WO2015120729A1 - 一种光伏逆变器电力载波通信系统 - Google Patents

一种光伏逆变器电力载波通信系统 Download PDF

Info

Publication number
WO2015120729A1
WO2015120729A1 PCT/CN2014/089080 CN2014089080W WO2015120729A1 WO 2015120729 A1 WO2015120729 A1 WO 2015120729A1 CN 2014089080 W CN2014089080 W CN 2014089080W WO 2015120729 A1 WO2015120729 A1 WO 2015120729A1
Authority
WO
WIPO (PCT)
Prior art keywords
photovoltaic
inverter
photovoltaic micro
micro
carrier communication
Prior art date
Application number
PCT/CN2014/089080
Other languages
English (en)
French (fr)
Inventor
瞿诗琦
蒋周金
Original Assignee
瑞斯康微电子(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 瑞斯康微电子(深圳)有限公司 filed Critical 瑞斯康微电子(深圳)有限公司
Publication of WO2015120729A1 publication Critical patent/WO2015120729A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/54Systems for transmission via power distribution lines
    • H04B3/546Combination of signalling, telemetering, protection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/54Systems for transmission via power distribution lines

Definitions

  • the present invention relates to a micro-inverter, and more particularly to a photovoltaic inverter power carrier communication system.
  • the technical problem to be solved by the present invention is to provide a photovoltaic inverter power carrier communication system, which aims to solve the problem that the micro-inverter monitors communication in the communication system.
  • the present invention is implemented in the form of a photovoltaic inverter power carrier communication system, comprising a plurality of solar panels, a plurality of photovoltaic micro-inverters, a photovoltaic micro-inverter concentrator, a power line and a control center, and the plurality of photovoltaic micro-inverters
  • a photovoltaic inverter power carrier communication system comprising a plurality of solar panels, a plurality of photovoltaic micro-inverters, a photovoltaic micro-inverter concentrator, a power line and a control center, and the plurality of photovoltaic micro-inverters
  • Each of the photovoltaic micro-inverters is connected to a corresponding solar panel for collecting real-time status data and performance parameters of the solar panel;
  • the photovoltaic micro-inverter concentrator is connected to each photovoltaic micro-inverter through the power line, and summarizes real-time status data and performance parameters of each photovoltaic micro-inverter; the control center and the photovoltaic micro-inverter
  • the concentrators are connected to control and manage each of the photovoltaic micro-inverters connected to the photovoltaic micro-inverter concentrator, and transmit real-time status data and performance parameters of the solar panels.
  • control center is connected to the Internet through a gateway to transmit real-time status data and performance parameters of the solar panel to the Internet.
  • the photovoltaic micro-inverter power carrier communication system further includes a monitoring center, and the monitoring center is connected to the control center through Ethernet or WIFI, and is used for monitoring information data of each photovoltaic micro-inverter in the communication system.
  • the photovoltaic micro-inverter concentrator has a WIFI, an Ethernet interface, and a PLC interface.
  • the photovoltaic micro-inverter includes a power carrier communication module, and the power carrier communication module can perform independent power line carrier communication.
  • the invention has the beneficial effects that: the photovoltaic inverter power carrier communication system adopts a power line carrier communication technology, and the power line is used as a communication medium, and the working condition information of each solar panel is collected in real time, thereby realizing
  • the establishment of this communication system does not require additional communication control lines, and has the advantages of easy installation and implementation.
  • FIG. 1 is a schematic diagram of a connection relationship provided by an embodiment of a photovoltaic inverter power carrier communication system according to the present invention.
  • a photovoltaic inverter power carrier communication system includes a plurality of solar panels 101, a plurality of photovoltaic micro-inverters 102, a photovoltaic micro-inverter concentrator 103, a power line 104, and a control center 105, Each of the photovoltaic micro-inverters 102 is connected to a corresponding one of the solar panels 101 for collecting real-time status data and performance parameters of the solar panel 101 and outputting the solar panel 101. Power is optimized.
  • the photovoltaic micro-inverter concentrator 103 is connected to each photovoltaic micro-inverter 102 through the power line 104 to summarize real-time status data and performance parameters of each photovoltaic micro-inverter 102.
  • the control center 105 is connected to the photovoltaic micro-inverter concentrator 103, and controls each photovoltaic micro-inverter 102 connected to the photovoltaic micro-inverter concentrator 103, and real-time status of the solar panel 101 Data and performance parameters are sent.
  • the power line carrier communication technology adopted by the photovoltaic micro-inverter power carrier communication system uses the power line 104 as a communication medium to collect working condition information of each photovoltaic micro-inverter in real time, and then passes through the photovoltaic micro-inverter concentrator 103 and control The center 104 performs intelligent management.
  • the control center 105 is connected to the Internet through a gateway to transmit real-time status data and performance parameters of the solar panel 101 to the Internet.
  • the photovoltaic micro-inverter power carrier communication system further includes a monitoring center connected to the control center 105 via Ethernet or WIFI for monitoring information data of each photovoltaic micro-inverter 102 in the communication system.
  • the control center 105 connects the information of the photovoltaic solar panels collected by the photovoltaic micro-inverter 102 to the Internet through a gateway, and the user and the installer can observe the performance and power generation of each solar panel from anywhere through the Internet. Effective, accurate, real-time monitoring and management. This unique design provides users and installers with real-time detailed data to ensure that the PV system is functioning properly. This information can also be used to quickly diagnose problems and where they can occur with a single photovoltaic solar panel, and it provides the necessary precise maintenance guidance.
  • the photovoltaic micro-inverter concentrator 103 can control the downlink through the power line 104 to communicate with each of the photovoltaic micro-inverters 102 in the system, can control and collect data of the photovoltaic micro-inverter 102, and uplink through Ethernet, WIFI, etc.
  • the monitoring center communicates, receives the instructions of the upper computer and feeds back relevant information data of each photovoltaic micro inverter.
  • the photovoltaic micro-inverter concentrator 103 can independently manage the network formed by its own node through the power line, and can listen to and accept the instruction of the control center 105 to control the node to which it belongs.
  • the control center 105 can complete the data query, setting and control functions of the entire system through the photovoltaic micro-inverter concentrator 103 to realize real-time monitoring of photovoltaic power generation.
  • the photovoltaic micro-inverter concentrator 103 has a WIFI, an Ethernet interface, and a PLC interface. Also has: Web Server function, can achieve cross-platform network browsing, combined with data acquisition and analysis functions; large-capacity data storage function, even if power failure can ensure data is not lost; with network timing function; unique industrial grade 3.5-inch high resolution Display, local settings of various parameters; unique user-friendly user control interface, support for on-site monitoring.
  • the photovoltaic micro-inverter 102 has an independent communication function, and includes a power carrier communication module, wherein the power carrier communication module can perform independent power line carrier communication, and can be maintained by the power supply power line and the photovoltaic micro-inverter concentrator 103. Interworking, accepting and executing various instructions, and sending execution results and data back to the photovoltaic micro-inverter concentrator 103.
  • the power line carrier communication module adopts an ultra-small module design, and its size can be designed to be 40*16mm, and the low operating power can reach 40mA/5V.
  • DC, communication adopts BPSK modulation and demodulation, conforms to international standards, has distributed and automatic routing algorithms, nodes automatically log in, and events are reported automatically.
  • the functions of the photovoltaic inverter power carrier communication system include: PLC data acquisition, remote network and operation state monitoring; monitoring the operating state of the solar panel and the photovoltaic micro-inverter; remotely adjusting the photovoltaic micro-inverter output power Information; PV micro-inverter, solar panel operating data and status related information; record data information and execution history of each device in the monitoring system; generate voltage, electric energy, power and other analysis curves and reports; remote parameter setting and maintenance, etc. .
  • the photovoltaic inverter power carrier communication system can collect the output power and state information of each photovoltaic micro-inverter and the solar panel through the grid AC bus, and conveniently realize the monitoring of the entire communication system without requiring additional
  • the communication line has no burden on the system connection, which greatly simplifies the system structure.
  • the PV micro-inverter is collected by the PV inverter power carrier communication system, and the equipment is comprehensively analyzed according to the collected information, and the optimal condition of the equipment operation and the cause of the fault are obtained, and the field operator is instructed to adjust the parameters. To make the equipment run at its best, so as to extend the life of the equipment.
  • the photovoltaic inverter power carrier communication system supports unicast, multicast, broadcast and multiple network addressing modes, which makes network management convenient and fast, improves system stability and real-time performance, and the system is directed to EIA709.2
  • the protocol has been improved to increase data throughput to five times the original standard to meet very fast communication requirements.

Abstract

一种光伏逆变器电力载波通信系统,包括若干太阳能电池板(101)、若干光伏微型逆变器(102)、光伏微逆变集中器(103)、电力线(104)和控制中心(105),若干光伏微型逆变器(102)中的每一个光伏微型逆变器(102)均与相对应的一块太阳能电池板(101)相连,用于收集太阳能电池板(101)的实时状况数据和性能参数;光伏微逆变集中器(103)通过电力线(104)与各个光伏微型逆变器(102)相连接;控制中心(105)与光伏微逆变集中器(103)相连接,控制管理与光伏微逆变集中器(103)相连接的各个光伏微型逆变器(102)。通信系统以电力线(104)为通讯介质,实时采集各光伏微型逆变器(102)工况信息,进而实现对光伏微型逆变器(102)的智能化管理,并且无需另外铺设通信控制线,易于安装实施。

Description

一种光伏逆变器电力载波通信系统 技术领域
本发明涉及微型逆变器,尤其涉及一种光伏逆变器电力载波通信系统。
背景技术
太阳能电池面板局部的阴影、不同的倾斜角度及面向方位、污垢、不同的老化程度、细小的裂缝以及不同光电板的不同温度等容易造成系统失配,从而导致输出效率下降的弊端,进而导致整体的输出功率大幅降低。这是集中式逆变器难以解决的问题。微型逆变器具备高效率、分布灵活等特点,但微型逆变器监控通信难,从而阻碍其在通信系统中的应用。
技术问题
本发明所要解决的技术问题在于提供一种光伏逆变器电力载波通信系统,旨在解决微逆变器在通信系统中监控通信难的问题。
技术解决方案
本发明是这样实现的,一种光伏逆变器电力载波通信系统,包括若干太阳能电池板、若干光伏微型逆变器、光伏微逆变集中器、电力线和控制中心,所述若干光伏微型逆变器中的每一个光伏微型逆变器均与相对应的一块太阳能电池板相连,用于收集太阳能电池板的实时状况数据和性能参数;
所述光伏微逆变集中器通过所述电力线与各个光伏微型逆变器相连接,将各个光伏微型逆变器的实时状况数据和性能参数进行汇总;所述控制中心与所述光伏微逆变集中器相连接,控制管理与所述光伏微逆变集中器相连接的各个光伏微型逆变器,并将太阳能电池板的实时状况数据和性能参数进行发送。
进一步地,所述控制中心通过网关连接到互联网,将太阳能电池板的实时状况数据和性能参数发送到互联网。
进一步地,所述光伏微逆变器电力载波通信系统还包括监控中心,所述监控中心通过以太网或WIFI与控制中心相连,用于监控通信系统中各个光伏微型逆变器的信息数据。
进一步地,所述光伏微逆变集中器具有WIFI、以太网接口和PLC接口。
进一步地,所述光伏微型逆变器内包括一电力载波通信模块,所述电力载波通信模块能进行独立的电力线载波通信。
有益效果
本发明与现有技术相比,有益效果在于:所述的光伏逆变器电力载波通信系统采用了电力线载波通信技术,以电力线为通信介质,实时采集各个太阳能电池板的工况信息,进而实现对光伏微型逆变器的智能化管理,此通信系统的建立无需另外铺设通信控制线,具有易于安装和实施的优点。
附图说明
图1是本发明光伏逆变器电力载波通信系统实施例提供的连接关系示意图。
本发明的实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
如图1所示,一种光伏逆变器电力载波通信系统,包括若干太阳能电池板101、若干光伏微型逆变器102、光伏微逆变集中器103、电力线104和控制中心105,所述若干光伏微型逆变器102中的每一个光伏微型逆变器均与相对应的一块太阳能电池板101相连,用于收集太阳能电池板101的实时状况数据和性能参数,并对太阳能电池板101的输出功率进行优化。所述光伏微逆变集中器103通过所述电力线104与各个光伏微型逆变器102相连接,将各个光伏微型逆变器102的实时状况数据和性能参数进行汇总。所述控制中心105与所述光伏微逆变集中器103相连接,控制管理与所述光伏微逆变集中器103相连接的各个光伏微型逆变器102,并将太阳能电池板101的实时状况数据和性能参数进行发送。
所述的光伏微逆变器电力载波通信系统采用的电力线载波通信技术,以电力线104为通讯介质,实时采集各个光伏微型逆变器的工况信息,进而通过光伏微逆变集中器103和控制中心104进行智能化的管理。
所述控制中心105通过网关连接到互联网,将太阳能电池板101的实时状况数据和性能参数发送到互联网。所述光伏微逆变器电力载波通信系统还包括监控中心,所述监控中心通过以太网或WIFI与控制中心105相连,用于监控通信系统中各个光伏微型逆变器102的信息数据。控制中心105将光伏微型逆变器102收集的光伏太阳能电池板的信息,通过网关连接到互联网,用户和安装者通过互联网在任何地方都可以观察每块太阳能电池板的性能和发电量,以实现有效、准确、实时的监测与管理。这种独特的设计为用户和安装者提供实时的详细数据以确保光伏发电系统正常运行。这些信息也能用于快速诊断单块光伏太阳能电池板可能出现的问题和出现的位置,它提供了必要的精确维护向导。
所述光伏微逆变集中器103能控制下行通过电力线104与系统内各个光伏微型逆变器102通信,可对光伏微型逆变器102进行控制与数据采集,上行通过以太网、WIFI等方式与监控中心通信,接收上位机的指令以及反馈各个光伏微型逆变器的相关信息数据。光伏微逆变集中器103既能独立管理由它的所属节点通过电力线所组成的网络,又能听从和接受控制中心105的指令对所属节点进行控制。控制中心105可以通过光伏微逆变集中器103完成对整个系统的数据查询、设置及控制功能,实现对光伏发电的实时监控。
所述光伏微逆变集中器103具有WIFI、以太网接口和PLC接口。同时还具有:Web Server功能,能实现跨平台网络浏览,兼具数据采集和分析功能于一身;大容量数据存储功能,即使掉电亦可确保数据不丢失;具备网络校时功能;特有工业级3.5寸高分辨率显示屏,本地设置各类参数;特有的人性化用户控制界面,支持现场监控等。
所述光伏微型逆变器102具备独立的通信功能,其内包括一电力载波通信模块,所述电力载波通信模块能进行独立的电力线载波通信,能通过供电电力线与光伏微逆变集中器103保持互通,接受和执行各种指令,并将执行结果和数据送回光伏微逆变集中器103。所述的电力线载波通信模块采用超小模块设计,其尺寸可设计为40*16mm,低运行功耗能达到40mA/5V DC,通信采用BPSK调制解调,符合国际标准,具有分布式和自动路由算法,节点自动登录,事件主动上报。
所述的光伏逆变器电力载波通信系统具有的功能包括:PLC数据采集,远程网络和运行状态监测;监测太阳能电池板及光伏微型逆变器的运行状态;远程调节光伏微型逆变器输出电力信息;光伏微型逆变器、太阳能电池板运行数据及状态的相关信息;记录监控系统中各设备的数据信息和执行历史;生成电压、电能、功率等分析曲线和报表;远程参数设置和维护等。
所述的光伏逆变器电力载波通信系统通过电网交流母线就可以采集各个光伏微型逆变器和太阳能电池板的输出功率和状态信息,很方便地实现整个通信系统的监控,同时不需要额外的通信线路,对系统连线没有任何负担,极大地简化了系统结构。通过光伏逆变器电力载波通信系统对光伏微型逆变器进行数据采集,根据采集的信息对设备进行全面的分析,得出设备运行的最佳状况和故障的原因,指导现场操作人员进行参数调整,使设备运行在最佳状态,从而达到延长设备使用寿命的目的。
所述的光伏逆变器电力载波通信系统支持单播、组播、广播和多种网络寻址方式,使得网络管理方便而快捷,提高了系统的稳定性与实时性,系统并针对EIA709.2协议进行改进,可将数据传输量提高到原有标准的5倍来满足非常快速的通信要求。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (5)

  1. 一种光伏逆变器电力载波通信系统,其特征在于,包括若干太阳能电池板、若干光伏微型逆变器、光伏微逆变集中器、电力线和控制中心,所述若干光伏微型逆变器中的每一个光伏微型逆变器均与相对应的一块太阳能电池板相连,用于收集太阳能电池板的实时状况数据和性能参数;
    所述光伏微逆变集中器通过所述电力线与各个光伏微型逆变器相连接,将各个光伏微型逆变器的实时状况数据和性能参数进行汇总;所述控制中心与所述光伏微逆变集中器相连接,控制管理与所述光伏微逆变集中器相连接的各个光伏微型逆变器,并将太阳能电池板的实时状况数据和性能参数进行发送。
  2. 根据权利要求1所述的光伏逆变器电力载波通信系统,其特征在于,所述控制中心通过网关连接到互联网,将太阳能电池板的实时状况数据和性能参数发送到互联网。
  3. 根据权利要求1所述的光伏逆变器电力载波通信系统,其特征在于,所述光伏微逆变器电力载波通信系统还包括监控中心,所述监控中心通过以太网或WIFI与控制中心相连,用于监控通信系统中各个光伏微型逆变器的信息数据。
  4. 根据权利要求1所述的光伏逆变器电力载波通信系统,其特征在于,所述光伏微逆变集中器具有WIFI、以太网接口和PLC接口。
  5. 根据权利要求1所述的光伏逆变器电力载波通信系统,其特征在于,所述光伏微型逆变器内包括一电力载波通信模块,所述电力载波通信模块能进行独立的电力线载波通信。
PCT/CN2014/089080 2014-02-14 2014-10-21 一种光伏逆变器电力载波通信系统 WO2015120729A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201420066541.XU CN203689677U (zh) 2014-02-14 2014-02-14 一种光伏逆变器电力载波通信系统
CN201420066541.X 2014-02-14

Publications (1)

Publication Number Publication Date
WO2015120729A1 true WO2015120729A1 (zh) 2015-08-20

Family

ID=51011554

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/089080 WO2015120729A1 (zh) 2014-02-14 2014-10-21 一种光伏逆变器电力载波通信系统

Country Status (2)

Country Link
CN (1) CN203689677U (zh)
WO (1) WO2015120729A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3979450A1 (en) * 2020-10-05 2022-04-06 Fronius International GmbH Photovoltaic system

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203689677U (zh) * 2014-02-14 2014-07-02 瑞斯康微电子(深圳)有限公司 一种光伏逆变器电力载波通信系统
CN107431097B (zh) 2015-01-28 2020-02-14 Abb瑞士股份有限公司 能量板布置关闭
CN104601087B (zh) * 2015-01-29 2018-01-23 湖北民族学院 光伏发电站及其控制方法
CN104753175A (zh) * 2015-03-18 2015-07-01 苏州科技学院 基于无线通信模式的微电网逆变器监控装置
CN105319431B (zh) * 2015-11-02 2018-04-13 珠海格力电器股份有限公司 光伏板的工作状态检测方法、装置和系统及光伏电器系统
CN106023573A (zh) * 2016-07-26 2016-10-12 苏州市职业大学 基于电力载波的电压参数采集系统
CN108983686A (zh) * 2017-05-31 2018-12-11 南京聚鲲物联网科技有限公司 一种微型逆变器监控管理的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201054505Y (zh) * 2007-05-29 2008-04-30 北京自动化技术研究院 光伏并网电站数据集中器
KR100957624B1 (ko) * 2009-09-07 2010-05-13 계명전력파워(주) 태양광 발전소의 모니터링 장치
CN202330487U (zh) * 2011-09-07 2012-07-11 上海英孚特电子技术有限公司 一种应用于太阳能分布式并网系统的智能电表
CN202384835U (zh) * 2011-11-24 2012-08-15 苏州华领太阳能电力技术有限公司 分布式光伏并网发电逆变器的监控系统
CN203689677U (zh) * 2014-02-14 2014-07-02 瑞斯康微电子(深圳)有限公司 一种光伏逆变器电力载波通信系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201054505Y (zh) * 2007-05-29 2008-04-30 北京自动化技术研究院 光伏并网电站数据集中器
KR100957624B1 (ko) * 2009-09-07 2010-05-13 계명전력파워(주) 태양광 발전소의 모니터링 장치
CN202330487U (zh) * 2011-09-07 2012-07-11 上海英孚特电子技术有限公司 一种应用于太阳能分布式并网系统的智能电表
CN202384835U (zh) * 2011-11-24 2012-08-15 苏州华领太阳能电力技术有限公司 分布式光伏并网发电逆变器的监控系统
CN203689677U (zh) * 2014-02-14 2014-07-02 瑞斯康微电子(深圳)有限公司 一种光伏逆变器电力载波通信系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3979450A1 (en) * 2020-10-05 2022-04-06 Fronius International GmbH Photovoltaic system
WO2022073804A1 (en) * 2020-10-05 2022-04-14 Fronius International Gmbh Photovoltaic system

Also Published As

Publication number Publication date
CN203689677U (zh) 2014-07-02

Similar Documents

Publication Publication Date Title
WO2015120729A1 (zh) 一种光伏逆变器电力载波通信系统
WO2018113265A1 (zh) 无功功率的控制方法、装置和系统
CN204923184U (zh) 光伏直驱电采暖系统
WO2015081743A1 (zh) 一种基于分布式发电的空调系统监控系统及应用其的空调系统
CN106505603B (zh) 一种包含多个储能单元的分层储能微电网
CN206042050U (zh) 一种新型光伏电站监控装置
CN202772654U (zh) 一种光伏发电与市政电网无逆流互补应用的控制器
CN103197613A (zh) 一种基于工业无线网络的光伏电站监控系统
CN102780267B (zh) 一种电能路由器
WO2018076554A1 (zh) 一种交直流智能家庭微网协同系统及其运行方法
CN204082508U (zh) 一种光伏水泵控制装置
CN102842915B (zh) 一种具备信息集成功能的并网逆变器
CN107995019B (zh) 一种基于虚拟链接的远程调试维护网络设备方法及系统
CN109272735B (zh) 用于居民电能集抄系统的通信转换器
US20160147199A1 (en) Information equipment, control apparatus and control method
CN107204628A (zh) 一种光伏电站优化系统及方法
CN204243785U (zh) 一种分布式光伏发电微网系统
WO2017128787A1 (zh) 户用光伏系统及智能微电网系统
CN203761400U (zh) 用于光伏电站测量系统中的中控通讯室
CN207612365U (zh) 无人值守野外架空线视频监控装置
CN206559308U (zh) 一种集中式光伏逆变系统
CN205160097U (zh) 一种分布式光伏发电系统
CN205195624U (zh) 一种屋顶光伏电站
CN203350710U (zh) 一种换流站辅助设备的智能监控系统
CN208782503U (zh) 一种储能就地协同系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14882495

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 26/01/2017)

122 Ep: pct application non-entry in european phase

Ref document number: 14882495

Country of ref document: EP

Kind code of ref document: A1