WO2015125398A1 - Electrode laminated member for touch panel, capacitance type touch panel, and display device equipped with three-dimensional touch panel - Google Patents

Electrode laminated member for touch panel, capacitance type touch panel, and display device equipped with three-dimensional touch panel Download PDF

Info

Publication number
WO2015125398A1
WO2015125398A1 PCT/JP2014/084138 JP2014084138W WO2015125398A1 WO 2015125398 A1 WO2015125398 A1 WO 2015125398A1 JP 2014084138 W JP2014084138 W JP 2014084138W WO 2015125398 A1 WO2015125398 A1 WO 2015125398A1
Authority
WO
WIPO (PCT)
Prior art keywords
touch panel
electrode
random
display device
mesh
Prior art date
Application number
PCT/JP2014/084138
Other languages
French (fr)
Japanese (ja)
Inventor
佐藤 祐
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2015125398A1 publication Critical patent/WO2015125398A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0445Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using two or more layers of sensing electrodes, e.g. using two layers of electrodes separated by a dielectric layer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04112Electrode mesh in capacitive digitiser: electrode for touch sensing is formed of a mesh of very fine, normally metallic, interconnected lines that are almost invisible to see. This provides a quite large but transparent electrode surface, without need for ITO or similar transparent conductive material

Definitions

  • the present invention relates to an electrode laminate for a touch panel, a capacitive touch panel, and a display device with a three-dimensional touch panel.
  • a so-called touch panel capable of performing various operations by touching with a finger
  • touch panels have begun to be used in large display devices such as personal computers.
  • ITO indium-tin composite oxide
  • the current transfer rate is slow because of insufficient conductivity.
  • the problem that the time (response speed) from when the touch panel is touched until the contact position is detected becomes prominent.
  • the present inventor has found that it is effective to employ a metal mesh electrode having a mesh pattern (mesh) by connecting a plurality of cells in which fine metal wires intersect each other. It was.
  • a mesh electrode made of a thin metal wire has high conductivity and can be provided at low cost.
  • the metal fine wire has an advantage that it is easy to bend because it is more flexible than a metal oxide such as ITO.
  • the present inventor is more periodic than a two-dimensional touch panel due to the periodicity of the metal mesh electrode and the display pixels.
  • easy interference (moire) is likely to occur.
  • the display pixels located under the touch panel are regularly arranged to provide the metal mesh electrode on a three-dimensional plane. Strong moire occurs at any position on the curved surface with respect to the pitch.
  • the present invention has been made to solve the above-described problems, and includes an electrode laminate for a touch panel that includes an electrode having high conductivity and can suppress moire when viewed from various angles, and a capacitive touch panel.
  • An object of the present invention is to provide a display device with a three-dimensional touch panel.
  • the electrode laminate for a touch panel in which the lower electrode and the upper electrode are laminated via an insulating layer, At least one of the lower electrode and the upper electrode is a metal mesh electrode configured by intersecting metal fine wires, and the metal mesh electrode has a random mesh pattern configured by random cells,
  • the electrode laminate for a touch panel is a three-dimensional curved body that is curved so as to bulge from the lower electrode toward the upper electrode or in the opposite direction.
  • the lower electrode is an electrode far from the touch surface in the pair of electrodes constituting the electrode laminate for the touch panel, while the upper electrode is on the touch surface in the pair of electrodes of the touch panel.
  • the insulating layer should just be what insulates a lower electrode and an upper electrode electrically, For example, a resin film etc. may be sufficient and an insulating adhesive agent may be sufficient as it.
  • the three-dimensional curved surface body refers to one having a curved surface that is curved so as to bulge from the lower electrode to the upper electrode side or in the opposite direction. That is, the electrode laminate for touch panel has at least one of convex or concave in the thickness direction.
  • the periodicity is low in a mesh electrode composed of a random pattern in which cells having random shapes and sizes are connected. Therefore, moiré is less likely to occur regardless of the viewing angle.
  • the random pattern refers to a pattern in which the shape and size of a plurality of cells forming the mesh electrode are different from each other, and therefore the periodicity (regularity or uniformity) of the cells is low.
  • the touch panel electrode laminate may be a three-dimensional curved body having a different curvature radius depending on a portion.
  • the change in the relationship between the mesh pitch and the pixel pitch is significant depending on the viewing angle, but even in this case, moire can be suppressed. This is because, as described above, the cells constituting the mesh electrode have a random pattern with low periodicity (regularity or uniformity).
  • both the lower electrode and the upper electrode have a random mesh pattern.
  • the random rate of a plurality of random cells is preferably 2 to 20%.
  • the random rate is too low, there is a high possibility that moire will be recognized depending on the viewing angle.
  • the random rate is excessively high, the resistance value of the mesh electrode tends to vary, and it may not be easy to drive as a touch panel. Further, if the random rate is excessively high, the viewer may feel a sense of granular noise on the display screen. The definition of the random rate will be described later.
  • the line width of the fine metal wire constituting the random cell is preferably 1 to 6 ⁇ m.
  • the thickness is less than 1 ⁇ m, the flexibility is lowered, and thus disconnection is likely to occur when the electrode laminate for a touch panel is formed. Moreover, when it exceeds 6 micrometers, there exists a tendency for the noise feeling resulting from a random mesh to become strong.
  • the lower electrode preferably has a strip shape extending along the first direction, and a plurality of lower electrodes are arranged in parallel along the second direction orthogonal to the first direction.
  • the upper electrode has a strip shape extending along the second direction, and a plurality of upper electrodes may be arranged in parallel along the first direction.
  • the present invention is a capacitive touch panel including the touch panel electrode laminated body configured as described above.
  • the present invention is a display device with a three-dimensional touch panel provided with the above capacitive touch panel and a display device.
  • An air gap may be interposed between the touch panel and the display device.
  • the display surface of the display device may be a flat surface.
  • the lower electrode or the upper electrode in the electrode laminate for a touch panel which is a three-dimensional curved body, is formed of a mesh electrode having a random pattern in which cells having random shapes, sizes, and the like are connected.
  • Such metal mesh electrodes are less likely to cause periodic interference, so that moire is sufficiently reduced.
  • FIG. 5 is a schematic front view showing a lower electrode and an upper electrode that constitute an electrode laminate of Comparative Example 1.
  • FIG. It is a schematic front view which shows the lower electrode and upper electrode which comprise the electrode laminated body of the comparative example 2.
  • indicating a numerical range is used as a meaning including numerical values described before and after the numerical value as a lower limit value and an upper limit value.
  • upper refers to the side (outer surface side) closer to the viewer viewing the display device with a three-dimensional touch panel, while “lower” refers to the side farther from the viewer (inner surface side).
  • FIG. 1 is a schematic cross-sectional view of an essential part along the thickness direction of a display device 10 with a three-dimensional touch panel according to the present embodiment.
  • the display device 10 with a three-dimensional touch panel includes a touch panel 14 (capacitive touch panel) including an electrode stack 12 (electrode stack for touch panel), and the touch panel 14 is bonded to the display device 16. Is made up of.
  • the display device 16 has a display screen 18 (display surface) for displaying at least an image, text, and the like.
  • the display screen 18 displays an image or text under the control action of a control circuit (IC circuit or the like) (not shown) according to a command input to the touch panel 14.
  • the display screen 18 is formed as a flat surface without undulations.
  • the display device 16 is not particularly limited, but suitable examples include a liquid crystal display, a plasma display, an organic EL display (Organic Electro-Luminescence), an inorganic EL display, electronic paper, and the like.
  • the edge of the touch panel 14 is bonded to the side of the display device 16 via the adhesive 20.
  • the upper surface of the touch panel 14 is roughly divided into a display area 22 where a touch operation is performed covering the display screen 18 of the display device 16 and a button operation area 24 where operation buttons are arranged. Further, the upper surface of the touch panel 14 is curved so as to bulge vertically upward from the outer edge toward the inner side. That is, in this case, the touch panel 14 is a three-dimensional curved body having a curved surface.
  • the display device 16 and the touch panel 14 are separated by a predetermined clearance. This is because the display screen 18 of the display device 16 is flat while the touch panel 14 is a three-dimensional curved surface. As described above, when the touch panel is a three-dimensional curved body, if the display device is flat, a gap is generated between the display screen and the touch panel. When the location where the gap is maximized is 500 ⁇ m or more, it is preferable to use the air gap 26 in which air is accommodated from the viewpoint of transmittance. In the case of 500 ⁇ m or more, a difference in viewing angle is likely to occur between the periodicity of the metal mesh electrode and the periodicity of the pixels of the display device, and the angle dependency of the moire becomes large. The effect of the invention is increased.
  • the touch panel 14 includes an electrode laminate 12 that is a sensor body, the control circuit (not shown), and a protective layer (not shown) that covers the upper surface of the touch panel 14.
  • the electrode laminate 12 in this structure is configured by forming a lower electrode 30 and an upper electrode 32 on the lower end surface and upper end surface of a transparent base 28 made of an insulator, respectively, as shown in FIG. Is done.
  • the lower electrode 30 is an electrode far from the touch surface in the pair of electrodes of the touch panel 14
  • the upper electrode 32 is an electrode on the touch surface in the pair of electrodes of the touch panel 14.
  • the electrode on the near side is
  • the thickness of the transparent substrate 28 is preferably 20 to 350 ⁇ m or less, more preferably 30 to 250 ⁇ m, and particularly preferably 40 to 200 ⁇ m.
  • Examples of the transparent substrate 28 include a plastic film, a plastic plate, and a glass plate.
  • polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN); polyethylene (PE), polypropylene (PP), polystyrene, polyethylene vinyl acetate (EVA), and the like.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PE polyethylene
  • PP polypropylene
  • EVA polyethylene vinyl acetate
  • Polyolefins; vinyl resins; polycarbonate (PC), polyamide, polyimide, acrylic resin, triacetyl cellulose (TAC), cycloolefin polymer (COP), and the like can be used.
  • the transmittance of the transparent substrate 28 is preferably 85% or more.
  • both the lower electrode 30 and the upper electrode 32 are made of metal fine wires 34 and metal mesh electrodes having a random mesh pattern formed by connecting random cells having random shapes and sizes.
  • the cell forming the lower electrode 30 is referred to as “first cell”
  • the cell forming the upper electrode 32 is referred to as “second cell”
  • the respective reference numerals are referred to as 36 and 38.
  • the lower electrode 30 has a plurality of strip-like patterns each extending in the first direction (x direction / longitudinal direction) as shown in FIG.
  • the lower electrode 30 has a predetermined width direction dimension in the second direction (direction perpendicular to the first direction: y direction), and a plurality of the lower electrodes 30 are arranged in parallel along the y direction.
  • the “strip shape” refers to a long shape extending with a predetermined width direction dimension, but also includes a shape whose width direction dimension varies periodically (repeating the expansion and contraction). And The same applies to the upper electrode 32 described later.
  • Each lower electrode 30 is formed by crossing thin metal wires 34 made of silver, copper, molybdenum, or an alloy containing one or more of them. Along with this intersection, a plurality of spaces (openings) surrounded by the thin metal wires 34, that is, the first cells 36 are formed.
  • the metal thin line 34p that connects the vertex C1 and the vertex C2 with a straight line
  • the metal thin line 34q that connects the vertex C2 and the vertex C3 with a straight line
  • the vertex C3 and the vertex C4 with a straight line.
  • the thin metal wire 34r and the thin metal wire 34s that connects the vertex C4 and the vertex C1 with a straight line form a polygonal shape.
  • the other cells (first cells 36) have a polygonal shape.
  • the lower electrode 30 is a metal mesh electrode having a random mesh pattern composed of random cells having different shapes and sizes of the first cells 36 and low periodicity (regularity or uniformity).
  • the shape of such a random mesh pattern can be set by, for example, the Voronoi division method or the Delaunay triangulation method. Specific operations for setting a random mesh pattern are described in detail in paragraphs ⁇ 0080> to ⁇ 0083> of JP2013-54619A.
  • the difference in cell size of the lower electrode 30, that is, the random ratio is preferably 2 to 20%, more preferably 4 to 10%. More preferably, it is 6 to 8%.
  • the random rate means that any 30 first cells 36 constituting a random mesh pattern are taken out, and among the lengths Ld of one side of each first cell 36, the maximum value is Ldmax, the minimum value is Ldmin, When the average value is Ldave, the larger value among the values obtained by the following formulas (1) and (2) is extracted in each cell and defined as the average value of 30. (Ldmax ⁇ Ldave) / Ldave ⁇ 100 (1) (Ldave ⁇ Ldmin) / Ldave ⁇ 100 (2)
  • the random rate is less than 2%, the cell size of each first cell 36 becomes almost uniform, and the moire suppressing effect due to the arrangement of the plurality of first cells 36 becomes low.
  • the random rate exceeds 20%, the resistance value of the lower electrode 30 varies, and the detection sensitivity may be reduced. Moreover, there is a possibility that a granular noise sensation is generated on the display screen.
  • the width direction dimension (line width) of the fine metal wire 34 is not particularly limited, but is preferably 6 ⁇ m or less. By reducing the line width in this way, it is possible to suppress noise in the display device 10 with a three-dimensional touch panel that employs a random mesh. In addition, the fact that the shape of the first cell 36 is random and the line width of the fine metal wire 34 are so small, the moire is improved and the visibility is improved.
  • the line width is more preferably 4 ⁇ m or less.
  • the line width of the fine metal wire 34 is excessively small, the flexibility is lowered. For this reason, when the electrode laminated body 12 is made into a three-dimensional curved surface body, a disconnection may occur. In order to reduce this possibility, it is preferable to set the line width of the fine metal wire 34 to 1 ⁇ m or more. In this case, sufficient conductivity can be ensured for the lower electrode 30.
  • the average cell pitch of the lower electrode 30 is preferably 50 to 400 ⁇ m, and more preferably 50 to 300 ⁇ m.
  • the average cell pitch of the lower electrode 30 is defined by an average length obtained by measuring the maximum length of the first cell 36 in the x direction in which the lower electrode 30 extends in an arbitrary 30 cells.
  • a first terminal wiring portion 40 is electrically connected to one end portion of each lower electrode 30 via a first connection portion 39.
  • the first terminal wiring portion 40 is routed toward a substantially central portion of one side extending along the y direction, and is electrically connected to the first terminal portion 48.
  • the first terminal portion 48 is electrically connected to the control circuit.
  • the space between adjacent lower electrodes 30 is blank.
  • a dummy mesh may be disposed between the adjacent lower electrodes 30.
  • the cells forming the dummy mesh preferably have a random shape like the lower electrode 30.
  • the dummy mesh is not used as an electrode, even if the random rate is high, there is no particular problem. However, if the random rate is significantly different from the electrodes, the lower electrode 30 may be visually recognized. Therefore, when the dummy mesh is a random mesh, the random rate is preferably 2 to 20% as in the lower electrode 30. Of course, it is preferable to employ a mesh having a random rate equivalent to that of the lower electrode 30 as the dummy mesh.
  • the upper electrode 32 formed on the upper end surface of the transparent substrate 28 has a plurality of strip-like patterns each extending in the second direction (y direction / longitudinal direction).
  • the upper electrode 32 has a predetermined width direction dimension in the first direction (direction orthogonal to the second direction: x direction), and a plurality of the upper electrodes 32 are arranged in parallel along the x direction.
  • each upper electrode 32 is formed by intersecting metal thin wires 34 with each other. Along with this intersection, a second cell 38 surrounded by the thin metal wire 34 is formed.
  • the mesh pattern of the upper electrode 32 is random like the lower electrode 30. That is, the size and shape of the plurality of second cells 38 are different from each other in the same manner as the first cells 36 and have low periodicity (regularity or unity). Note that the preferable line width of the thin metal wire 34 in the second cell 38 and the reason thereof, the method of determining the wiring shape of the second cell 38, and the like are the same as those of the first cell 36.
  • the random ratio of the upper electrode 32 is preferably 2 to 20%, more preferably 4 to 10%, and further preferably 6 to 8% for the same reason as the lower electrode 30.
  • the average cell pitch is preferably 50 to 400 ⁇ m, and more preferably 50 to 300 ⁇ m, like the lower electrode 30.
  • the average cell pitch of the upper electrode 32 is defined by an average length obtained by measuring the maximum length of the second cell 38 in the y direction in which the upper electrode 32 extends in any 30 cells.
  • a second terminal wiring portion 52 is electrically connected to one end portion of each upper electrode 32 via a second connection portion 50.
  • the second terminal wiring portion 52 is routed toward a substantially central portion of one side extending along the x direction, and is electrically connected to the second terminal portion 54.
  • the second terminal portion 54 is electrically connected to the control circuit.
  • the space between the adjacent upper electrodes 32 is blank.
  • a dummy mesh may be disposed between the adjacent upper electrodes 32.
  • the cells forming the dummy mesh preferably have a random shape like the upper electrode 32.
  • the dummy mesh is not used as an electrode, there is no particular problem even if the random rate is high. However, if the random rate is significantly different from the electrodes, the upper electrode 32 may be visually recognized. Therefore, when the dummy mesh is a random mesh, the random rate is preferably 2 to 20%, similar to the upper electrode 32. Of course, it is preferable to employ a mesh having a random rate equivalent to that of the upper electrode 32 as the dummy mesh.
  • the lower electrode 30 and the upper electrode 32 it is preferable to employ a random mesh as described above.
  • the random ratio of the lower electrode 30 and the upper electrode 32 it is preferable to increase the random ratio of an electrode having a large electrode width, while decreasing the random ratio for an electrode having a small electrode width.
  • the electrode width often increases the lower electrode 30 and decreases the upper electrode 32 in order to improve detection sensitivity.
  • the random rate of the lower electrode 30 is preferably set higher than the random rate of the upper electrode 32.
  • the detection sensitivity can be increased by setting the mesh pitch of the upper electrode 32 larger than that of the lower electrode 30.
  • the lower electrode 30 and the upper electrode 32 are preferably formed by etching using a photolithography process, or by a microcontact printing patterning method, a silver salt method, or an intaglio metal particle filling method. can do.
  • the silver salt method is more preferable.
  • the microcontact printing patterning method is a method for obtaining a pattern having a narrow line width by using the microcontact printing method.
  • the microcontact printing method is a method for producing a monomolecular film pattern by using an elastic polydimethylsiloxane stamp and bringing a thiol solution into contact with a gold base material as an ink (Whitedesed, Angew. Chem. Int. Ed., 1998, volume 37, page 550).
  • a typical process of the microcontact printing patterning method is, for example, as follows. That is, first, the substrate is coated with a metal (eg, silver is sputter coated onto a PET substrate).
  • a metal eg, silver is sputter coated onto a PET substrate.
  • the masking of the monomolecular film is stamped using a microcontact printing method on a metal-coated substrate. Thereafter, the metal coated on the substrate is removed by etching except for the pattern under masking.
  • the intaglio metal particle filling method is a method of forming a metal mesh by exposing a resist in a mesh shape to form a mesh-like groove and filling the groove with ink in which metal particles are dispersed.
  • the method described in Chinese Patent No. 102063951 can be applied.
  • the silver salt method is to obtain a pattern of fine metal wires 34 having a mesh shape by exposing and developing a photosensitive material having a photosensitive silver salt-containing layer. Specific operations thereof are described in detail in paragraphs ⁇ 0163> to ⁇ 0241> of JP2009-4348A.
  • the transparent base 28 on which the lower electrode 30 and the upper electrode 32 are formed in this way is curved so as to bulge toward the upper electrode 32, for example, and the shape thereof is maintained. Thereby, the electrode laminated body 12 as a three-dimensional curved surface body is obtained.
  • the touch panel 14 including the electrode laminate 12 is bonded to the display device 16 via an adhesive 20. Thereby, the display apparatus 10 with a three-dimensional touch panel is obtained.
  • the touch panel 14 since the fine metal wires 34 forming the first cells 36 and the thin metal wires 34 forming the second cells 38 have high conductivity, the touch panel 14 exhibits sufficient conductivity. For this reason, sufficient response speed is ensured.
  • the present invention is not particularly limited to the above-described embodiment, and various modifications can be made without departing from the gist of the present invention.
  • both the lower electrode 30 and the upper electrode 32 have a random mesh pattern, but either the lower electrode 30 or the upper electrode 32 has a random mesh pattern, and the remaining one has a regular mesh pattern. You may make it.
  • the lower electrode 30 and the upper electrode 32 are formed on the same transparent substrate 28, but the lower electrode 30 or the upper electrode 32 are individually formed on separate transparent substrates 28 and 28. Thereafter, the transparent substrates 28 and 28 may be bonded together. For this bonding, an insulating adhesive may be used.
  • Example 1 The metal laminate electrode (lower electrode 30 and upper electrode 32) was insert-molded to produce the electrode laminate 12 having the cross-sectional shape shown in FIG.
  • Polycarbonate (PC) was used as the extrusion resin used for insert molding.
  • the curvature of the display area 22 varies depending on the location and is not constant.
  • the strip-like lower electrode 30 and upper electrode 32 constituting the touch panel 14 were designed as a random mesh with a cell random rate of 1% in accordance with the description in Japanese Patent Application Laid-Open No. 2013-54619.
  • the average cell pitch is 200 ⁇ m
  • the line width of the fine metal wires 34 is 5 ⁇ m
  • the dimension in the width direction orthogonal to the longitudinal direction is 5 mm
  • a space of 1 mm is provided between the adjacent lower electrodes 30 or the upper electrodes 32, and between the electrodes.
  • a dummy mesh having the same specifications as the electrodes was placed.
  • the touch panel 14 including the electrode laminate 12 as described above is bonded to a commercially available liquid crystal display having a diagonal size of 5 inches (a micro color TFT liquid crystal monitor unit manufactured by Groovy), and a display device with a three-dimensional touch panel according to FIG. 10 was produced.
  • a commercially available liquid crystal display having a diagonal size of 5 inches a micro color TFT liquid crystal monitor unit manufactured by Groovy
  • a display device with a three-dimensional touch panel according to FIG. 10 was produced.
  • Example 2 to 5 A random mesh was designed such that the random rate was the value shown in Table 1 below. Other than that was carried out similarly to Example 1, and produced the display apparatus 10 with a three-dimensional touchscreen. Each of these is referred to as Examples 2-5.
  • Example 6 A display device 10 with a three-dimensional touch panel was produced in the same manner as in Example 4 except that the mesh line width was changed as shown in Table 1. Each is designated as Examples 6-9.
  • Comparative Example 1 Both the upper electrode and the lower electrode were formed as metal mesh electrodes in which the rhombic cells 60 shown in FIG. Further, the crossing angle ⁇ 1 of the rhombus cell 60 was set to 62.5 °, and the cell pitch indicated by P1 in FIG. 5 was set to 200 ⁇ m. Other than that was based on Example 1, and produced the display apparatus with a three-dimensional touch panel. This is referred to as Comparative Example 1.
  • Comparative Example 2 Both the upper electrode and the lower electrode were formed as metal mesh electrodes in which hexagonal cells 62 shown in FIG. A display device with a three-dimensional touch panel was produced in the same manner as in Comparative Example 1 except that the cell pitch indicated by P2 in FIG. 6 was 173 ⁇ m. This is referred to as Comparative Example 2.
  • connection rate The number of unexpected disconnections of the fine metal wire 34 was measured at a location where the radius of curvature of the three-dimensional shape was the largest. This measurement was performed using a microscope. A case where disconnection is not observed "A”, disconnection in the following two places per 1 cm 2, "B” and if a level as not to practical problem, it is disconnection 1 cm 2 per three or more, the allowable range The case of the outside level was designated as “C”.
  • Table 1 also includes evaluation of front moire evaluation, moire viewing angle dependence, noise sensation, occurrence rate of disconnection, and resistance value correction necessity for the display devices with a three-dimensional touch panel of Examples 1 to 9 and Comparative Examples 1 and 2. It shows. From Table 1, it can be seen that by making the mesh pattern random, it is possible to suppress the occurrence of moire and disconnection while avoiding an increase in noise.
  • both the lower electrode 30 and the upper electrode 32 are formed of random cells, the occurrence of moire (periodic interference) due to the difference in pitch between the upper electrode 32 and the lower electrode 30 is suppressed. is there.
  • both the upper electrode 32 and the lower electrode 30 are formed in a regular pattern made of rhombuses, etc., the density of interference periodically occurs and strong moire is visually recognized, but a mesh having random cells is adopted. In this case, moire is not recognized even when the observation angle is changed. For this reason, the degree of freedom in design increases.
  • a touch panel with reduced moire can be configured by using random mesh electrodes.
  • SYMBOLS 10 Display apparatus with a three-dimensional touch panel 12 ... Electrode laminated body 14 for touch panels ... Capacitive touch panel 16 ... Display apparatus 18 ... Display screen 20 ... Adhesive 26 ... Air gap 28 ... Transparent base 30 ... Lower electrode 32 . Upper electrode 34, 34p, 34q, 34r, 34s ... fine metal wire 36 ... first cell 38 ... second cell

Abstract

Provided is an electrode laminated member for a touch panel including an electrode laminated member comprising a three-dimensional curved surface member, the electrode laminated member enabling suppression of moiré when viewed from various angles. Also provided are a capacitance type touch panel and a display device equipped with a three-dimensional touch panel. In the electrode laminated member (12) for a touch panel, a lower electrode (30) and an upper electrode (32) are laminated via an insulating layer. At least one of the lower electrode (30) or the upper electrode (32) is formed of metal thin wires (34) intersecting each other, and comprises a random mesh electrode linking a plurality of random cells having mutually different shapes. The electrode laminated member (12) for a touch panel is a three-dimensional curved surface member curved to bulge in a direction from the lower electrode (30) toward the upper electrode (32) or in the opposite direction.

Description

タッチパネル用電極積層体、静電容量式タッチパネル及び三次元タッチパネル付表示装置Electrode laminate for touch panel, capacitive touch panel, and display device with three-dimensional touch panel
 本発明は、タッチパネル用電極積層体、静電容量式タッチパネル及び三次元タッチパネル付表示装置に関する。 The present invention relates to an electrode laminate for a touch panel, a capacitive touch panel, and a display device with a three-dimensional touch panel.
 多機能携帯電話(スマートフォン)やデジタルカメラ等の表示装置として、指で触ることにより様々な操作を行い得る、いわゆるタッチパネルが広汎に採用されるに至っている。さらに、近時、パーソナルコンピュータ等の大型の表示装置にもタッチパネルが採用され始めている。小型のタッチパネルでは、例えば、インジウム-スズ複合酸化物(ITO)電極が用いられることがあるが、大型のタッチパネルにITO電極を採用した場合、導電性が十分ではないことから電流の伝達速度が遅くなり、タッチパネルへの接触後から接触位置を検出するまでの時間(応答速度)が遅くなるという課題が顕著になる。また、ITO電極を採用した場合、コストの低廉化も困難である。 As a display device such as a multi-function mobile phone (smart phone) or a digital camera, a so-called touch panel capable of performing various operations by touching with a finger has been widely adopted. Furthermore, recently, touch panels have begun to be used in large display devices such as personal computers. For example, an indium-tin composite oxide (ITO) electrode may be used in a small touch panel. However, when an ITO electrode is used in a large touch panel, the current transfer rate is slow because of insufficient conductivity. Thus, the problem that the time (response speed) from when the touch panel is touched until the contact position is detected becomes prominent. Moreover, when an ITO electrode is employed, it is difficult to reduce the cost.
 加えて、特許文献1に記載された操作面が三次元形状(立体形状)をなすタッチパネルが実用化されつつあるが、金属酸化物であるITOは柔軟性が乏しく、屈曲させることが困難である。このため、ITO電極を採用した三次元形状のタッチパネルを作製することは困難を窮める。 In addition, touch panels in which the operation surface described in Patent Document 1 has a three-dimensional shape (three-dimensional shape) are being put into practical use. However, ITO, which is a metal oxide, has poor flexibility and is difficult to bend. . For this reason, it is difficult to produce a three-dimensional touch panel using ITO electrodes.
国際公開第2013/018698号International Publication No. 2013/018698
 本発明者は、上記の課題を解決するために、金属細線同士を交差させたセルが複数個連なることにより網目模様(メッシュ)をなした金属メッシュ電極を採用することが有効であることを見出した。金属細線からなるメッシュ電極は導電性が高く、しかも、低コストで設けることができる。また、金属細線は、ITO等の金属酸化物に比較して柔軟性に富むため、屈曲させることが容易である、という利点もある。 In order to solve the above-mentioned problem, the present inventor has found that it is effective to employ a metal mesh electrode having a mesh pattern (mesh) by connecting a plurality of cells in which fine metal wires intersect each other. It was. A mesh electrode made of a thin metal wire has high conductivity and can be provided at low cost. In addition, the metal fine wire has an advantage that it is easy to bend because it is more flexible than a metal oxide such as ITO.
 上記の考察に基づいて、金属メッシュ電極を用いた三次元形状のタッチパネルを試作した結果、本発明者は、金属メッシュ電極とディスプレイの画素との周期性から、二次元形状のタッチパネルよりも周期的な干渉(モアレ)が生じ易い、との知見を得た。 Based on the above consideration, as a result of trial manufacture of a three-dimensional touch panel using a metal mesh electrode, the present inventor is more periodic than a two-dimensional touch panel due to the periodicity of the metal mesh electrode and the display pixels. We obtained knowledge that easy interference (moire) is likely to occur.
 すなわち、金属メッシュ電極を規則的なセルにて構成し、三次元形状とした場合には、三次元平面上に金属メッシュ電極を設けるために、タッチパネルの下に位置するディスプレイの画素の規則的なピッチに対して、曲面のいずれかの位置で強いモアレが発生してしまう。特に、観測する角度によるモアレ発生度合いを確認するとき、正面位置ではモアレを発生しない(正面から見た画素ピッチとメッシュピッチが周期的に干渉しない)金属メッシュ電極の設計は可能であっても、ディスプレイに対して傾斜した位置においてモアレが認められないようにすることは困難である。ディスプレイの表面と金属メッシュ電極の表面の曲率の違いや、金属メッシュ電極を設けた基板の厚みによる視差の影響が強く影響するからである。 That is, when the metal mesh electrode is formed of regular cells and has a three-dimensional shape, the display pixels located under the touch panel are regularly arranged to provide the metal mesh electrode on a three-dimensional plane. Strong moire occurs at any position on the curved surface with respect to the pitch. In particular, when confirming the degree of moire generation according to the angle to be observed, it is possible to design a metal mesh electrode that does not generate moire at the front position (the pixel pitch and mesh pitch viewed from the front do not interfere periodically) It is difficult to prevent moiré from being observed at a position inclined with respect to the display. This is because the influence of parallax due to the difference in curvature between the surface of the display and the surface of the metal mesh electrode and the thickness of the substrate provided with the metal mesh electrode are strongly affected.
 このように、上記したような構成の金属メッシュ電極を採用した三次元形状のタッチパネルでは、全ての角度においてモアレを発生させない設計は困難を窮める。 As described above, in a three-dimensional touch panel using the metal mesh electrode having the above-described configuration, a design that does not generate moire at all angles gives up difficulty.
 なお、ITO電極を採用したタッチパネルでは、ITO電極が透明であるためにモアレは生じない。すなわち、上記の不都合は、金属メッシュ電極を採用したタッチパネルにおける特有の問題である。 In addition, in the touch panel which employ | adopted the ITO electrode, since an ITO electrode is transparent, a moire does not arise. That is, the above inconvenience is a problem peculiar to a touch panel employing a metal mesh electrode.
 本発明は上記した問題を解決するためになされたものであり、導電性が高い電極を備えるとともに、様々な角度から視認したときのモアレを抑止し得るタッチパネル用電極積層体、静電容量式タッチパネル及び三次元タッチパネル付表示装置を提供することを目的とする。 The present invention has been made to solve the above-described problems, and includes an electrode laminate for a touch panel that includes an electrode having high conductivity and can suppress moire when viewed from various angles, and a capacitive touch panel. An object of the present invention is to provide a display device with a three-dimensional touch panel.
 前記の目的は、以下の[1]の構成により達成される。 The above object is achieved by the following configuration [1].
[1] 下方電極と上方電極とが、絶縁層を介して積層されたタッチパネル用電極積層体において、
 下方電極又は上方電極の少なくともいずれか一方が、金属細線同士が交差して構成された金属メッシュ電極であって、該金属メッシュ電極がランダムセルから構成されたランダムメッシュパターンを有し、
 且つ下方電極から上方電極側に、又はその逆方向に指向して膨出するように湾曲した三次元曲面体であることを特徴とするタッチパネル用電極積層体。
[1] In the electrode laminate for a touch panel in which the lower electrode and the upper electrode are laminated via an insulating layer,
At least one of the lower electrode and the upper electrode is a metal mesh electrode configured by intersecting metal fine wires, and the metal mesh electrode has a random mesh pattern configured by random cells,
The electrode laminate for a touch panel is a three-dimensional curved body that is curved so as to bulge from the lower electrode toward the upper electrode or in the opposite direction.
 ここで、下方電極は、タッチパネル用電極積層体を構成する1対の電極の中、タッチ面から遠い側の電極であり、一方、上方電極は、タッチパネルの1対の電極の中、タッチ面に近い側の電極である。また、絶縁層は、下方電極と上方電極を電気的に絶縁するものであればよく、例えば、樹脂フィルム等であってもよいし、絶縁性の接着剤であってもよい。 Here, the lower electrode is an electrode far from the touch surface in the pair of electrodes constituting the electrode laminate for the touch panel, while the upper electrode is on the touch surface in the pair of electrodes of the touch panel. The electrode on the near side. Moreover, the insulating layer should just be what insulates a lower electrode and an upper electrode electrically, For example, a resin film etc. may be sufficient and an insulating adhesive agent may be sufficient as it.
 さらに、三次元曲面体とは、下方電極から上方電極側に、又はその逆方向に指向して膨出するように湾曲した曲面を有するものを指す。すなわち、タッチパネル用電極積層体には、厚み方向に凸又は凹の少なくともいずれかが存在する。 Further, the three-dimensional curved surface body refers to one having a curved surface that is curved so as to bulge from the lower electrode to the upper electrode side or in the opposite direction. That is, the electrode laminate for touch panel has at least one of convex or concave in the thickness direction.
 このようなタッチパネル用電極積層体では、視認(観察)する角度、すなわち、視野角度によってメッシュのピッチと画素ピッチの関係が変化する。従って、下方電極及び上方電極の双方が、所定の多角形形状が複数個規則的に連なるメッシュパターン(定型パターン)であると、ある角度ではモアレが観測されない場合であっても、別のある角度ではモアレが観測されることがある。 In such an electrode laminate for a touch panel, the relationship between the mesh pitch and the pixel pitch varies depending on the viewing (observation) angle, that is, the viewing angle. Therefore, if both the lower electrode and the upper electrode are mesh patterns (standard patterns) in which a plurality of predetermined polygonal shapes are regularly arranged, even if moire is not observed at a certain angle, another certain angle is obtained. Then, moire may be observed.
 これに対し、形状やサイズ等がランダムであるセルが連なるランダムパターンからなるメッシュ電極では周期性が低い。従って、視野角度に関わらず、モアレが発生し難くなる。 On the other hand, the periodicity is low in a mesh electrode composed of a random pattern in which cells having random shapes and sizes are connected. Therefore, moiré is less likely to occur regardless of the viewing angle.
 なお、ランダムパターンとは、メッシュ電極を形成する複数個のセルの形状及びサイズが互いに異なっており、このためにセルの周期性(規則性ないし統一性)が低いパターンのことをいう。 The random pattern refers to a pattern in which the shape and size of a plurality of cells forming the mesh electrode are different from each other, and therefore the periodicity (regularity or uniformity) of the cells is low.
[2] タッチパネル用電極積層体は、部位によって曲率半径が相違する三次元曲面体であってもよい。 [2] The touch panel electrode laminate may be a three-dimensional curved body having a different curvature radius depending on a portion.
 このようなタッチパネル用電極積層体では、視野角度によってメッシュのピッチと画素ピッチの関係の変化が顕著であるが、この場合においても、モアレを抑止することができる。上記したように、メッシュ電極を構成するセルが、周期性(規則性ないし統一性)が低いランダムパターンであるからである。 In such an electrode laminate for a touch panel, the change in the relationship between the mesh pitch and the pixel pitch is significant depending on the viewing angle, but even in this case, moire can be suppressed. This is because, as described above, the cells constituting the mesh electrode have a random pattern with low periodicity (regularity or uniformity).
[3] 下方電極と上方電極の双方が、ランダムメッシュパターンを有することが好ましい。 [3] It is preferable that both the lower electrode and the upper electrode have a random mesh pattern.
 この場合、下方電極と上方電極の双方で周期性が低いので、モアレを一層抑止することができる。 In this case, since the periodicity is low in both the lower electrode and the upper electrode, moire can be further suppressed.
[4] ランダムメッシュパターンは、複数個のランダムセルのランダム率が2~20%であることが好ましい。 [4] In the random mesh pattern, the random rate of a plurality of random cells is preferably 2 to 20%.
 ランダム率が過度に低いと、視野角度によってはモアレが認められる可能性が高くなる。一方、ランダム率が過度に高いと、メッシュ電極の抵抗値がばらつき易くなり、タッチパネルとして駆動させることが容易でなくなる可能性がある。また、ランダム率が過度に高いと、視聴者が、表示画面に粒状のノイズ感を感じる可能性がある。なお、ランダム率の定義については後述する。 If the random rate is too low, there is a high possibility that moire will be recognized depending on the viewing angle. On the other hand, if the random rate is excessively high, the resistance value of the mesh electrode tends to vary, and it may not be easy to drive as a touch panel. Further, if the random rate is excessively high, the viewer may feel a sense of granular noise on the display screen. The definition of the random rate will be described later.
[5] ランダムセルを構成する金属細線の線幅は1~6μmであることが好ましい。 [5] The line width of the fine metal wire constituting the random cell is preferably 1 to 6 μm.
 1μm未満では、屈曲性が低下するので、タッチパネル用電極積層体を成形する際に断線が発生し易くなる。また、6μmを超えると、ランダムメッシュに起因するノイズ感が強くなる傾向がある。 If the thickness is less than 1 μm, the flexibility is lowered, and thus disconnection is likely to occur when the electrode laminate for a touch panel is formed. Moreover, when it exceeds 6 micrometers, there exists a tendency for the noise feeling resulting from a random mesh to become strong.
[6] 下方電極は、好適には、第1の方向に沿って延在する帯形状をなし、且つ第1の方向に対して直交する第2の方向に沿って複数個並列される。この場合、上方電極は、第2の方向に沿って延在する帯形状をなし、且つ第1の方向に沿って複数個並列すればよい。 [6] The lower electrode preferably has a strip shape extending along the first direction, and a plurality of lower electrodes are arranged in parallel along the second direction orthogonal to the first direction. In this case, the upper electrode has a strip shape extending along the second direction, and a plurality of upper electrodes may be arranged in parallel along the first direction.
[7] また、本発明は、上記のように構成されたタッチパネル用電極積層体を備える静電容量式タッチパネルである。 [7] Further, the present invention is a capacitive touch panel including the touch panel electrode laminated body configured as described above.
[8] さらに、本発明は、上記の静電容量式タッチパネルと、表示装置とを備える三次元タッチパネル付表示装置である。 [8] Furthermore, the present invention is a display device with a three-dimensional touch panel provided with the above capacitive touch panel and a display device.
[9] タッチパネルと表示装置との間には、エアギャップが介在していてもよい。 [9] An air gap may be interposed between the touch panel and the display device.
 表示装置とタッチパネルの間が大きく離間すると、視野角度によるモアレの発生が制御し難くなるので、メッシュ電極を定型パターンとしたときには、モアレを抑制することが困難となる。これに対し、ランダムパターンからなるメッシュ電極を採用すると、上記したようにモアレを抑止することが容易であるので、表示装置とタッチパネルの間にエアギャップが存在する場合であっても、モアレを抑止することができる。 If the display device and the touch panel are separated greatly, it becomes difficult to control the generation of moire depending on the viewing angle. Therefore, when the mesh electrode is a fixed pattern, it is difficult to suppress the moire. On the other hand, when mesh electrodes made of random patterns are used, it is easy to suppress moire as described above, so moire is suppressed even when an air gap exists between the display device and the touch panel. can do.
[10] 表示装置の表示面は、平坦面であってもよい。 [10] The display surface of the display device may be a flat surface.
 この場合、表示装置の表示面と、タッチパネルの曲面との間が離間するので、上記の通り、視野角度によってはモアレの発生を制御し難くなるが、金属メッシュ電極をランダムパターンとしているので、モアレを抑止することが容易である。 In this case, since the display surface of the display device and the curved surface of the touch panel are separated from each other, as described above, it is difficult to control the generation of moire depending on the viewing angle, but the metal mesh electrode has a random pattern. It is easy to deter.
 本発明によれば、三次元曲面体であるタッチパネル用電極積層体における下方電極又は上方電極を、形状やサイズ等がランダムであるセルが連なるランダムパターンからなるメッシュ電極で形成するようにしている。このような金属メッシュ電極では周期的な干渉が生じ難くなるので、モアレが十分に低減される。 According to the present invention, the lower electrode or the upper electrode in the electrode laminate for a touch panel, which is a three-dimensional curved body, is formed of a mesh electrode having a random pattern in which cells having random shapes, sizes, and the like are connected. Such metal mesh electrodes are less likely to cause periodic interference, so that moire is sufficiently reduced.
本発明の実施の形態に係る三次元タッチパネル付表示装置の厚み方向に沿う要部概略断面図である。It is a principal part schematic sectional drawing in alignment with the thickness direction of the display apparatus with a three-dimensional touchscreen which concerns on embodiment of this invention. 図1に示す三次元タッチパネル付表示装置の要部拡大断面図である。It is a principal part expanded sectional view of the display apparatus with a three-dimensional touch panel shown in FIG. 三次元タッチパネル付表示装置を構成するタッチパネルの概略正面図である。It is a schematic front view of the touch panel which comprises a display apparatus with a three-dimensional touch panel. 下方電極を形成するランダムセルの一例を示す概略平面図である。It is a schematic plan view which shows an example of the random cell which forms a lower electrode. 比較例1の電極積層体を構成する下方電極及び上方電極を示す概略正面図である。5 is a schematic front view showing a lower electrode and an upper electrode that constitute an electrode laminate of Comparative Example 1. FIG. 比較例2の電極積層体を構成する下方電極及び上方電極を示す概略正面図である。It is a schematic front view which shows the lower electrode and upper electrode which comprise the electrode laminated body of the comparative example 2.
 以下、本発明に係るタッチパネル用電極積層体及び静電容量式タッチパネルにつき、これらを具備する三次元タッチパネル付表示装置との関係で好適な実施の形態を挙げ、添付の図面を参照して詳細に説明する。 Hereinafter, preferred embodiments of the electrode laminated body for a touch panel and the capacitive touch panel according to the present invention will be described in relation to a display device with a three-dimensional touch panel including these, and in detail with reference to the accompanying drawings. explain.
 なお、本明細書において数値範囲を示す「~」は、その前後に記載される数値を下限値及び上限値として含む意味として使用される。また、「上方」は、三次元タッチパネル付表示装置を視認する視聴者に近い側(外面側)を指称し、一方、「下方」は、視聴者から遠い側(内面側)を指称する。 In this specification, “˜” indicating a numerical range is used as a meaning including numerical values described before and after the numerical value as a lower limit value and an upper limit value. Further, “upper” refers to the side (outer surface side) closer to the viewer viewing the display device with a three-dimensional touch panel, while “lower” refers to the side farther from the viewer (inner surface side).
 図1は、本実施の形態に係る三次元タッチパネル付表示装置10の厚み方向に沿う要部概略断面図である。この三次元タッチパネル付表示装置10は、電極積層体12(タッチパネル用電極積層体)を含んで構成されるタッチパネル14(静電容量式タッチパネル)を具備するとともに、該タッチパネル14が表示装置16に接合されることで構成されている。 FIG. 1 is a schematic cross-sectional view of an essential part along the thickness direction of a display device 10 with a three-dimensional touch panel according to the present embodiment. The display device 10 with a three-dimensional touch panel includes a touch panel 14 (capacitive touch panel) including an electrode stack 12 (electrode stack for touch panel), and the touch panel 14 is bonded to the display device 16. Is made up of.
 ここで、表示装置16は、少なくとも画像やテキスト等を表示する表示画面18(表示面)を有する。該表示画面18は、タッチパネル14に入力された指令に応じ、図示しない制御回路(IC回路等)の制御作用下に、画像ないしテキスト等を表示する。本実施の形態において、表示画面18は、起伏のない平坦面として形成されている。 Here, the display device 16 has a display screen 18 (display surface) for displaying at least an image, text, and the like. The display screen 18 displays an image or text under the control action of a control circuit (IC circuit or the like) (not shown) according to a command input to the touch panel 14. In the present embodiment, the display screen 18 is formed as a flat surface without undulations.
 なお、表示装置16は、特に限定されるものではないが、その好適な例としては、液晶ディスプレイ、プラズマディスプレイ、有機ELディスプレイ(Organic Electro-Luminescence)、無機ELディスプレイ、電子ペーパー等が挙げられる。 The display device 16 is not particularly limited, but suitable examples include a liquid crystal display, a plasma display, an organic EL display (Organic Electro-Luminescence), an inorganic EL display, electronic paper, and the like.
 表示装置16の側方には、接着剤20を介してタッチパネル14の縁部が接合される。また、タッチパネル14の上面は、表示装置16の表示画面18を覆ってタッチ操作がなされる表示領域22と、操作ボタンが配設されるボタン操作領域24とに大別される。また、タッチパネル14の上面は、外方縁部から内方側に向かうに従って鉛直上方に膨出するように湾曲している。すなわち、この場合、タッチパネル14は、曲面を有する三次元曲面体である。 The edge of the touch panel 14 is bonded to the side of the display device 16 via the adhesive 20. The upper surface of the touch panel 14 is roughly divided into a display area 22 where a touch operation is performed covering the display screen 18 of the display device 16 and a button operation area 24 where operation buttons are arranged. Further, the upper surface of the touch panel 14 is curved so as to bulge vertically upward from the outer edge toward the inner side. That is, in this case, the touch panel 14 is a three-dimensional curved body having a curved surface.
 表示装置16とタッチパネル14は、所定のクリアランスで離間している。表示装置16の表示画面18が平坦である一方、タッチパネル14が三次元曲面体であるからである。このように、タッチパネルを三次元曲面体とした場合に、表示装置が平坦であると、表示画面とタッチパネルの間にギャップが生じる。このギャップが最大となる箇所が500μm以上の場合には、透過率の関係から、空気が収容されたエアギャップ26とするのが好ましい。また、500μm以上の場合には、金属メッシュ電極の周期性と、表示装置の画素の周期性に視野角差が生じ易く、モアレの角度依存が大きくなるため、エアギャップ26とすることにより、本発明の効果が大きくなる。 The display device 16 and the touch panel 14 are separated by a predetermined clearance. This is because the display screen 18 of the display device 16 is flat while the touch panel 14 is a three-dimensional curved surface. As described above, when the touch panel is a three-dimensional curved body, if the display device is flat, a gap is generated between the display screen and the touch panel. When the location where the gap is maximized is 500 μm or more, it is preferable to use the air gap 26 in which air is accommodated from the viewpoint of transmittance. In the case of 500 μm or more, a difference in viewing angle is likely to occur between the periodicity of the metal mesh electrode and the periodicity of the pixels of the display device, and the angle dependency of the moire becomes large. The effect of the invention is increased.
 タッチパネル14は、センサ本体である電極積層体12と、図示しない前記制御回路と、タッチパネル14の上面を覆う図示しない保護層とを有する。この中の電極積層体12は、要部を拡大した図2に示すように、絶縁体からなる透明基体28の下端面、上端面に下方電極30、上方電極32がそれぞれ形成されることで構成される。ここで、下方電極30とは、タッチパネル14の1対の電極の中、タッチ面から遠い側の電極であり、一方、上方電極32とは、タッチパネル14の1対の電極の中、タッチ面に近い側の電極である。 The touch panel 14 includes an electrode laminate 12 that is a sensor body, the control circuit (not shown), and a protective layer (not shown) that covers the upper surface of the touch panel 14. The electrode laminate 12 in this structure is configured by forming a lower electrode 30 and an upper electrode 32 on the lower end surface and upper end surface of a transparent base 28 made of an insulator, respectively, as shown in FIG. Is done. Here, the lower electrode 30 is an electrode far from the touch surface in the pair of electrodes of the touch panel 14, while the upper electrode 32 is an electrode on the touch surface in the pair of electrodes of the touch panel 14. The electrode on the near side.
 透明基体28の厚みは20~350μm以下が好ましく、30~250μmが一層好ましく、40~200μmが特に好ましい。 The thickness of the transparent substrate 28 is preferably 20 to 350 μm or less, more preferably 30 to 250 μm, and particularly preferably 40 to 200 μm.
 透明基体28としては、プラスチックフィルム、プラスチック板、ガラス板等を挙げることができる。 Examples of the transparent substrate 28 include a plastic film, a plastic plate, and a glass plate.
 上記プラスチックフィルム及びプラスチック板の原料としては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル類;ポリエチレン(PE)、ポリプロピレン(PP)、ポリスチレン、ポリエチレンビニルアセテート(EVA)等のポリオレフィン類;ビニル系樹脂;その他、ポリカーボネート(PC)、ポリアミド、ポリイミド、アクリル樹脂、トリアセチルセルロース(TAC)、シクロオレフィンポリマー(COP)等を用いることができる。透明基体28の透過率は、85%以上であることが好ましい。 Examples of the raw material for the plastic film and plastic plate include polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN); polyethylene (PE), polypropylene (PP), polystyrene, polyethylene vinyl acetate (EVA), and the like. Polyolefins; vinyl resins; polycarbonate (PC), polyamide, polyimide, acrylic resin, triacetyl cellulose (TAC), cycloolefin polymer (COP), and the like can be used. The transmittance of the transparent substrate 28 is preferably 85% or more.
 本実施の形態では、下方電極30と上方電極32の双方が、金属細線34からなり、且つ形状やサイズがランダムなランダムセル同士が連なることで形成されたランダムメッシュパターンを有する金属メッシュ電極からなる。以下においては、下方電極30を形成するセルを「第1セル」、上方電極32を形成するセルを「第2セル」と表記し、各々の参照符号を36、38とする。 In the present embodiment, both the lower electrode 30 and the upper electrode 32 are made of metal fine wires 34 and metal mesh electrodes having a random mesh pattern formed by connecting random cells having random shapes and sizes. . In the following, the cell forming the lower electrode 30 is referred to as “first cell”, the cell forming the upper electrode 32 is referred to as “second cell”, and the respective reference numerals are referred to as 36 and 38.
 本実施の形態の場合、下方電極30は、図3に示すように、それぞれ第1方向(x方向/長手方向)に延びる複数の帯状のパターンを有する。下方電極30は、第2方向(第1方向と直交する方向:y方向)に向かう所定の幅方向寸法を有するとともに、複数個が該y方向に沿って並列配置されている。ここで、「帯状」とは、所定の幅方向寸法をもって延在する長尺形状を指すが、幅方向寸法が周期的に変動する(拡幅及び縮幅を繰り返す)形状も「帯状」に含めるものとする。後述する上方電極32においても同様である。 In the case of the present embodiment, the lower electrode 30 has a plurality of strip-like patterns each extending in the first direction (x direction / longitudinal direction) as shown in FIG. The lower electrode 30 has a predetermined width direction dimension in the second direction (direction perpendicular to the first direction: y direction), and a plurality of the lower electrodes 30 are arranged in parallel along the y direction. Here, the “strip shape” refers to a long shape extending with a predetermined width direction dimension, but also includes a shape whose width direction dimension varies periodically (repeating the expansion and contraction). And The same applies to the upper electrode 32 described later.
 各下方電極30は、銀、銅、モリブデン、又はこれらの中の1種以上を含む合金等からなる金属細線34同士が交差することにより形成される。この交差に伴って、金属細線34によって囲繞される空間(開口部)、すなわち、第1セル36が複数個形成される。 Each lower electrode 30 is formed by crossing thin metal wires 34 made of silver, copper, molybdenum, or an alloy containing one or more of them. Along with this intersection, a plurality of spaces (openings) surrounded by the thin metal wires 34, that is, the first cells 36 are formed.
 第1セル36の一例を図4に示す。この場合、ハッチングで示した第1セル36は、頂点C1及び頂点C2を直線で結ぶ金属細線34pと、頂点C2及び頂点C3を直線で結ぶ金属細線34qと、頂点C3及び頂点C4を直線で結ぶ金属細線34rと、頂点C4及び頂点C1を直線で結ぶ金属細線34sとで形成され、多角形形状をなしている。その他のセル(第1セル36)も同様に、多角形形状を呈している。要するに、下方電極30は、第1セル36の形状及びサイズが互いに異なり、周期性(規則性ないし統一性)が低いランダムセルからなるランダムメッシュパターンを有する金属メッシュ電極である。 An example of the first cell 36 is shown in FIG. In this case, in the first cell 36 indicated by hatching, the metal thin line 34p that connects the vertex C1 and the vertex C2 with a straight line, the metal thin line 34q that connects the vertex C2 and the vertex C3 with a straight line, and the vertex C3 and the vertex C4 with a straight line. The thin metal wire 34r and the thin metal wire 34s that connects the vertex C4 and the vertex C1 with a straight line form a polygonal shape. Similarly, the other cells (first cells 36) have a polygonal shape. In short, the lower electrode 30 is a metal mesh electrode having a random mesh pattern composed of random cells having different shapes and sizes of the first cells 36 and low periodicity (regularity or uniformity).
 このようなランダムなメッシュパターンは、例えば、ボロノイ分割法や、ドロネー三角形分割法によって形状を設定することができる。ランダムなメッシュパターンを設定するための具体的な作業等は、特開2013-54619号公報の段落<0080>~<0083>に詳述されている。 The shape of such a random mesh pattern can be set by, for example, the Voronoi division method or the Delaunay triangulation method. Specific operations for setting a random mesh pattern are described in detail in paragraphs <0080> to <0083> of JP2013-54619A.
 下方電極30のセルサイズの相違、すなわち、ランダム率は、好ましくは2~20%であり、より好ましくは4~10%である。さらに好ましくは6~8%である。ここで、ランダム率とは、ランダムメッシュパターンを構成する任意の30個の第1セル36を取り出し、各第1セル36の一辺の長さLdのうち、最大値をLdmax、最小値をLdmin、平均値をLdaveとしたとき、下記(1)式及び(2)式で求まる値のうち、大きい方の値を各セルで抽出し、30個の平均値を取ったものと定義する。
   (Ldmax-Ldave)/Ldave×100 …(1)
   (Ldave-Ldmin)/Ldave×100 …(2)
The difference in cell size of the lower electrode 30, that is, the random ratio is preferably 2 to 20%, more preferably 4 to 10%. More preferably, it is 6 to 8%. Here, the random rate means that any 30 first cells 36 constituting a random mesh pattern are taken out, and among the lengths Ld of one side of each first cell 36, the maximum value is Ldmax, the minimum value is Ldmin, When the average value is Ldave, the larger value among the values obtained by the following formulas (1) and (2) is extracted in each cell and defined as the average value of 30.
(Ldmax−Ldave) / Ldave × 100 (1)
(Ldave−Ldmin) / Ldave × 100 (2)
 ランダム率が2%未満になると、各第1セル36のセルサイズがほとんど一様になってしまい、複数の第1セル36の配列によるモアレの抑制効果が低くなる。反対に、ランダム率が20%超になると、下方電極30の抵抗値にばらつきが生じて、検出感度が低下してしまう可能性がある。また、表示画面に粒状のノイズ感を生じる可能性がある。 When the random rate is less than 2%, the cell size of each first cell 36 becomes almost uniform, and the moire suppressing effect due to the arrangement of the plurality of first cells 36 becomes low. On the other hand, when the random rate exceeds 20%, the resistance value of the lower electrode 30 varies, and the detection sensitivity may be reduced. Moreover, there is a possibility that a granular noise sensation is generated on the display screen.
 金属細線34の幅方向寸法(線幅)は、特に限定されるものではないが、6μm以下が好ましい。このように線幅を小さくすることにより、ランダムメッシュを採用した三次元タッチパネル付表示装置10におけるノイズ感を抑制することができる。また、第1セル36の形状がランダムであることと、金属細線34の線幅がこのように小さいこととが相俟って、モアレが改善されて視認性が良好となる。線幅は、4μm以下とすることが一層好ましい。 The width direction dimension (line width) of the fine metal wire 34 is not particularly limited, but is preferably 6 μm or less. By reducing the line width in this way, it is possible to suppress noise in the display device 10 with a three-dimensional touch panel that employs a random mesh. In addition, the fact that the shape of the first cell 36 is random and the line width of the fine metal wire 34 are so small, the moire is improved and the visibility is improved. The line width is more preferably 4 μm or less.
 なお、金属細線34の線幅が過度に小さいと屈曲性が低下する。このため、電極積層体12を三次元曲面体とする際に断線が起こる可能性がある。この可能性を低減するべく、金属細線34の線幅を1μm以上とすることが好ましい。この場合、下方電極30に十分な導電性を確保することもできる。 In addition, if the line width of the fine metal wire 34 is excessively small, the flexibility is lowered. For this reason, when the electrode laminated body 12 is made into a three-dimensional curved surface body, a disconnection may occur. In order to reduce this possibility, it is preferable to set the line width of the fine metal wire 34 to 1 μm or more. In this case, sufficient conductivity can be ensured for the lower electrode 30.
 下方電極30の平均セルピッチは50~400μmであることが好ましく、50~300μmであることが一層好ましい。ここで、下方電極30の平均セルピッチは、下方電極30が延在するx方向の第1セル36の最大の長さを任意の30個のセルで測定し、その平均長で定義される。 The average cell pitch of the lower electrode 30 is preferably 50 to 400 μm, and more preferably 50 to 300 μm. Here, the average cell pitch of the lower electrode 30 is defined by an average length obtained by measuring the maximum length of the first cell 36 in the x direction in which the lower electrode 30 extends in an arbitrary 30 cells.
 図3に示すように、各下方電極30の一端部には、第1結線部39を介して第1端子配線部40が電気的に接続される。第1端子配線部40は、y方向に沿って延在する1辺の略中央部に向かって引き回され、第1端子部48に電気的に接続されている。第1端子部48は、前記制御回路に電気的に接続される。 As shown in FIG. 3, a first terminal wiring portion 40 is electrically connected to one end portion of each lower electrode 30 via a first connection portion 39. The first terminal wiring portion 40 is routed toward a substantially central portion of one side extending along the y direction, and is electrically connected to the first terminal portion 48. The first terminal portion 48 is electrically connected to the control circuit.
 なお、図3では、隣接する下方電極30同士の間を空白としているが、下方電極30が視認されることを防止するために、隣接する下方電極30同士の間にダミーメッシュを配置することが好ましい。このダミーメッシュを形成するセルは、下方電極30と同様にランダム形状であることが好ましい。 In FIG. 3, the space between adjacent lower electrodes 30 is blank. However, in order to prevent the lower electrode 30 from being visually recognized, a dummy mesh may be disposed between the adjacent lower electrodes 30. preferable. The cells forming the dummy mesh preferably have a random shape like the lower electrode 30.
 ダミーメッシュについては、電極として使用されるものではないので、ランダム率が高くても特に問題はないが、ランダム率が電極と大きく異なると、下方電極30が視認される可能性がある。このため、ダミーメッシュをランダムメッシュとするときには、そのランダム率を、下方電極30と同様に2~20%とすることが好ましい。勿論、下方電極30のランダム率と同等のランダム率のメッシュをダミーメッシュとして採用することが好適である。 Since the dummy mesh is not used as an electrode, even if the random rate is high, there is no particular problem. However, if the random rate is significantly different from the electrodes, the lower electrode 30 may be visually recognized. Therefore, when the dummy mesh is a random mesh, the random rate is preferably 2 to 20% as in the lower electrode 30. Of course, it is preferable to employ a mesh having a random rate equivalent to that of the lower electrode 30 as the dummy mesh.
 一方、透明基体28の上端面に形成された上方電極32は、図3に示すように、それぞれ第2方向(y方向/長手方向)に延びる複数の帯状のパターンを有する。上方電極32は、第1方向(第2方向と直交する方向:x方向)に向かう所定の幅方向寸法を有するとともに、複数個が該x方向に沿って並列配置されている。 On the other hand, as shown in FIG. 3, the upper electrode 32 formed on the upper end surface of the transparent substrate 28 has a plurality of strip-like patterns each extending in the second direction (y direction / longitudinal direction). The upper electrode 32 has a predetermined width direction dimension in the first direction (direction orthogonal to the second direction: x direction), and a plurality of the upper electrodes 32 are arranged in parallel along the x direction.
 各上方電極32も下方電極30と同様に、金属細線34同士が交差することにより形成される。この交差に伴って、金属細線34によって囲繞される第2セル38が形成される。 Similarly to the lower electrode 30, each upper electrode 32 is formed by intersecting metal thin wires 34 with each other. Along with this intersection, a second cell 38 surrounded by the thin metal wire 34 is formed.
 この場合、上方電極32のメッシュパターンは、下方電極30と同様にランダムである。すなわち、複数個の第2セル38のサイズ及び形状は、第1セル36と同様に互いに異なり、且つ周期性(規則性ないし統一性)が低い。なお、第2セル38における金属細線34の好ましい線幅及びその理由、並びに第2セル38の配線形状の決定手法等は第1セル36と同様であり、従って、その詳細な説明は省略する。 In this case, the mesh pattern of the upper electrode 32 is random like the lower electrode 30. That is, the size and shape of the plurality of second cells 38 are different from each other in the same manner as the first cells 36 and have low periodicity (regularity or unity). Note that the preferable line width of the thin metal wire 34 in the second cell 38 and the reason thereof, the method of determining the wiring shape of the second cell 38, and the like are the same as those of the first cell 36.
 また、上方電極32のランダム率に関しても、下方電極30と同様の理由から、2~20%が好ましく、4~10%がより好ましく、6~8%がさらに好ましい。平均セルピッチも、下方電極30と同様に50~400μmであることが好ましく、50~300μmであることが一層好ましい。ここで、上方電極32の平均セルピッチは、上方電極32が延在するy方向の第2セル38の最大の長さを任意の30個のセルで測定し、その平均長で定義される。 Also, the random ratio of the upper electrode 32 is preferably 2 to 20%, more preferably 4 to 10%, and further preferably 6 to 8% for the same reason as the lower electrode 30. The average cell pitch is preferably 50 to 400 μm, and more preferably 50 to 300 μm, like the lower electrode 30. Here, the average cell pitch of the upper electrode 32 is defined by an average length obtained by measuring the maximum length of the second cell 38 in the y direction in which the upper electrode 32 extends in any 30 cells.
 図3に示すように、各上方電極32の一端部には、第2結線部50を介して第2端子配線部52が電気的に接続される。第2端子配線部52は、x方向に沿って延在する1辺の略中央部に向かって引き回され、第2端子部54に電気的に接続されている。第2端子部54は、前記制御回路に電気的に接続される。 As shown in FIG. 3, a second terminal wiring portion 52 is electrically connected to one end portion of each upper electrode 32 via a second connection portion 50. The second terminal wiring portion 52 is routed toward a substantially central portion of one side extending along the x direction, and is electrically connected to the second terminal portion 54. The second terminal portion 54 is electrically connected to the control circuit.
 なお、図3では、隣接する上方電極32同士の間を空白としているが、上方電極32が視認されることを防止するために、隣接する上方電極32同士の間にダミーメッシュを配置することが好ましい。このダミーメッシュを形成するセルは、上方電極32と同様にランダム形状であることが好ましい。 In FIG. 3, the space between the adjacent upper electrodes 32 is blank. However, in order to prevent the upper electrode 32 from being visually recognized, a dummy mesh may be disposed between the adjacent upper electrodes 32. preferable. The cells forming the dummy mesh preferably have a random shape like the upper electrode 32.
 ダミーメッシュについては、電極として使用されるものではないので、ランダム率が高くても特に問題はないが、ランダム率が電極と大きく異なると、上方電極32が視認される可能性がある。このため、ダミーメッシュをランダムメッシュとするときには、そのランダム率を、上方電極32と同様に2~20%とすることが好ましい。勿論、上方電極32のランダム率と同等のランダム率のメッシュをダミーメッシュとして採用することが好適である。 Since the dummy mesh is not used as an electrode, there is no particular problem even if the random rate is high. However, if the random rate is significantly different from the electrodes, the upper electrode 32 may be visually recognized. Therefore, when the dummy mesh is a random mesh, the random rate is preferably 2 to 20%, similar to the upper electrode 32. Of course, it is preferable to employ a mesh having a random rate equivalent to that of the upper electrode 32 as the dummy mesh.
 下方電極30と上方電極32としては、上述の通りどちらもランダムメッシュを採用することが好ましい。下方電極30と上方電極32のランダム率については、電極幅の大きい電極のランダム率を高くする一方、電極幅が小さい電極ではランダム率を小さくするのが好ましい。通常、電極幅は、検出感度を向上させるため、下方電極30を大きく、上方電極32を小さくする場合が多い。このときには、下方電極30のランダム率を、上方電極32のランダム率よりも高く設定することが好ましい。 As the lower electrode 30 and the upper electrode 32, it is preferable to employ a random mesh as described above. Regarding the random ratio of the lower electrode 30 and the upper electrode 32, it is preferable to increase the random ratio of an electrode having a large electrode width, while decreasing the random ratio for an electrode having a small electrode width. In general, the electrode width often increases the lower electrode 30 and decreases the upper electrode 32 in order to improve detection sensitivity. At this time, the random rate of the lower electrode 30 is preferably set higher than the random rate of the upper electrode 32.
 また、金属メッシュ電極ではメッシュの開口部を電界が通過するため、下方電極30よりも上方電極32のメッシュピッチを大きく設定することで検出感度を高めることができる。 Further, in the metal mesh electrode, since the electric field passes through the opening of the mesh, the detection sensitivity can be increased by setting the mesh pitch of the upper electrode 32 larger than that of the lower electrode 30.
 下方電極30及び上方電極32は、線幅の狭いランダムメッシュパターンを得るために、好適には、フォトリソプロセスを使用したエッチング、あるいはマイクロコンタクト印刷パターニング法、銀塩法又は陰刻金属粒子充填法によって形成することができる。大量のパターンを繰り返し得るためには、銀塩法がより好ましい。 In order to obtain a random mesh pattern having a narrow line width, the lower electrode 30 and the upper electrode 32 are preferably formed by etching using a photolithography process, or by a microcontact printing patterning method, a silver salt method, or an intaglio metal particle filling method. can do. In order to obtain a large number of patterns repeatedly, the silver salt method is more preferable.
 マイクロコンタクト印刷パターニング法とは、マイクロコンタクト印刷法を利用して線幅が狭いパターンを得る方法である。ここで、マイクロコンタクト印刷法は、弾力性のあるポリジメチルシロキサンのスタンプを用い、チオール溶液をインキとして金基材に接触させて単分子膜のパターンを作製する方法である(Whitesedes著、Angew.Chem.Int.Ed.,1998年第37巻第550頁参照)。 The microcontact printing patterning method is a method for obtaining a pattern having a narrow line width by using the microcontact printing method. Here, the microcontact printing method is a method for producing a monomolecular film pattern by using an elastic polydimethylsiloxane stamp and bringing a thiol solution into contact with a gold base material as an ink (Whitedesed, Angew. Chem. Int. Ed., 1998, volume 37, page 550).
 マイクロコンタクト印刷パターニング法の代表的なプロセスは、例えば、以下の通りである。すなわち、先ず、基材に金属がコーティングされる(例えば、銀が、PET基材にスパッタコーティングされる)。 A typical process of the microcontact printing patterning method is, for example, as follows. That is, first, the substrate is coated with a metal (eg, silver is sputter coated onto a PET substrate).
 次に、単分子膜のマスキングが、金属がコーティングされた基材にマイクロコンタクト印刷法を用いてスタンピングされる。その後、マスキング下のパターンを除いて、基材にコーティングされた金属がエッチングにより除去される。 Next, the masking of the monomolecular film is stamped using a microcontact printing method on a metal-coated substrate. Thereafter, the metal coated on the substrate is removed by etching except for the pattern under masking.
 以上につき、その具体的な作業等は、特表2012-519329号公報の段落<0104>に詳述されている。 As for the above, the specific work and the like are described in detail in paragraph <0104> of JP-T-2012-519329.
 また、陰刻金属粒子充填法は、レジストをメッシュ状に露光してメッシュ状の溝を形成し、該溝の中に金属粒子を分散したインクを充填することで金属メッシュを形成する方法である。例えば、中国特許第102063951号明細書に記載されている方法が適用可能である。 Further, the intaglio metal particle filling method is a method of forming a metal mesh by exposing a resist in a mesh shape to form a mesh-like groove and filling the groove with ink in which metal particles are dispersed. For example, the method described in Chinese Patent No. 102063951 can be applied.
 一方、銀塩法は、感光性銀塩含有層を有する感光材料を露光・現像することにより、メッシュ状をなす金属細線34のパターンを得るものである。その具体的な作業等は、特開2009-4348号公報の段落<0163>~<0241>に詳述されている。 On the other hand, the silver salt method is to obtain a pattern of fine metal wires 34 having a mesh shape by exposing and developing a photosensitive material having a photosensitive silver salt-containing layer. Specific operations thereof are described in detail in paragraphs <0163> to <0241> of JP2009-4348A.
 このようにして下方電極30及び上方電極32が形成された透明基体28を、例えば、上方電極32側に向かって膨出するように湾曲させてその形状を維持させる。これにより、三次元曲面体としての電極積層体12が得られる。 The transparent base 28 on which the lower electrode 30 and the upper electrode 32 are formed in this way is curved so as to bulge toward the upper electrode 32, for example, and the shape thereof is maintained. Thereby, the electrode laminated body 12 as a three-dimensional curved surface body is obtained.
 図1に示すように、電極積層体12を含むタッチパネル14は、接着剤20を介して表示装置16に接合される。これにより、三次元タッチパネル付表示装置10が得られるに至る。 As shown in FIG. 1, the touch panel 14 including the electrode laminate 12 is bonded to the display device 16 via an adhesive 20. Thereby, the display apparatus 10 with a three-dimensional touch panel is obtained.
 この電極積層体12を含む三次元タッチパネル付表示装置10では、表示画面18と電極積層体12の間にエアギャップ26が存在するにも関わらず、モアレが発生し難い。上記したように下方電極30の第1セル36と、上方電極32の第2セル38の双方が、周期性の低いランダムパターンで形成されているからである。 In the display device with a three-dimensional touch panel 10 including the electrode laminate 12, moire is unlikely to occur even though the air gap 26 exists between the display screen 18 and the electrode laminate 12. This is because, as described above, both the first cell 36 of the lower electrode 30 and the second cell 38 of the upper electrode 32 are formed in a random pattern with low periodicity.
 また、第1セル36をなす金属細線34、第2セル38をなす金属細線34は導電率が高いので、タッチパネル14は十分な導電性を示す。このため、十分な応答速度が確保される。 Further, since the fine metal wires 34 forming the first cells 36 and the thin metal wires 34 forming the second cells 38 have high conductivity, the touch panel 14 exhibits sufficient conductivity. For this reason, sufficient response speed is ensured.
 本発明は、上記した実施の形態に特に限定されるものではなく、本発明の主旨を逸脱しない範囲で種々の変更が可能である。 The present invention is not particularly limited to the above-described embodiment, and various modifications can be made without departing from the gist of the present invention.
 例えば、上記したように下方電極30及び上方電極32の双方をランダムメッシュパターンとすることが最も好ましいが、下方電極30又は上方電極32のいずれか一方をランダムメッシュパターン、残余の一方を定型メッシュパターンとするようにしてもよい。 For example, as described above, it is most preferable that both the lower electrode 30 and the upper electrode 32 have a random mesh pattern, but either the lower electrode 30 or the upper electrode 32 has a random mesh pattern, and the remaining one has a regular mesh pattern. You may make it.
 また、この実施の形態では、下方電極30と上方電極32を同一の透明基体28に形成するようにしているが、別個の透明基体28、28に下方電極30又は上方電極32を個別に形成した後、透明基体28、28同士を貼り合わせるようにしてもよい。この貼り合わせには、絶縁性の粘着剤を用いればよい。 Further, in this embodiment, the lower electrode 30 and the upper electrode 32 are formed on the same transparent substrate 28, but the lower electrode 30 or the upper electrode 32 are individually formed on separate transparent substrates 28 and 28. Thereafter, the transparent substrates 28 and 28 may be bonded together. For this bonding, an insulating adhesive may be used.
[実施例1]
 金属メッシュ電極(下方電極30及び上方電極32)をインサート成形することにより、図1に示した断面形状の電極積層体12を製造した。インサート成形の際に用いる押し出し樹脂には、ポリカーボネート(PC)を使用した。図1から分かるように表示領域22の曲率は場所によって変化しており、一定ではない。
[Example 1]
The metal laminate electrode (lower electrode 30 and upper electrode 32) was insert-molded to produce the electrode laminate 12 having the cross-sectional shape shown in FIG. Polycarbonate (PC) was used as the extrusion resin used for insert molding. As can be seen from FIG. 1, the curvature of the display area 22 varies depending on the location and is not constant.
 ここで、タッチパネル14を構成する帯状の下方電極30及び上方電極32は、特開2013-54619号公報の記載に準じ、セルのランダム率が1%となるランダムメッシュとして設計した。また、平均セルピッチは200μm、金属細線34の線幅は5μm、長手方向に直交する幅方向の寸法は5mmとし、隣接する下方電極30間又は上方電極32間に1mmの間隔を設けるとともに、電極間に、電極と同じ仕様のダミーメッシュを配置した。 Here, the strip-like lower electrode 30 and upper electrode 32 constituting the touch panel 14 were designed as a random mesh with a cell random rate of 1% in accordance with the description in Japanese Patent Application Laid-Open No. 2013-54619. In addition, the average cell pitch is 200 μm, the line width of the fine metal wires 34 is 5 μm, the dimension in the width direction orthogonal to the longitudinal direction is 5 mm, and a space of 1 mm is provided between the adjacent lower electrodes 30 or the upper electrodes 32, and between the electrodes. In addition, a dummy mesh having the same specifications as the electrodes was placed.
 以上のような電極積層体12を含むタッチパネル14を、対角5インチの市販の液晶ディスプレイ(Groovy社製超小型カラーTFT液晶モニターユニット)に接合し、図1に準じた三次元タッチパネル付表示装置10を作製した。これを実施例1とする。なお、タッチパネル14の表示領域22と表示装置16の間は接着剤20で満たされておらず、エアギャップ26となっている。 The touch panel 14 including the electrode laminate 12 as described above is bonded to a commercially available liquid crystal display having a diagonal size of 5 inches (a micro color TFT liquid crystal monitor unit manufactured by Groovy), and a display device with a three-dimensional touch panel according to FIG. 10 was produced. This is Example 1. Note that the space between the display area 22 of the touch panel 14 and the display device 16 is not filled with the adhesive 20, and is an air gap 26.
[実施例2~5]
 ランダム率が下記の表1に示した値となるようにして、ランダムメッシュを設計した。それ以外は実施例1と同様にして三次元タッチパネル付表示装置10を作製した。各々を実施例2~5とする。
[Examples 2 to 5]
A random mesh was designed such that the random rate was the value shown in Table 1 below. Other than that was carried out similarly to Example 1, and produced the display apparatus 10 with a three-dimensional touchscreen. Each of these is referred to as Examples 2-5.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
[実施例6~9]
 メッシュ線幅が表1のようになるように変更した以外は実施例4と同様にして三次元タッチパネル付表示装置10を作製した。各々を実施例6~9とする。
[Examples 6 to 9]
A display device 10 with a three-dimensional touch panel was produced in the same manner as in Example 4 except that the mesh line width was changed as shown in Table 1. Each is designated as Examples 6-9.
[比較例1]
 上方電極及び下方電極の双方を、図5に示す菱形セル60を連ねた金属メッシュ電極として形成した。また、菱形セル60の交差角α1を62.5°、図5中にP1で示すセルピッチを200μmに設定した。それ以外は実施例1に準拠し、三次元タッチパネル付表示装置を作製した。これを比較例1とする。
[Comparative Example 1]
Both the upper electrode and the lower electrode were formed as metal mesh electrodes in which the rhombic cells 60 shown in FIG. Further, the crossing angle α1 of the rhombus cell 60 was set to 62.5 °, and the cell pitch indicated by P1 in FIG. 5 was set to 200 μm. Other than that was based on Example 1, and produced the display apparatus with a three-dimensional touch panel. This is referred to as Comparative Example 1.
[比較例2]
 上方電極及び下方電極の双方を、図6に示す六角形セル62を連ねた金属メッシュ電極として形成した。図6中にP2で示すセルピッチを173μmとしたことを除いては比較例1と同様にして、三次元タッチパネル付表示装置を作製した。これを比較例2とする。
[Comparative Example 2]
Both the upper electrode and the lower electrode were formed as metal mesh electrodes in which hexagonal cells 62 shown in FIG. A display device with a three-dimensional touch panel was produced in the same manner as in Comparative Example 1 except that the cell pitch indicated by P2 in FIG. 6 was 173 μm. This is referred to as Comparative Example 2.
 上記のようにして作製した実施例1~9及び比較例1及び2の各三次元タッチパネル付表示装置について、正面モアレ評価、モアレ視野角依存、ノイズ感、断線発生率、及び抵抗値補正要否を評価した。 For the display devices with three-dimensional touch panels of Examples 1 to 9 and Comparative Examples 1 and 2 manufactured as described above, front moiré evaluation, moire viewing angle dependence, noise sensation, disconnection occurrence rate, and resistance value necessity correction Evaluated.
[正面モアレ評価]
 三次元タッチパネル付表示装置の表示画面に対して法線方向から目視観測し、モアレを官能評価した。モアレが観測されない場合を「A」、 モアレがわずかに観測されるが、許容できるレベルである場合を「B」、表示画面18の少なくとも一部に明確にモアレが観測され許容範囲外のレベルである場合を「C」とした。
[Front Moire Evaluation]
The display screen of the display device with a three-dimensional touch panel was visually observed from the normal direction, and the moire was sensory evaluated. “A” when no moiré is observed, “B” when moiré is slightly observed but at an acceptable level, “moi” is clearly observed on at least a part of the display screen 18 and the level is outside the allowable range. In some cases, “C” was assigned.
[モアレ視野角依存評価]
 三次元タッチパネル付表示装置の表示画面に対して法線方向(90°)、60°、45°の3方向で目視観測し、モアレを官能評価した。上記と同様に、モアレが観測されない場合を「A」、 モアレがわずかに観測されるが、許容できるレベルである場合を「B」
、表示画面18の少なくとも一部に明確にモアレが観測され許容範囲外のレベルである場合を「C」とした。
[Moire viewing angle dependency evaluation]
The display screen of the display device with a three-dimensional touch panel was visually observed in three directions of the normal direction (90 °), 60 °, and 45 °, and the moire was sensory evaluated. As above, “A” indicates that no moire is observed, and “B” indicates that moiré is slightly observed but at an acceptable level.
The case where the moire was clearly observed in at least a part of the display screen 18 and the level was outside the allowable range was defined as “C”.
[ノイズ感]
 三次元タッチパネル付表示装置の表示画面に対して法線方向から目視観測し、ノイズ感を官能評価した。画像にちらつきや粒状感が感じられない場合を「A」、ちらつきや粒状感がわずかに観測されるが、許容できるレベルである場合を「B」、ちらつきや粒状感が感じられ、許容範囲外のレベルである場合を「C」とした。
[Sense of noise]
The display screen of the display device with a three-dimensional touch panel was visually observed from the normal direction, and the sense of noise was sensoryly evaluated. “A” when no flickering or graininess is felt in the image, slight flickering or graininess is observed, but “B” when the level is acceptable, flickering or graininess is felt, and is outside the allowable range The case of the level was “C”.
[断線発生率]
 三次元形状の曲率半径が最も大きい箇所で、金属細線34の予期せぬ断線数を計測した。この計測は、顕微鏡を用いて行なった。断線が観測されなかった場合を「A」、断線が1cm2あたり2箇所以下で、事実上問題にならないレベルであった場合を「B」、断線が1cm2あたり3箇所以上であり、許容範囲外のレベルである場合を「C」とした。
[Disconnection rate]
The number of unexpected disconnections of the fine metal wire 34 was measured at a location where the radius of curvature of the three-dimensional shape was the largest. This measurement was performed using a microscope. A case where disconnection is not observed "A", disconnection in the following two places per 1 cm 2, "B" and if a level as not to practical problem, it is disconnection 1 cm 2 per three or more, the allowable range The case of the outside level was designated as “C”.
[抵抗値補正要否]
 タッチパネル14の表面を覆う複数の帯状電極の両端の抵抗値を全電極で測定し、R(ave)(例えば、全ての上方電極32の抵抗の平均値)を算出した。各電極の個々の抵抗値R(ind)から前記R(ave)を差し引いた差を求め、さらに、この差を前記R(ave)で除した値を算出し、その値の絶対値を算出した。
[Necessity of resistance correction]
The resistance values at both ends of the plurality of strip electrodes covering the surface of the touch panel 14 were measured with all the electrodes, and R (ave) (for example, the average value of the resistances of all the upper electrodes 32) was calculated. A difference obtained by subtracting the R (ave) from the individual resistance value R (ind) of each electrode was calculated, and a value obtained by dividing the difference by the R (ave) was calculated, and an absolute value of the value was calculated. .
 算出した値が0.3以下である場合を「A」、0.3を超え0.6以下の場合を「B」、0.6を超える場合を「C」と評価した。なお、「A」の金属メッシュ電極では、電極ごとにICの設定を補正する必要は特にない。また、「B」の金属メッシュ電極を採用した場合には、若干の補正が必要であったものの、補正によって正常なタッチ機能を持たせることができる。さらに、「C」の金属メッシュ電極を用いた場合には、電極ごとにICの設定を補正しても誤作動が生じる。 The case where the calculated value was 0.3 or less was evaluated as “A”, the case where it exceeded 0.3 and 0.6 or less was evaluated as “B”, and the case where it exceeded 0.6 was evaluated as “C”. For the metal mesh electrode “A”, it is not particularly necessary to correct the IC setting for each electrode. Further, when the “B” metal mesh electrode is adopted, although a slight correction is required, a normal touch function can be provided by the correction. Furthermore, when the “C” metal mesh electrode is used, malfunction occurs even if the IC setting is corrected for each electrode.
 表1には、実施例1~9及び比較例1及び2の三次元タッチパネル付表示装置についての正面モアレ評価、モアレ視野角依存、ノイズ感、断線発生率、抵抗値補正要否の評価を併せて示している。表1から、メッシュパターンをランダムとすることにより、ノイズ感が増長することを回避しながら、モアレや断線が発生することを抑止できることが分かる。 Table 1 also includes evaluation of front moire evaluation, moire viewing angle dependence, noise sensation, occurrence rate of disconnection, and resistance value correction necessity for the display devices with a three-dimensional touch panel of Examples 1 to 9 and Comparative Examples 1 and 2. It shows. From Table 1, it can be seen that by making the mesh pattern random, it is possible to suppress the occurrence of moire and disconnection while avoiding an increase in noise.
 これは、下方電極30及び上方電極32の双方がランダムセルから構成されるため、上方電極32と下方電極30のピッチの違いに起因するモアレ(周期的な干渉)の発生が抑制されるからである。上方電極32と下方電極30の双方を菱形等からなる定型パターンとした場合には、周期的に干渉の粗密が発生し、強いモアレが視認されることとなるが、ランダムセルを有するメッシュを採用した場合、観測角度を変更してもモアレが認められない。このため、設計自由度が高くなる。 This is because since both the lower electrode 30 and the upper electrode 32 are formed of random cells, the occurrence of moire (periodic interference) due to the difference in pitch between the upper electrode 32 and the lower electrode 30 is suppressed. is there. When both the upper electrode 32 and the lower electrode 30 are formed in a regular pattern made of rhombuses, etc., the density of interference periodically occurs and strong moire is visually recognized, but a mesh having random cells is adopted. In this case, moire is not recognized even when the observation angle is changed. For this reason, the degree of freedom in design increases.
 すなわち、電極をランダムメッシュとすることにより、モアレが低減したタッチパネルを構成することができる。 That is, a touch panel with reduced moire can be configured by using random mesh electrodes.
 また、実施例1~9には、抵抗値補正要否につきC評価となるものが存在しない。このことから、各電極をランダムセルから形成したとき、該各電極間の抵抗値にバラツキが少なく、このため、補正が必要なときであっても若干の補正を行うことによって、タッチパネルの誤作動を回避し得ることが分かる。 In Examples 1 to 9, there is no C evaluation for the necessity of resistance value correction. Therefore, when each electrode is formed from a random cell, there is little variation in the resistance value between the electrodes. For this reason, even if correction is necessary, the touch panel malfunctions by performing a slight correction. It can be seen that it can be avoided.
10…三次元タッチパネル付表示装置   12…タッチパネル用電極積層体
14…静電容量式タッチパネル      16…表示装置
18…表示画面             20…接着剤
26…エアギャップ           28…透明基体
30…下方電極             32…上方電極
34、34p、34q、34r、34s…金属細線
36…第1セル             38…第2セル
DESCRIPTION OF SYMBOLS 10 ... Display apparatus with a three-dimensional touch panel 12 ... Electrode laminated body 14 for touch panels ... Capacitive touch panel 16 ... Display apparatus 18 ... Display screen 20 ... Adhesive 26 ... Air gap 28 ... Transparent base 30 ... Lower electrode 32 ... Upper electrode 34, 34p, 34q, 34r, 34s ... fine metal wire 36 ... first cell 38 ... second cell

Claims (10)

  1.  下方電極と上方電極とが、絶縁層を介して積層されたタッチパネル用電極積層体において、
     前記下方電極及び前記上方電極の少なくともいずれか一方が、金属細線同士が交差して構成された金属メッシュ電極であって、該金属メッシュ電極がランダムセルから構成されたランダムメッシュパターンを有し、
     且つ当該タッチパネル用電極積層体は、前記下方電極から前記上方電極側に、又はその逆方向に指向して膨出するように湾曲した三次元曲面体であることを特徴とするタッチパネル用電極積層体。
    In the electrode laminate for a touch panel in which the lower electrode and the upper electrode are laminated via an insulating layer,
    At least one of the lower electrode and the upper electrode is a metal mesh electrode configured by crossing thin metal wires, and the metal mesh electrode has a random mesh pattern configured by random cells,
    The electrode laminate for a touch panel is a three-dimensional curved body that is curved so as to bulge from the lower electrode toward the upper electrode or in the opposite direction. .
  2.  請求項1記載のタッチパネル用電極積層体において、部位によって曲率半径が相違する三次元曲面体からなるタッチパネル用電極積層体。 2. The electrode laminate for a touch panel according to claim 1, wherein the electrode laminate is a three-dimensional curved body having a different curvature radius depending on a part.
  3.  請求項1又は2記載のタッチパネル用電極積層体において、前記下方電極と前記上方電極の双方が、前記ランダムメッシュ電極からなるタッチパネル用電極積層体。 3. The touch panel electrode laminate according to claim 1 or 2, wherein both the lower electrode and the upper electrode are the random mesh electrodes.
  4.  請求項1~3のいずれか1項に記載のタッチパネル用電極積層体において、前記ランダムメッシュ電極を構成する前記複数個のランダムセルのランダム率が2~20%であるタッチパネル用電極積層体。 The touch panel electrode laminate according to any one of claims 1 to 3, wherein the random rate of the plurality of random cells constituting the random mesh electrode is 2 to 20%.
  5.  請求項1~4のいずれか1項に記載のタッチパネル用電極積層体において、前記ランダムセルを構成する前記金属細線の線幅が1~6μmであるタッチパネル用電極積層体。 5. The touch panel electrode laminate according to claim 1, wherein the thin metal wire constituting the random cell has a line width of 1 to 6 μm.
  6.  請求項1~5のいずれか1項に記載のタッチパネル用電極積層体において、前記下方電極が第1の方向に沿って延在する帯形状をなし、且つ前記第1の方向に対して直交する第2の方向に沿って複数個並列されるとともに、前記上方電極が前記第2の方向に沿って延在する帯形状をなし、且つ前記第1の方向に沿って複数個並列されるタッチパネル用電極積層体。 The touch panel electrode laminate according to any one of claims 1 to 5, wherein the lower electrode has a band shape extending along a first direction and is orthogonal to the first direction. For a touch panel in which a plurality of the upper electrodes are arranged in parallel along the second direction, the upper electrode has a strip shape extending along the second direction, and a plurality of the upper electrodes are arranged in parallel along the first direction. Electrode laminate.
  7.  請求項1~6のいずれか1項に記載されたタッチパネル用電極積層体を備えることを特徴とする静電容量式タッチパネル。 A capacitive touch panel comprising the electrode laminate for a touch panel according to any one of claims 1 to 6.
  8.  請求項7に記載された静電容量式タッチパネルと、表示装置とを備えることを特徴とする三次元タッチパネル付表示装置。 A display device with a three-dimensional touch panel comprising the capacitive touch panel according to claim 7 and a display device.
  9.  請求項8記載の三次元タッチパネル付表示装置において、前記タッチパネルと前記表示装置との間にエアギャップが介在している三次元タッチパネル付表示装置。 The display device with a three-dimensional touch panel according to claim 8, wherein an air gap is interposed between the touch panel and the display device.
  10.  請求項8又は9記載の三次元タッチパネル付表示装置において、前記表示装置の表示面が平坦面である三次元タッチパネル付表示装置。 The display device with a three-dimensional touch panel according to claim 8 or 9, wherein the display surface of the display device is a flat surface.
PCT/JP2014/084138 2014-02-19 2014-12-24 Electrode laminated member for touch panel, capacitance type touch panel, and display device equipped with three-dimensional touch panel WO2015125398A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-029255 2014-02-19
JP2014029255A JP6109767B2 (en) 2014-02-19 2014-02-19 Electrode laminate for touch panel, capacitive touch panel, and display device with three-dimensional touch panel

Publications (1)

Publication Number Publication Date
WO2015125398A1 true WO2015125398A1 (en) 2015-08-27

Family

ID=53877927

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/084138 WO2015125398A1 (en) 2014-02-19 2014-12-24 Electrode laminated member for touch panel, capacitance type touch panel, and display device equipped with three-dimensional touch panel

Country Status (2)

Country Link
JP (1) JP6109767B2 (en)
WO (1) WO2015125398A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016060147A1 (en) * 2014-10-15 2016-04-21 富士フイルム株式会社 Electroconductive film, display device provided with same, and method for evaluating wiring pattern of electroconductive film
JP2017097439A (en) * 2015-11-18 2017-06-01 凸版印刷株式会社 Conductive film, touch panel, and display device
EP3686717A4 (en) * 2017-09-21 2021-06-09 BOE Technology Group Co., Ltd. Touch panel and fabrication method therefor, and touch display panel

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3180898U (en) * 2012-08-23 2013-01-17 恆▲コウ▼科技股▲分▼有限公司 Touch electrode device
JP2013058180A (en) * 2011-09-08 2013-03-28 Samsung Electro-Mechanics Co Ltd Touch panel
JP2014026510A (en) * 2012-07-27 2014-02-06 Dainippon Printing Co Ltd Electrode substrate for touch panel, touch panel, and image display device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5371840B2 (en) * 2009-04-15 2013-12-18 信越ポリマー株式会社 Capacitance sensor and manufacturing method thereof
JP2013186667A (en) * 2012-03-07 2013-09-19 Seiko Instruments Inc Touch panel and display device having touch panel and method for manufacturing touch panel

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013058180A (en) * 2011-09-08 2013-03-28 Samsung Electro-Mechanics Co Ltd Touch panel
JP2014026510A (en) * 2012-07-27 2014-02-06 Dainippon Printing Co Ltd Electrode substrate for touch panel, touch panel, and image display device
JP3180898U (en) * 2012-08-23 2013-01-17 恆▲コウ▼科技股▲分▼有限公司 Touch electrode device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016060147A1 (en) * 2014-10-15 2016-04-21 富士フイルム株式会社 Electroconductive film, display device provided with same, and method for evaluating wiring pattern of electroconductive film
JP2017097439A (en) * 2015-11-18 2017-06-01 凸版印刷株式会社 Conductive film, touch panel, and display device
EP3686717A4 (en) * 2017-09-21 2021-06-09 BOE Technology Group Co., Ltd. Touch panel and fabrication method therefor, and touch display panel

Also Published As

Publication number Publication date
JP2015153355A (en) 2015-08-24
JP6109767B2 (en) 2017-04-05

Similar Documents

Publication Publication Date Title
JP6486341B2 (en) Conductive sheet for touch panel and capacitive touch panel
US10254904B2 (en) Conductive sheet, capacitive touch panel, and display device
JP6010012B2 (en) Conductive sheet, capacitive touch panel and display device
US10642391B2 (en) Touch panel and display device
JP4989749B2 (en) Touch panel device
TWI596518B (en) Touch screen sensor, image display device including the same, and fabricating method thereof
WO2016080046A1 (en) Conductive film and touch panel sensor provided with same
TW201351233A (en) Touch panel
KR20160122934A (en) Mesh-type electrode pattern and manufacturing method thereof, and touch panel including the same
JP2013012016A (en) Transparent electrode element, information input device, and electronic equipment
KR102335116B1 (en) Touch screen pannel and manufacturing method thereof
JP6109767B2 (en) Electrode laminate for touch panel, capacitive touch panel, and display device with three-dimensional touch panel
TW201510810A (en) Touch window and touch device including the same
JP6195969B2 (en) Touch sensor, touch device, and method of manufacturing touch sensor
US20140300834A1 (en) Conductive sheet pair and touch panel
TWI612448B (en) Touch panel and manufacturing method for the same
JP6765499B2 (en) Touch sensor and touch screen panel using it
JP6248758B2 (en) Touch panel sensor member, touch panel and image display device
KR102251870B1 (en) Touch window
CN105468212A (en) Panel structure and manufacturing method therefor
JP2016028335A (en) Transparent electrode element, information input device, and electronic apparatus
KR102085876B1 (en) Electrode member and touch panel with the same
KR20170075556A (en) Conducting substrate, touch panel comprising the same and display device comprising the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14883510

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14883510

Country of ref document: EP

Kind code of ref document: A1