control related to a transmission / reception MAC layer using LTE. Specifically, the LTE-MAC layer unit 301 generates a packet storing data or control information to be transmitted using LTE, restores a packet from the bit string demodulated by the LTE physical layer unit 302, and the like. The LTE-MAC layer unit 301 receives data to be transmitted using LTE from another device via the communication unit 41. Also, the LTE-MAC layer unit 301 transmits the restored packet to the packet destination device via the communication unit 41.
  • the LTE physical layer unit 302 performs control related to a physical layer for transmission and reception by LTE. Specifically, the LTE physical layer unit 302 performs modulation of a packet created by the LTE-MAC layer unit 301, transmission using the LTE antenna 303, reception using the LTE antenna 303, demodulation of the received signal, and the like.
  • the LTE antenna 303 is an antenna that transmits and receives signals by LTE. Note that the LTE antenna 303 may have a plurality of antennas.
  • the wireless LAN scheduler 401 determines the transmission timing of packets by the wireless LAN. In addition, when the wireless LAN-MAC layer unit 201 starts receiving a wireless LAN packet, the wireless LAN scheduler 401 generates packet information of the packet and notifies the LTE scheduler 402 of the packet information.
  • the packet information is information including the packet length of the packet, the identification information of the transmission source, and the reception start time.
  • the wireless LAN scheduler 401 When the LTE scheduler 402 requests transmission of CTS (Clear To Send) / Self (also referred to as CTS-to-self) as a channel reservation signal, the wireless LAN scheduler 401 An instruction to transmit a packet representing CTS / Self is issued to the wireless LAN-MAC layer unit 201 in 201. Note that the request from the LTE scheduler 402 also includes a time length for reserving a channel, and the wireless LAN scheduler 401 sends the time length to the packet representing CTS / Self to the wireless LAN-MAC layer unit 201. Include information that indicates. CTS / Self is a channel reservation signal in the wireless LAN, and is a signal for prohibiting packet transmission to stations other than the station that transmitted the signal.
  • CTS / Self is a form of CTS defined in IEEE 802.11.
  • the CTS is a signal for prohibiting packet transmission to a device other than the address set in the destination address (MAC address) of the MAC header of the packet.
  • CTS / Self prohibits the transmission of packets to devices other than the own device because the address of the own device is set as the destination address of the MAC header of the packet.
  • the value set in the duration field (duration field) of the MAC header of the CTS is called NAV (Network Allocation Vector) and is a time length for prohibiting packet transmission.
  • the LTE scheduler 402 determines data to be transmitted by LTE after a predetermined time has elapsed. An overview of processing by the LTE scheduler 402 will be described.
  • the predetermined time is 2 subframes, but it may be after 1 subframe or after 3 subframes.
  • the subframe is a time unit for scheduling in LTE.
  • the LTE scheduler 402 determines whether or not a wireless LAN packet is being received from the terminal device 70 that is the data transmission destination after two subframes. When making this determination, the LTE scheduler 402 refers to the packet information notified from the wireless LAN scheduler 401.
  • the LTE scheduler 402 postpones transmission of the target data.
  • the LTE scheduler 402 requests the wireless LAN scheduler 401 to transmit CTS / Self.
  • the LTE scheduler 402 allocates the transmission of the target data after two subframes.
  • the association acquisition unit 403 associates the identification information (IP address, MAC address, etc.) in each wireless LAN of the terminal device 70 with the identification information (IP address, MAC address, etc.) in LTE. Obtained from the subscriber management device 50. As described above, this association is performed by determining whether the LTE scheduler 402 is receiving a wireless LAN packet from the terminal device 70 that is the data transmission destination after two subframes of CTS / Self transmission. Used when. Specifically, since the identification information of the transmission source included in the packet information is identification information in the wireless LAN, the LTE scheduler 402 converts this identification information into identification information in LTE.
  • the LTE scheduler 402 determines whether or not the identification information in the converted LTE is the same as the identification information of the terminal device 70 that is a transmission destination of data by LTE. When the LTE scheduler 402 is the same, the LTE scheduler 402 determines that reception is in progress.
  • FIG. 3 is a diagram illustrating an example of a hardware configuration of the base station 40.
  • the communication unit 41 includes a control circuit 410.
  • the control unit 44 includes a control circuit 440 connected to the control circuit 410 of the communication unit 41.
  • the control circuit 440 executes the functions of the control unit 44 (wireless LAN scheduler 401, LTE scheduler 402, and association acquisition unit 403).
  • the wireless LAN-MAC layer unit 201 includes a control circuit 420, a transmission processing circuit 421, and a reception processing circuit 423.
  • the control circuit 420 is connected to the control circuit 410 of the communication unit 41 and the control circuit 440 of the control unit 44.
  • the wireless LAN physical layer unit 202 includes a transmission signal processing circuit 427, a reception signal processing circuit 428, a DA conversion circuit 422, an AD conversion circuit 424, an RF transmission circuit 425, and an RF reception circuit 426.
  • the wireless LAN-MAC layer unit 201 and the wireless LAN physical layer unit 202 are often realized as a one-chip IC.
  • the control circuit 420 performs processing such as a MAC layer.
  • the control circuit 420 may include a clock generation unit.
  • the transmission processing circuit 421 performs processing such as addition, encoding, and modulation (may include MIMO modulation) of a preamble pattern and a PHY header.
  • the wireless LAN physical layer unit 202 is, for example, an RF analog IC or a high frequency IC.
  • the transmission signal processing circuit 427 in the wireless LAN physical layer unit 202 transmits the signal processed by the transmission processing circuit 421 to the DA conversion circuit 422.
  • the DA conversion circuit 422 performs DA conversion on the signal received from the transmission signal processing circuit 427.
  • the RF transmission circuit 425 wirelessly transmits the filtered signal using a transmission filter that extracts a signal in a desired band from the signal of the frame DA-converted by the DA conversion circuit 422 and a signal having a constant frequency supplied from the oscillation device. It includes a mixer that upconverts the frequency, a preamplifier (PA) that amplifies the signal after the upconversion, and the like.
  • PA preamplifier
  • the RF receiving circuit 426 in the wireless LAN physical layer unit 202 uses an LNA (low noise amplifier) that amplifies the signal received by the antenna 203, and a signal having a constant frequency supplied from the oscillation device, and outputs the amplified signal. It includes a mixer for down-converting to baseband, a reception filter for extracting a signal in a desired band from the down-converted signal, and the like.
  • the AD conversion circuit 424 AD converts the signal from the RF reception circuit 426.
  • the reception signal processing circuit 428 transmits the signal AD-converted by the AD conversion circuit 424 to the reception processing circuit 423.
  • the control circuit 420 may control the operation of the transmission filter of the RF transmission circuit 425 and the reception filter of the RF reception circuit 426. There may be another control unit that controls the RF transmission circuit 425 and the RF reception circuit 426, and the same control may be performed by the control circuit 420 issuing an instruction to the control unit.
  • the reception processing circuit 423 in the wireless LAN-MAC layer unit 201 performs signal demodulation processing (including MIMO demodulation), processing to remove a preamble pattern and a PHY header, and passes the processed frame to the control circuit 420.
  • signal demodulation processing including MIMO demodulation
  • processing to remove a preamble pattern and a PHY header passes the processed frame to the control circuit 420.
  • a switch for switching the wireless LAN antenna 203 to one of the RF transmission circuit 425 and the RF reception circuit 426 may be arranged in the wireless LAN physical layer unit 202. By controlling the switch, the wireless LAN antenna 203 may be connected to the RF transmission circuit 425 during transmission, and the wireless LAN antenna 203 may be connected to the RF reception circuit 426 during reception.
  • the LTE-MAC layer unit 301 is a one-chip IC including a control circuit 430, a transmission processing circuit 431, and a reception processing circuit 433.
  • the control circuit 430 is connected to the control circuit 410 of the communication unit 41 and the control circuit 440 of the control unit 44.
  • the LTE physical layer unit 302 includes a transmission signal processing circuit 437, a reception signal processing circuit 438, a DA conversion circuit 432, an AD conversion circuit 434, an RF transmission circuit 435, and an RF reception circuit 436.
  • IC a transmission signal processing circuit 437, a reception signal processing circuit 438, a DA conversion circuit 432, an AD conversion circuit 434, an RF transmission circuit 435, and an RF reception circuit 436.
  • the control circuit 430 performs processing such as the MAC layer.
  • the control circuit 430 may include a clock generation unit.
  • the transmission processing circuit 431 performs processing such as addition, encoding, and modulation (may include MIMO modulation) of a preamble pattern and a PHY header.
  • the LTE physical layer unit 302 is, for example, an RF analog IC or a high frequency IC.
  • the transmission signal processing circuit 437 in the LTE physical layer unit 302 transmits the signal processed by the transmission processing circuit 431 to the DA conversion circuit 432.
  • the DA conversion circuit 432 DA converts the signal received from the transmission signal processing circuit 437.
  • the RF transmission circuit 435 wirelessly transmits a signal after filtering using a transmission filter that extracts a signal in a desired band from the signal of the frame DA-converted by the DA conversion circuit 432 and a signal having a constant frequency supplied from the oscillation device. It includes a mixer that upconverts the frequency, a preamplifier (PA) that amplifies the signal after the upconversion, and the like.
  • PA preamplifier
  • the RF receiving circuit 436 in the LTE physical layer unit 302 uses an LNA (low noise amplifier) that amplifies a signal received by the antenna 303 and a signal having a constant frequency supplied from an oscillation device as a base.
  • LNA low noise amplifier
  • a mixer that down-converts the signal into a band, a reception filter that extracts a signal in a desired band from the down-converted signal, and the like are included.
  • the AD conversion circuit 434 AD converts the signal from the RF reception circuit 436.
  • the reception signal processing circuit 438 transmits the signal AD-converted by the AD conversion circuit 434 to the reception processing circuit 433.
  • the control circuit 430 may control the operation of the transmission filter of the RF transmission circuit 435 and the reception filter of the RF reception circuit 436. There may be another control unit that controls the RF transmission circuit 435 and the RF reception circuit 436, and the control circuit 430 may perform the same control by giving an instruction to the control unit.
  • the reception processing circuit 433 in the LTE-MAC layer unit 301 performs signal demodulation processing (including MIMO demodulation), processing to remove the preamble pattern and the PHY header, and passes the processed frame to the control circuit 430.
  • signal demodulation processing including MIMO demodulation
  • a switch for switching the LTE antenna 303 to one of the RF transmission circuit 435 and the RF reception circuit 436 may be arranged in the LTE physical layer unit 302. By controlling the switch, the LTE antenna 303 may be connected to the RF transmission circuit 435 during transmission, and the LTE antenna 303 may be connected to the RF reception circuit 436 during reception.
  • the LTE-MAC layer unit 301 and the LTE physical layer unit 302 may be realized as a one-chip IC.
  • FIG. 4 and 5 are diagrams showing another example of the hardware configuration of the base station 40.
  • FIG. 4 As shown in FIG. 4, the communication unit 41, the control unit 44, the wireless LAN-MAC layer unit 201, the first wireless LAN physical layer unit 202-1, the LTE-MAC layer unit 301, and the first LTE physical unit A one-chip integrated circuit 500 including the layer portion 302-1 may be provided.
  • the first wireless LAN physical layer unit 202-1 includes a transmission signal processing circuit 427, a reception signal processing circuit 428, a DA conversion circuit 422, and an AD conversion circuit 424.
  • the second wireless LAN physical layer unit 202-1 includes an RF transmission circuit 425 and an RF reception circuit 426.
  • the first LTE physical layer unit 302-1 includes a transmission signal processing circuit 437, a reception signal processing circuit 438, a DA conversion circuit 432, and an AD conversion circuit 434.
  • the second LTE physical layer unit 302-1 includes an RF transmission circuit 435 and an RF reception circuit 436.
  • One chip integrated circuit 600 may be provided.
  • communication is performed using two antennas (the wireless LAN antenna 203 and the LTE antenna 303).
  • a configuration in which one antenna is also used may be used.
  • a switch for switching to one of the wireless LAN communication unit 42 and the LTE communication unit 43 may be arranged.
  • the antenna may be connected to the wireless LAN physical layer unit 202 during wireless LAN communication, and the antenna may be connected to the LTE physical layer unit 302 during LTE communication.
  • FIG. 6 is a flowchart for explaining the operation of the LTE scheduler 402.
  • the LTE scheduler 402 performs the process shown in FIG. 6 in order to schedule transmission after two subframes at the time of each subframe.
  • the LTE scheduler 402 acquires the association between the identification information in the wireless LAN of each terminal device 70 and the identification information in LTE from the association acquisition unit 403 (Sa1).
  • the LTE scheduler 402 acquires a request for transmission to the terminal stored at the head of the queue from the LTE-MAC layer unit 301 (Sa2).
  • step Sa9 when there is no transmission request in the queue and the LTE scheduler 402 cannot acquire (Sa3-No), the process proceeds to step Sa9.
  • the LTE scheduler 402 determines whether or not the terminal device of the transmission destination in the acquired request is compatible with the wireless LAN and LTE, that is, It is determined whether or not the terminal device 70 (Sa4). For example, when the association acquired in step Sa1 includes the identification information in the LTE of the terminal device of the transmission destination in the acquired request, the LTE scheduler 402 determines whether the terminal device of the transmission destination in the acquired request The terminal device 70 is determined. When the association acquired in step Sa1 does not include the LTE identification information of the transmission destination terminal device in the acquired request, the LTE scheduler 402 transmits the transmission destination terminal device in the acquired request. Is not the terminal device 70.
  • the LTE scheduler 402 sets the transmission schedule of the request acquired in step Sa2 to be two subframes later, and instructs the LTE-MAC layer unit 301 (Sa8) The process proceeds to step Sa9.
  • step Sa4 when it is determined in step Sa4 that the terminal device 70 is used (Sa4-Yes), the LTE scheduler 402 transmits a packet transmitted by the wireless LAN from the terminal device 70 that is the transmission destination in the request acquired in step Sa2. It is determined whether or not reception is being performed after two subframes (Sa5).
  • the LTE scheduler 402 performs the determination in step Sa5 as follows. First, the LTE scheduler 402 refers to the association acquired in step Sa1, and acquires identification information in the wireless LAN of the terminal device 70 that is the transmission destination in the request acquired in step Sa2. Then, the LTE scheduler 402 refers to packet information (details will be described later) indicating the wireless LAN reception schedule acquired from the wireless LAN scheduler 401, and performs the determination in step Sa5.
  • step Sa5 When it is determined in step Sa5 that the reception is not being performed (Sa5-No), the LTE scheduler 402 proceeds to step Sa6. On the other hand, when it is determined in step Sa5 that reception is in progress (Sa5-Yes), the process returns to step Sa2. As a result, transmission related to the acquired request is postponed.
  • step Sa6 the LTE scheduler 402 requests the wireless LAN scheduler 401 to transmit CTS / Self, which is a wireless LAN channel reservation signal (Sa6).
  • the LTE scheduler 402 calculates the length of time required for transmission according to the request acquired in step Sa2.
  • the LTE scheduler 402 calculates the time length from the transmission of the CTS / Self calculated by adding a predetermined time to this time length until the transmission according to the acquired request is terminated to the CTS / Included in the request for sending Self.
  • the wireless LAN scheduler 401 sets the time length included in the request in the duration field of CTS / Self. Then, the wireless LAN scheduler 401 instructs the wireless LAN-MAC layer unit 201 to transmit CTS / Self.
  • the LTE scheduler 402 sets the transmission schedule of the request acquired in step Sa2 to be two subframes later.
  • the LTE-MAC layer unit 301 is instructed (Sa7).
  • the LTE scheduler 402 proceeds to step Sa9.
  • step Sa9 the LTE scheduler 402 returns to the queue a request that has been acquired from the queue in step Sa2 but is being received in step Sa5 and did not transmit, that is, a request for which transmission was postponed. The process ends.
  • FIG. 7 is a sequence diagram for explaining the operation of the wireless communication system 100.
  • B_LTE indicates transmission / reception using LTE in the base station apparatus 40.
  • B_WLL indicates transmission / reception using the wireless LAN in the base station device 40.
  • M_LTE indicates transmission / reception using LTE in the terminal device 70.
  • M_WLL indicates transmission / reception in the terminal device 70 using the wireless LAN.
  • Each of SF0 to SF9 is an LTE subframe.
  • a subframe is a unit in the time direction when band allocation is performed.
  • R indicates the time when a transmission request is made.
  • Tx ′ indicates a subframe in which transmission has been requested, but has been postponed and transmission has not been performed.
  • Tx indicates data transmission, and Rx indicates data reception.
  • CTS indicates transmission of CTS / Self, which is a channel reservation signal.
  • NAV Network Allocation Vector
  • a request for transmitting data addressed to the terminal device 70 by LTE is generated in the subframe SF2.
  • the terminal device 70 transmits data to the base station device 40 using the wireless LAN from near the subframe SF2 to near SF5.
  • the packet of data transmitted by the terminal device 70 via the wireless LAN is demodulated by the wireless LAN physical layer unit 202 of the base station device 40. From this demodulation result, the wireless LAN-MAC layer unit 201 obtains the packet length and identification information of the transmission source of the packet, such as an association ID and a source address (MAC address). Packet information including the packet length, transmission source identification information, and reception start time is sent to the LTE scheduler 402 via the wireless LAN scheduler 401.
  • the time at which the terminal device 70 transmits data using the wireless LAN is the time of the subframe SF2.
  • a packet may be transmitted at an arbitrary time. In general, the transmission time is not in units of subframes.
  • Packet information sent from the wireless LAN scheduler 401 to the LTE scheduler 402 is stored in a memory.
  • the LTE scheduler 402 can obtain the time required for packet transmission by dividing the packet length included in the packet information by the bit rate. That is, in the case of FIG. 7, the memory stores packet information indicating that the terminal device 70 is transmitting a wireless LAN packet from the subframe SF2 to the subframe SF5. Note that the memory storing the packet information may be provided in either the wireless LAN scheduler 401 or the LTE scheduler 402, or may be in a block other than the wireless LAN scheduler 401 and the LTE scheduler 402.
  • the LTE scheduler 402 performs downlink signal scheduling from the base station apparatus 40 to the terminal apparatus 70 in units of subframes. For example, the LTE scheduler 402 schedules the subframe SF7 at the time of the subframe SF5 in consideration of the processing delay. In the subframe SF5, the LTE scheduler 402 accesses the memory and determines a terminal device 70 that can be scheduled in the subframe SF7.
  • the terminal device 70 can schedule to the subframe SF4.
  • packet information indicating that a certain terminal device 70 is transmitting a wireless LAN packet from the subframes SF2 to SF5 is stored in the memory. For this reason, the LTE scheduler 402 performs control to postpone transmission without allocating the terminal device 70 to the subframe SF4.
  • the LTE scheduler 402 refers to the packet information stored in the memory. Then, since the packet information indicates that the terminal device 70 transmits the wireless LAN packet from the subframes SF2 to SF5, the LTE scheduler 402 displays the subframe SF4 that is two subframes after the subframe SF2. It is determined that the terminal device 70 cannot be scheduled. That is, LTE scheduler 402 selects only LTE terminal device 60 as a terminal device that can be scheduled in subframe SF4 that is two subframes after subframe SF2.
  • the base station apparatus 40 postpones without transmitting a downlink signal to the terminal apparatus 70 in LTE. Therefore, it is possible to avoid interference between the wireless LAN packet transmitted by the terminal device 70 and the LTE downlink signal in the terminal device 70.
  • the LTE scheduler 402 performs downlink scheduling of the subframe SF7 at the time of the subframe SF5 that is two subframes before.
  • the time of the subframe SF5 is the time when the terminal device 70 finishes transmitting the wireless LAN packet.
  • the wireless LAN scheduler 401 instructs the wireless LAN-MAC layer unit 201 to transmit CTS / Self immediately after the wireless LAN packet.
  • the wireless LAN-MAC layer unit 201 generates a CTS / Self packet, and the wireless LAN physical layer unit 202 modulates the packet and transmits the packet via the wireless LAN antenna 203.
  • the end time of the subframe SF7 is set from the time when the CTS / Self is transmitted.
  • the NAV is the time until the end time of the subframe SF7, and during this time, the terminal device 70 does not transmit a packet by the wireless LAN. Therefore, it is possible to avoid interference between the LTE downlink signal transmitted from the base station apparatus 40 in the subframe SF7 and the wireless LAN signal transmitted from the terminal apparatus 70.
  • the base station device 40 can set the PIFS shorter than the DIFS to the interval from when the reception of the packet by the wireless LAN is completed until the CTS / Self is transmitted.
  • DIFS is Distributed (coordination function) interframe space
  • PIFS is Point (coordination function) interframe space. These are defined in IEEE 802.11.
  • the base station apparatus 40 can acquire the transmission right preferentially over other wireless LAN terminals, and more reliably extends the NAV until the end time of the subframe SF7, that is, the channel Can be booked.
  • the base station device 40 may transmit a wireless LAN packet to other terminal devices, or transmit any wireless LAN packet. You don't have to.
  • the LTE scheduler 402 assigns data to the terminal device 70 to a subframe SF7 that is two subframes later.
  • the LTE-MAC layer unit 301 generates a packet of data assigned to the subframe SF7 by the LTE scheduler 402.
  • the LTE physical layer unit 302 modulates the packet generated by the LTE-MAC layer unit 301 and transmits the modulated packet through the LTE antenna 303.
  • the LTE scheduler 402 also instructs the LTE-MAC layer unit 301 to generate a control signal for notifying the terminal device 70 that there is downlink data in the subframe SF7. This control signal is transmitted via the LTE-MAC layer unit 301, the LTE physical layer unit 302, and the LTE antenna 303.
  • the value set in the duration field of CTS / Self by wireless LAN scheduler 401 is the time length from the transmission of CTS / Self until the end of packet transmission by LTE. Other values may be used.
  • the base station device 40 delays transmission to the terminal device 70 using the LTE communication unit 43. 44.
  • the base station device 40 transmits an LTE signal to the terminal device 70.
  • the wireless LAN transmission signal and the LTE signal are transmitted. Interference with the received signal can be suppressed.
  • control unit 44 transmits a channel reservation signal in the wireless LAN to the wireless LAN communication unit 42 before transmission to the terminal device 70 using the LTE communication unit 43, and is designated by the signal for a predetermined time.
  • a signal for reserving a channel is transmitted by prohibiting transmission by a device other than the received device.
  • the wireless communication system 100 according to the second embodiment has the same configuration as that of the first embodiment, but the operation of the base station device 40 is partially different.
  • the base station apparatus 40 according to the present embodiment transmits the LTE data to the terminal apparatus 70 earlier than the NAV.
  • finishes or the wireless LAN function of the terminal device 70 is stopped differs from 1st Embodiment.
  • FIG. 8 is a sequence diagram for explaining the operation of the wireless communication system 100 according to the second embodiment.
  • FIG. 8 it is the same as that of FIG. 7 until the base station apparatus 40 transmits CTS / Self.
  • this CTS / Self duration field a time length until the end of the subframe SF9 is set.
  • transmission is completed only in subframe SF7.
  • the LTE scheduler 402 instructs the wireless LAN scheduler 401 to transmit the CF-end defined by IEEE 802.11.
  • CF (Contention-Free) -end is a signal for canceling the NAV that is stretched by CTS / Self until the end time of the subframe SF9. Due to this CF-end, the period of subframes SF8 and SF9 (Cncl in FIG. 8) is cancelled. As a result, the channel reserved by CTS / Self can be released and the wireless LAN channel can be used effectively.
  • FIG. 8 shows a case where LTE transmission is completed earlier than NAV.
  • LTE transmission is not performed in NAV, or when the wireless LAN function of the terminal device 70 is stopped.
  • CF-end is transmitted.
  • transmission in LTE is not performed in NAV, when transmission is postponed, the LTE function of terminal device 70 is stopped.
  • the control unit 44 causes the wireless LAN communication unit 42 to transmit a signal for canceling the channel reservation at any of the following three times.
  • the first is when transmission to the terminal device 70 using the LTE communication unit 43 is completed within the NAV.
  • the second is when NAV is not transmitted to the terminal device 70 using the LTE communication unit 43.
  • the third is when the wireless LAN function of the terminal device 70 is stopped.
  • the radio communication system 100 in the third embodiment has the same configuration as the radio communication system 100 in the first embodiment, but the operation of the base station device 40 is partially different. More specifically, the base station apparatus 40 performs transmission by LTE after channel reservation by CTS / Self to a plurality of terminal apparatuses 70 by frequency multiplexing. In LTE, since OFDMA (Orthogonal Frequency Division Multiple Access) is used, transmission to a plurality of terminal devices 70 can be frequency-multiplexed in the same subframe.
  • OFDMA Orthogonal Frequency Division Multiple Access
  • FIG. 9 is a flowchart for explaining the operation of the LTE scheduler 402 in the present embodiment. 9, parts corresponding to those in FIG. 6 are denoted by the same reference numerals, and description thereof is omitted.
  • the flowchart of FIG. 9 differs from the flowchart of FIG. 9 in that step Sb7 is provided instead of step Sa7.
  • step Sb7 the LTE scheduler 402 schedules transmission of all the terminal devices 70 corresponding to the wireless LAN and LTE after two subframes. Note that the LTE scheduler 402 does not transmit all terminal devices 70 corresponding to the wireless LAN and LTE, but transmits the terminal device 70 that performs communication using the wireless LAN with the base station device 40 after two subframes. You may make it schedule.
  • FIG. 10 is a sequence diagram for explaining the operation of the wireless communication system 101. In the sequence diagram of FIG. 10, differences from FIG. 7 will be described.
  • M1_LTE indicates transmission / reception using LTE in the first terminal apparatus 70.
  • M1_WLL indicates transmission / reception using the wireless LAN in the first terminal device 70.
  • M2_LTE indicates transmission / reception using LTE in the second terminal device 70.
  • M2_WLL indicates transmission / reception using the wireless LAN in the second terminal device 70.
  • transmission to the first terminal device 70 and transmission to the second terminal device 70 are assigned to the same subframe SF7.
  • the NAV is applied until the end time of the subframe SF7, and can be shortened.
  • the wireless LAN packet can be transmitted at the time of the subframe SF8, and the wireless LAN channel can be used effectively.
  • the terminal device 70 can suppress interference between the wireless LAN transmission signal and the LTE reception signal. Further, in the third embodiment, the control unit 44 frequency-multiplexes the transmission to the other terminal device 70 in the transmission to the terminal device 70 using the LTE communication unit 43. As a result, it is possible to suppress the channel reservation time from being lengthened and to effectively use the wireless LAN channel.
  • the radio communication system 100 according to the fourth embodiment has the same configuration as that of FIG. 1, but the operation of the base station device 40 is different. Specifically, the base station device 40 is different in that the CTS / Self packet is transmitted in the direction of the terminal device 70 with directivity.
  • FIG. 11 is a schematic block diagram illustrating a configuration related to transmission of the wireless LAN physical layer unit 202 and the wireless LAN antenna 203 in the present embodiment.
  • the wireless LAN physical layer unit 202 includes an encoding unit 221, a modulation unit 222, a copy unit 223, a weight multiplication unit 224, an IFFT unit 225, and a filter unit 226.
  • the wireless LAN antenna 203 includes a first antenna 231 and a second antenna 232.
  • the encoding unit 221 performs error correction encoding on the bit string constituting the packet input from the wireless LAN-MAC layer unit 201.
  • the error correction code to be used may be a low density parity check code, a Viterbi code, or the like.
  • Modulation section 222 modulates the bit string that has been error correction encoded by encoding section 221 to generate a modulated symbol string.
  • BPSK Binary Phase Shift Keying
  • QPSK Quadrature Phase Shift Keying
  • 16QAM Quadrature Amplitude Modulation
  • the copy unit 223 copies the modulation symbol sequence generated by the modulation unit 222 and generates the same two modulation symbol sequences.
  • the weight multiplication unit 224 regards the two modulation symbol sequences generated by the copy unit 223 as frequency domain signals, and multiplies each by a weight (weight).
  • the weight multiplying unit 224 sets these weights as weights that give directivity to the target terminal device 70.
  • a weight calculation method for example, a method described in Patent Document 3 (Japanese Patent Laid-Open No. 2013-70157) can be applied.
  • the IFFT unit 225 performs inverse fast Fourier transform on each of the two frequency domain signals multiplied by the weights by the weight multiplication unit 224 to convert the signals into two time domain signals.
  • the filter unit 226 performs filter processing for cutting high frequency components on the two time domain signals converted by the IFFT unit 225.
  • the filter unit 226 transmits the filtered two time-domain signals via the first antenna 231 and the second antenna 232, respectively.
  • the wireless LAN antenna 203 has two antennas, but may be three or more.
  • the copy unit 223 generates a number of modulation symbol sequences corresponding to the number of antennas.
  • the weight multiplication unit 224, the IFFT unit 225, and the filter unit 226 also perform processing on each of the number of signals corresponding to the number of antennas.
  • FIG. 12 is a schematic diagram illustrating an example of directivity when transmitting CTS / Self.
  • the BFA is a range in which the CTS / Self transmitted with directivity by the base station apparatus 40 can be received.
  • the terminal device 70-1 is the terminal device 70 that is the destination of data transmission by LTE.
  • the terminal device 70-2 is a terminal device 70 that is not a destination of data transmission by LTE.
  • the terminal device 70-1 Since the terminal device 70-1 which is the destination of data transmission by LTE is located within the range BFA, it receives CTS / Self. For this reason, the terminal device 70-1 does not transmit a packet by the wireless LAN during the NAV stretched by the CTS / Self. Therefore, it is possible to suppress interference between the LTE signal to the terminal device 70-1 and the wireless LAN signal transmitted by the terminal device 70-1.
  • the terminal device 70-2 that is not the destination of the data transmission by LTE since the terminal device 70-2 that is not the destination of the data transmission by LTE is located outside the range BFA, it does not receive the CTS / Self. For this reason, the terminal device 70-2 can transmit a packet by the wireless LAN even during the NAV stretched by the CTS / Self.
  • the terminal device 70 can suppress interference between the wireless LAN transmission signal and the LTE reception signal. Furthermore, in the fourth embodiment, the wireless LAN communication unit 42 transmits a channel reservation signal (CTS / Self) with directivity in the direction of the terminal device 70-1. Thereby, the terminal devices 70 other than the terminal device 70-1 can transmit data by the wireless LAN even during the channel reserved time. That is, the wireless LAN channel can be used effectively.
  • CTS / Self channel reservation signal
  • the radio communication system 100 according to the fourth embodiment has the same configuration as that of FIG. 1, but the operation of the base station device 40 is different. Specifically, the base station device 40 in the first embodiment transmits the CTS in which the multicast address is set as the destination address (hereinafter referred to as CTS / multi) instead of the CTS / Self. And different.
  • CTS / multi the destination address
  • the wireless LAN identification information (MAC address) of the terminal device 70 that is the destination of data transmission by LTE is used. ).
  • the wireless LAN scheduler 401 selects one multicast address of a multicast group that does not include the notified MAC address from among previously stored multicast addresses.
  • the wireless LAN scheduler 401 instructs the wireless LAN-MAC layer unit 201 to transmit CTS / multi with the selected multicast address set as the destination address.
  • the subsequent steps are the same as in the first embodiment.
  • the wireless LAN scheduler 401 may select one multicast address from the multicast addresses stored in advance, either randomly or in a predetermined order. It may be a method.
  • FIG. 13 is a table showing an example of multicast address information stored in the wireless LAN scheduler 401.
  • the wireless LAN scheduler 401 stores each multicast address in association with the MAC address of the terminal device 70 belonging to the multicast group of the multicast address.
  • the multicast address “address M1” is associated with the MAC addresses “address A1, address A2, address A3” of the terminal devices 70 belonging to the multicast group of this multicast address.
  • the wireless LAN scheduler 401 selects “address M1” or “address M2” which is a multicast address not associated with “address A5”.
  • the base station device 40 notifies each terminal device 70 of the multicast address of the multicast group to which the terminal device 70 belongs at the time of association or reassociation.
  • the CTS prohibits transmission of packets to devices other than the address set as the destination address.
  • the multicast address “address M1” is set as the destination address of CTS / multi.
  • the device whose “address M1” is the multicast address of the multicast group to which the own device belongs can transmit packets via the wireless LAN. Therefore, the wireless LAN channel can be used effectively.
  • the terminal device 70 similarly to the first embodiment, in the terminal device 70, it is possible to suppress interference between the wireless LAN transmission signal and the LTE reception signal. Furthermore, in the fifth embodiment, a multicast group is designated in the channel reservation signal, and the designated multicast group does not include the terminal device 70 that is the destination of transmission using the LTE communication unit 43. Thereby, even if the channel reservation is made, the terminal device 70 belonging to the multicast group designated by the channel reservation signal can transmit the wireless LAN packet. Therefore, the wireless LAN channel can be used effectively.
  • LTE is exemplified as an example of a cellular system.
  • a cellular system of the next generation or later such as LTE-A (Advanced) may be used, or a third generation such as W-CDMA.
  • the previous cellular method may be used.
  • the base station apparatus 40 includes the control unit 44, but is divided into a wireless LAN control unit 44a that is a control unit related to the wireless LAN and an LTE control unit 44b that is a control unit related to LTE. May be.
  • FIG. 14 is a schematic block diagram illustrating a configuration of a base station device 40a having a wireless LAN control unit 44a and an LTE control unit 44b. 14, parts corresponding to those in FIG. 2 are denoted by the same reference numerals, and description thereof is omitted.
  • the base station device 40a includes a communication unit 41, a wireless LAN module 45, and an LTE module 46.
  • the wireless LAN module 45 includes a wireless LAN communication unit 42 and a wireless LAN control unit 44a.
  • the wireless LAN control unit 44 a includes a wireless LAN scheduler 401 and a wireless LAN external interface 404.
  • the LTE module 46 includes an LTE communication unit 43 and an LTE control unit 44b.
  • the LTE control unit 44b includes a correspondence acquisition unit 403, an LTE scheduler 402, and an LTE external interface 405.
  • the wireless LAN scheduler 401 and the LTE scheduler 402 communicate with each other via the wireless LAN external interface 404 and the LTE external interface 405.
  • the base station device 40a may be divided into a wireless LAN base station device having the communication unit 41 and the wireless LAN module 45 and a wireless LAN base station device having the communication unit 41 and the LTE module 46.
  • the wireless LAN external interface 404 and the LTE external interface 405 may communicate with each other via the respective communication units 41 instead of directly communicating with each other.
  • the base station apparatus 40 transmits CTS / Self or CTS / multi to establish the NAV, but is not limited thereto.
  • the base station device 40 transmits an RTS (Request-To-Send) to the terminal device 70, and the terminal device 70 transmits CTS / Self or CTS / multi to the base station device 40, so that the NAV is transmitted. You may make it stretch.
  • RTS Request-To-Send
  • the LTE scheduler 402 may communicate with the wireless LAN-MAC layer unit 201 without using the wireless LAN scheduler 401.
  • the control unit 44 may be realized by dedicated hardware such as an LSI, or may be realized by a computer reading and executing a program.
  • the wireless LAN communication unit 42 when the wireless LAN communication unit 42 receives a signal from the terminal device 70, the transmission to the terminal device 70 using the LTE communication unit 43 is postponed.
  • the control unit 44 By having the control unit 44, it is possible to suppress interference between the wireless LAN transmission signal and the LTE reception signal in the terminal device 70.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A wireless communication device according to an embodiment has a first wireless communication unit, a second wireless communication unit and a control unit. The first wireless communication unit performs wireless communication using a first wireless communication method. The second wireless communication unit performs wireless communication using a second wireless communication method. When the second wireless communication unit is receiving, the control unit delays transmission of a signal using the first wireless communication unit.

Description

無線通信装置、集積回路、および無線通信方法Wireless communication apparatus, integrated circuit, and wireless communication method
 本発明の実施形態は、無線通信装置、集積回路、および無線通信方法に関する。 Embodiments described herein relate generally to a wireless communication device, an integrated circuit, and a wireless communication method.
 スマートフォンの普及によりセルラーシステムのトラフィックは増大している。そこで、セルラーシステムと、無線LAN(Local Area Network)との双方で通信可能なスマートフォンのトラフィックを、無線LANへオフロードすることが積極的に行われている。
 しかし、スマートフォン等の端末内に無線LANによる通信を行うユニットと、セルラーシステムによる通信を行うユニットとを備える場合、これらのユニット間で干渉が生じることがある。例えば、セルラーシステムの一種であるLTE(Long Term Evolution)が、2.5GHz帯を用い、無線LANが2.4GHz帯を用いる場合、これらの周波数帯は異なっている。しかし、小さな筐体内に両者が実装されるために干渉が生じる場合がある。
The traffic of cellular systems is increasing due to the spread of smartphones. Therefore, off-loading of smartphone traffic that can be communicated with both a cellular system and a wireless local area network (LAN) to the wireless LAN has been actively performed.
However, when a unit that performs communication by wireless LAN and a unit that performs communication by a cellular system are provided in a terminal such as a smartphone, interference may occur between these units. For example, when LTE (Long Term Evolution), which is a kind of cellular system, uses a 2.5 GHz band and a wireless LAN uses a 2.4 GHz band, these frequency bands are different. However, interference may occur because both are mounted in a small casing.
特開2010-56653号公報JP 2010-56653 A 特開2010-199922号公報JP 2010-199922 A 特開2013-70157号公報JP 2013-70157 A
 本発明が解決しようとする課題は、複数の無線通信方式が実装されている端末において発生する干渉を抑えることができる無線通信装置、集積回路、および無線通信方法を提供することである。 The problem to be solved by the present invention is to provide a wireless communication device, an integrated circuit, and a wireless communication method capable of suppressing interference generated in a terminal in which a plurality of wireless communication systems are mounted.
 実施形態の無線通信装置は、第1無線通信部と、第2無線通信部と、制御部とを持つ。第1無線通信部は、第1無線通信方式を用いた無線通信を行う。第2無線通信部は、第2無線通信方式を用いた無線通信を行う。制御部は、第2無線通信部が信号を受信しているときは、第1無線通信部を用いた信号の送信を延期させる。 The wireless communication apparatus according to the embodiment includes a first wireless communication unit, a second wireless communication unit, and a control unit. The first wireless communication unit performs wireless communication using the first wireless communication method. The second wireless communication unit performs wireless communication using the second wireless communication method. When the second wireless communication unit is receiving a signal, the control unit delays transmission of the signal using the first wireless communication unit.
第1の実施形態の無線通信システム100の構成を示す概略ブロック図。1 is a schematic block diagram illustrating a configuration of a wireless communication system 100 according to a first embodiment. 基地局装置40の構成を示す概略ブロック図。FIG. 2 is a schematic block diagram showing a configuration of a base station device 40. 基地局40のハードウェア構成の一例を示す図である。2 is a diagram illustrating an example of a hardware configuration of a base station 40. FIG. 基地局40のハードウェア構成の他の例を示す図である。FIG. 3 is a diagram illustrating another example of the hardware configuration of the base station 40. 基地局40のハードウェア構成の他の例を示す図である。FIG. 3 is a diagram illustrating another example of the hardware configuration of the base station 40. LTEスケジューラ402の動作を示すフロー図。The flowchart which shows operation | movement of the LTE scheduler 402. 無線通信システム100の動作を示すシーケンス図。FIG. 3 is a sequence diagram showing an operation of the wireless communication system 100. 第2の実施形態の無線通信システム100の動作を示すシーケンス図。The sequence diagram which shows operation | movement of the radio | wireless communications system 100 of 2nd Embodiment. 第3の実施形態のLTEスケジューラ402の動作を示すフロー図。The flowchart which shows operation | movement of the LTE scheduler 402 of 3rd Embodiment. 無線通信システム101の動作を示すシーケンス図。FIG. 9 is a sequence diagram showing an operation of the wireless communication system 101. 第4の実施形態の無線LAN物理層部202、無線LANアンテナ203の送信に係る構成を示す概略ブロック図。FIG. 10 is a schematic block diagram illustrating a configuration related to transmission of a wireless LAN physical layer unit 202 and a wireless LAN antenna 203 according to a fourth embodiment. CTS/Selfを送信する際の指向性の例を示す模式図。The schematic diagram which shows the example of the directivity at the time of transmitting CTS / Self. 第5の実施形態の無線LANスケジューラ401が記憶しているマルチキャストアドレスの情報例を示すテーブル。The table which shows the example of information of the multicast address which the wireless LAN scheduler 401 of 5th Embodiment has memorize | stored. 各実施形態の変形例の基地局装置40aの構成を示す概略ブロック図。The schematic block diagram which shows the structure of the base station apparatus 40a of the modification of each embodiment.
 以下、実施形態の無線通信装置、集積回路、および無線通信方法を、図面を参照して説明する。 Hereinafter, a wireless communication device, an integrated circuit, and a wireless communication method according to embodiments will be described with reference to the drawings.
 (第1の実施形態)
 図1は、第1の実施形態における無線通信システム100の構成を示す概略ブロック図である。無線通信システム100は、PDN(Packet Data Network)ゲートウェイ20と、ネットワーク30と、基地局装置40と、加入者管理装置50(端末管理装置)と、LTE(Long Term Evolution)端末装置60と、複数の端末装置70(相手装置)とを含む。外部ネットワーク10は、インターネットなどの外部のネットワークである。PDNゲートウェイ20は、外部ネットワーク10と移動体通信網とを接続する。例えば、PDNゲートウェイ20は、移動体通信網に接続されているLTE端末装置60および端末装置70と、外部ネットワーク10に接続されている装置との間の通信を仲介する。ネットワーク30は、PDNゲートウェイ20、基地局装置40、加入者管理装置50を通信接続可能に接続し、移動体通信網を構成する。なお、ネットワーク30には、複数の基地局装置40が接続されていてもよい。また、端末装置70は、単数であってもよい。また、ネットワーク30内には基地局装置40と接続されるServing gateway(図示しない)があっても良い。
(First embodiment)
FIG. 1 is a schematic block diagram illustrating a configuration of a wireless communication system 100 according to the first embodiment. The wireless communication system 100 includes a PDN (Packet Data Network) gateway 20, a network 30, a base station device 40, a subscriber management device 50 (terminal management device), an LTE (Long Term Evolution) terminal device 60, and a plurality of devices. Terminal device 70 (partner device). The external network 10 is an external network such as the Internet. The PDN gateway 20 connects the external network 10 and the mobile communication network. For example, the PDN gateway 20 mediates communication between the LTE terminal device 60 and the terminal device 70 connected to the mobile communication network and the device connected to the external network 10. The network 30 connects the PDN gateway 20, the base station device 40, and the subscriber management device 50 so that they can communicate with each other, thereby constituting a mobile communication network. Note that a plurality of base station devices 40 may be connected to the network 30. Moreover, the terminal device 70 may be single. In addition, a serving gateway (not shown) connected to the base station device 40 may be provided in the network 30.
 基地局装置40は、LTE(第1無線通信方式)の基地局機能と、無線LAN(第2無線通信方式)のアクセスポイント機能とを有する無線通信装置である。基地局機能とは、例えば、LTEにより基地局装置40に通信接続している端末装置70と、その他の装置との通信やインターネットなどの外部のネットワークとの通信を仲介する機能である。アクセスポイント機能とは、例えば、無線LANにより基地局装置40に通信接続している端末装置70と、その他の装置との通信やインターネットなどの外部のネットワークとの通信を仲介する機能である。その他の装置としては、外部ネットワーク10またはネットワーク30に接続されたサーバ、他の基地局装置40に接続された他の端末装置70などがある。なお、LTEの基地局は、evolved Node B(eNB)とも呼ばれる。 The base station device 40 is a wireless communication device having a base station function of LTE (first wireless communication system) and an access point function of wireless LAN (second wireless communication system). The base station function is, for example, a function that mediates communication between the terminal device 70 that is connected to the base station device 40 via LTE and communication with other devices or an external network such as the Internet. The access point function is, for example, a function that mediates communication between the terminal device 70 that is communicatively connected to the base station device 40 via a wireless LAN and communication with other devices or an external network such as the Internet. Examples of other devices include a server connected to the external network 10 or the network 30, and another terminal device 70 connected to another base station device 40. The LTE base station is also called evolvedeNode B (eNB).
 加入者管理装置50は、基地局装置40を用いた通信サービスに加入している加入者の情報を管理する。具体的には、加入者管理装置50は、各加入者が使用している端末装置70のLTEにおける識別情報を記憶している。
LTE端末装置60は、LTEの端末機能を有する無線通信装置である。LTEの端末は、User equipment (UE)とも呼ばれる。端末装置70は、例えば、スマートフォンであり、LTEの端末機能と、無線LANの端末機能とを有する無線通信装置である。無線LANの端末は、Station(STA)とも呼ばれる。
The subscriber management device 50 manages information on subscribers who subscribe to a communication service using the base station device 40. Specifically, the subscriber management device 50 stores identification information in LTE of the terminal device 70 used by each subscriber.
The LTE terminal device 60 is a wireless communication device having an LTE terminal function. The LTE terminal is also called user equipment (UE). The terminal device 70 is, for example, a smartphone, and is a wireless communication device having an LTE terminal function and a wireless LAN terminal function. A wireless LAN terminal is also called a Station (STA).
 端末装置70は、例えば、無線LANとLTEの双方を用いることができるところでは、データ通信に無線LANによる通信を用い、電話にLTEによる通信を用いる。このように、端末装置70は、LTEと無線LANの両方の無線通信方式を用いて基地局装置40と通信をする。なお、近年では無線LANの認証のためにLTE端末装置70の識別情報が記録されているSIMカード(Subscriber Identity Module Card)が使われている。無線LANの認証にもSIMカードを用いた場合、加入者管理装置50は端末装置70のLTE端末としてのIDと無線LAN端末としてのIDを対応付けて記憶できる。 For example, where both the wireless LAN and LTE can be used, the terminal device 70 uses wireless LAN communication for data communication and uses LTE communication for a telephone. In this way, the terminal device 70 communicates with the base station device 40 using both LTE and wireless LAN wireless communication schemes. In recent years, a SIM card (Subscriber Identity Module Module Card) in which identification information of the LTE terminal device 70 is recorded is used for wireless LAN authentication. When a SIM card is also used for wireless LAN authentication, the subscriber management device 50 can store the ID of the terminal device 70 as the LTE terminal and the ID of the wireless LAN terminal in association with each other.
 使用される周波数は、LTEと無線LANとで異なる。しかし、両者がスマートフォンのような小さな筐体に実装される場合、筐体内における回りこみや、アンテナを通じた回りこみが発生する。このため、端末装置70が無線LANによる送信を行う際には、この送信による帯域外信号が、端末装置70におけるLTEの受信に対して干渉を起こし、LTEの受信を阻害するのである。 The frequency used differs between LTE and wireless LAN. However, when both are mounted in a small housing such as a smartphone, wraparound within the housing or wraparound through the antenna occurs. For this reason, when the terminal device 70 performs transmission by wireless LAN, an out-of-band signal caused by this transmission causes interference with the reception of LTE in the terminal device 70 and inhibits the reception of LTE.
 図2は、基地局装置40の構成を示す概略ブロック図である。基地局装置40は、通信部41、無線LAN通信部42(第2無線通信部)、LTE通信部43(第1無線通信部)、制御部44を含む。無線LAN通信部42は、無線LAN-MAC(Media Access Control)層部201、無線LAN物理層部202、無線LANアンテナ203を含む。LTE通信部43は、LTE-MAC層部301、LTE物理層部302、LTEアンテナ303を含む。制御部44は、無線LANスケジューラ401、LTEスケジューラ402、対応付け取得部403を含む。 FIG. 2 is a schematic block diagram showing the configuration of the base station device 40. As shown in FIG. The base station device 40 includes a communication unit 41, a wireless LAN communication unit 42 (second wireless communication unit), an LTE communication unit 43 (first wireless communication unit), and a control unit 44. The wireless LAN communication unit 42 includes a wireless LAN-MAC (Media Access Control) layer unit 201, a wireless LAN physical layer unit 202, and a wireless LAN antenna 203. The LTE communication unit 43 includes an LTE-MAC layer unit 301, an LTE physical layer unit 302, and an LTE antenna 303. The control unit 44 includes a wireless LAN scheduler 401, an LTE scheduler 402, and an association acquisition unit 403.
 通信部41は、ネットワーク30と接続され、ネットワーク30に接続されている他の装置と、基地局装置40の各部との通信を仲介する。無線LAN-MAC層部201は、無線LANによる送受信のMAC層に関する制御を行う。具体的には、無線LAN-MAC層部201は、無線LANを用いて送信するデータまたは制御情報を格納したパケットの生成、無線LAN物理層部202が復調したビット列からのパケットの復元などを行う。無線LAN-MAC層部201は、無線LANを用いて送信するデータを、通信部41を介して他の装置から受信する。また、無線LAN-MAC層部201は、復元したパケットを、通信部41を介して、パケットの宛先の装置に送信する。 The communication unit 41 is connected to the network 30 and mediates communication between other units connected to the network 30 and each unit of the base station device 40. The wireless LAN-MAC layer unit 201 performs control related to the MAC layer for transmission / reception via the wireless LAN. Specifically, the wireless LAN-MAC layer unit 201 generates a packet storing data or control information to be transmitted using the wireless LAN, restores a packet from a bit string demodulated by the wireless LAN physical layer unit 202, and the like. . The wireless LAN-MAC layer unit 201 receives data to be transmitted using the wireless LAN from another device via the communication unit 41. Also, the wireless LAN-MAC layer unit 201 transmits the restored packet to the packet destination device via the communication unit 41.
 無線LAN物理層部202は、無線LANによる送受信の物理層に関する制御を行う。具体的には、無線LAN物理層部202は、無線LAN-MAC層部201が作成したパケットの変調、無線LANアンテナ203を用いた送信、無線LANアンテナ203を用いた受信、受信した信号の復調などを行う。無線LANアンテナ203は、無線LANによる信号の送受信を行うアンテナである。なお、無線LANアンテナ203は、複数のアンテナを有していてもよい。 The wireless LAN physical layer unit 202 performs control related to a physical layer for transmission / reception via the wireless LAN. Specifically, the wireless LAN physical layer unit 202 modulates the packet created by the wireless LAN-MAC layer unit 201, transmits using the wireless LAN antenna 203, receives using the wireless LAN antenna 203, and demodulates the received signal. And so on. The wireless LAN antenna 203 is an antenna that transmits and receives signals via a wireless LAN. The wireless LAN antenna 203 may have a plurality of antennas.
 LTE-MAC層部301は、LTEを用いて送受信のMAC層に関する制御を行う。具体的には、LTE-MAC層部301は、LTEを用いて送信するデータまたは制御情報を格納したパケットの生成、LTE物理層部302が復調したビット列からのパケットの復元などを行う。LTE-MAC層部301は、LTEを用いて送信するデータを、通信部41を介して他の装置から受信する。また、LTE-MAC層部301は、復元したパケットを、通信部41を介して、パケットの宛先の装置に送信する。 The LTE-MAC layer unit 301 performs control related to a transmission / reception MAC layer using LTE. Specifically, the LTE-MAC layer unit 301 generates a packet storing data or control information to be transmitted using LTE, restores a packet from the bit string demodulated by the LTE physical layer unit 302, and the like. The LTE-MAC layer unit 301 receives data to be transmitted using LTE from another device via the communication unit 41. Also, the LTE-MAC layer unit 301 transmits the restored packet to the packet destination device via the communication unit 41.
 LTE物理層部302は、LTEによる送受信の物理層に関する制御を行う。具体的には、LTE物理層部302は、LTE-MAC層部301が作成したパケットの変調、LTEアンテナ303を用いた送信、LTEアンテナ303を用いた受信、受信した信号の復調などを行う。LTEアンテナ303は、LTEによる信号の送受信を行うアンテナである。なお、LTEアンテナ303は、複数のアンテナを有していてもよい。 The LTE physical layer unit 302 performs control related to a physical layer for transmission and reception by LTE. Specifically, the LTE physical layer unit 302 performs modulation of a packet created by the LTE-MAC layer unit 301, transmission using the LTE antenna 303, reception using the LTE antenna 303, demodulation of the received signal, and the like. The LTE antenna 303 is an antenna that transmits and receives signals by LTE. Note that the LTE antenna 303 may have a plurality of antennas.
 無線LANスケジューラ401は、無線LANによるパケットの送信タイミングを決定する。また、無線LANスケジューラ401は、無線LAN-MAC層部201が無線LANによるパケットを受信し始めたときに、そのパケットのパケット情報を生成し、LTEスケジューラ402に通知する。パケット情報は、そのパケットのパケット長と、送信元の識別情報と、受信開始時刻とを含む情報である。 The wireless LAN scheduler 401 determines the transmission timing of packets by the wireless LAN. In addition, when the wireless LAN-MAC layer unit 201 starts receiving a wireless LAN packet, the wireless LAN scheduler 401 generates packet information of the packet and notifies the LTE scheduler 402 of the packet information. The packet information is information including the packet length of the packet, the identification information of the transmission source, and the reception start time.
 また、無線LANスケジューラ401は、LTEスケジューラ402からチャネル予約の信号であるCTS(Clear To Send)/Self(CTS-to-selfともいう)の送信を要求されたときは、無線LAN-MAC層部201に、CTS/Selfを表すパケットを送信する指示を無線LAN-MAC層部201に出す。なお、LTEスケジューラ402からの要求には、チャネルを予約する時間長も含まれており、無線LANスケジューラ401は、無線LAN-MAC層部201に対して、CTS/Selfを表すパケットに該時間長を示す情報を含めさせる。なお、CTS/Selfは、無線LANにおけるチャネル予約の信号であり、信号を送信した局以外の局に対して、パケットの送信を禁止するための信号である。 When the LTE scheduler 402 requests transmission of CTS (Clear To Send) / Self (also referred to as CTS-to-self) as a channel reservation signal, the wireless LAN scheduler 401 An instruction to transmit a packet representing CTS / Self is issued to the wireless LAN-MAC layer unit 201 in 201. Note that the request from the LTE scheduler 402 also includes a time length for reserving a channel, and the wireless LAN scheduler 401 sends the time length to the packet representing CTS / Self to the wireless LAN-MAC layer unit 201. Include information that indicates. CTS / Self is a channel reservation signal in the wireless LAN, and is a signal for prohibiting packet transmission to stations other than the station that transmitted the signal.
 なお、CTS/Selfは、IEEE802.11にて規定されているCTSの一形態である。CTSは、そのパケットのMACヘッダの宛先アドレス(MACアドレス)に設定されているアドレス以外の装置に対して、パケットの送信を禁止する信号である。CTS/Selfは、そのパケットのMACヘッダの宛先アドレスに自装置のアドレスが設定されているため、自装置以外の装置に対して、パケットの送信を禁止している。また、CTSのMACヘッダのデュレーションフィールド(duration field)に設定された値は、NAV(Network Allocation Vector)と呼ばれ、パケットの送信を禁止する時間長である。 Note that CTS / Self is a form of CTS defined in IEEE 802.11. The CTS is a signal for prohibiting packet transmission to a device other than the address set in the destination address (MAC address) of the MAC header of the packet. CTS / Self prohibits the transmission of packets to devices other than the own device because the address of the own device is set as the destination address of the MAC header of the packet. Also, the value set in the duration field (duration field) of the MAC header of the CTS is called NAV (Network Allocation Vector) and is a time length for prohibiting packet transmission.
 LTEスケジューラ402は、所定の時間経過後に、LTEにより送信するデータを決定する。LTEスケジューラ402による処理の概要を説明する。本実施形態では、所定の時間を2サブフレームとするが、1サブフレーム後であってもよいし、3サブフレーム以上後であってもよい。なお、サブフレームは、LTEにおけるスケジューリングの時間単位である。LTEスケジューラ402は、データの送信を要求されると、2サブフレーム後に、データの送信先の端末装置70から無線LANのパケットを受信中であるか否かを判定する。LTEスケジューラ402は、この判定を行う際に、無線LANスケジューラ401から通知されたパケット情報を参照する。 The LTE scheduler 402 determines data to be transmitted by LTE after a predetermined time has elapsed. An overview of processing by the LTE scheduler 402 will be described. In the present embodiment, the predetermined time is 2 subframes, but it may be after 1 subframe or after 3 subframes. The subframe is a time unit for scheduling in LTE. When requested to transmit data, the LTE scheduler 402 determines whether or not a wireless LAN packet is being received from the terminal device 70 that is the data transmission destination after two subframes. When making this determination, the LTE scheduler 402 refers to the packet information notified from the wireless LAN scheduler 401.
 受信中であると判定したときは、LTEスケジューラ402は、対象となっているデータの送信を延期する。受信中でないと判定したときは、LTEスケジューラ402は、無線LANスケジューラ401に対して、CTS/Selfの送信を要求する。CTS/Selfの送信が完了すると、LTEスケジューラ402は、対象となっているデータの送信を、2サブフレーム後に割り当てる。 When it is determined that the data is being received, the LTE scheduler 402 postpones transmission of the target data. When it is determined that it is not being received, the LTE scheduler 402 requests the wireless LAN scheduler 401 to transmit CTS / Self. When the transmission of CTS / Self is completed, the LTE scheduler 402 allocates the transmission of the target data after two subframes.
 対応付け取得部403は、端末装置70の各々の無線LANにおける識別情報(IPアドレス、MACアドレスなど)と、LTEにおける識別情報(IPアドレス、MACアドレスなど)との対応付けを、PDNゲートウェイ20または加入者管理装置50から取得する。この対応付けは、LTEスケジューラ402が、上述したように、CTS/Selfの送信の2サブフレーム後に、データの送信先の端末装置70から無線LANのパケットを受信中であるか否かを判定する際に用いられる。具体的には、パケット情報に含まれる送信元の識別情報が無線LANにおける識別情報であるので、LTEスケジューラ402は、この識別情報を、LTEにおける識別情報に変換する。次に、LTEスケジューラ402は、変換後のLTEにおける識別情報と、LTEによるデータの送信先の端末装置70の識別情報とが同一であるか否かを判定する。そして、LTEスケジューラ402は、同一であったときは、受信中であると判定する。 The association acquisition unit 403 associates the identification information (IP address, MAC address, etc.) in each wireless LAN of the terminal device 70 with the identification information (IP address, MAC address, etc.) in LTE. Obtained from the subscriber management device 50. As described above, this association is performed by determining whether the LTE scheduler 402 is receiving a wireless LAN packet from the terminal device 70 that is the data transmission destination after two subframes of CTS / Self transmission. Used when. Specifically, since the identification information of the transmission source included in the packet information is identification information in the wireless LAN, the LTE scheduler 402 converts this identification information into identification information in LTE. Next, the LTE scheduler 402 determines whether or not the identification information in the converted LTE is the same as the identification information of the terminal device 70 that is a transmission destination of data by LTE. When the LTE scheduler 402 is the same, the LTE scheduler 402 determines that reception is in progress.
 図3は、基地局40のハードウェア構成の一例を示す図である。通信部41は、制御回路410を有する。制御部44は、通信部41の制御回路410と接続された制御回路440を有する。制御回路440は、制御部44の各機能(無線LANスケジューラ401、LTEスケジューラ402、および対応付け取得部403)を実行する。 FIG. 3 is a diagram illustrating an example of a hardware configuration of the base station 40. The communication unit 41 includes a control circuit 410. The control unit 44 includes a control circuit 440 connected to the control circuit 410 of the communication unit 41. The control circuit 440 executes the functions of the control unit 44 (wireless LAN scheduler 401, LTE scheduler 402, and association acquisition unit 403).
 無線LAN-MAC層部201は、制御回路420と、送信処理回路421と、受信処理回路423とを含む。制御回路420は、通信部41の制御回路410および制御部44の制御回路440と接続されている。また、無線LAN物理層部202は、送信信号処理回路427と、受信信号処理回路428と、DA変換回路422と、AD変換回路424と、RF送信回路425と、RF受信回路426とを含む。なお、無線LAN-MAC層部201と無線LAN物理層部202は1チップのICとして実現されることが多い。 The wireless LAN-MAC layer unit 201 includes a control circuit 420, a transmission processing circuit 421, and a reception processing circuit 423. The control circuit 420 is connected to the control circuit 410 of the communication unit 41 and the control circuit 440 of the control unit 44. The wireless LAN physical layer unit 202 includes a transmission signal processing circuit 427, a reception signal processing circuit 428, a DA conversion circuit 422, an AD conversion circuit 424, an RF transmission circuit 425, and an RF reception circuit 426. The wireless LAN-MAC layer unit 201 and the wireless LAN physical layer unit 202 are often realized as a one-chip IC.
 制御回路420は、MAC層等の処理を行う。制御回路420はクロック生成部を含んでもよい。送信処理回路421は、プリアンブルパターン及びPHYヘッダの追加や符号化、変調(MIMO変調を含んでも良い)などの処理を行う。 The control circuit 420 performs processing such as a MAC layer. The control circuit 420 may include a clock generation unit. The transmission processing circuit 421 performs processing such as addition, encoding, and modulation (may include MIMO modulation) of a preamble pattern and a PHY header.
 無線LAN物理層部202は、一例としてRFアナログICあるいは高周波ICである。無線LAN物理層部202における送信信号処理回路427は、送信処理回路421によって処理された信号をDA変換回路422へ送信する。DA変換回路422は、送信信号処理回路427から受信した信号をDA変換する。RF送信回路425は、DA変換回路422によりDA変換されたフレームの信号から所望帯域の信号を抽出する送信フィルタ、発振装置から供給される一定周波数の信号を利用して、フィルタリング後の信号を無線周波数にアップコンバートするミキサ、アップコンバート後の信号を増幅するプリアンプ(PA)等を含む。 The wireless LAN physical layer unit 202 is, for example, an RF analog IC or a high frequency IC. The transmission signal processing circuit 427 in the wireless LAN physical layer unit 202 transmits the signal processed by the transmission processing circuit 421 to the DA conversion circuit 422. The DA conversion circuit 422 performs DA conversion on the signal received from the transmission signal processing circuit 427. The RF transmission circuit 425 wirelessly transmits the filtered signal using a transmission filter that extracts a signal in a desired band from the signal of the frame DA-converted by the DA conversion circuit 422 and a signal having a constant frequency supplied from the oscillation device. It includes a mixer that upconverts the frequency, a preamplifier (PA) that amplifies the signal after the upconversion, and the like.
 無線LAN物理層部202におけるRF受信回路426は、アンテナ203で受信された信号を増幅するLNA(低雑音増幅器)、発振装置から供給される一定周波数の信号を利用して、増幅後の信号をベースバンドにダウンコンバートするミキサ、ダウンコンバート後の信号から所望帯域の信号を抽出する受信フィルタ等を含む。AD変換回路424は、RF受信回路426からの信号をAD変換する。受信信号処理回路428は、AD変換回路424によってAD変換された信号を受信処理回路423へ送信する。 The RF receiving circuit 426 in the wireless LAN physical layer unit 202 uses an LNA (low noise amplifier) that amplifies the signal received by the antenna 203, and a signal having a constant frequency supplied from the oscillation device, and outputs the amplified signal. It includes a mixer for down-converting to baseband, a reception filter for extracting a signal in a desired band from the down-converted signal, and the like. The AD conversion circuit 424 AD converts the signal from the RF reception circuit 426. The reception signal processing circuit 428 transmits the signal AD-converted by the AD conversion circuit 424 to the reception processing circuit 423.
 制御回路420は、RF送信回路425の送信フィルタおよびRF受信回路426の受信フィルタの動作を制御してもよい。RF送信回路425およびRF受信回路426を制御する別の制御部が存在し、制御回路420がその制御部に指示を出すことで、同様の制御を行ってもよい。 The control circuit 420 may control the operation of the transmission filter of the RF transmission circuit 425 and the reception filter of the RF reception circuit 426. There may be another control unit that controls the RF transmission circuit 425 and the RF reception circuit 426, and the same control may be performed by the control circuit 420 issuing an instruction to the control unit.
 無線LAN-MAC層部201における受信処理回路423は、信号の復調処理(MIMO復調を含む)、プリアンブルパターン及びPHYヘッダを取り除く処理などを行い、処理後のフレームを制御回路420に渡す。 The reception processing circuit 423 in the wireless LAN-MAC layer unit 201 performs signal demodulation processing (including MIMO demodulation), processing to remove a preamble pattern and a PHY header, and passes the processed frame to the control circuit 420.
 なお、無線LANアンテナ203を、RF送信回路425およびRF受信回路426のいずれか一方に切り換えるスイッチが無線LAN物理層部202に配置されてもよい。スイッチを制御することで、送信時には無線LANアンテナ203をRF送信回路425に接続し、受信時には、無線LANアンテナ203をRF受信回路426に接続してもよい。 Note that a switch for switching the wireless LAN antenna 203 to one of the RF transmission circuit 425 and the RF reception circuit 426 may be arranged in the wireless LAN physical layer unit 202. By controlling the switch, the wireless LAN antenna 203 may be connected to the RF transmission circuit 425 during transmission, and the wireless LAN antenna 203 may be connected to the RF reception circuit 426 during reception.
 LTE-MAC層部301は、制御回路430と、送信処理回路431と、受信処理回路433とを含む1チップのICである。制御回路430は、通信部41の制御回路410および制御部44の制御回路440と接続されている。また、LTE物理層部302は、送信信号処理回路437と、受信信号処理回路438と、DA変換回路432と、AD変換回路434と、RF送信回路435と、RF受信回路436とを含む1チップのICである。 The LTE-MAC layer unit 301 is a one-chip IC including a control circuit 430, a transmission processing circuit 431, and a reception processing circuit 433. The control circuit 430 is connected to the control circuit 410 of the communication unit 41 and the control circuit 440 of the control unit 44. In addition, the LTE physical layer unit 302 includes a transmission signal processing circuit 437, a reception signal processing circuit 438, a DA conversion circuit 432, an AD conversion circuit 434, an RF transmission circuit 435, and an RF reception circuit 436. IC.
 制御回路430は、MAC層等の処理を行う。制御回路430はクロック生成部を含んでもよい。送信処理回路431は、プリアンブルパターン及びPHYヘッダの追加や符号化、変調(MIMO変調を含んでも良い)などの処理を行う。 The control circuit 430 performs processing such as the MAC layer. The control circuit 430 may include a clock generation unit. The transmission processing circuit 431 performs processing such as addition, encoding, and modulation (may include MIMO modulation) of a preamble pattern and a PHY header.
 LTE物理層部302は、一例としてRFアナログICあるいは高周波ICである。LTE物理層部302における送信信号処理回路437は、送信処理回路431によって処理された信号をDA変換回路432へ送信する。DA変換回路432は、送信信号処理回路437から受信した信号をDA変換する。RF送信回路435は、DA変換回路432によりDA変換されたフレームの信号から所望帯域の信号を抽出する送信フィルタ、発振装置から供給される一定周波数の信号を利用して、フィルタリング後の信号を無線周波数にアップコンバートするミキサ、アップコンバート後の信号を増幅するプリアンプ(PA)等を含む。 The LTE physical layer unit 302 is, for example, an RF analog IC or a high frequency IC. The transmission signal processing circuit 437 in the LTE physical layer unit 302 transmits the signal processed by the transmission processing circuit 431 to the DA conversion circuit 432. The DA conversion circuit 432 DA converts the signal received from the transmission signal processing circuit 437. The RF transmission circuit 435 wirelessly transmits a signal after filtering using a transmission filter that extracts a signal in a desired band from the signal of the frame DA-converted by the DA conversion circuit 432 and a signal having a constant frequency supplied from the oscillation device. It includes a mixer that upconverts the frequency, a preamplifier (PA) that amplifies the signal after the upconversion, and the like.
 LTE物理層部302におけるRF受信回路436は、アンテナ303で受信された信号を増幅するLNA(低雑音増幅器)、発振装置から供給される一定周波数の信号を利用して、増幅後の信号をベースバンドにダウンコンバートするミキサ、ダウンコンバート後の信号から所望帯域の信号を抽出する受信フィルタ等を含む。AD変換回路434は、RF受信回路436からの信号をAD変換する。受信信号処理回路438は、AD変換回路434によってAD変換された信号を受信処理回路433へ送信する。 The RF receiving circuit 436 in the LTE physical layer unit 302 uses an LNA (low noise amplifier) that amplifies a signal received by the antenna 303 and a signal having a constant frequency supplied from an oscillation device as a base. A mixer that down-converts the signal into a band, a reception filter that extracts a signal in a desired band from the down-converted signal, and the like are included. The AD conversion circuit 434 AD converts the signal from the RF reception circuit 436. The reception signal processing circuit 438 transmits the signal AD-converted by the AD conversion circuit 434 to the reception processing circuit 433.
 制御回路430は、RF送信回路435の送信フィルタおよびRF受信回路436の受信フィルタの動作を制御してもよい。RF送信回路435およびRF受信回路436を制御する別の制御部が存在し、制御回路430がその制御部に指示を出すことで、同様の制御を行ってもよい。 The control circuit 430 may control the operation of the transmission filter of the RF transmission circuit 435 and the reception filter of the RF reception circuit 436. There may be another control unit that controls the RF transmission circuit 435 and the RF reception circuit 436, and the control circuit 430 may perform the same control by giving an instruction to the control unit.
 LTE-MAC層部301における受信処理回路433は、信号の復調処理(MIMO復調を含む)、プリアンブルパターン及びPHYヘッダを取り除く処理などを行い、処理後のフレームを制御回路430に渡す。 The reception processing circuit 433 in the LTE-MAC layer unit 301 performs signal demodulation processing (including MIMO demodulation), processing to remove the preamble pattern and the PHY header, and passes the processed frame to the control circuit 430.
 なお、LTEアンテナ303を、RF送信回路435およびRF受信回路436のいずれか一方に切り換えるスイッチがLTE物理層部302に配置されてもよい。スイッチを制御することで、送信時にはLTEアンテナ303をRF送信回路435に接続し、受信時には、LTEアンテナ303をRF受信回路436に接続してもよい。
なお、LTE-MAC層部301とLTE物理層部302とが1チップのICとして実現される場合もある。
Note that a switch for switching the LTE antenna 303 to one of the RF transmission circuit 435 and the RF reception circuit 436 may be arranged in the LTE physical layer unit 302. By controlling the switch, the LTE antenna 303 may be connected to the RF transmission circuit 435 during transmission, and the LTE antenna 303 may be connected to the RF reception circuit 436 during reception.
Note that the LTE-MAC layer unit 301 and the LTE physical layer unit 302 may be realized as a one-chip IC.
 図4および図5は、基地局40のハードウェア構成の他の例を示す図である。図4に示されるように、通信部41と、制御部44と、無線LAN-MAC層部201と、第1無線LAN物理層部202-1と、LTE-MAC層部301と、第1LTE物理層部302-1とを含む1チップの集積回路500を設けてもよい。 4 and 5 are diagrams showing another example of the hardware configuration of the base station 40. FIG. As shown in FIG. 4, the communication unit 41, the control unit 44, the wireless LAN-MAC layer unit 201, the first wireless LAN physical layer unit 202-1, the LTE-MAC layer unit 301, and the first LTE physical unit A one-chip integrated circuit 500 including the layer portion 302-1 may be provided.
 なお、図4に示されるように、第1無線LAN物理層部202-1は、送信信号処理回路427と、受信信号処理回路428と、DA変換回路422と、AD変換回路424とを含む。また、第2無線LAN物理層部202-1は、RF送信回路425と、RF受信回路426とを含む。また、第1LTE物理層部302-1は、送信信号処理回路437と、受信信号処理回路438と、DA変換回路432と、AD変換回路434とを含む。また、第2LTE物理層部302-1は、RF送信回路435と、RF受信回路436とを含む。 Note that, as shown in FIG. 4, the first wireless LAN physical layer unit 202-1 includes a transmission signal processing circuit 427, a reception signal processing circuit 428, a DA conversion circuit 422, and an AD conversion circuit 424. The second wireless LAN physical layer unit 202-1 includes an RF transmission circuit 425 and an RF reception circuit 426. The first LTE physical layer unit 302-1 includes a transmission signal processing circuit 437, a reception signal processing circuit 438, a DA conversion circuit 432, and an AD conversion circuit 434. The second LTE physical layer unit 302-1 includes an RF transmission circuit 435 and an RF reception circuit 436.
 また、図5に示されるように、通信部41と、制御部44と、無線LAN-MAC層部201と、無線LAN物理層部202と、LTE-MAC層部301と、LTE物理層部302とを含む1チップの集積回路600を設けてもよい。 Also, as shown in FIG. 5, the communication unit 41, the control unit 44, the wireless LAN-MAC layer unit 201, the wireless LAN physical layer unit 202, the LTE-MAC layer unit 301, and the LTE physical layer unit 302. One chip integrated circuit 600 may be provided.
 なお、本実施形態では、2本のアンテナ(無線LANアンテナ203およびLTEアンテナ303)を用いて通信することとしたが、1本のアンテナを兼用する構成としてもよい。この場合、無線LAN通信部42およびLTE通信部43のいずれか一方に切り換えるスイッチを配置してもよい。スイッチを制御することで、無線LANによる通信時にはアンテナを無線LAN物理層部202に接続し、LTEによる通信時にはアンテナをLTE物理層部302に接続してもよい。 In the present embodiment, communication is performed using two antennas (the wireless LAN antenna 203 and the LTE antenna 303). However, a configuration in which one antenna is also used may be used. In this case, a switch for switching to one of the wireless LAN communication unit 42 and the LTE communication unit 43 may be arranged. By controlling the switch, the antenna may be connected to the wireless LAN physical layer unit 202 during wireless LAN communication, and the antenna may be connected to the LTE physical layer unit 302 during LTE communication.
 図6は、LTEスケジューラ402の動作を説明するフローチャートである。LTEスケジューラ402は、各サブフレームの時刻において、2サブフレーム後の送信のスケジューリングを行うために、図6に示す処理を行う。まず、LTEスケジューラ402は、対応付け取得部403から、端末装置70各々の無線LANにおける識別情報と、LTEにおける識別情報との対応付けを取得する(Sa1)。次に、LTEスケジューラ402は、キューの先頭に格納されている端末への送信の要求を、LTE-MAC層部301から取得する(Sa2)。 FIG. 6 is a flowchart for explaining the operation of the LTE scheduler 402. The LTE scheduler 402 performs the process shown in FIG. 6 in order to schedule transmission after two subframes at the time of each subframe. First, the LTE scheduler 402 acquires the association between the identification information in the wireless LAN of each terminal device 70 and the identification information in LTE from the association acquisition unit 403 (Sa1). Next, the LTE scheduler 402 acquires a request for transmission to the terminal stored at the head of the queue from the LTE-MAC layer unit 301 (Sa2).
 次に、LTEスケジューラ402は、キューに送信の要求がなく、取得できなかったときは(Sa3-No)、ステップSa9に進む。一方、キューから送信の要求を取得できたときは(Sa3-Yes)、LTEスケジューラ402は、取得した要求における送信の宛先の端末装置が、無線LANとLTEとに対応しているか否か、すなわち端末装置70であるか否かを判定する(Sa4)。LTEスケジューラ402は、例えば、ステップSa1にて取得した対応付けに、取得した要求における送信の宛先の端末装置のLTEにおける識別情報が含まれているときには、取得した要求における送信の宛先の端末装置が端末装置70であると判定する。また、LTEスケジューラ402は、ステップSa1にて取得した対応付けに、取得した要求における送信の宛先の端末装置のLTEにおける識別情報が含まれていないときは、取得した要求における送信の宛先の端末装置が端末装置70でないと判定する。 Next, when there is no transmission request in the queue and the LTE scheduler 402 cannot acquire (Sa3-No), the process proceeds to step Sa9. On the other hand, when the transmission request can be acquired from the queue (Sa3-Yes), the LTE scheduler 402 determines whether or not the terminal device of the transmission destination in the acquired request is compatible with the wireless LAN and LTE, that is, It is determined whether or not the terminal device 70 (Sa4). For example, when the association acquired in step Sa1 includes the identification information in the LTE of the terminal device of the transmission destination in the acquired request, the LTE scheduler 402 determines whether the terminal device of the transmission destination in the acquired request The terminal device 70 is determined. When the association acquired in step Sa1 does not include the LTE identification information of the transmission destination terminal device in the acquired request, the LTE scheduler 402 transmits the transmission destination terminal device in the acquired request. Is not the terminal device 70.
 端末装置70でないと判定したときは(Sa4-No)、LTEスケジューラ402は、ステップSa2にて取得した要求の送信のスケジュールを2サブフレーム後とし、LTE-MAC層部301に指示し(Sa8)、ステップSa9に進む。 When it is determined that it is not the terminal device 70 (Sa4-No), the LTE scheduler 402 sets the transmission schedule of the request acquired in step Sa2 to be two subframes later, and instructs the LTE-MAC layer unit 301 (Sa8) The process proceeds to step Sa9.
 一方、ステップSa4において、端末装置70であると判定したときは(Sa4-Yes)、LTEスケジューラ402は、ステップSa2にて取得した要求における送信の宛先の端末装置70からの、無線LANによるパケットを、2サブフレーム後に受信中であるか否かを判定する(Sa5)。 On the other hand, when it is determined in step Sa4 that the terminal device 70 is used (Sa4-Yes), the LTE scheduler 402 transmits a packet transmitted by the wireless LAN from the terminal device 70 that is the transmission destination in the request acquired in step Sa2. It is determined whether or not reception is being performed after two subframes (Sa5).
 例えば、LTEスケジューラ402は、以下のようにして、ステップSa5の判定を行う。まず、LTEスケジューラ402は、ステップSa1にて取得した対応付けを参照して、ステップSa2にて取得した要求における送信の宛先の端末装置70の、無線LANにおける識別情報を取得する。そして、LTEスケジューラ402は、無線LANスケジューラ401から取得した無線LANの受信スケジュールを示すパケット情報(詳細は後述する)を参照して、ステップSa5の判定を行う。 For example, the LTE scheduler 402 performs the determination in step Sa5 as follows. First, the LTE scheduler 402 refers to the association acquired in step Sa1, and acquires identification information in the wireless LAN of the terminal device 70 that is the transmission destination in the request acquired in step Sa2. Then, the LTE scheduler 402 refers to packet information (details will be described later) indicating the wireless LAN reception schedule acquired from the wireless LAN scheduler 401, and performs the determination in step Sa5.
 ステップSa5にて、受信中でないと判定したときは(Sa5-No)、LTEスケジューラ402は、ステップSa6に進む。一方、ステップSa5にて、受信中であると判定したときは(Sa5-Yes)、ステップSa2に戻る。これにより、取得した要求に関する送信が延期される。 When it is determined in step Sa5 that the reception is not being performed (Sa5-No), the LTE scheduler 402 proceeds to step Sa6. On the other hand, when it is determined in step Sa5 that reception is in progress (Sa5-Yes), the process returns to step Sa2. As a result, transmission related to the acquired request is postponed.
 ステップSa6では、LTEスケジューラ402は、無線LANのチャネル予約の信号であるCTS/Selfの送信を、無線LANスケジューラ401に要求する(Sa6)。なお、LTEスケジューラ402は、ステップSa2にて取得した要求による送信に要する時間長を算出する。さらに、LTEスケジューラ402は、この時間長に所定の時間を加えるなどして算出した、CTS/Selfの送信から、取得した要求による送信が終了するまでの時間長を、無線LANスケジューラ401に対するCTS/Selfの送信の要求に含める。取得した要求を受けた無線LANスケジューラ401は、その要求に含まれている時間長を、CTS/Selfのデュレーションフィールドに設定する。そして、無線LANスケジューラ401は、CTS/Selfの送信を、無線LAN-MAC層部201に指示する。 In step Sa6, the LTE scheduler 402 requests the wireless LAN scheduler 401 to transmit CTS / Self, which is a wireless LAN channel reservation signal (Sa6). Note that the LTE scheduler 402 calculates the length of time required for transmission according to the request acquired in step Sa2. Furthermore, the LTE scheduler 402 calculates the time length from the transmission of the CTS / Self calculated by adding a predetermined time to this time length until the transmission according to the acquired request is terminated to the CTS / Included in the request for sending Self. Upon receiving the acquired request, the wireless LAN scheduler 401 sets the time length included in the request in the duration field of CTS / Self. Then, the wireless LAN scheduler 401 instructs the wireless LAN-MAC layer unit 201 to transmit CTS / Self.
 CTS/Selfの送信完了を、無線LANスケジューラ401を介して無線LAN-MAC層部201から通知されると、LTEスケジューラ402は、ステップSa2にて取得した要求の送信のスケジュールを2サブフレーム後とし、LTE-MAC層部301に指示する(Sa7)。次に、LTEスケジューラ402は、ステップSa9に進む。
 ステップSa9では、LTEスケジューラ402は、ステップSa2にてキューから取得したものの、ステップSa5にて受信中であると判定し、送信を行わなかった要求、すなわち送信を延期した要求を、キューに戻し、処理を終了する。
When the completion of CTS / Self transmission is notified from the wireless LAN-MAC layer unit 201 via the wireless LAN scheduler 401, the LTE scheduler 402 sets the transmission schedule of the request acquired in step Sa2 to be two subframes later. The LTE-MAC layer unit 301 is instructed (Sa7). Next, the LTE scheduler 402 proceeds to step Sa9.
In step Sa9, the LTE scheduler 402 returns to the queue a request that has been acquired from the queue in step Sa2 but is being received in step Sa5 and did not transmit, that is, a request for which transmission was postponed. The process ends.
 図7は、無線通信システム100の動作を説明するシーケンス図である。図7において、B_LTEは、基地局装置40におけるLTEを用いた送受信を示す。B_WLLは、基地局装置40における無線LANを用いた送受信を示す。M_LTEは、端末装置70におけるLTEを用いた送受信を示す。M_WLLは、端末装置70における無線LANを用いた送受信を示す。SF0~SF9の各々は、LTEのサブフレームである。サブフレームは、帯域の割り当てを行う際の時間方向の単位である。 FIG. 7 is a sequence diagram for explaining the operation of the wireless communication system 100. In FIG. 7, B_LTE indicates transmission / reception using LTE in the base station apparatus 40. B_WLL indicates transmission / reception using the wireless LAN in the base station device 40. M_LTE indicates transmission / reception using LTE in the terminal device 70. M_WLL indicates transmission / reception in the terminal device 70 using the wireless LAN. Each of SF0 to SF9 is an LTE subframe. A subframe is a unit in the time direction when band allocation is performed.
 Rは、送信の要求があった時刻を示す。Tx’は、送信の要求があったが、延期されて送信が行われなかったサブフレームを示す。Txは、データの送信を示し、Rxは、データの受信を示す。CTSは、チャネル予約の信号であるCTS/Selfの送信を示す。NAV(Network Allocation Vector)は、CTS/Selfによりチャネルが予約された期間である。 R indicates the time when a transmission request is made. Tx ′ indicates a subframe in which transmission has been requested, but has been postponed and transmission has not been performed. Tx indicates data transmission, and Rx indicates data reception. CTS indicates transmission of CTS / Self, which is a channel reservation signal. NAV (Network Allocation Vector) is a period during which a channel is reserved by CTS / Self.
 基地局装置40では、サブフレームSF2において、端末装置70宛のデータをLTEにて送信する要求が発生している。一方、端末装置70は、サブフレームSF2付近からSF5付近で無線LANを用いて基地局装置40宛にデータを送信する。端末装置70が無線LANにて送信したデータのパケットは、基地局装置40の無線LAN物理層部202により復調される。無線LAN-MAC層部201は、この復調の結果から、パケット長とパケットの送信元の識別情報、例えばアソシエーションIDやソースアドレス(MACアドレス)などを取得する。パケット長と、送信元の識別情報と、受信開始時刻とを含むパケット情報は、無線LANスケジューラ401を介して、LTEスケジューラ402へ送られる。 In the base station device 40, a request for transmitting data addressed to the terminal device 70 by LTE is generated in the subframe SF2. On the other hand, the terminal device 70 transmits data to the base station device 40 using the wireless LAN from near the subframe SF2 to near SF5. The packet of data transmitted by the terminal device 70 via the wireless LAN is demodulated by the wireless LAN physical layer unit 202 of the base station device 40. From this demodulation result, the wireless LAN-MAC layer unit 201 obtains the packet length and identification information of the transmission source of the packet, such as an association ID and a source address (MAC address). Packet information including the packet length, transmission source identification information, and reception start time is sent to the LTE scheduler 402 via the wireless LAN scheduler 401.
 なお、本実施の形態では説明の都合上、端末装置70が、無線LANを用いてデータを送信する時刻をサブフレームSF2の時刻としたが、無線LANでは任意の時間にパケットを送信することが可能であるため、一般に送信時刻はサブフレーム単位にならない。 In the present embodiment, for convenience of explanation, the time at which the terminal device 70 transmits data using the wireless LAN is the time of the subframe SF2. However, in the wireless LAN, a packet may be transmitted at an arbitrary time. In general, the transmission time is not in units of subframes.
 無線LANスケジューラ401からLTEスケジューラ402に送られたパケット情報は、メモリに保存される。LTEスケジューラ402は、パケット情報に含まれるパケット長を、ビットレートで割ることで、パケットの送信に要する時間を得ることができる。つまり、図7の場合、メモリには、端末装置70がサブフレームSF2からサブフレームSF5の時間まで無線LANのパケットを送信していることを示すパケット情報が保存される。なお、パケット情報が保存されるメモリは、無線LANスケジューラ401、LTEスケジューラ402のいずれに設けられていても良いし、無線LANスケジューラ401、LTEスケジューラ402以外のブロックにあっても良い。 Packet information sent from the wireless LAN scheduler 401 to the LTE scheduler 402 is stored in a memory. The LTE scheduler 402 can obtain the time required for packet transmission by dividing the packet length included in the packet information by the bit rate. That is, in the case of FIG. 7, the memory stores packet information indicating that the terminal device 70 is transmitting a wireless LAN packet from the subframe SF2 to the subframe SF5. Note that the memory storing the packet information may be provided in either the wireless LAN scheduler 401 or the LTE scheduler 402, or may be in a block other than the wireless LAN scheduler 401 and the LTE scheduler 402.
 LTEスケジューラ402は、サブフレーム単位で、基地局装置40から端末装置70へのダウンリンクの信号のスケジューリングを行う。例えば、LTEスケジューラ402は、サブフレームSF7のスケジューリングを、処理遅延を考慮して、サブフレームSF5の時刻に行う。サブフレームSF5において、LTEスケジューラ402は、メモリへアクセスし、サブフレームSF7にスケジュール可能な端末装置70を判定する。 The LTE scheduler 402 performs downlink signal scheduling from the base station apparatus 40 to the terminal apparatus 70 in units of subframes. For example, the LTE scheduler 402 schedules the subframe SF7 at the time of the subframe SF5 in consideration of the processing delay. In the subframe SF5, the LTE scheduler 402 accesses the memory and determines a terminal device 70 that can be scheduled in the subframe SF7.
 例えば、ある端末装置70がサブフレームSF4の時間に無線LANのパケットを送信していなければ、その端末装置70はサブフレームSF4にスケジュール可能である。しかし、図7の場合、メモリにはある端末装置70がサブフレームSF2からSF5の時間まで無線LANのパケットを送信していることを示すパケット情報が保存されている。このため、LTEスケジューラ402は、その端末装置70をサブフレームSF4に割り当てず、送信を延期する制御を行う。 For example, if a certain terminal device 70 does not transmit a wireless LAN packet at the time of the subframe SF4, the terminal device 70 can schedule to the subframe SF4. However, in the case of FIG. 7, packet information indicating that a certain terminal device 70 is transmitting a wireless LAN packet from the subframes SF2 to SF5 is stored in the memory. For this reason, the LTE scheduler 402 performs control to postpone transmission without allocating the terminal device 70 to the subframe SF4.
 例えば、サブフレームSF2の時点で、ある端末装置70への送信の要求と、LTE端末装置60への送信の要求があったとする。LTEスケジューラ402は、メモリに保存しているパケット情報を参照する。すると、パケット情報は、その端末装置70が無線LANのパケットをサブフレームSF2からSF5まで送信することを示しているので、LTEスケジューラ402は、サブフレームSF2の2サブフレーム後であるサブフレームSF4に、その端末装置70をスケジュール可能でないと判定する。すなわち、LTEスケジューラ402は、サブフレームSF2の2サブフレーム後であるサブフレームSF4にスケジュール可能な端末装置として、LTE端末装置60のみを選択する。 For example, it is assumed that there is a transmission request to a certain terminal device 70 and a transmission request to the LTE terminal device 60 at the time of the subframe SF2. The LTE scheduler 402 refers to the packet information stored in the memory. Then, since the packet information indicates that the terminal device 70 transmits the wireless LAN packet from the subframes SF2 to SF5, the LTE scheduler 402 displays the subframe SF4 that is two subframes after the subframe SF2. It is determined that the terminal device 70 cannot be scheduled. That is, LTE scheduler 402 selects only LTE terminal device 60 as a terminal device that can be scheduled in subframe SF4 that is two subframes after subframe SF2.
 これにより、サブフレームSF4の時刻に、基地局装置40は、LTEにて端末装置70に対してダウンリンクの信号を送信せずに、延期する。このため、端末装置70が送信する無線LANのパケットと、LTEのダウンリンクの信号とが、端末装置70内で干渉することを避けることができる。 Thereby, at the time of the subframe SF4, the base station apparatus 40 postpones without transmitting a downlink signal to the terminal apparatus 70 in LTE. Therefore, it is possible to avoid interference between the wireless LAN packet transmitted by the terminal device 70 and the LTE downlink signal in the terminal device 70.
 次に、サブフレームSF5の時刻におけるLTEスケジューラ402の動作を説明する。LTEスケジューラ402は、サブフレームSF7のダウンリンクのスケジューリングを、2サブフレーム前であるサブフレームSF5の時刻に行う。また、サブフレームSF5の時刻は、端末装置70による無線LANのパケットの送信が終了する時刻である。そこで、無線LANスケジューラ401は、この無線LANのパケットの直後に、CTS/Selfの送信を無線LAN-MAC層部201に指示する。無線LAN-MAC層部201は、CTS/Selfのパケットを生成し、無線LAN物理層部202は、パケットの変調などを行い、無線LANアンテナ203を介して送信する。 Next, the operation of the LTE scheduler 402 at the time of the subframe SF5 will be described. The LTE scheduler 402 performs downlink scheduling of the subframe SF7 at the time of the subframe SF5 that is two subframes before. The time of the subframe SF5 is the time when the terminal device 70 finishes transmitting the wireless LAN packet. Accordingly, the wireless LAN scheduler 401 instructs the wireless LAN-MAC layer unit 201 to transmit CTS / Self immediately after the wireless LAN packet. The wireless LAN-MAC layer unit 201 generates a CTS / Self packet, and the wireless LAN physical layer unit 202 modulates the packet and transmits the packet via the wireless LAN antenna 203.
 このCTS/Selfに記載するデュレーションフィールドの値には、CTS/Selfを送信する時刻からサブフレームSF7の終了時刻が設定される。これにより、サブフレームSF7の終了時刻までがNAVとなるので、この間、端末装置70は、無線LANによるパケットを送信しない。したがって、サブフレームSF7に基地局装置40が送信するLTEのダウンリンクの信号と、端末装置70による無線LANの信号とが干渉することを避けることが可能になる。 In the duration field value described in this CTS / Self, the end time of the subframe SF7 is set from the time when the CTS / Self is transmitted. As a result, the NAV is the time until the end time of the subframe SF7, and during this time, the terminal device 70 does not transmit a packet by the wireless LAN. Therefore, it is possible to avoid interference between the LTE downlink signal transmitted from the base station apparatus 40 in the subframe SF7 and the wireless LAN signal transmitted from the terminal apparatus 70.
 なお、基地局装置40は、無線LANによるパケットの受信を終了してから、CTS/Selfを送信するまでの間隔を、DIFSより短いPIFSとすることができる。DIFSは、Distributed (coordination function) interframe spaceであり、PIFSは、Point (coordination function) interframe spaceである。これらは、IEEE802.11にて規定されている。間隔をPIFSとすることで、基地局装置40は、他の無線LANの端末より優先的に送信権利を獲得することができ、より確実に、サブフレームSF7の終了時刻までNAVを張る、すなわちチャネルを予約することが可能になる。 Note that the base station device 40 can set the PIFS shorter than the DIFS to the interval from when the reception of the packet by the wireless LAN is completed until the CTS / Self is transmitted. DIFS is Distributed (coordination function) interframe space, and PIFS is Point (coordination function) interframe space. These are defined in IEEE 802.11. By setting the interval to PIFS, the base station apparatus 40 can acquire the transmission right preferentially over other wireless LAN terminals, and more reliably extends the NAV until the end time of the subframe SF7, that is, the channel Can be booked.
 また、基地局装置40は、サブフレームSF7の終了時刻までチャネルを予約しているため、他の端末装置に、無線LANによるパケットを送信しても良いし、無線LANによるパケットを、何も送信をしなくても良い。 Further, since the base station device 40 reserves the channel until the end time of the subframe SF7, the base station device 40 may transmit a wireless LAN packet to other terminal devices, or transmit any wireless LAN packet. You don't have to.
 LTEスケジューラ402の説明に戻って、LTEスケジューラ402は、CTS/Selfの送信が完了すると、2サブフレーム後であるサブフレームSF7に、端末装置70へのデータを割り当てる。LTE-MAC層部301は、LTEスケジューラ402によりサブフレームSF7に割り当てられたデータのパケットを生成する。LTE物理層部302は、LTE-MAC層部301が生成したパケットの変調などを行い、LTEアンテナ303を介して送信する。また、LTEスケジューラ402は、サブフレームSF7でのダウンリンクのデータがあることを、端末装置70に通知する制御信号の生成についてもLTE-MAC層部301に指示を出す。この制御信号は、LTE-MAC層部301、LTE物理層部302、LTEアンテナ303を介して送信される。 Returning to the description of the LTE scheduler 402, when the transmission of the CTS / Self is completed, the LTE scheduler 402 assigns data to the terminal device 70 to a subframe SF7 that is two subframes later. The LTE-MAC layer unit 301 generates a packet of data assigned to the subframe SF7 by the LTE scheduler 402. The LTE physical layer unit 302 modulates the packet generated by the LTE-MAC layer unit 301 and transmits the modulated packet through the LTE antenna 303. The LTE scheduler 402 also instructs the LTE-MAC layer unit 301 to generate a control signal for notifying the terminal device 70 that there is downlink data in the subframe SF7. This control signal is transmitted via the LTE-MAC layer unit 301, the LTE physical layer unit 302, and the LTE antenna 303.
 なお、無線LANスケジューラ401が、CTS/Selfのデュレーションフィールドに設定する値は、CTS/Selfの送信から、LTEによるパケットの送信が終了するまでの時間長としたが、この時間長以上であれば、その他の値でもよい。 The value set in the duration field of CTS / Self by wireless LAN scheduler 401 is the time length from the transmission of CTS / Self until the end of packet transmission by LTE. Other values may be used.
 このように、基地局装置40は、無線LAN通信部42が、端末装置70からの信号を受信しているときは、LTE通信部43を用いた、端末装置70への送信を延期させる制御部44を有する。
 これにより、端末装置70が無線LANの信号を送信しているときに、基地局装置40が端末装置70にLTEの信号を送信してしまい、端末装置70において、無線LANの送信信号と、LTEの受信信号とが干渉してしまうことを抑えることができる。
Thus, when the wireless LAN communication unit 42 is receiving a signal from the terminal device 70, the base station device 40 delays transmission to the terminal device 70 using the LTE communication unit 43. 44.
As a result, when the terminal device 70 is transmitting a wireless LAN signal, the base station device 40 transmits an LTE signal to the terminal device 70. In the terminal device 70, the wireless LAN transmission signal and the LTE signal are transmitted. Interference with the received signal can be suppressed.
 さらに、制御部44は、LTE通信部43を用いた端末装置70への送信の前に、無線LAN通信部42に、無線LANにおけるチャネル予約の信号であって、所定の時間、当該信号により指定された装置以外の装置による送信を禁止することでチャネルを予約する信号を送信させる。
 これにより、基地局装置40が端末装置70にLTEの信号を送信する際に、端末装置70が無線LANの信号を送信してしまい、端末装置70において、無線LANの送信信号と、LTEの受信信号とが干渉してしまうことを抑えることができる。
Further, the control unit 44 transmits a channel reservation signal in the wireless LAN to the wireless LAN communication unit 42 before transmission to the terminal device 70 using the LTE communication unit 43, and is designated by the signal for a predetermined time. A signal for reserving a channel is transmitted by prohibiting transmission by a device other than the received device.
As a result, when the base station device 40 transmits an LTE signal to the terminal device 70, the terminal device 70 transmits a wireless LAN signal, and the terminal device 70 receives the wireless LAN transmission signal and the LTE signal. It can suppress that a signal interferes.
(第2の実施形態)
 次に、第2の実施形態を説明する。第2の実施形態における無線通信システム100は、第1の実施形態と同様の構成であるが、基地局装置40の動作が一部異なる。本実施形態の基地局装置40は、CTS/Selfを送信した後、端末装置70へのLTEによるデータの送信がスケジュールされなかったとき、端末装置70へのLTEによるデータの送信がNAVよりも早く終了したとき、あるいは端末装置70の無線LAN機能が停止されたときに、CTS/Selfで予約したチャネルを解除する点が、第1の実施形態とは異なる。
(Second Embodiment)
Next, a second embodiment will be described. The wireless communication system 100 according to the second embodiment has the same configuration as that of the first embodiment, but the operation of the base station device 40 is partially different. After transmitting the CTS / Self after transmitting the CTS / Self, the base station apparatus 40 according to the present embodiment transmits the LTE data to the terminal apparatus 70 earlier than the NAV. The point which cancels the channel reserved by CTS / Self when it complete | finishes or the wireless LAN function of the terminal device 70 is stopped differs from 1st Embodiment.
 図8は、第2の実施形態における無線通信システム100の動作を説明するシーケンス図である。図8のシーケンス図において、図7と異なる点を説明する。図8において、基地局装置40が、CTS/Selfを送信するところまでは、図7と同様である。ただし、このCTS/Selfのデュレーションフィールドには、サブフレームSF9の終了までの時間長が設定されている。ところが、図8の場合では、緊急地震速報など、優先レベルが高く、かつ、小さいデータの送信の要求が入ったために、サブフレームSF7のみで送信が終了している。 FIG. 8 is a sequence diagram for explaining the operation of the wireless communication system 100 according to the second embodiment. In the sequence diagram of FIG. 8, differences from FIG. 7 will be described. In FIG. 8, it is the same as that of FIG. 7 until the base station apparatus 40 transmits CTS / Self. However, in this CTS / Self duration field, a time length until the end of the subframe SF9 is set. However, in the case of FIG. 8, since a request for transmission of high-priority and small data such as an emergency earthquake warning is received, transmission is completed only in subframe SF7.
 この場合、LTEスケジューラ402は、IEEE802.11にて規定されているCF-endの送信を、無線LANスケジューラ401に指示する。CF(Contention-Free)-endは、CTS/SelfによりサブフレームSF9の終了時刻まで張ったNAVを、解除するための信号である。このCF-endにより、サブフレームSF8、SF9の期間(図8のCncl)はキャンセルされる。これにより、CTS/Selfによって予約されたチャネルを解放し、無線LANのチャネルを有効に利用することができる。 In this case, the LTE scheduler 402 instructs the wireless LAN scheduler 401 to transmit the CF-end defined by IEEE 802.11. CF (Contention-Free) -end is a signal for canceling the NAV that is stretched by CTS / Self until the end time of the subframe SF9. Due to this CF-end, the period of subframes SF8 and SF9 (Cncl in FIG. 8) is cancelled. As a result, the channel reserved by CTS / Self can be released and the wireless LAN channel can be used effectively.
 なお、図8では、NAVよりも早く、LTEでの送信が終了する場合を示したが、NAVにおいてLTEでの送信が行われないとき、あるいは、端末装置70の無線LAN機能が停止されたときにも、CF-endを送信する。NAVにおいてLTEでの送信が行われない例としては、送信が延期されたとき、端末装置70のLTE機能が停止されたときが挙げられる。 Note that FIG. 8 shows a case where LTE transmission is completed earlier than NAV. However, when LTE transmission is not performed in NAV, or when the wireless LAN function of the terminal device 70 is stopped. Also, CF-end is transmitted. As an example in which transmission in LTE is not performed in NAV, when transmission is postponed, the LTE function of terminal device 70 is stopped.
 第2の実施形態においても、第1の実施形態と同様に、端末装置70において、無線LANの送信信号と、LTEの受信信号とが干渉してしまうことを抑えることができる。
 さらに、第2の実施形態では、制御部44は、次の3つのいずれかのときに、チャネル予約を解除する信号を、無線LAN通信部42に送信させる。1つ目は、NAV以内に、LTE通信部43を用いた端末装置70への送信が終了したときである。2つ目は、NAVに、LTE通信部43を用いた端末装置70への送信を行わないときである。3つ目は、端末装置70の無線LAN機能が停止されたときである。
 これにより、LTEによる端末装置70への送信が行われなくなる、無線LANによる端末装置70からの送信の可能性がなくなるなど、干渉の発生する可能性がなくなったときに、CTS/Selfにて予約した無線LANのチャネルを解放する。このため、無線LANのチャネルを有効に利用することができる。
Also in the second embodiment, similarly to the first embodiment, in the terminal device 70, it is possible to suppress the interference between the wireless LAN transmission signal and the LTE reception signal.
Furthermore, in the second embodiment, the control unit 44 causes the wireless LAN communication unit 42 to transmit a signal for canceling the channel reservation at any of the following three times. The first is when transmission to the terminal device 70 using the LTE communication unit 43 is completed within the NAV. The second is when NAV is not transmitted to the terminal device 70 using the LTE communication unit 43. The third is when the wireless LAN function of the terminal device 70 is stopped.
As a result, when there is no possibility of interference such as no transmission to the terminal device 70 by LTE or no possibility of transmission from the terminal device 70 by wireless LAN, a reservation is made in CTS / Self. Release the wireless LAN channel. Therefore, the wireless LAN channel can be used effectively.
(第3の実施形態)
 次に、第3の実施形態を説明する。第3の実施形態における無線通信システム100は、第1の実施形態における無線通信システム100と同様の構成であるが、基地局装置40の動作が一部異なる。より具体的には、基地局装置40は、CTS/Selfによりチャネル予約した後のLTEによる送信を、周波数多重により、複数の端末装置70に対して行う。なお、LTEでは、OFDMA(Orthogonal Frequency Division Multiple Access)方式を用いているため、同じサブフレームに、複数の端末装置70への送信を周波数多重することができる。
(Third embodiment)
Next, a third embodiment will be described. The radio communication system 100 in the third embodiment has the same configuration as the radio communication system 100 in the first embodiment, but the operation of the base station device 40 is partially different. More specifically, the base station apparatus 40 performs transmission by LTE after channel reservation by CTS / Self to a plurality of terminal apparatuses 70 by frequency multiplexing. In LTE, since OFDMA (Orthogonal Frequency Division Multiple Access) is used, transmission to a plurality of terminal devices 70 can be frequency-multiplexed in the same subframe.
 図9は、本実施形態におけるLTEスケジューラ402の動作を説明するフローチャートである。図9において、図6の各部に対応する部分には同一の符号を付し、説明を省略する。図9のフローチャートは、図9のフローチャートとは、ステップSa7に変えて、ステップSb7を有する点が異なる。ステップSb7では、LTEスケジューラ402は、無線LANとLTEに対応した全ての端末装置70の送信を、2サブフレーム後にスケジューリングする。なお、LTEスケジューラ402は、無線LANとLTEに対応した全ての端末装置70の送信ではなく、無線LANを用いた通信を基地局装置40と行っている端末装置70の送信を、2サブフレーム後にスケジューリングするようにしてもよい。 FIG. 9 is a flowchart for explaining the operation of the LTE scheduler 402 in the present embodiment. 9, parts corresponding to those in FIG. 6 are denoted by the same reference numerals, and description thereof is omitted. The flowchart of FIG. 9 differs from the flowchart of FIG. 9 in that step Sb7 is provided instead of step Sa7. In step Sb7, the LTE scheduler 402 schedules transmission of all the terminal devices 70 corresponding to the wireless LAN and LTE after two subframes. Note that the LTE scheduler 402 does not transmit all terminal devices 70 corresponding to the wireless LAN and LTE, but transmits the terminal device 70 that performs communication using the wireless LAN with the base station device 40 after two subframes. You may make it schedule.
 図10は、無線通信システム101の動作を説明するシーケンス図である。図10のシーケンス図において、図7と異なる点を説明する。図10において、M1_LTEは、1台目の端末装置70におけるLTEを用いた送受信を示す。M1_WLLは、1台目の端末装置70における無線LANを用いた送受信を示す。M2_LTEは、2台目の端末装置70におけるLTEを用いた送受信を示す。M2_WLLは、2台目の端末装置70における無線LANを用いた送受信を示す。 FIG. 10 is a sequence diagram for explaining the operation of the wireless communication system 101. In the sequence diagram of FIG. 10, differences from FIG. 7 will be described. In FIG. 10, M1_LTE indicates transmission / reception using LTE in the first terminal apparatus 70. M1_WLL indicates transmission / reception using the wireless LAN in the first terminal device 70. M2_LTE indicates transmission / reception using LTE in the second terminal device 70. M2_WLL indicates transmission / reception using the wireless LAN in the second terminal device 70.
 サブフレームSFの時刻において、2台の端末装置70への送信の要求があったとする。この場合に、例えば、1台目の端末装置70への送信をサブフレームSF7に割り当て、2台目の端末装置70への送信をサブフレームSF8に割り当てたとする。そして、CTS/Selfを用いて、サブフレームSF8の終了時刻までNAVを張ると、この時間に無線LANのパケットの送信を禁止することになる。この禁止は、これら2台の端末装置70以外の無線LANの端末に対する禁止であるため、無線LANの通信がこの間、停止してしまう。 Assume that there is a request for transmission to two terminal devices 70 at the time of the subframe SF. In this case, for example, it is assumed that transmission to the first terminal device 70 is assigned to the subframe SF7 and transmission to the second terminal device 70 is assigned to the subframe SF8. Then, if the NAV is set up to the end time of the subframe SF8 using CTS / Self, the transmission of the wireless LAN packet is prohibited at this time. Since this prohibition is a prohibition on wireless LAN terminals other than these two terminal devices 70, wireless LAN communication is stopped during this period.
 そこで、本実施の形態では図10に示すように、1台目の端末装置70への送信と、2台目の端末装置70への送信とを同じサブフレームSF7に割り当てる。このため、NAVが張られるのは、サブフレームSF7の終了時刻までとなり、短くすることができる。これにより、サブフレームSF8の時刻に、無線LANのパケットを送信することができ、無線LANのチャネルを有効利用することが可能になる。 Therefore, in the present embodiment, as shown in FIG. 10, transmission to the first terminal device 70 and transmission to the second terminal device 70 are assigned to the same subframe SF7. For this reason, the NAV is applied until the end time of the subframe SF7, and can be shortened. As a result, the wireless LAN packet can be transmitted at the time of the subframe SF8, and the wireless LAN channel can be used effectively.
 第3の実施形態においても、第1の実施形態と同様に、端末装置70において、無線LANの送信信号と、LTEの受信信号とが干渉してしまうことを抑えることができる。
 さらに、第3の実施形態では、制御部44は、LTE通信部43を用いた端末装置70への送信に、他の端末装置70への送信を周波数多重させる。
 これにより、チャネル予約の時間が長くなるのを抑え、無線LANのチャネルを有効利用することができる。
Also in the third embodiment, similarly to the first embodiment, the terminal device 70 can suppress interference between the wireless LAN transmission signal and the LTE reception signal.
Further, in the third embodiment, the control unit 44 frequency-multiplexes the transmission to the other terminal device 70 in the transmission to the terminal device 70 using the LTE communication unit 43.
As a result, it is possible to suppress the channel reservation time from being lengthened and to effectively use the wireless LAN channel.
(第4の実施形態)
 次に、第4の実施形態を説明する。第4の実施形態における無線通信システム100は、図1と同様の構成であるが、基地局装置40の動作が異なる。具体的には、基地局装置40が、CTS/Selfのパケットを、指向性を付けて端末装置70の方向に送信する点が異なる。
(Fourth embodiment)
Next, a fourth embodiment will be described. The radio communication system 100 according to the fourth embodiment has the same configuration as that of FIG. 1, but the operation of the base station device 40 is different. Specifically, the base station device 40 is different in that the CTS / Self packet is transmitted in the direction of the terminal device 70 with directivity.
 図11は、本実施形態における無線LAN物理層部202、無線LANアンテナ203の送信に係る構成を示す概略ブロック図である。無線LAN物理層部202は、符号化部221、変調部222、コピー部223、重み乗算部224、IFFT部225、フィルタ部226を含む。無線LANアンテナ203は、第1アンテナ231、第2アンテナ232を含む。 FIG. 11 is a schematic block diagram illustrating a configuration related to transmission of the wireless LAN physical layer unit 202 and the wireless LAN antenna 203 in the present embodiment. The wireless LAN physical layer unit 202 includes an encoding unit 221, a modulation unit 222, a copy unit 223, a weight multiplication unit 224, an IFFT unit 225, and a filter unit 226. The wireless LAN antenna 203 includes a first antenna 231 and a second antenna 232.
 符号化部221は、無線LAN-MAC層部201から入力されたパケットを構成するビット列を、誤り訂正符号化する。使用する誤り訂正符号は、低密度パリティ検査符号、ビタビ符号などのいずれであってもよい。変調部222は、符号化部221により誤り訂正符号化されたビット列を、変調し、変調シンボル列を生成する。変調方式は、BPSK(Binary Phase Shift Keying)、QPSK(Quaternary Phase Shift Keying)、16QAM(Quadrature Amplitude Modulation)などのいずれを用いてもよい。 The encoding unit 221 performs error correction encoding on the bit string constituting the packet input from the wireless LAN-MAC layer unit 201. The error correction code to be used may be a low density parity check code, a Viterbi code, or the like. Modulation section 222 modulates the bit string that has been error correction encoded by encoding section 221 to generate a modulated symbol string. As a modulation method, any one of BPSK (Binary Phase Shift Keying), QPSK (Quaternary Phase Shift Keying), 16QAM (Quadrature Amplitude Modulation), and the like may be used.
 コピー部223は、変調部222が生成した変調シンボル列をコピーして、同一の2つの変調シンボル列を生成する。重み乗算部224は、コピー部223が生成した2つの変調シンボル列を、周波数領域の信号とみなし、各々に重み(ウェイト)を乗算する。変調シンボル列が、CTS/Selfのパケットから生成された変調シンボル列であるときは、重み乗算部224は、これらの重みを、対象の端末装置70へ指向性が付く重みとする。なお、重みの計算方法は、例えば特許文献3(特開2013-70157号公報)に記載されているような方法が適用可能である。 The copy unit 223 copies the modulation symbol sequence generated by the modulation unit 222 and generates the same two modulation symbol sequences. The weight multiplication unit 224 regards the two modulation symbol sequences generated by the copy unit 223 as frequency domain signals, and multiplies each by a weight (weight). When the modulation symbol sequence is a modulation symbol sequence generated from a CTS / Self packet, the weight multiplying unit 224 sets these weights as weights that give directivity to the target terminal device 70. As a weight calculation method, for example, a method described in Patent Document 3 (Japanese Patent Laid-Open No. 2013-70157) can be applied.
 IFFT部225は、重み乗算部224により重みが乗算された2つの周波数領域の信号各々に対して、逆高速フーリエ変換を行うことで、2つ時間領域の信号に変換する。フィルタ部226は、IFFT部225により変換された2つの時間領域の信号に対し、高周波成分をカットするフィルタ処理などを行う。フィルタ部226は、フィルタ処理した2つの時間領域の信号を、それぞれ、第1アンテナ231、第2アンテナ232を介して送信する。 The IFFT unit 225 performs inverse fast Fourier transform on each of the two frequency domain signals multiplied by the weights by the weight multiplication unit 224 to convert the signals into two time domain signals. The filter unit 226 performs filter processing for cutting high frequency components on the two time domain signals converted by the IFFT unit 225. The filter unit 226 transmits the filtered two time-domain signals via the first antenna 231 and the second antenna 232, respectively.
 なお、本実施形態では、無線LANアンテナ203は、2つのアンテナを有しているが、3つ以上であってもよい。その場合、コピー部223は、アンテナ数に応じた数の変調シンボル列を生成する。また、重み乗算部224、IFFT部225、フィルタ部226も、アンテナ数に応じた数の信号各々に対して、処理を行う。 In the present embodiment, the wireless LAN antenna 203 has two antennas, but may be three or more. In this case, the copy unit 223 generates a number of modulation symbol sequences corresponding to the number of antennas. In addition, the weight multiplication unit 224, the IFFT unit 225, and the filter unit 226 also perform processing on each of the number of signals corresponding to the number of antennas.
 図12は、CTS/Selfを送信する際の指向性の例を説明する模式図である。図12において、BFAは、基地局装置40が指向性を付けて送信したCTS/Selfを受信できる範囲である。端末装置70-1は、LTEによるデータの送信の宛先となっている端末装置70である。端末装置70-2は、LTEによるデータの送信の宛先となっていない端末装置70である。 FIG. 12 is a schematic diagram illustrating an example of directivity when transmitting CTS / Self. In FIG. 12, the BFA is a range in which the CTS / Self transmitted with directivity by the base station apparatus 40 can be received. The terminal device 70-1 is the terminal device 70 that is the destination of data transmission by LTE. The terminal device 70-2 is a terminal device 70 that is not a destination of data transmission by LTE.
 LTEによるデータの送信の宛先となっている端末装置70-1は、範囲BFA内に位置しているため、CTS/Selfを受信する。このため、このCTS/Selfにより張られたNAVの間、端末装置70-1は、無線LANによるパケットの送信を行わない。したがって、端末装置70-1へのLTEによる信号と、端末装置70-1が送信する無線LANの信号とが干渉を起こすことを抑えることができる。 Since the terminal device 70-1 which is the destination of data transmission by LTE is located within the range BFA, it receives CTS / Self. For this reason, the terminal device 70-1 does not transmit a packet by the wireless LAN during the NAV stretched by the CTS / Self. Therefore, it is possible to suppress interference between the LTE signal to the terminal device 70-1 and the wireless LAN signal transmitted by the terminal device 70-1.
 一方、LTEによるデータの送信の宛先となっていない端末装置70-2は、範囲BFA外に位置しているため、CTS/Selfを受信しない。このため、このCTS/Selfにより張られたNAVの間も、端末装置70-2は、無線LANによるパケットの送信を行うことができる。 On the other hand, since the terminal device 70-2 that is not the destination of the data transmission by LTE is located outside the range BFA, it does not receive the CTS / Self. For this reason, the terminal device 70-2 can transmit a packet by the wireless LAN even during the NAV stretched by the CTS / Self.
 第4の実施形態においても、第1の実施形態と同様に、端末装置70において、無線LANの送信信号と、LTEの受信信号とが干渉してしまうことを抑えることができる。
 さらに、第4の実施形態では、無線LAN通信部42は、チャネル予約の信号(CTS/Self)を、端末装置70-1の方向に指向性を付けて送信する。
 これにより、端末装置70-1以外の端末装置70は、チャネル予約されている時間であっても、無線LANによるデータの送信を行うことができる。すなわち、無線LANのチャネルを有効に使用することができる。
Also in the fourth embodiment, similarly to the first embodiment, the terminal device 70 can suppress interference between the wireless LAN transmission signal and the LTE reception signal.
Furthermore, in the fourth embodiment, the wireless LAN communication unit 42 transmits a channel reservation signal (CTS / Self) with directivity in the direction of the terminal device 70-1.
Thereby, the terminal devices 70 other than the terminal device 70-1 can transmit data by the wireless LAN even during the channel reserved time. That is, the wireless LAN channel can be used effectively.
(第5の実施形態)
 次に、第5の実施形態について説明する。第4の実施形態における無線通信システム100は、図1と同様の構成であるが、基地局装置40の動作が異なる。具体的には、基地局装置40が、CTS/Selfではなく、宛先アドレスにマルチキャストアドレスを設定したCTS(以降、CTS/multiという)を送信する点が、第1の実施形態における基地局装置40と異なる。
(Fifth embodiment)
Next, a fifth embodiment will be described. The radio communication system 100 according to the fourth embodiment has the same configuration as that of FIG. 1, but the operation of the base station device 40 is different. Specifically, the base station device 40 in the first embodiment transmits the CTS in which the multicast address is set as the destination address (hereinafter referred to as CTS / multi) instead of the CTS / Self. And different.
 具体的には、LTEスケジューラ402は、無線LANスケジューラ401に無線LANのチャネル予約を要求する際に、LTEによるデータの送信の宛先となっている端末装置70の、無線LANにおける識別情報(MACアドレス)を通知する。無線LANスケジューラ401は、予め記憶しているマルチキャストアドレスの中から、通知されたMACアドレスを含まないマルチキャストグループのマルチキャストアドレスを一つ選択する。無線LANスケジューラ401は、選択したマルチキャストアドレスを、宛先アドレスに設定したCTS/multiの送信を、無線LAN-MAC層部201に指示する。以降は、第1の実施形態と同様である。 Specifically, when the LTE scheduler 402 requests the wireless LAN scheduler 401 to make a wireless LAN channel reservation, the wireless LAN identification information (MAC address) of the terminal device 70 that is the destination of data transmission by LTE is used. ). The wireless LAN scheduler 401 selects one multicast address of a multicast group that does not include the notified MAC address from among previously stored multicast addresses. The wireless LAN scheduler 401 instructs the wireless LAN-MAC layer unit 201 to transmit CTS / multi with the selected multicast address set as the destination address. The subsequent steps are the same as in the first embodiment.
 なお、無線LANスケジューラ401が、予め記憶しているマルチキャストアドレスの中からマルチキャストアドレスを一つ選択する方法は、ランダムに選択してもよいし、予め決められた順に従ってもよいし、どのような方法であってもよい。 Note that the wireless LAN scheduler 401 may select one multicast address from the multicast addresses stored in advance, either randomly or in a predetermined order. It may be a method.
 図13は、無線LANスケジューラ401が記憶しているマルチキャストアドレスの情報例を示すテーブルである。無線LANスケジューラ401は、各マルチキャストアドレスと、そのマルチキャストアドレスのマルチキャストグループに属する端末装置70のMACアドレスとを対応付けて記憶している。例えば、図13では、マルチキャストアドレス「アドレスM1」と、このマルチキャストアドレスのマルチキャストグループに属する端末装置70のMACアドレス「アドレスA1、アドレスA2、アドレスA3」とを対応付けている。 FIG. 13 is a table showing an example of multicast address information stored in the wireless LAN scheduler 401. The wireless LAN scheduler 401 stores each multicast address in association with the MAC address of the terminal device 70 belonging to the multicast group of the multicast address. For example, in FIG. 13, the multicast address “address M1” is associated with the MAC addresses “address A1, address A2, address A3” of the terminal devices 70 belonging to the multicast group of this multicast address.
 例えば、LTEスケジューラ402から無線LANスケジューラ401に、端末装置70のMACアドレスとして、「アドレスA5」が通知されたとする。無線LANスケジューラ401は、「アドレスA5」と対応付けられていないマルチキャストアドレスである「アドレスM1」または「アドレスM2」を選択する。
 なお、基地局装置40は、アソシエーション時や再アソシエーション時に、各端末装置70に、その端末装置70が属するマルチキャストグループのマルチキャストアドレスを通知する。
For example, it is assumed that “address A5” is notified from the LTE scheduler 402 to the wireless LAN scheduler 401 as the MAC address of the terminal device 70. The wireless LAN scheduler 401 selects “address M1” or “address M2” which is a multicast address not associated with “address A5”.
The base station device 40 notifies each terminal device 70 of the multicast address of the multicast group to which the terminal device 70 belongs at the time of association or reassociation.
 前述したようにCTSは、宛先アドレスに設定されているアドレス以外の装置に対して、パケットの送信を禁止する。例えば、CTS/multiの宛先アドレスに、マルチキャストアドレス「アドレスM1」が設定されているときを考える。このとき、このCTS/multiを受信した装置のうち、「アドレスM1」が、自装置が属するマルチキャストグループのマルチキャストアドレスである装置は、無線LANによるパケットの送信を行うことができる。このため、無線LANのチャネルを有効に使用することができる。 As described above, the CTS prohibits transmission of packets to devices other than the address set as the destination address. For example, consider a case where the multicast address “address M1” is set as the destination address of CTS / multi. At this time, among the devices that have received this CTS / multi, the device whose “address M1” is the multicast address of the multicast group to which the own device belongs can transmit packets via the wireless LAN. Therefore, the wireless LAN channel can be used effectively.
 第5の実施形態においても、第1の実施形態と同様に、端末装置70において、無線LANの送信信号と、LTEの受信信号とが干渉してしまうことを抑えることができる。
 さらに、第5の実施形態では、チャネル予約の信号にマルチキャストグループを指定し、指定するマルチキャストグループには、LTE通信部43を用いた送信の宛先となる端末装置70が含まれていない。
 これにより、チャネル予約をしていても、チャネル予約の信号にて指定したマルチキャストグループに属する端末装置70は、無線LANのパケットを送信することできる。したがって、無線LANのチャネルを有効に使用することができる。
Also in the fifth embodiment, similarly to the first embodiment, in the terminal device 70, it is possible to suppress interference between the wireless LAN transmission signal and the LTE reception signal.
Furthermore, in the fifth embodiment, a multicast group is designated in the channel reservation signal, and the designated multicast group does not include the terminal device 70 that is the destination of transmission using the LTE communication unit 43.
Thereby, even if the channel reservation is made, the terminal device 70 belonging to the multicast group designated by the channel reservation signal can transmit the wireless LAN packet. Therefore, the wireless LAN channel can be used effectively.
 なお、上述の各実施形態では、セルラー方式の一例としてLTEを挙げたが、LTE-A(Advanced)などの、次世代以降のセルラー方式であってもよいし、W-CDMAなどの第3世代以前のセルラー方式であってもよい。 In each of the above-described embodiments, LTE is exemplified as an example of a cellular system. However, a cellular system of the next generation or later such as LTE-A (Advanced) may be used, or a third generation such as W-CDMA. The previous cellular method may be used.
 また、上述の各実施形態では、基地局装置40は、制御部44を有するが、無線LANに関する制御部である無線LAN制御部44aと、LTEに関する制御部であるLTE制御部44bとに分かれていてもよい。図14は、無線LAN制御部44aとLTE制御部44bとを有する基地局装置40aの構成を示す概略ブロック図である。図14において、図2の各部に対応する部分には、同一の符号を付し、説明を省略する。 In each of the above-described embodiments, the base station apparatus 40 includes the control unit 44, but is divided into a wireless LAN control unit 44a that is a control unit related to the wireless LAN and an LTE control unit 44b that is a control unit related to LTE. May be. FIG. 14 is a schematic block diagram illustrating a configuration of a base station device 40a having a wireless LAN control unit 44a and an LTE control unit 44b. 14, parts corresponding to those in FIG. 2 are denoted by the same reference numerals, and description thereof is omitted.
 基地局装置40aは、通信部41、無線LANモジュール45、LTEモジュール46を含む。無線LANモジュール45は、無線LAN通信部42、無線LAN制御部44aを含む。無線LAN制御部44aは、無線LANスケジューラ401、無線LAN外部インターフェース404を含む。LTEモジュール46は、LTE通信部43、LTE制御部44bを含む。LTE制御部44bは、対応付け取得部403、LTEスケジューラ402、LTE外部インターフェース405を含む。そして、無線LANスケジューラ401と、LTEスケジューラ402とは、無線LAN外部インターフェース404とLTE外部インターフェース405とを介して、互いにやりとりする。 The base station device 40a includes a communication unit 41, a wireless LAN module 45, and an LTE module 46. The wireless LAN module 45 includes a wireless LAN communication unit 42 and a wireless LAN control unit 44a. The wireless LAN control unit 44 a includes a wireless LAN scheduler 401 and a wireless LAN external interface 404. The LTE module 46 includes an LTE communication unit 43 and an LTE control unit 44b. The LTE control unit 44b includes a correspondence acquisition unit 403, an LTE scheduler 402, and an LTE external interface 405. The wireless LAN scheduler 401 and the LTE scheduler 402 communicate with each other via the wireless LAN external interface 404 and the LTE external interface 405.
 さらに、基地局装置40aは、通信部41および無線LANモジュール45を有する無線LAN基地局装置と、通信部41およびLTEモジュール46を有する無線LAN基地局装置とに分かれていてもよい。その場合、無線LAN外部インターフェース404と、LTE外部インターフェース405とは、直接通信せず、それぞれの通信部41を介して通信するようにしてもよい。 Furthermore, the base station device 40a may be divided into a wireless LAN base station device having the communication unit 41 and the wireless LAN module 45 and a wireless LAN base station device having the communication unit 41 and the LTE module 46. In this case, the wireless LAN external interface 404 and the LTE external interface 405 may communicate with each other via the respective communication units 41 instead of directly communicating with each other.
 また、上述の各実施形態で、基地局装置40がCTS/SelfまたはCTS/multiを送信してNAVを張っているが、これに限定されない。例えば、基地局装置40が、RTS(Request-To-Send)を端末装置70に送信し、その端末装置70がCTS/SelfまたはCTS/multiを、基地局装置40に対して送ることでNAVを張るようにしてもよい。 Further, in each of the above-described embodiments, the base station apparatus 40 transmits CTS / Self or CTS / multi to establish the NAV, but is not limited thereto. For example, the base station device 40 transmits an RTS (Request-To-Send) to the terminal device 70, and the terminal device 70 transmits CTS / Self or CTS / multi to the base station device 40, so that the NAV is transmitted. You may make it stretch.
 また、上述の各実施形態で、LTEスケジューラ402は、無線LANスケジューラ401を介さずに、無線LAN-MAC層部201とやりとりしてもよい。
 また、上述の各実施形態で、制御部44は、LSIなどの専用ハードウェアにより実現されてもよいし、コンピュータがプログラムを読み込んで実行することで実現されてもよい。
In each embodiment described above, the LTE scheduler 402 may communicate with the wireless LAN-MAC layer unit 201 without using the wireless LAN scheduler 401.
In each of the above-described embodiments, the control unit 44 may be realized by dedicated hardware such as an LSI, or may be realized by a computer reading and executing a program.
 以上説明した少なくともひとつの実施形態によれば、無線LAN通信部42が、端末装置70からの信号を受信しているときは、LTE通信部43を用いた、端末装置70への送信を延期させる制御部44を持つことにより、端末装置70において、無線LANの送信信号と、LTEの受信信号とが干渉してしまうことを抑えることができる。 According to at least one embodiment described above, when the wireless LAN communication unit 42 receives a signal from the terminal device 70, the transmission to the terminal device 70 using the LTE communication unit 43 is postponed. By having the control unit 44, it is possible to suppress interference between the wireless LAN transmission signal and the LTE reception signal in the terminal device 70.
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。 Although several embodiments of the present invention have been described, these embodiments are presented as examples and are not intended to limit the scope of the invention. These embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the spirit of the invention. These embodiments and their modifications are included in the scope and gist of the invention, and are also included in the invention described in the claims and the equivalents thereof.

Claims (20)

  1.  第1無線通信方式を用いた無線通信を行う第1無線通信部と、
     第2無線通信方式を用いた無線通信を行う第2無線通信部と、
     前記第2無線通信部が信号を受信しているときは、前記第1無線通信部を用いた信号の送信を延期させる制御部と
     を有する無線通信装置。
    A first wireless communication unit that performs wireless communication using the first wireless communication method;
    A second wireless communication unit that performs wireless communication using the second wireless communication method;
    And a control unit for delaying transmission of the signal using the first wireless communication unit when the second wireless communication unit is receiving a signal.
  2.  前記制御部は、前記第1無線通信部を用いた信号の送信の前に、前記第2無線通信部に、前記第2無線通信方式におけるチャネル予約の信号であって、所定の時間、当該信号により指定された装置以外の装置による送信を禁止することでチャネルを予約する信号を送信させる、請求項1に記載の無線通信装置。 The control unit transmits a signal for channel reservation in the second wireless communication method to the second wireless communication unit before transmitting the signal using the first wireless communication unit, and the signal is transmitted for a predetermined time. The wireless communication device according to claim 1, wherein a signal for reserving a channel is transmitted by prohibiting transmission by a device other than the device specified by the control unit.
  3.  前記所定の時間は、前記第1無線通信部を用いた信号の送信に要する時間以上である、請求項2に記載の無線通信装置。 The wireless communication device according to claim 2, wherein the predetermined time is equal to or longer than a time required for signal transmission using the first wireless communication unit.
  4.  前記制御部は、前記所定の時間以内に、前記第1無線通信部を用いた信号の送信が終了したとき、前記所定の時間に、前記第1無線通信部を用いた信号の送信を行わないとき、または、前記無線通信装置と通信する相手装置の前記第2無線通信方式による通信機能が停止されたときは、前記第1無線通信部に、前記チャネル予約を解除する信号を送信させる、請求項2または3に記載の無線通信装置。 The control unit does not transmit a signal using the first wireless communication unit at the predetermined time when transmission of the signal using the first wireless communication unit is completed within the predetermined time. Or when the communication function of the second wireless communication method of the counterpart device communicating with the wireless communication device is stopped, the first wireless communication unit is caused to transmit a signal for canceling the channel reservation. Item 4. The wireless communication device according to Item 2 or 3.
  5.  前記制御部は、前記第1無線通信部を用いた相手装置への送信に、前記第2無線通信部を用いて通信を行っている他の相手装置への送信を周波数多重させる、請求項2から4のいずれか一項に記載の無線通信装置。 The said control part frequency-multiplexes the transmission to the other party apparatus which is communicating using the said 2nd wireless communication part for the transmission to the other party apparatus using the said 1st wireless communication part. 5. The wireless communication device according to any one of 4 to 4.
  6.  前記第1無線通信部は、前記チャネル予約の信号を、前記無線通信装置と通信する相手装置の方向に指向性を付けて送信する、請求項2から5のいずれか一項に記載の無線通信装置。 The wireless communication according to any one of claims 2 to 5, wherein the first wireless communication unit transmits the channel reservation signal with directivity in a direction of a counterpart device that communicates with the wireless communication device. apparatus.
  7.  前記チャネル予約の信号は、マルチキャストグループにより装置を指定し、
     前記チャネル予約の信号が指定するマルチキャストグループには、前記無線通信装置と通信する相手装置が含まれていない、請求項2から6のいずれか一項に記載の無線通信装置。
    The channel reservation signal designates a device by a multicast group,
    The wireless communication device according to any one of claims 2 to 6, wherein the multicast group specified by the channel reservation signal does not include a partner device that communicates with the wireless communication device.
  8.  前記第1無線通信方式は、LTE(Long Term Evolution)による通信方式である、請求項1から7のいずれか一項に記載の無線通信装置。 The wireless communication device according to any one of claims 1 to 7, wherein the first wireless communication method is a communication method based on LTE (Long Term Evolution).
  9.  前記第2無線通信方式は、無線LAN(Local Area Network)による通信方式である、請求項1から7のいずれか一項に記載の無線通信装置。 The wireless communication apparatus according to any one of claims 1 to 7, wherein the second wireless communication system is a communication system using a wireless LAN (Local Area Network).
  10.  前記第1無線通信部は、前記第1無線通信方式を用いた無線通信に用いるアンテナを有し、
     前記第2無線通信部は、前記第2無線通信方式を用いた無線通信に用いるアンテナを有する、請求項1から請求項7のいずれか一項に記載の無線通信装置。
    The first wireless communication unit includes an antenna used for wireless communication using the first wireless communication method,
    The wireless communication apparatus according to claim 1, wherein the second wireless communication unit includes an antenna used for wireless communication using the second wireless communication method.
  11.  請求項1乃至9のいずれか一項に従った無線通信装置を含む集積回路。 An integrated circuit including the wireless communication device according to any one of claims 1 to 9.
  12.  第1無線通信方式を用いた無線通信と第2無線通信方式を用いた無線通信とを行う端末装置と、前記第1無線通信方式を用いた無線通信と前記第2無線通信方式を用いた無線通信とを前記端末装置と行う基地局装置とを有する無線通信システムにおける無線通信方法であって、
     前記基地局装置が、前記第2無線通信方式の信号を前記端末装置から受信しているときは、前記第1無線通信方式を用いた前記端末装置への送信を延期させるステップ
     を有する無線通信方法。
    A terminal device that performs wireless communication using the first wireless communication method and wireless communication using the second wireless communication method, wireless communication using the first wireless communication method, and wireless using the second wireless communication method A wireless communication method in a wireless communication system having a base station device that performs communication with the terminal device,
    A wireless communication method comprising: delaying transmission to the terminal device using the first wireless communication method when the base station device is receiving a signal of the second wireless communication method from the terminal device. .
  13.  前記ステップにおいて、前記基地局装置は、前記端末装置への送信を延期させる際に、端末管理装置が記憶する、前記端末装置の前記第1無線通信方式における識別情報と、前記端末装置の前記第2無線通信方式における識別情報との対応付けを用いて、前記第2無線通信方式の信号の送信元と、前記第1無線通信方式を用いた送信の送信先とが同一であるか否かを判定する、
     請求項12に記載の無線通信方法。
    In the step, when the base station device postpones transmission to the terminal device, the terminal management device stores the identification information in the first wireless communication scheme of the terminal device, and the first information of the terminal device. Whether or not the transmission source of the signal of the second wireless communication method and the transmission destination of the transmission using the first wireless communication method are the same by using the association with the identification information in the two wireless communication method judge,
    The wireless communication method according to claim 12.
  14.  第1無線通信方式を用いた無線通信を行う第1無線通信部と、第2無線通信方式を用いた無線通信を行う第2無線通信部とを有する無線通信装置における無線通信方法であって、
     前記第2無線通信部が信号を受信しているときは、前記第1無線通信部を用いた信号の送信を延期させるステップを有する無線通信方法。
    A wireless communication method in a wireless communication device having a first wireless communication unit that performs wireless communication using a first wireless communication method and a second wireless communication unit that performs wireless communication using a second wireless communication method,
    A wireless communication method comprising: delaying transmission of a signal using the first wireless communication unit when the second wireless communication unit is receiving a signal.
  15.  第1無線通信方式を用いた無線通信を行う第1無線通信部と、
     第2無線通信方式を用いた無線通信を行う第2無線通信部と、
     前記第1無線通信部を用いた信号の送信前に、前記第2無線通信部に、前記第2無線通信方式におけるチャネル予約の信号であって、所定の時間、当該信号で指定された装置以外の装置による送信を禁止する信号を送信させる制御部と
     を有する無線通信装置。
    A first wireless communication unit that performs wireless communication using the first wireless communication method;
    A second wireless communication unit that performs wireless communication using the second wireless communication method;
    Prior to transmission of a signal using the first wireless communication unit, a signal for channel reservation in the second wireless communication method is transmitted to the second wireless communication unit other than a device designated by the signal for a predetermined time. And a control unit that transmits a signal prohibiting transmission by the device.
  16.  前記第1無線通信方式は、LTE(Long Term Evolution)による通信方式である、請求項15に記載の無線通信装置。 The wireless communication apparatus according to claim 15, wherein the first wireless communication system is a communication system based on LTE (Long Term Evolution).
  17.  前記第2無線通信方式は、無線LAN(Local Area Network)による通信方式である、請求項15に記載の無線通信装置。 The wireless communication apparatus according to claim 15, wherein the second wireless communication system is a communication system using a wireless LAN (Local Area Network).
  18.  請求項15乃至17のいずれか一項に従った無線通信装置を含む集積回路。 An integrated circuit including a wireless communication device according to any one of claims 15 to 17.
  19.  第1無線通信方式を用いた無線通信と第2無線通信方式を用いた無線通信とを行う端末装置と、前記第1無線通信方式を用いた無線通信と前記第2無線通信方式を用いた無線通信とを前記端末装置と行う基地局装置とを有する無線通信システムにおける無線通信方法であって、
     前記基地局装置が、前記第1無線通信方式を用いた前記端末装置への送信前に、前記第2無線通信方式におけるチャネル予約の信号であって、所定の時間、当該信号により指定された装置以外の装置による送信を禁止する信号を送信するステップ
     を有する無線通信方法。
    A terminal device that performs wireless communication using the first wireless communication method and wireless communication using the second wireless communication method, wireless communication using the first wireless communication method, and wireless using the second wireless communication method A wireless communication method in a wireless communication system having a base station device that performs communication with the terminal device,
    The base station apparatus is a channel reservation signal in the second radio communication system before transmission to the terminal apparatus using the first radio communication system, and is designated by the signal for a predetermined time A wireless communication method comprising a step of transmitting a signal prohibiting transmission by a device other than the above.
  20.  第1無線通信方式を用いた無線通信を行う第1無線通信部と、第2無線通信方式を用いた無線通信を行う第2無線通信部とを有する無線通信装置における無線通信方法であって、
     前記第1無線通信部を用いた信号の送信前に、前記第2無線通信部が、前記第2無線通信方式におけるチャネル予約の信号であって、所定の時間、当該信号により指定された装置以外の装置による送信を禁止するステップを有する無線通信方法。
    A wireless communication method in a wireless communication device having a first wireless communication unit that performs wireless communication using a first wireless communication method and a second wireless communication unit that performs wireless communication using a second wireless communication method,
    Before transmission of a signal using the first wireless communication unit, the second wireless communication unit is a channel reservation signal in the second wireless communication method, and is a device other than the device specified by the signal for a predetermined time. A wireless communication method comprising a step of prohibiting transmission by the apparatus.
PCT/JP2014/084152 2014-02-18 2014-12-24 Wireless communication device, integrated circuit and wireless communication method WO2015125399A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014028864 2014-02-18
JP2014-028864 2014-02-18

Publications (1)

Publication Number Publication Date
WO2015125399A1 true WO2015125399A1 (en) 2015-08-27

Family

ID=53877928

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/084152 WO2015125399A1 (en) 2014-02-18 2014-12-24 Wireless communication device, integrated circuit and wireless communication method

Country Status (1)

Country Link
WO (1) WO2015125399A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009534918A (en) * 2006-04-20 2009-09-24 パナソニック株式会社 Method and apparatus for wireless transmission using antenna having directivity
JP2013541296A (en) * 2010-10-04 2013-11-07 サムスン エレクトロニクス カンパニー リミテッド Method and apparatus for handling internal device mutual interference in a wireless communication environment
JP2013544049A (en) * 2010-10-29 2013-12-09 サムスン エレクトロニクス カンパニー リミテッド Method and apparatus for handling device internal mutual interference in user terminal
JP2014027548A (en) * 2012-07-27 2014-02-06 Fujitsu Ltd Base station device, radio terminal device, and packet distribution method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009534918A (en) * 2006-04-20 2009-09-24 パナソニック株式会社 Method and apparatus for wireless transmission using antenna having directivity
JP2013541296A (en) * 2010-10-04 2013-11-07 サムスン エレクトロニクス カンパニー リミテッド Method and apparatus for handling internal device mutual interference in a wireless communication environment
JP2013544049A (en) * 2010-10-29 2013-12-09 サムスン エレクトロニクス カンパニー リミテッド Method and apparatus for handling device internal mutual interference in user terminal
JP2014027548A (en) * 2012-07-27 2014-02-06 Fujitsu Ltd Base station device, radio terminal device, and packet distribution method

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MEDIATEK: "Clarification on Modes of Interference Avoidance for each Potential Resolution Direction", R2-105454, 3GPP, XP050452608 *
MEDIATEK: "Output of Email Discussion on IDC Trigger", R2-120226, 3GPP, XP050565595 *

Similar Documents

Publication Publication Date Title
US10225866B2 (en) Systems, methods, and devices for enhanced OFDMA random access
US9461792B2 (en) Signaling and procedure design for cellular cluster contending on license-exempt bands
US20180092101A1 (en) Frequency Domain Resource Configuration Method and Apparatus
JP5173526B2 (en) Wireless system, wireless base station and wireless terminal
CN113206731B (en) Method and communication device for transmitting reference signal
JP2022009449A (en) Terminal device, base station device, and method
CN110830224B (en) Method and related device for acquiring quantity of resource units in communication process
CN110603880A (en) Semi-persistent scheduling method, user equipment and network equipment
KR20160122668A (en) A method and apparatus for allocating resource for a random access cahnnel
EP4156839A1 (en) Channel listening type indication method and apparatus
CN108123781B (en) Information indication method, receiving method and device
US11044761B2 (en) Communication method, terminal, and network device
EP3557847B1 (en) Reference signal configuration method, base station, and terminal
US11032834B2 (en) Information transmission method and device
CN112740813B (en) Communication method and device
WO2021198982A1 (en) PUSCH RESOURCE ALLOCATION WITH MULTIPLE TRPs
CN110447290B (en) Wireless communication method, terminal equipment and network equipment
WO2018071108A1 (en) Techniques for mu-mimo sounding sequence protection
CN107852222B (en) System and method for transmission by frequency diversity
CN109672506A (en) The confirmation method and equipment of data transmission
CN113766440A (en) Apparatus and method for signaling expansion in wireless local area network system
US20170230975A1 (en) Wireless communication system, base station apparatus, and terminal apparatus
CN109257794B (en) Random access method and equipment
JP2017055398A (en) Radio communication device and radio communication method
CN109862616B (en) Resource allocation method, terminal and base station

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14883008

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14883008

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP