WO2015120671A1 - Control device or method for preventing loop oscillation - Google Patents

Control device or method for preventing loop oscillation Download PDF

Info

Publication number
WO2015120671A1
WO2015120671A1 PCT/CN2014/078349 CN2014078349W WO2015120671A1 WO 2015120671 A1 WO2015120671 A1 WO 2015120671A1 CN 2014078349 W CN2014078349 W CN 2014078349W WO 2015120671 A1 WO2015120671 A1 WO 2015120671A1
Authority
WO
WIPO (PCT)
Prior art keywords
parameter
loop filter
value
control
loop
Prior art date
Application number
PCT/CN2014/078349
Other languages
French (fr)
Chinese (zh)
Inventor
张骏凌
Original Assignee
深圳市中兴微电子技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市中兴微电子技术有限公司 filed Critical 深圳市中兴微电子技术有限公司
Publication of WO2015120671A1 publication Critical patent/WO2015120671A1/en

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • H03L7/099Details of the phase-locked loop concerning mainly the controlled oscillator of the loop
    • H03L7/0995Details of the phase-locked loop concerning mainly the controlled oscillator of the loop the oscillator comprising a ring oscillator

Definitions

  • the present invention relates to control techniques, and more particularly to a control apparatus and method for preventing loop oscillations. Background technique
  • the accuracy of the adjustment actuator of the analog domain is recorded as the first precision, and the analog signal after the adjustment is converted by the analog-to-digital converter (ADC)
  • ADC analog-to-digital converter
  • the digital signal is processed to the loop filter after a series of processing.
  • the output precision of the loop filter is recorded as the second precision, and is adjusted and output by the control value adjuster.
  • DAC digital-to-analog converter
  • the digital signal is Convert to analog signal and input to the adjustment actuator.
  • ADC and DAC A refers to ANALOG, which represents analog signal
  • D refers to DIGITAL, which represents digital signal.
  • the second precision may not match the accuracy of the first precision.
  • the second precision is higher than the first precision, thereby causing a phenomenon of loop oscillation. Only the higher second precision is adjusted to the lower first precision, so the effect of the control loop oscillation cannot be achieved. In the related art, an effective solution is not provided for this problem. Summary of the invention
  • the embodiments of the present invention are intended to provide a control apparatus and method for preventing loop oscillation, which can effectively control loop oscillation and prevent loop oscillation.
  • the technical solution of the embodiment of the present invention is implemented as follows:
  • a control device for preventing loop oscillation comprising: an adjustment actuator, an analog to digital converter ADC, a cost function detector, a loop filter, a control value adjuster, a digital to analog converter DAC, and the device Includes:
  • a first processor configured to receive a first parameter output by the cost function detector, perform a first error correction according to the first parameter to obtain a second parameter, where the second parameter is used to Performing precision adjustment; outputting the second parameter to the loop filter;
  • the loop filter is configured to receive the second parameter, and perform a filtering operation according to the second parameter.
  • the device further includes:
  • the second processor is configured to perform a second error correction to obtain a third parameter, where the third parameter is used to perform precision adjustment on the loop filter; and output the third parameter to the loop filter;
  • the loop filter is further configured to perform a filtering operation according to the second parameter and the third parameter.
  • the second processor is further configured to receive a first output value obtained by the loop filter performing the filtering operation, and a second output value obtained by receiving the control value adjuster to perform control adjustment, where
  • the first output value is /(, and the second output value is (at, according to the f(r) and the / c (n), and the control value is used to process and reset the loop filter Way of integrating value Performing the second error correction to obtain a third parameter of //-1);
  • ⁇ performing the operation by the control value and resetting the integrated value in the loop filter is:
  • the loop filter is further configured to perform a filtering operation according to the e ' (and the //' ( «-1), and the operation performed is:
  • the first processor, the loop filter, and the second processor perform a processing by using a central processing unit (CPU), a digital signal processor (DSP, Digital Singnal Processor), or a programmable Logic array (FPGA, Field - Programmable Gate Array) implementation.
  • CPU central processing unit
  • DSP digital signal processor
  • FPGA Field - Programmable Gate Array
  • a control method for preventing loop oscillation the method being applied to a control device for preventing loop oscillation, the control device comprising an adjustment actuator, an analog-to-digital converter ADC, a cost function detector, a loop filter, and a control value
  • the control device comprising an adjustment actuator, an analog-to-digital converter ADC, a cost function detector, a loop filter, and a control value
  • the regulator, the digital-to-analog converter DAC: the method includes: when the control device further includes the first processor:
  • the first processor receives the first parameter output by the cost function detector, according to the first
  • 3 ⁇ 4 performing a first error correction to obtain a second parameter, where the second parameter is used to perform precision adjustment on the loop filter; and outputting the second parameter to the loop filter;
  • the loop filter receives the second parameter and performs a filtering operation based on the second parameter.
  • the method includes: when the control device further includes a second processor:
  • the second processor performs a second error correction to obtain a third parameter, where the third parameter is used to perform precision adjustment on the loop filter; and output the third parameter to the loop filter;
  • the first error correction is performed by using an error value normalization manner, and the second parameter is obtained as ⁇ ;
  • the operation performed by the error value normalization method is: Wherein, the accuracy of the adjustment actuator is
  • Abs represents an absolute value operation.
  • the performing the second error correction to obtain the third parameter includes:
  • the second processor Receiving, by the second processor, a first output value obtained by performing the filtering operation by the loop filter, and receiving a second output value obtained by performing control adjustment by the control value adjuster, where the first output value is / (, the second output value is, according to the / (and the lf c (n), the second error is performed by processing and resetting the integrated value in the loop filter with the control value Correcting, the third parameter is //(1); ⁇ the operation performed by the control value processing and resetting the integral value in the loop filter is: wherein the ⁇ is the adjustment actuator
  • the performing a filtering operation according to the second parameter and the third parameter includes: a loop filter performing a filtering operation according to the e » and the //′( « ⁇ 1), and performing the operation for:
  • the control device of the embodiment of the present invention includes: an adjustment actuator, an ADC, a cost function detector, a loop filter, a control value adjuster, a DAC, the device further includes a first processor, the first processor is configured to receive the a first parameter outputted by the cost function detector, performing a first error correction according to the first parameter to obtain a second parameter, where the second parameter is used to perform precision adjustment on the loop filter; Output to the loop filter; correspondingly, the loop filter
  • the wave device is configured to receive the second parameter, and perform a filtering operation according to the second parameter. Since the parameter of the filtering operation of the loop filter is the second parameter obtained by the first error correction, the error can be eliminated, the loop oscillation can be effectively controlled, and the loop oscillation phenomenon caused by the error can be prevented.
  • FIG. 1 is a schematic structural diagram of a control device for a control loop in a digital receiver of the prior art
  • FIG. 2 is a schematic diagram of an oscillation phenomenon in a conventional digital AGC control loop
  • FIG. 3 is a schematic diagram of an oscillation phenomenon of an existing AGC loop under an ETU70 channel
  • FIG. 4 is a schematic structural diagram of a control device according to an embodiment of the present invention.
  • FIG. 5 is a flowchart of a control method according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of a control device of a specific scenario according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of a non-oscillation phenomenon in a static channel scenario according to an embodiment of the present invention
  • FIG. 8 is a schematic diagram of a non-oscillation phenomenon in an output scenario of an ETU70 channel according to an embodiment of the present invention.
  • FIG. 1 An existing digital closed-loop control loop in the digital receiver of the communication system is shown in FIG. 1 , including an adjustment actuator 01, an ADC 02, a cost function detector 03, Loop filter 04, control value adjuster 05, digital to analog converter DAC06.
  • the accuracy of the actuator in the analog domain is recorded as the first precision, expressed in steps.
  • the completed analog signal r(t) is digital signal r(n) after the ADC, and the error detection output is:
  • the cost function with the digital signal r(n) as an input varies according to the closed-loop control target, and the output of the cost function has an error, and the output thereof The variance is.
  • the existing loop filter in the control loop can be implemented by an integrator, for example the output is:
  • Equation (2) / is the loop filter factor and / ⁇ 1.
  • the purpose of the control value adjustment function is to remove the portion of the high-precision loop filter output that exceeds the analog domain adjustment actuator accuracy step.
  • f In order to control the influence of the error output variance on the control loop, f generally takes "1, resulting in the accuracy of lf(n) as f*step « step, so the control value adjustment function is necessary in the digital control loop, such as the formula (3) as shown.
  • Figure 2 shows the oscillation of the traditional digital control loop by taking the AGC loop as an example.
  • the embodiments of the present invention provide the following control schemes, which can completely solve this problem, avoid loop oscillation caused by the mismatch of precision, and avoid false positives, but the embodiment of the present invention is not limited to the closed-loop control scene of the digital receiver.
  • a simple scheme can be proposed to remove the oscillation phenomenon caused by the digital domain loop filter output precision in the digital closed-loop control loop being larger than the adjustment precision of the analog domain adjustment actuator. .
  • the control device for preventing loop oscillation includes: an adjustment actuator 11, an analog-to-digital converter ADC12 that converts an analog signal output from the adjustment actuator 11 into a digital signal, and a number that outputs the ADC12.
  • the cost function detector 13 for performing the cost function operation on the signal
  • the loop filter 14 for performing the filtering operation based on the parameters output from the cost function detector 13, and the control value adjuster 15 for adjusting the output of the loop filter 14 to control the value
  • the regulator 15 performs a digital-to-analog converter DAC 16 that converts the digital signal of the control adjustment operation output into an analog signal.
  • the device further includes: a first processor 17, the first processor 17 is connected to the cost function detector 13 for receiving the first parameter output by the cost function detector 13, and performing the first error correction according to the first parameter Obtaining a second parameter, the second parameter is used to perform precision adjustment on the loop filter 14; and outputting the second parameter to the loop filter 14.
  • the loop filter 14 is connected to the first processor 17 for receiving the second parameter and performing a filtering operation according to the second parameter.
  • the control device for preventing loop oscillation further includes: a second processor 18, wherein the second processor 18 is configured to perform the second error correction.
  • a third parameter the third parameter is used to perform precision adjustment on the loop filter 14;
  • the third parameter is output to the loop filter 14.
  • the loop filter 14 is configured to perform a filtering operation according to the second parameter and the third parameter.
  • the first error correction is performed in a normalized manner, and the second parameter is 6»;
  • the said is the precision of the adjustment actuator, and abs represents an absolute value operation.
  • the second processor 18 is connected to the loop filter and the control value adjuster respectively, and is configured to receive the loop filter 14 to perform the filtering operation. a first output value obtained, and a second output value obtained by the control value adjuster 15 performing control adjustment, the first output value being / ( «), and the second output value being Said / / c (, the second error correction is performed in such a manner that the control value is processed and the integral value in the loop filter is reset, and the third parameter is obtained as / / -1); And the operation performed by resetting the integral value in the loop filter is: c
  • the adjustment is the accuracy of the actuator.
  • the control method for preventing loop oscillation according to the embodiment of the present invention is applied to the prevention loop shown in FIG.
  • An oscillating control device the control device comprising an adjustment actuator, an analog to digital converter ADC, a cost function detector, a loop filter, a control value regulator, and a digital to analog converter DAC, wherein the control device further includes a first
  • the processor includes the following steps:
  • Step 101 The first processor receives the first parameter output by the cost function detector, performs a first error correction according to the first parameter, and obtains a second parameter, where the second parameter is used to Performing precision adjustment; outputting the second parameter to the loop filter.
  • Step 102 The loop filter receives the second parameter, and performs a filtering operation according to the second parameter.
  • performing the first error correction according to the first parameter in step 101 to obtain the second parameter specifically includes:
  • control device further includes a second processor
  • the method further includes further error correction, including the following steps:
  • Step 201 The second processor performs a second error correction to obtain a third parameter, where the third parameter is used to perform precision adjustment on the loop filter; and output the third parameter to the loop filter.
  • Step 202 The loop filter performs filtering operation according to the second parameter and the third parameter.
  • the second error correction is performed in step 201 to obtain a third
  • the parameters specifically include:
  • the method of processing and resetting the integral value in the loop filter with the control value is performed.
  • the second error correction is performed to obtain a third parameter of //1); ⁇ the operation performed by the control value processing and resetting the integral value in the loop filter is:
  • V', n, n , + ⁇ , ⁇ lfc , n - wherein, the adjustment actuator
  • step 202 specifically includes:
  • the loop filter performs a filtering operation according to the e» and the //-1), and the operation performed is:
  • the control device includes both a first processor and a second processor.
  • the apparatus of the embodiment of the present invention as shown in FIG. 6 adds a first processor and a second processor with respect to FIG. 1.
  • the first processor specifically uses an error normalization function.
  • the second processor specifically implements two functions of processing the control value and resetting the integral value of the loop filter, and separately processes the original error output e (and the value of the loop filter output.
  • the processing of one processor can eliminate the error in a part of the loop, and the processing combined with the second processor can better remove the error, so that after the first processor and the second processor control the processing, the analog domain is
  • the accuracy of the adjustment actuator is recorded as the first accuracy
  • the output accuracy of the loop filter is recorded as the second accuracy
  • the loop oscillation caused by the mismatch of the precision is eliminated, and the misjudgment is avoided.
  • FIG. 2 is a schematic diagram of an oscillation phenomenon in a conventional digital AGC control loop
  • FIG. 7 is a non-oscillation method in a static channel scenario according to an embodiment of the present invention.
  • Schematic diagram of the phenomenon, and the control value adjustment output obtained by using the embodiment of the present invention under the same conditions as in FIG. 2 is as shown in FIG. 7 , as shown in FIG. 7 , it can be visually seen that: since the adjusted second precision tends to the first precision, therefore, Loop oscillations are not obvious.
  • the simulation results obtained by using the loop control of the prior art and the loop control of the embodiment of the present invention in the ETU70 channel are shown in FIG.
  • FIG. 3 is an oscillation phenomenon of the existing AGC loop under the ETU70 channel.
  • FIG. 8 is a schematic diagram of a non-oscillation phenomenon in an output scenario of an ETU 70 channel according to an embodiment of the present invention.
  • the channel conditions in FIG. 3 and FIG. 8 are the same as those in FIG. 2, and other parameters are the same. As can be seen visually in Figure 8, since the adjusted second precision tends to the first precision, the loop oscillation is not obvious.
  • the integrated modules described in the embodiments of the present invention may also be stored in a computer readable storage medium if they are implemented in the form of software functional modules and sold or used as separate products. Based on such understanding, the technical solution of the embodiments of the present invention is made substantially or prior to the prior art.
  • the contributed portion may be embodied in the form of a software product stored in a storage medium, including instructions for causing a computer device (which may be a personal computer, server, or network device, etc.) to perform the various aspects of the present invention. All or part of the methods described in the examples.
  • the foregoing storage medium includes: a USB flash drive, a removable hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk or an optical disk, and the like. The medium of the code.
  • embodiments of the invention are not limited to any specific combination of hardware and software.
  • an embodiment of the present invention further provides a computer storage medium, wherein a computer program for executing a control method for preventing loop oscillation according to an embodiment of the present invention is stored.
  • the control device of the embodiment of the present invention includes: an adjustment actuator, an ADC, a cost function detector, a loop filter, a control value adjuster, a DAC, the device further includes a first processor, the first processor is configured to receive the a first parameter outputted by the cost function detector, performing a first error correction according to the first parameter to obtain a second parameter, where the second parameter is used to perform precision adjustment on the loop filter; Outputting to the loop filter; correspondingly, the loop filter is configured to receive the second parameter, and perform a filtering operation according to the second parameter. Since the parameter of the filtering operation performed by the loop filter is the second parameter obtained by the first error correction, the embodiment of the present invention can eliminate the error, effectively control the loop oscillation, and prevent the loop caused by the error. Road oscillation phenomenon.

Landscapes

  • Feedback Control In General (AREA)

Abstract

The present invention relates to a control device and method for preventing loop oscillation, the device comprising: a regulation actuator, an analog-digital converter (ADC), a cost function detector, a loop filter, a control value regulator, and a digital-analog converter (DAC); the device also comprises: a first processor is used to receive a first parameter outputted by the cost function detector and perform first error modification according to the first parameter to obtain a second parameter, the second parameter being used to perform precision adjustment on the loop filter; the second parameter is outputted to the loop filter; the loop filter is used to receive the second parameter and perform filter operation according to the second parameter.

Description

一种防止环路振荡的控制装置或方法 技术领域  Control device or method for preventing loop oscillation
本发明涉及控制技术, 尤其涉及一种防止环路振荡的控制装置及方法。 背景技术  The present invention relates to control techniques, and more particularly to a control apparatus and method for preventing loop oscillations. Background technique
本申请发明人在实现本申请实施例技术方案的过程中, 至少发现相关 技术中存在如下技术问题:  In the process of implementing the technical solutions of the embodiments of the present application, the inventors of the present application found at least the following technical problems in the related technologies:
在数字接收机的闭环控制场景下, 控制环路中, 将模拟域的调节执行 器的精度记为第一精度, 完成调节的模拟信号经模数转换器 (ADC )后, 由模拟信号转换为数字信号, 经过一系列处理执行到环路滤波器, 环路滤 波器的输出精度记为第二精度, 经控制值调整器进行调整后输出, 经数模 转换器 (DAC )后, 由数字信号转换为模拟信号再输入到调节执行器中。 其中, ADC和 DAC中, A指代 ANALOG,表示模拟信号; D指代 DIGITAL, 表示数字信号。  In the closed-loop control scenario of the digital receiver, in the control loop, the accuracy of the adjustment actuator of the analog domain is recorded as the first precision, and the analog signal after the adjustment is converted by the analog-to-digital converter (ADC) The digital signal is processed to the loop filter after a series of processing. The output precision of the loop filter is recorded as the second precision, and is adjusted and output by the control value adjuster. After the digital-to-analog converter (DAC), the digital signal is Convert to analog signal and input to the adjustment actuator. Among them, in ADC and DAC, A refers to ANALOG, which represents analog signal; D refers to DIGITAL, which represents digital signal.
由于经过一系列处理, 执行到环路滤波器的过程中产生一系列误差, 或者是由于闭环控制本身的要求, 因此, 所述第二精度会与所述第一精度 会出现精度不匹配的情况, 通常所述第二精度会高于所述第一精度, 从而 导致环路振荡的现象。 只将较高的第二精度调整至较低的第一精度, 因此 并不能达到控制环路振荡的效果, 相关技术中, 对于该问题, 并未提供有 效的解决方案。 发明内容  Due to a series of processing, a series of errors are generated during the execution of the loop filter, or due to the requirements of the closed loop control itself, the second precision may not match the accuracy of the first precision. Generally, the second precision is higher than the first precision, thereby causing a phenomenon of loop oscillation. Only the higher second precision is adjusted to the lower first precision, so the effect of the control loop oscillation cannot be achieved. In the related art, an effective solution is not provided for this problem. Summary of the invention
有鉴于此, 本发明实施例希望提供一种防止环路振荡的控制装置及方 法, 能有效的对环路振荡进行控制, 防止出现环路振荡现象。 本发明实施例的技术方案是这样实现的: In view of this, the embodiments of the present invention are intended to provide a control apparatus and method for preventing loop oscillation, which can effectively control loop oscillation and prevent loop oscillation. The technical solution of the embodiment of the present invention is implemented as follows:
一种防止环路振荡的控制装置, 所述装置包括: 调节执行器、 模数转 换器 ADC、代价函数检测器、环路滤波器、控制值调节器,数模转换器 DAC, 所述装置还包括:  A control device for preventing loop oscillation, the device comprising: an adjustment actuator, an analog to digital converter ADC, a cost function detector, a loop filter, a control value adjuster, a digital to analog converter DAC, and the device Includes:
第一处理器, 配置为接收所述代价函数检测器输出的第一参数, 根据 所述第一参数进行第一误差修正得到第二参数, 所述第二参数用于对所述 环路滤波器执行精度调整; 将所述第二参数输出给所述环路滤波器;  a first processor, configured to receive a first parameter output by the cost function detector, perform a first error correction according to the first parameter to obtain a second parameter, where the second parameter is used to Performing precision adjustment; outputting the second parameter to the loop filter;
相应的, 所述环路滤波器, 配置为接收所述第二参数, 根据所述第二 参数进行滤波运算。  Correspondingly, the loop filter is configured to receive the second parameter, and perform a filtering operation according to the second parameter.
其中, 所述装置还包括:  The device further includes:
第二处理器, 配置为进行第二误差修正得到第三参数, 所述第三参数 用于对所述环路滤波器执行精度调整; 将所述第三参数输出给所述环路滤 波器;  The second processor is configured to perform a second error correction to obtain a third parameter, where the third parameter is used to perform precision adjustment on the loop filter; and output the third parameter to the loop filter;
相应的, 所述环路滤波器, 还配置为根据所述第二参数和所述第三参 数进行滤波运算。  Correspondingly, the loop filter is further configured to perform a filtering operation according to the second parameter and the third parameter.
其中,所述第一处理器,还配置为所述第一参数为 3- e (n) = c (r (n)) 时, 釆用误差值归一化方式进行所述第一误差修正, 得到第二参数为 ( ; 釆用所述误差值归一化方式执行的运算为: 其中, 所述 为所述调节执行器的精度,
Figure imgf000003_0001
abs表示绝对值运算。
Wherein, the first processor is further configured to: when the first parameter is 3-e(n)=c(r(n)), perform the first error correction by using an error value normalization manner, Obtaining the second parameter is ( ; 运算 the operation performed by the error value normalization manner is: wherein, the accuracy of the adjustment actuator is
Figure imgf000003_0001
Abs represents an absolute value operation.
其中, 所述第二处理器, 还配置为接收所述环路滤波器进行所述滤波 运算得到的第一输出值, 以及接收所述控制值调节器进行控制调整得到的 第二输出值, 所述第一输出值为 /( , 所述第二输出值为 ( 时, 根据所 述 f ( r)和所述 //c (n), 釆用控制值处理并重置环路滤波器中的积分值的方式 进行所述第二误差修正, 得到第三参数为 // -1); 釆用所述控制值处理并 重置环路滤波器中的积分值的方式执行的运算为: The second processor is further configured to receive a first output value obtained by the loop filter performing the filtering operation, and a second output value obtained by receiving the control value adjuster to perform control adjustment, where The first output value is /(, and the second output value is (at, according to the f(r) and the / c (n), and the control value is used to process and reset the loop filter Way of integrating value Performing the second error correction to obtain a third parameter of //-1); 运算 performing the operation by the control value and resetting the integrated value in the loop filter is:
^ = (")+^ (")≠ ("-1); 其中, 所述 为所述调节执行器 ^ = (") + ^ (") ≠ ("-1); where, the adjustment actuator
If (ri), others 的精度。  If (ri), the precision of others.
其中, 所述环路滤波器, 还配置为根据所述 e '( 和所述 //'(«-1)进行滤 波运算, 所执行的运算为:  The loop filter is further configured to perform a filtering operation according to the e ' (and the //' («-1), and the operation performed is:
!f (n、 = !f'(n -1、 + f * e'(n、。  !f (n, = !f'(n -1, + f * e'(n,.
所述第一处理器、 所述环路滤波器、 第二处理器在执行处理时, 釆用 中央处理器(CPU, Central Processing Unit ),数字信号处理器(DSP, Digital Singnal Processor )或可编程逻辑阵列 (FPGA, Field - Programmable Gate Array ) 实现。  The first processor, the loop filter, and the second processor perform a processing by using a central processing unit (CPU), a digital signal processor (DSP, Digital Singnal Processor), or a programmable Logic array (FPGA, Field - Programmable Gate Array) implementation.
一种防止环路振荡的控制方法, 所述方法应用于防止环路振荡的控制 装置, 所述控制装置包括调节执行器、模数转换器 ADC、代价函数检测器、 环路滤波器、控制值调节器, 数模转换器 DAC:,, 所述方法在所述控制装置 还包括第一处理器时包括:  A control method for preventing loop oscillation, the method being applied to a control device for preventing loop oscillation, the control device comprising an adjustment actuator, an analog-to-digital converter ADC, a cost function detector, a loop filter, and a control value The regulator, the digital-to-analog converter DAC:, the method includes: when the control device further includes the first processor:
第一处理器接收所述代价函数检测器输出的第一参数, 根据所述第一 The first processor receives the first parameter output by the cost function detector, according to the first
¾:进行第一误差修正得到第二参数, 所述第二参数用于对所述环路滤波 器执行精度调整; 将所述第二参数输出给所述环路滤波器; 3⁄4: performing a first error correction to obtain a second parameter, where the second parameter is used to perform precision adjustment on the loop filter; and outputting the second parameter to the loop filter;
环路滤波器接收所述第二参数, 根据所述第二参数进行滤波运算。 其中, 所述方法在所述控制装置还包括第二处理器时包括:  The loop filter receives the second parameter and performs a filtering operation based on the second parameter. The method includes: when the control device further includes a second processor:
第二处理器进行第二误差修正得到第三参数, 所述第三参数用于对所 述环路滤波器执行精度调整; 将所述第三参数输出给所述环路滤波器; 所述第一参数为^ ( , J (") = c(r("))时, 釆用误差值归一化方式进行 所述第一误差修正, 得到第二参数为^ ; 釆用所述误差值归一化方式执 行的运算为:
Figure imgf000005_0001
其中, 所述 为所述调节执行器的精度,
The second processor performs a second error correction to obtain a third parameter, where the third parameter is used to perform precision adjustment on the loop filter; and output the third parameter to the loop filter; When the first parameter is ^ ( , J (") = c(r(")), the first error correction is performed by using an error value normalization manner, and the second parameter is obtained as ^; The operation performed by the error value normalization method is:
Figure imgf000005_0001
Wherein, the accuracy of the adjustment actuator is
0, others  0, others
abs表示绝对值运算。 Abs represents an absolute value operation.
其中, 所述进行第二误差修正得到第三参数, 包括:  The performing the second error correction to obtain the third parameter includes:
所述第二处理器接收所述环路滤波器进行所述滤波运算得到的第一输 出值, 以及接收所述控制值调节器进行控制调整得到的第二输出值, 所述 第一输出值为 /( , 所述第二输出值为 时, 根据所述/ ( 和所述 lfc (n), 釆用控制值处理并重置环路滤波器中的积分值的方式进行所述第二 误差修正, 得到第三参数为 // -1); 釆用所述控制值处理并重置环路滤波 器中的积分值的方式执行的运算为: 其中, 所述^^为所述调节执行器
Figure imgf000005_0002
Receiving, by the second processor, a first output value obtained by performing the filtering operation by the loop filter, and receiving a second output value obtained by performing control adjustment by the control value adjuster, where the first output value is / (, the second output value is, according to the / (and the lf c (n), the second error is performed by processing and resetting the integrated value in the loop filter with the control value Correcting, the third parameter is //(1); 运算 the operation performed by the control value processing and resetting the integral value in the loop filter is: wherein the ^^ is the adjustment actuator
Figure imgf000005_0002
的精度。 Precision.
其中, 所述根据所述第二参数和所述第三参数进行滤波运算, 包括: 环路滤波器根据所述 e»和所述 //'(« -1)进行滤波运算, 所执行的运算 为: The performing a filtering operation according to the second parameter and the third parameter includes: a loop filter performing a filtering operation according to the e » and the //′(« −1), and performing the operation for:
!f (n、 = !f'(n -1、 + f * e'(n、。  !f (n, = !f'(n -1, + f * e'(n,.
本发明实施例的控制装置包括: 调节执行器、 ADC、 代价函数检测器、 环路滤波器、 控制值调节器, DAC, 所述装置还包括第一处理器, 第一处 理器用于接收所述代价函数检测器输出的第一参数, 根据所述第一参数进 行第一误差修正得到第二参数, 所述第二参数用于对所述环路滤波器执行 精度调整; 将所述第二参数输出给所述环路滤波器; 相应的, 所述环路滤 波器用于接收所述第二参数, 根据所述第二参数进行滤波运算。 由于环路滤波器进行滤波运算的参数为经过第一误差修正得到的第二 参数, 因此, 能消除误差, 有效的对环路振荡进行控制, 能防止误差导致 的环路振荡现象。 附图说明 The control device of the embodiment of the present invention includes: an adjustment actuator, an ADC, a cost function detector, a loop filter, a control value adjuster, a DAC, the device further includes a first processor, the first processor is configured to receive the a first parameter outputted by the cost function detector, performing a first error correction according to the first parameter to obtain a second parameter, where the second parameter is used to perform precision adjustment on the loop filter; Output to the loop filter; correspondingly, the loop filter The wave device is configured to receive the second parameter, and perform a filtering operation according to the second parameter. Since the parameter of the filtering operation of the loop filter is the second parameter obtained by the first error correction, the error can be eliminated, the loop oscillation can be effectively controlled, and the loop oscillation phenomenon caused by the error can be prevented. DRAWINGS
图 1为现有技术数字接收机中控制环路的控制装置结构示意图; 图 2为现有数字 AGC控制环路中的振荡现象示意图;  1 is a schematic structural diagram of a control device for a control loop in a digital receiver of the prior art; FIG. 2 is a schematic diagram of an oscillation phenomenon in a conventional digital AGC control loop;
图 3为现有 AGC环路在 ETU70信道下的振荡现象示意图;  3 is a schematic diagram of an oscillation phenomenon of an existing AGC loop under an ETU70 channel;
图 4为本发明实施例的控制装置结构示意图;  4 is a schematic structural diagram of a control device according to an embodiment of the present invention;
图 5为本发明实施例的控制方法流程图;  FIG. 5 is a flowchart of a control method according to an embodiment of the present invention;
图 6为本发明实施例一具体场景的控制装置结构示意图;  6 is a schematic structural diagram of a control device of a specific scenario according to an embodiment of the present invention;
图 7为本发明实施例用于静态信道场景下的无振荡现象示意图; 图 8为本发明实施例用于 ETU70信道下输出场景下的无振荡现象示意 图。 具体实施方式  FIG. 7 is a schematic diagram of a non-oscillation phenomenon in a static channel scenario according to an embodiment of the present invention; FIG. 8 is a schematic diagram of a non-oscillation phenomenon in an output scenario of an ETU70 channel according to an embodiment of the present invention. detailed description
下面结合附图对技术方案的实施作进一步的详细描述。  The implementation of the technical solution will be further described in detail below with reference to the accompanying drawings.
以数字接收机的闭环控制场景为例进行说明, 在通讯系统的数字接收 机中一种现有数字闭环控制环路如图 1所示, 包括调节执行器 01、 ADC02, 代价函数检测器 03、环路滤波器 04、控制值调节器 05,数模转换器 DAC06。 图 1 中, 在模拟域的调节执行器的精度记为第一精度, 以 step表示, 完成 调节的模拟信号 r(t)经 ADC后为数字信号 r(n), 误差检测输出为:  Taking the closed-loop control scene of the digital receiver as an example, an existing digital closed-loop control loop in the digital receiver of the communication system is shown in FIG. 1 , including an adjustment actuator 01, an ADC 02, a cost function detector 03, Loop filter 04, control value adjuster 05, digital to analog converter DAC06. In Figure 1, the accuracy of the actuator in the analog domain is recorded as the first precision, expressed in steps. The completed analog signal r(t) is digital signal r(n) after the ADC, and the error detection output is:
e (n) = c (r (n)) ( 1 )  e (n) = c (r (n)) ( 1 )
公式(1 ) 中, 所述 为以所述数字信号 r(n)为输入的代价函数, 根据闭环控制目标的不同而不同, 同时代价函数的输出存在误差, 其输出 方差为 。 控制环路中现有环路滤波器可通过一个积分器实现, 例如输出 为: In the formula (1), the cost function with the digital signal r(n) as an input varies according to the closed-loop control target, and the output of the cost function has an error, and the output thereof The variance is. The existing loop filter in the control loop can be implemented by an integrator, for example the output is:
If n) = lf {n - \) + f * e {n) ( 2 )  If n) = lf {n - \) + f * e {n) ( 2 )
公式(2 ) 中, /为环路滤波器因子且/ <1。  In equation (2), / is the loop filter factor and / <1.
现有控制值调整器通过控制值调整函数实现, 经现有控制值调整器处 理后控制值调整的输出为: lfc (") = floor * step ( 3 )The existing control value adjuster is realized by the control value adjustment function, and the output of the control value adjustment after being processed by the existing control value adjuster is: lf c (") = floor * step ( 3 )
Figure imgf000007_0001
Figure imgf000007_0001
公式( 3 )中, floor(x)表示取 <=x的最大整数, 也可用 round(x)或 ceil(x) 取代 floor(x)。 由于经过一系列处理, 执行到环路滤波器的过程中产生一系 列误差, 或者由于闭环控制本身要求, 因此, 所述第二精度会与所述第一 精度会出现精度不匹配的情况, 为了消除精度不匹配的情况, 所以引入控 制值调整器, 控制值调整函数的目的是将高精度的环路滤波器输出 中 超出模拟域调节执行器精度 step的部分去掉。  In equation (3), floor(x) represents the largest integer with <=x, and floor(x) can also be replaced by round(x) or ceil(x). Since a series of processing, a series of errors are generated during the execution of the loop filter, or due to the requirements of the closed loop control itself, the second precision may not match the accuracy of the first precision, in order to The accuracy mismatch is eliminated, so the control value adjuster is introduced. The purpose of the control value adjustment function is to remove the portion of the high-precision loop filter output that exceeds the analog domain adjustment actuator accuracy step.
在图 1 所示的现有数字环路控制中环路滤波器带宽仅受限于环路滤波 器因子 / : r = l//表示此环路滤波器跟踪 e(n)阶越变化的时间常数。 为控制 误差输出方差 对控制环路的影响, f一般取《1, 从而导致 lf(n)的精度为 f*step « step,所以在数字控制环路中控制值调整函数必不可少,如公式( 3 ) 所示。  In the existing digital loop control shown in Figure 1, the loop filter bandwidth is only limited by the loop filter factor / : r = l / / indicates that this loop filter tracks the time constant of e(n) order change . In order to control the influence of the error output variance on the control loop, f generally takes "1, resulting in the accuracy of lf(n) as f*step « step, so the control value adjustment function is necessary in the digital control loop, such as the formula (3) as shown.
正是由于环路滤波器输出 If (n)的精度大于模拟域调节执行器的精度 step, 并随着控制环路的收敛 e(n)趋于 0, 而导致 //(")收敛在 //c (")附近。 此 It is precisely because the accuracy of the loop filter output If (n) is greater than the precision step of the analog domain adjustment actuator, and as the convergence of the control loop e(n) approaches 0, the //(") converges in / / c (") nearby. this
荡。 图 2以 AGC环路为例表示了传统数字控制环路的振荡现象: 图 2中调 节执行器为增益可控的放大器, 其增益控制精度 step=ldB ; 环路收敛后 e {n) = c
Figure imgf000007_0002
±Q.5dB; 取环路虑波器因子 f = 0.04。
swing. Figure 2 shows the oscillation of the traditional digital control loop by taking the AGC loop as an example. The adjustment actuator in Figure 2 is a gain-controllable amplifier with gain control accuracy step=ldB; after loop convergence e {n) = c
Figure imgf000007_0002
±Q.5dB; take the loop filter factor f = 0.04.
现有的控制装置即便引入控制值调整器, 仍然无法解决精度不匹配导 致的环路振荡问题, 一旦出现环路振荡问题, 可能会误判是环路自身出现 故障, 其实不是环路出现故障, 而仅仅是精度不匹配。 为此, 本发明实施 例提供了以下的控制方案, 能彻底解决这个问题, 避免精度不匹配导致的 环路振荡, 避免误判, 但是本发明实施例不限于数字接收机的闭环控制场 景。 对于数字接收机的闭环控制场景, 能对数字闭环控制环路中数字域环 路滤波器输出精度大于模拟域调节执行器调节精度导致的振荡现象提出了 一种较简单的方案来去除这种现象。  Even if the existing control device introduces the control value adjuster, the loop oscillation problem caused by the mismatch of the accuracy cannot be solved. Once the loop oscillation problem occurs, the loop itself may be misjudged, and the loop is not faulty. And only the precision does not match. To this end, the embodiments of the present invention provide the following control schemes, which can completely solve this problem, avoid loop oscillation caused by the mismatch of precision, and avoid false positives, but the embodiment of the present invention is not limited to the closed-loop control scene of the digital receiver. For the closed-loop control scenario of the digital receiver, a simple scheme can be proposed to remove the oscillation phenomenon caused by the digital domain loop filter output precision in the digital closed-loop control loop being larger than the adjustment precision of the analog domain adjustment actuator. .
如图 4所示, 本发明实施例的防止环路振荡的控制装置包括: 调节执行器 11、将调节执行器 11输出的模拟信号转换为数字信号的模 数转换器 ADC12、 将 ADC12输出的数字信号进行代价函数运算的代价函 数检测器 13、根据代价函数检测器 13输出的参数进行滤波运算的环路滤波 器 14、 对环路滤波器 14输出进行调节的控制值调节器 15, 将控制值调节 器 15 进行控制调整运算输出的数字信号转换为模拟信号的数模转换器 DAC16。  As shown in FIG. 4, the control device for preventing loop oscillation according to an embodiment of the present invention includes: an adjustment actuator 11, an analog-to-digital converter ADC12 that converts an analog signal output from the adjustment actuator 11 into a digital signal, and a number that outputs the ADC12. The cost function detector 13 for performing the cost function operation on the signal, the loop filter 14 for performing the filtering operation based on the parameters output from the cost function detector 13, and the control value adjuster 15 for adjusting the output of the loop filter 14 to control the value The regulator 15 performs a digital-to-analog converter DAC 16 that converts the digital signal of the control adjustment operation output into an analog signal.
所述装置还包括: 第一处理器 17, 第一处理器 17 与代价函数检测器 13相连, 用于接收代价函数检测器 13输出的第一参数, 根据所述第一参数 进行第一误差修正得到第二参数, 所述第二参数用于对环路滤波器 14执行 精度调整; 将所述第二参数输出给环路滤波器 14。相应的,环路滤波器 14, 与第一处理器 17相连, 用于接收所述第二参数, 根据所述第二参数进行滤 波运算。  The device further includes: a first processor 17, the first processor 17 is connected to the cost function detector 13 for receiving the first parameter output by the cost function detector 13, and performing the first error correction according to the first parameter Obtaining a second parameter, the second parameter is used to perform precision adjustment on the loop filter 14; and outputting the second parameter to the loop filter 14. Correspondingly, the loop filter 14 is connected to the first processor 17 for receiving the second parameter and performing a filtering operation according to the second parameter.
在本发明一优选实施方式中, 如图 4 所示, 本发明实施例的防止环路 振荡的控制装置还包括: 第二处理器 18, 第二处理器 18用于进行第二误差 修正得到第三参数, 所述第三参数用于对环路滤波器 14执行精度调整; 将 所述第三参数输出给环路滤波器 14。相应的, 环路滤波器 14用于根据所述 第二参数和所述第三参数进行滤波运算。 In a preferred embodiment of the present invention, as shown in FIG. 4, the control device for preventing loop oscillation according to the embodiment of the present invention further includes: a second processor 18, wherein the second processor 18 is configured to perform the second error correction. a third parameter, the third parameter is used to perform precision adjustment on the loop filter 14; The third parameter is output to the loop filter 14. Correspondingly, the loop filter 14 is configured to perform a filtering operation according to the second parameter and the third parameter.
在本发明一优选实施方式中, 如图 4所示, 第一处理器 17用于所述第 一参数为 e ( , He(n) = c(r(n))H, 釆用误差值归一化方式进行所述第一误 差修正, 得到第二参数为6»; 釆用所述误差值归一化方式执行的运算为: g' = (e(?i),a s(gC?¾)) > step In a preferred embodiment of the present invention, as shown in FIG. 4, the first processor 17 uses the first parameter as e ( , He(n) = c(r(n))H, and uses the error value. The first error correction is performed in a normalized manner, and the second parameter is 6»; 运算 the operation performed by the error value normalization method is: g' = (e(?i), as(gC?3⁄4) ) > step
i 0f others i 0 f others
对上述公式(4 )中的 "0, others"进行说明,是指在不满足 abs(e(«》> 的情况下, e'(«)=0。 The description of "0, others" in the above formula (4) means that e'(«) = 0 in the case where abs( e («)> is not satisfied.
其中, 所述 为所述调节执行器的精度, abs表示绝对值运算。  Wherein, the said is the precision of the adjustment actuator, and abs represents an absolute value operation.
在本发明一优选实施方式中, 如图 4所示, 第二处理器 18与所述环路 滤波器和所述控制值调节器分别相连, 用于接收环路滤波器 14进行所述滤 波运算得到的第一输出值, 以及接收控制值调节器 15进行控制调整得到的 第二输出值, 所述第一输出值为/ («), 所述第二输出值为 时, 根据所 述 和所述 //c ( , 釆用控制值处理并重置环路滤波器中的积分值的方式 进行所述第二误差修正, 得到第三参数为 // -1); 釆用所述控制值处理并 重置环路滤波器中的积分值的方式执行的运算为: c In a preferred embodiment of the present invention, as shown in FIG. 4, the second processor 18 is connected to the loop filter and the control value adjuster respectively, and is configured to receive the loop filter 14 to perform the filtering operation. a first output value obtained, and a second output value obtained by the control value adjuster 15 performing control adjustment, the first output value being / («), and the second output value being Said / / c (, the second error correction is performed in such a manner that the control value is processed and the integral value in the loop filter is reset, and the third parameter is obtained as / / -1); And the operation performed by resetting the integral value in the loop filter is: c
n η、 + ,lf c、n≠ lf 、n -
Figure imgf000009_0001
n η , + , l fc, n , ≠ l f , n -
Figure imgf000009_0001
对上述公式 (5 ) 中的 "lf{n) , others" 进行说明, 是指在不满足 lfc (n)≠lfc(n-\)的†青况下, f (n) =lf n)。 The description of "lf{n), others" in the above formula (5) means that f (n) = lf n in the case of not satisfying lf c (n) ≠lf c (n-\) ).
其中, 所述 为所述调节执行器的精度。  Wherein, the adjustment is the accuracy of the actuator.
在本发明一优选实施方式中, 环路滤波器 14用于根据所述 e»和所述 //'("- 1)进行滤波运算, 所执行的运算为: lf {n) = lf {n -\^ + f * e'{n) ( 6 ) 如图 5所示, 本发明实施例的防止环路振荡的控制方法应用于图 4所 示的防止环路振荡的控制装置, 所述控制装置包括调节执行器、 模数转换 器 ADC、代价函数检测器、环路滤波器、控制值调节器、数模转换器 DAC, 在所述控制装置还包括第一处理器时, 所述方法包括以下步骤: In a preferred embodiment of the present invention, the loop filter 14 is configured to perform a filtering operation according to the e» and the //'("-1", and the operation performed is: Lf {n) = lf {n -\^ + f * e'{n) (6) As shown in FIG. 5, the control method for preventing loop oscillation according to the embodiment of the present invention is applied to the prevention loop shown in FIG. An oscillating control device, the control device comprising an adjustment actuator, an analog to digital converter ADC, a cost function detector, a loop filter, a control value regulator, and a digital to analog converter DAC, wherein the control device further includes a first The processor includes the following steps:
步骤 101、 第一处理器接收所述代价函数检测器输出的第一参数,根据 所述第一参数进行第一误差修正得到第二参数, 所述第二参数用于对所述 环路滤波器执行精度调整; 将所述第二参数输出给所述环路滤波器。  Step 101: The first processor receives the first parameter output by the cost function detector, performs a first error correction according to the first parameter, and obtains a second parameter, where the second parameter is used to Performing precision adjustment; outputting the second parameter to the loop filter.
步骤 102、环路滤波器接收所述第二参数,根据所述第二参数进行滤波 运算。  Step 102: The loop filter receives the second parameter, and performs a filtering operation according to the second parameter.
在本发明一优选实施方式中, 步骤 101 中根据所述第一参数进行第一 误差修正得到第二参数具体包括:  In a preferred embodiment of the present invention, performing the first error correction according to the first parameter in step 101 to obtain the second parameter specifically includes:
所述第一参数为 e ( , H e(n) = c(r (n)) H , 釆用误差值归一化方式进行 所述第一误差修正, 得到第二参数为^ ; 釆用所述误差值归一化方式执 行的运算为: β'ίη) = 其中, 所述 为所述调节执行器的
Figure imgf000010_0001
The first parameter is e ( , H e(n) = c(r (n)) H , and the first error correction is performed by using an error value normalization manner, and the second parameter is obtained as ^; The operation performed by the error value normalization mode is: β'ίη) = where the said actuator is
Figure imgf000010_0001
精度, abs表示绝对值运算。 Precision, abs represents absolute value operation.
在本发明一优选实施方式中, 在所述控制装置还包括第二处理器时所 述方法还包括进一步的误差修正, 包括以下步骤:  In a preferred embodiment of the present invention, when the control device further includes a second processor, the method further includes further error correction, including the following steps:
步骤 201、 第二处理器进行第二误差修正得到第三参数, 所述第三参数 用于对所述环路滤波器执行精度调整; 将所述第三参数输出给所述环路滤 波器。  Step 201: The second processor performs a second error correction to obtain a third parameter, where the third parameter is used to perform precision adjustment on the loop filter; and output the third parameter to the loop filter.
步骤 202、 环路滤波器根据所述第二参数和所述第三参数进行滤波运 算。  Step 202: The loop filter performs filtering operation according to the second parameter and the third parameter.
在本发明一优选实施方式中, 步骤 201 中进行第二误差修正得到第三 参数具体包括: In a preferred embodiment of the present invention, the second error correction is performed in step 201 to obtain a third The parameters specifically include:
所述第二处理器接收所述环路滤波器进行所述滤波运算得到的第一输 出值, 以及接收所述控制值调节器进行控制调整得到的第二输出值, 所述 第一输出值为 /(«), 所述第二输出值为 时, 根据所述/ («)和所述 lfc (n), 釆用控制值处理并重置环路滤波器中的积分值的方式进行所述第二 误差修正, 得到第三参数为 // -1); 釆用所述控制值处理并重置环路滤波 器中的积分值的方式执行的运算为: Receiving, by the second processor, a first output value obtained by performing the filtering operation by the loop filter, and receiving a second output value obtained by performing control adjustment by the control value adjuster, where the first output value is / («), when the second output value is, according to the / («) and the lf c (n), the method of processing and resetting the integral value in the loop filter with the control value is performed. The second error correction is performed to obtain a third parameter of //1); 运算 the operation performed by the control value processing and resetting the integral value in the loop filter is:
V'、n、 = n+ ^ 、≠lfcn - 其中, 所述 为所述调节执行器 V', n, = n , + ^ , ≠lfc , n - wherein, the adjustment actuator
If {n、, others 的精度。  If {n,, others precision.
在本发明一优选实施方式中, 步骤 202具体包括:  In a preferred embodiment of the present invention, step 202 specifically includes:
环路滤波器根据所述 e»和所述 // -1)进行滤波运算, 所执行的运算 为:  The loop filter performs a filtering operation according to the e» and the //-1), and the operation performed is:
lf {n) = lf {n -l) + 下面以数字接收机的闭环控制场景为例对本发 明实施例进行说明, 控制装置同时包括第一处理器和第二处理器。 Lf {n) = lf {n -l) + The following describes an embodiment of the present invention by taking a closed-loop control scenario of a digital receiver as an example. The control device includes both a first processor and a second processor.
如图 6所示的本发明实施例的装置相对于图 1来说, 增加了第一处理 器和第二处理器, 在本场景下, 所述第一处理器具体釆用误差归一化函数 来实现, 所述第二处理器具体釆用控制值处理并重置环路滤波器中积分值 两个函数来实现, 并分别处理原误差输出 e ( 和环路滤波器输出 的值。 通过第一处理器的处理可以消除一部分环路中的误差, 进而结合第二处理 器的处理可以更好的去除误差, 从而使得经第一处理器和第二处理器控制 处理后, 在将模拟域的调节执行器的精度记为第一精度, 且环路滤波器的 输出精度记为第二精度的情况下, 消除了精度不匹配导致的环路振荡, 避 免误判。  The apparatus of the embodiment of the present invention as shown in FIG. 6 adds a first processor and a second processor with respect to FIG. 1. In this scenario, the first processor specifically uses an error normalization function. To achieve, the second processor specifically implements two functions of processing the control value and resetting the integral value of the loop filter, and separately processes the original error output e (and the value of the loop filter output. The processing of one processor can eliminate the error in a part of the loop, and the processing combined with the second processor can better remove the error, so that after the first processor and the second processor control the processing, the analog domain is When the accuracy of the adjustment actuator is recorded as the first accuracy, and the output accuracy of the loop filter is recorded as the second accuracy, the loop oscillation caused by the mismatch of the precision is eliminated, and the misjudgment is avoided.
其中, 釆用第一处理器, 执行归一化误差处理输出为上述公式(4 ) : e(n)f&bs{e('n)) > step Wherein, using the first processor, performing normalized error processing output is the above formula (4): e(n) f &bs{e('n)) > step
Q, others  Q, others
通过第一处理器的控制处理, 釆用上述公式(4)对 进行了处理, 有利于环路控制的调整。  Through the control processing of the first processor, the above equation (4) is processed to facilitate the adjustment of the loop control.
其中, 釆用第二处理器, 用上述公式(5)执行控制值处理并重置环路 滤波器中积分值输出为:  Wherein, using the second processor, performing control value processing using the above formula (5) and resetting the integral value output in the loop filter is:
//'(„) = < lfn+ ^ ~'lfc (")≠ lfc (" - I) //'(„) = < lf , n , + ^ ~' l fc (")≠ l fc (" - I)
If « others 釆用上述公式(6) , 此时环路滤波器输出修正为:  If « others 釆 using the above formula (6), the loop filter output is corrected to:
lf(n) = lf'(n-\) + f*e'(n) 通过第二处理器的控制处理, 釆用上述公式(5)和(6)对 //(")进行 了处理, 经修正后得到的 更利于环路控制的调整。  Lf(n) = lf'(n-\) + f*e'(n) By the control processing of the second processor, /(()) is processed by the above formulas (5) and (6), The correction is more favorable for loop control adjustment.
本场景下, 釆用本发明实施例, 以 AGC环路为例, 图 2 为现有数字 AGC控制环路中的振荡现象示意图, 图 7为本发明实施例用于静态信道场 景下的无振荡现象示意图, 和图 2 同样条件下使用本发明实施例得到的控 制值调整输出 如图 7所示, 如图 7所示可以直观看出: 由于经调整第 二精度趋于第一精度, 因此, 环路振荡不明显。 在 ETU70信道下釆用现有 技术的环路控制和本发明实施例环路控制分别得到的仿真结果如图 3和图 8 所示, 图 3为现有 AGC环路在 ETU70信道下的振荡现象示意图, 图 8为 本发明实施例用于 ETU70信道下输出场景下的无振荡现象示意图, 图 3和 图 8中除去信道条件和图 2不一样外, 其它参数都一致。 如图 8所示可以 直观看出: 由于经调整第二精度趋于第一精度, 因此, 环路振荡不明显。  In this scenario, an embodiment of the present invention is used, and an AGC loop is taken as an example. FIG. 2 is a schematic diagram of an oscillation phenomenon in a conventional digital AGC control loop, and FIG. 7 is a non-oscillation method in a static channel scenario according to an embodiment of the present invention. Schematic diagram of the phenomenon, and the control value adjustment output obtained by using the embodiment of the present invention under the same conditions as in FIG. 2 is as shown in FIG. 7 , as shown in FIG. 7 , it can be visually seen that: since the adjusted second precision tends to the first precision, therefore, Loop oscillations are not obvious. The simulation results obtained by using the loop control of the prior art and the loop control of the embodiment of the present invention in the ETU70 channel are shown in FIG. 3 and FIG. 8. FIG. 3 is an oscillation phenomenon of the existing AGC loop under the ETU70 channel. FIG. 8 is a schematic diagram of a non-oscillation phenomenon in an output scenario of an ETU 70 channel according to an embodiment of the present invention. The channel conditions in FIG. 3 and FIG. 8 are the same as those in FIG. 2, and other parameters are the same. As can be seen visually in Figure 8, since the adjusted second precision tends to the first precision, the loop oscillation is not obvious.
本发明实施例所述集成的模块如果以软件功能模块的形式实现并作为 独立的产品销售或使用时, 也可以存储在一个计算机可读取存储介质中。 基于这样的理解, 本发明实施例的技术方案本质上或者说对现有技术做出 贡献的部分可以以软件产品的形式体现出来, 该计算机软件产品存储在一 个存储介质中, 包括若干指令用以使得一台计算机设备(可以是个人计算 机、 服务器、 或者网络设备等)执行本发明各个实施例所述方法的全部或 部分。 而前述的存储介质包括: U盘、 移动硬盘、 只读存储器 (ROM, Read-Only Memory ), 随机存取存 4诸器 ( RAM, Random Access Memory )、 磁碟或者光盘等各种可以存储程序代码的介质。 这样, 本发明实施例不限 制于任何特定的硬件和软件结合。 The integrated modules described in the embodiments of the present invention may also be stored in a computer readable storage medium if they are implemented in the form of software functional modules and sold or used as separate products. Based on such understanding, the technical solution of the embodiments of the present invention is made substantially or prior to the prior art. The contributed portion may be embodied in the form of a software product stored in a storage medium, including instructions for causing a computer device (which may be a personal computer, server, or network device, etc.) to perform the various aspects of the present invention. All or part of the methods described in the examples. The foregoing storage medium includes: a USB flash drive, a removable hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk or an optical disk, and the like. The medium of the code. Thus, embodiments of the invention are not limited to any specific combination of hardware and software.
相应的, 本发明实施例还提供一种计算机存储介质, 其中存储有计算 机程序, 该计算机程序用于执行本发明实施例的防止环路振荡的控制方法。  Correspondingly, an embodiment of the present invention further provides a computer storage medium, wherein a computer program for executing a control method for preventing loop oscillation according to an embodiment of the present invention is stored.
以上所述, 仅为本发明的较佳实施例而已, 并非用于限定本发明的保 护范围。 工业实用性  The above is only the preferred embodiment of the present invention and is not intended to limit the scope of the present invention. Industrial applicability
本发明实施例的控制装置包括: 调节执行器、 ADC、 代价函数检测器、 环路滤波器、 控制值调节器, DAC, 所述装置还包括第一处理器, 第一处 理器用于接收所述代价函数检测器输出的第一参数, 根据所述第一参数进 行第一误差修正得到第二参数, 所述第二参数用于对所述环路滤波器执行 精度调整; 将所述第二参数输出给所述环路滤波器; 相应的, 所述环路滤 波器用于接收所述第二参数, 根据所述第二参数进行滤波运算。 由于环路 滤波器进行滤波运算的参数为经过第一误差修正得到的第二参数, 因此, 釆用本发明实施例, 能消除误差, 有效的对环路振荡进行控制, 能防止误 差导致的环路振荡现象。  The control device of the embodiment of the present invention includes: an adjustment actuator, an ADC, a cost function detector, a loop filter, a control value adjuster, a DAC, the device further includes a first processor, the first processor is configured to receive the a first parameter outputted by the cost function detector, performing a first error correction according to the first parameter to obtain a second parameter, where the second parameter is used to perform precision adjustment on the loop filter; Outputting to the loop filter; correspondingly, the loop filter is configured to receive the second parameter, and perform a filtering operation according to the second parameter. Since the parameter of the filtering operation performed by the loop filter is the second parameter obtained by the first error correction, the embodiment of the present invention can eliminate the error, effectively control the loop oscillation, and prevent the loop caused by the error. Road oscillation phenomenon.

Claims

权利要求书 claims
1、 一种防止环路振荡的控制装置, 所述装置包括: 调节执行器、 模数 转换器 ADC、 代价函数检测器、 环路滤波器、 控制值调节器, 数模转换器 DAC, 所述装置还包括: 1. A control device to prevent loop oscillation, the device includes: a regulating actuator, an analog-to-digital converter ADC, a cost function detector, a loop filter, a control value regulator, a digital-to-analog converter DAC, as described The installation also includes:
第一处理器, 用于接收所述代价函数检测器输出的第一参数, 根据所 述第一参数进行第一误差修正得到第二参数, 所述第二参数用于对所述环 路滤波器执行精度调整; 将所述第二参数输出给所述环路滤波器; A first processor, configured to receive the first parameter output by the cost function detector, perform a first error correction according to the first parameter to obtain a second parameter, and the second parameter is used to modify the loop filter Perform accuracy adjustment; Output the second parameter to the loop filter;
相应的, 所述环路滤波器, 用于接收所述第二参数, 根据所述第二参 数进行滤波运算。 Correspondingly, the loop filter is used to receive the second parameter and perform a filtering operation according to the second parameter.
2、 根据权利要求 1所述的装置, 其中, 所述装置还包括: 2. The device according to claim 1, wherein the device further includes:
第二处理器, 用于进行第二误差修正得到第三参数, 所述第三参数用 于对所述环路滤波器执行精度调整; 将所述第三参数输出给所述环路滤波 器; The second processor is used to perform second error correction to obtain a third parameter, and the third parameter is used to perform accuracy adjustment on the loop filter; and output the third parameter to the loop filter;
相应的, 所述环路滤波器, 进一步用于根据所述第二参数和所述第三 参数进行滤波运算。 Correspondingly, the loop filter is further used to perform filtering operations based on the second parameter and the third parameter.
3、 根据权利要求 2所述的装置, 其中, 所述第一处理器, 还用于所述 第一参数为 «), He(n) = c(r(n))H, 釆用误差值归一化方式进行所述第一 误差修正, 得到第二参数为 釆用所述误差值归一化方式执行的运算 为: 3. The device according to claim 2, wherein the first processor is also used for the first parameter to be «), He(n) = c(r(n))H, and use an error value The first error correction is performed in a normalization manner, and the second parameter is obtained. The operation performed using the error value normalization method is:
e,^ e(n),abs(e(n))>Step^ 其中, 所述^^为所述调节执行器的精度, e,^ e(n), a bs(e(n))> S tep^ where, the ^^ is the accuracy of the adjustment actuator,
0, others 0, others
abs表示绝对值运算。 abs represents absolute value operation.
4、 根据权利要求 3所述的装置, 其中, 所述第二处理器, 还用于接收 所述环路滤波器进行所述滤波运算得到的第一输出值, 以及接收所述控制 值调节器进行控制调整得到的第二输出值, 所述第一输出值为/ («), 所述 第二输出值为 时, 根据所述 )和所述 //c ( , 釆用控制值处理并重 置环路滤波器中的积分值的方式进行所述第二误差修正, 得到第三参数为 4. The device according to claim 3, wherein the second processor is further configured to receive the first output value obtained by the loop filter performing the filtering operation, and receive the control value regulator The second output value obtained by performing control adjustment, the first output value is / («), the When the second output value is
\f n-\); 釆用所述控制值处理并重置环路滤波器中的积分值的方式执行的 运算为: lfc(n) + ^ fc(n)≠lfc(n-l), 其中, 所述 ^ 为所述调节执行器 n - step \f n-\); The operation performed by processing the control value and resetting the integral value in the loop filter is: lfc(n) + ^ fc(n)≠lf c (nl), where , the ^ is the adjustment actuator n-step
(n), others 的精度。 (n), accuracy of others.
5、 根据权利要求 4所述的装置, 其中, 所述环路滤波器, 还用于根据 所述6»和所述 // -1)进行滤波运算, 所执行的运算为: lf(n) = lf'(n-l) + f*e'(n)0 5. The device according to claim 4, wherein the loop filter is also used to perform a filtering operation according to the 6» and the //-1), and the operation performed is: lf(n) = lf'(nl) + f*e'(n) 0
6、 一种防止环路振荡的控制方法, 所述方法应用于防止环路振荡的控 制装置, 所述控制装置包括调节执行器、 模数转换器 ADC、 代价函数检测 器、 环路滤波器、 控制值调节器, 数模转换器 DAC, 所述方法在所述控制 装置还包括第一处理器时包括: 6. A control method for preventing loop oscillation. The method is applied to a control device for preventing loop oscillation. The control device includes an adjustment actuator, an analog-to-digital converter ADC, a cost function detector, a loop filter, Control value regulator, digital-to-analog converter DAC, when the control device further includes a first processor, the method includes:
第一处理器接收所述代价函数检测器输出的第一参数, 根据所述第一 The first processor receives the first parameter output by the cost function detector, and according to the first
¾:进行第一误差修正得到第二参数, 所述第二参数用于对所述环路滤波 器执行精度调整; 将所述第二参数输出给所述环路滤波器; ¾: Perform first error correction to obtain a second parameter, the second parameter is used to perform accuracy adjustment on the loop filter; Output the second parameter to the loop filter;
环路滤波器接收所述第二参数, 根据所述第二参数进行滤波运算。 The loop filter receives the second parameter and performs filtering operation according to the second parameter.
7、 根据权利要求 6所述的装置, 其中, 所述方法在所述控制装置还包 括第二处理器时包括: 7. The device according to claim 6, wherein when the control device further includes a second processor, the method includes:
第二处理器进行第二误差修正得到第三参数, 所述第三参数用于对所 述环路滤波器执行精度调整; 将所述第三参数输出给所述环路滤波器; 环路滤波器根据所述第二参数和所述第三参数进行滤波运算。 The second processor performs a second error correction to obtain a third parameter, and the third parameter is used to perform accuracy adjustment on the loop filter; output the third parameter to the loop filter; loop filtering The processor performs a filtering operation according to the second parameter and the third parameter.
8、 根据权利要求 7所述的装置, 其中, 所述根据所述第一参数进行第 一误差修正得到第二参数, 包括: 所述第一参数为 w;), He(n) = c(r(n))H, 釆用误差值归一化方式进行 所述第一误差修正, 得到第二参数为 釆用所述误差值归一化方式执 行的运算为: 8. The device according to claim 7, wherein the first error correction based on the first parameter to obtain the second parameter includes: The first parameter is w;), He(n) = c(r(n))H, the first error correction is performed using the error value normalization method, and the second parameter is obtained using the error The operation performed in value normalization mode is:
其中, 所述^^为所述调节执行器的精度,
Figure imgf000016_0001
Wherein, the ^^ is the accuracy of the adjustment actuator,
Figure imgf000016_0001
0, others abs表示绝对值运算。 0, others abs represents absolute value operation.
9、 根据权利要求 8所述的方法, 其中, 所述进行第二误差修正得到第 三参数, 包括: 9. The method according to claim 8, wherein performing the second error correction to obtain the third parameter includes:
所述第二处理器接收所述环路滤波器进行所述滤波运算得到的第一输 出值, 以及接收所述控制值调节器进行控制调整得到的第二输出值, 所述 第一输出值为 /(«), 所述第二输出值为 时, 根据所述/ («)和所述 lfc(n), 釆用控制值处理并重置环路滤波器中的积分值的方式进行所述第二 误差修正, 得到第三参数为 // -1); 釆用所述控制值处理并重置环路滤波 器中的积分值的方式执行的运算为: The second processor receives the first output value obtained by the loop filter performing the filtering operation, and receives the second output value obtained by the control value regulator performing control adjustment, and the first output value is /(«), when the second output value is, according to the /(«) and the lf c (n), the control value processing and resetting the integral value in the loop filter are performed. According to the second error correction, the third parameter is obtained as // -1); The operation performed by using the control value to process and resetting the integral value in the loop filter is:
" ^ Λ"-).,其中, 所述^ ^为所述调节执行器 " ^ Λ"-)., where, the ^ ^ is the adjustment actuator
If in), others 的精度。 If in), the precision of others.
10、 根据权利要求 9所述的方法, 其中, 所述根据所述第二参数和所 述第三参数进行滤波运算, 包括: 10. The method according to claim 9, wherein the filtering operation based on the second parameter and the third parameter includes:
环路滤波器根据所述6»和所述 // -1)进行滤波运算, 所执行的运算 为: The loop filter performs filtering operations according to 6» and //-1), and the operations performed are:
//(") = //'("_l) + /*e'(")。 //(") = //'("_l) + /*e'(").
PCT/CN2014/078349 2014-02-11 2014-05-23 Control device or method for preventing loop oscillation WO2015120671A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410048258.9 2014-02-11
CN201410048258.9A CN104836579B (en) 2014-02-11 2014-02-11 A kind of control device preventing loop oscillation or method

Publications (1)

Publication Number Publication Date
WO2015120671A1 true WO2015120671A1 (en) 2015-08-20

Family

ID=53799549

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/078349 WO2015120671A1 (en) 2014-02-11 2014-05-23 Control device or method for preventing loop oscillation

Country Status (2)

Country Link
CN (1) CN104836579B (en)
WO (1) WO2015120671A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050141660A1 (en) * 2003-12-01 2005-06-30 Lg Electronics Inc. Symbol timing recovery and broadcast receiver using the same
CN101112012A (en) * 2004-12-30 2008-01-23 诺基亚公司 Method and apparatus for estimating transmit weights for multiple antennas
US20080084337A1 (en) * 2006-09-29 2008-04-10 Optichron, Inc. Adaptive composite analog to digital converter
CN101946416A (en) * 2008-01-02 2011-01-12 高通股份有限公司 Interference Detection and alleviating
US8599962B1 (en) * 2010-07-16 2013-12-03 Marvell International Ltd. Power control using distortion measurement

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8126094B2 (en) * 2009-01-07 2012-02-28 Skyworks Solutions, Inc. Circuits, systems, and methods for managing automatic gain control in quadrature signal paths of a receiver

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050141660A1 (en) * 2003-12-01 2005-06-30 Lg Electronics Inc. Symbol timing recovery and broadcast receiver using the same
CN101112012A (en) * 2004-12-30 2008-01-23 诺基亚公司 Method and apparatus for estimating transmit weights for multiple antennas
US20080084337A1 (en) * 2006-09-29 2008-04-10 Optichron, Inc. Adaptive composite analog to digital converter
CN101946416A (en) * 2008-01-02 2011-01-12 高通股份有限公司 Interference Detection and alleviating
US8599962B1 (en) * 2010-07-16 2013-12-03 Marvell International Ltd. Power control using distortion measurement

Also Published As

Publication number Publication date
CN104836579B (en) 2019-02-05
CN104836579A (en) 2015-08-12

Similar Documents

Publication Publication Date Title
US9287889B2 (en) System and method for dynamic path-mismatch equalization in time-interleaved ADC
US20170302388A1 (en) Digital Pre-Distortion Calibration Coefficient Control Method and Apparatus
TWI237971B (en) Automatically adjusting gain/bandwidth loop filter
US20170325024A1 (en) Speaker protection from overexcursion
US8106805B2 (en) Self-calibrating pipeline ADC and method thereof
EP3126927B1 (en) Method and system for optimizing performance of a pcd while mitigating thermal generation
TWI255397B (en) Method and apparatus for PID controllers with adjustable dead time compensation
WO2015120671A1 (en) Control device or method for preventing loop oscillation
US9507359B2 (en) Power supply control method and device
US9634683B1 (en) Low power sigma-delta modulator architecture capable of correcting dynamic range automatically, method for implementing low power circuit thereof, and method for correcting and extending dynamic range of sigma-delta modulator automatically
US9781531B2 (en) Microphone system and related calibration control method and calibration control module
TWI685207B (en) Correction method and correction circuit for sigma-delta modulator
US9065696B2 (en) Adaptive equalizer
WO2018149406A1 (en) Ip address hopping method and apparatus for software defined network (sdn)
CN106330185A (en) Sampling time mismatch correction method based on extremal function
US8369455B2 (en) Receiving apparatus, receiving method, and program
TWI717659B (en) Signal processing system and method thereof
US8779847B1 (en) Systems and methods for finite impulse response adaptation for gain and phase control
US10778244B2 (en) Correction method and correction circuit for sigma-delta modulator
CN108919638B (en) High-order system model reduction and PID control method based on frequency domain
JP5799314B2 (en) Interface circuit
JP2022106500A5 (en)
JP6786829B2 (en) AD converter
CN111106835B (en) Correction method and correction circuit for delta-sigma modulator
JP7016078B2 (en) Control device

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14882438

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 13.01.2017)

122 Ep: pct application non-entry in european phase

Ref document number: 14882438

Country of ref document: EP

Kind code of ref document: A1