WO2015123821A1 - 一种信道状态信息反馈方法、装置、用户设备及基站 - Google Patents

一种信道状态信息反馈方法、装置、用户设备及基站 Download PDF

Info

Publication number
WO2015123821A1
WO2015123821A1 PCT/CN2014/072247 CN2014072247W WO2015123821A1 WO 2015123821 A1 WO2015123821 A1 WO 2015123821A1 CN 2014072247 W CN2014072247 W CN 2014072247W WO 2015123821 A1 WO2015123821 A1 WO 2015123821A1
Authority
WO
WIPO (PCT)
Prior art keywords
csi
matrix
information
frequency domain
transmitted
Prior art date
Application number
PCT/CN2014/072247
Other languages
English (en)
French (fr)
Inventor
刘坚能
饶雄斌
余荣道
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP14882893.2A priority Critical patent/EP3096483B1/en
Priority to CN201480075498.6A priority patent/CN105981320B/zh
Priority to PCT/CN2014/072247 priority patent/WO2015123821A1/zh
Publication of WO2015123821A1 publication Critical patent/WO2015123821A1/zh
Priority to US15/242,207 priority patent/US10298305B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0026Transmission of channel quality indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0028Formatting
    • H04L1/0029Reduction of the amount of signalling, e.g. retention of useful signalling or differential signalling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver

Definitions

  • the present invention relates to the field of wireless communication technologies, and in particular, to a channel state information feedback method, apparatus, user equipment, and base station.
  • a large-scale antenna array can bring spatial multiplexing gain, thereby improving the communication throughput of a wireless system. Therefore, a large-scale antenna is considered to be a key technical point of a future wireless communication system;
  • BS Base Station
  • CSI Channel State Information
  • UE User Equipment
  • the CSI represents the channel attenuation information from the BS to the UE. It is measured by the UE and fed back to the BS through the uplink feedback link.
  • the amount of CSI feedback information from the UE to the BS increases significantly, which brings a large amount of feedback overhead to the entire wireless communication system; these large amounts of feedback overhead are offset by large-scale
  • the diversity gain benefits of antenna arrays reduce the effective spectrum utilization.
  • the limited feedback method is often used in the actual wireless communication system, that is, the feedback capacity of the given uplink feedback link, as the amount of CSI information that needs to be fed back increases, the amount of bits that can be allocated by each CSI is gradually reduced. Then, the quality of the CSI fed back from the UE end to the BS end is gradually reduced. Therefore, it is urgent to improve the feedback efficiency of the CSI, thereby ensuring the quality of the CSI fed back to the BS and improving the spectrum utilization efficiency of the wireless communication system.
  • the conventional CSI feedback design method of the current wireless communication system is: after the UE uses the pilots sent by the BS to calculate the CSI parameters on the corresponding subcarriers, the entire CSI parameters are quantized using the codebook, and then the quantized The CSI parameter is fed back to the BS through the uplink from the UE to the BS. The BS then uses the same codebook to solve the corresponding CSI parameter information.
  • the inventor of the present invention found in the process of implementing the present invention that the existing CSI feedback mode UE is The measured CSI parameters are quantized using a codebook, and then the quantized CSI parameters are fed back to
  • the BS side implements CSI feedback; this CSI feedback method does not consider the characteristics of CSI in a large-scale antenna array, and the feedback efficiency of CSI is low.
  • the embodiment of the present invention provides a channel state information feedback method, device, user equipment, and a base station, so as to solve the existing CSI feedback mode without considering the characteristics of the CSI in the large-scale antenna array, and the feedback of the CSI Less efficient problem.
  • the embodiment of the present invention provides the following technical solutions:
  • the embodiment of the present invention provides a channel state information feedback method, and a base matrix including a frequency domain of a CSI and a sparseness of a spatial domain, and the method includes:
  • the data to be transmitted is fed back to the BS, so that the BS recovers the corresponding CSI information from the data to be transmitted by using a base matrix of the frequency domain and the spatial sparsity of the CSI pre-synchronized with the UE.
  • the process of pre-synchronizing a base matrix including a frequency domain of a CSI and a sparseness of a spatial domain with the BS includes:
  • each CSI channel matrix in the measured CSI channel matrix sequence is a matrix including frequency and spatial domain information of CSI
  • the determined base matrix containing the frequency domain of the CSI and the sparsity of the spatial domain is synchronized to the BS.
  • an embodiment of the present invention provides a channel state information feedback device, where the device includes: a first synchronization module, configured to pre-synchronize a base matrix of a frequency domain and a spatial domain sparsity of the channel state information CSI with the base station BS;
  • a pilot information receiving module configured to receive pilot information sent by the BS
  • a CSI information matrix determining module configured to determine, according to the pilot information, a CSI information matrix including frequency domain and spatial information of CSI;
  • a data to be transmitted determining module configured to determine data to be transmitted by using the CSI information matrix; and a feedback module, configured to feed back the data to be transmitted to the BS, so that the BS adopts a frequency domain and an air domain including CSI pre-synchronized with the UE
  • the sparse base matrix recovers corresponding CSI information from the data to be transmitted.
  • the first synchronization module includes:
  • a training sequence receiving unit configured to receive a training sequence sent by the BS for a period of time
  • a calculating unit configured to calculate a corresponding CSI channel matrix sequence according to the training sequence, where each CSI channel matrix in the measured CSI channel matrix sequence is a matrix including frequency and airspace information of CSI;
  • a sparse vector sequence calculation unit configured to calculate, according to a given initialization base matrix, a sequence of sparse vectors corresponding to a sequence of column vectors corresponding to each CSI channel matrix;
  • a base matrix determining unit configured to determine, according to the sparse vector sequence, a base matrix including a frequency domain of the CSI and a sparsity of the spatial domain, such that a product of the base matrix and any sparse vector in the sparse vector sequence, and a corresponding The differential modulus of the column vector of the CSI channel matrix satisfies a predetermined condition;
  • a base matrix sending unit configured to synchronize the determined base matrix including the frequency domain of the CSI and the sparsity of the air domain to the BS.
  • an embodiment of the present invention provides a user equipment, including the channel state information feedback device described above.
  • the embodiment of the present invention provides a method for feeding back a channel state information, and synchronizing with a UE, a base matrix including a frequency domain of a CSI and a sparsity of a spatial domain, where the method includes:
  • the UE Determining, by the UE, the CSI information matrix including the frequency domain and the airspace information of the CSI according to the pilot information, after determining the data to be transmitted by using the CSI information matrix, receiving the to-be-transmitted feedback fed by the UE Data
  • the corresponding CSI information is recovered from the data to be transmitted by using a base matrix of the frequency domain of the CSI and the sparseness of the spatial domain pre-synchronized with the UE.
  • the process of pre-synchronizing a base matrix including a frequency domain of a CSI and a sparseness of a spatial domain with the UE includes:
  • the UE calculates a corresponding CSI channel matrix sequence according to the training sequence, and each CSI channel matrix in the measured CSI channel matrix sequence is a matrix including CSI frequency domain and spatial domain information, and the UE is under a given initialization base matrix. Calculating a sequence of sparse vectors corresponding to a sequence of column vectors corresponding to each CSI channel matrix, and determining a basis matrix of sparsity of the frequency domain and the spatial domain including the CSI according to the sequence of the sparse vector, so that the base matrix and the base matrix After the product of any sparse vector in the sparse vector sequence and the difference vector of the column vector of the corresponding CSI channel matrix satisfy a predetermined condition, the base matrix of the sparseness of the frequency domain and the spatial domain including the CSI synchronized by the UE is received.
  • the embodiment of the present invention provides a channel state information feedback apparatus, including: a second synchronization module, configured to pre-synchronize a frequency matrix including a channel state information CSI and a sparseness base matrix of a spatial domain with a user equipment UE;
  • a pilot information sending module configured to send pilot information to the UE
  • the to-be-transmitted data receiving module is configured to determine, according to the pilot information, a CSI information matrix that includes CSI frequency domain and airspace information, and after determining the data to be transmitted by using the CSI information matrix, the receiving UE feeds back the to-be-transmitted Data
  • a recovery processing module configured to recover corresponding CSI information from the to-be-transmitted data by using a base matrix of a frequency domain and a spatial sparsity of the CSI pre-synchronized with the UE.
  • the second synchronization module includes:
  • a training sequence sending unit configured to send a training sequence to the UE for a period of time
  • a base matrix receiving unit configured to calculate, according to the training sequence, a corresponding CSI channel matrix sequence, where each CSI channel matrix in the measured CSI channel matrix sequence is a matrix including frequency and spatial domain information of CSI, and the UE is in Under a given initialization base matrix, a sequence of sparse vectors corresponding to a sequence of column vectors corresponding to each CSI channel matrix is calculated, according to the sequence of sparse vectors Determining a base matrix of the sparseness of the frequency domain and the spatial domain of the CSI such that the product of the base matrix and any sparse vector in the sequence of sparse vectors and the difference vector of the column vector of the corresponding CSI channel matrix satisfy a predetermined condition And receiving a base matrix of the sparsity of the frequency domain and the air domain of the CSI synchronized by the UE.
  • an embodiment of the present invention provides a base station, including the channel state information feedback device described above.
  • the channel state information feedback method utilizes a CSI frequency domain and a sparse feature on a spatial domain in a large-scale antenna communication system, and determines frequency domain and airspace information including CSI by using pilot information transmitted by the BS.
  • the CSI information matrix is used to determine the data to be transmitted through the CSI information matrix.
  • the BS may adopt a base matrix of the frequency domain and the spatial sparsity of the CSI that is pre-synchronized with the UE.
  • the CSI information is recovered in the data to be transmitted, so that the feedback of the CSI is implemented.
  • the embodiment of the present invention utilizes the CSI feedback in the CSI frequency domain and the sparse feature on the airspace in the large-scale antenna communication system.
  • FIG. 1 is a flowchart of a channel state information feedback method according to an embodiment of the present invention. a flowchart of a method for a basic matrix;
  • FIG. 3 is a flowchart of a channel state information feedback method according to an embodiment of the present invention
  • FIG. 4 is a flowchart of a channel state information feedback method according to an embodiment of the present invention
  • FIG. 6 is a structural block diagram of a first synchronization module according to an embodiment of the present invention
  • FIG. 7 is a structural block diagram of a data determining module to be transmitted according to an embodiment of the present invention
  • FIG. 8 is a structural block diagram of a feedback module according to an embodiment of the present invention
  • FIG. 9 is another structural block diagram of a data to be transmitted determining module according to an embodiment of the present invention.
  • FIG. 10 is another structural block diagram of a feedback module according to an embodiment of the present invention.
  • FIG. 11 is a structural block diagram of a block quantization unit according to an embodiment of the present invention.
  • FIG. 12 is a structural block diagram of a hardware structure of a user equipment according to an embodiment of the present invention.
  • FIG. 13 is still another flowchart of a channel state information feedback method according to an embodiment of the present invention
  • FIG. 14 is a flowchart of a method for pre-synchronizing a base matrix of a frequency domain and a spatial domain sparsity of a CSI according to an embodiment of the present invention. ;
  • FIG. 15 is a block diagram showing another structure of a channel state information feedback apparatus according to an embodiment of the present invention
  • FIG. 16 is a structural block diagram of a second synchronization module according to an embodiment of the present invention
  • FIG. 17 is a structural block diagram of a data receiving module to be transmitted according to an embodiment of the present invention.
  • FIG. 18 is a structural block diagram of a recovery processing module according to an embodiment of the present invention.
  • FIG. 19 is another structural block diagram of a data receiving module to be transmitted according to an embodiment of the present invention.
  • FIG. 20 is another structural block diagram of a recovery processing module according to an embodiment of the present invention.
  • FIG. 21 is a block diagram showing the hardware structure of a base station according to an embodiment of the present invention.
  • the inventors of the present invention found during the research that: In a wireless communication system, the scatterers in the channel from the BS to the UE are limited, and the airspace path from the BS end to the UE is limited.
  • the CSI from the BS end to the UE has a sparse characteristic. That is to say, an M*N CSI airspace matrix (M represents the number of receiver antennas at the UE side, and N represents the number of transmitter antennas at the BS end). Not every element has degrees of freedom. These elements are in a certain domain. There are interrelated and limited total degrees of freedom.
  • the spatial scatter from the base station to the user in the wireless space is limited. As the number of antennas increases, the CSI will reflect on the spatial domain. Sparseness, expressed as the inter-association of CSI elements in the spatial domain.
  • the channel impulse response from the BS transmitting antenna to the UE receiving antenna generally exhibits a certain
  • the sparse property, which is reflected in the CSI of MIMO-OFDM, is that the CSIs on different subcarriers are related to each other, that is, the CSI elements are correlated in the frequency domain.
  • the spatial domain of the CSI in the wireless communication system of the large-scale antenna and the sparsity in the time domain can be utilized, which can greatly improve the feedback efficiency of CSI.
  • the channel state information feedback method, apparatus, user equipment, and base station provided by the embodiments of the present invention are introduced below.
  • FIG. 1 is a flowchart of a channel state information feedback method according to an embodiment of the present invention. , the method can include:
  • Step S100 Synchronizing with the BS, a base matrix including a frequency domain of the CSI and a sparseness of the spatial domain;
  • B may be a base matrix of CSI sparsity, and a base matrix B of CSI sparsity is a CSI in the frequency domain and the airspace.
  • the sparse property, which represents CSI, is sparse under the expression of this base matrix (only a finite number of non-zero elements).
  • Step S110 Receive pilot information sent by the BS.
  • Step S120 Determine, according to the pilot information, a CSI information matrix that includes frequency domain and airspace information of the CSI.
  • the CSI information matrix can be set to /, and the CSI information matrix/represents a matrix corresponding to the CSI including the frequency domain and the spatial domain information.
  • the CSI information matrix including the frequency domain and the airspace information of the CSI may be determined according to the pilot information by using a common channel estimation method, and a person skilled in the art may know to determine according to the pilot information.
  • a variety of commonly used methods for CSI information matrix including frequency domain and airspace information of CSI are well-known technologies in the field of communication, and will not be described herein; however, it should be noted that these commonly used pilots are based on the pilot.
  • Step S130 Determine, by using the CSI information matrix, data to be transmitted;
  • the CSI information matrix H may be subjected to compression sensing processing to obtain data to be transmitted.
  • the CSI information matrix may be subjected to compression sensing processing, and then the CSI information matrix subjected to the compressed sensing processing may be partitioned. Quantize and get the data to be transmitted.
  • Step S140 The data to be transmitted is fed back to the BS, so that the BS recovers the corresponding CSI information from the data to be transmitted by using a base matrix of a frequency domain and a spatial sparsity of the CSI pre-synchronized with the UE.
  • the BS can recover the CSI information from the data to be transmitted through the base matrix B of the CSI sparsity, thereby completing the feedback of the CSI.
  • step S100 is a pre-executed step, and after performing step S100 once, steps S110 to S140 may be performed multiple times.
  • the channel state information feedback method utilizes a CSI frequency domain and a sparse characteristic on a spatial domain in a large-scale antenna communication system, and determines a CSI information matrix including frequency and airspace information of the CSI by using pilot information transmitted by the BS, And determining, by the CSI information matrix, the data to be transmitted, after the data to be transmitted is fed back to the BS, the BS may adopt a base matrix of the frequency domain and the spatial sparsity of the CSI, which is pre-synchronized with the UE, from the data to be transmitted.
  • the embodiment of the present invention utilizes the CSI feedback in the CSI frequency domain and the sparse feature on the airspace in the large-scale antenna communication system, and solves the existing
  • the technology does not consider the characteristics of CSI in a large-scale antenna array, and the feedback efficiency of CSI is low, which improves the CSI feedback efficiency, reduces the feedback overhead from the UE to the BS, and improves the spectrum in wireless communication. Utilization rate.
  • FIG. 2 shows a method flow for pre-synchronizing a base matrix containing a sparseness of a frequency domain and a spatial domain of a CSI with reference to a BS.
  • the method may include:
  • Step S200 Receive a training sequence sent by the BS for a period of time
  • Step S210 Calculate, according to the training sequence, a corresponding CSI channel matrix sequence, where each CSI channel matrix in the measured CSI channel matrix sequence is a matrix including frequency domain and spatial domain information of CSI;
  • N c is the total number of MIMO-OFDM subcarriers
  • £] represents CSI information (NxM matrix) on the cth subcarrier. It is N.
  • a fast FFT (fast Fourier transform) matrix where is a standard operator, that is, the elements in a matrix are arranged into a column vector according to the direction of the column.
  • Step S220 Calculate, according to a given initialization base matrix, a sequence of sparse vectors corresponding to a sequence of column vectors corresponding to each CSI channel matrix;
  • Step S230 determining, according to the sequence of sparse vectors, a base matrix including a frequency domain of the CSI and a sparsity of the spatial domain, such that a product of the base matrix and any sparse vector in the sequence of the sparse vector, and a corresponding CSI channel matrix
  • the differential mode of the column vector satisfies a predetermined condition
  • the differential mode satisfies the predetermined condition that the differential mode is minimum; obviously, the predetermined condition may also be set according to an actual application.
  • the embodiment of the present invention can utilize the convex optimization tool to solve the following optimization problem: min diagaj+£ ) ⁇ 1 X veC , calculate the base matrix ⁇ of the corresponding CSI sparsity; where, is two parameters, ⁇ represents the base matrix, which is the corresponding sparse vector.
  • the purpose of this optimization problem is to find the base matrix ⁇ of the CSI sparsity given a sparse vector ⁇ Sl ,... S , such that the differential modulus of the sum of vec (H t ) is minimized.
  • step S220 an alternate operation may be performed between step S220 and step S230 to obtain a final
  • ⁇ S1 , ...s outputted in step S220 is an input parameter of the optimization problem in step S230
  • B of the optimization problem output in step S230 may be an input parameter of the problem in step S220.
  • Step S240 Synchronize the determined base matrix including the frequency domain of the CSI and the sparsity of the air domain to
  • the method for determining the data to be transmitted by using the CSI information matrix in the step S130 is as follows: performing compression sensing processing on the CSI information matrix to obtain data to be transmitted.
  • FIG. 3 shows another flow of the channel state information feedback method provided by the embodiment of the present invention. Referring to FIG. 3, the method may include:
  • Step S300 Pre-synchronize with the BS, a base matrix including a frequency domain of the CSI and a sparsity of the air domain; Step S310, receiving pilot information sent by the BS;
  • Step S320 Determine, according to the pilot information, a CSI information matrix that includes frequency domain and airspace information of the CSI.
  • Step S330 Perform compression sensing processing on the CSI information matrix.
  • Step S340 The CSI information matrix after the compressed sensing process is fed back to the BS, so that the BS adopts a base matrix of the sparseness of the frequency domain and the spatial domain of the CSI pre-synchronized with the UE, and performs CSI information matrix after the compressed sensing process.
  • the compressed sensing recovery process is performed to obtain corresponding CSI information.
  • step S300 is a pre-executed step, and after performing step S300 once, steps S310 to S340 may be performed multiple times.
  • the method for determining data to be transmitted by using the CSI information matrix in step S130 in FIG. 1 may be: performing compressed sensing processing on the CSI information matrix, and performing block quantization on the CSI information matrix after compression sensing processing.
  • the data to be transmitted is obtained.
  • FIG. 4 shows a further flow of the channel state information feedback method provided by the embodiment of the present invention.
  • the method may include: Step S400: Pre-synchronizing the frequency including the CSI with the BS a base matrix of sparsity of the domain and the airspace; step S410, receiving pilot information sent by the BS;
  • Step S420 determining, according to the pilot information, a CSI information matrix including frequency domain and airspace information of CSI;
  • Step S440 performing block quantization on the CSI information matrix subjected to the compressed sensing process.
  • the process of blocking quantization may be: processing the compressed sensing process by a predetermined length.
  • the CSI information matrix performs block processing; for each block of the CSI information matrix subjected to the compressed sensing process, the codebook of a predetermined dimension is used for quantization.
  • each block size is; Then, for each yffl, a codebook of dimension B is used for quantization, assuming that y after quantization is .
  • Step S450 The block-quantized CSI information matrix is fed back to the BS, so that the BS uses the base matrix of the frequency domain of the CSI and the sparseness of the spatial domain pre-synchronized with the UE, and the CSI information matrix quantized by the block.
  • the compressed sensing recovery process is performed to obtain corresponding CSI information.
  • step S400 is a pre-executed step, and after performing step S400 once, steps S410 to S450 may be performed multiple times.
  • the channel state information feedback method provided by the embodiment of the present invention utilizes the CSI frequency domain and the sparseness feature in the airspace in the large-scale antenna communication system, improves the CSI feedback efficiency, reduces the feedback overhead from the UE end to the BS end, and further improves the wireless Spectrum utilization in communications.
  • the channel state information feedback device provided by the embodiment of the present invention is described below.
  • the channel state information feedback device described below corresponds to the channel state information feedback method described above, and the two can be mutually referred to.
  • FIG. 5 is a structural block diagram of a channel state information feedback apparatus according to an embodiment of the present invention.
  • the apparatus may be applied to a UE.
  • the apparatus may include:
  • the first synchronization module 100 is configured to pre-synchronize a base matrix including a frequency domain of the channel state information CSI and a sparsity of the spatial domain with the BS;
  • the pilot information receiving module 110 is configured to receive pilot information sent by the BS;
  • the CSI information matrix determining module 120 is configured to determine, according to the pilot information, a CSI information matrix that includes frequency domain and airspace information of the CSI;
  • the data to be transmitted determining module 130 is configured to determine data to be transmitted by using the CSI information matrix.
  • the feedback module 140 is configured to feed back the data to be transmitted to the BS, so that the BS adopts a frequency domain including CSI pre-synchronized with the UE. And a base matrix of sparsity of the air domain, recovering corresponding CSI information from the data to be transmitted.
  • FIG. 6 shows an optional structure of the first synchronization module 100.
  • the first synchronization module 100 may include:
  • the training sequence receiving unit 101 is configured to receive a training sequence that is sent by the BS for a period of time.
  • the calculating unit 102 is configured to calculate, according to the training sequence, a corresponding CSI channel matrix sequence, and each CSI channel matrix in the measured CSI channel matrix sequence. a matrix containing frequency and airspace information of the CSI;
  • a sparse vector sequence calculation unit 103 configured to calculate, according to a given initialization base matrix, a sequence of sparse vectors corresponding to a sequence of column vectors corresponding to each CSI channel matrix;
  • the base matrix determining unit 104 is configured to determine, according to the sequence of the sparse vectors, a base matrix including a frequency domain of the CSI and a sparsity of the spatial domain, so that a product of the base matrix and any sparse vector in the sparse vector sequence is corresponding to The differential modulus of the column vector of the CSI channel matrix satisfies a predetermined condition;
  • the differential mode satisfies the predetermined condition, which may be that the differential mode is minimum; obviously, the predetermined condition may also be set according to the actual application.
  • the base matrix sending unit 105 is configured to synchronize the determined base matrix including the frequency domain of the CSI and the sparsity of the air domain to the BS.
  • FIG. 7 shows an optional structure of the data to be transmitted determining module 130.
  • the data to be transmitted determining module 130 may include:
  • the first compression sensing unit 1301 is configured to perform compressed sensing processing on the CSI information matrix to obtain data to be transmitted.
  • FIG. 8 shows an optional structure of the feedback module 140.
  • the feedback module 140 may include:
  • the first feedback unit 1401 is configured to feed back the CSI information matrix subjected to the compressed sensing process to the BS, so that the BS adopts a base matrix of the sparseness of the frequency domain and the air domain including the CSI that is pre-synchronized with the UE. Compressed sensing recovery processing is performed on the CSI information matrix subjected to the compressed sensing processing to obtain corresponding CSI information.
  • FIG. 9 shows another optional structure of the data to be transmitted determining module 130.
  • the data to be transmitted determining module 130 may include:
  • the second compression sensing unit 1311 is configured to perform compression sensing processing on the CSI information matrix
  • the block quantization unit 1312 is configured to perform block quantization on the CSI information matrix subjected to the compressed sensing process to obtain data to be transmitted.
  • FIG. 10 shows another optional structure of the feedback module 140.
  • the feedback module 140 may include:
  • the second feedback unit 1411 is configured to feed back the block-quantized CSI information matrix to the BS, so that the BS uses the base matrix of the frequency domain of the CSI and the sparsity of the spatial domain pre-synchronized with the UE, and quantizes the block.
  • the subsequent CSI information matrix performs compression sensing recovery processing to obtain corresponding CSI information.
  • FIG. 11 shows an optional structure of the block quantization unit 1312.
  • the block quantization unit 1312 may include:
  • Blocking subunit 13121 configured to perform block processing on the compressed sensing processing CSI information matrix by a predetermined length
  • the quantization sub-unit 13122 is configured to perform quantization on a CSI information matrix subjected to compression sensing processing for each block by using a codebook of a predetermined dimension.
  • the channel state information feedback apparatus utilizes the CSI frequency domain and the sparseness feature in the airspace in the large-scale antenna communication system, improves the CSI feedback efficiency, reduces the feedback overhead from the UE end to the BS end, and further improves the wireless Spectrum utilization in communications.
  • the embodiment of the present invention further provides a user equipment UE, which includes the above-mentioned channel state information feedback device.
  • a user equipment UE which includes the above-mentioned channel state information feedback device.
  • the hardware structure of the user equipment is described below.
  • FIG. 12 is a block diagram showing the hardware structure of the user equipment.
  • the user equipment may be a mobile phone including a computing capability, a smart mobile terminal such as a PAD, and the specific embodiment of the present invention is not for the user equipment. The specific implementation is limited. Referring to FIG.
  • the user equipment may include: a processor 1, a communication interface 2, a memory 3, and a communication bus 4;
  • the processor 1, the communication interface 2, and the memory 3 complete communication with each other through the communication bus 4;
  • the communication interface 2 can be an interface of the communication module, such as an interface of the GSM module; and the processor 1 is configured to execute the program;
  • Memory 3 for storing the program
  • the program can include program code, the program code including computer operating instructions.
  • the processor 1 may be a central processing unit CPU, or an Application Specific Integrated Circuit (ASIC), or one or more integrated circuits configured to implement embodiments of the present invention.
  • CPU central processing unit
  • ASIC Application Specific Integrated Circuit
  • the memory 3 may include a high speed RAM memory, and may also include a non-volatile memory, at least one of which is stored in the disk.
  • the program can be used specifically for:
  • Pre-synchronizing with the BS a base matrix containing the sparseness of the frequency domain and the spatial domain of the CSI;
  • the data to be transmitted is fed back to the BS, so that the BS recovers the corresponding CSI information from the data to be transmitted by using a base matrix of the frequency domain and the spatial sparsity of the CSI pre-synchronized with the UE.
  • the program may include the function modules shown in FIG. 5 to FIG.
  • the channel state information feedback method provided by the embodiment of the present invention is introduced from the perspective of the BS.
  • the channel state information feedback method described below and the channel state information feedback method described above by the UE may refer to each other.
  • FIG. 13 is still another flowchart of a channel state information feedback method according to an embodiment of the present disclosure.
  • the method may be applied to a BS.
  • the method may include:
  • Step S500 Pre-synchronize with the UE a base matrix including a frequency domain of the CSI and a sparsity of the air domain; Step S510, send pilot information to the UE;
  • Step S520 The CSI information matrix that includes the frequency domain and the airspace information of the CSI is determined by the UE according to the pilot information, and after the data to be transmitted is determined by using the CSI information matrix, the UE receives the feedback.
  • step S530 the corresponding CSI information is recovered from the to-be-transmitted data by using a base matrix of the frequency domain of the CSI and the sparseness of the airspace pre-synchronized with the UE.
  • step S500 is a pre-executed step. After performing step S500 once, steps S510 to S530 may be performed multiple times.
  • FIG. 14 shows an optional implementation method for pre-synchronizing the sparseness of the frequency domain and the spatial domain of the CSI with the UE.
  • the method may include:
  • Step S600 Send a training sequence to the UE for a period of time
  • Step S610 The UE calculates a corresponding CSI channel matrix sequence according to the training sequence, and each CSI channel matrix in the measured CSI channel matrix sequence is a matrix including frequency and spatial domain information of CSI, and the UE is initialized at a given time.
  • a sparse vector sequence corresponding to a sequence of column vectors corresponding to each CSI channel matrix is calculated, and a base matrix including a sparseness of a frequency domain and a spatial domain of the CSI is determined according to the sequence of the sparse vector, so as to The base matrix of the sparseness of the frequency domain and the spatial domain including the CSI synchronized by the product after the product of the matrix and any one of the sparse vector sequences and the column vector of the corresponding CSI channel matrix satisfy a predetermined condition .
  • the differential mode satisfies the predetermined condition, which may be that the differential mode is minimum; obviously, the predetermined condition may also be set according to the actual application.
  • step S610 The action performed by the UE in step S610 can be described with reference to FIG. 2, and details are not described herein again.
  • the data to be transmitted that is fed back by the UE received in step S520 in FIG. 13 may be: data obtained by performing compression sensing processing on the CSI information matrix by the UE; correspondingly, step S530 shown in FIG.
  • the pre-synchronized base matrix of the frequency domain of the CSI and the sparseness of the spatial domain, and recovering the corresponding CSI information from the to-be-transmitted data may be: adopting a frequency domain and a spatial sparsity of the CSI pre-synchronized with the UE.
  • the base matrix performs compressed sensing recovery processing on the CSI information matrix subjected to the compressed sensing process to obtain corresponding CSI information.
  • the data to be transmitted that is fed back by the UE received in step S520 in FIG. 13 may be: the UE performs compression sensing processing on the CSI information matrix, and performs block quantization on the CSI information matrix after the compressed sensing process.
  • the channel state information feedback method provided by the embodiment of the present invention utilizes the CSI frequency domain and the sparseness feature in the airspace in the large-scale antenna communication system, improves the CSI feedback efficiency, reduces the feedback overhead from the UE end to the BS end, and further improves the wireless Spectrum utilization in communications.
  • the channel state information feedback device provided by the embodiment of the present invention is introduced from the perspective of the BS.
  • the channel state information feedback device described below and the channel state information feedback method described above in the perspective of the BS can refer to each other.
  • Figure 15 is a block diagram of another structure of a channel state information feedback device according to an embodiment of the present invention.
  • the device may be applied to a BS.
  • the method may include:
  • a second synchronization module 200 configured to pre-synchronize a base matrix including a frequency domain of the CSI and a sparsity of the air domain with the UE;
  • the pilot information sending module 210 is configured to send pilot information to the UE.
  • the to-be-transmitted data receiving module 220 is configured to: after the UE determines, according to the pilot information, a CSI information matrix that includes CSI frequency domain and airspace information, after determining, by using the CSI information matrix, the UE to receive the feedback transfer data;
  • the recovery processing module 230 is configured to recover the corresponding CSI information from the to-be-transmitted data by using a base matrix of the frequency domain and the spatial sparsity of the CSI pre-synchronized with the UE.
  • Figure 16 shows an alternative configuration of the second synchronization module 200.
  • the second synchronization module 200 can include:
  • a training sequence sending unit 201 configured to send a training sequence to the UE for a period of time
  • the base matrix receiving unit 202 is configured to calculate, according to the training sequence, a corresponding CSI channel matrix sequence, where each CSI channel matrix in the measured CSI channel matrix sequence is a matrix including frequency and spatial domain information of CSI, and the UE Under a given initialization base matrix, a sparse vector sequence corresponding to a sequence of column vectors corresponding to each CSI channel matrix is calculated, and a basis of the sparsity of the frequency domain and the spatial domain including the CSI is determined according to the sequence of the sparse vector a matrix, such that a product of a base matrix and any one of the sparse vector sequences and a difference vector of a column vector of a corresponding CSI channel matrix satisfy a predetermined condition, and then receive a frequency domain and a spatial domain of the CSI that are synchronized by the UE
  • the base matrix of sparsity satisfies the predetermined condition that the differential mode is minimum; obviously, the predetermined condition may also be set according to an actual application.
  • the to-be-transmitted data may be obtained after the UE performs the compressed sensing process on the CSI information matrix.
  • FIG. 17 shows an optional structure of the data receiving module 220 to be transmitted.
  • the data to be transmitted module 220 to be transmitted may include:
  • the first receiving unit 221 is configured to: after the UE determines, according to the pilot information, a CSI information matrix including frequency domain and airspace information of the CSI, performing compressed sensing processing on the CSI information matrix, and receiving compressed sensing processing fed back by the UE. After the CSI information matrix.
  • FIG. 18 shows an optional structure of the recovery processing module 230.
  • the recovery processing module 230 may include:
  • the first recovery unit 231 is configured to perform compression sensing recovery processing on the CSI information matrix subjected to the compressed sensing process by using a base matrix of a frequency domain and a spatial sparsity of the CSI pre-synchronized with the UE, to obtain corresponding CSI information.
  • the to-be-transmitted data may be obtained by the UE performing compressed sensing processing on the CSI information matrix, and performing block-quantization on the CSI information matrix after the compressed sensing processing; correspondingly, FIG. 19 shows that Another optional structure of the transmission data receiving module 220, with reference to FIG. 19, the data receiving module 220 to be transmitted may include:
  • the second receiving unit 222 is configured to: after the UE determines, according to the pilot information, a CSI information matrix that includes frequency domain and airspace information of the CSI, perform compressed sensing processing on the CSI information matrix, and perform CSI information after the compressed sensing process. After the matrix performs block quantization, the block-quantized CSI information matrix fed back by the UE is received.
  • FIG. 20 shows another optional structure of the recovery processing module 230.
  • the recovery processing module 230 may include:
  • the second recovery unit 232 is configured to perform a compressed sensing recovery process on the CSI information matrix that is quantized by using a CSI frequency domain and a sparseness base matrix that is pre-synchronized with the UE, to obtain corresponding CSI information. .
  • the channel state information feedback apparatus utilizes the CSI frequency domain and the sparseness feature in the airspace in the large-scale antenna communication system, improves the CSI feedback efficiency, reduces the feedback overhead from the UE end to the BS end, and further improves the wireless Spectrum utilization in communications.
  • the embodiment of the present invention further provides a base station, and the base station may include the channel state information feedback device described above in the perspective of the BS. The description of the channel state information feedback device may be described in the description of FIG. 15 to FIG. 20 , and details are not described herein again.
  • the hardware structure of the base station provided by the embodiment of the present invention is described below.
  • FIG. 21 is a block diagram showing the hardware structure of the base station. Referring to FIG. 21, the base station may include: a processor, a communication interface 2, a memory 3', and a communication bus 4. ';
  • the processor ⁇ , the communication interface 2, and the memory 3 complete communication with each other through the communication bus 4;
  • the communication interface 2 can be an interface of the communication module, such as an interface of the GSM module; and the processor is configured to execute the program;
  • Memory 3' for storing the program
  • the program can include program code, the program code including computer operating instructions.
  • the processor ⁇ may be a central processing unit CPU, or an Application Specific Integrated Circuit (ASIC), or one or more integrated circuits configured to implement embodiments of the present invention.
  • CPU central processing unit
  • ASIC Application Specific Integrated Circuit
  • the memory 3' may include a high speed RAM memory, and may also include a non-volatile memory, for example, at least one disk memory.
  • the program can be used specifically for:
  • Pre-synchronizing with the UE a base matrix containing the sparsity of the frequency domain and the air domain of the CSI;
  • the CSI information matrix including the frequency domain and the airspace information of the CSI according to the pilot information, and determining the to-be-transmitted data fed back by the UE after determining the data to be transmitted by using the CSI information matrix;
  • the corresponding CSI information is recovered from the data to be transmitted by using a base matrix of the frequency domain of the CSI and the sparseness of the spatial domain pre-synchronized with the UE.
  • the program may include the functional modules shown in FIG. 15 to FIG.
  • RAM random access memory
  • ROM read only memory
  • electrically programmable ROM electrically erasable programmable ROM
  • registers hard disk, removable disk, CD-ROM, or any other form of storage known in the art. In the medium.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提供一种信道状态信息反馈方法、装置、用户设备及基站,其中方法包括:与BS预先同步包含CSI的频域及空域的稀疏性的基矩阵;接收BS发送的导频信息;根据所述导频信息确定包含CSI的频域及空域信息的CSI信息矩阵;通过所述CSI信息矩阵确定待传输数据;将所述待传输数据反馈至BS,以使BS采用与UE预先同步的包含CSI的频域及空域的稀疏性的基矩阵,从所述待传输数据中恢复出对应的CSI信息。本发明实施例提高了CSI反馈效率,降低了从UE端到BS端的反馈开销,进而提高了无线通信中的频谱利用率。

Description

一种信道状态信息反馈方法、 装置、 用户设备及基站 技术领域 本发明涉及无线通信技术领域, 更具体地说, 涉及一种信道状态信息反馈 方法、 装置、 用户设备及基站。
背景技术
无线通信系统中, 大规模天线阵列可以带来空域复用增益,从而提高无线 系统的通信吞吐量,因此大规模天线被认为是未来无线通信系统一个关键技术 点; 但是要想获得由多天线所带来的这些空域复用增益, 无线系统中的基站
( BS , Base Station ) 需要知道从 BS 端发射天线到用户设备(UE , User Equipment )接收天线的信道状态信息(CSI, Channel State Information )。 CSI 代表的是从 BS到 UE之间的信道衰减信息, 是由 UE进行测算后, 通过上行 反馈链路反馈回 BS的。
随着大规模天线阵列中天线数目的增多, 从 UE端到 BS端的 CSI反馈信 息量会大幅增长,从而给整个无线通信系统带来了大量的反馈开销; 这些大量 的反馈开销会抵消由大规模天线阵列所带来的分集增益好处,降低实际有效的 频谱利用率。 另一方面, 实际无线通信系统中往往采用的是有限反馈方法, 即 给定上行反馈链路的反馈容量, 随着需要反馈的 CSI信息量的不断增加,每个 CSI能够分配的比特量逐渐减少, 那么从 UE端反馈回 BS端的 CSI的质量会 逐渐降低。 因此目前急需提高 CSI的反馈效率, 从而保证反馈回 BS端的 CSI 的质量、 提高无线通信系统的频谱利用效率。
现行无线通信系统的常规 CSI反馈设计方法是: UE利用 BS发送过来的导频 (pilots)测算出对应子载波上的 CSI参数之后,会将整个 CSI参数使用码本进行量 化, 然后将量化之后的 CSI参数通过从 UE到 BS端的上行链路反馈到 BS端, BS 端再利用相同的码本解出相应的 CSI参数信息。
本发明的发明人在实现本发明的过程中发现:现有 CSI反馈方式 UE是将 测算出的整个 CSI参数使用码本进行量化,然后将量化之后的 CSI参数反馈到
BS端,实现 CSI的反馈;这种 CSI反馈方式并没有考虑大规模天线阵列中 CSI 的特性, CSI的反馈效率较低。
发明内容
有鉴于此, 本发明实施例提供一种信道状态信息反馈方法、 装置、 用户设 备及基站,以解决现有 CSI反馈方式并没有考虑大规模天线阵列中 CSI的特性, 所带来的 CSI的反馈效率较低的问题。
为实现上述目的, 本发明实施例提供如下技术方案:
第一方面, 本发明实施例提供一种信道状态信息反馈方法, 与 BS预先同 步包含 CSI的频域及空域的稀疏性的基矩阵, 所述方法包括:
接收 BS发送的导频信息;
根据所述导频信息确定包含 CSI的频域及空域信息的 CSI信息矩阵; 通过所述 CSI信息矩阵确定待传输数据;
将所述待传输数据反馈至 BS, 以使 BS采用与 UE预先同步的包含 CSI 的频域及空域的稀疏性的基矩阵, 从所述待传输数据中恢复出对应的 CSI信 息。
结合第一方面, 在第一方面的第一种可能的实现方式中, 所述与 BS预先 同步包含 CSI的频域及空域的稀疏性的基矩阵的过程包括:
接收 BS发送的一段时间的训练序列;
根据所述训练序列测算对应的 CSI信道矩阵序列,所测算的 CSI信道矩阵 序列中的各 CSI信道矩阵为包含 CSI的频域及空域信息的矩阵;
在给定的初始化基矩阵下,计算由各 CSI信道矩阵所对应的列向量所组成 的序列所对应的稀疏向量序列;
根据所述稀疏向量序列确定包含 CSI的频域及空域的稀疏性的基矩阵,以 使基矩阵与所述稀疏向量序列中的任一稀疏向量的乘积,与对应的 CSI信道矩 阵的列向量的差模满足预定条件;
将所确定的包含 CSI的频域及空域的稀疏性的基矩阵同步至 BS。
第二方面,本发明实施例提供一种信道状态信息反馈装置,所述装置包括: 第一同步模块, 用于与基站 BS预先同步包含信道状态信息 CSI的频域及 空域的稀疏性的基矩阵;
导频信息接收模块, 用于接收 BS发送的导频信息;
CSI信息矩阵确定模块,用于根据所述导频信息确定包含 CSI的频域及空 域信息的 CSI信息矩阵;
待传输数据确定模块, 用于通过所述 CSI信息矩阵确定待传输数据; 反馈模块,用于将所述待传输数据反馈至 BS, 以使 BS采用与 UE预先同 步的包含 CSI的频域及空域的稀疏性的基矩阵,从所述待传输数据中恢复出对 应的 CSI信息。
结合第二方面,在第二方面的第一种可能的实现方式中, 所述第一同步模 块包括:
训练序列接收单元, 用于接收 BS发送的一段时间的训练序列;
测算单元,用于根据所述训练序列测算对应的 CSI信道矩阵序列,所测算 的 CSI信道矩阵序列中的各 CSI信道矩阵为包含 CSI的频域及空域信息的矩 阵;
稀疏向量序列计算单元, 用于在给定的初始化基矩阵下, 计算由各 CSI 信道矩阵所对应的列向量所组成的序列所对应的稀疏向量序列;
基矩阵确定单元,用于根据所述稀疏向量序列确定包含 CSI的频域及空域 的稀疏性的基矩阵, 以使基矩阵与所述稀疏向量序列中的任一稀疏向量的乘 积, 与对应的 CSI信道矩阵的列向量的差模满足预定条件;
基矩阵发送单元,用于将所确定的包含 CSI的频域及空域的稀疏性的基矩 阵同步至 BS。
第三方面, 本发明实施例提供一种用户设备, 包括上述所述的信道状态信 息反馈装置。
第四方面, 本发明实施例提供一种信道状态信息反馈方法, 与 UE预先同 步包含 CSI的频域及空域的稀疏性的基矩阵, 所述方法包括:
向 UE发送导频信息;
在 UE根据所述导频信息确定包含 CSI的频域及空域信息的 CSI信息矩 阵, 通过所述 CSI信息矩阵确定待传输数据之后, 接收 UE反馈的所述待传输 数据;
采用与 UE预先同步的包含 CSI的频域及空域的稀疏性的基矩阵,从所述 待传输数据中恢复出对应的 CSI信息。
结合第四方面, 在第四方面的第一种可能的实现方式中, 所述与 UE预先 同步包含 CSI的频域及空域的稀疏性的基矩阵的过程包括:
向 UE发送一段时间的训练序列;
在 UE根据所述训练序列测算对应的 CSI信道矩阵序列, 所测算的 CSI 信道矩阵序列中的各 CSI信道矩阵为包含 CSI的频域及空域信息的矩阵, 且 UE在给定的初始化基矩阵下, 计算由各 CSI信道矩阵所对应的列向量所组成 的序列所对应的稀疏向量序列,根据所述稀疏向量序列确定包含 CSI的频域及 空域的稀疏性的基矩阵,以使基矩阵与所述稀疏向量序列中的任一稀疏向量的 乘积, 与对应的 CSI信道矩阵的列向量的差模满足预定条件之后, 接收 UE同 步的包含 CSI的频域及空域的稀疏性的基矩阵。
第五方面, 本发明实施例提供一种信道状态信息反馈装置, 包括: 第二同步模块,用于与用户设备 UE预先同步包含信道状态信息 CSI的频 域及空域的稀疏性的基矩阵;
导频信息发送模块, 用于向 UE发送导频信息;
待传输数据接收模块,用于在 UE根据所述导频信息确定包含 CSI的频域 及空域信息的 CSI信息矩阵,通过所述 CSI信息矩阵确定待传输数据之后,接 收 UE反馈的所述待传输数据;
恢复处理模块,用于采用与 UE预先同步的包含 CSI的频域及空域的稀疏 性的基矩阵, 从所述待传输数据中恢复出对应的 CSI信息。
结合第五方面,在第五方面的第一种可能的实现方式中, 所述第二同步模 块包括:
训练序列发送单元, 用于向 UE发送一段时间的训练序列;
基矩阵接收单元,用于在 UE根据所述训练序列测算对应的 CSI信道矩阵 序列, 所测算的 CSI信道矩阵序列中的各 CSI信道矩阵为包含 CSI的频域及 空域信息的矩阵, 且 UE在给定的初始化基矩阵下, 计算由各 CSI信道矩阵所 对应的列向量所组成的序列所对应的稀疏向量序列 ,根据所述稀疏向量序列确 定包含 CSI的频域及空域的稀疏性的基矩阵,以使基矩阵与所述稀疏向量序列 中的任一稀疏向量的乘积,与对应的 CSI信道矩阵的列向量的差模满足预定条 件之后, 接收 UE同步的包含 CSI的频域及空域的稀疏性的基矩阵。
第六方面, 本发明实施例提供一种基站, 包括上述所述的信道状态信息反 馈装置
基于上述技术方案,本发明实施例提供的信道状态信息反馈方法利用了大 规模天线通信系统中 CSI频域以及空域上的稀疏特性, 通过 BS发送的导频信 息确定包含 CSI的频域及空域信息的 CSI信息矩阵, 再通过所述 CSI信息矩 阵确定待传输数据,在待传输数据反馈至 BS后, BS可采用与 UE预先同步的 包含 CSI的频域及空域的稀疏性的基矩阵,从所述待传输数据中恢复出对应的 CSI信息, 从而实现 CSI的反馈; 相比现有技术, 本发明实施例利用了大规模 天线通信系统中 CSI频域以及空域上的稀疏特性实现的 CSI的反馈,解决了现 有技术没有考虑大规模天线阵列中 CSI的特性,所带来的 CSI的反馈效率较低 的问题, 提高了 CSI反馈效率, 降低了从 UE端到 BS端的反馈开销, 进而提 高了无线通信中的频谱利用率。
附图说明 为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施 例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地, 下面描述 中的附图仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲,在不付 出创造性劳动的前提下, 还可以根据这些附图获得其他的附图。
图 1为本发明实施例提供的一种信道状态信息反馈方法的流程图; 性的基矩阵的方法流程图;
图 3为本发明实施例提供的一种信道状态信息反馈方法的另一流程图; 图 4为本发明实施例提供的一种信道状态信息反馈方法的再一流程图; 图 5为本发明实施例提供的信道状态信息反馈装置的结构框图; 图 6为本发明实施例提供的第一同步模块的结构框图;
图 7为本发明实施例提供的待传输数据确定模块的结构框图; 图 8为本发明实施例提供的反馈模块的结构框图;
图 9为本发明实施例提供的待传输数据确定模块的另一结构框图; 图 10为本发明实施例提供的反馈模块的另一结构框图;
图 11为本发明实施例提供的分块量化单元的结构框图;
图 12为本发明实施例提供的用户设备的硬件结构框图;
图 13为本发明实施例提供的信道状态信息反馈方法的又一流程图; 图 14为本发明实施例提供的与 UE预先同步包含 CSI的频域及空域的稀 疏性的基矩阵的方法流程图;
图 15为本发明实施例提供的信道状态信息反馈装置的另一结构框图; 图 16为本发明实施例提供的第二同步模块的结构框图;
图 17为本发明实施例提供的待传输数据接收模块的结构框图;
图 18为本发明实施例提供的恢复处理模块的结构框图;
图 19为本发明实施例提供的待传输数据接收模块的另一结构框图; 图 20为本发明实施例提供的恢复处理模块的另一结构框图;
图 21为本发明实施例提供的基站的硬件结构框图。
具体实施方式 为使本发明实施例的目的、技术方案和优点更加清楚, 下面将结合本发明 实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然, 所描述的实施例是本发明一部分实施例, 而不是全部的实施例。基于本发明中 的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其 他实施例, 都属于本发明保护的范围。
本发明的发明人在研究过程中发现: 在无线通信系统中, 从 BS到 UE之 间的信道中的散射物是有限的,那么从 BS端到 UE之间的空域路径是有限的。 当天线数目增大到一定程度之后,从 BS端到 UE之间的 CSI就会有稀疏特性。 也就是说, 一个 M*N的 CSI空域矩阵 ( M代表 UE端的接收机天线数目, N 代表 BS端的发射机天线数目)里面并不是每个元素都是有自由度的, 这些元 素在某个域里面是相互关联并且是有限的总自由度数,无线空间中从基站到用 户端的空间散射物是有限的, 随着天线数目增多, CSI在空间域上面会体现一 种稀疏性, 表现为空间域上的 CSI元素之间是相互关联的。
此外, 在无线通信的 MIMO-OFDM (多入多出-正交频分复用 ) 系统中, 由于传输环境只有有限多径, 从 BS端发射天线到 UE接收天线的信道冲击响 应一般表现出一定的稀疏特性, 这种稀疏特性反应到 MIMO-OFDM的 CSI上 面, 即表现为不同子载波上的 CSI是相互关联的, 即在频域上 CSI元素之间是 相互关联的。
可见, 大规模天线的无线通信系统中 CSI的空间域, 以及时间域上具有稀 疏性。因此在 CSI的反馈过程中对大规模天线网络中 CSI在频域以及空域的稀 疏性进行利用, 可大幅度的提高 CSI的反馈效率。
基于上述思想,下面对本发明实施例提供的信道状态信息反馈方法、装置、 用户设备及基站进行介绍。
下面以 UE 的角度对本发明实施例提供的信道状态信息反馈方法进行描 述, 图 1为本发明实施例提供的一种信道状态信息反馈方法的流程图, 该方法 可应用于 UE侧, 参照图 1 , 该方法可以包括:
步骤 S100、 与 BS预先同步包含 CSI的频域及空域的稀疏性的基矩阵; 可设 B为 CSI稀疏性的基矩阵, CSI稀疏性的基矩阵 B反应的是 CSI在 频域及空域上的稀疏特性,代表 CSI在这个基矩阵的表达下是稀疏的(只有有 限个非零元素)。
步骤 S 110、 接收 BS发送的导频信息;
步骤 S 120、 根据所述导频信息确定包含 CSI的频域及空域信息的 CSI信 息矩阵;
可设 CSI信息矩阵为 /, CSI信息矩阵 /代表的是一个与 CSI对应的包含 频域以及空域信息的矩阵。可选的,本发明实施例可采用常用的信道估计方法, 根据所述导频信息确定出包含 CSI的频域及空域信息的 CSI信息矩阵;本领域 技术人员可以知晓根据所述导频信息确定出包含 CSI的频域及空域信息的 CSI 信息矩阵的多种常用方法, 这些常用方法为通信领域的公知技术,在此就不再 贅述;但需要说明的是,这些常用的根据所述导频信息确定出包含 CSI的频域 及空域信息的 CSI信息矩阵的方法,都应在本发明实施例所要求的根据所述导 频信息确定包含 CSI的频域及空域信息的 CSI信息矩阵的保护范围内。 步骤 S130、 通过所述 CSI信息矩阵确定待传输数据;
在本发明实施例中, 可对 CSI信息矩阵 H进行压缩感知处理, 得到待传 输数据; 也可以对 CSI信息矩阵 /进行压缩感知处理后, 再对经过压缩感知 处理后的 CSI信息矩阵进行分块量化, 得到待传输数据。
步骤 S140、 将所述待传输数据反馈至 BS , 以使 BS采用与 UE预先同步 的包含 CSI的频域及空域的稀疏性的基矩阵,从所述待传输数据中恢复出对应 的 CSI信息。
在待传输数据反馈至 BS后, BS可通过 CSI稀疏性的基矩阵 B从待传输 数据中恢复出 CSI信息, 从而完成 CSI的反馈。
值得注意的是, 步骤 S100为预先执行的步骤, 在执行一次步骤 S100后, 可执行多次的步骤 S110〜步骤 S140。
本发明实施例提供的信道状态信息反馈方法利用了大规模天线通信系统 中 CSI频域以及空域上的稀疏特性,通过 BS发送的导频信息确定包含 CSI的 频域及空域信息的 CSI信息矩阵, 再通过所述 CSI信息矩阵确定待传输数据, 在待传输数据反馈至 BS后, BS可采用与 UE预先同步的包含 CSI的频域及空 域的稀疏性的基矩阵,从所述待传输数据中恢复出对应的 CSI信息,从而实现 CSI的反馈; 相比现有技术, 本发明实施例利用了大规模天线通信系统中 CSI 频域以及空域上的稀疏特性实现的 CSI的反馈,解决了现有技术没有考虑大规 模天线阵列中 CSI的特性, 所带来的 CSI的反馈效率较低的问题, 提高了 CSI 反馈效率, 降低了从 UE端到 BS端的反馈开销, 进而提高了无线通信中的频 谱利用率。
下面对预先同步包含 CSI 的频域及空域的稀疏性的基矩阵的过程进行介 绍; CSI稀疏性的基矩阵 B的预先同步过程可以认为是, UE端对 CSI稀疏性 的基矩阵 B的训练过程, 对应的, 图 2示出了与 BS预先同步包含 CSI的频域 及空域的稀疏性的基矩阵的方法流程, 参照图 2, 该方法可以包括:
步骤 S200、 接收 BS发送的一段时间的训练序列;
BS可向 UE发送一段时间 {t = 1, ... Γ}的训练序列;
步骤 S210、 根据所述训练序列测算对应的 CSI信道矩阵序列, 所测算的 CSI信道矩阵序列中的各 CSI信道矩阵为包含 CSI的频域及空域信息的矩阵; UE 接收到 {t = l,...r}的训练序列之后, 可测算出对应的 CSI 信道矩阵 {Η,,.,.Η,}, 其中每个 CSI矩阵 Ht (/=1〜: Γ)代表的是一个包含频域以及空域信 息的大矩阵;
可选的 , Ht可表达为 Ht = [vec (H|l])...vec
Figure imgf000011_0001
, 其中, Nc是 MIMO-OFDM子载波的总数目 , H|£]代表第 c个子载波上的 CSI信息(NxM矩 阵), 。是 N。级的 FFT (fast fourier transform, 快速傅里叶变换)矩阵; 其中 是一个标准操作符, 即将一个矩阵里面的元素按照列的方向排成一个列 向量。
步骤 S220、 在给定的初始化基矩阵下, 计算由各 CSI信道矩阵所对应的 列向量所组成的序列所对应的稀疏向量序列;
可选的, 可在给定的初始化基矩阵 B 下, 利用 CoSaMP 算法求算出 {vec iHx ,...vec(Hr)} 对 应 的 稀 疏 向 量 {Sl,...sr} , 即 st = CoSaMP(vec(H t ), 1, 初始, s。 ), Vt e {l, ... Γ}; 其中, I是单位矩阵 , 稀疏向量 (t=l〜T)代表一个只有^)个非零元素的向量(注意 代表 CSI的稀疏度, 是 需要提前给定), 其中 vec (Ht)和 st的关系是 vec (Ht)近似可以表达为 vec(Ht) * B初始 st , 在本发明实施例中, CoSaMP算法会生成一个只有 个非零元 素的向量^使得 ^尽量靠近 vec (Ht)。
步骤 S230、 根据所述稀疏向量序列确定包含 CSI的频域及空域的稀疏性 的基矩阵, 以使基矩阵与所述稀疏向量序列中的任一稀疏向量的乘积, 与对应 的 CSI信道矩阵的列向量的差模满足预定条件;
可选的, 差模满足预定条件可以是差模为最小的; 显然, 预定条件也可以 根据实际应用情况设定。 本发明实施例在得到 {Sl,... }后, 可利用凸优化工具, 通过解决下面的优化问题: mindiagaj+£)≤1X veC
Figure imgf000011_0002
, 计算出对应的 CSI 稀疏性的基矩阵 β; 其中, 是两个参量, β代表基矩阵, 是对应稀疏向量。 这个优化问题的目的是在给定稀疏向量 {Sl,...S 的条件下, 寻找 CSI稀疏性的 基矩阵 β, 使得 vec (Ht)和 的差模最小化。
可选的, 可在步骤 S220和步骤 S230之间进行交替运算得出最后的 在 交替运算过程中, 步骤 S220输出的 {Sl,...s 是步骤 S230中优化问题的输入参 数, 步骤 S230中优化问题输出的 B可以是步骤 S220中问题的输入参数。
步骤 S240、 将所确定的包含 CSI的频域及空域的稀疏性的基矩阵同步至
BS。
可选的, 图 1所示步骤 S130通过所述 CSI信息矩阵确定待传输数据的方 式可以是:对所述 CSI信息矩阵进行压缩感知处理,得到待传输数据。对应的, 图 3示出了本发明实施例提供的信道状态信息反馈方法的另一流程,参照图 3 , 该方法可以包括:
步骤 S300、 与 BS预先同步包含 CSI的频域及空域的稀疏性的基矩阵; 步骤 S310、 接收 BS发送的导频信息;
步骤 S320、 根据所述导频信息确定包含 CSI的频域及空域信息的 CSI信 息矩阵;
步骤 S330、 对所述 CSI信息矩阵进行压缩感知处理;
可选的, 利用一个压缩感知 (compressive sensing, CS )矩阵压缩获得的 CSI信息矩阵 H, 得到 y = Φνβα(Η) , 其中 Φ为压缩感知矩阵, ; 为经过压缩感 知处理后的 CSI信息矩阵。
步骤 S340、 将经过压缩感知处理后的 CSI信息矩阵反馈至 BS, 以使 BS 采用与 UE预先同步的包含 CSI的频域及空域的稀疏性的基矩阵,对经过压缩 感知处理后的 CSI信息矩阵进行压缩感知恢复处理, 得到对应的 CSI信息。
值得注意的是, 步骤 S300为预先执行的步骤, 在执行一次步骤 S300后, 可执行多次的步骤 S310〜步骤 S340。
可选的, 图 1所示步骤 S130通过所述 CSI信息矩阵确定待传输数据的方 式可以是: 对所述 CSI信息矩阵进行压缩感知处理,将经过压缩感知处理后的 CSI信息矩阵进行分块量化, 得到待传输数据; 对应的, 图 4示出了本发明实 施例提供的信道状态信息反馈方法的再一流程, 参照图 4, 该方法可以包括: 步骤 S400、 与 BS预先同步包含 CSI的频域及空域的稀疏性的基矩阵; 步骤 S410、 接收 BS发送的导频信息;
步骤 S420、 根据所述导频信息确定包含 CSI的频域及空域信息的 CSI信 息矩阵; 步骤 S430、 对所述 CSI信息矩阵进行压缩感知处理;
可选的, 利用一个压缩感知矩阵压缩获得的 CSI 信息矩阵 H, 得到 y = Φνβε(Η);
步骤 S440、 将经过压缩感知处理后的 CSI信息矩阵进行分块量化; 可选的, 分块量化的过程可以是: 以预定的长度将经过压缩感知处理后的
CSI信息矩阵进行分块处理; 对于各块经过压缩感知处理后的 CSI信息矩阵, 采用预定维度的码本进行量化。
如 可 将 向 量 _y 进 行 分 块 量 化 , 每 块 大 小 为 ;
Figure imgf000013_0001
,然后对每个 yffl采用一个维度为乙的码本 进行量化,假设量化之后的 y为 。
步骤 S450、将分块量化后的 CSI信息矩阵反馈至 BS ,以使 BS采用与 UE 预先同步的包含 CSI 的频域及空域的稀疏性的基矩阵, 对所述分块量化后的 CSI信息矩阵进行压缩感知恢复处理, 得到对应的 CSI信息。
值得注意的是, 步骤 S400为预先执行的步骤, 在执行一次步骤 S400后, 可执行多次的步骤 S410〜步骤 S450。
本发明实施例提供的信道状态信息反馈方法利用了大规模天线通信系统 中 CSI频域以及空域上的稀疏特性,提高了 CSI反馈效率, 降低了从 UE端到 BS端的反馈开销, 进而提高了无线通信中的频谱利用率。 下面对本发明实施例提供的信道状态信息反馈装置进行介绍,下文描述的 信道状态信息反馈装置与上文描述的信道状态信息反馈方法相对应,两者可相 互参照。
图 5为本发明实施例提供的信道状态信息反馈装置的结构框图,该装置可 应用于 UE中, 参照图 5 , 该装置可以包括:
第一同步模块 100, 用于与 BS预先同步包含信道状态信息 CSI的频域及 空域的稀疏性的基矩阵;
导频信息接收模块 110, 用于接收 BS发送的导频信息; CSI信息矩阵确定模块 120, 用于根据所述导频信息确定包含 CSI的频域 及空域信息的 CSI信息矩阵;
待传输数据确定模块 130, 用于通过所述 CSI信息矩阵确定待传输数据; 反馈模块 140, 用于将所述待传输数据反馈至 BS, 以使 BS采用与 UE预 先同步的包含 CSI的频域及空域的稀疏性的基矩阵,从所述待传输数据中恢复 出对应的 CSI信息。
图 6示出了第一同步模块 100的一种可选结构, 参照图 6, 第一同步模块 100可以包括:
训练序列接收单元 101 , 用于接收 BS发送的一段时间的训练序列; 测算单元 102, 用于根据所述训练序列测算对应的 CSI信道矩阵序列, 所 测算的 CSI信道矩阵序列中的各 CSI信道矩阵为包含 CSI的频域及空域信息 的矩阵;
稀疏向量序列计算单元 103 , 用于在给定的初始化基矩阵下, 计算由各 CSI信道矩阵所对应的列向量所组成的序列所对应的稀疏向量序列;
基矩阵确定单元 104, 用于根据所述稀疏向量序列确定包含 CSI的频域及 空域的稀疏性的基矩阵,以使基矩阵与所述稀疏向量序列中的任一稀疏向量的 乘积, 与对应的 CSI信道矩阵的列向量的差模满足预定条件;
可选的, 差模满足预定条件可以是差模为最小的; 显然预定条件也可以根 据实际应用情况设定。
基矩阵发送单元 105, 用于将所确定的包含 CSI的频域及空域的稀疏性的 基矩阵同步至 BS。
图 7示出了待传输数据确定模块 130的一种可选结构, 参照图 7, 待传输 数据确定模块 130可以包括:
第一压缩感知单元 1301 , 用于对所述 CSI信息矩阵进行压缩感知处理, 得到待传输数据。
对应的, 图 8示出了反馈模块 140的一种可选结构, 参照图 8, 反馈模块 140可以包括:
第一反馈单元 1401 , 用于将经过压缩感知处理后的 CSI信息矩阵反馈至 BS,以使 BS采用与 UE预先同步的包含 CSI的频域及空域的稀疏性的基矩阵, 对经过压缩感知处理后的 CSI信息矩阵进行压缩感知恢复处理, 得到对应的 CSI信息。
图 9示出了待传输数据确定模块 130的另一种可选结构, 参照图 9, 待传 输数据确定模块 130可以包括:
第二压缩感知单元 1311 ; 用于对所述 CSI信息矩阵进行压缩感知处理; 分块量化单元 1312, 用于将经过压缩感知处理后的 CSI信息矩阵进行分 块量化, 得到待传输数据。
对应的, 图 10示出了反馈模块 140的另一种可选结构, 参照图 10, 反馈 模块 140可以包括:
第二反馈单元 1411 , 用于将分块量化后的 CSI信息矩阵反馈至 BS, 以使 BS采用与 UE预先同步的包含 CSI的频域及空域的稀疏性的基矩阵, 对所述 分块量化后的 CSI信息矩阵进行压缩感知恢复处理, 得到对应的 CSI信息。
对应的, 图 11示出了分块量化单元 1312的一种可选结构, 参照图 11 , 分块量化单元 1312可以包括:
分块子单元 13121 , 用于以预定的长度将经过压缩感知处理后的 CSI信息 矩阵进行分块处理;
量化子单元 13122, 用于对于各块经过压缩感知处理后的 CSI信息矩阵, 采用预定维度的码本进行量化。
本发明实施例提供的信道状态信息反馈装置利用了大规模天线通信系统 中 CSI频域以及空域上的稀疏特性,提高了 CSI反馈效率, 降低了从 UE端到 BS端的反馈开销, 进而提高了无线通信中的频谱利用率。
本发明实施例还提供一种用户设备 UE, 包括上述所述的信道状态信息反 馈装置, 信道状态信息反馈装置的描述可参照上文图 5〜图 11部分的描述, 此 处不再赘述。 下面对用户设备的硬件结构进行描述, 图 12示出了该用户设备的硬件结 构框图, 用户设备可以是包含计算能力的手机, PAD 等智能移动终端, 本发 明具体实施例并不对用户设备的具体实现做限定。 参照图 12, 用户设备可以 包括: 处理器 1 , 通信接口 2, 存储器 3和通信总线 4; 其中处理器 1、通信接口 2、存储器 3通过通信总线 4完成相互间的通信; 可选的, 通信接口 2可以为通信模块的接口, 如 GSM模块的接口; 处理器 1 , 用于执行程序;
存储器 3 , 用于存放程序;
程序可以包括程序代码, 所述程序代码包括计算机操作指令。
处理器 1 可能是一个中央处理器 CPU , 或者是特定集成电路 ASIC ( Application Specific Integrated Circuit ),或者是被配置成实施本发明实施例的 一个或多个集成电路。
存储器 3 可能包含高速 RAM存储器, 也可能还包括非易失性存储器 ( non-volatile memory ), 例 口至少一个磁盘存 4诸器。
其中, 程序可具体用于:
与 BS预先同步包含 CSI的频域及空域的稀疏性的基矩阵;
接收 BS发送的导频信息;
根据所述导频信息确定包含 CSI的频域及空域信息的 CSI信息矩阵; 通过所述 CSI信息矩阵确定待传输数据;
将所述待传输数据反馈至 BS, 以使 BS采用与 UE预先同步的包含 CSI 的频域及空域的稀疏性的基矩阵, 从所述待传输数据中恢复出对应的 CSI信 息。
可选的, 程序可以包括图 5〜图 11所示的功能模块。 下面以 BS 的角度对本发明实施例提供的信道状态信息反馈方法进行介 绍, 下文描述的信道状态信息反馈方法与上文以 UE为角度描述的信道状态信 息反馈方法可相互对应参照。
图 13为本发明实施例提供的信道状态信息反馈方法的又一流程图, 该方 法可应用于 BS, 参照图 13 , 该方法可以包括:
步骤 S500、 与 UE预先同步包含 CSI的频域及空域的稀疏性的基矩阵; 步骤 S510、 向 UE发送导频信息;
步骤 S520、 在 UE根据所述导频信息确定包含 CSI的频域及空域信息的 CSI信息矩阵, 通过所述 CSI信息矩阵确定待传输数据之后, 接收 UE反馈的 所述待传输数据;
步骤 S530、 采用与 UE预先同步的包含 CSI的频域及空域的稀疏性的基 矩阵, 从所述待传输数据中恢复出对应的 CSI信息。
值得注意的是, 步骤 S500为预先执行的步骤, 在执行一次步骤 S500后, 可执行多次的步骤 S510〜步骤 S530。
图 14示出了与 UE预先同步包含 CSI的频域及空域的稀疏性的基矩阵的 一种可选实现方法, 参照图 14, 该方法可以包括:
步骤 S600、 向 UE发送一段时间的训练序列;
步骤 S610、 在 UE根据所述训练序列测算对应的 CSI信道矩阵序列, 所 测算的 CSI信道矩阵序列中的各 CSI信道矩阵为包含 CSI的频域及空域信息 的矩阵, 且 UE在给定的初始化基矩阵下, 计算由各 CSI信道矩阵所对应的列 向量所组成的序列所对应的稀疏向量序列, 根据所述稀疏向量序列确定包含 CSI的频域及空域的稀疏性的基矩阵, 以使基矩阵与所述稀疏向量序列中的任 一稀疏向量的乘积, 与对应的 CSI信道矩阵的列向量的差模满足预定条件之 后, 接收 UE同步的包含 CSI的频域及空域的稀疏性的基矩阵。
可选的, 差模满足预定条件可以是差模为最小的; 显然预定条件也可以根 据实际应用情况设定。
步骤 S610中 UE端执行的动作可参照图 2描述, 此处不再贅述。
可选的,图 13所示步骤 S520所接收的 UE反馈的待传输数据可以是: UE 对所述 CSI信息矩阵进行压缩感知处理后得到的数据; 对应的, 图 13所示步 骤 S530采用与 UE预先同步的包含 CSI的频域及空域的稀疏性的基矩阵, 从 所述待传输数据中恢复出对应的 CSI信息可以是:采用与 UE预先同步的包含 CSI的频域及空域的稀疏性的基矩阵,对经过压缩感知处理后的 CSI信息矩阵 进行压缩感知恢复处理, 得到对应的 CSI信息。
可选的,图 13所示步骤 S520所接收的 UE反馈的待传输数据可以是: UE 对所述 CSI信息矩阵进行压缩感知处理,将经过压缩感知处理后的 CSI信息矩 阵进行分块量化后得到的数据; 对应的, 图 13所示步骤 S530采用与 UE预先 同步的包含 CSI的频域及空域的稀疏性的基矩阵,从所述待传输数据中恢复出 对应的 CSI信息可以是:采用与用户设备 UE预先同步的包含 CSI的频域及空 域的稀疏性的基矩阵,对所述分块量化后的 CSI信息矩阵进行压缩感知恢复处 理, 得到对应的 CSI信息。
本发明实施例提供的信道状态信息反馈方法利用了大规模天线通信系统 中 CSI频域以及空域上的稀疏特性,提高了 CSI反馈效率, 降低了从 UE端到 BS端的反馈开销, 进而提高了无线通信中的频谱利用率。 下面以 BS 的角度对本发明实施例提供的信道状态信息反馈装置进行介 绍, 下文描述的信道状态信息反馈装置与上文以 BS的角度描述的信道状态信 息反馈方法可以相互对应参照。
图 15为本发明实施例提供的信道状态信息反馈装置的另一结构框图, 该 装置可以应用于 BS, 参照图 15, 该方法可以包括:
第二同步模块 200, 用于与 UE预先同步包含 CSI的频域及空域的稀疏性 的基矩阵;
导频信息发送模块 210, 用于向 UE发送导频信息;
待传输数据接收模块 220, 用于在 UE根据所述导频信息确定包含 CSI的 频域及空域信息的 CSI信息矩阵,通过所述 CSI信息矩阵确定待传输数据之后, 接收 UE反馈的所述待传输数据;
恢复处理模块 230, 用于采用与 UE预先同步的包含 CSI的频域及空域的 稀疏性的基矩阵, 从所述待传输数据中恢复出对应的 CSI信息。
图 16示出了第二同步模块 200的一种可选结构, 参照图 16, 第二同步模 块 200可以包括:
训练序列发送单元 201 , 用于向 UE发送一段时间的训练序列;
基矩阵接收单元 202, 用于在 UE根据所述训练序列测算对应的 CSI信道 矩阵序列, 所测算的 CSI信道矩阵序列中的各 CSI信道矩阵为包含 CSI的频 域及空域信息的矩阵, 且 UE在给定的初始化基矩阵下, 计算由各 CSI信道矩 阵所对应的列向量所组成的序列所对应的稀疏向量序列 ,根据所述稀疏向量序 列确定包含 CSI的频域及空域的稀疏性的基矩阵,以使基矩阵与所述稀疏向量 序列中的任一稀疏向量的乘积,与对应的 CSI信道矩阵的列向量的差模满足预 定条件之后, 接收 UE同步的包含 CSI的频域及空域的稀疏性的基矩阵。 可选的, 差模满足预定条件可以是差模为最小的; 显然预定条件也可以根 据实际应用情况设定。
可选的,所述待传输数据可以为 UE对所述 CSI信息矩阵进行压缩感知处 理后得到的; 对应的图 17示出了待传输数据接收模块 220的一种可选结构, 参照图 17, 待传输数据接收模块 220可以包括:
第一接收单元 221 , 用于在 UE根据所述导频信息确定包含 CSI的频域及 空域信息的 CSI信息矩阵,对所述 CSI信息矩阵进行压缩感知处理之后,接收 UE反馈的经过压缩感知处理后的 CSI信息矩阵。
对应的, 图 18示出了恢复处理模块 230的一种可选结构, 参照图 18, 恢 复处理模块 230可以包括:
第一恢复单元 231 , 用于采用与 UE预先同步的包含 CSI的频域及空域的 稀疏性的基矩阵,对经过压缩感知处理后的 CSI信息矩阵进行压缩感知恢复处 理, 得到对应的 CSI信息。
可选的,所述待传输数据可以为 UE对所述 CSI信息矩阵进行压缩感知处 理, 将经过压缩感知处理后的 CSI信息矩阵进行分块量化后得到的; 对应的, 图 19示出了待传输数据接收模块 220的另一种可选结构, 参照图 19, 待传输 数据接收模块 220可以包括:
第二接收单元 222, 用于在 UE根据所述导频信息确定包含 CSI的频域及 空域信息的 CSI信息矩阵,对所述 CSI信息矩阵进行压缩感知处理,将经过压 缩感知处理后的 CSI信息矩阵进行分块量化之后,接收 UE反馈的分块量化后 的 CSI信息矩阵。
对应的, 图 20示出了恢复处理模块 230的另一种可选结构, 参照图 20, 恢复处理模块 230可以包括:
第二恢复单元 232, 用于采用与 UE预先同步的包含 CSI的频域及空域的 稀疏性的基矩阵, 对所述分块量化后的 CSI信息矩阵进行压缩感知恢复处理, 得到对应的 CSI信息。
本发明实施例提供的信道状态信息反馈装置利用了大规模天线通信系统 中 CSI频域以及空域上的稀疏特性,提高了 CSI反馈效率, 降低了从 UE端到 BS端的反馈开销, 进而提高了无线通信中的频谱利用率。 本发明实施例还提供一种基站, 该基站可以包括上述以 BS角度描述的信 道状态信息反馈装置, 信道状态信息反馈装置的描述可参照图 15〜图 20部分 的描述, 此处不再贅述。 下面对本发明实施例提供的基站的硬件结构进行描述, 图 21示出了该基 站的硬件结构框图, 参照图 21 , 基站可以包括: 处理器 Γ , 通信接口 2,, 存 储器 3' 和通信总线 4';
其中处理器 Γ、 通信接口 2,、 存储器 3, 通过通信总线 4, 完成相互间的 通信;
可选的, 通信接口 2, 可以为通信模块的接口, 如 GSM模块的接口; 处理器 Γ, 用于执行程序;
存储器 3' , 用于存放程序;
程序可以包括程序代码, 所述程序代码包括计算机操作指令。
处理器 Γ 可能是一个中央处理器 CPU, 或者是特定集成电路 ASIC ( Application Specific Integrated Circuit ),或者是被配置成实施本发明实施例的 一个或多个集成电路。
存储器 3' 可能包含高速 RAM存储器, 也可能还包括非易失性存储器 ( non-volatile memory ), 例 口至少一个磁盘存 4诸器。
其中, 程序可具体用于:
与 UE预先同步包含 CSI的频域及空域的稀疏性的基矩阵;
向 UE发送导频信息;
在 UE根据所述导频信息确定包含 CSI的频域及空域信息的 CSI信息矩 阵, 通过所述 CSI信息矩阵确定待传输数据之后, 接收 UE反馈的所述待传输 数据;
采用与 UE预先同步的包含 CSI的频域及空域的稀疏性的基矩阵,从所述 待传输数据中恢复出对应的 CSI信息。
可选的, 程序可以包括图 15〜图 20所示功能模块。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是 与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于 实施例公开的装置而言, 由于其与实施例公开的方法相对应, 所以描述的比较 简单, 相关之处参见方法部分说明即可。
专业人员还可以进一步意识到,结合本文中所公开的实施例描述的各示例 的单元及算法步骤, 能够以电子硬件、 计算机软件或者二者的结合来实现, 为 了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描 述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于 技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来 使用不同方法来实现所描述的功能, 但是这种实现不应认为超出本发明的范 围。
结合本文中所公开的实施例描述的方法或算法的步骤可以直接用硬件、处 理器执行的软件模块, 或者二者的结合来实施。软件模块可以置于随机存储器
( RAM )、内存、只读存储器 ( ROM )、电可编程 ROM、电可擦除可编程 ROM, 寄存器、 硬盘、 可移动磁盘、 CD-ROM, 或技术领域内所公知的任意其它形式 的存储介质中。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通 技术人员来说, 在不脱离本发明原理的前提下, 还可以做出若干改进和润饰, 这些改进和润饰也应视为本发明的保护范围。
+

Claims

权 利 要 求
1、 一种信道状态信息反馈方法, 其特征在于, 与基站 BS预先同步包含 信道状态信息 CSI的频域及空域的稀疏性的基矩阵, 所述方法包括:
接收 BS发送的导频信息;
根据所述导频信息确定包含 CSI的频域及空域信息的 CSI信息矩阵; 通过所述 CSI信息矩阵确定待传输数据;
将所述待传输数据反馈至 BS, 以使 BS采用与 UE预先同步的包含 CSI 的频域及空域的稀疏性的基矩阵, 从所述待传输数据中恢复出对应的 CSI信 息。
2、 根据权利要求 1所述的方法, 其特征在于, 所述与 BS预先同步包含 CSI的频域及空域的稀疏性的基矩阵的过程包括:
接收 BS发送的一段时间的训练序列;
根据所述训练序列测算对应的 CSI信道矩阵序列,所测算的 CSI信道矩阵 序列中的各 CSI信道矩阵为包含 CSI的频域及空域信息的矩阵;
在给定的初始化基矩阵下,计算由各 CSI信道矩阵所对应的列向量所组成 的序列所对应的稀疏向量序列;
根据所述稀疏向量序列确定包含 CSI的频域及空域的稀疏性的基矩阵,以 使基矩阵与所述稀疏向量序列中的任一稀疏向量的乘积,与对应的 CSI信道矩 阵的列向量的差模满足预定条件;
将所确定的包含 CSI的频域及空域的稀疏性的基矩阵同步至 BS。
3、 根据权利要求 1或 2所述的方法, 其特征在于, 所述通过所述 CSI信 息矩阵确定待传输数据包括: 对所述 CSI信息矩阵进行压缩感知处理,得到待 传输数据;
所述将所述待传输数据反馈至 BS, 以使 BS采用与 UE预先同步的包含 CSI的频域及空域的稀疏性的基矩阵, 从所述待传输数据中恢复出对应的 CSI 信息包括: 将经过压缩感知处理后的 CSI信息矩阵反馈至 BS, 以使 BS采用 与 UE预先同步的包含 CSI的频域及空域的稀疏性的基矩阵,对经过压缩感知 处理后的 CSI信息矩阵进行压缩感知恢复处理, 得到对应的 CSI信息。
4、 根据权利要求 1或 2所述的方法, 其特征在于, 所述通过所述 CSI信 息矩阵确定待传输数据包括: 对所述 CSI信息矩阵进行压缩感知处理,将经过 压缩感知处理后的 CSI信息矩阵进行分块量化, 得到待传输数据;
所述将所述待传输数据反馈至 BS, 以使 BS采用与 UE预先同步的包含 CSI的频域及空域的稀疏性的基矩阵, 从所述待传输数据中恢复出对应的 CSI 信息包括: 将分块量化后的 CSI信息矩阵反馈至 BS, 以使 BS采用与 UE预先 同步的包含 CSI 的频域及空域的稀疏性的基矩阵, 对所述分块量化后的 CSI 信息矩阵进行压缩感知恢复处理, 得到对应的 CSI信息。
5、 根据权利要求 4所述的方法, 其特征在于, 所述将经过压缩感知处理 后的 CSI信息矩阵进行分块量化包括:
以预定的长度将经过压缩感知处理后的 CSI信息矩阵进行分块处理; 对于各块经过压缩感知处理后的 CSI信息矩阵,采用预定维度的码本进行 量化。
6、 一种信道状态信息反馈装置, 其特征在于, 所述装置包括:
第一同步模块, 用于与基站 BS预先同步包含信道状态信息 CSI的频域及 空域的稀疏性的基矩阵;
导频信息接收模块, 用于接收 BS发送的导频信息;
CSI信息矩阵确定模块,用于根据所述导频信息确定包含 CSI的频域及空 域信息的 CSI信息矩阵;
待传输数据确定模块, 用于通过所述 CSI信息矩阵确定待传输数据; 反馈模块,用于将所述待传输数据反馈至 BS, 以使 BS采用与 UE预先同 步的包含 CSI的频域及空域的稀疏性的基矩阵,从所述待传输数据中恢复出对 应的 CSI信息。
7、 根据权利要求 6所述的装置, 其特征在于, 所述第一同步模块包括: 训练序列接收单元, 用于接收 BS发送的一段时间的训练序列;
测算单元,用于根据所述训练序列测算对应的 CSI信道矩阵序列,所测算 的 CSI信道矩阵序列中的各 CSI信道矩阵为包含 CSI的频域及空域信息的矩 阵;
稀疏向量序列计算单元, 用于在给定的初始化基矩阵下, 计算由各 CSI 信道矩阵所对应的列向量所组成的序列所对应的稀疏向量序列; 基矩阵确定单元,用于根据所述稀疏向量序列确定包含 CSI的频域及空域 的稀疏性的基矩阵, 以使基矩阵与所述稀疏向量序列中的任一稀疏向量的乘 积, 与对应的 CSI信道矩阵的列向量的差模满足预定条件;
基矩阵发送单元,用于将所确定的包含 CSI的频域及空域的稀疏性的基矩 阵同步至 BS。
8、 根据权利要求 6或 7所述的装置, 其特征在于, 所述待传输数据确定 模块包括:
第一压缩感知单元,用于对所述 CSI信息矩阵进行压缩感知处理,得到待 传输数据;
所述反馈模块包括:
第一反馈单元, 用于将经过压缩感知处理后的 CSI信息矩阵反馈至 BS, 以使 BS采用与 UE预先同步的包含 CSI的频域及空域的稀疏性的基矩阵, 对 经过压缩感知处理后的 CSI信息矩阵进行压缩感知恢复处理,得到对应的 CSI 信息。
9、 根据权利要求 6或 7所述的装置, 其特征在于, 所述待传输数据确定 模块包括:
第二压缩感知单元; 用于对所述 CSI信息矩阵进行压缩感知处理; 分块量化单元, 用于将经过压缩感知处理后的 CSI信息矩阵进行分块量 化, 得到待传输数据;
所述反馈模块包括:
第二反馈单元, 用于将分块量化后的 CSI信息矩阵反馈至 BS, 以使 BS 采用与 UE预先同步的包含 CSI的频域及空域的稀疏性的基矩阵,对所述分块 量化后的 CSI信息矩阵进行压缩感知恢复处理, 得到对应的 CSI信息。
10、 根据权利要求 9所述的装置, 其特征在于, 所述分块量化单元包括: 分块子单元,用于以预定的长度将经过压缩感知处理后的 CSI信息矩阵进 行分块处理;
量化子单元,用于对于各块经过压缩感知处理后的 CSI信息矩阵,采用预 定维度的码本进行量化。
11、 一种用户设备, 其特征在于, 包括权利要求 6-10任一项所述的信道 状态信息反馈装置。
12、 一种信道状态信息反馈方法, 其特征在于, 与用户设备 UE预先同步 包含信道状态信息 CSI的频域及空域的稀疏性的基矩阵, 所述方法包括:
向 UE发送导频信息;
在 UE根据所述导频信息确定包含 CSI的频域及空域信息的 CSI信息矩 阵, 通过所述 CSI信息矩阵确定待传输数据之后, 接收 UE反馈的所述待传输 数据;
采用与 UE预先同步的包含 CSI的频域及空域的稀疏性的基矩阵,从所述 待传输数据中恢复出对应的 CSI信息。
13、 根据权利要求 12所述的方法, 其特征在于, 所述与 UE预先同步包 含 CSI的频域及空域的稀疏性的基矩阵的过程包括:
向 UE发送一段时间的训练序列;
在 UE根据所述训练序列测算对应的 CSI信道矩阵序列, 所测算的 CSI 信道矩阵序列中的各 CSI信道矩阵为包含 CSI的频域及空域信息的矩阵, 且 UE在给定的初始化基矩阵下, 计算由各 CSI信道矩阵所对应的列向量所组成 的序列所对应的稀疏向量序列,根据所述稀疏向量序列确定包含 CSI的频域及 空域的稀疏性的基矩阵,以使基矩阵与所述稀疏向量序列中的任一稀疏向量的 乘积, 与对应的 CSI信道矩阵的列向量的差模满足预定条件之后, 接收 UE同 步的包含 CSI的频域及空域的稀疏性的基矩阵。
14、根据权利要求 12或 13所述的方法,其特征在于,所述待传输数据为: UE对所述 CSI信息矩阵进行压缩感知处理后得到的;
所述采用与 UE预先同步的包含 CSI的频域及空域的稀疏性的基矩阵,从 所述待传输数据中恢复出对应的 CSI信息包括: 采用与 UE预先同步的包含 CSI的频域及空域的稀疏性的基矩阵,对经过压缩感知处理后的 CSI信息矩阵 进行压缩感知恢复处理, 得到对应的 CSI信息。
15、根据权利要求 12或 13所述的方法,其特征在于,所述待传输数据为: UE对所述 CSI信息矩阵进行压缩感知处理, 将经过压缩感知处理后的 CSI信 息矩阵进行分块量化后得到的;
所述采用与 UE预先同步的包含 CSI的频域及空域的稀疏性的基矩阵,从 所述待传输数据中恢复出对应的 CSI信息包括: 采用与 UE预先同步的包含 CSI的频域及空域的稀疏性的基矩阵,对所述分块量化后的 CSI信息矩阵进行 压缩感知恢复处理, 得到对应的 CSI信息。
16、 一种信道状态信息反馈装置, 其特征在于, 包括:
第二同步模块,用于与用户设备 UE预先同步包含信道状态信息 CSI的频 域及空域的稀疏性的基矩阵;
导频信息发送模块, 用于向 UE发送导频信息;
待传输数据接收模块,用于在 UE根据所述导频信息确定包含 CSI的频域 及空域信息的 CSI信息矩阵,通过所述 CSI信息矩阵确定待传输数据之后,接 收 UE反馈的所述待传输数据;
恢复处理模块,用于采用与 UE预先同步的包含 CSI的频域及空域的稀疏 性的基矩阵, 从所述待传输数据中恢复出对应的 CSI信息。
17、 根据权利要求 16所述的装置, 其特征在于, 所述第二同步模块包括: 训练序列发送单元, 用于向 UE发送一段时间的训练序列;
基矩阵接收单元,用于在 UE根据所述训练序列测算对应的 CSI信道矩阵 序列, 所测算的 CSI信道矩阵序列中的各 CSI信道矩阵为包含 CSI的频域及 空域信息的矩阵, 且 UE在给定的初始化基矩阵下, 计算由各 CSI信道矩阵所 对应的列向量所组成的序列所对应的稀疏向量序列 ,根据所述稀疏向量序列确 定包含 CSI的频域及空域的稀疏性的基矩阵,以使基矩阵与所述稀疏向量序列 中的任一稀疏向量的乘积,与对应的 CSI信道矩阵的列向量的差模满足预定条 件之后, 接收 UE同步的包含 CSI的频域及空域的稀疏性的基矩阵。
18、 根据权利要求 16或 17所述的装置, 其特征在于, 所述待传输数据为 UE对所述 CSI信息矩阵进行压缩感知处理后得到的; 所述待传输数据接收模 块包括:
第一接收单元,用于在 UE根据所述导频信息确定包含 CSI的频域及空域 信息的 CSI信息矩阵, 对所述 CSI信息矩阵进行压缩感知处理之后, 接收 UE 反馈的经过压缩感知处理后的 CSI信息矩阵;
所述恢复处理模块包括:
第一恢复单元,用于采用与 UE预先同步的包含 CSI的频域及空域的稀疏 性的基矩阵, 对经过压缩感知处理后的 CSI信息矩阵进行压缩感知恢复处理, 得到对应的 CSI信息。
19、 根据权利要求 16或 17所述的装置, 其特征在于, 所述待传输数据为 UE对所述 CSI信息矩阵进行压缩感知处理, 将经过压缩感知处理后的 CSI信 息矩阵进行分块量化后得到的;
所述待传输数据接收模块包括:
第二接收单元,用于在 UE根据所述导频信息确定包含 CSI的频域及空域 信息的 CSI信息矩阵,对所述 CSI信息矩阵进行压缩感知处理,将经过压缩感 知处理后的 CSI信息矩阵进行分块量化之后, 接收 UE反馈的分块量化后的 CSI信息矩阵;
所述恢复处理模块包括:
第二恢复单元,用于采用与 UE预先同步的包含 CSI的频域及空域的稀疏 性的基矩阵,对所述分块量化后的 CSI信息矩阵进行压缩感知恢复处理,得到 对应的 CSI信息。
20、 一种基站, 其特征在于, 包括权利要求 16-19任一项所述的信道状态 信息反馈装置。
+
PCT/CN2014/072247 2014-02-19 2014-02-19 一种信道状态信息反馈方法、装置、用户设备及基站 WO2015123821A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP14882893.2A EP3096483B1 (en) 2014-02-19 2014-02-19 Channel state information feedback method and apparatus, user equipment and base station
CN201480075498.6A CN105981320B (zh) 2014-02-19 2014-02-19 一种信道状态信息反馈方法、装置、用户设备及基站
PCT/CN2014/072247 WO2015123821A1 (zh) 2014-02-19 2014-02-19 一种信道状态信息反馈方法、装置、用户设备及基站
US15/242,207 US10298305B2 (en) 2014-02-19 2016-08-19 Channel state information feedback method and apparatus, user equipment, and base station

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/072247 WO2015123821A1 (zh) 2014-02-19 2014-02-19 一种信道状态信息反馈方法、装置、用户设备及基站

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/242,207 Continuation US10298305B2 (en) 2014-02-19 2016-08-19 Channel state information feedback method and apparatus, user equipment, and base station

Publications (1)

Publication Number Publication Date
WO2015123821A1 true WO2015123821A1 (zh) 2015-08-27

Family

ID=53877511

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/072247 WO2015123821A1 (zh) 2014-02-19 2014-02-19 一种信道状态信息反馈方法、装置、用户设备及基站

Country Status (4)

Country Link
US (1) US10298305B2 (zh)
EP (1) EP3096483B1 (zh)
CN (1) CN105981320B (zh)
WO (1) WO2015123821A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115333709A (zh) * 2022-06-21 2022-11-11 北京邮电大学 数据传输方法、装置、电子设备和存储介质

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019066676A1 (en) * 2017-09-28 2019-04-04 Huawei Technologies Co., Ltd DEVICE AND METHOD FOR COMPRESSION AND / OR DECOMPRESSION OF CHANNEL STATE INFORMATION
WO2019237344A1 (en) * 2018-06-15 2019-12-19 Qualcomm Incorporated Joint spatial and frequency domain compression of csi feedback
US10763935B2 (en) 2018-08-09 2020-09-01 At&T Intellectual Property I, L.P. Generic feedback to enable reciprocity and over the air calibration for advanced networks
WO2020150936A1 (en) * 2019-01-23 2020-07-30 Qualcomm Incorporated Precoder matrix quantization for compressed csi feedback
US11509363B2 (en) * 2019-03-06 2022-11-22 Telefonaktiebolaget Lm Ericsson (Publ) Compression and decompression of downlink channel estimates
US10979120B2 (en) 2019-05-30 2021-04-13 Cypress Semiconductor Corporation Method for optimizing channel sounding feedback in MIMO systems
CN113824479A (zh) * 2020-06-19 2021-12-21 株式会社Ntt都科摩 无线通信系统的终端、基站以及由终端和基站执行的方法
US11070399B1 (en) * 2020-11-30 2021-07-20 Cognitive Systems Corp. Filtering channel responses for motion detection
CN114826522B (zh) * 2021-01-27 2024-06-25 华为技术有限公司 一种通信方法及装置
CN115917982A (zh) * 2021-06-07 2023-04-04 北京小米移动软件有限公司 信息反馈方法、装置、用户设备、基站、系统模型及存储介质
CN113395222B (zh) * 2021-06-10 2022-08-05 上海大学 基于非均匀导频的信道预测吞吐量优化方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070064823A1 (en) * 2005-09-16 2007-03-22 Samsung Electronics Co., Ltd. Apparatus and method for calibrating channel in radio communication system using multiple antennas
CN102104452A (zh) * 2009-12-22 2011-06-22 华为技术有限公司 信道状态信息反馈方法、信道状态信息获得方法及设备
CN102263613A (zh) * 2011-08-08 2011-11-30 中兴通讯股份有限公司 一种信道状态信息反馈方法和装置
US20120014272A1 (en) * 2010-05-13 2012-01-19 Hitachi, Ltd. Communication Control Server, Base Station, Terminal and Coordinated Service System and Method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8626104B2 (en) * 2006-09-28 2014-01-07 Apple Inc. Generalized codebook design method for limited feedback systems
US8023457B2 (en) * 2006-10-02 2011-09-20 Freescale Semiconductor, Inc. Feedback reduction for MIMO precoded system by exploiting channel correlation
US20090047999A1 (en) * 2007-08-16 2009-02-19 Samsung Electronics Co., Ltd. Method and system for beamforming communication in wireless communication systems
EP2159978A1 (en) 2008-08-26 2010-03-03 Nokia Siemens Networks Oy Adaptive codebook with compressed feedback
US9178590B2 (en) * 2011-12-27 2015-11-03 Industrial Technology Research Institute Channel information feedback method and wireless communication device using the same
CN103825669B (zh) 2012-11-16 2017-10-24 华为技术有限公司 数据处理的方法和装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070064823A1 (en) * 2005-09-16 2007-03-22 Samsung Electronics Co., Ltd. Apparatus and method for calibrating channel in radio communication system using multiple antennas
CN102104452A (zh) * 2009-12-22 2011-06-22 华为技术有限公司 信道状态信息反馈方法、信道状态信息获得方法及设备
US20120014272A1 (en) * 2010-05-13 2012-01-19 Hitachi, Ltd. Communication Control Server, Base Station, Terminal and Coordinated Service System and Method
CN102263613A (zh) * 2011-08-08 2011-11-30 中兴通讯股份有限公司 一种信道状态信息反馈方法和装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115333709A (zh) * 2022-06-21 2022-11-11 北京邮电大学 数据传输方法、装置、电子设备和存储介质
CN115333709B (zh) * 2022-06-21 2023-06-23 北京邮电大学 数据传输方法、装置、电子设备和存储介质

Also Published As

Publication number Publication date
US20160365913A1 (en) 2016-12-15
EP3096483B1 (en) 2019-10-09
CN105981320A (zh) 2016-09-28
CN105981320B (zh) 2019-06-21
EP3096483A4 (en) 2017-03-15
US10298305B2 (en) 2019-05-21
EP3096483A1 (en) 2016-11-23

Similar Documents

Publication Publication Date Title
WO2015123821A1 (zh) 一种信道状态信息反馈方法、装置、用户设备及基站
WO2014086183A1 (zh) 处理干扰的方法及装置
WO2013117031A1 (zh) 一种波束赋形矩阵的发送、接收方法和装置
TW201328230A (zh) 通道信息反饋方法及其無線通訊裝置
TW201249129A (en) Model-based channel estimator for correlated fading channels and channel estimation method thereof
TWI685233B (zh) 非正交多重接取系統中的使用者裝置選擇方法及其基地台
WO2014026501A1 (zh) 通讯装置及其空分双工方法
CN114390519B (zh) 一种无线信道密钥生成方法、装置、设备及存储介质
WO2016015282A1 (zh) 数据传输的方法和装置
WO2005074181A1 (ja) 送受信装置および送受信方法
WO2013147554A1 (en) Method and apparatus for transmitting and receiving signals in multi-cellular network
WO2015054879A1 (zh) 信道状态信息的测量和反馈方法、终端及基站
WO2014032421A1 (zh) 分布式多小区多用户波束成形方法、发射机及相关系统
CN118118071A (zh) 一种信道信息反馈方法及通信装置
WO2018059002A1 (zh) 一种波束选择方法及相关设备
WO2015165070A1 (zh) 信道测量方法、信道测量装置、用户设备及系统
TWI759920B (zh) 非正交多重接取系統中的功率分配方法及使用所述方法的基地台
WO2008151518A1 (fr) Procédé et dispositif de détection d'information dans un système ofdm
CN106506112B (zh) 反馈信道状态信息的方法和网络设备
WO2017107697A1 (zh) 下行信道重构方法以及装置
US20200092067A1 (en) Devices and methods for exchanging channel state information
WO2014187356A1 (zh) 发射信号的多输入多输出mimo检测方法、装置及系统
JP2008109466A (ja) 秘密鍵共有方法および装置
CN114430590B (zh) 一种实现上行大规模urllc的无线传输方法
KR101379208B1 (ko) 다중안테나 시스템에서 스케줄링 장치 및 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14882893

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014882893

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014882893

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE