WO2015122391A1 - Quantum dot fluorescence enhanced immunoassay - Google Patents

Quantum dot fluorescence enhanced immunoassay Download PDF

Info

Publication number
WO2015122391A1
WO2015122391A1 PCT/JP2015/053572 JP2015053572W WO2015122391A1 WO 2015122391 A1 WO2015122391 A1 WO 2015122391A1 JP 2015053572 W JP2015053572 W JP 2015053572W WO 2015122391 A1 WO2015122391 A1 WO 2015122391A1
Authority
WO
WIPO (PCT)
Prior art keywords
probe
target substance
sample
quantum dots
fluorescence intensity
Prior art date
Application number
PCT/JP2015/053572
Other languages
French (fr)
Japanese (ja)
Inventor
龍洙 朴
在郁 李
在範 李
Original Assignee
国立大学法人静岡大学
釜山大学校
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人静岡大学, 釜山大学校 filed Critical 国立大学法人静岡大学
Priority to JP2015562818A priority Critical patent/JP6593840B2/en
Publication of WO2015122391A1 publication Critical patent/WO2015122391A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/58Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances
    • G01N33/585Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances with a particulate label, e.g. coloured latex
    • G01N33/587Nanoparticles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/648Specially adapted constructive features of fluorimeters using evanescent coupling or surface plasmon coupling for the excitation of fluorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6489Photoluminescence of semiconductors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/536Immunoassay; Biospecific binding assay; Materials therefor with immune complex formed in liquid phase
    • G01N33/542Immunoassay; Biospecific binding assay; Materials therefor with immune complex formed in liquid phase with steric inhibition or signal modification, e.g. fluorescent quenching

Definitions

  • the present invention relates to a quantum dot fluorescence enhanced immunoassay.
  • Non-Patent Document 1 detection of methyl parathion is enhanced using a device in which carbon nanotubes are supported on a glass-like carbon electrode and methyl parathionase is immobilized on the carbon nanotubes via CdTe quantum dots. It is reported that.
  • Non-Patent Document 2 imaging of colon cancer is performed by binding fluorescent magnetic nanoparticles having a surface of iron oxide Fe 3 O 4 coated with CdTe quantum dots to an antibody using electrostatic interaction. Have reported to do.
  • Non-Patent Document 3 reports that the fluorescence of quantum dots is enhanced when the surface of a film having silver nanoneedles is coated with CdSe / ZnS quantum dots.
  • Non-Patent Document 4 reports that an anti-Neospora antibody can be detected using a nanocomposite in which the surface of a gold nanoparticle having a protrusion is coated with a CdTe quantum dot on which an antibody is immobilized.
  • an object of the present invention is to provide a new method and kit for detecting or quantifying a target substance in a sample.
  • the present invention is a method for detecting a target substance in a sample, comprising an incubation step of adding a first probe and a second probe to each of a sample and a negative control not containing the target substance and incubating.
  • the first probe is bound to the metal nanoparticles immobilized on the carbon nanotubes
  • the second probe is bound to the quantum dots
  • the step, the sample after the incubation step and the quantum dots in the negative control A fluorescence measurement step for measuring the fluorescence intensity, and a determination step for determining that the target substance is present in the sample when the fluorescence intensity of the quantum dot in the sample is stronger than the fluorescence intensity of the quantum dot in the negative control
  • the first probe and the second probe bind to the target substance but do not bind to each other, and the first probe and the second probe By binding to the target substance, the metal nanoparticles and the quantum dots are close, thereby providing a method of fluorescence intensity of the quantum dots is enhanced.
  • a new method for detecting a target substance in a sample can be provided.
  • This method utilizes the phenomenon that the fluorescence intensity of the quantum dot increases when the metal nanoparticles and the quantum dot come close to each other.
  • the metal nanoparticles and the quantum dots are close to each other, The fluorescence intensity is enhanced. Based on this increase in fluorescence intensity, the target substance in the sample can be detected.
  • a target substance in a sample can be detected without performing a washing step, which is a necessary step in the conventional ELISA method. For this reason, a target substance can be detected simply.
  • the present invention is also a method for quantifying a target substance in a sample, wherein a first probe and a second probe are added to each of a sample and a plurality of standard samples containing a target substance at a known concentration and incubated.
  • An incubation step wherein the first probe is bound to the metal nanoparticles immobilized on the carbon nanotubes, and the second probe is bound to the quantum dot, the sample after the incubation step and a plurality of samples
  • Quantify the target substance in the sample by comparing the fluorescence intensity of the quantum dot in the sample with the fluorescence measurement process that measures the fluorescence intensity of the quantum dot in the standard sample, and the fluorescence intensity of the quantum dot in multiple standard samples
  • the first probe and the second probe bind to the target substance but do not bind to each other, and the first probe and the second probe By lobe binds to the target substance, near the metal nanoparticles and the quantum dots, thereby providing a method of fluorescence intensity of
  • a new method for quantifying a target substance in a sample can be provided. Further, according to the method of the present invention, the target substance in the sample can be quantified without requiring a washing step, and therefore the target substance can be quantified easily.
  • the present invention is also a kit for detecting or quantifying a target substance in a sample, which includes a first probe and a second probe, and the first probe is bound to metal nanoparticles fixed to carbon nanotubes.
  • the second probe is coupled to the quantum dot, the first probe and the second probe bind to the target substance but not to each other, and the first probe and the second probe bind to the target substance.
  • a target substance can be easily detected based on a new principle.
  • the metal nanoparticles are confetti sugar metal nanoparticles.
  • the detection sensitivity of the target substance can be increased, and the target substance can be quantified more accurately.
  • the metal nanoparticles are preferably gold nanoparticles. Gold nanoparticles can efficiently enhance the fluorescence intensity of quantum dots.
  • the quantum dots may emit fluorescence in the visible light region. Thereby, the enhancement of the fluorescence intensity of the quantum dots can be confirmed with the naked eye, and the target substance can be easily detected or quantified.
  • the first probe and the second probe are preferably antigens, antibodies, lectins, sugars, receptors, ligands, aptamers or nucleic acids.
  • first probe and the second probe are such, a target substance that can bind to an antigen, antibody, lectin, sugar, receptor, ligand, aptamer or nucleic acid can be detected or quantified.
  • the metal nanoparticle having the first probe immobilized thereon is immobilized on the carbon nanotube, and the metal nanoparticle has the second probe via the target substance.
  • a composite is formed that is three-dimensionally arranged around the carbon nanotubes.
  • the metal nanoparticles and the quantum dots can be brought closer to each other, and the fluorescence intensity of the quantum dots is further enhanced.
  • the fluorescence intensity of the quantum dots is further enhanced by bringing the plurality of metal nanoparticles and quantum dots close to each other on the surface of the carbon nanotube. That is, the difference in fluorescence intensity caused by the difference in the presence or absence of the target substance becomes more prominent, and the target substance can be detected more easily and with higher sensitivity than conventional detection methods.
  • FIG. 5B and FIG. 5C show the transmission electron microscope image of AuCNT (FIG. 5B and FIG. 5C) and carbon nanotube (FIG. 5A) which were obtained in Example 1.
  • FIG. 5A It is an infrared absorption spectrum of AuCNT processed with cysteamine.
  • FIG. 8C is the photograph which accumulated these images.
  • 2 is a graph showing fluorescence intensity of a complex using anti-HA antibody-immobilized AuCNT and anti-HA antibody-immobilized CdTe obtained in Example 1.
  • 6 is a graph showing the fluorescence intensity of a complex using anti-NA antibody-immobilized AuCNT and anti-HA antibody-immobilized CdTe obtained in Example 2.
  • a quantum dot is a semiconductor crystal of several tens of nm or less, and emits fluorescence when irradiated with excitation light.
  • the detection method and quantification method of the present invention utilize the phenomenon that the fluorescence intensity of a quantum dot increases when the metal nanoparticles and the quantum dot come close to each other.
  • the first probe and the second probe immobilized on the quantum dot are added to each of the sample and the negative control not containing the target substance and incubated.
  • the incubation step, the fluorescence measurement step that measures the fluorescence intensity of the quantum dots in the sample and the negative control after the incubation step, and the fluorescence intensity of the quantum dots in the sample is compared with the fluorescence intensity of the quantum dots in the negative control.
  • FIG. 1 is a schematic view showing an embodiment of a method for immobilizing metal nanoparticles on carbon nanotubes and further immobilizing a first probe on the metal nanoparticles. It is a mimetic diagram explaining one embodiment of a method of detecting a target substance in a sample.
  • the metal nanoparticles 30 are formed on the surfaces of the carbon nanotubes 10 by performing a treatment with a reducing agent. Then, the carbon nanotube 200 on which the metal nanoparticles 30 are immobilized is obtained.
  • the first probe 40 is immobilized on the surface of the metal nanoparticle 30 to obtain the first probe-immobilized carbon nanotube 300.
  • the second probe 61 is immobilized on the surface of the quantum dot 60 by the same operation.
  • FIG. 2 is a schematic diagram for explaining an embodiment of a method for detecting a target substance in a sample.
  • Target substances and probes In the method of the present embodiment, one of a pair of substances that specifically bind to each other, such as an antigen-antibody, a lectin-sugar, a receptor-ligand, an aptamer-aptamer target substance, and a nucleic acid-nucleic acid, is used as a target substance.
  • the other can be used as a probe. More specifically, proteins, peptides, DNA, RNA, chemical substances, hormones, viruses, sugars and the like can be used as target substances or probes.
  • the first probe and the second probe are selected to bind to the target substance but not to each other.
  • the metal nanoparticles and the quantum dots are brought close to each other regardless of the presence or absence of the target substance, which causes erroneous detection and determination.
  • the target substance is an antibody that specifically binds to a certain antigen
  • examples of the first probe and the second probe include an antigen to which the target substance (antibody) binds and a target substance (antibody).
  • Secondary antibodies that bind can be used in combination. Any of these may be the first probe or the second probe.
  • the target substance is an antigen
  • two types of antibodies that bind to different epitopes on the target substance may be used as the first probe and the second probe.
  • antibodies that bind to the same epitope on the target substance (antigen) are used as the first probe and the second probe.
  • the case where a plurality of antigens are present in close proximity includes, for example, the case where the antigen forms a multimer, and the case where the target substance is an antigen present on the surface of a virus, microorganism, cell or the like. It is done. That is, the combination of the first probe and the second probe is not limited as long as the target substance, the first probe, and the second probe can be combined to allow the metal nanoparticles and the quantum dots to approach each other.
  • the target substance to be detected may be present in a liquid, or may be present in a sample such as a solid, powder, fluid, or gas.
  • the method for detecting a target substance in a sample according to this embodiment is preferably performed in a liquid. For this reason, when the sample is other than a liquid, it is preferable to dissolve or suspend the sample in an appropriate buffer or the like to obtain a liquid.
  • the first probe of the present invention is immobilized on the surface of metal nanoparticles immobilized on carbon nanotubes.
  • a single-walled carbon nanotube, a double-walled carbon nanotube, a multi-walled carbon nanotube, or the like can be used.
  • fluorescence is further enhanced by the effect of ⁇ electrons existing in the benzene ring constituting the carbon nanotube.
  • Metal nanoparticles examples include metal particles having a plasmon phenomenon such as gold or silver having a nano-order particle size. Especially, since the effect which enhances the fluorescence of a quantum dot is large, it is preferable that a metal nanoparticle is a gold particle.
  • the plasmon phenomenon means a phenomenon in which free electrons in a metal collectively vibrate and behave as pseudo particles.
  • the method for preparing the metal nanoparticles is not particularly limited.
  • gold nanoparticles can be prepared by reducing chloroauric acid (HAuCl 4 ) with citric acid and tannic acid, and reducing chloroauric acid (HAuCl 4 ) with gallic acid and isoflavone. It can also be prepared.
  • Silver nanoparticles can be prepared by reducing an aqueous silver nitrate solution with citric acid or the like.
  • the gold-peeled metal nanoparticle is a metal nanoparticle having a gold-peel-like unevenness on the surface and is also referred to as a urchin-like metal nanoparticle. Whether or not the surface has irregularities can be confirmed, for example, by observing with a transmission electron microscope (TEM). Ordinary metal nanoparticles (metal nanoparticles with a smooth surface) are almost spherical, whereas gold-peeled metal nanoparticles are shaped like gold-peel sugar or sea gall.
  • TEM transmission electron microscope
  • the gold-peeled metal nanoparticles are allowed to stand still for 30 minutes at room temperature until the color of the solution changes from yellow to cloudy blue. Can be prepared.
  • Quantum dot is a nanocrystal having a quantum well structure with a diameter of about 2 to 10 nm.
  • Quantum dots are known to have only a core structure and a core / shell structure.
  • Known examples of the former include Cd-based quantum dots such as CdS, CdSe, CdTe, and CdSeTe; Pb-based quantum dots such as PbS and PbSe; and Zn-based quantum dots such as ZnSe and ZnTe.
  • quantum dots such as CdSe / ZnS, CdSe / CdS / ZnS, CdSe / ZnSe / ZnS, and GaAs / AlGaAs are known. In the present embodiment, any of these quantum dots can be used.
  • Quantum dot fluorescence wavelength depends on quantum dot particle size.
  • fluorescence from blue-green to red (wavelength: 500 to 650 nm) can be generated by changing the particle size from 3 to 5 nm.
  • the particle size of the quantum dots can be controlled by the reaction time of the synthesis reaction, the temperature of the thermal decomposition reaction of the organometallic compound used for the synthesis, and the like.
  • the fluorescence wavelength of the quantum dot depends on the type of semiconductor of the quantum dot material.
  • Quantum dots that emit fluorescence from visible to near-infrared can be synthesized using semiconductors such as ZnSe, CdS, CdSe, CdSeTe, PbS, and PbSe.
  • top-down and bottom-up methods There are two main types of quantum dot synthesis methods: top-down and bottom-up methods.
  • top-down method quantum dots are synthesized on a semiconductor substrate using electron beam lithography, molecular beam epitaxy, or the like.
  • bottom-up method chemical synthesis is performed in the liquid phase.
  • chemical synthesis in the liquid phase mainly synthesized in an aqueous solution and synthesized in an organic solvent.
  • CdTe quantum dots can be synthesized by reacting sodium hydride or the like with an aqueous solution of a cadmium salt using a thiol compound as a protective agent.
  • trioctylphosphine TOP
  • TOPO trioctylphosphine oxide
  • TOP complexes or organic compounds of dimethylcadmium and S, Se, Te TOP complexes or organic compounds of dimethylcadmium and S, Se, Te.
  • a metal compound can be thermally decomposed at about 300 ° C. to synthesize quantum dots.
  • quantum dots synthesized by any of these methods can be used.
  • the method for immobilizing the probe to the metal nanoparticles and quantum dots is not particularly limited.
  • a functional group such as an amino group, a carboxy group, or a thiol group is introduced on the surface of the metal nanoparticles or quantum dots, and Using chemical crosslinking agents such as-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC), N-hydroxysuccinimide (NHS), succinimidyl-4- (N-maleimidomethyl) cyclohexane-1-carboxylate (SMCC)
  • EDC 3-dimethylaminopropyl
  • NHS N-hydroxysuccinimide
  • SMCC succinimidyl-4- (N-maleimidomethyl) cyclohexane-1-carboxylate
  • Examples of the method for introducing a functional group on the surface of metal nanoparticles or quantum dots include a method of reacting metal nanoparticles or quantum dots with an amphiphilic thiol compound such as 8-mercaptooctanoic acid or cysteamine. It is done.
  • an amphiphilic thiol compound such as 8-mercaptooctanoic acid or cysteamine. It is done.
  • a carboxy group can be introduced when 8-mercaptooctanoic acid is used, and an amino group can be introduced when cysteamine is used.
  • a functional group such as a carboxy group, an amino group, or a thiol group can be appropriately selected.
  • the quantum dots 60 on which the first probe-immobilized carbon nanotubes 300 and the second probes 61 are immobilized are added to each of the sample and the negative control not containing the target substance, and incubated.
  • the target substance is present in the sample
  • the target substance, the first probe, and the second probe are bound to bring the metal nanoparticles and the quantum dots close to each other. What is necessary is just to set the quantity of a metal nanoparticle and a quantum dot suitably.
  • the incubation temperature can be appropriately selected depending on the target substance and the probe.
  • the incubation time may be set to a time required for the binding of the target substance, the first probe, and the second probe to reach equilibrium, for example, 1 hour.
  • the fluorescence measurement step the fluorescence intensity of the quantum dot in the sample after the incubation step and the negative control is measured.
  • a general fluorescence measuring instrument such as a spectrofluorometer can be used. More specifically, the sample after the incubation step and the negative control may be irradiated with excitation light of quantum dots and the generated fluorescence intensity may be measured.
  • the determination step it is determined whether or not the target substance is present in the sample based on the fluorescence intensity measured in the fluorescence measurement step. Specifically, when the fluorescence intensity of the quantum dots in the sample is stronger than the fluorescence intensity of the quantum dots in the negative control, it is determined that the target substance is present in the sample. As described above, when a quantum dot that emits fluorescence in the visible light region is used, it is possible to detect fluorescence by observing with the naked eye without using a fluorescence measuring device. The presence or absence of the target substance can be determined based on the enhancement of the fluorescence intensity with the naked eye.
  • the method for quantifying the target substance in the sample is basically the same as the method for detecting the target substance 50 in the sample, except that a plurality of standard samples including the target substance 50 at a known concentration are used together with the sample. Specifically, the quantum dots 60 on which the first probe-immobilized carbon nanotubes 300 and the second probes 61 are immobilized are added to each of a plurality of standard samples including the sample and the target substance 50 having a known concentration, The same incubation step and fluorescence measurement step are performed. Subsequently, the quantitative process described below is performed.
  • the abundance of the target substance in the sample is determined by comparing the fluorescence intensity of the quantum dots in the sample with the fluorescence intensity of the quantum dots in the plurality of standard samples. For example, by creating a calibration curve based on the fluorescence intensity of quantum dots in multiple standard samples, and applying the fluorescence intensity of quantum dots in the sample to this calibration curve, the concentration of the target substance in the sample is determined. Can do.
  • a kit for detecting or quantifying a target substance in a sample includes a first probe-immobilized carbon nanotube 300 and a quantum dot 60 on which a second probe 61 is immobilized.
  • the first probe-immobilized carbon nanotube 300 and the quantum dot 60 on which the second probe 61 is immobilized may be supplied in a solution or suspension state, or supplied in a dry state and used. Sometimes it may be dissolved or suspended in a buffer.
  • the quantum dots 60 on which the first probe-immobilized carbon nanotube 300 and the second probe 61 are immobilized are, for example, filter paper. Or the like soaked in a medium such as.
  • the medium may be appropriately adjusted to a shape and size suitable for use, and may be, for example, a strip shape.
  • a target substance, a 1st probe, and a 2nd probe couple
  • fluorescence detection step fluorescence is generated from the quantum dots by irradiating the medium with excitation light.
  • the kit of this embodiment is particularly suitable for simple detection in the field that requires rapid detection of a target substance.
  • Example 1 Preparation of anti-HA antibody-immobilized AuCNT The obtained AuCNT (1 mg) was placed in distilled water (10 mL) and dispersed by sonication for 5 minutes to obtain an AuCNT solution. In order to introduce amino groups on the surface of the gold nanoparticles, cysteamine (0.01 M, 1 mL) is added to the AuCNT solution, stirred for 30 minutes, then centrifuged at 13,000 rpm for 10 minutes, and the supernatant is removed. An amine-treated AuCNT was obtained.
  • influenza virus by antigen-antibody reaction After mixing anti-HA antibody-immobilized AuCNT and anti-HA antibody-immobilized CdTe, it was added to a 96-well plate, and influenza virus (A / Beijing / 262/95, H1N1, type Sino Biological Inc. The reaction was carried out for 1 hour. The fluorescence intensity was measured at an excitation wavelength of 380 nm and an emission wavelength of 518 nm.
  • Example 2 Preparation of anti-NA antibody-immobilized AuCNT The obtained AuCNT (1 mg) was placed in distilled water (10 mL) and dispersed by sonication for 5 minutes to obtain an AuCNT solution. In order to introduce amino groups on the surface of the gold nanoparticles, cysteamine (0.01 M, 1 mL) is added to the AuCNT solution, stirred for 30 minutes, then centrifuged at 13,000 rpm for 10 minutes, and the supernatant is removed. An amine-treated AuCNT was obtained.
  • 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide EDC: 100 ⁇ L, 10 mM, manufactured by Sigma-Aldrich
  • NHS N-hydroxysuccinimide
  • a neuraminidase (NA) antibody (1 ⁇ L, A / New Caledonia / 20/1999, H1N1 type, manufactured by Cosmo bio) was added and reacted for 30 minutes to obtain an antibody solution.
  • the obtained antibody solution was mixed with amine-treated AuCNT (1 mg / mL, 30 ⁇ L) and reacted for 3 hours.
  • influenza virus by antigen-antibody reaction After mixing anti-NA antibody-immobilized AuCNT and anti-HA antibody-immobilized CdTe, it was added to a 96-well plate, and influenza virus (A / New Caledonia / 20 / 99IvR116, H1N1 type, Sino Biological) The reaction was carried out for 1 hour after the addition of Inc.). The fluorescence intensity was measured at an excitation wavelength of 380 nm and an emission wavelength of 518 nm.
  • FIG. 3 shows the result of measuring the absorbance of AuCNT using an ultraviolet-visible light spectrophotometer (infinite F500, manufactured by TECAN).
  • the horizontal axis indicates the wavelength (nm) and the vertical axis indicates the absorbance.
  • an absorption peak due to surface plasmon resonance of gold nanoparticles was observed at a wavelength of about 550 nm.
  • the absorbance was similarly measured using carbon nanotubes (CNT), no absorption peak at a wavelength of about 550 nm was observed.
  • FIGS. 5A, 5B, and 5C The results of observation of carbon nanotubes (CNT) and AuCNT using a transmission electron microscope (JEM-2100F, manufactured by JEOL) are shown in FIGS. 5A, 5B, and 5C.
  • carbon nanotubes as shown in FIG. 5A, an image showing a transparent tube structure having a diameter of 180 to 200 nm and a length of several micrometers was obtained.
  • AuCNT as shown in FIGS. 5B and 5C, an image in which black particles having a diameter of 10 to 100 nm are fixed to a transparent tube was obtained. According to an image at a higher magnification, the black particles shown in FIG.
  • each gold nanoparticle is 10 to 20 nm.
  • the particle diameter of each gold nanoparticle is 10 to 20 nm.
  • many smaller gold nanoparticles were immobilized on the carbon nanotubes than in the AuCNT shown in FIG. 5B.
  • FIG. 6 The results of measuring the infrared absorption spectrum of the amine-treated AuCNT obtained in Example 1 are shown in FIG.
  • the horizontal axis indicates the absorption rate (%), and the vertical axis indicates the wave number (cm ⁇ 1 ).
  • an infrared absorption peak indicating the stretching vibration energy of the carbon-carbon double bond of the benzene ring (C 6 H 6 ) constituting the carbon nanotube was observed in the vicinity of the wave number of 1450 to 1580 cm ⁇ 1 .
  • an infrared absorption peak indicating NH vibrational energy was observed in the vicinity of a wave number of 3400 to 3500 cm ⁇ 1 .
  • Example 1 the thiol group of cysteamine is bonded to the surface of the gold nanoparticle by the reaction between the carbon nanotube on which the gold nanoparticle is immobilized and cysteamine, and the amino group is introduced into the carbon nanotube via the gold nanoparticle.
  • ELISA analysis ELISA analysis was performed using the anti-HA antibody-immobilized AuCNT obtained in Example 1 and AuCNT to which the anti-HA antibody was not immobilized, respectively. The results are shown in FIG. 7A.
  • the absorbance of the anti-HA antibody-immobilized AuCNT (HA Ab / AuCNT) was about 4 times that of AuCNT not immobilized with the anti-HA antibody, confirming the antigen specificity of the anti-HA antibody. Absorbance could not be detected when no antigen was added.
  • ELISA analysis was similarly performed using the anti-NA antibody-immobilized AuCNT obtained in Example 2. The result is shown in FIG. 7B. In the case of anti-NA antibody-immobilized AuCNT (NA Ab / AuCNT), the antigen specificity of the anti-NA antibody could be confirmed.
  • an influenza virus (A / Beijing / 262/95, H1N1 type, manufactured by Sino Biological Inc) was added as a target substance to the anti-HA antibody-immobilized AuCNT and anti-HA antibody-immobilized CdTe obtained in Example 1. Then, the anti-HA antibody-immobilized AuCNT was observed using a confocal laser microscope (LSM700, Carl Zeiss Microscopy GmbH) and a differential interference microscope (DIC).
  • FIG. 8A shows an image obtained with a confocal laser microscope
  • FIG. 8B shows an image obtained with a differential interference microscope
  • FIG. 8C shows a superposition of these images. As shown in FIG.
  • the final concentration (virus concentration) of influenza virus (A / Beijing / 262/95, H1N1 type, manufactured by Sino Biological Inc) is 10 ⁇ 3 ng / mL (1 pg / mL) to 10 3.
  • the CdTe fluorescence intensity (PL intensity) of the complex obtained in Example 1 was measured by changing the concentration in the range of ng / mL (1 ⁇ g / mL).
  • the fluorescence intensity of CdTe increases with increasing virus concentration when the influenza virus concentration is in the range of 1 ng / mL to 1 ⁇ g / mL. did. At this time, the fluorescence detection limit (lower limit) was 1 ng / mL.
  • the fluorescence concentration (PL intensity) of CdTe of the complex obtained in Example 2 was varied by changing the virus concentration in the range of 10 ⁇ 4 ng / mL (0.1 pg / mL) to 10 ng / mL.
  • a calibration curve with a correlation coefficient of 0.98 or more was obtained as shown in FIG.
  • Example 2 since the antibody immobilized on AuCNT was different from the antibody immobilized on CdTe, the virus could be detected with higher sensitivity. At this time, the fluorescence detection limit (lower limit) was 0.1 pg / mL.
  • the target substance can be detected easily and with very high sensitivity. Further, the fluorescence intensity of the quantum dots increases depending on the concentration of the target substance, and the target substance can be detected even if the concentration of the target substance is 0.1 pg / mL. Furthermore, compared with the conventional detection method using a metal film, the detection method of the present invention forms a complex centered on carbon nanotubes, thereby increasing the difference in fluorescence intensity depending on the presence or absence of the target substance. It is very easy to determine the presence or absence of a substance.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Urology & Nephrology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Hematology (AREA)
  • Cell Biology (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Nanotechnology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

Provided is a method for detecting a target substance in a sample, including: an incubation step in which a first probe and a second probe are added to the sample and to a negative contrast that does not include the target substance and incubation is performed, said first probe being bonded to metal nanoparticles fixed in a carbon nanotube and said second probe being bonded to quantum dots; a fluorescent light measurement step in which the fluorescent light intensity of the sample and the quantum dots in the negative contrast, after the incubation step, is measured; and a determination step in which a determination is made that the target substance is present in the sample if the fluorescent light intensity of the quantum dots in the sample is greater than the fluorescent light intensity of the quantum dots in the negative contrast. The first and second probes bond to the target substance but do not bond to each other. The metal nanoparticles and the quantum dots move closer as a result of the bonding of the first and second probes to the target substance, and the fluorescent light intensity of the quantum dots increases.

Description

量子ドット蛍光増強免疫測定法Quantum dot fluorescence enhanced immunoassay
 本発明は、量子ドット蛍光増強免疫測定法に関する。 The present invention relates to a quantum dot fluorescence enhanced immunoassay.
 最近、ナノ素材を用いた感染症の検出や診断に関する研究が多く行われている。特に、ナノ粒子の光学的特性、電気伝導性、蛍光特性及び磁性特性を利用し、標的細胞を検出又は診断する研究例が報告されている。例えば、金ナノ粒子に抗体を修飾させ、抗原の量に応じた金ナノ粒子凝集度の変化、これに伴う光学的特性の変化により抗原を検出する方法、また抗体を修飾した磁性ナノ粒子と金ナノ粒子を用いた磁気泳動、これに伴う金ナノ粒子の光学的特性の変化による結核の検出方法、疾病の相補的DNAをナノ粒子の表面に修飾して標的DNAとハイブリダイゼーションを誘導し、電子的信号の変化による疾病を診断する方法など、ナノ粒子を用いた疾病の検出又は診断する方法が報告されている。例えば、非特許文献1には、ガラス様炭素電極にカーボンナノチューブを担持させ、該カーボンナノチューブにCdTe量子ドットを介してメチルパラチオン分解酵素を固定化させたデバイスを用いて、メチルパラチオンの検出が増強されることを報告している。 Recently, many studies on the detection and diagnosis of infectious diseases using nanomaterials have been conducted. In particular, research examples for detecting or diagnosing target cells using the optical properties, electrical conductivity, fluorescence properties, and magnetic properties of nanoparticles have been reported. For example, a method of detecting an antigen by modifying an antibody to gold nanoparticles and changing the degree of aggregation of the gold nanoparticles according to the amount of the antigen, and the accompanying change in optical properties, and a magnetic nanoparticle modified with an antibody and gold Magnetophoresis using nanoparticles, the detection method of tuberculosis by the change in the optical properties of gold nanoparticles accompanying this, the DNA complementary to the disease is modified on the surface of the nanoparticles to induce hybridization with the target DNA, electrons A method for detecting or diagnosing a disease using nanoparticles has been reported, such as a method for diagnosing a disease caused by a change in a physical signal. For example, in Non-Patent Document 1, detection of methyl parathion is enhanced using a device in which carbon nanotubes are supported on a glass-like carbon electrode and methyl parathionase is immobilized on the carbon nanotubes via CdTe quantum dots. It is reported that.
 一方、本発明者らは、これまでに金属ナノ粒子に量子ドットをコーティングする技術について報告している。具体的には、非特許文献2では、酸化鉄Feの表面をCdTe量子ドットでコーティングした蛍光磁性ナノ粒子を、静電的相互作用を利用して抗体に結合させ、結腸癌のイメージングを行うことを報告している。また、非特許文献3では、銀ナノニードルを有するフィルムの表面をCdSe/ZnS量子ドットでコーティングすると、量子ドットの蛍光が増強されることを報告している。さらに、非特許文献4では、突起を有する金ナノ粒子の表面を、抗体を固定化したCdTe量子ドットでコーティングしたナノ複合体を用いて、抗ネオスポラ抗体を検出できることを報告している。 On the other hand, the present inventors have reported the technique which coats a metal dot with a quantum dot until now. Specifically, in Non-Patent Document 2, imaging of colon cancer is performed by binding fluorescent magnetic nanoparticles having a surface of iron oxide Fe 3 O 4 coated with CdTe quantum dots to an antibody using electrostatic interaction. Have reported to do. Non-Patent Document 3 reports that the fluorescence of quantum dots is enhanced when the surface of a film having silver nanoneedles is coated with CdSe / ZnS quantum dots. Furthermore, Non-Patent Document 4 reports that an anti-Neospora antibody can be detected using a nanocomposite in which the surface of a gold nanoparticle having a protrusion is coated with a CdTe quantum dot on which an antibody is immobilized.
 より多様な方法で試料中の標的分子を検出又は定量できれば、検出感度の向上、検出精度の向上、従来不可能であった測定が可能となる等の利点が得られる可能性がある。そこで、本発明は、試料中の標的物質を検出又は定量する新たな方法及びキットを提供することを目的とする。 If the target molecule in the sample can be detected or quantified by more various methods, there are possibilities that advantages such as improved detection sensitivity, improved detection accuracy, and measurement that has been impossible in the past can be obtained. Accordingly, an object of the present invention is to provide a new method and kit for detecting or quantifying a target substance in a sample.
 本発明は、試料中の標的物質を検出する方法であって、試料及び標的物質を含まない陰性対照のそれぞれに、第1のプローブ及び第2のプローブを添加してインキュベーションするインキュベーション工程であって、第1のプローブは、カーボンナノチューブに固定された金属ナノ粒子に結合され、第2のプローブは、量子ドットに結合されている、工程と、インキュベーション工程後の試料及び陰性対照中の量子ドットの蛍光強度を測定する蛍光測定工程と、試料中の量子ドットの蛍光強度が、陰性対照中の量子ドットの蛍光強度と比較して強い場合に、試料中に標的物質が存在すると判定する判定工程と、を含み、第1のプローブ及び第2のプローブは、上記標的物質と結合するが互いに結合せず、第1のプローブ及び第2のプローブが上記標的物質と結合することにより、上記金属ナノ粒子及び前記量子ドットが近接し、それにより上記量子ドットの蛍光強度が増強する方法を提供する。 The present invention is a method for detecting a target substance in a sample, comprising an incubation step of adding a first probe and a second probe to each of a sample and a negative control not containing the target substance and incubating. , The first probe is bound to the metal nanoparticles immobilized on the carbon nanotubes, and the second probe is bound to the quantum dots, the step, the sample after the incubation step and the quantum dots in the negative control A fluorescence measurement step for measuring the fluorescence intensity, and a determination step for determining that the target substance is present in the sample when the fluorescence intensity of the quantum dot in the sample is stronger than the fluorescence intensity of the quantum dot in the negative control, and The first probe and the second probe bind to the target substance but do not bind to each other, and the first probe and the second probe By binding to the target substance, the metal nanoparticles and the quantum dots are close, thereby providing a method of fluorescence intensity of the quantum dots is enhanced.
 本発明により、試料中の標的物質を検出する新たな方法を提供することができる。この方法は、金属ナノ粒子及び量子ドットが近接すると、量子ドットの蛍光強度が増強するという現象を利用するものである。試料中の標的物質と、第1のプローブを固定化した金属ナノ粒子及び第2のプローブを固定化した量子ドットとが結合することにより、金属ナノ粒子及び量子ドットが互いに近接し、量子ドットの蛍光強度が増強する。この蛍光強度の増強に基づいて試料中の標的物質を検出することができる。また、本発明の方法によれば、従来のELISA法では必要な工程である洗浄工程を行うことなく、試料中の標的物質を検出することができる。このため、簡便に標的物質を検出することができる。また、洗浄工程による標的物質の検出感度の低下を防止することができる。 According to the present invention, a new method for detecting a target substance in a sample can be provided. This method utilizes the phenomenon that the fluorescence intensity of the quantum dot increases when the metal nanoparticles and the quantum dot come close to each other. By combining the target substance in the sample with the metal nanoparticles to which the first probe is immobilized and the quantum dots to which the second probe is immobilized, the metal nanoparticles and the quantum dots are close to each other, The fluorescence intensity is enhanced. Based on this increase in fluorescence intensity, the target substance in the sample can be detected. In addition, according to the method of the present invention, a target substance in a sample can be detected without performing a washing step, which is a necessary step in the conventional ELISA method. For this reason, a target substance can be detected simply. In addition, it is possible to prevent a decrease in detection sensitivity of the target substance due to the washing process.
 本発明はまた、試料中の標的物質を定量する方法であって、試料及び既知濃度の標的物質を含む複数の標準試料のそれぞれに、第1のプローブ及び第2のプローブを添加してインキュベーションするインキュベーション工程であって、第1のプローブは、カーボンナノチューブに固定された金属ナノ粒子に結合され、第2のプローブは、量子ドットに結合されている、工程と、インキュベーション工程後の試料及び複数の標準試料中の量子ドットの蛍光強度を測定する蛍光測定工程と、試料中の量子ドットの蛍光強度を、複数の標準試料中の量子ドットの蛍光強度と比較して、試料中の標的物質を定量する定量工程と、を含み、第1のプローブ及び第2のプローブは、上記標的物質と結合するが互いに結合せず、第1のプローブ及び第2のプローブが上記標的物質と結合することにより、上記金属ナノ粒子及び前記量子ドットが近接し、それにより上記量子ドットの蛍光強度が増強する方法を提供する。 The present invention is also a method for quantifying a target substance in a sample, wherein a first probe and a second probe are added to each of a sample and a plurality of standard samples containing a target substance at a known concentration and incubated. An incubation step, wherein the first probe is bound to the metal nanoparticles immobilized on the carbon nanotubes, and the second probe is bound to the quantum dot, the sample after the incubation step and a plurality of samples Quantify the target substance in the sample by comparing the fluorescence intensity of the quantum dot in the sample with the fluorescence measurement process that measures the fluorescence intensity of the quantum dot in the standard sample, and the fluorescence intensity of the quantum dot in multiple standard samples The first probe and the second probe bind to the target substance but do not bind to each other, and the first probe and the second probe By lobe binds to the target substance, near the metal nanoparticles and the quantum dots, thereby providing a method of fluorescence intensity of the quantum dots is enhanced.
 本発明により、試料中の標的物質を定量する新たな方法を提供することができる。また、本発明の方法によれば、洗浄工程を必要とせずに、試料中の標的物質を定量することができるため、簡便に標的物質を定量することができる。 According to the present invention, a new method for quantifying a target substance in a sample can be provided. Further, according to the method of the present invention, the target substance in the sample can be quantified without requiring a washing step, and therefore the target substance can be quantified easily.
 本発明はまた、試料中の標的物質の検出又は定量用キットであって、第1のプローブ及び第2のプローブを含み、第1のプローブは、カーボンナノチューブに固定された金属ナノ粒子に結合され、第2のプローブは、量子ドットに結合され、第1のプローブ及び第2のプローブは、標的物質と結合するが互いに結合せず、第1のプローブ及び第2のプローブが標的物質と結合することにより、金属ナノ粒子及び量子ドットが近接し、それにより量子ドットの蛍光強度が増強する、キットを提供する。 The present invention is also a kit for detecting or quantifying a target substance in a sample, which includes a first probe and a second probe, and the first probe is bound to metal nanoparticles fixed to carbon nanotubes. The second probe is coupled to the quantum dot, the first probe and the second probe bind to the target substance but not to each other, and the first probe and the second probe bind to the target substance. This provides a kit in which the metal nanoparticles and quantum dots are in close proximity, thereby enhancing the fluorescence intensity of the quantum dots.
 本発明のキットによれば、新たな原理に基づいて、標的物質を簡便に検出することができる。 According to the kit of the present invention, a target substance can be easily detected based on a new principle.
 上記金属ナノ粒子は、金平糖状金属ナノ粒子であることが好ましい。 It is preferable that the metal nanoparticles are confetti sugar metal nanoparticles.
 金平糖状金属ナノ粒子を用いることにより、標的物質の検出感度を高めることができ、より正確に標的物質を定量することができる。 By using the gold-peeled metal nanoparticles, the detection sensitivity of the target substance can be increased, and the target substance can be quantified more accurately.
 上記金属ナノ粒子は、金ナノ粒子であることが好ましい。金ナノ粒子は、量子ドットの蛍光強度を効率よく増強することができる。 The metal nanoparticles are preferably gold nanoparticles. Gold nanoparticles can efficiently enhance the fluorescence intensity of quantum dots.
 上記量子ドットは、可視光領域の蛍光を発するものであってもよい。これにより、量子ドットの蛍光強度の増強を、肉眼で確認することができ、標的物質を容易に検出又は定量することができる。 The quantum dots may emit fluorescence in the visible light region. Thereby, the enhancement of the fluorescence intensity of the quantum dots can be confirmed with the naked eye, and the target substance can be easily detected or quantified.
 第1のプローブ及び第2のプローブは、抗原、抗体、レクチン、糖、レセプター、リガンド、アプタマー又は核酸であることが好ましい。 The first probe and the second probe are preferably antigens, antibodies, lectins, sugars, receptors, ligands, aptamers or nucleic acids.
 第1のプローブ及び第2のプローブがこのようなものであれば、抗原、抗体、レクチン、糖、レセプター、リガンド、アプタマー又は核酸に結合可能な標的物質を検出又は定量することができる。 If the first probe and the second probe are such, a target substance that can bind to an antigen, antibody, lectin, sugar, receptor, ligand, aptamer or nucleic acid can be detected or quantified.
 本発明によれば、洗浄工程を必要としない、試料中の標的物質を検出又は定量する新たな方法及びキットを提供することができる。 According to the present invention, it is possible to provide a new method and kit for detecting or quantifying a target substance in a sample that does not require a washing step.
 また、本発明の方法及びキットによれば、カーボンナノチューブに、第1のプローブを固定化した金属ナノ粒子が固定化されており、さらに該金属ナノ粒子は標的物質を介して第2のプローブを固定化した量子ドットと結合することにより、カーボンナノチューブを中心に3次元的に配置された複合体を形成する。該複合体を形成することにより、金属ナノ粒子及び量子ドットが互いにより近接することができ、量子ドットの蛍光強度がさらに増強される。また、カーボンナノチューブの表面において、複数の金属ナノ粒子及び量子ドットが互いに近接することにより、量子ドットの蛍光強度がさらに増強される。すなわち、標的物質の有無の差によって生じる蛍光強度の差がより顕著となり、従来の検出方法よりもさらに簡便かつ高感度で標的物質を検出することが可能となる。 In addition, according to the method and kit of the present invention, the metal nanoparticle having the first probe immobilized thereon is immobilized on the carbon nanotube, and the metal nanoparticle has the second probe via the target substance. By combining with the fixed quantum dots, a composite is formed that is three-dimensionally arranged around the carbon nanotubes. By forming the composite, the metal nanoparticles and the quantum dots can be brought closer to each other, and the fluorescence intensity of the quantum dots is further enhanced. In addition, the fluorescence intensity of the quantum dots is further enhanced by bringing the plurality of metal nanoparticles and quantum dots close to each other on the surface of the carbon nanotube. That is, the difference in fluorescence intensity caused by the difference in the presence or absence of the target substance becomes more prominent, and the target substance can be detected more easily and with higher sensitivity than conventional detection methods.
第1のプローブ固定化カーボンナノチューブの作製方法の一実施形態を示す模式図である。It is a schematic diagram which shows one Embodiment of the production method of the 1st probe fixed carbon nanotube. 試料中の標的物質を検出する方法の一実施形態を説明する模式図である。It is a mimetic diagram explaining one embodiment of a method of detecting a target substance in a sample. 実施例1で得られたAuCNT及びカーボンナノチューブの紫外/可視光スペクトルである。2 is an ultraviolet / visible light spectrum of AuCNT and carbon nanotube obtained in Example 1. 実施例1で得られたAuCNT及びカーボンナノチューブのX線回折パターンである。2 is an X-ray diffraction pattern of AuCNT and carbon nanotubes obtained in Example 1. FIG. 実施例1で得られたAuCNT(図5B及び図5C)及びカーボンナノチューブ(図5A)の透過型電子顕微鏡像を示す写真である。It is a photograph which shows the transmission electron microscope image of AuCNT (FIG. 5B and FIG. 5C) and carbon nanotube (FIG. 5A) which were obtained in Example 1. FIG. システアミンで処理されたAuCNTの赤外吸収スペクトルである。It is an infrared absorption spectrum of AuCNT processed with cysteamine. 抗HA抗体固定化AuCNT及び抗NA抗体固定化AuCNTのELISA解析の結果を示すグラフである。It is a graph which shows the result of the ELISA analysis of anti- HA antibody fixed AuCNT and anti-NA antibody fixed AuCNT. 実施例1で得られた複合体の共焦点レーザー顕微鏡像(図8A)及び微分干渉顕微鏡像(図8B)を示す写真であり、図8Cはこれらの像を重ねた写真である。It is the photograph which shows the confocal laser microscope image (FIG. 8A) and differential interference microscope image (FIG. 8B) of the composite_body | complex obtained in Example 1, FIG. 8C is the photograph which accumulated these images. 実施例1で得られた抗HA抗体固定化AuCNT及び抗HA抗体固定化CdTeを用いた複合体の蛍光強度を示すグラフである。2 is a graph showing fluorescence intensity of a complex using anti-HA antibody-immobilized AuCNT and anti-HA antibody-immobilized CdTe obtained in Example 1. 実施例2で得られた抗NA抗体固定化AuCNT及び抗HA抗体固定化CdTeを用いた複合体の蛍光強度を示すグラフである。6 is a graph showing the fluorescence intensity of a complex using anti-NA antibody-immobilized AuCNT and anti-HA antibody-immobilized CdTe obtained in Example 2.
(原理)
 量子ドットは数十nm以下の半導体結晶であり、励起光を照射すると蛍光を発する。本発明の検出方法及び定量方法は、金属ナノ粒子及び量子ドットが近接すると、量子ドットの蛍光強度が増強するという現象を利用するものである。
(principle)
A quantum dot is a semiconductor crystal of several tens of nm or less, and emits fluorescence when irradiated with excitation light. The detection method and quantification method of the present invention utilize the phenomenon that the fluorescence intensity of a quantum dot increases when the metal nanoparticles and the quantum dot come close to each other.
 本実施形態に係る試料中の標的物質を検出する方法は、試料及び標的物質を含まない陰性対照のそれぞれに、第1のプローブ及び量子ドットに固定化した第2のプローブを添加してインキュベーションするインキュベーション工程と、インキュベーション工程後の試料及び陰性対照中の量子ドットの蛍光強度を測定する蛍光測定工程と、試料中の量子ドットの蛍光強度が、陰性対照中の量子ドットの蛍光強度と比較して強い場合に、試料中に標的物質が存在すると判定する判定工程とを含む。 In the method for detecting a target substance in a sample according to the present embodiment, the first probe and the second probe immobilized on the quantum dot are added to each of the sample and the negative control not containing the target substance and incubated. The incubation step, the fluorescence measurement step that measures the fluorescence intensity of the quantum dots in the sample and the negative control after the incubation step, and the fluorescence intensity of the quantum dots in the sample is compared with the fluorescence intensity of the quantum dots in the negative control. And a determination step of determining that the target substance is present in the sample when it is strong.
(第1のプローブ固定化カーボンナノチューブの作製方法)
 図1は、カーボンナノチューブに金属ナノ粒子を固定化させ、さらに該金属ナノ粒子に第1のプローブを固定化させる方法の一実施形態を示す模式図である。試料中の標的物質を検出する方法の一実施形態を説明する模式図である。本実施形態では、カーボンナノチューブ10を金属イオン20で処理して、金属イオン処理カーボンナノチューブ100を得た後に、還元剤による処理を行うことで、カーボンナノチューブ10の表面に金属ナノ粒子30を形成し、金属ナノ粒子30を固定化したカーボンナノチューブ200を得る。さらに、金属ナノ粒子30の表面に第1のプローブ40を固定化し、第1のプローブ固定化カーボンナノチューブ300を得る。また、同様の操作によって、量子ドット60の表面に第2のプローブ61を固定化する。
(Production method of first probe-immobilized carbon nanotube)
FIG. 1 is a schematic view showing an embodiment of a method for immobilizing metal nanoparticles on carbon nanotubes and further immobilizing a first probe on the metal nanoparticles. It is a mimetic diagram explaining one embodiment of a method of detecting a target substance in a sample. In the present embodiment, after the carbon nanotubes 10 are treated with the metal ions 20 to obtain the metal ion-treated carbon nanotubes 100, the metal nanoparticles 30 are formed on the surfaces of the carbon nanotubes 10 by performing a treatment with a reducing agent. Then, the carbon nanotube 200 on which the metal nanoparticles 30 are immobilized is obtained. Further, the first probe 40 is immobilized on the surface of the metal nanoparticle 30 to obtain the first probe-immobilized carbon nanotube 300. Further, the second probe 61 is immobilized on the surface of the quantum dot 60 by the same operation.
(試料中の標的物質を検出する方法)
 図2は、試料中の標的物質を検出する方法の一実施形態を説明する模式図である。上記方法によって得られた第1のプローブ固定化カーボンナノチューブ300及び第2のプローブ61を固定化した量子ドット60を、標的物質50を含む試料に添加することにより、第1のプローブ40、標的物質50及び第2のプローブ61の順に結合した複合体400を形成させる。上記複合体400を形成させることにより、第1のプローブ40に結合した金属ナノ粒子30と、第2のプローブ61に結合した量子ドット60が互いに近接し、量子ドット60の蛍光強度が増強される。一方、試料に代えて、標的物質50を含まない陰性対照を用いた場合の量子ドット60の蛍光強度と比較することにより、試料中の標的物質50の存在をより簡便に検出することができる。
(Method of detecting target substance in sample)
FIG. 2 is a schematic diagram for explaining an embodiment of a method for detecting a target substance in a sample. By adding the quantum dots 60 on which the first probe-immobilized carbon nanotubes 300 and the second probes 61 obtained by the above method are immobilized to a sample containing the target substance 50, the first probe 40, the target substance A complex 400 in which 50 and the second probe 61 are combined in this order is formed. By forming the composite 400, the metal nanoparticles 30 bonded to the first probe 40 and the quantum dots 60 bonded to the second probe 61 are close to each other, and the fluorescence intensity of the quantum dots 60 is enhanced. . On the other hand, the presence of the target substance 50 in the sample can be detected more easily by comparing with the fluorescence intensity of the quantum dot 60 when a negative control not containing the target substance 50 is used instead of the sample.
(標的物質及びプローブ)
 本実施形態の方法では、標的物質として、抗原-抗体、レクチン-糖、レセプター-リガンド、アプタマー-アプタマーの標的物質、核酸-核酸等の、互いに特異的に結合する物質の組の一方を用い、他方をプローブとして用いることができる。より具体的には、タンパク質、ペプチド、DNA、RNA、化学物質、ホルモン、ウイルス、糖等を標的物質又はプローブに用いることができる。
(Target substances and probes)
In the method of the present embodiment, one of a pair of substances that specifically bind to each other, such as an antigen-antibody, a lectin-sugar, a receptor-ligand, an aptamer-aptamer target substance, and a nucleic acid-nucleic acid, is used as a target substance. The other can be used as a probe. More specifically, proteins, peptides, DNA, RNA, chemical substances, hormones, viruses, sugars and the like can be used as target substances or probes.
 ここで、第1のプローブ及び第2のプローブは、標的物質と結合するが互いに結合しないものを選択する。第1のプローブと第2のプローブが直接結合してしまうと、標的物質の存在の有無に関係なく金属ナノ粒子と量子ドットが近接してしまい、誤検出や誤判定の原因となる。例えば、標的物質がある抗原に特異的に結合する抗体である場合、第1のプローブ及び第2のプローブとしては、例えば、標的物質(抗体)が結合する抗原、及び、標的物質(抗体)に結合する2次抗体を組み合わせて使用することができる。これらは、いずれが第1のプローブであっても第2のプローブであってもよい。また、例えば、標的物質が抗原である場合、第1のプローブ及び第2のプローブとしては、標的物質(抗原)上のそれぞれ異なるエピトープに結合する2種類の抗体を使用してもよい。また、例えば、標的物質が抗原であり、抗原が近接して複数存在する場合、第1のプローブ及び第2のプローブとしては、標的物質(抗原)上の同一のエピトープに結合する抗体を使用してもよい。ここで、抗原が近接して複数存在する場合とは、例えば、抗原が多量体を形成している場合や、標的物質がウイルス、微生物、細胞等の表面に複数存在する抗原である場合が挙げられる。つまり、標的物質、第1のプローブ及び第2のプローブが結合することにより、金属ナノ粒子と量子ドットが近接することができる限り、第1のプローブ及び第2のプローブの組み合わせに制限はない。 Here, the first probe and the second probe are selected to bind to the target substance but not to each other. When the first probe and the second probe are directly bonded, the metal nanoparticles and the quantum dots are brought close to each other regardless of the presence or absence of the target substance, which causes erroneous detection and determination. For example, when the target substance is an antibody that specifically binds to a certain antigen, examples of the first probe and the second probe include an antigen to which the target substance (antibody) binds and a target substance (antibody). Secondary antibodies that bind can be used in combination. Any of these may be the first probe or the second probe. For example, when the target substance is an antigen, two types of antibodies that bind to different epitopes on the target substance (antigen) may be used as the first probe and the second probe. In addition, for example, when the target substance is an antigen and a plurality of antigens are present in the vicinity, antibodies that bind to the same epitope on the target substance (antigen) are used as the first probe and the second probe. May be. Here, the case where a plurality of antigens are present in close proximity includes, for example, the case where the antigen forms a multimer, and the case where the target substance is an antigen present on the surface of a virus, microorganism, cell or the like. It is done. That is, the combination of the first probe and the second probe is not limited as long as the target substance, the first probe, and the second probe can be combined to allow the metal nanoparticles and the quantum dots to approach each other.
 検出対象となる標的物質は、液体中に存在していてもよく、固体、粉末、流動体、気体等の試料中に存在していてもよい。本実施形態に係る、試料中の標的物質を検出する方法は、液体中で実施することが好ましい。このため、試料が液体以外である場合には、適切なバッファー等に試料を溶解又は懸濁し、液体にすることが好ましい。 The target substance to be detected may be present in a liquid, or may be present in a sample such as a solid, powder, fluid, or gas. The method for detecting a target substance in a sample according to this embodiment is preferably performed in a liquid. For this reason, when the sample is other than a liquid, it is preferable to dissolve or suspend the sample in an appropriate buffer or the like to obtain a liquid.
(カーボンナノチューブ)
 本発明の第1のプローブは、カーボンナノチューブに固定化された金属ナノ粒子の表面に固定化される。本発明に用いるカーボンナノチューブには、単層カーボンナノチューブ、二層カーボンナノチューブ、多層(Multi-walled)カーボンナノチューブ等を用いることができる。カーボンナノチューブに金属ナノ粒子を固定化することにより、カーボンナノチューブを構成するベンゼン環に存在するπ電子の効果により、蛍光がより増強される。
(carbon nanotube)
The first probe of the present invention is immobilized on the surface of metal nanoparticles immobilized on carbon nanotubes. As the carbon nanotube used in the present invention, a single-walled carbon nanotube, a double-walled carbon nanotube, a multi-walled carbon nanotube, or the like can be used. By immobilizing the metal nanoparticles on the carbon nanotube, fluorescence is further enhanced by the effect of π electrons existing in the benzene ring constituting the carbon nanotube.
(金属ナノ粒子)
 金属ナノ粒子としては、ナノオーダーの粒径を有する金、銀等のプラズモン現象を有する金属の粒子が挙げられる。なかでも、量子ドットの蛍光を増強させる効果が大きいことから、金属ナノ粒子は、金の粒子であることが好ましい。プラズモン現象とは、金属中の自由電子が集団的に振動して擬似的な粒子として振る舞う現象を意味する。
(Metal nanoparticles)
Examples of the metal nanoparticles include metal particles having a plasmon phenomenon such as gold or silver having a nano-order particle size. Especially, since the effect which enhances the fluorescence of a quantum dot is large, it is preferable that a metal nanoparticle is a gold particle. The plasmon phenomenon means a phenomenon in which free electrons in a metal collectively vibrate and behave as pseudo particles.
 金属ナノ粒子の調製方法は特に制限されない。例えば、金ナノ粒子は、塩化金酸(HAuCl)をクエン酸とタンニン酸で還元して調製することができ、塩化金酸(HAuCl)を没食子酸(Gallic acid)とイソフラボンで還元して調製することもできる。また、銀ナノ粒子は、硝酸銀水溶液をクエン酸等で還元することにより調製することができる。 The method for preparing the metal nanoparticles is not particularly limited. For example, gold nanoparticles can be prepared by reducing chloroauric acid (HAuCl 4 ) with citric acid and tannic acid, and reducing chloroauric acid (HAuCl 4 ) with gallic acid and isoflavone. It can also be prepared. Silver nanoparticles can be prepared by reducing an aqueous silver nitrate solution with citric acid or the like.
(金平糖状金属ナノ粒子)
 金平糖状金属ナノ粒子とは、表面に金平糖状の凹凸を有する金属ナノ粒子であり、海胆状(urchin-like)金属ナノ粒子ともいう。表面に凹凸を有するか否かは、例えば、透過型電子顕微鏡(TEM)で観察することにより確認することができる。通常の金属ナノ粒子(表面が滑らかな金属ナノ粒子)がほぼ球状であるのに対し、金平糖状金属ナノ粒子は、金平糖又は海胆のような形状である。金平糖状金属ナノ粒子は、例えば、10mLの10mM HEPES緩衝液(pH7.4)に250μLの20mM塩化金酸溶液を添加した後、溶液の色が黄色から濁った青に変わるまで室温で30分間静置することにより調製することができる。
(Kinpira sugar-like metal nanoparticles)
The gold-peeled metal nanoparticle is a metal nanoparticle having a gold-peel-like unevenness on the surface and is also referred to as a urchin-like metal nanoparticle. Whether or not the surface has irregularities can be confirmed, for example, by observing with a transmission electron microscope (TEM). Ordinary metal nanoparticles (metal nanoparticles with a smooth surface) are almost spherical, whereas gold-peeled metal nanoparticles are shaped like gold-peel sugar or sea gall. For example, after adding 250 μL of 20 mM chloroauric acid solution to 10 mL of 10 mM HEPES buffer (pH 7.4), the gold-peeled metal nanoparticles are allowed to stand still for 30 minutes at room temperature until the color of the solution changes from yellow to cloudy blue. Can be prepared.
(量子ドット)
 量子ドットとは、直径が2~10nm程度の量子井戸構造を有するナノ結晶である。量子ドットには、コア構造のみのものと、コア/シェル構造のものが知られている。前者の例としては、CdS、CdSe、CdTe、CdSeTe等のCd系量子ドット;PbS、PbSe等のPb系量子ドット;ZnSe、ZnTe等のZn系量子ドット等が知られている。後者の例としてはCdSe/ZnS、CdSe/CdS/ZnS、CdSe/ZnSe/ZnS、GaAs/AlGaAs等の量子ドットが知られている。本実施形態においては、これらのいずれの量子ドットも使用することができる。
(Quantum dot)
A quantum dot is a nanocrystal having a quantum well structure with a diameter of about 2 to 10 nm. Quantum dots are known to have only a core structure and a core / shell structure. Known examples of the former include Cd-based quantum dots such as CdS, CdSe, CdTe, and CdSeTe; Pb-based quantum dots such as PbS and PbSe; and Zn-based quantum dots such as ZnSe and ZnTe. As examples of the latter, quantum dots such as CdSe / ZnS, CdSe / CdS / ZnS, CdSe / ZnSe / ZnS, and GaAs / AlGaAs are known. In the present embodiment, any of these quantum dots can be used.
 量子ドットの蛍光波長は、量子ドットの粒径に依存する。例えば、CdSe量子ドットでは、粒径を3~5nmに変化させることによって青緑から赤まで(波長500~650nm)の蛍光を発生させることができる。一般に、量子ドットの粒径は、合成反応の反応時間、合成に用いる有機金属化合物の熱分解反応の温度等により制御することができる。 Quantum dot fluorescence wavelength depends on quantum dot particle size. For example, in CdSe quantum dots, fluorescence from blue-green to red (wavelength: 500 to 650 nm) can be generated by changing the particle size from 3 to 5 nm. In general, the particle size of the quantum dots can be controlled by the reaction time of the synthesis reaction, the temperature of the thermal decomposition reaction of the organometallic compound used for the synthesis, and the like.
 また、量子ドットの蛍光波長は、量子ドットの材料の半導体の種類にも依存する。ZnSe、CdS、CdSe、CdSeTe、PbS、PbSe等の半導体により、可視から近赤外(波長400~2000nm)の蛍光を発する量子ドットを合成することができる。 Also, the fluorescence wavelength of the quantum dot depends on the type of semiconductor of the quantum dot material. Quantum dots that emit fluorescence from visible to near-infrared (wavelength 400 to 2000 nm) can be synthesized using semiconductors such as ZnSe, CdS, CdSe, CdSeTe, PbS, and PbSe.
 量子ドットの合成法には、主にトップダウン法とボトムアップ法の2種類が存在する。トップダウン法においては、半導体基板に電子ビームリソグラフィーや分子線エピタキシー法等を用いて量子ドットを合成する。ボトムアップ法においては、液相で化学合成する。また、液相での化学合成には、主に水溶液中で合成するものと有機溶媒中で合成する方法の2種類が存在する。 There are two main types of quantum dot synthesis methods: top-down and bottom-up methods. In the top-down method, quantum dots are synthesized on a semiconductor substrate using electron beam lithography, molecular beam epitaxy, or the like. In the bottom-up method, chemical synthesis is performed in the liquid phase. In addition, there are two types of chemical synthesis in the liquid phase, mainly synthesized in an aqueous solution and synthesized in an organic solvent.
 水溶液中での合成では、例えば、チオール系化合物を保護剤として、カドミウム塩の水溶液にテルル化水素ナトリウム等を反応させることによってCdTe量子ドットを合成することができる。 In the synthesis in an aqueous solution, for example, CdTe quantum dots can be synthesized by reacting sodium hydride or the like with an aqueous solution of a cadmium salt using a thiol compound as a protective agent.
 有機溶媒中での合成では、例えば、配位性有機化合物であるトリオクチルフォスフィン(TOP)やトリオクチルフォスフィンオキシド(TOPO)を溶媒として、ジメチルカドミウム及びS、Se、TeのTOP錯体あるいは有機金属化合物を約300℃で熱分解し、量子ドットを合成することができる。 In the synthesis in an organic solvent, for example, trioctylphosphine (TOP) or trioctylphosphine oxide (TOPO), which is a coordinating organic compound, is used as a solvent, and TOP complexes or organic compounds of dimethylcadmium and S, Se, Te. A metal compound can be thermally decomposed at about 300 ° C. to synthesize quantum dots.
 本実施形態においては、これらのいずれの方法で合成された量子ドットも使用することができる。 In this embodiment, quantum dots synthesized by any of these methods can be used.
(金属ナノ粒子及び量子ドットへのプローブの固定方法)
 金属ナノ粒子及び量子ドットへのプローブの固定方法は特に限定されないが、例えば、金属ナノ粒子又は量子ドットの表面にアミノ基、カルボキシ基、チオール基等の官能基を導入し、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩(EDC)、N-ヒドロキシスクシンイミド(NHS)、スクシンイミジル-4-(N-マレイミドメチル)シクロヘキサン-1-カルボキシレート(SMCC)等の化学架橋剤を用いてプローブを固定することができる。金属ナノ粒子又は量子ドットの表面に官能基を導入する方法としては、例えば、金属ナノ粒子又は量子ドットを、8-メルカプトオクタン酸、システアミン等の両親媒性のチオール化合物と反応させる方法等が挙げられる。金属ナノ粒子又は量子ドットの表面に官能基を導入する際、8-メルカプトオクタン酸を用いるとカルボキシ基を導入することができ、システアミンを用いるとアミノ基を導入することができる。本発明に使用するプローブの種類に基づいて、カルボキシ基、アミノ基、チオール基等の官能基を適宜選択することができる。
(Method of fixing probes to metal nanoparticles and quantum dots)
The method for immobilizing the probe to the metal nanoparticles and quantum dots is not particularly limited. For example, a functional group such as an amino group, a carboxy group, or a thiol group is introduced on the surface of the metal nanoparticles or quantum dots, and Using chemical crosslinking agents such as-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC), N-hydroxysuccinimide (NHS), succinimidyl-4- (N-maleimidomethyl) cyclohexane-1-carboxylate (SMCC) The probe can be fixed. Examples of the method for introducing a functional group on the surface of metal nanoparticles or quantum dots include a method of reacting metal nanoparticles or quantum dots with an amphiphilic thiol compound such as 8-mercaptooctanoic acid or cysteamine. It is done. When introducing a functional group on the surface of a metal nanoparticle or quantum dot, a carboxy group can be introduced when 8-mercaptooctanoic acid is used, and an amino group can be introduced when cysteamine is used. Based on the type of probe used in the present invention, a functional group such as a carboxy group, an amino group, or a thiol group can be appropriately selected.
(インキュベーション工程)
 インキュベーション工程では、試料及び標的物質を含まない陰性対照のそれぞれに、第1のプローブ固定化カーボンナノチューブ300及び第2のプローブ61を固定化した量子ドット60を添加してインキュベーションする。この工程により、試料中に標的物質が存在する場合には、標的物質、第1のプローブ及び第2のプローブが結合し、金属ナノ粒子及び量子ドットが近接する。金属ナノ粒子及び量子ドットの量は適宜設定すればよい。インキュベーション温度は、標的物質やプローブに応じて適宜選択できる。インキュベーション時間は、標的物質、第1のプローブ及び第2のプローブの結合が平衡に達するのに要する時間に設定すればよく、例えば1時間である。
(Incubation process)
In the incubation step, the quantum dots 60 on which the first probe-immobilized carbon nanotubes 300 and the second probes 61 are immobilized are added to each of the sample and the negative control not containing the target substance, and incubated. By this step, when the target substance is present in the sample, the target substance, the first probe, and the second probe are bound to bring the metal nanoparticles and the quantum dots close to each other. What is necessary is just to set the quantity of a metal nanoparticle and a quantum dot suitably. The incubation temperature can be appropriately selected depending on the target substance and the probe. The incubation time may be set to a time required for the binding of the target substance, the first probe, and the second probe to reach equilibrium, for example, 1 hour.
(蛍光測定工程)
 蛍光測定工程では、インキュベーション工程後の試料及び陰性対照中の量子ドットの蛍光強度を測定する。測定には、分光蛍光光度計等の一般的な蛍光測定機器を用いることができる。より具体的には、インキュベーション工程後の試料及び陰性対照に対して、量子ドットの励起光を照射し、発生する蛍光強度を測定すればよい。
(Fluorescence measurement process)
In the fluorescence measurement step, the fluorescence intensity of the quantum dot in the sample after the incubation step and the negative control is measured. For the measurement, a general fluorescence measuring instrument such as a spectrofluorometer can be used. More specifically, the sample after the incubation step and the negative control may be irradiated with excitation light of quantum dots and the generated fluorescence intensity may be measured.
 例えば、量子ドットとして可視光領域の蛍光を発するものを使用した場合、励起光照射装置があれば、蛍光測定機器を使わなくても、肉眼で観察することにより、蛍光を検出することも可能である。これにより、標的物質の検出が必要な現場において、標的物質の存在をその場で検出することが容易になる。 For example, when a quantum dot that emits fluorescence in the visible light region is used, if there is an excitation light irradiation device, it is possible to detect fluorescence by observing with the naked eye without using a fluorescence measurement device. is there. As a result, it becomes easy to detect the presence of the target substance on the spot at a site where the target substance needs to be detected.
(判定工程)
 判定工程では、蛍光測定工程において測定された蛍光強度に基づいて、試料中に標的物質が存在するか否かを判定する。具体的には、試料中の量子ドットの蛍光強度が、陰性対照中の量子ドットの蛍光強度と比較して強い場合に、試料中に標的物質が存在すると判定する。また、上記したように、量子ドットとして可視光領域の蛍光を発するものを使用した場合には、蛍光測定機器を使わなくても肉眼で観察することにより、蛍光を検出することも可能である。そして、肉眼で蛍光強度の増強に基づいて、標的物質の存在又は不存在を判定することができる。
(Judgment process)
In the determination step, it is determined whether or not the target substance is present in the sample based on the fluorescence intensity measured in the fluorescence measurement step. Specifically, when the fluorescence intensity of the quantum dots in the sample is stronger than the fluorescence intensity of the quantum dots in the negative control, it is determined that the target substance is present in the sample. As described above, when a quantum dot that emits fluorescence in the visible light region is used, it is possible to detect fluorescence by observing with the naked eye without using a fluorescence measuring device. The presence or absence of the target substance can be determined based on the enhancement of the fluorescence intensity with the naked eye.
(試料中の標的物質を定量する方法)
 試料中の標的物質を定量する方法は、基本的には試料中の標的物質50を検出する方法と同様であり、試料と共に既知濃度の標的物質50を含む複数の標準試料を用いる点が異なる。具体的には、試料及び既知濃度の標的物質50を含む複数の標準試料のそれぞれに第1のプローブ固定化カーボンナノチューブ300及び第2のプローブ61を固定化した量子ドット60を添加して、上記と同様のインキュベーション工程及び蛍光測定工程を行う。続いて、次に説明する定量工程を行う。
(Method of quantifying the target substance in the sample)
The method for quantifying the target substance in the sample is basically the same as the method for detecting the target substance 50 in the sample, except that a plurality of standard samples including the target substance 50 at a known concentration are used together with the sample. Specifically, the quantum dots 60 on which the first probe-immobilized carbon nanotubes 300 and the second probes 61 are immobilized are added to each of a plurality of standard samples including the sample and the target substance 50 having a known concentration, The same incubation step and fluorescence measurement step are performed. Subsequently, the quantitative process described below is performed.
(定量工程)
 定量工程では、試料中の量子ドットの蛍光強度を、複数の標準試料中の量子ドットの蛍光強度と比較することにより、試料中の標的物質の存在量を求める。例えば、複数の標準試料中の量子ドットの蛍光強度をもとに検量線を作成し、試料中の量子ドットの蛍光強度をこの検量線に当てはめることにより、試料中の標的物質の濃度を求めることができる。
(Quantitative process)
In the quantification step, the abundance of the target substance in the sample is determined by comparing the fluorescence intensity of the quantum dots in the sample with the fluorescence intensity of the quantum dots in the plurality of standard samples. For example, by creating a calibration curve based on the fluorescence intensity of quantum dots in multiple standard samples, and applying the fluorescence intensity of quantum dots in the sample to this calibration curve, the concentration of the target substance in the sample is determined. Can do.
(キット)
 一実施形態において、試料中の標的物質の検出又は定量用キットは、第1のプローブ固定化カーボンナノチューブ300、及び、第2のプローブ61を固定化した量子ドット60を含む。上記第1のプローブ固定化カーボンナノチューブ300、及び、上記第2のプローブ61を固定化した量子ドット60は、溶液又は懸濁液の状態で供給されてもよいし、乾燥状態で供給され、使用時にバッファーに溶解又は懸濁させるものであってもよい。上記第1のプローブ固定化カーボンナノチューブ300及び上記第2のプローブ61を固定化した量子ドット60を用いて、上記のインキュベーション工程、蛍光検出工程、判定工程及び定量工程を実施することにより、試料中の標的物質を検出又は定量することができる。
(kit)
In one embodiment, a kit for detecting or quantifying a target substance in a sample includes a first probe-immobilized carbon nanotube 300 and a quantum dot 60 on which a second probe 61 is immobilized. The first probe-immobilized carbon nanotube 300 and the quantum dot 60 on which the second probe 61 is immobilized may be supplied in a solution or suspension state, or supplied in a dry state and used. Sometimes it may be dissolved or suspended in a buffer. By performing the incubation step, the fluorescence detection step, the determination step, and the quantification step using the quantum dots 60 on which the first probe-immobilized carbon nanotube 300 and the second probe 61 are immobilized, in the sample Target substances can be detected or quantified.
 別の実施形態に係る、試料中の標的物質の検出又は定量用キットにおいて、上記第1のプローブ固定化カーボンナノチューブ300、及び、第2のプローブ61を固定化した量子ドット60は、例えば、ろ紙などの媒体中に染みこませた状態で供給されてもよい。媒体は、使用に適した形状及びサイズに適宜調整されてよく、例えば短冊状であってよい。キットの使用時には、試料及び標的物質を含まない陰性対照を、第1のプローブ固定化カーボンナノチューブ300及び第2のプローブ61を固定化した量子ドット60が存在する媒体に滴下する。これにより、試料中に標的物質50が存在する場合には、媒体中で標的物質、第1のプローブ及び第2のプローブが結合し、金属ナノ粒子及び量子ドットが近接する。蛍光検出工程において、媒体に励起光を照射することにより、量子ドットから蛍光が発生する。本実施形態のキットは、特に、標的物質の迅速な検出が必要な現場での簡易検出に適している。 In the kit for detecting or quantifying a target substance in a sample according to another embodiment, the quantum dots 60 on which the first probe-immobilized carbon nanotube 300 and the second probe 61 are immobilized are, for example, filter paper. Or the like soaked in a medium such as. The medium may be appropriately adjusted to a shape and size suitable for use, and may be, for example, a strip shape. When the kit is used, a negative control that does not contain the sample and the target substance is dropped onto a medium in which the first probe-immobilized carbon nanotube 300 and the second probe 61 are immobilized. Thereby, when the target substance 50 exists in a sample, a target substance, a 1st probe, and a 2nd probe couple | bond together in a medium, and a metal nanoparticle and a quantum dot adjoin. In the fluorescence detection step, fluorescence is generated from the quantum dots by irradiating the medium with excitation light. The kit of this embodiment is particularly suitable for simple detection in the field that requires rapid detection of a target substance.
 以下、実施例を用いて、本発明について説明するが、本発明は実施例に限定されるものではない。 Hereinafter, the present invention will be described using examples, but the present invention is not limited to the examples.
 実施例では、本発明の方法の一例として、金ナノ粒子で表面処理したカーボンナノチューブ(AuCNT)とCdTe蛍光量子ドット(CdTe)を用いて、標的物質であるインフルエンザウイルスを検出する方法について説明する。 In the examples, as an example of the method of the present invention, a method for detecting influenza virus as a target substance using carbon nanotubes (AuCNT) surface-treated with gold nanoparticles and CdTe fluorescent quantum dots (CdTe) will be described.
(AuCNTの作製)
 HAuCl・3HO(0.01mmol、Sigma-Aldrich社製)と酸処理した多層カーボンナノチューブ(2mg、Sigma-Aldrich社製)を蒸留水(30mL)に入れ、30分間超音波処理によって分散し、CNT溶液を得た。得られたCNT溶液(600μL)を、没食子酸(0.01M、Sigma-Aldrich社製)とイソフラボン(10mg、韓国産豆から直接抽出したもの)の混合液(10mL)に入れて1時間激しく撹拌した。撹拌後、13,000rpmで10分間遠心分離を行い、上澄みを除去し、粉末状態のAuCNTを得た。
(Production of AuCNT)
HAuCl 4 .3H 2 O (0.01 mmol, manufactured by Sigma-Aldrich) and acid-treated multi-walled carbon nanotubes (2 mg, manufactured by Sigma-Aldrich) were placed in distilled water (30 mL) and dispersed by sonication for 30 minutes. A CNT solution was obtained. The obtained CNT solution (600 μL) was vigorously stirred for 1 hour in a mixed solution (10 mL) of gallic acid (0.01 M, manufactured by Sigma-Aldrich) and isoflavone (10 mg, extracted directly from Korean beans). did. After stirring, the mixture was centrifuged at 13,000 rpm for 10 minutes, and the supernatant was removed to obtain powdered AuCNT.
(実施例1)
1.抗HA抗体固定化AuCNTの作製
 得られたAuCNT(1mg)を蒸留水(10mL)に入れ、5分間超音波処理によって分散し、AuCNT溶液を得た。金ナノ粒子の表面にアミノ基を導入するため、システアミン(0.01M、1mL)をAuCNT溶液に添加し、30分間撹拌してから13,000rpmで10分間遠心分離を行い、上澄みを除去し、アミン処理したAuCNTを得た。一方、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド(EDC;100μL、10mM、Sigma-Aldrich社製)とN-ヒドロキシスクシンイミド(NHS;100μL、10mM、Sigma-Aldrich社製)に、抗ヘマグルチニン(HA)抗体(1μL、Ab66189、Abcam社製)を入れ、30分間反応し、抗体溶液を得た。得られた抗体溶液にアミン処理したAuCNT(1mg/mL、30μL)を混合し、3時間反応を行った。
Example 1
1. Preparation of anti-HA antibody-immobilized AuCNT The obtained AuCNT (1 mg) was placed in distilled water (10 mL) and dispersed by sonication for 5 minutes to obtain an AuCNT solution. In order to introduce amino groups on the surface of the gold nanoparticles, cysteamine (0.01 M, 1 mL) is added to the AuCNT solution, stirred for 30 minutes, then centrifuged at 13,000 rpm for 10 minutes, and the supernatant is removed. An amine-treated AuCNT was obtained. On the other hand, 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide (EDC: 100 μL, 10 mM, manufactured by Sigma-Aldrich) and N-hydroxysuccinimide (NHS: 100 μL, 10 mM, manufactured by Sigma-Aldrich) A hemagglutinin (HA) antibody (1 μL, Ab66189, manufactured by Abcam) was added and reacted for 30 minutes to obtain an antibody solution. The obtained antibody solution was mixed with amine-treated AuCNT (1 mg / mL, 30 μL) and reacted for 3 hours.
2.抗HA抗体固定化CdTeの作製
 抗HA抗体固定化AuCNTの作製と同様の操作によって、CdTeの表面に抗HA抗体(Ab66189、Abcam社製)を固定化させた。
2. Preparation of anti-HA antibody-immobilized CdTe An anti-HA antibody (Ab66189, manufactured by Abcam) was immobilized on the surface of CdTe by the same operation as the preparation of anti-HA antibody-immobilized AuCNT.
3.抗原-抗体反応によるインフルエンザウイルスの検出
 抗HA抗体固定化AuCNT及び抗HA抗体固定化CdTeを混合した後、96ウエルプレートに加え、インフルエンザウイルス(A/Beijing/262/95、H1N1型、Sino Biological Inc社製)を添加後、1時間反応を行った。励起波長380nm、発光波長518nmで蛍光強度を測定した。
3. Detection of influenza virus by antigen-antibody reaction After mixing anti-HA antibody-immobilized AuCNT and anti-HA antibody-immobilized CdTe, it was added to a 96-well plate, and influenza virus (A / Beijing / 262/95, H1N1, type Sino Biological Inc. The reaction was carried out for 1 hour. The fluorescence intensity was measured at an excitation wavelength of 380 nm and an emission wavelength of 518 nm.
(実施例2)
1.抗NA抗体固定化AuCNTの作製
 得られたAuCNT(1mg)を蒸留水(10mL)に入れ、5分間超音波処理によって分散し、AuCNT溶液を得た。金ナノ粒子の表面にアミノ基を導入するため、システアミン(0.01M、1mL)をAuCNT溶液に添加し、30分間撹拌してから13,000rpmで10分間遠心分離を行い、上澄みを除去し、アミン処理したAuCNTを得た。一方、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド(EDC;100μL、10mM、Sigma-Aldrich社製)とN-ヒドロキシスクシンイミド(NHS;100μL、10mM、Sigma-Aldrich社製)に、抗ノイラミニダーゼ(NA)抗体(1μL、A/New Caledonia/20/1999、H1N1型、Cosmo bio社製)を入れ、30分間反応し、抗体溶液を得た。得られた抗体溶液にアミン処理したAuCNT(1mg/mL、30μL)を混合し、3時間反応を行った。
(Example 2)
1. Preparation of anti-NA antibody-immobilized AuCNT The obtained AuCNT (1 mg) was placed in distilled water (10 mL) and dispersed by sonication for 5 minutes to obtain an AuCNT solution. In order to introduce amino groups on the surface of the gold nanoparticles, cysteamine (0.01 M, 1 mL) is added to the AuCNT solution, stirred for 30 minutes, then centrifuged at 13,000 rpm for 10 minutes, and the supernatant is removed. An amine-treated AuCNT was obtained. On the other hand, 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide (EDC: 100 μL, 10 mM, manufactured by Sigma-Aldrich) and N-hydroxysuccinimide (NHS: 100 μL, 10 mM, manufactured by Sigma-Aldrich) A neuraminidase (NA) antibody (1 μL, A / New Caledonia / 20/1999, H1N1 type, manufactured by Cosmo bio) was added and reacted for 30 minutes to obtain an antibody solution. The obtained antibody solution was mixed with amine-treated AuCNT (1 mg / mL, 30 μL) and reacted for 3 hours.
2.抗HA抗体固定化CdTeの作製
 抗NA抗体固定化AuCNTの作製と同様の操作によって、CdTeの表面に抗HA抗体(Ab66189、Abcam社製)を固定化させた。
2. Preparation of anti-HA antibody-immobilized CdTe An anti-HA antibody (Ab66189, manufactured by Abcam) was immobilized on the surface of CdTe by the same operation as the preparation of anti-NA antibody-immobilized AuCNT.
3.抗原-抗体反応によるインフルエンザウイルスの検出
 抗NA抗体固定化AuCNT及び抗HA抗体固定化CdTeを混合した後、96ウエルプレートに加え、インフルエンザウイルス(A/New Caledonia/20/99IvR116、H1N1型、Sino Biological Inc社製)を添加後、1時間反応を行った。励起波長380nm、発光波長518nmで蛍光強度を測定した。
3. Detection of influenza virus by antigen-antibody reaction After mixing anti-NA antibody-immobilized AuCNT and anti-HA antibody-immobilized CdTe, it was added to a 96-well plate, and influenza virus (A / New Caledonia / 20 / 99IvR116, H1N1 type, Sino Biological) The reaction was carried out for 1 hour after the addition of Inc.). The fluorescence intensity was measured at an excitation wavelength of 380 nm and an emission wavelength of 518 nm.
(紫外可視光スペクトル解析)
 紫外可視光分光光度計(infinite F500、TECAN社製)を用いて、AuCNTの吸光度を測定した結果を図3に示す。なお、図3において、横軸は波長(nm)を示し、縦軸は吸光度を示す。図3に示すように、実施例1で得られたAuCNTは、約550nmの波長において金ナノ粒子表面プラズモン共鳴による吸光ピークが観測された。また、カーボンナノチューブ(CNT)を用いて同様に吸光度を測定すると、約550nmの波長における吸光ピークは観測されなかった。
(Ultraviolet-visible spectrum analysis)
FIG. 3 shows the result of measuring the absorbance of AuCNT using an ultraviolet-visible light spectrophotometer (infinite F500, manufactured by TECAN). In FIG. 3, the horizontal axis indicates the wavelength (nm) and the vertical axis indicates the absorbance. As shown in FIG. 3, in the AuCNT obtained in Example 1, an absorption peak due to surface plasmon resonance of gold nanoparticles was observed at a wavelength of about 550 nm. Further, when the absorbance was similarly measured using carbon nanotubes (CNT), no absorption peak at a wavelength of about 550 nm was observed.
(粉末X線回折パターン)
 粉末X線回折装置(RINT ULTIMA、Rigaku社製)を用いて、AuCNTのX線回折パターンを測定した結果を図4に示す。なお、図4において、横軸は2θを示し、縦軸は強度を示す。図4に示すように、カーボンナノチューブ(CNT)では、(002)面のみのパターンが観測されたが、実施例1で得られたAuCNTでは、金ナノ粒子による多様な回折パターンが観測された。特に、炭素は金に比べて結晶性が低いので、回折パターンの強度が弱いことが確認できた。
(Powder X-ray diffraction pattern)
The result of having measured the X-ray-diffraction pattern of AuCNT using the powder X-ray-diffraction apparatus (RINT ULTIMA, Rigaku company make) is shown in FIG. In FIG. 4, the horizontal axis represents 2θ, and the vertical axis represents intensity. As shown in FIG. 4, in the carbon nanotube (CNT), a pattern of only the (002) plane was observed, but in the AuCNT obtained in Example 1, various diffraction patterns due to gold nanoparticles were observed. In particular, since the crystallinity of carbon is lower than that of gold, it was confirmed that the intensity of the diffraction pattern was weak.
(透過型電子顕微鏡による観察)
 透過型電子顕微鏡(JEM-2100F、JEOL社製)を用いて、カーボンナノチューブ(CNT)及びAuCNTを観察した結果を図5A、図5B及び図5Cに示す。カーボンナノチューブの場合は、図5Aに示すように、直径180~200nm、長さ数マイクロメートルの透明なチューブ構造を示す像が得られた。一方、AuCNTの場合は、図5B及び図5Cに示すように、透明なチューブに直径10~100nmの黒色の粒子が固定されている像が得られた。さらに高い拡大倍率の像によれば、図5Bに示された黒色の粒子は、複数の金ナノ粒子の凝集体であり、個々の金ナノ粒子の粒子径は10~20nmであった。図5Cに示すAuCNTでは、図5Bに示すAuCNTと比較して、より小さな金ナノ粒子がカーボンナノチューブに数多く固定化されていた。
(Observation with transmission electron microscope)
The results of observation of carbon nanotubes (CNT) and AuCNT using a transmission electron microscope (JEM-2100F, manufactured by JEOL) are shown in FIGS. 5A, 5B, and 5C. In the case of carbon nanotubes, as shown in FIG. 5A, an image showing a transparent tube structure having a diameter of 180 to 200 nm and a length of several micrometers was obtained. On the other hand, in the case of AuCNT, as shown in FIGS. 5B and 5C, an image in which black particles having a diameter of 10 to 100 nm are fixed to a transparent tube was obtained. According to an image at a higher magnification, the black particles shown in FIG. 5B are aggregates of a plurality of gold nanoparticles, and the particle diameter of each gold nanoparticle is 10 to 20 nm. In the AuCNT shown in FIG. 5C, many smaller gold nanoparticles were immobilized on the carbon nanotubes than in the AuCNT shown in FIG. 5B.
(赤外吸収スペクトル解析)
 実施例1で得られたアミン処理したAuCNTについて、赤外吸収スペクトルを測定した結果を図6に示す。なお、図6において、横軸は吸収率(%)を示し、縦軸は波数(cm-1)を示す。図6に示すように、波数1450~1580cm-1付近において、カーボンナノチューブを構成するベンゼン環(C)の炭素-炭素二重結合の伸縮振動エネルギーを示す赤外吸収ピークが観測された。また、波数3400~3500cm-1付近において、NH振動エネルギーを示す赤外吸収ピークが観測された。なお、実施例1では、金ナノ粒子を固定化したカーボンナノチューブとシステアミンとの反応により、システアミンのチオール基が金ナノ粒子表面に結合し、カーボンナノチューブに金ナノ粒子を介してアミノ基が導入される。
(Infrared absorption spectrum analysis)
The results of measuring the infrared absorption spectrum of the amine-treated AuCNT obtained in Example 1 are shown in FIG. In FIG. 6, the horizontal axis indicates the absorption rate (%), and the vertical axis indicates the wave number (cm −1 ). As shown in FIG. 6, an infrared absorption peak indicating the stretching vibration energy of the carbon-carbon double bond of the benzene ring (C 6 H 6 ) constituting the carbon nanotube was observed in the vicinity of the wave number of 1450 to 1580 cm −1 . . In addition, an infrared absorption peak indicating NH vibrational energy was observed in the vicinity of a wave number of 3400 to 3500 cm −1 . In Example 1, the thiol group of cysteamine is bonded to the surface of the gold nanoparticle by the reaction between the carbon nanotube on which the gold nanoparticle is immobilized and cysteamine, and the amino group is introduced into the carbon nanotube via the gold nanoparticle. The
(ELISA解析)
 実施例1で得られた抗HA抗体固定化AuCNTと抗HA抗体を固定化していないAuCNTとを用いて、それぞれELISA解析を行った。結果を図7Aに示す。抗HA抗体固定化AuCNT(HA Ab/AuCNT)の吸光度は、抗HA抗体を固定化していないAuCNTの吸光度と比較して約4倍であり、抗HA抗体の抗原特異性が確認できた。また、抗原を添加しない場合、吸光度は検出できなかった。また、実施例2で得られた抗NA抗体固定化AuCNTを用いて、同様にELISA解析を行った。結果を図7Bに示す。抗NA抗体固定化AuCNTの場合(NA Ab/AuCNT)も、抗NA抗体の抗原特異性が確認できた。
(ELISA analysis)
ELISA analysis was performed using the anti-HA antibody-immobilized AuCNT obtained in Example 1 and AuCNT to which the anti-HA antibody was not immobilized, respectively. The results are shown in FIG. 7A. The absorbance of the anti-HA antibody-immobilized AuCNT (HA Ab / AuCNT) was about 4 times that of AuCNT not immobilized with the anti-HA antibody, confirming the antigen specificity of the anti-HA antibody. Absorbance could not be detected when no antigen was added. In addition, ELISA analysis was similarly performed using the anti-NA antibody-immobilized AuCNT obtained in Example 2. The result is shown in FIG. 7B. In the case of anti-NA antibody-immobilized AuCNT (NA Ab / AuCNT), the antigen specificity of the anti-NA antibody could be confirmed.
 また、実施例1で得られた抗HA抗体固定化AuCNT及び抗HA抗体固定化CdTeに、標的物質としてインフルエンザウイルス(A/Beijing/262/95、H1N1型、Sino Biological Inc社製)を添加して振盪させた後に、共焦点レーザー顕微鏡(LSM700、Carl Zeiss マイクロスコピー GmbH社製)及び微分干渉顕微鏡(DIC)を用いて抗HA抗体固定化AuCNTを観察した。共焦点レーザー顕微鏡で得られた像を図8Aに、微分干渉顕微鏡で得られた像を図8Bに示し、これらの像を重ねたものを図8Cに示す。図8Cに示すように、AuCNTに固定化された抗HA抗体とインフルエンザウイルスの抗原-抗体反応、及び、CdTeに固定化された抗HA抗体とインフルエンザウイルスの抗原-抗体反応が進行することにより、CdTeがAuCNTの表面に集積し、CdTeが蛍光を呈していた。 In addition, an influenza virus (A / Beijing / 262/95, H1N1 type, manufactured by Sino Biological Inc) was added as a target substance to the anti-HA antibody-immobilized AuCNT and anti-HA antibody-immobilized CdTe obtained in Example 1. Then, the anti-HA antibody-immobilized AuCNT was observed using a confocal laser microscope (LSM700, Carl Zeiss Microscopy GmbH) and a differential interference microscope (DIC). FIG. 8A shows an image obtained with a confocal laser microscope, FIG. 8B shows an image obtained with a differential interference microscope, and FIG. 8C shows a superposition of these images. As shown in FIG. 8C, the anti-HA antibody immobilized on AuCNT and the influenza virus antigen-antibody reaction, and the anti-HA antibody immobilized on CdTe and the influenza virus antigen-antibody reaction proceed, CdTe accumulated on the surface of AuCNT, and CdTe exhibited fluorescence.
 次に、上記方法にしたがい、インフルエンザウイルス(A/Beijing/262/95、H1N1型、Sino Biological Inc社製)の最終濃度(ウイルス濃度)を10-3ng/mL(1pg/mL)~10ng/mL(1μg/mL)の範囲で変化させ、実施例1で得られた複合体のCdTeの蛍光強度(PL強度)を測定した。横軸にウイルス濃度、縦軸に蛍光強度をプロットすると、図9に示すように、インフルエンザウイルスの濃度が1ng/mL~1μg/mLの範囲では、ウイルス濃度の増加に伴いCdTeの蛍光強度が上昇した。なお、このときの蛍光の検出限界(下限値)は1ng/mLであった。 Next, according to the above method, the final concentration (virus concentration) of influenza virus (A / Beijing / 262/95, H1N1 type, manufactured by Sino Biological Inc) is 10 −3 ng / mL (1 pg / mL) to 10 3. The CdTe fluorescence intensity (PL intensity) of the complex obtained in Example 1 was measured by changing the concentration in the range of ng / mL (1 μg / mL). When the virus concentration is plotted on the horizontal axis and the fluorescence intensity is plotted on the vertical axis, as shown in FIG. 9, the fluorescence intensity of CdTe increases with increasing virus concentration when the influenza virus concentration is in the range of 1 ng / mL to 1 μg / mL. did. At this time, the fluorescence detection limit (lower limit) was 1 ng / mL.
 さらに、実施例2で得られた抗NA抗体固定化AuCNT及び抗HA抗体固定化CdTEと、標的物質としてインフルエンザウイルス(A/New Caledonia/20/99IvR116、H1N1型、Sino Biological Inc社製)とを用いて、同様に、ウイルス濃度を10-4ng/mL(0.1pg/mL)~10ng/mLの範囲で変化させ、実施例2で得られた複合体のCdTeの蛍光強度(PL強度)を測定した。横軸にウイルス濃度、縦軸に蛍光強度をプロットすると、図10に示すように、相関係数0.98以上の検量線が得られた。実施例2は、AuCNTに固定化した抗体とCdTeに固定化した抗体とが異なるため、さらに高感度でウイルスを検出できた。なお、このときの蛍光の検出限界(下限値)は0.1pg/mLであった。 Furthermore, anti-NA antibody-immobilized AuCNT and anti-HA antibody-immobilized CdTE obtained in Example 2 and influenza virus (A / New Caledonia / 20 / 99IvR116, H1N1 type, manufactured by Sino Biological Inc) as a target substance Similarly, the fluorescence concentration (PL intensity) of CdTe of the complex obtained in Example 2 was varied by changing the virus concentration in the range of 10 −4 ng / mL (0.1 pg / mL) to 10 ng / mL. Was measured. When the virus concentration was plotted on the horizontal axis and the fluorescence intensity was plotted on the vertical axis, a calibration curve with a correlation coefficient of 0.98 or more was obtained as shown in FIG. In Example 2, since the antibody immobilized on AuCNT was different from the antibody immobilized on CdTe, the virus could be detected with higher sensitivity. At this time, the fluorescence detection limit (lower limit) was 0.1 pg / mL.
 したがって、本発明の検出方法によれば、標的物質の検出を簡便かつ非常に高感度に行うことができる。また、標的物質の濃度依存的に量子ドットの蛍光強度が上昇し、標的物質の濃度が0.1pg/mLであっても、標的物質を検出することが可能である。さらに、従来の金属膜で行う検出方法と比較して、本発明の検出方法は、カーボンナノチューブを中心とした複合体を形成することによって、標的物質の有無による蛍光強度の差が大きくなり、標的物質の有無を判定することが極めて容易である。 Therefore, according to the detection method of the present invention, the target substance can be detected easily and with very high sensitivity. Further, the fluorescence intensity of the quantum dots increases depending on the concentration of the target substance, and the target substance can be detected even if the concentration of the target substance is 0.1 pg / mL. Furthermore, compared with the conventional detection method using a metal film, the detection method of the present invention forms a complex centered on carbon nanotubes, thereby increasing the difference in fluorescence intensity depending on the presence or absence of the target substance. It is very easy to determine the presence or absence of a substance.
 10…カーボンナノチューブ、20…金属イオン、30…金属ナノ粒子、40…第1のプローブ、50…標的物質、60…量子ドット、61…第2のプローブ、100…金属イオン処理カーボンナノチューブ、200…金属ナノ粒子を固定化したカーボンナノチューブ、300…第1のプローブ固定化カーボンナノチューブ、400…複合体。 DESCRIPTION OF SYMBOLS 10 ... Carbon nanotube, 20 ... Metal ion, 30 ... Metal nanoparticle, 40 ... 1st probe, 50 ... Target substance, 60 ... Quantum dot, 61 ... 2nd probe, 100 ... Metal ion processing carbon nanotube, 200 ... Carbon nanotubes on which metal nanoparticles are immobilized, 300 ... first probe-immobilized carbon nanotubes, 400 ... composite.

Claims (11)

  1.  試料中の標的物質を検出する方法であって、
     試料及び標的物質を含まない陰性対照のそれぞれに、第1のプローブ及び第2のプローブを添加してインキュベーションするインキュベーション工程であって、第1のプローブは、カーボンナノチューブに固定された金属ナノ粒子に結合され、第2のプローブは、量子ドットに結合されている、工程と、
     インキュベーション工程後の試料及び陰性対照中の量子ドットの蛍光強度を測定する蛍光測定工程と、
     試料中の量子ドットの蛍光強度が、陰性対照中の量子ドットの蛍光強度と比較して強い場合に、試料中に標的物質が存在すると判定する判定工程と、
     を含み、
     第1のプローブ及び第2のプローブは、前記標的物質と結合するが互いに結合せず、第1のプローブ及び第2のプローブが前記標的物質と結合することにより、前記金属ナノ粒子及び前記量子ドットが近接し、それにより前記量子ドットの蛍光強度が増強する、方法。
    A method for detecting a target substance in a sample,
    An incubation step in which a first probe and a second probe are added to each of a sample and a negative control not containing a target substance and incubated, wherein the first probe is attached to metal nanoparticles immobilized on carbon nanotubes. The second probe is coupled to the quantum dot; and
    A fluorescence measurement step for measuring the fluorescence intensity of the quantum dots in the sample and the negative control after the incubation step;
    A determination step of determining that the target substance is present in the sample when the fluorescence intensity of the quantum dot in the sample is stronger than the fluorescence intensity of the quantum dot in the negative control;
    Including
    The first probe and the second probe bind to the target substance but not to each other, and the first probe and the second probe bind to the target substance, whereby the metal nanoparticle and the quantum dot In proximity, thereby increasing the fluorescence intensity of the quantum dots.
  2.  試料中の標的物質を定量する方法であって、
     試料及び既知濃度の標的物質を含む複数の標準試料のそれぞれに、第1のプローブ及び第2のプローブを添加してインキュベーションするインキュベーション工程であって、第1のプローブは、カーボンナノチューブに固定された金属ナノ粒子に結合され、第2のプローブは、量子ドットに結合されている、工程と、
     インキュベーション工程後の試料及び複数の標準試料中の量子ドットの蛍光強度を測定する蛍光測定工程と、
     試料中の量子ドットの蛍光強度を、複数の標準試料中の量子ドットの蛍光強度と比較して、試料中の標的物質を定量する定量工程と、
     を含み、
     第1のプローブ及び第2のプローブは、前記標的物質と結合するが互いに結合せず、第1のプローブ及び第2のプローブが前記標的物質と結合することにより、前記金属ナノ粒子及び前記量子ドットが近接し、それにより前記量子ドットの蛍光強度が増強する、方法。
    A method for quantifying a target substance in a sample, comprising:
    An incubation step in which a first probe and a second probe are added to each of a sample and a plurality of standard samples containing a known concentration of a target substance, and the first probe is immobilized on the carbon nanotube. A second probe coupled to the metal nanoparticle and the second probe coupled to the quantum dot; and
    A fluorescence measurement step for measuring the fluorescence intensity of the quantum dots in the sample after the incubation step and the plurality of standard samples;
    A quantitative process for quantifying the target substance in the sample by comparing the fluorescence intensity of the quantum dots in the sample with the fluorescence intensity of the quantum dots in a plurality of standard samples;
    Including
    The first probe and the second probe bind to the target substance but not to each other, and the first probe and the second probe bind to the target substance, whereby the metal nanoparticle and the quantum dot In proximity, thereby increasing the fluorescence intensity of the quantum dots.
  3.  前記金属ナノ粒子は、金平糖状金属ナノ粒子である、請求項1又は2に記載の方法。 The method according to claim 1 or 2, wherein the metal nanoparticles are confetti sugar metal nanoparticles.
  4.  前記金属ナノ粒子は、金ナノ粒子である、請求項1~3のいずれか一項に記載の方法。 The method according to any one of claims 1 to 3, wherein the metal nanoparticles are gold nanoparticles.
  5.  前記量子ドットは、可視光領域の蛍光を発するものである、請求項1~4のいずれか一項に記載の方法。 The method according to any one of claims 1 to 4, wherein the quantum dots emit fluorescence in the visible light region.
  6.  第1のプローブ及び第2のプローブは、抗原、抗体、レクチン、糖、レセプター、リガンド、アプタマー又は核酸である、請求項1~5のいずれか一項に記載の方法。 The method according to any one of claims 1 to 5, wherein the first probe and the second probe are antigens, antibodies, lectins, sugars, receptors, ligands, aptamers or nucleic acids.
  7.  試料中の標的物質の検出又は定量用キットであって、
     第1のプローブ及び第2のプローブとを含み、
     第1のプローブは、カーボンナノチューブに固定された金属ナノ粒子に結合され、
     第2のプローブは、量子ドットに結合され、
     第1のプローブ及び第2のプローブは、前記標的物質と結合するが互いに結合せず、第1のプローブ及び第2のプローブが前記標的物質と結合することにより、前記金属ナノ粒子及び前記量子ドットが近接し、それにより前記量子ドットの蛍光強度が増強する、キット。
    A kit for detecting or quantifying a target substance in a sample,
    Including a first probe and a second probe;
    The first probe is bound to metal nanoparticles fixed to the carbon nanotube,
    The second probe is coupled to the quantum dot,
    The first probe and the second probe bind to the target substance but not to each other, and the first probe and the second probe bind to the target substance, whereby the metal nanoparticle and the quantum dot , Which increases the fluorescence intensity of the quantum dots.
  8.  前記金属ナノ粒子は、金平糖状金属ナノ粒子である、請求項7に記載のキット。 The kit according to claim 7, wherein the metal nanoparticles are confetti sugar metal nanoparticles.
  9.  前記金属ナノ粒子は、金ナノ粒子である、請求項7又は8に記載のキット。 The kit according to claim 7 or 8, wherein the metal nanoparticles are gold nanoparticles.
  10.  前記量子ドットは、可視光領域の蛍光を発するものである、請求項7~9のいずれか一項に記載のキット。 The kit according to any one of claims 7 to 9, wherein the quantum dots emit fluorescence in the visible light region.
  11.  第1のプローブ及び第2のプローブは、抗原、抗体、レクチン、糖、レセプター、リガンド、アプタマー又は核酸である、請求項7~10のいずれか一項に記載のキット。 The kit according to any one of claims 7 to 10, wherein the first probe and the second probe are antigens, antibodies, lectins, sugars, receptors, ligands, aptamers or nucleic acids.
PCT/JP2015/053572 2014-02-13 2015-02-10 Quantum dot fluorescence enhanced immunoassay WO2015122391A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015562818A JP6593840B2 (en) 2014-02-13 2015-02-10 Quantum dot fluorescence enhanced immunoassay

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-025431 2014-02-13
JP2014025431 2014-02-13

Publications (1)

Publication Number Publication Date
WO2015122391A1 true WO2015122391A1 (en) 2015-08-20

Family

ID=53800134

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/053572 WO2015122391A1 (en) 2014-02-13 2015-02-10 Quantum dot fluorescence enhanced immunoassay

Country Status (2)

Country Link
JP (1) JP6593840B2 (en)
WO (1) WO2015122391A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106950206A (en) * 2017-03-01 2017-07-14 南京医科大学 A kind of method that fluorescent optical sensor based on aptamer detects adenosine
KR20190069328A (en) * 2017-12-11 2019-06-19 주식회사 딕스젠 Composition for Tuberculosis Diagnosis and Diagnostic Method for Tuberculosis based on Optical Properties
WO2019117585A3 (en) * 2017-12-11 2019-08-01 주식회사 딕스젠 Composition for diagnosing tuberculosis and method for diagnosing tuberculosis on basis of change in optical characteristics
CN113376130A (en) * 2021-05-14 2021-09-10 南京师范大学 Fluorescence open-type probe for detecting ampicillin residue and preparation method and application thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003322653A (en) * 2002-05-07 2003-11-14 Toshiba Corp Support and carrier for fixing probe
JP2007234962A (en) * 2006-03-02 2007-09-13 Fujitsu Ltd Method for manufacturing quantum-dot device, and integrated circuit composed of device made thereby
US20090004117A1 (en) * 2006-01-04 2009-01-01 Jianghong Rao Self-Illiminating Dot Systems and Methods of Use Thereof
US20120178640A1 (en) * 2010-08-31 2012-07-12 Massachusetts Institute Of Technology Nanotube Array for Optical Detection of Protein-Protein Interactions
JP2014021016A (en) * 2012-07-20 2014-02-03 National Univ Corp Shizuoka Univ Method and kit for detecting or quantitatively determining target substance in specimen

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003322653A (en) * 2002-05-07 2003-11-14 Toshiba Corp Support and carrier for fixing probe
US20090004117A1 (en) * 2006-01-04 2009-01-01 Jianghong Rao Self-Illiminating Dot Systems and Methods of Use Thereof
JP2007234962A (en) * 2006-03-02 2007-09-13 Fujitsu Ltd Method for manufacturing quantum-dot device, and integrated circuit composed of device made thereby
US20120178640A1 (en) * 2010-08-31 2012-07-12 Massachusetts Institute Of Technology Nanotube Array for Optical Detection of Protein-Protein Interactions
JP2014021016A (en) * 2012-07-20 2014-02-03 National Univ Corp Shizuoka Univ Method and kit for detecting or quantitatively determining target substance in specimen

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DU, D.: "Covalent coupling of organophosphorus hydrolase loaded quantum dots to carbon nanotube/Au nanocomposite for enhanced detection of methyl parathion", BIOSENSORS AND BIOELECTRONICS, vol. 25, no. 6, 15 February 2010 (2010-02-15), pages 1370 - 1375, XP026833914 *
GUIFEN JIE: "Electrochemiluminescence immunosensor based on nanocomposite film of CdS quantum dots-carbon nanotubes combined with gold nanoparticles-chitosan", ELECTROCHEMISTRY COMMUNICATIONS, vol. 12, no. 1, 2010, pages 22 - 26, XP026813075 *
LEE, J.: "A plasmon-assisted fluoro-immunoassay using gold nanoparticle-decorated carbon nanotubes for monitoring the influenza virus", BIOSENSORS AND BIOELECTRONICS, vol. 64, 16 September 2014 (2014-09-16), pages 311 - 317, XP055219167, DOI: doi:10.1016/j.bios.2014.09.021 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106950206A (en) * 2017-03-01 2017-07-14 南京医科大学 A kind of method that fluorescent optical sensor based on aptamer detects adenosine
CN106950206B (en) * 2017-03-01 2020-03-31 南京医科大学 Method for detecting adenosine by fluorescence sensor based on nucleic acid aptamer
KR20190069328A (en) * 2017-12-11 2019-06-19 주식회사 딕스젠 Composition for Tuberculosis Diagnosis and Diagnostic Method for Tuberculosis based on Optical Properties
WO2019117585A3 (en) * 2017-12-11 2019-08-01 주식회사 딕스젠 Composition for diagnosing tuberculosis and method for diagnosing tuberculosis on basis of change in optical characteristics
KR102098030B1 (en) 2017-12-11 2020-04-07 주식회사 딕스젠 Composition for Tuberculosis Diagnosis and Diagnostic Method for Tuberculosis based on Optical Properties
CN113376130A (en) * 2021-05-14 2021-09-10 南京师范大学 Fluorescence open-type probe for detecting ampicillin residue and preparation method and application thereof

Also Published As

Publication number Publication date
JPWO2015122391A1 (en) 2017-03-30
JP6593840B2 (en) 2019-10-23

Similar Documents

Publication Publication Date Title
Chen et al. SERS-based lateral flow immunoassay for sensitive and simultaneous detection of anti-SARS-CoV-2 IgM and IgG antibodies by using gap-enhanced Raman nanotags
Xu et al. Ultrasensitive detection of severe fever with thrombocytopenia syndrome virus based on immunofluorescent carbon dots/SiO2 nanosphere-based lateral flow assay
Achadu et al. Molybdenum trioxide nanocubes aligned on a graphene oxide substrate for the detection of norovirus by surface-enhanced Raman scattering
Wang et al. Application of Au based nanomaterials in analytical science
Ahmed et al. Optoelectronic fowl adenovirus detection based on local electric field enhancement on graphene quantum dots and gold nanobundle hybrid
Ko et al. SERS-based immunoassay of tumor marker VEGF using DNA aptamers and silica-encapsulated hollow gold nanospheres
Kim et al. Applications, techniques, and microfluidic interfacing for nanoscale biosensing
Smith et al. Optimization of antibody-conjugated magnetic nanoparticles for target preconcentration and immunoassays
JP6083849B2 (en) Method and kit for detecting or quantifying a target substance in a sample
JP6196159B2 (en) Metal complex quantum crystals and surface enhanced Raman scattering (SERS) analysis of biochemicals using the same
Zhao et al. Highly sensitive microfluidic detection of carcinoembryonic antigen via a synergetic fluorescence enhancement strategy based on the micro/nanostructure optimization of ZnO nanorod arrays and in situ ZIF-8 coating
JP6593840B2 (en) Quantum dot fluorescence enhanced immunoassay
Feng et al. A magnetic SERS immunosensor for highly sensitive and selective detection of human carboxylesterase 1 in human serum samples
Li et al. Synthesis of polystyrene-based fluorescent quantum dots nanolabel and its performance in H5N1 virus and SARS-CoV-2 antibody sensing
Ahmed et al. Chiral MoS2 Quantum Dots: Dual‐Mode Detection Approaches for Avian Influenza Viruses
Ahmed et al. Amplified visual immunosensor integrated with nanozyme for ultrasensitive detection of avian influenza virus
Xiao et al. Single functional magnetic-bead as universal biosensing platform for trace analyte detection using SERS-nanobioprobe
Zhao et al. Chiroplasmonic assemblies of gold nanoparticles as a novel method for sensitive detection of alpha-fetoprotein
Zheng et al. Dual-color MoS2@ QD nanosheets mediated dual-mode lateral flow immunoassay for flexible and ultrasensitive detection of multiple drug residues
Xiang et al. Rapid self-assembly of Au nanoparticles on rigid mesoporous yeast-based microspheres for sensitive immunoassay
Atta et al. Dual-Modal Colorimetric and Surface-Enhanced Raman Scattering (SERS)-Based Lateral Flow Immunoassay for Ultrasensitive Detection of SARS-CoV-2 Using a Plasmonic Gold Nanocrown
Zhang et al. Enhanced electrochemiluminescence of CdS quantum dots capped with mercaptopropionic acid activated by EDC for Zika virus detection
Adegoke et al. Blue-emitting SiO2-coated Si-doped ZnSeS quantum dots conjugated aptamer-molecular beacon as an electrochemical and metal-enhanced fluorescence biosensor for SARS-CoV-2 spike protein
Moon et al. Development of highly sensitive plasmonic biosensors encoded with gold nanoparticles on M13 bacteriophage networks
Yabu et al. Gold Nanoparticle-Decorated Polymer Particles for High-Optical-Density Immunoassay Probes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15748771

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015562818

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM1205A DATED 08/11/2016)

122 Ep: pct application non-entry in european phase

Ref document number: 15748771

Country of ref document: EP

Kind code of ref document: A1