WO2015119472A1 - 무선 통신 시스템에서 트래픽 조종 방법 및 이를 이용하는 장치 - Google Patents

무선 통신 시스템에서 트래픽 조종 방법 및 이를 이용하는 장치 Download PDF

Info

Publication number
WO2015119472A1
WO2015119472A1 PCT/KR2015/001293 KR2015001293W WO2015119472A1 WO 2015119472 A1 WO2015119472 A1 WO 2015119472A1 KR 2015001293 W KR2015001293 W KR 2015001293W WO 2015119472 A1 WO2015119472 A1 WO 2015119472A1
Authority
WO
WIPO (PCT)
Prior art keywords
plmn
network
cell
terminal
ran assistance
Prior art date
Application number
PCT/KR2015/001293
Other languages
English (en)
French (fr)
Inventor
정성훈
이영대
이재욱
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to US15/114,657 priority Critical patent/US9838953B2/en
Priority to KR1020167020316A priority patent/KR101805336B1/ko
Priority to CN201580007803.2A priority patent/CN105981432B/zh
Publication of WO2015119472A1 publication Critical patent/WO2015119472A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/12Access restriction or access information delivery, e.g. discovery data delivery using downlink control channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0205Traffic management, e.g. flow control or congestion control at the air interface
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0247Traffic management, e.g. flow control or congestion control based on conditions of the access network or the infrastructure network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/08Load balancing or load distribution
    • H04W28/086Load balancing or load distribution among access entities
    • H04W28/0861Load balancing or load distribution among access entities between base stations
    • H04W28/0865Load balancing or load distribution among access entities between base stations of different Radio Access Technologies [RATs], e.g. LTE or WiFi
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/06Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/02Access restriction performed under specific conditions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices

Definitions

  • the present invention relates to wireless communication, and more particularly, to a traffic steering method and a device using the same in a wireless communication system.
  • 3GPP LTE long term evolution
  • UMTS Universal Mobile Telecommunications System
  • 3GPP LTE uses orthogonal frequency division multiple access (OFDMA) in downlink and single carrier-frequency division multiple access (SC-FDMA) in uplink.
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier-frequency division multiple access
  • LTE-A 3GPP LTE-Advanced
  • the wireless communication system can support providing a terminal with a service through a plurality of access networks.
  • a terminal may be provided with a service from a 3GPP access network, which is a mobile wireless communication system, and may also provide a service from a non-3GPP access network such as a worldwide interoperability for microwave access (WiMAX) or a wireless local area network (WLAN). I can receive it.
  • a 3GPP access network which is a mobile wireless communication system
  • a non-3GPP access network such as a worldwide interoperability for microwave access (WiMAX) or a wireless local area network (WLAN). I can receive it.
  • WiMAX worldwide interoperability for microwave access
  • WLAN wireless local area network
  • the terminal When the terminal establishes a connection with the 3GPP access network and receives a service, and the traffic is overloaded in the 3GPP access network, the terminal processes the traffic to be processed through another access network, that is, a non-3GPP access network. Doing so can improve network-wide efficiency. As such, steering the traffic or the path of the traffic so that the traffic can be handled variably through the 3GPP access network and / or the non-GPP access network is referred to as traffic steering.
  • the terminal may be configured with a policy for interworking with 3GPP access networks and non-3GPP access networks, such as ANDSF (Access Network Discovery and Selection Functions), which is separate from the interworking policy set by the network. Can be managed.
  • ANDSF Access Network Discovery and Selection Functions
  • PLMN public land mobile network
  • PLMN is a network deployed and operated by a mobile network operator. In general, there are a plurality of mobile communication network operators in each country, so there may be a plurality of PLMNs.
  • the UE selects / registers an appropriate PLMN, the UE selects a cell having a signal quality and a characteristic that the UE can receive an appropriate service from among cells provided by the selected PLMN.
  • traffic control may be performed between a first type network (eg, 3GPP LTE / LTE-A) and a second type network (eg, a wireless LAN) according to the traffic in the cell.
  • the cell provides policy / parameters for traffic steering between the first type network and the second type network, which may be referred to as RAN assistance information.
  • each mobile communication network operator may share the cell in terms of cost / efficiency / strategy. That is, a cell operated by a first mobile communication network operator (first PLMN) may also be shared by a second mobile communication network operator (second PLMN) (or vice versa). In this case, since the cell is operated by the first mobile communication network operator, only the RAN assistance information optimized for the first PLMN may be provided. Therefore, when the UE registered in the second PLMN accesses the cell, the optimized RAN assistance information may not be provided. This can reduce the efficiency of traffic steering and consequently degrade system performance.
  • first PLMN first mobile communication network operator
  • second PLMN second mobile communication network operator
  • the technical problem to be solved by the present invention is to provide a traffic control method and apparatus using the same in a wireless communication system.
  • a traffic steering method performed by a terminal in a wireless communication system.
  • the method receives first system information comprising a PLMN-ID list describing the IDs of the PLMNs in a particular order, and receives second system information including RAN assistance information regarding traffic steering between the first network and the second network.
  • Receiving and performing traffic steering between the first and second networks based on the first and second system information.
  • the second system information provides RAN assistance information for each PLMN, includes RAN assistance information equal to the number of PLMNs included in the PLMN-ID list, and includes PLMNs included in the PLMN-ID list.
  • RAN assistance information in the same order as the specific order.
  • a terminal operating in a wireless communication system includes a RF (Radio Frequenc) unit for transmitting and receiving a radio signal and a processor operatively coupled to the RF unit.
  • the processor receives first system information including a PLMN-ID list describing IDs of a public land mobile network (PLMN) in a specific order and RAN assistance for traffic steering between the first network and the second network.
  • PLMN public land mobile network
  • Receive second system information including information, and perform traffic steering between the first and second networks based on the first and second system information.
  • the second system information provides RAN assistance information for each PLMN, includes RAN assistance information equal to the number of PLMNs included in the PLMN-ID list, and includes PLMNs included in the PLMN-ID list. And RAN assistance information in the same order as the specific order.
  • RAN assistance information is provided for each of a plurality of PLMNs.
  • optimal RAN assistance information for each PLMN can be provided.
  • system performance is improved.
  • separate signaling is not required to inform which PLMN each RAN assistance information is.
  • signaling overhead can be reduced.
  • FIG. 1 shows a wireless communication system to which the present invention is applied.
  • FIG. 2 is a block diagram illustrating a radio protocol architecture for a user plane.
  • FIG. 3 is a block diagram illustrating a radio protocol structure for a control plane.
  • FIG. 4 is a flowchart illustrating an operation of a terminal in an RRC idle state.
  • FIG. 5 is a flowchart illustrating a process of establishing an RRC connection.
  • FIG. 6 is a flowchart illustrating a RRC connection resetting process.
  • FIG. 7 is a diagram illustrating a RRC connection reestablishment procedure.
  • FIG. 8 is a diagram illustrating an example of an environment in which a 3GPP access network and a WLAN access network coexist.
  • FIG. 10 shows another example of a traffic steering method.
  • 11 shows an example of association between a plurality of conventional PLMNs and RAN assistance information.
  • FIG. 12 illustrates a method for providing RAN assistance information in a cell according to an embodiment of the present invention.
  • FIG. 13 illustrates a method for providing RAN assistance information in a cell according to another embodiment of the present invention.
  • FIG. 14 illustrates an association relationship between lists of PLMN IDs signaled as system information and RAN assistance information and a method of informing the same.
  • FIG. 15 illustrates a traffic steering method according to an embodiment of the present invention.
  • FIG. 16 shows a specific example of applying the traffic steering method of FIG. 15.
  • FIG. 17 illustrates an association relationship between lists of PLMN IDs signaled as system information and RAN assistance information, and another method of informing the same.
  • 19 illustrates RAN assistance information applied when a UE camps on a specific cell through a PLMN.
  • 20 is a block diagram illustrating a wireless device in which an embodiment of the present invention may be implemented.
  • E-UTRAN Evolved-UMTS Terrestrial Radio Access Network
  • LTE Long Term Evolution
  • the E-UTRAN includes a base station (BS) 20 that provides a control plane and a user plane to a user equipment (UE).
  • the terminal 10 may be fixed or mobile and may be called by other terms such as a mobile station (MS), a user terminal (UT), a subscriber station (SS), a mobile terminal (MT), a wireless device (Wireless Device), and the like.
  • the base station 20 refers to a fixed station communicating with the terminal 10, and may be referred to by other terms such as an evolved-NodeB (eNB), a base transceiver system (BTS), an access point, and the like.
  • eNB evolved-NodeB
  • BTS base transceiver system
  • access point and the like.
  • the base stations 20 may be connected to each other through an X2 interface.
  • the base station 20 is connected to a Serving Gateway (S-GW) through an MME (Mobility Management Entity) and an S1-U through an Evolved Packet Core (EPC) 30, more specifically, an S1-MME through an S1 interface.
  • S-GW Serving Gateway
  • MME Mobility Management Entity
  • EPC Evolved Packet Core
  • EPC 30 is composed of MME, S-GW and P-GW (Packet Data Network-Gateway).
  • the MME has information about the access information of the terminal or the capability of the terminal, and this information is mainly used for mobility management of the terminal.
  • S-GW is a gateway having an E-UTRAN as an endpoint
  • P-GW is a gateway having a PDN as an endpoint.
  • Layers of the Radio Interface Protocol between the terminal and the network are based on the lower three layers of the Open System Interconnection (OSI) reference model, which is widely known in communication systems.
  • L2 second layer
  • L3 third layer
  • the RRC Radio Resource Control
  • the RRC layer located in the third layer plays a role of controlling radio resources between the terminal and the network. To this end, the RRC layer exchanges an RRC message between the terminal and the base station.
  • FIG. 2 is a block diagram illustrating a radio protocol architecture for a user plane.
  • 3 is a block diagram illustrating a radio protocol structure for a control plane.
  • the user plane is a protocol stack for user data transmission
  • the control plane is a protocol stack for control signal transmission.
  • a physical layer (PHY) layer provides an information transfer service to a higher layer using a physical channel.
  • the physical layer is connected to a medium access control (MAC) layer, which is an upper layer, through a transport channel. Data is moved between the MAC layer and the physical layer through the transport channel. Transport channels are classified according to how and with what characteristics data is transmitted over the air interface.
  • MAC medium access control
  • the physical channel may be modulated by an orthogonal frequency division multiplexing (OFDM) scheme and utilizes time and frequency as radio resources.
  • OFDM orthogonal frequency division multiplexing
  • the functions of the MAC layer include mapping between logical channels and transport channels and multiplexing / demultiplexing into transport blocks provided as physical channels on transport channels of MAC service data units (SDUs) belonging to the logical channels.
  • the MAC layer provides a service to a Radio Link Control (RLC) layer through a logical channel.
  • RLC Radio Link Control
  • Functions of the RLC layer include concatenation, segmentation, and reassembly of RLC SDUs.
  • QoS Quality of Service
  • the RLC layer uses a transparent mode (TM), an unacknowledged mode (UM), and an acknowledged mode.
  • TM transparent mode
  • UM unacknowledged mode
  • AM Three modes of operation
  • AM RLC provides error correction through an automatic repeat request (ARQ).
  • the RRC (Radio Resource Control) layer is defined only in the control plane.
  • the RRC layer is responsible for the control of logical channels, transport channels, and physical channels in connection with configuration, re-configuration, and release of radio bearers.
  • RB means a logical path provided by the first layer (PHY layer) and the second layer (MAC layer, RLC layer, PDCP layer) for data transmission between the terminal and the network.
  • PDCP Packet Data Convergence Protocol
  • Functions of the Packet Data Convergence Protocol (PDCP) layer in the user plane include delivery of user data, header compression, and ciphering.
  • the functionality of the Packet Data Convergence Protocol (PDCP) layer in the control plane includes the transfer of control plane data and encryption / integrity protection.
  • the establishment of the RB means a process of defining characteristics of a radio protocol layer and a channel to provide a specific service, and setting each specific parameter and operation method.
  • RB can be further divided into SRB (Signaling RB) and DRB (Data RB).
  • SRB is used as a path for transmitting RRC messages in the control plane
  • DRB is used as a path for transmitting user data in the user plane.
  • the UE If an RRC connection is established between the RRC layer of the UE and the RRC layer of the E-UTRAN, the UE is in an RRC connected state, otherwise it is in an RRC idle state.
  • the downlink transmission channel for transmitting data from the network to the UE includes a BCH (Broadcast Channel) for transmitting system information and a downlink shared channel (SCH) for transmitting user traffic or control messages.
  • Traffic or control messages of a downlink multicast or broadcast service may be transmitted through a downlink SCH or may be transmitted through a separate downlink multicast channel (MCH).
  • the uplink transport channel for transmitting data from the terminal to the network includes a random access channel (RACH) for transmitting an initial control message and an uplink shared channel (SCH) for transmitting user traffic or control messages.
  • RACH random access channel
  • SCH uplink shared channel
  • BCCH broadcast control channel
  • PCCH paging control channel
  • CCCH common control channel
  • MCCH multicast control channel
  • MTCH multicast traffic
  • the physical channel is composed of several OFDM symbols in the time domain and several sub-carriers in the frequency domain.
  • One sub-frame consists of a plurality of OFDM symbols in the time domain.
  • the RB is a resource allocation unit and includes a plurality of OFDM symbols and a plurality of subcarriers.
  • each subframe may use specific subcarriers of specific OFDM symbols (eg, the first OFDM symbol) of the corresponding subframe for the physical downlink control channel (PDCCH), that is, the L1 / L2 control channel.
  • Transmission Time Interval is a unit time of subframe transmission.
  • a physical channel is a physical downlink shared channel (PDSCH), a physical downlink shared channel (PUSCH), a physical downlink control channel (PDCCH), and a physical channel (PCFICH). It may be divided into a Control Format Indicator Channel (PHICH), a Physical Hybrid-ARQ Indicator Channel (PHICH), and a Physical Uplink Control Channel (PUCCH).
  • PDSCH physical downlink shared channel
  • PUSCH physical downlink shared channel
  • PDCCH physical downlink control channel
  • PCFICH physical channel
  • the PCFICH transmitted in the first OFDM symbol of a subframe carries a control format indicator (CFI) regarding the number of OFDM symbols (that is, the size of the control region) used for transmission of control channels in the subframe.
  • CFI control format indicator
  • the terminal first receives the CFI on the PCFICH, and then monitors the PDCCH.
  • the PDCCH is a downlink control channel and is also called a scheduling channel in that it carries scheduling information.
  • Control information transmitted through the PDCCH is called downlink control information (DCI).
  • DCI is a resource allocation of PDSCH (also called DL grant), a PUSCH resource allocation (also called UL grant), a set of transmit power control commands for individual UEs in any UE group. And / or activation of Voice over Internet Protocol (VoIP).
  • VoIP Voice over Internet Protocol
  • blind decoding is used to detect the PDCCH.
  • Blind decoding is a method of demasking a desired identifier in a cyclic redundancy check (CRC) of a received PDCCH (referred to as a candidate PDCCH) and checking a CRC error to determine whether the corresponding PDCCH is its control channel.
  • CRC cyclic redundancy check
  • the base station determines the PDCCH format according to the DCI to be sent to the terminal, attaches the CRC to the DCI, and masks a unique identifier (referred to as Radio Network Temporary Identifier (RNTI)) to the CRC according to the owner or purpose of the PDCCH. .
  • RNTI Radio Network Temporary Identifier
  • the RRC state refers to whether or not the RRC layer of the UE is in a logical connection with the RRC layer of the E-UTRAN. If connected, the RRC connection state is called. Since the UE in the RRC connected state has an RRC connection, the E-UTRAN can grasp the existence of the corresponding UE in a cell unit, and thus can effectively control the UE. On the other hand, the UE of the RRC idle state cannot be understood by the E-UTRAN, and is managed by the CN (core network) in units of a tracking area, which is a larger area unit than the cell. That is, the UE in the RRC idle state is identified only in a large area unit, and must move to the RRC connected state in order to receive a normal mobile communication service such as voice or data.
  • CN core network
  • the terminal When the user first powers on the terminal, the terminal first searches for an appropriate cell and then stays in an RRC idle state in the cell.
  • the UE in the RRC idle state needs to establish an RRC connection, it establishes an RRC connection with the E-UTRAN through an RRC connection procedure and transitions to the RRC connected state.
  • RRC connection procedure There are several cases in which the UE in RRC idle state needs to establish an RRC connection. For example, an uplink data transmission is necessary due to a user's call attempt, or a paging message is sent from E-UTRAN. If received, a response message may be sent.
  • the non-access stratum (NAS) layer located above the RRC layer performs functions such as session management and mobility management.
  • EMM-REGISTERED EPS Mobility Management-REGISTERED
  • EMM-DEREGISTERED EMM-DEREGISTERED
  • the initial terminal is in the EMM-DEREGISTERED state, and the terminal performs a process of registering with the corresponding network through an initial attach procedure to access the network. If the attach procedure is successfully performed, the UE and the MME are in the EMM-REGISTERED state.
  • an EPS Connection Management (ECM) -IDLE state In order to manage a signaling connection between the UE and the EPC, two states are defined, an EPS Connection Management (ECM) -IDLE state and an ECM-CONNECTED state, and these two states are applied to the UE and the MME.
  • ECM EPS Connection Management
  • ECM-IDLE state When the UE in the ECM-IDLE state establishes an RRC connection with the E-UTRAN, the UE is in the ECM-CONNECTED state.
  • the MME in the ECM-IDLE state becomes the ECM-CONNECTED state when it establishes an S1 connection with the E-UTRAN.
  • the E-UTRAN does not have context information of the terminal.
  • the UE in the ECM-IDLE state performs a terminal-based mobility related procedure such as cell selection or cell reselection without receiving a command from the network.
  • a terminal-based mobility related procedure such as cell selection or cell reselection without receiving a command from the network.
  • the terminal when the terminal is in the ECM-CONNECTED state, the mobility of the terminal is managed by the command of the network.
  • the terminal In the ECM-IDLE state, if the position of the terminal is different from the position known by the network, the terminal informs the network of the corresponding position of the terminal through a tracking area update procedure.
  • the system information includes essential information that the terminal needs to know in order to access the base station. Therefore, the terminal must receive all system information before accessing the base station, and must always have the latest system information. In addition, since the system information is information that all terminals in a cell should know, the base station periodically transmits the system information.
  • System information is divided into a master information block (MIB) and a plurality of system information blocks (SIB).
  • the MIB may include a limited number of the most essential and most frequently transmitted parameters that need to be obtained for other information from the cell.
  • the terminal first finds the MIB after downlink synchronization.
  • the MIB may include information such as downlink channel bandwidth, PHICH settings, SFNs that support synchronization and operate as timing criteria, and eNB transmit antenna settings.
  • the MIB may be broadcast transmitted on the BCH.
  • SIB1 SystemInformationBlockType1
  • SIB2 SystemInformationBlockType2
  • SIB1 and all system information messages are sent on the DL-SCH.
  • the E-UTRAN may be dedicated signaling while the SIB1 includes a parameter set equal to a previously set value, and in this case, the SIB1 may be transmitted by being included in an RRC connection reconfiguration message.
  • SIB1 includes information related to UE cell access and defines scheduling of other SIBs.
  • SIB1 is a PLMN identifier of a network, a tracking area code (TAC) and a cell ID, a cell barring status indicating whether a cell can be camped on, and a cell required for cell reselection. It may include the lowest reception level, and information related to the transmission time and period of other SIBs.
  • TAC tracking area code
  • SIB2 may include radio resource configuration information common to all terminals.
  • SIB2 includes uplink carrier frequency and uplink channel bandwidth, RACH configuration, paging configuration, uplink power control configuration, sounding reference signal configuration, PUCCH configuration supporting ACK / NACK transmission, and It may include information related to the PUSCH configuration.
  • the terminal may apply the acquisition and change detection procedure of the system information only to the PCell.
  • the E-UTRAN may provide all system information related to the RRC connection state operation through dedicated signaling.
  • the E-UTRAN may release the SCell under consideration and add it later, which may be performed with a single RRC connection reset message.
  • the E-UTRAN may set parameter values different from those broadcast in the SCell under consideration through dedicated signaling.
  • Essential system information can be defined as follows.
  • the UE When the UE is in the RRC idle state: The UE should ensure that it has valid versions of MIB and SIB1 as well as SIB2 to SIB8, which may be subject to the support of the considered RAT.
  • the terminal When the terminal is in the RRC connection state: The terminal should ensure that it has a valid version of MIB, SIB1 and SIB2.
  • the system information can be guaranteed valid up to 3 hours after acquisition.
  • services provided by a network to a terminal can be classified into three types as follows.
  • the terminal also recognizes the cell type differently according to which service can be provided. The following describes the service type first, followed by the cell type.
  • Limited service This service provides Emergency Call and Tsunami Warning System (ETWS) and can be provided in an acceptable cell.
  • ETWS Emergency Call and Tsunami Warning System
  • Normal service This service means a public use for general use, and can be provided in a suitable or normal cell.
  • This service means service for network operator. This cell can be used only by network operator and not by general users.
  • the cell types may be classified as follows.
  • Acceptable cell A cell in which the terminal can receive limited service. This cell is a cell that is not barred from the viewpoint of the terminal and satisfies the cell selection criteria of the terminal.
  • Suitable cell The cell that the terminal can receive a regular service. This cell satisfies the conditions of an acceptable cell and at the same time satisfies additional conditions. As an additional condition, this cell must belong to a Public Land Mobile Network (PLMN) to which the terminal can access, and must be a cell which is not prohibited from performing a tracking area update procedure of the terminal. If the cell is a CSG cell, the terminal should be a cell that can be connected to the cell as a CSG member.
  • PLMN Public Land Mobile Network
  • Barred cell A cell that broadcasts information that a cell is a prohibited cell through system information.
  • Reserved cell A cell that broadcasts information that a cell is a reserved cell through system information.
  • 4 is a flowchart illustrating an operation of a terminal in an RRC idle state. 4 illustrates a procedure in which a UE, which is initially powered on, registers with a network through a cell selection process and then reselects a cell if necessary.
  • the terminal selects a radio access technology (RAT) for communicating with a public land mobile network (PLMN), which is a network to be serviced (S410).
  • RAT radio access technology
  • PLMN public land mobile network
  • S410 a network to be serviced
  • Information about the PLMN and the RAT may be selected by a user of the terminal or may be stored in a universal subscriber identity module (USIM).
  • USIM universal subscriber identity module
  • the terminal selects a cell having the largest value among the measured base station and a cell whose signal strength or quality is greater than a specific value (Cell Selection) (S420). This is referred to as initial cell selection by the UE that is powered on to perform cell selection. The cell selection procedure will be described later.
  • the terminal receives system information periodically transmitted by the base station.
  • the above specific value refers to a value defined in the system in order to ensure the quality of the physical signal in data transmission / reception. Therefore, the value may vary depending on the RAT applied.
  • the terminal performs a network registration procedure (S430).
  • the terminal registers its information (eg IMSI) in order to receive a service (eg paging) from the network.
  • a service eg paging
  • the terminal selects a cell, the terminal does not register to the access network, and if the network information received from the system information (e.g., tracking area identity; do.
  • the terminal performs cell reselection based on the service environment provided by the cell or the environment of the terminal (S440).
  • the terminal selects one of the other cells that provides better signal characteristics than the cell of the base station to which the terminal is connected if the strength or quality of the signal measured from the base station being service is lower than the value measured from the base station of the adjacent cell. do.
  • This process is called Cell Re-Selection, which is distinguished from Initial Cell Selection of Step 2.
  • a time constraint is placed. The cell reselection procedure will be described later.
  • FIG. 5 is a flowchart illustrating a process of establishing an RRC connection.
  • the terminal sends an RRC connection request message to the network requesting an RRC connection (S510).
  • the network sends an RRC connection setup message in response to the RRC connection request (S520). After receiving the RRC connection configuration message, the terminal enters the RRC connection mode.
  • the terminal sends an RRC Connection Setup Complete message used to confirm successful completion of RRC connection establishment to the network (S530).
  • RRC connection reconfiguration is used to modify an RRC connection. It is used to establish / modify / release RBs, perform handovers, and set up / modify / release measurements.
  • the network sends an RRC connection reconfiguration message for modifying the RRC connection to the terminal (S610).
  • the UE sends an RRC connection reconfiguration complete message used to confirm successful completion of the RRC connection reconfiguration to the network (S620).
  • PLMN public land mobile network
  • PLMN is a network deployed and operated by mobile network operators. Each mobile network operator runs one or more PLMNs. Each PLMN may be identified by a mobile country code (MCC) and a mobile network code (MCC). The PLMN information of the cell is included in the system information and broadcasted.
  • MCC mobile country code
  • MCC mobile network code
  • PLMN selection In PLMN selection, cell selection and cell reselection, various types of PLMNs may be considered by the terminal.
  • HPLMN Home PLMN
  • MCC Mobility Management Entity
  • Equivalent HPLMN A PLMN that is equivalent to an HPLMN.
  • Registered PLMN A PLMN that has successfully completed location registration.
  • ELMN Equivalent PLMN
  • Each mobile service consumer subscribes to HPLMN.
  • HPLMN When a general service is provided to a terminal by HPLMN or EHPLMN, the terminal is not in a roaming state.
  • a service is provided to a terminal by a PLMN other than HPLMN / EHPLMN, the terminal is in a roaming state, and the PLMN is called a VPLMN (Visited PLMN).
  • PLMN public land mobile network
  • PLMN is a network deployed or operated by a mobile network operator. Each mobile network operator operates one or more PLMNs. Each PLMN may be identified by a mobile country code (MCC) and a mobile network code (MCC). The PLMN information of the cell is included in the system information and broadcasted.
  • MCC mobile country code
  • MCC mobile network code
  • the terminal attempts to register the selected PLMN. If the registration is successful, the selected PLMN becomes a registered PLMN (RPLMN).
  • the network may signal the PLMN list to the UE, which may consider PLMNs included in the PLMN list as PLMNs such as RPLMNs.
  • the terminal registered in the network should be reachable by the network at all times. If the terminal is in the ECM-CONNECTED state (same as RRC connected state), the network recognizes that the terminal is receiving the service. However, when the terminal is in the ECM-IDLE state (same as the RRC idle state), the situation of the terminal is not valid in the eNB but is stored in the MME. In this case, the location of the UE in the ECM-IDLE state is known only to the MME as the granularity of the list of tracking areas (TAs).
  • a single TA is identified by a tracking area identity (TAI) consisting of the PLMN identifier to which the TA belongs and a tracking area code (TAC) that uniquely represents the TA within the PLMN.
  • TAI tracking area identity
  • TAC tracking area code
  • the UE selects a cell having a signal quality and characteristics capable of receiving an appropriate service from among cells provided by the selected PLMN.
  • the terminal selects / reselects a cell of appropriate quality and performs procedures for receiving service.
  • the UE in the RRC idle state should always select a cell of appropriate quality and prepare to receive service through this cell. For example, a terminal that has just been powered on must select a cell of appropriate quality to register with the network. When the terminal in the RRC connected state enters the RRC idle state, the terminal should select a cell to stay in the RRC idle state. As such, the process of selecting a cell satisfying a certain condition in order for the terminal to stay in a service standby state such as an RRC idle state is called cell selection.
  • the cell selection is performed in a state in which the UE does not currently determine a cell to stay in the RRC idle state, it is most important to select the cell as soon as possible. Therefore, if the cell provides a radio signal quality of a predetermined criterion or more, even if this cell is not the cell providing the best radio signal quality to the terminal, it may be selected during the cell selection process of the terminal.
  • an initial cell selection process in which the terminal does not have prior information on the radio channel. Accordingly, the terminal searches all radio channels to find an appropriate cell. In each channel, the terminal finds the strongest cell. Thereafter, the terminal selects a corresponding cell if it finds a suitable cell that satisfies a cell selection criterion.
  • the terminal may select the cell by using the stored information or by using the information broadcast in the cell.
  • cell selection can be faster than the initial cell selection process.
  • the UE selects a corresponding cell if it finds a cell that satisfies a cell selection criterion. If a suitable cell that satisfies the cell selection criteria is not found through this process, the UE performs an initial cell selection process.
  • the cell selection criteria may be defined as in Equation 1 below.
  • Equation 1 each variable of Equation 1 may be defined as shown in Table 1 below.
  • Srxlev Cell selection RX level value (dB) Squal Cell selection quality value (dB) Q rxlevmeas Measured cell RX level value (RSRP) Q qualmeas Measured cell quality value (RSRQ) Q rxlevmin Minimum required RX level in the cell (dBm) Q qualmin Minimum required quality level in the cell (dB) Q rxlevminoffset Offset to the signaled Q rxlevmin taken into account in the Srxlev evaluation as a result of a periodic search for a higher priority PLMN while camped normally in a VPLMN [5] Q qualminoffset Offset to the signaled Q qualmin taken into account in the Squal evaluation as a result of a periodic search for a higher priority PLMN while camped normally in a VPLMN [5] Pcompensation max (P EMAX –P PowerClass , 0) (dB) P EMAX Maximum TX power level an UE may use when transmitting on the
  • the signaled values Q rxlevminoffset and Q qualminoffset may be applied only when cell selection is evaluated as a result of a periodic search for a higher priority PLMN while the UE is camping on a regular cell in the VPLMN.
  • the terminal may perform cell selection evaluation using stored parameter values from other cells of the higher priority PLMN.
  • the terminal After the terminal selects a cell through a cell selection process, the strength or quality of a signal between the terminal and the base station may change due to a change in mobility or a wireless environment of the terminal. Therefore, if the quality of the selected cell is degraded, the terminal may select another cell that provides better quality. When reselecting a cell in this way, a cell that generally provides better signal quality than the currently selected cell is selected. This process is called cell reselection.
  • the cell reselection process has a basic purpose in selecting a cell that generally provides the best quality to a terminal in view of the quality of a radio signal.
  • the network may determine the priority for each frequency and notify the terminal. Upon receiving this priority, the UE considers this priority prior to the radio signal quality criteria in the cell reselection process.
  • a method of selecting or reselecting a cell according to a signal characteristic of a wireless environment In selecting a cell for reselection when reselecting a cell, the following cell reselection is performed according to a cell's RAT and frequency characteristics. There may be a method of selection.
  • Intra-frequency cell reselection Reselection of a cell having a center-frequency equal to the RAT, such as a cell in which the UE is camping
  • Inter-frequency cell reselection Reselects a cell having a center frequency different from that of the same RAT as the cell camping
  • Inter-RAT cell reselection The UE reselects a cell that uses a different RAT from the camping RAT.
  • the UE measures the quality of a serving cell and a neighboring cell for cell reselection.
  • cell reselection is performed based on cell reselection criteria.
  • the cell reselection criteria have the following characteristics with respect to serving cell and neighbor cell measurements.
  • Intra-frequency cell reselection is basically based on ranking.
  • Ranking is an operation of defining index values for cell reselection evaluation and using the index values to order the cells in the order of the index values.
  • the cell with the best indicator is often called the highest ranked cell.
  • the cell index value is a value obtained by applying a frequency offset or a cell offset as necessary based on the value measured by the terminal for the corresponding cell.
  • Inter-frequency cell reselection is based on the frequency priority provided by the network.
  • the terminal attempts to camp on the frequency with the highest frequency priority.
  • the network may provide the priorities to be commonly applied to the terminals in the cell or provide the frequency priority through broadcast signaling, or may provide the priority for each frequency for each terminal through dedicated signaling.
  • the cell reselection priority provided through broadcast signaling may be referred to as common priority, and the cell reselection priority set by the network for each terminal may be referred to as a dedicated priority.
  • the terminal may also receive a validity time associated with the dedicated priority.
  • the terminal starts a validity timer set to the valid time received together.
  • the terminal applies the dedicated priority in the RRC idle mode while the validity timer is running.
  • the validity timer expires, the terminal discards the dedicated priority and applies the public priority again.
  • the network may provide the UE with a parameter (for example, frequency-specific offset) used for cell reselection for each frequency.
  • a parameter for example, frequency-specific offset
  • the network may provide the UE with a neighboring cell list (NCL) used for cell reselection.
  • NCL neighboring cell list
  • This NCL contains cell-specific parameters (eg cell-specific offsets) used for cell reselection.
  • the network may provide the UE with a cell reselection prohibition list (black list) used for cell reselection.
  • the UE does not perform cell reselection for a cell included in the prohibition list.
  • the ranking criterion used to prioritize the cells is defined as in Equation 2.
  • R s Q meas, s + Q hyst
  • R n Q meas, n – Q offset
  • R s is the ranking indicator of the serving cell
  • R n is the ranking indicator of the neighbor cell
  • Q meas s is the quality value measured by the UE for the serving cell
  • Q meas n is the quality measured by the UE for the neighbor cell
  • Q hyst is a hysteresis value for ranking
  • Q offset is an offset between two cells.
  • the terminal may alternately select two cells.
  • Q hyst is a parameter for giving hysteresis in cell reselection to prevent the UE from reselecting two cells alternately.
  • the UE measures R s of the serving cell and R n of the neighboring cell according to the above equation, considers the cell having the highest ranking indicator value as the highest ranked cell, and reselects the cell.
  • the quality of the cell serves as the most important criterion in cell reselection. If the reselected cell is not a normal cell, the terminal excludes the frequency or the corresponding cell from the cell reselection target.
  • the UE When the UE performs cell reselection according to the cell reselection evaluation, if the cell reselection criterion is satisfied for a specific time, the UE may determine that the cell reselection criterion is satisfied and move the cell to the selected target cell.
  • a specific time can be given from the network as a Treselection parameter.
  • Treselection specifies a cell reselection timer value and can be defined for each frequency of the E-UTRAN and for a different RAT.
  • the cell reselection information may be included in system information broadcast from a network in the form of a cell reselection parameter, transmitted, and provided to the terminal.
  • Cell reselection parameters provided to the terminal may include the following types.
  • the cellReselectionPriority parameter specifies the priority for the frequency of the E-UTRAN, the frequency of the UTRAN, the group of GERAN frequencies, the band class of CDMA2000 HRPD, or the band class of CDMA2000 1xRTT.
  • Qoffset frequency specifies a frequency specific offset for the E-UTRAN frequency of the same priority.
  • Q hyst Specifies the hysteresis value for the rank index.
  • Q qualmin Specifies the minimum required quality level, specified in dB.
  • Q rxlevmin Specifies the minimum required Rx level, specified in dB.
  • Treselection EUTRA Specifies a cell reselection timer value for the E-UTRAN and may be set for each frequency of the E-UTRAN.
  • Treselection UTRAN Specifies the cell reselection timer value for the UTRAN.
  • Treselection GERA Specifies the cell reselection timer value for GERAN.
  • Treselection CDMA_HRPD specifies a cell reselection timer value for CDMA HRPD.
  • Treselection CDMA_1xRTT specifies a cell reselection timer value for CDMA 1xRTT.
  • Thresh x, HighP Specifies the Srxlev threshold value used by the UE in dB units when reselecting a cell to a RAT / frequency of higher priority than the serving frequency.
  • Specific thresholds can be set individually for each frequency of E-UTRAN and UTRAN, each group of GERAN frequencies, each band class of CDMA2000 HRPD, and each band class of CDMA2000 1 ⁇ RTT.
  • Thresh x, HighQ Specifies the Squal threshold value used by the terminal in dB units when reselecting a cell to a RAT / frequency having a higher priority than the serving frequency. Specific thresholds may be set separately for each frequency of the E-UTRAN and UTRAN FDD.
  • Thresh x, LowP Specifies the Srxlev threshold value used by the terminal in dB units when reselecting a cell to a RAT / frequency having a lower priority than the serving frequency.
  • Specific thresholds can be set individually for each frequency of E-UTRAN and UTRAN, each group of GERAN frequencies, each band class of CDMA2000 HRPD, and each band class of CDMA2000 1 ⁇ RTT.
  • Thresh x, LowQ specifies the Squal threshold used by the terminal in dB units when reselecting a cell to a lower priority RAT / frequency than the serving frequency. Specific thresholds may be set separately for each frequency of the E-UTRAN and UTRAN FDD.
  • Thresh Serving, LowP Specifies the Srxlev threshold used by the UE on the serving cell in dB units when reselecting a cell with a lower RAT / frequency.
  • Thresh Serving, LowQ Specifies the Squal threshold used by the UE on the serving cell in dB units when reselecting a cell with a lower RAT / frequency.
  • S IntraSerachP Specifies the Srxlev threshold for intra-frequency measurement in dB.
  • S IntraSerachQ Specifies the Squal threshold for intra-frequency measurement in dB.
  • S nonIntraSerachP Specifies the Srxlev threshold for the E-UTRAN inter-frequency and inter-RAT measurement in dB.
  • S nonIntraSerachQ Specifies the Squal threshold for the E-UTRAN inter-frequency and inter-RAT measurement in dB.
  • the cell reselection information may be included in an RRC connection release message, which is an RRC message transmitted for RRC connection release between the network and the terminal, and may be provided to the terminal.
  • the RRC disconnection message may include a subcarrier frequency list and cell reselection priority of E-UTRAN, a subcarrier frequency list and cell reselection priority of UTRA-FDD, a subcarrier frequency list and cell reselection priority of UTRA-TDD. It may include a subcarrier frequency list and cell reselection priority of GERAN, a band class list and cell reselection priority of CDMA2000 HRPD, a band class list and cell reselection priority of CDMA2000 1xRTT.
  • RLM Radio Link Monitoring
  • the terminal monitors the downlink quality based on a cell-specific reference signal to detect the downlink radio link quality of the PCell.
  • the UE estimates the downlink radio link quality for PCell downlink radio link quality monitoring purposes and compares it with thresholds Qout and Qin.
  • the threshold Qout is defined as the level at which the downlink radio link cannot be stably received, which corresponds to a 10% block error rate of hypothetical PDCCH transmission in consideration of the PDFICH error.
  • the threshold Qin is defined as a downlink radio link quality level that can be received more stably than the level of Qout, which corresponds to a 2% block error rate of virtual PDCCH transmission in consideration of PCFICH errors.
  • RLF Radio Link Failure
  • the UE continuously measures to maintain the quality of the radio link with the serving cell receiving the service.
  • the terminal determines whether communication is impossible in the current situation due to deterioration of the quality of the radio link with the serving cell. If the quality of the serving cell is so low that communication is almost impossible, the terminal determines the current situation as a radio connection failure.
  • the UE abandons communication with the current serving cell, selects a new cell through a cell selection (or cell reselection) procedure, and reestablishes an RRC connection to the new cell (RRC connection re). -establishment).
  • FIG. 7 is a diagram illustrating a RRC connection reestablishment procedure.
  • the UE stops using all radio bearers that are set except for Signaling Radio Bearer # 0 (SRB 0) and initializes various sublayers of an access stratum (AS) (S810). In addition, each sublayer and physical layer are set to a default configuration. During this process, the UE maintains an RRC connection state.
  • SRB 0 Signaling Radio Bearer # 0
  • AS Access stratum
  • the UE performs a cell selection procedure for performing an RRC connection reconfiguration procedure (S820).
  • the cell selection procedure of the RRC connection reestablishment procedure may be performed in the same manner as the cell selection procedure performed by the UE in the RRC idle state, although the UE maintains the RRC connection state.
  • the UE After performing the cell selection procedure, the UE checks the system information of the corresponding cell to determine whether the corresponding cell is a suitable cell (S830). If it is determined that the selected cell is an appropriate E-UTRAN cell, the UE transmits an RRC connection reestablishment request message to the cell (S840).
  • the RRC connection re-establishment procedure is stopped, the terminal is in the RRC idle state Enter (S850).
  • the terminal may be implemented to complete the confirmation of the appropriateness of the cell within a limited time through the cell selection procedure and the reception of system information of the selected cell.
  • the UE may drive a timer as the RRC connection reestablishment procedure is initiated.
  • the timer may be stopped when it is determined that the terminal has selected a suitable cell. If the timer expires, the UE may consider that the RRC connection reestablishment procedure has failed and may enter the RRC idle state.
  • This timer is referred to hereinafter as a radio link failure timer.
  • a timer named T311 may be used as a radio link failure timer.
  • the terminal may obtain the setting value of this timer from the system information of the serving cell.
  • the cell When the RRC connection reestablishment request message is received from the terminal and the request is accepted, the cell transmits an RRC connection reestablishment message to the terminal.
  • the UE Upon receiving the RRC connection reestablishment message from the cell, the UE reconfigures the PDCP sublayer and the RLC sublayer for SRB1. In addition, it recalculates various key values related to security setting and reconfigures the PDCP sublayer responsible for security with newly calculated security key values. Through this, SRB 1 between the UE and the cell is opened and an RRC control message can be exchanged. The terminal completes the resumption of SRB1 and transmits an RRC connection reestablishment complete message indicating that the RRC connection reestablishment procedure is completed to the cell (S860).
  • the cell transmits an RRC connection reestablishment reject message to the terminal.
  • the cell and the terminal performs the RRC connection reestablishment procedure.
  • the UE recovers the state before performing the RRC connection reestablishment procedure and guarantees the continuity of the service to the maximum.
  • ANDSF Access Network Discovery and Selection Functions
  • ANDSF provides access network discovery information (eg WLAN, WiMAX location information, etc.) accessible from the terminal location, Inter-System Mobility Policies (ISMP) that can reflect the policy of the operator, Inter-System Routing Policy (Inter It carries a System Routing Policy (ISRP), and based on this information, the UE can determine which traffic to transmit via which access network.
  • the ISMP may include a network selection rule for the terminal to select one active access network connection (eg, WLAN or 3GPP).
  • the ISRP may include network selection rules for the terminal to select a potential one or more active access network connections (eg, both WLAN and 3GPP).
  • Inter-system routing policies include MAPCON (Multiple Access PDN Connectivity), IFOM (IP Flow Mobility), and non-seamless WLAN offloading.
  • MAPCON Multiple Access PDN Connectivity
  • IFOM IP Flow Mobility
  • OMA DM Open Mobile Alliance Device Management
  • the ANDSF server determines the access point name (APN) information to perform offloading, the routing rules between access networks, the time of day when the offloading method is applied, and the access network to offload. Provide information, etc.
  • offloading may be defined as moving a load / traffic from the first access network to the second access network.
  • IFOM supports more flexible and granular unit of IP flow unit mobility and seamless offloading than MAPCON. Unlike the MAPCON, the technical characteristics of IFOM can be accessed through different access networks even when the terminal is connected to the packet data network using the same APN.
  • the unit of mobility and offloading is a packet data network (PDN).
  • PDN packet data network
  • the ANDSF server can determine the IP flow information to perform offloading, routing rules between access networks, time of day when the offloading method is applied, and access network (Validity Area) information to be offloaded. to provide.
  • Non-seamless WLAN offloading refers to a technique that not only redirects certain specific IP traffic to WLAN, but also completely offloads the traffic so that it does not go through the EPC. It does not anchor the P-GW to support mobility, so offloaded IP traffic cannot be seamlessly moved back to the 3GPP access network.
  • the ANDSF server provides information similar to the information provided to the terminal to perform IFOM.
  • FIG. 8 is a diagram illustrating an example of an environment in which a 3GPP access network and a WLAN access network coexist.
  • a cell 1 centered on a base station 1 1310 and a cell 2 centered on a base station 2 1320 are deployed as a 3GPP access network.
  • BSS Base Service Set
  • AP Access Point
  • BSS 2 centering on AP2 1340 are deployed.
  • the BSS 3 centering on the AP3 1350 existing in the cell 2 is deployed.
  • the coverage of the cell is shown by the solid line and the coverage of the BSS is shown by the dotted line.
  • the terminal 1300 is configured to perform communication through at least one of a 3GPP access network and a WLAN access network.
  • the terminal 1300 may be called a station.
  • the terminal 1300 may establish a connection with BS 1 1310 in cell 1 to process traffic through a 3GPP access network.
  • the terminal 1300 enters the coverage of the BSS 1 while moving within the coverage of the cell 1.
  • the traffic may be moved from the 3GPP access network to the WLAN access network.
  • Traffic steering refers to steering traffic or the route of traffic so that it can be handled variably through 3GPP access networks and / or non-GPP access networks.
  • the 3GPP access network is UTRAN / E-UTRAN and the non-3GPP access network is a WLAN access network.
  • the 3GPP access network may be referred to as a first network, RAN or LTE, and the non-3GPP access network may be referred to as a second network or a WLAN.
  • an eNB / RNC may be referred to as a base station of a first network (RAN) and a WLAN AP may be referred to as a base station of a second network.
  • the eNB / RNC may provide the RAN assistance information to the terminal through the system information.
  • the RAN assistance information may be referred to as network assistance information.
  • RAN assistance information may be broadcast or provided via a dedicated signal.
  • the RAN assistance information may include at least one of the following parameters.
  • Load information Directly or indirectly direct UMTS / LTE loads.
  • Load Information Directly or indirectly direct UMTS / LTE loads.
  • Resource Allocation Maximum resource allocation that UE can receive in UMTS / LTE WLAN thresholds (thresholds) (WLAN Thresholds) WLAN received signal strength indicator (RSSI) threshold, WLAN BSS load threshold, and WLAN WAN metric threshold Thresholds for the available downlink and uplink backhaul bands.
  • WLAN thresholds thresholds
  • RAN Thresholds RSRP / RSCP Thresholds
  • the terminal may move, i.e. offload, the load from the first network to the second network based on the parameters included in the RAN assistance information.
  • a rule indicating under what conditions the load is to be moved may be referred to as a RAN rule.
  • the terminal may use the parameters provided by the RAN assistance information.
  • the RAN rule may be determined as follows. That is, the reference signal received power (RSRP) of the first network is smaller than the threshold s, the load / traffic of the first network is greater than the threshold x, and the received signal strength indicator (RSSI) of the second network is greater than the threshold r and the second If the load / traffic of the network is less than the threshold y, the load can be moved to the second network.
  • RSRP reference signal received power
  • RSSI received signal strength indicator
  • the RSRP of the first network is greater than the threshold s ', the load / traffic of the first network is less than the threshold x', the RSSI of the second network is less than the threshold r 'and the load / traffic of the second network is greater than the threshold y' If large, the load can be moved to the first network.
  • the thresholds s, s ', x, x' used in this RAN rule may be RAN thresholds provided by the RAN assistance information of Table 2, and r, r ', y, y' may be WRAN thresholds.
  • the reference signal received power (RSRP) of the first network is less than the threshold s
  • the received signal strength indicator (RSSI) of the second network is greater than the threshold r
  • the load / traffic of the second network is the threshold y If smaller, the load can be moved to the second network. Otherwise, if the RSRP of the first network is greater than the threshold s', the RSSI of the second network is less than the threshold r 'or the load / traffic of the second network is greater than the threshold y', then move the load to the first network. You can.
  • traffic steering conditions to WLAN and traffic steering conditions to 3GPP access network may be as follows.
  • RSRP measurement value (measured_RSRP) ⁇ low RSRP threshold value (Threshold_RSRP_low), 3GPP load measurement value (measured_3GPPLoad)> high 3GPP load threshold value (Threshold_3GPPLoad_High): That is, the RSRP measurement value of the first network LTE is lower than the threshold
  • the load measurement value is a case where a condition higher than a threshold is satisfied.
  • WLAN load measurement value (measured_WLANLoad) ⁇ low WLAN load threshold value (Threshold_WLANLoad_low), WLAN signal strength measurement value (measured_WLANsignal)> high WLAN signal strength threshold value (Threshold_WLANsignal_high): That is, the signal strength of the second network WLAN is threshold Higher and load measurements are where the low conditions are met.
  • the traffic steering condition may be as follows.
  • RSRP measurement (measured_RSRP)> high RSRP threshold (Threshold_RSRP_high)
  • 3GPP load measurement (measured_3GPPLoad) ⁇ low 3GPP load threshold (Threshold_3GPPLoad_High)
  • WLAN load measurement (measured_WLANLoad)> high WLAN load threshold (Threshold_WLANLoad_high)
  • WLAN signal strength measurement (measured_WLANsignal) ⁇ low WLAN signal strength threshold (Threshold_WLANsignal_low)
  • the one or more conditions may be set to be combined with and / or.
  • the traffic steering evaluation condition implemented by combining one or more conditions may be implemented as follows.
  • FIG. 10 shows another example of a traffic steering method.
  • an eNB / RNC may be referred to as a base station of a first network (RAN) and a WLAN AP may be referred to as a base station of a second network.
  • the eNB / RNC transmits parameters related to access network selection and traffic steering, that is, parameters for traffic steering evaluation according to the RAN rule, to the terminal (S101).
  • the RAN rule means a rule regarding an interworking policy reflecting measurement parameters such as load, signal quality, etc. of the 3GPP access network and / or WLAN access network.
  • the parameter may be broadcast or provided via a dedicated signal.
  • Parameters for the RAN rule and the RAN rule may be set as follows.
  • the RAN rule may indicate whether traffic steering to the WLAN is allowed.
  • the RAN rule may indicate a traffic steering evaluation condition, which is a condition in which the UE is allowed or required to perform traffic steering from the 3GPP access network to the WLAN access network.
  • Conditions according to the RAN rule may involve evaluation of measurement results for an LTE cell.
  • a condition according to the RAN rule may involve the evaluation of measurement results for the WLAN. The evaluation may be compared with the measurement result and the RAN rule parameter (e.g. measurement threshold, etc.) indicated in the traffic steering information.
  • the RAN rule may indicate a condition in which the terminal is allowed or required to perform traffic steering from the WLAN access network to the 3GPP access network.
  • the RAN rule may indicate the target WLAN access network where the terminal is allowed or required to perform traffic steering from the 3GPP access network.
  • the RAN rule may indicate the type of traffic that is allowed to route to the WLAN access network.
  • the RAN rule may indicate one or more traffics that are allowed to route to the WLAN access network, that is, can only be serviced by the 3GPP access network.
  • the terminal may compare the aforementioned parameter value with the values measured by the terminal and move the load from the first network to the second network according to the result (S102).
  • the terminal searches for an available public land mobile network (PLMN) and selects an appropriate PLMN capable of receiving a service.
  • PLMN public land mobile network
  • the UE selects / registers an appropriate PLMN
  • the UE selects a cell having a signal quality and a characteristic that the UE can receive an appropriate service from among cells provided by the selected PLMN.
  • traffic control may be performed between a first type network (eg, 3GPP LTE / LTE-A) and a second type network (eg, a wireless LAN) according to the traffic in the cell.
  • the cell provides policy / parameters for traffic steering between the first type network and the second type network, which may be referred to as RAN assistance information.
  • each mobile communication network operator may share the cell in terms of cost / efficiency / strategy. That is, a cell operated by a first mobile communication network operator (first PLMN) may also be shared by a second mobile communication network operator (second PLMN) (or vice versa).
  • first PLMN first mobile communication network operator
  • second PLMN second mobile communication network operator
  • a plurality of mobile communication network operators can share the same cell, which is called RAN sharing. That is, specific cells may be shared by a plurality of PLMNs. As such, the shared cell may broadcast a list containing PLMN IDs (called PLMN-ID list).
  • PLMN-ID list a list containing PLMN IDs
  • the following table is an example of system information broadcast by a cell, and the system information may include a PLMN-ID list.
  • -ASN1STA SystemInformationBlockType1 SEQUENCE ⁇ cellAccessRelatedInfo SEQUENCE ⁇ plmn-IdentityList PLMN-IdentityList, trackingAreaCode TrackingAreaCode, cellIdentity CellIdentity, cellBarred ENUMERATED ⁇ barred, notBarred ⁇ , intraFreqReselection ENUMERATED ⁇ allowed, notAllowed ⁇ , csg-Indication BOOLEAN, csg-Identity CSG-Identity OPTIONAL-- Need OR ⁇ , cellSelectionInfo SEQUENCE ⁇ q-RxLevMin Q-RxLevMin, q-RxLevMinOffset INTEGER (1..8) OPTIONAL-- Need OP ⁇ , p-Max P-Max OPTIONAL,-Need OP freqBandIndicator FreqBandIndicator, schedulingInfoList SchedulingInfoList, tdd-Config TDD-Config OPTIONAL,-Cond TDD si
  • 'plmn-IdentityList' is a list of PLMN IDs, and the PLMN IDs are described in order.
  • the PLMN ID first described in this PLMN-ID list is the primary PLMN, and the next PLMN ID is the secondary PLMN. There is only one primary PLMN, and there may be one or more secondary PLMNs.
  • RAN assistance information mainly transmitted in accordance with the policy of the primary PLMN is transmitted. Accordingly, the terminal accessing the cell with the secondary PLMN applies RAN assistance information that is not optimized for the secondary PLMN.
  • the optimized RAN assistance information may not be provided.
  • 11 shows an example of association between a plurality of conventional PLMNs and RAN assistance information.
  • a cell may broadcast a PLMN-ID list through system information.
  • the PLMN-ID list contains pPLMN, sPLMN_1, sPLMN_2, and sPLMN_3.
  • the cell is transmitting RAN assistance information # 1 optimized for pPLMN.
  • the UE applies the RAN assistance information # 1 regardless of which PLMN is connected to the cell. If the terminal accesses the cell through sPLMN_1, the terminal applies RAN assistance information that is not optimized.
  • FIG. 12 illustrates a method for providing RAN assistance information in a cell according to an embodiment of the present invention.
  • a cell may inform a plurality of PLMNs through system information.
  • the primary PLMN (pPLMN) and the secondary PLMN (sPLMN_1, sPLMN_2, sPLMN_3) may be informed through the PLMN-ID list.
  • the cell may provide RAN assistance information for the primary PLMN and RAN assistance information that can be commonly applied to the secondary PLMNs. That is, RAN assistance information provided by a cell may be classified into two types. The first kind is RAN assistance information applied to the primary PLMN, and the second kind is RAN assistance information that can be commonly applied to all secondary PLMNs.
  • FIG. 13 illustrates a method for providing RAN assistance information in a cell according to another embodiment of the present invention.
  • a cell may inform a plurality of PLMNs through system information.
  • the primary PLMN (pPLMN) and the secondary PLMN (sPLMN_1, sPLMN_2, sPLMN_3) may be informed through the PLMN-ID list.
  • the cell may provide RAN assistance information that can be applied to each of the primary PLMN and the secondary PLMN. That is, the cell may provide as much RAN assistance information as the number of PLMNs included in the PLMN-ID list signaled by the cell.
  • RAN assistance information # 1 may be applied to pPLMN
  • RAN assistance information # 2 may be applied to sPLMN_1
  • RAN assistance information # 3 may be applied to sPLMN_2
  • RAN assistance information # 4 may be applied to sPLMN_3.
  • RAN assistance information corresponding to each secondary PLMN may have a 1: 1 relationship, and different RAN assistance information may be applied to different secondary PLMNs.
  • FIG. 14 illustrates an association relationship between lists of PLMN IDs signaled as system information and RAN assistance information and a method of informing the same.
  • the cell when the cell provides RAN assistance information, the cell provides the same number of RAN assistance information as the number of PLMNs included in the PLMN-ID list, and also the order of the PLMNs included in the PLMN-ID list.
  • Corresponding RAN assistance information may be provided in the same order as. That is, the cell may not explicitly indicate the PLMN associated with the RAN assistance information and may implicitly provide it.
  • the UE may identify RAN assistance information corresponding to each PLMN based on the order of the PLMN-ID list broadcast by the cell and the order of the RAN assistance information.
  • a PLMN-ID list broadcasted by a cell includes four PLMN IDs in the order pPLMN, sPLMN_1, sPLMN_2, and sPLMN_3.
  • SIB17 system information including the RAN assistance information is provided as shown in the following table.
  • SystemInformationBlockType17-r12 SEQUENCE ⁇ wlan-OffloadInfoPerPLMN-List-r12 SEQUENCE (SIZE (1..maxPLMN-r11)) OF WLAN-OffloadInfoPerPLMN-r12 OPTIONAL,-Need OR lateNonCriticalExtension OCTET STRING OPTIONAL, ...
  • 'Wlan-OffloadInfoPerPLMN-List' in the table may include 'maxPLMN' 'WLAN-OffloadInfoPerPLMN'.
  • Each 'WLAN-OffloadInfoPerPLMN' includes a 'WLAN-OffloadConfig', and the 'WLAN-OffloadConfig' may include various thresholds related to traffic control as shown in Table 2 above.
  • 'WLAN-OffloadInfoPerPLMN' or 'WLAN-OffloadConfig' may be an example of RAN assistance information.
  • 'bssid' represents a basic service set identifier defined in a WLAN.
  • 'Hessid' represents a homogeneous extended service set identifier (ID) defined by the WLAN.
  • 'Ssid' represents a service set ID defined in a WLAN.
  • RAN assistance information is provided in the order of RAN assistance information # 1, # 3, # 4, and # 2.
  • RAN assistance information # 1 is associated with pPLMN
  • RAN assistance information # 3 is associated with sPLMN_1
  • RAN assistance information # 4 is associated with sPLMN_2
  • RAN assistance information # 2 is associated with sPLMN_3. Is associated.
  • the cell does not explicitly provide the PLMN information to which each RAN assistance information is associated, and the PLMN by matching the order of PLMNs in the PLMN-ID list with the corresponding RAN assistance information included in the system information (SIB17). And the association of the RAN assistance information.
  • RAN assistance information associated with the primary PLMN may be determined regardless of the signaling order, and only RAN assistance information associated with the secondary PLMNs may be determined according to the signaling order.
  • RAN assistance information associated with the primary PLMN is provided through SIB 4, and additional RAN assistance information may be provided in an extension of the SIB 4, and the additionally provided RAN assistance information may be based on a signaling order.
  • the secondary PLMN to be associated may be determined.
  • FIG. 15 illustrates a traffic steering method according to an embodiment of the present invention.
  • the terminal receives first system information including a PLMN-ID list describing PLMN IDs in a specific order (S121).
  • the first system information is system information including information necessary for evaluating whether the terminal is allowed to access a cell.
  • the above-described system information of Table 3 may be an example of the first system information.
  • the terminal receives the second system information including the RAN assistance information (S122).
  • the above system information of Table 4 may be an example of the second system information.
  • the RAN assistance information may include information regarding traffic steering between the first network and the second network.
  • the RAN assistance information may include a threshold for signal measurement received from the first network and a threshold for signal measurement received from the second network.
  • the first network may be an Evolved-UMTS Terrestrial Radio Access Network (E-UTRAN), and the second network may be a Wireless Local Area Network (WLAN).
  • E-UTRAN Evolved-UMTS Terrestrial Radio Access Network
  • WLAN Wireless Local Area Network
  • the second system information may provide RAN assistance information for each PLMN, and may include the same number of RAN assistance information as the number of PLMNs included in the PLMN-ID list included in the first system information. have.
  • RAN assistance information corresponding to the order of the PLMNs included in the PLMN-ID list may be included.
  • the terminal controls traffic between the first network and the second network based on the first and second system information (S123).
  • FIG. 16 shows a specific example of applying the traffic steering method of FIG. 15.
  • a first network LTE in a cell provides a PLMN-ID list to a terminal (S131).
  • the first network provides the RAN assistance information to the terminal (S132).
  • the RAN assistance information may be provided included in the system information and may be provided in the same manner as the number of PLMNs included in the PLMN-ID list.
  • RAN assistance information corresponding to the PLMN-ID list in the same order may be provided.
  • the terminal detects RAN assistance information corresponding to the PLMN (S133). For example, the terminal may detect RAN assistance information corresponding to a PLMN registered with the terminal (called a registered RPLMN, RPLMN). The terminal may detect RAN assistance information corresponding to the PLMN registered by the terminal based on the order of the PLMN ID and the order of the RAN assistance information included in the system information on the PLMN-ID list.
  • the terminal may evaluate the traffic steering condition (S134), and may offload the traffic between the first network and the second network according to the traffic steering condition evaluation result (S135).
  • the association between the secondary PLMNs and the RAN assistance information may be explicitly signaled. That is, when RAN assistance information is signaled, the PLMN to which the RAN assistance information is associated may be explicitly signaled together.
  • FIG. 17 illustrates an association relationship between lists of PLMN IDs signaled as system information and RAN assistance information, and another method of informing the same.
  • the cell when signaling RAN assistance information through system information, the cell may signal the ID of the secondary PLMN to which the RAN assistance information is associated.
  • the RAN assistance information is associated with a PLMN having an ID of the secondary PLMN signaled together.
  • the cell may transmit RAN assistance information # 2, 3, and 4 in addition to RAN assistance information # 1 corresponding to pPLMN.
  • the cell explicitly informs which PLMN is applied through the ID of the secondary PLMN. .
  • RAN assistance information # 2 is applied to sPLMN_1
  • RAN assistance information # 3 is applied to sPLMN_2
  • RAN assistance information # 4 is applied to sPLMN_3.
  • the cell does not include information on the PLMN associated with all the RAN assistance information, only some RAN assistance information may provide a corresponding PLMN ID.
  • the UE may regard the RAN assistance information that does not include the information on the associated PLMN to be associated with the secondary PLMN that is not explicitly associated with any RAN assistance information.
  • a cell transmits RAN assistance information # 1 applied to pPLMN.
  • the RAN assistance information # 2 may be transmitted including the ID of the associated secondary PLMN called 'sPLMN_1', and the RAN assistance information # 3 may be transmitted without including information on the associated secondary PLMN.
  • the UE since the sPLMN_2 and sPLMN_3 are not explicitly associated with any RAN assistance information, the UE may consider that the RAN assistance information # 3 is related to the sPLMN_2 and sPLMN_3.
  • 19 illustrates RAN assistance information applied when a UE camps on a specific cell through a PLMN.
  • the UE may camp on a cell shared through a specific PLMN (referred to as RPLMN for convenience) among the primary PLMN and the plurality of secondary PLMNs.
  • the terminal applies RAN assistance information associated with the specific PLMN (RPLMN). If the terminal camps on a cell shared through the primary PLMN, the terminal applies RAN assistance information associated with the primary PLMN. If the terminal camps on a cell shared through the secondary PLMN, the terminal applies RAN assistance information associated with the secondary PLMN.
  • RPLMN RAN assistance information associated with the specific PLMN
  • 20 is a block diagram illustrating a wireless device in which an embodiment of the present invention may be implemented.
  • the wireless device 1100 includes a processor 1110, a memory 1120, and an RF unit 1130.
  • the processor 1110 implements the proposed functions, processes, and / or methods.
  • the processor 1110 receives first system information including a PLMN-ID list describing the IDs of the PLMNs in a specific order, and includes a second system including RAN assistance information regarding traffic steering between the first network and the second network. After receiving the information, traffic steering is performed between the first and second networks based on the first and second system information.
  • the second system information provides RAN assistance information for each PLMN and includes the same number of RAN assistance information as the number of PLMNs included in the PLMN-ID list.
  • the RAN assistance information is included in the same order as the specific order of the PLMNs included in the PLMN-ID list.
  • the RF unit 1130 is connected to the processor 1110 to transmit and receive a radio signal.
  • the RF unit 1130 may include one or more RF units for communicating a 3GPP based access network and communicating a non-3GPP based access network.
  • the processor 1110 may include an application-specific integrated circuit (ASIC), another chipset, a logic circuit, and / or a data processing device. Although the single processor 1110 is shown in FIG. 20 to control and manage all RF units for each access network communication, the wireless device according to the present invention is not limited thereto. Each RF unit for each access network communication may also be an embodiment functionally coupled with a respective processor.
  • ASIC application-specific integrated circuit
  • the memory 1120 may include read-only memory (ROM), random access memory (RAM), flash memory, memory card, storage medium, and / or other storage device.
  • the RF unit 1130 may include a baseband circuit for processing a radio signal.
  • the above-described technique may be implemented as a module (process, function, etc.) for performing the above-described function.
  • the module may be stored in the memory 1120 and executed by the processor 1110.
  • the memory 1120 may be inside or outside the processor 1110 and may be connected to the processor 1110 by various well-known means.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

무선 통신 시스템에서 단말에 의해 수행되는 트래픽 조종 방법 및 상기 방법을 이용하는 단말을 제공한다. 상기 방법은 PLMN(public land mobile network)의 ID(identity)들을 특정 순서로 기재한 PLMN-ID 리스트를 포함하는 제1 시스템 정보를 수신하고, 제1 네트워크와 제2 네트워크 간의 트래픽 조종에 관한 RAN 보조 정보를 포함하는 제2 시스템 정보를 수신하고, 상기 제1, 2 시스템 정보에 기반하여 상기 제1, 2 네트워크 간에서 트래픽 조종을 수행하는 것을 특징으로 한다. 이 때, 상기 제2 시스템 정보는 PLMN 별로 RAN 보조 정보를 제공하고, 상기 PLMN-ID 리스트에 포함된 PLMN들의 개수와 동일한 개수의 RAN 보조 정보를 포함하고, 상기 PLMN-ID 리스트에 포함된 PLMN들의 상기 특정 순서와 동일한 순서로 RAN 보조 정보를 포함하는 것을 특징으로 한다.

Description

무선 통신 시스템에서 트래픽 조종 방법 및 이를 이용하는 장치
본 발명은 무선 통신에 관한 것으로서, 보다 상세하게는, 무선 통신 시스템에서 트래픽 조종 방법과 이를 이용하는 장치에 관한 것이다.
UMTS(Universal Mobile Telecommunications System)의 향상인 3GPP(3rd Generation Partnership Project) LTE(long term evolution)는 3GPP 릴리이즈(release) 8로 소개되고 있다. 3GPP LTE는 하향링크에서 OFDMA(orthogonal frequency division multiple access)를 사용하고, 상향링크에서 SC-FDMA(Single Carrier-frequency division multiple access)를 사용한다. 최근에는 3GPP LTE의 진화인 3GPP LTE-A(LTE-Advanced)에 대한 논의가 진행 중이다.
무선 통신 시스템은 복수의 액세스 네트워크를 통한 서비스를 단말에 제공하는 것을 지원할 수 있다. 예를 들어, 단말은 모바일 무선 통신 시스템인 3GPP 액세스 네트워크로부터 서비스를 제공받을 수 있으며, 또한 WiMAX(Worldwide Interoperability for Microwave Access), WLAN(Wireless Local Area Network)와 같은 비-3GPP 액세스 네트워크로부터 서비스를 제공받을 수 있다.
단말이 3GPP 액세스 네트워크와 연결을 확립하여 서비스를 제공받다가 상기 3GPP 액세스 네트워크에 트래픽(traffic) 과부화가 발생할 경우, 상기 단말이 처리하고자 하는 트래픽을 다른 액세스 네트워크, 즉 비-3GPP 액세스 네트워크를 통해 처리하도록 하는 것이 네트워크 전반의 효율성을 향상시킬 수 있다. 이와 같이 트래픽이 3GPP 액세스 네트워크 및/또는 비-GPP 액세스 네트워크를 통해 가변적으로 처리될 수 있도록 트래픽 또는 트래픽의 경로를 조종하는 것을 트래픽 조종(traffic steering)이라 한다.
트래픽 조종을 위하여 단말에는 ANDSF(Access Network Discovery and Selection Functions)과 같이 3GPP 액세스 네트워크 및 비-3GPP 액세스 네트워크 연동을 위한 정책(policy)이 설정될 수 있으며, 이는 네트워크에 의해 설정되는 연동 정책과는 별개의 것으로 관리될 수 있다.
한편, 단말은 초기에 전원이 켜지면 사용 가능한 PLMN(public land mobile network)을 검색하고 서비스를 받을 수 있는 적절한 PLMN을 선택한다. PLMN은 이동통신 네트워크 운영자에 의해 배치 및 운용되는 네트워크이다. 일반적으로 각 나라에는 복수의 이동통신 네트워크 운영자가 있기 마련이므로 복수의 PLMN이 존재할 수 있다. 단말은 적절한 PLMN을 선택/등록한 후, 선택한 PLMN이 제공하는 셀들 중에서 상기 단말이 적절한 서비스를 제공받을 수 있는 신호 품질과 특성을 가진 셀을 선택한다. 그리고, 상기 셀에서 트래픽에 따라 제1 방식의 네트워크(예를 들어 3GPP LTE/LTE-A)와 제2 방식의 네트워크(예를 들어, 무선 랜) 간에서 트래픽 조종을 수행할 수 있다. 상기 셀은 제1 방식의 네트워크와 제2 방식의 네트워크 간의 트래픽 조종을 위한 정책/파라미터들을 제공하며 이를 RAN 보조 정보라 할 수 있다.
그런데, 각 이동통신 네트워크 운영자는 비용/효율/전략 측면에서 상기 셀을 공유할 수도 있다. 즉, 제1 이동통신 네트워크 운영자(제1 PLMN)에 의하여 운영되는 셀을 제2 이동통신 네트워크 운영자(제2 PLMN)도 공유할 수 있다(물론, 그 반대의 경우도 가능하다). 이 때, 상기 셀은 상기 제1 이동통신 네트워크 운영자에 의하여 운영되므로 제1 PLMN에 최적화된 RAN 보조 정보만을 제공할 수 있다. 따라서, 제2 PLMN에 등록한 단말이 상기 셀에 접속한 경우에는 최적화된 RAN 보조 정보를 제공받을 수 없을 수 있다. 그러면, 트래픽 조종의 효율성이 떨어질 수 있으며 결과적으로 시스템 성능이 열화될 수 있다.
본 발명이 해결하고자 하는 기술적 과제는, 무선 통신 시스템에서 트래픽 조종 방법 및 이를 이용하는 장치를 제공하는 것이다.
일 측면에서, 무선 통신 시스템에서 단말에 의해 수행되는 트래픽 조종 방법을 제공한다. 상기 방법은 PLMN의 ID들을 특정 순서로 기재한 PLMN-ID 리스트를 포함하는 제1 시스템 정보를 수신하고, 제1 네트워크와 제2 네트워크 간의 트래픽 조종에 관한 RAN 보조 정보를 포함하는 제2 시스템 정보를 수신하고, 상기 제1, 2 시스템 정보에 기반하여 상기 제1, 2 네트워크 간에서 트래픽 조종을 수행하는 것을 포함한다. 이 때, 상기 제2 시스템 정보는 PLMN 별로 RAN 보조 정보를 제공하고, 상기 PLMN-ID 리스트에 포함된 PLMN들의 개수와 동일한 개수의 RAN 보조 정보를 포함하고, 상기 PLMN-ID 리스트에 포함된 PLMN들의 상기 특정 순서와 동일한 순서로 RAN 보조 정보를 포함하는 것을 특징으로 한다.
다른 측면에서, 무선 통신 시스템에서 동작하는 단말을 제공한다. 상기 단말은 무선 신호를 송신 및 수신하는 RF(Radio Frequenc) 부 및 상기 RF부와 기능적으로 결합하여 동작하는 프로세서를 포함한다. 상기 프로세서는 PLMN(public land mobile network)의 ID(identity)들을 특정 순서로 기재한 PLMN-ID 리스트를 포함하는 제1 시스템 정보를 수신하고, 제1 네트워크와 제2 네트워크 간의 트래픽 조종에 관한 RAN 보조 정보를 포함하는 제2 시스템 정보를 수신하고, 상기 제1, 2 시스템 정보에 기반하여 상기 제1, 2 네트워크 간에서 트래픽 조종을 수행한다. 이 때, 상기 제2 시스템 정보는 PLMN 별로 RAN 보조 정보를 제공하고, 상기 PLMN-ID 리스트에 포함된 PLMN들의 개수와 동일한 개수의 RAN 보조 정보를 포함하고, 상기 PLMN-ID 리스트에 포함된 PLMN들의 상기 특정 순서와 동일한 순서로 RAN 보조 정보를 포함하는 것을 특징으로 한다.
본 발명의 실시예에 따른 트래픽 조종 방법에 따르면, 복수의 PLMN 각각에 대하여 RAN 보조 정보가 각각 제공된다. 따라서, 각 PLMN에 대한 최적의 RAN 보조 정보가 제공될 수 있다. 그 결과 시스템 성능이 향상된다. 또한, 각 RAN 보조 정보가 어떤 PLMN에 대한 것인지를 알려주는데 별도의 시그널링이 요구되지 않는다. 따라서, 시그널링 오버헤드를 줄일 수 있다.
도 1은 본 발명이 적용되는 무선통신 시스템을 나타낸다.
도 2는 사용자 평면(user plane)에 대한 무선 프로토콜 구조(radio protocol architecture)를 나타낸 블록도이다.
도 3은 제어 평면(control plane)에 대한 무선 프로토콜 구조를 나타낸 블록도이다.
도 4는 RRC 아이들 상태의 단말의 동작을 나타내는 흐름도이다.
도 5는 RRC 연결을 확립하는 과정을 나타낸 흐름도이다.
도 6은 RRC 연결 재설정 과정을 나타낸 흐름도이다.
도 7은 RRC 연결 재확립 절차를 나타내는 도면이다.
도 8은 3GPP 액세스 네트워크 및 WLAN 액세스 네트워크가 공존하는 환경의 예시를 나타내는 도면이다.
도 9는 트래픽 조종 방법의 일 예를 나타낸다.
도 10은 트래픽 조종 방법의 다른 예를 나타낸다.
도 11은 종래 복수의 PLMN과 RAN 보조 정보의 연관 예를 나타낸다.
도 12는 본 발명의 일 실시예에 따른, 셀에서 RAN 보조 정보를 제공하는 방법을 나타낸다.
도 13은 본 발명의 다른 실시예에 따른, 셀에서 RAN 보조 정보를 제공하는 방법을 나타낸다.
도 14는 시스템 정보로 시그널링된 PLMN ID의 리스트들과 RAN 보조 정보들 간의 연관 관계 및 이를 알려주는 방법을 나타낸다.
도 15는 본 발명의 일 실시예에 따른 트래픽 조종 방법을 나타낸다.
도 16은 도 15의 트래픽 조종 방법을 적용하는 구체적 예를 나타낸다.
도 17은 시스템 정보로 시그널링된 PLMN ID의 리스트들과 RAN 보조 정보들 간의 연관 관계 및 이를 알려주는 다른 방법을 나타낸다.
도 18은 연관되는 세컨더리 PLMN에 대한 정보를 포함하지 않는 RAN 보조 정보가 포함된 경우, PLMN과의 연관을 예시한다.
도 19는 단말이 어떤 PLMN을 통해 특정 셀에 캠프 온하였을 때 적용하는 RAN 보조 정보를 나타낸다.
도 20은 본 발명의 실시예가 구현될 수 있는 무선 장치를 나타내는 블록도이다.
도 1은 본 발명이 적용되는 무선통신 시스템을 나타낸다. 이는 E-UTRAN(Evolved-UMTS Terrestrial Radio Access Network), 또는 LTE(Long Term Evolution)/LTE-A 시스템이라고도 불릴 수 있다.
E-UTRAN은 단말(10; User Equipment, UE)에게 제어 평면(control plane)과 사용자 평면(user plane)을 제공하는 기지국(20; Base Station, BS)을 포함한다. 단말(10)은 고정되거나 이동성을 가질 수 있으며, MS(Mobile station), UT(User Terminal), SS(Subscriber Station), MT(mobile terminal), 무선기기(Wireless Device) 등 다른 용어로 불릴 수 있다. 기지국(20)은 단말(10)과 통신하는 고정된 지점(fixed station)을 말하며, eNB(evolved-NodeB), BTS(Base Transceiver System), 액세스 포인트(Access Point) 등 다른 용어로 불릴 수 있다.
기지국(20)들은 X2 인터페이스를 통하여 서로 연결될 수 있다. 기지국(20)은 S1 인터페이스를 통해 EPC(Evolved Packet Core, 30), 보다 상세하게는 S1-MME를 통해 MME(Mobility Management Entity)와 S1-U를 통해 S-GW(Serving Gateway)와 연결된다.
EPC(30)는 MME, S-GW 및 P-GW(Packet Data Network-Gateway)로 구성된다. MME는 단말의 접속 정보나 단말의 능력에 관한 정보를 가지고 있으며, 이러한 정보는 단말의 이동성 관리에 주로 사용된다. S-GW는 E-UTRAN을 종단점으로 갖는 게이트웨이이며, P-GW는 PDN을 종단점으로 갖는 게이트웨이이다.
단말과 네트워크 사이의 무선인터페이스 프로토콜 (Radio Interface Protocol)의 계층들은 통신시스템에서 널리 알려진 개방형 시스템간 상호접속 (Open System Interconnection; OSI) 기준 모델의 하위 3개 계층을 바탕으로 L1 (제1계층), L2 (제2계층), L3(제3계층)로 구분될 수 있는데, 이 중에서 제1계층에 속하는 물리계층은 물리채널(Physical Channel)을 이용한 정보전송서비스(Information Transfer Service)를 제공하며, 제 3계층에 위치하는 RRC(Radio Resource Control) 계층은 단말과 네트워크 간에 무선자원을 제어하는 역할을 수행한다. 이를 위해 RRC 계층은 단말과 기지국간 RRC 메시지를 교환한다.
도 2는 사용자 평면(user plane)에 대한 무선 프로토콜 구조(radio protocol architecture)를 나타낸 블록도이다. 도 3은 제어 평면(control plane)에 대한 무선 프로토콜 구조를 나타낸 블록도이다. 사용자 평면은 사용자 데이터 전송을 위한 프로토콜 스택(protocol stack)이고, 제어 평면은 제어신호 전송을 위한 프로토콜 스택이다.
도 2 및 3을 참조하면, 물리계층(PHY(physical) layer)은 물리채널(physical channel)을 이용하여 상위 계층에게 정보 전송 서비스(information transfer service)를 제공한다. 물리계층은 상위 계층인 MAC(Medium Access Control) 계층과는 전송채널(transport channel)을 통해 연결되어 있다. 전송채널을 통해 MAC 계층과 물리계층 사이로 데이터가 이동한다. 전송채널은 무선 인터페이스를 통해 데이터가 어떻게 어떤 특징으로 전송되는가에 따라 분류된다.
서로 다른 물리계층 사이, 즉 송신기와 수신기의 물리계층 사이는 물리채널을 통해 데이터가 이동한다. 상기 물리채널은 OFDM(Orthogonal Frequency Division Multiplexing) 방식으로 변조될 수 있고, 시간과 주파수를 무선자원으로 활용한다.
MAC 계층의 기능은 논리채널과 전송채널간의 맵핑 및 논리채널에 속하는 MAC SDU(service data unit)의 전송채널 상으로 물리채널로 제공되는 전송블록(transport block)으로의 다중화/역다중화를 포함한다. MAC 계층은 논리채널을 통해 RLC(Radio Link Control) 계층에게 서비스를 제공한다.
RLC 계층의 기능은 RLC SDU의 연결(concatenation), 분할(segmentation) 및 재결합(reassembly)를 포함한다. 무선 베어러(Radio Bearer; RB)가 요구하는 다양한 QoS(Quality of Service)를 보장하기 위해, RLC 계층은 투명모드(Transparent Mode, TM), 비확인 모드(Unacknowledged Mode, UM) 및 확인모드(Acknowledged Mode, AM)의 세 가지의 동작모드를 제공한다. AM RLC는 ARQ(automatic repeat request)를 통해 오류 정정을 제공한다.
RRC(Radio Resource Control) 계층은 제어 평면에서만 정의된다. RRC 계층은 무선 베어러들의 설정(configuration), 재설정(re-configuration) 및 해제(release)와 관련되어 논리채널, 전송채널 및 물리채널들의 제어를 담당한다. RB는 단말과 네트워크간의 데이터 전달을 위해 제1 계층(PHY 계층) 및 제2 계층(MAC 계층, RLC 계층, PDCP 계층)에 의해 제공되는 논리적 경로를 의미한다.
사용자 평면에서의 PDCP(Packet Data Convergence Protocol) 계층의 기능은 사용자 데이터의 전달, 헤더 압축(header compression) 및 암호화(ciphering)를 포함한다. 제어 평면에서의 PDCP(Packet Data Convergence Protocol) 계층의 기능은 제어 평면 데이터의 전달 및 암호화/무결정 보호(integrity protection)를 포함한다.
RB가 설정된다는 것은 특정 서비스를 제공하기 위해 무선 프로토콜 계층 및 채널의 특성을 규정하고, 각각의 구체적인 파라미터 및 동작 방법을 설정하는 과정을 의미한다. RB는 다시 SRB(Signaling RB)와 DRB(Data RB) 두가지로 나누어 질 수 있다. SRB는 제어 평면에서 RRC 메시지를 전송하는 통로로 사용되며, DRB는 사용자 평면에서 사용자 데이터를 전송하는 통로로 사용된다.
단말의 RRC 계층과 E-UTRAN의 RRC 계층 사이에 RRC 연결(RRC Connection)이 확립되면, 단말은 RRC 연결(RRC connected) 상태에 있게 되고, 그렇지 못할 경우 RRC 아이들(RRC idle) 상태에 있게 된다.
네트워크에서 단말로 데이터를 전송하는 하향링크 전송채널로는 시스템정보를 전송하는 BCH(Broadcast Channel)과 그 이외에 사용자 트래픽이나 제어메시지를 전송하는 하향링크 SCH(Shared Channel)이 있다. 하향링크 멀티캐스트 또는 브로드캐스트 서비스의 트래픽 또는 제어메시지의 경우 하향링크 SCH를 통해 전송될 수도 있고, 또는 별도의 하향링크 MCH(Multicast Channel)을 통해 전송될 수도 있다. 한편, 단말에서 네트워크로 데이터를 전송하는 상향링크 전송채널로는 초기 제어메시지를 전송하는 RACH(Random Access Channel)와 그 이외에 사용자 트래픽이나 제어메시지를 전송하는 상향링크 SCH(Shared Channel)가 있다.
전송채널 상위에 있으며, 전송채널에 매핑되는 논리채널(Logical Channel)로는 BCCH(Broadcast Control Channel), PCCH(Paging Control Channel), CCCH(Common Control Channel), MCCH(Multicast Control Channel), MTCH(Multicast Traffic Channel) 등이 있다.
물리채널(Physical Channel)은 시간 영역에서 여러 개의 OFDM 심벌과 주파수 영역에서 여러 개의 부반송파(Sub-carrier)로 구성된다. 하나의 서브프레임(Sub-frame)은 시간 영역에서 복수의 OFDM 심벌(Symbol)들로 구성된다. 자원블록은 자원 할당 단위로, 복수의 OFDM 심벌들과 복수의 부반송파(sub-carrier)들로 구성된다. 또한 각 서브프레임은 PDCCH(Physical Downlink Control Channel) 즉, L1/L2 제어채널을 위해 해당 서브프레임의 특정 OFDM 심벌들(예, 첫번째 OFDM 심볼)의 특정 부반송파들을 이용할 수 있다. TTI(Transmission Time Interval)는 서브프레임 전송의 단위시간이다.
3GPP TS 36.211 V8.7.0에 개시된 바와 같이, 3GPP LTE에서 물리채널은 데이터 채널인 PDSCH(Physical Downlink Shared Channel)와 PUSCH(Physical Uplink Shared Channel) 및 제어채널인 PDCCH(Physical Downlink Control Channel), PCFICH(Physical Control Format Indicator Channel), PHICH(Physical Hybrid-ARQ Indicator Channel) 및 PUCCH(Physical Uplink Control Channel)로 나눌 수 있다.
서브프레임의 첫번째 OFDM 심벌에서 전송되는 PCFICH는 서브프레임내에서 제어채널들의 전송에 사용되는 OFDM 심벌의 수(즉, 제어영역의 크기)에 관한 CFI(control format indicator)를 나른다. 단말은 먼저 PCFICH 상으로 CFI를 수신한 후, PDCCH를 모니터링한다.
PDCCH는 하향링크 제어채널로, 스케줄링 정보를 나르는 점에서 스케줄링 채널이라고도 한다. PDCCH를 통해 전송되는 제어정보를 하향링크 제어정보(downlink control information, DCI)라고 한다. DCI는 PDSCH의 자원 할당(이를 DL 그랜트(downlink grant)라고도 한다), PUSCH의 자원 할당(이를 UL 그랜트(uplink grant)라고도 한다), 임의의 UE 그룹내 개별 UE들에 대한 전송 파워 제어 명령의 집합 및/또는 VoIP(Voice over Internet Protocol)의 활성화를 포함할 수 있다.
3GPP LTE에서는 PDCCH의 검출을 위해 블라인드 디코딩을 사용한다. 블라인드 디코딩은 수신되는 PDCCH(이를 후보(candidate) PDCCH라 함)의 CRC(Cyclic Redundancy Check)에 원하는 식별자를 디마스킹하고, CRC 오류를 체크하여 해당 PDCCH가 자신의 제어채널인지 아닌지를 확인하는 방식이다.
기지국은 단말에게 보내려는 DCI에 따라 PDCCH 포맷을 결정한 후 DCI에 CRC를 붙이고, PDCCH의 소유자(owner)나 용도에 따라 고유한 식별자(이를 RNTI(Radio Network Temporary Identifier)라고 한다)를 CRC에 마스킹한다.
이하 단말의 RRC 상태 (RRC state)와 RRC 연결 방법에 대해 상술한다.
RRC 상태란 단말의 RRC 계층이 E-UTRAN의 RRC 계층과 논리적 연결(logical connection)이 되어 있는가 아닌가를 말하며, 연결되어 있는 경우는 RRC 연결 상태, 연결되어 있지 않은 경우는 RRC 아이들 상태라고 부른다. RRC 연결 상태의 단말은 RRC 연결이 존재하기 때문에 E-UTRAN은 해당 단말의 존재를 셀 단위에서 파악할 수 있으며, 따라서 단말을 효과적으로 제어할 수 있다. 반면에 RRC 아이들 상태의 단말은 E-UTRAN이 파악할 수는 없으며, 셀 보다 더 큰 지역 단위인 트래킹 영역(Tracking Area) 단위로 CN(core network)이 관리한다. 즉, RRC 아이들 상태의 단말은 큰 지역 단위로 존재 여부만 파악되며, 음성이나 데이터와 같은 통상의 이동통신 서비스를 받기 위해서는 RRC 연결 상태로 이동해야 한다.
사용자가 단말의 전원을 맨 처음 켰을 때, 단말은 먼저 적절한 셀을 탐색한 후 해당 셀에서 RRC 아이들 상태에 머무른다. RRC 아이들 상태의 단말은 RRC 연결을 맺을 필요가 있을 때 비로소 RRC 연결 과정(RRC connection procedure)을 통해 E-UTRAN과 RRC 연결을 확립하고, RRC 연결 상태로 천이한다. RRC 아이들 상태에 있던 단말이 RRC 연결을 맺을 필요가 있는 경우는 여러 가지가 있는데, 예를 들어 사용자의 통화 시도 등의 이유로 상향 데이터 전송이 필요하다거나, 아니면 E-UTRAN으로부터 호출(paging) 메시지를 수신한 경우 이에 대한 응답 메시지 전송 등을 들 수 있다.
RRC 계층 상위에 위치하는 NAS(Non-Access Stratum) 계층은 연결관리(Session Management)와 이동성 관리(Mobility Management) 등의 기능을 수행한다.
NAS 계층에서 단말의 이동성을 관리하기 위하여 EMM-REGISTERED(EPS Mobility Management-REGISTERED) 및 EMM-DEREGISTERED 두 가지 상태가 정의되어 있으며, 이 두 상태는 단말과 MME에게 적용된다. 초기 단말은 EMM-DEREGISTERED 상태이며, 이 단말이 네트워크에 접속하기 위해서 초기 연결(Initial Attach) 절차를 통해서 해당 네트워크에 등록하는 과정을 수행한다. 상기 연결(Attach) 절차가 성공적으로 수행되면 단말 및 MME는 EMM-REGISTERED 상태가 된다.
단말과 EPC간 시그널링 연결(signaling connection)을 관리하기 위하여 ECM(EPS Connection Management)-IDLE 상태 및 ECM-CONNECTED 상태 두 가지 상태가 정의되어 있으며, 이 두 상태는 단말 및 MME에게 적용된다. ECM-IDLE 상태의 단말이 E-UTRAN과 RRC 연결을 맺으면 해당 단말은 ECM-CONNECTED 상태가 된다. ECM-IDLE 상태에 있는 MME는 E-UTRAN과 S1 연결(S1 connection)을 맺으면 ECM-CONNECTED 상태가 된다. 단말이 ECM-IDLE 상태에 있을 때에는 E-UTRAN은 단말의 배경(context) 정보를 가지고 있지 않다. 따라서 ECM-IDLE 상태의 단말은 네트워크의 명령을 받을 필요 없이 셀 선택(cell selection) 또는 셀 재선택(reselection)과 같은 단말 기반의 이동성 관련 절차를 수행한다. 반면 단말이 ECM-CONNECTED 상태에 있을 때에는 단말의 이동성은 네트워크의 명령에 의해서 관리된다. ECM-IDLE 상태에서 단말의 위치가 네트워크가 알고 있는 위치와 달라질 경우 단말은 트래킹 영역 갱신(Tracking Area Update) 절차를 통해 네트워크에 단말의 해당 위치를 알린다.
다음은, 시스템 정보(System Information)에 관한 설명이다.
시스템 정보는 단말이 기지국에 접속하기 위해서 알아야 하는 필수 정보를 포함한다. 따라서 단말은 기지국에 접속하기 전에 시스템 정보를 모두 수신하고 있어야 하고, 또한 항상 최신의 시스템 정보를 가지고 있어야 한다. 그리고 상기 시스템 정보는 한 셀 내의 모든 단말이 알고 있어야 하는 정보이므로, 기지국은 주기적으로 상기 시스템 정보를 전송한다. 시스템 정보는 MIB(Master Information Block) 및 복수의 SIB (System Information Block)로 나뉜다.
MIB는 셀로부터 다른 정보를 위해 획득될 것이 요구되는 가장 필수적이고 가장 자주 전송되는 파라터의 제한된 개수를 포함할 수 있다. 단말은 하향링크 동기화 이후에 가장 먼저 MIB를 찾는다. MIB는 하향링크 채널 대역폭, PHICH 설정, 동기화를 지원하고 타이밍 기준으로서 동작하는 SFN, 및 eNB 전송 안테나 설정과 같은 정보를 포함할 수 있다. MIB는 BCH 상으로 브로드캐스트 전송될 수 있다.
포함된 SIB들 중 SIB1 (SystemInformationBlockType1) 은 “SystemInformationBlockType1” 메시지에 포함되어 전송되며, SIB1을 제외한 다른 SIB들은 시스템 정보 메시지에 포함되어 전송된다. SIB들을 시스템 정보 메시지에 맵핑시키는 것은 SIB1에 포함된 스케쥴링 정보 리스트 파라미터에 의하여 유동적으로 설정될 수 있다. 단, 각 SIB는 단일 시스템 정보 메시지에 포함되며, 오직 동일한 스케쥴링 요구치(e.g. 주기)를 가진 SIB들만이 동일한 시스템 정보 메시지에 맵핑될 수 있다. 또한, SIB2(SystemInformationBlockType2)는 항상 스케쥴링 정보 리스트의 시스템정보 메시지 리스트 내 첫번째 엔트리에 해당하는 시스템 정보 메시지에 맵핑된다. 동일한 주기 내에 복수의 시스템 정보 메시지가 전송될 수 있다. SIB1 및 모든 시스템 정보 메시지는 DL-SCH상으로 전송된다.
브로드캐스트 전송에 더하여, E-UTRAN은 SIB1은 기존에 설정된 값과 동일하게 설정된 파라미터를 포함한 채로 전용 시그널링(dedicated signaling)될 수 있으며, 이 경우 SIB1은 RRC 연결 재설정 메시지에 포함되어 전송될 수 있다.
SIB1은 단말 셀 접근과 관련된 정보를 포함하며, 다른 SIB들의 스케쥴링을 정의한다. SIB1은 네트워크의 PLMN 식별자들, TAC(Tracking Area Code) 및 셀 ID, 셀이 캠프온 할 수 있는 셀인지 여부를 지시하는 셀 금지 상태(cell barring status), 셀 재선택 기준으로서 사용되는 셀내 요구되는 최저 수신 레벨, 및 다른 SIB들의 전송 시간 및 주기와 관련된 정보를 포함할 수 있다.
SIB2는 모든 단말에 공통되는 무선 자원 설정 정보를 포함할 수 있다. SIB2는 상향링크 반송파 주파수 및 상향링크 채널 대역폭, RACH 설정, 페이지 설정(paging configuration), 상량링크 파워 제어 설정, 사운딩 기준 신호 설정(Sounding Reference Signal configuration), ACK/NACK 전송을 지원하는 PUCCH 설정 및 PUSCH 설정과 관련된 정보를 포함할 수 있다.
단말은 시스템 정보의 획득 및 변경 감지 절차를 PCell에 대해서만 적용할 수 있다. SCell에 있어서, E-UTRAN은 해당 SCell이 추가될 때 RRC 연결 상태 동작과 관련있는 모든 시스템 정보를 전용 시그널링을 통해 제공해줄 수 있다. 설정된 SCell의 관련된 시스템 정보의 변경시, E-UTRAN은 고려되는 SCell을 해제(release)하고 차후에 추가할 수 있는데, 이는 단일 RRC 연결 재설정 메시지와 함께 수행될 수 있다. E-UTRAN은 고려되는 SCell 내에서 브로드캐스트 되었던 값과 다른 파라미터 값들을 전용 시그널링을 통하여 설정해줄 수 있다.
단말은 특정 타입의 시스템 정보에 대하여 그 유효성을 보장해야 하며, 이와 같은 시스템 정보를 필수 시스템 정보(required system information)이라 한다. 필수 시스템 정보는 아래와 같이 정의될 수 있다.
- 단말이 RRC 아이들 상태인 경우: 단말은 SIB2 내지 SIB8 뿐만 아니라 MIB 및 SIB1의 유효한 버전을 가지고 있도록 보장하여야 하며, 이는 고려되는 RAT의 지원에 따를 수 있다.
- 단말이 RRC 연결 상태인 경우: 단말은 MIB, SIB1 및 SIB2의 유효한 버전을 가지고 있도록 보장하여야 한다.
일반적으로 시스템 정보는 획득 후 최대 3시간 까지 유효성이 보장될 수 있다.
일반적으로, 네트워크가 단말에게 제공하는 서비스는 아래와 같이 세가지 타입으로 구분할 수 있다. 또한, 어떤 서비스를 제공받을 수 있는지에 따라 단말은 셀의 타입 역시 다르게 인식한다. 아래에서 먼저 서비스 타입을 서술하고, 이어 셀의 타입을 서술한다.
1) 제한적 서비스(Limited service): 이 서비스는 응급 호출(Emergency call) 및 재해 경보 시스템(Earthquake and Tsunami Warning System; ETWS)를 제공하며, 수용가능 셀(acceptable cell)에서 제공할 수 있다.
2) 정규 서비스(Normal service) : 이 서비스는 일반적 용도의 범용 서비스(public use)를 의미하여, 정규 셀(suitable or normal cell)에서 제공할 수 있다.
3) 사업자 서비스(Operator service) : 이 서비스는 통신망 사업자를 위한 서비스를 의미하며, 이 셀은 통신망 사업자만 사용할 수 있고 일반 사용자는 사용할 수 없다.
셀이 제공하는 서비스 타입과 관련하여, 셀의 타입은 아래와 같이 구분될 수 있다.
1) 수용가능 셀(Acceptable cell) : 단말이 제한된(Limited) 서비스를 제공받을 수 있는 셀. 이 셀은 해당 단말 입장에서, 금지(barred)되어 있지 않고, 단말의 셀 선택 기준을 만족시키는 셀이다.
2) 정규 셀(Suitable cell) : 단말이 정규 서비스를 제공받을 수 있는 셀. 이 셀은 수용가능 셀의 조건을 만족시키며, 동시에 추가 조건들을 만족시킨다. 추가적인 조건으로는, 이 셀이 해당 단말이 접속할 수 있는 PLMN(Public Land Mobile Network) 소속이어야 하고, 단말의 트래킹 영역(Tracking Area) 갱신 절차의 수행이 금지되지 않은 셀이어야 한다. 해당 셀이 CSG 셀이라고 하면, 단말이 이 셀에 CSG 멤버로서 접속이 가능한 셀이어야 한다.
3) 금지된 (Barred cell) : 셀이 시스템 정보를 통해 금지된 셀이라는 정보를 브로드캐스트하는 셀이다.
4) 예약된 셀(Reserved cell) : 셀이 시스템 정보를 통해 예약된 셀이라는 정보를 브로드캐스트하는 셀이다.
도 4는 RRC 아이들 상태의 단말의 동작을 나타내는 흐름도이다. 도 4는 초기 전원이 켜진 단말이 셀 선택 과정을 거쳐 네트워크 망에 등록하고 이어 필요할 경우 셀 재선택을 하는 절차를 나타낸다.
도 4를 참조하면, 단말은 자신이 서비스 받고자 하는 망인 PLMN(public land mobile network)과 통신하기 위한 라디오 접속 기술(radio access technology; RAT)를 선택한다(S410). PLMN 및 RAT에 대한 정보는 단말의 사용자가 선택할 수도 있으며, USIM(universal subscriber identity module)에 저장되어 있는 것을 사용할 수도 있다.
단말은 측정한 기지국과 신호세기나 품질이 특정한 값보다 큰 셀 중에서, 가장 큰 값을 가지는 셀을 선택한다(Cell Selection)(S420). 이는 전원이 켜진 단말이 셀 선택을 수행하는 것으로서 초기 셀 선택(initial cell selection)이라 할 수 있다. 셀 선택 절차에 대해서 이후에 상술하기로 한다. 셀 선택 이후 단말은, 기지국이 주기적으로 보내는 시스템 정보를 수신한다. 상기 말하는 특정한 값은 데이터 송/수신에서의 물리적 신호에 대한 품질을 보장받기 위하여 시스템에서 정의된 값을 말한다. 따라서, 적용되는 RAT에 따라 그 값은 다를 수 있다.
단말은 망 등록 필요가 있는 경우 망 등록 절차를 수행한다(S430). 단말은 망으로부터 서비스(예:Paging)를 받기 위하여 자신의 정보(예:IMSI)를 등록한다. 단말은 셀을 선택 할 때 마다 접속하는 망에 등록을 하는 것은 아니며, 시스템 정보로부터 받은 망의 정보(예:Tracking Area Identity; TAI)와 자신이 알고 있는 망의 정보가 다른 경우에 망에 등록을 한다.
단말은 셀에서 제공되는 서비스 환경 또는 단말의 환경 등을 기반으로 셀 재선택을 수행한다(S440). 단말은 서비스 받고 있는 기지국으로부터 측정한 신호의 세기나 품질의 값이 인접한 셀의 기지국으로부터 측정한 값보다 낮다면, 단말이 접속한 기지국의 셀 보다 더 좋은 신호 특성을 제공하는 다른 셀 중 하나를 선택한다. 이 과정을 2번 과정의 초기 셀 선택(Initial Cell Selection)과 구분하여 셀 재선택(Cell Re-Selection)이라 한다. 이때, 신호특성의 변화에 따라 빈번히 셀이 재선택되는 것을 방지하기 위하여 시간적인 제약조건을 둔다. 셀 재선택 절차에 대해서 이후에 상술하기로 한다.
도 5는 RRC 연결을 확립하는 과정을 나타낸 흐름도이다.
단말은 RRC 연결을 요청하는 RRC 연결 요청(RRC Connection Request) 메시지를 네트워크로 보낸다(S510). 네트워크는 RRC 연결 요청에 대한 응답으로 RRC 연결 설정(RRC Connection Setup) 메시지를 보낸다(S520). RRC 연결 설정 메시지를 수신한 후, 단말은 RRC 연결 모드로 진입한다.
단말은 RRC 연결 확립의 성공적인 완료를 확인하기 위해 사용되는 RRC 연결 설정 완료(RRC Connection Setup Complete) 메시지를 네트워크로 보낸다(S530).
도 6은 RRC 연결 재설정 과정을 나타낸 흐름도이다. RRC 연결 재설정(reconfiguration)은 RRC 연결을 수정하는데 사용된다. 이는 RB 확립/수정(modify)/해제(release), 핸드오버 수행, 측정 셋업/수정/해제하기 위해 사용된다.
네트워크는 단말로 RRC 연결을 수정하기 위한 RRC 연결 재설정(RRC Connection Reconfiguration) 메시지를 보낸다(S610). 단말은 RRC 연결 재설정에 대한 응답으로, RRC 연결 재설정의 성공적인 완료를 확인하기 위해 사용되는 RRC 연결 재설정 완료(RRC Connection Reconfiguration Complete) 메시지를 네트워크로 보낸다(S620).
이하에서 PLMN(public land mobile network)에 대하여 설명하도록 한다.
PLMN은 모바일 네트워크 운영자에 의해 배치 및 운용되는 네트워크이다. 각 모바일 네트워크 운영자는 하나 또는 그 이상의 PLMN을 운용한다. 각 PLMN은 MCC(Mobile Country Code) 및 MNC(Mobile Network Code)로 식별될 수 있다. 셀의 PLMN 정보는 시스템 정보에 포함되어 브로드캐스트된다.
PLMN 선택, 셀 선택 및 셀 재선택에 있어서, 다양한 타입의 PLMN들이 단말에 의해 고려될 수 있다.
HPLMN(Home PLMN) : 단말 IMSI의 MCC 및 MNC와 매칭되는 MCC 및 MNC를 가지는 PLMN.
EHPLMN(Equivalent HPLMN): HPLMN과 등가로 취급되는 PLMN.
RPLMN(Registered PLMN): 위치 등록이 성공적으로 마쳐진 PLMN.
EPLMN(Equivalent PLMN): RPLMN과 등가로 취급되는 PLMN.
각 모바일 서비스 수요자는 HPLMN에 가입한다. HPLMN 또는 EHPLMN에 의하여 단말로 일반 서비스가 제공될 때, 단말은 로밍 상태(roaming state)에 있지 않는다. 반면, HPLMN/EHPLMN 이외의 PLMN에 의하여 단말로 서비스가 제공될 때, 단말은 로밍 상태에 있으며, 그 PLMN은 VPLMN(Visited PLMN)이라고 불리운다.
단말은 초기에 전원이 켜지면 사용 가능한 PLMN(public land mobile network)을 검색하고 서비스를 받을 수 있는 적절한 PLMN을 선택한다. PLMN은 모바일 네트워크 운영자(mobile network operator)에 의해 배치되거나(deploy) 운영되는 네트워크이다. 각 모바일 네트워크 운영자는 하나 또는 그 이상의 PLMN을 운영한다. 각각의 PLMN은 MCC(mobile country code) 및 MNC(mobile network code)에 의하여 식별될 수 있다. 셀의 PLMN 정보는 시스템 정보에 포함되어 브로드캐스트된다. 단말은 선택한 PLMN을 등록하려고 시도한다. 등록이 성공한 경우, 선택된 PLMN은 RPLMN(registered PLMN)이 된다. 네트워크는 단말에게 PLMN 리스트를 시그널링할 수 있는데, 이는 PLMN 리스트에 포함된 PLMN들을 RPLMN과 같은 PLMN이라 고려할 수 있다. 네트워크에 등록된 단말은 상시 네트워크에 의하여 접근될 수(reachable) 있어야 한다. 만약 단말이 ECM-CONNECTED 상태(동일하게는 RRC 연결 상태)에 있는 경우, 네트워크는 단말이 서비스를 받고 있음을 인지한다. 그러나, 단말이 ECM-IDLE 상태(동일하게는 RRC 아이들 상태)에 있는 경우, 단말의 상황이 eNB에서는 유효하지 않지만 MME에는 저장되어 있다. 이 경우, ECM-IDLE 상태의 단말의 위치는 TA(tracking Area)들의 리스트의 입도(granularity)로 오직 MME에게만 알려진다. 단일 TA는 TA가 소속된 PLMN 식별자로 구성된 TAI(tracking area identity)및 PLMN 내의 TA를 유일하게 표현하는 TAC(tracking area code)에 의해 식별된다.
이어, 선택한 PLMN이 제공하는 셀들 중에서 상기 단말이 적절한 서비스를 제공받을 수 있는 신호 품질과 특성을 가진 셀을 선택한다.
다음은 단말이 셀을 선택하는 절차에 대해서 자세히 설명한다.
전원이 켜지거나 셀에 머물러 있을 때, 단말은 적절한 품질의 셀을 선택/재선택하여 서비스를 받기 위한 절차들을 수행한다.
RRC 아이들 상태의 단말은 항상 적절한 품질의 셀을 선택하여 이 셀을 통해 서비스를 제공받기 위한 준비를 하고 있어야 한다. 예를 들어, 전원이 막 켜진 단말은 네트워크에 등록을 하기 위해 적절한 품질의 셀을 선택해야 한다. RRC 연결 상태에 있던 상기 단말이 RRC 아이들 상태에 진입하면, 상기 단말은 RRC 아이들 상태에서 머무를 셀을 선택해야 한다. 이와 같이, 상기 단말이 RRC 아이들 상태와 같은 서비스 대기 상태로 머물고 있기 위해서 어떤 조건을 만족하는 셀을 고르는 과정을 셀 선택(Cell Selection)이라고 한다. 중요한 점은, 상기 셀 선택은 상기 단말이 상기 RRC 아이들 상태로 머물러 있을 셀을 현재 결정하지 못한 상태에서 수행하는 것이므로, 가능한 신속하게 셀을 선택하는 것이 무엇보다 중요하다. 따라서 일정 기준 이상의 무선 신호 품질을 제공하는 셀이라면, 비록 이 셀이 단말에게 가장 좋은 무선 신호 품질을 제공하는 셀이 아니라고 하더라도, 단말의 셀 선택 과정에서 선택될 수 있다.
이제 3GPP TS 36.304 V8.5.0 (2009-03) "User Equipment (UE) procedures in idle mode (Release 8)"을 참조하여, 3GPP LTE에서 단말이 셀을 선택하는 방법 및 절차에 대하여 상술한다.
셀 선택 과정은 크게 두 가지로 나뉜다.
먼저 초기 셀 선택 과정으로, 이 과정에서는 상기 단말이 무선 채널에 대한 사전 정보가 없다. 따라서 상기 단말은 적절한 셀을 찾기 위해 모든 무선 채널을 검색한다. 각 채널에서 상기 단말은 가장 강한 셀을 찾는다. 이후, 상기 단말이 셀 선택 기준을 만족하는 적절한(suitable) 셀을 찾기만 하면 해당 셀을 선택한다.
다음으로 단말은 저장된 정보를 활용하거나, 셀에서 방송하고 있는 정보를 활용하여 셀을 선택할 수 있다. 따라서, 초기 셀 선택 과정에 비해 셀 선택이 신속할 수 있다. 단말이 셀 선택 기준을 만족하는 셀을 찾기만 하면 해당 셀을 선택한다. 만약 이 과정을 통해 셀 선택 기준을 만족하는 적절한 셀을 찾지 못하면, 단말은 초기 셀 선택 과정을 수행한다.
셀 선택 기준은 하기 식 1과 같이 정의될 수 있다.
[식 1]
Figure PCTKR2015001293-appb-I000001
여기서, 상기 식 1의 각 변수는 하기 표 1과 같이 정의될 수 있다.
Srxlev Cell selection RX level value (dB)
Squal Cell selection quality value (dB)
Qrxlevmeas Measured cell RX level value (RSRP)
Qqualmeas Measured cell quality value (RSRQ)
Qrxlevmin Minimum required RX level in the cell (dBm)
Qqualmin Minimum required quality level in the cell (dB)
Qrxlevminoffset Offset to the signalled Qrxlevmin taken into account in the Srxlev evaluation as a result of a periodic search for a higher priority PLMN while camped normally in a VPLMN [5]
Qqualminoffset Offset to the signalled Qqualmin taken into account in the Squal evaluation as a result of a periodic search for a higher priority PLMN while camped normally in a VPLMN [5]
Pcompensation max(PEMAX –PPowerClass, 0) (dB)
PEMAX Maximum TX power level an UE may use when transmitting on the uplink in the cell (dBm) defined as PEMAX in [TS 36.101]
PPowerClass Maximum RF output power of the UE (dBm) according to the UE power class as defined in [TS 36.101]
시그널링된 값들인 Qrxlevminoffset 및 Qqualminoffset은 단말이 VPLMN내의 정규 셀에 캠프 하고 있는 동안 보다 높은 우선순위의 PLMN에 대한 주기적 탐색의 결과로서 셀 선택이 평가되는 경우에 한하여 적용될 수 있다. 위와 같이 보다 높은 우선순위의 PLMN에 대한 주기적 탐색동안, 단말은 이와 같은 보다 높은 우선순위의 PLMN의 다른 셀로부터 저장된 파라미터 값들을 사용하여 셀 선택 평가를 수행할 수 있다.
상기 단말이 일단 셀 선택 과정을 통해 어떤 셀을 선택한 이후, 단말의 이동성 또는 무선 환경의 변화 등으로 단말과 기지국간의 신호의 세기나 품질이 바뀔 수 있다. 따라서 만약 선택한 셀의 품질이 저하되는 경우, 단말은 더 좋은 품질을 제공하는 다른 셀을 선택할 수 있다. 이렇게 셀을 다시 선택하는 경우, 일반적으로 현재 선택된 셀보다 더 좋은 신호 품질을 제공하는 셀을 선택한다. 이런 과정을 셀 재선택(Cell Reselection)이라고 한다. 상기 셀 재선택 과정은, 무선 신호의 품질 관점에서, 일반적으로 단말에게 가장 좋은 품질을 제공하는 셀을 선택하는데 기본적인 목적이 있다.
무선 신호의 품질 관점 이외에, 네트워크는 주파수 별로 우선 순위를 결정하여 단말에게 알릴 수 있다. 이러한 우선 순위를 수신한 단말은, 셀 재선택 과정에서 이 우선 순위를 무선 신호 품질 기준보다 우선적으로 고려하게 된다.
위와 같이 무선 환경의 신호 특성에 따라 셀을 선택 또는 재선택하는 방법이 있으며, 셀 재선택시 재선택을 위한 셀을 선택하는데 있어서, 셀의 RAT와 주파수(frequency) 특성에 따라 다음과 같은 셀 재선택 방법이 있을 수 있다.
- 인트라-주파수(Intra-frequency) 셀 재선택 : 단말이 캠핑(camp) 중인 셀과 같은 RAT과 같은 중심 주파수(center-frequency)를 가지는 셀을 재선택
- 인터-주파수(Inter-frequency) 셀 재선택 : 단말이 캠핑 중인 셀과 같은 RAT과 다른 중심 주파수를 가지는 셀을 재선택
- 인터-RAT(Inter-RAT) 셀 재선택 : 단말이 캠핑 중인 RAT와 다른 RAT을 사용하는 셀을 재선택
셀 재선택 과정의 원칙은 다음과 같다
첫째, 단말은 셀 재선택을 위하여 서빙 셀(serving cell) 및 이웃 셀(neighboring cell)의 품질을 측정한다.
둘째, 셀 재선택은 셀 재선택 기준에 기반하여 수행된다. 셀 재선택 기준은 서빙 셀 및 이웃 셀 측정에 관련하여 아래와 같은 특성을 가지고 있다.
인트라-주파수 셀 재선택은 기본적으로 랭킹(ranking)에 기반한다. 랭킹이라는 것은, 셀 재선택 평가를 위한 지표값을 정의하고, 이 지표값을 이용하여 셀들을 지표값의 크기 순으로 순서를 매기는 작업이다. 가장 좋은 지표를 가지는 셀을 흔히 최고 순위 셀(highest ranked cell)이라고 부른다. 셀 지표값은 단말이 해당 셀에 대해 측정한 값을 기본으로, 필요에 따라 주파수 오프셋 또는 셀 오프셋을 적용한 값이다.
인터-주파수 셀 재선택은 네트워크에 의해 제공된 주파수 우선순위에 기반한다. 단말은 가장 높은 주파수 우선순위를 가진 주파수에 머무를(camp on) 수 있도록 시도한다. 네트워크는 브로드캐스트 시그널링(broadcast signaling)를 통해서 셀 내 단말들이 공통적으로 적용할 또는 주파수 우선순위를 제공하거나, 단말별 시그널링(dedicated signaling)을 통해 단말 별로 각각 주파수 별 우선순위를 제공할 수 있다. 브로드캐스트 시그널링을 통해 제공되는 셀 재선택 우선순위를 공용 우선순위(common priority)라고 할 수 있고, 단말별로 네트워크가 설정하는 셀 재선택 우선 순위를 전용 우선순위(dedicated priority)라고 할 수 있다. 단말은 전용 우선순위를 수신하면, 전용 우선순위와 관련된 유효 시간(validity time)를 함께 수신할 수 있다. 단말은 전용 우선순위를 수신하면 함께 수신한 유효 시간으로 설정된 유효성 타이머(validity timer)를 개시한다. 단말은 유효성 타이머가 동작하는 동안 RRC 아이들 모드에서 전용 우선순위를 적용한다. 유효성 타이머가 만료되면 단말은 전용 우선순위를 폐기하고, 다시 공용 우선순위를 적용한다.
인터-주파수 셀 재선택을 위해 네트워크는 단말에게 셀 재선택에 사용되는 파라미터(예를 들어 주파수별 오프셋(frequency-specific offset))를 주파수별로 제공할 수 있다.
인트라-주파수 셀 재선택 또는 인터-주파수 셀 재선택을 위해 네트워크는 단말에게 셀 재선택에 사용되는 이웃 셀 리스트(Neighboring Cell List, NCL)를 단말에게 제공할 수 있다. 이 NCL은 셀 재선택에 사용되는 셀 별 파라미터(예를 들어 셀 별 오프셋(cell-specific offset))를 포함한다
인트라-주파수 또는 인터-주파수 셀 재선택을 위해 네트워크는 단말에게 셀 재선택에 사용되는 셀 재선택 금지 리스트(black list)를 단말에게 제공할 수 있다. 금지 리스트에 포함된 셀에 대해 단말은 셀 재선택을 수행하지 않는다.
이어서, 셀 재선택 평가 과정에서 수행하는 랭킹에 관해 설명한다.
셀의 우선순위를 주는데 사용되는 랭킹 지표(ranking criterion)은 식 2와 같이 정의된다.
[식 2]
Rs = Qmeas,s + Qhyst, Rn = Qmeas,n – Qoffset
여기서, Rs는 서빙 셀의 랭킹 지표, Rn은 이웃 셀의 랭킹 지표, Qmeas,s는 단말이 서빙 셀에 대해 측정한 품질값, Qmeas,n는 단말이 이웃 셀에 대해 측정한 품질값, Qhyst는 랭킹을 위한 히스테리시스(hysteresis) 값, Qoffset은 두 셀간의 오프셋이다.
인트라-주파수에서, 단말이 서빙 셀과 이웃 셀 간의 오프셋(Qoffsets,n)을 수신한 경우 Qoffset=Qoffsets,n 이고, 단말이 Qoffsets,n 을 수신하지 않은 경우에는 Qoffset = 0 이다.
인터-주파수에서, 단말이 해당 셀에 대한 오프셋(Qoffsets,n)을 수신한 경우 Qoffset = Qoffsets,n + Qfrequency 이고, 단말이 Qoffsets,n 을 수신하지 않은 경우 Qoffset = Qfrequency 이다.
서빙 셀의 랭킹 지표(Rs)과 이웃 셀의 랭킹 지표(Rn)이 서로 비슷한 상태에서 변동하면, 변동 결과 랭킹 순위가 자꾸 뒤바뀌어 단말이 두 셀을 번갈아가면서 재선택을 할 수 있다. Qhyst는 셀 재선택에서 히스테리시스를 주어, 단말이 두 셀을 번갈아가면서 재선택하는 것을 막기 위한 파라미터이다.
단말은 위 식에 따라 서빙 셀의 Rs 및 이웃 셀의 Rn을 측정하고, 랭킹 지표 값이 가장 큰 값을 가진 셀을 최고 순위(highest ranked) 셀로 간주하고, 이 셀을 재선택한다.
상기 기준에 의하면, 셀의 품질이 셀 재선택에서 가장 주요한 기준으로 작용하는 것을 확인할 수 있다. 만약 재선택한 셀이 정규 셀(suitable cell)이 아니면 단말은 해당 주파수 또는 해당 셀을 셀 재선택 대상에서 제외한다.
셀 재선택 평가에 따라 단말이 셀 재선택을 수행함에 있어서, 단말은 상기 셀 재선택 기준이 특정 시간 동안 만족되는 경우 셀 재선택 기준이 만족되었다고 결정하고 선택된 타겟 셀로 셀 이동을 할 수 있다. 여기서 특정 시간은 Treselection 파라미터로 네트워크로부터 주어질 수 있다. Treselection은 셀 재선택 타이머 값을 특정하고, E-UTRAN의 각 주파수에 대하여 및 다른 RAT에 대하여 정의될 수 있다.
이하에서는 단말의 셀 재선택을 위해 사용되는 셀 재선택 정보에 대하여 설명하도록 한다.
셀 재선택 정보는 셀 재선택 파라미터의 형식으로 네트워크로부터 브로드캐스트되는 시스템 정보에 포함되어 전송되고 단말에 제공될 수 있다. 단말에 제공되는 셀 재선택 파라미터는 아래와 같은 종류의 것들이 있을 수 있다.
셀 재선택 우선순위(cellReselectionPriority): cellReselectionPriority 파라미터는 E-UTRAN의 주파수, UTRAN의 주파수, GERAN 주파수들의 그룹, CDMA2000 HRPD의 밴드 클래스 또는 CDMA2000 1xRTT의 밴드 클래스에 대한 우선순위를 특정한다.
Qoffsets,n: 두 셀간의 오프셋 값을 특정한다.
Qoffsetfrequency: 동일한 우선순위의 E-UTRAN 주파수에 대한 주파수 특정 오프셋을 특정한다.
Qhyst: 랭크 지표에 대한 히스테리시스 값을 특정한다.
Qqualmin: 최소 요구되는 품질 레벨을 특정하며 dB 단위로 특정된다.
Qrxlevmin: 최소 요구되는 Rx 레벨을 특정하며 dB 단위로 특정된다.
TreselectionEUTRA: E-UTRAN을 위한 셀 재선택 타이머 값을 특정하며, E-UTRAN의 각 주파수에 대하여 설정될 수 있다.
TreselectionUTRAN: UTRAN을 위한 셀 재선택 타이머 값을 특정한다.
TreselectionGERA: GERAN을 위한 셀 재선택 타이머 값을 특정한다.
TreselectionCDMA_HRPD: CDMA HRPD를 위한 셀 재선택 타이머 값을 특정한다.
TreselectionCDMA_1xRTT: CDMA 1xRTT를 위한 셀 재선택 타이머 값을 특정한다.
Threshx, HighP: 서빙 주파수보다 보다 높은 우선순위의 RAT/주파수로의 셀 재선택시 단말에 의해 사용되는 Srxlev 임계값을 dB 단위로 특정한다. 특정 임계값이 E-UTRAN 및 UTRAN의 각 주파수, GERAN 주파수의 각 그룹, CDMA2000 HRPD의 각 밴드 클래스 및 CDMA2000 1xRTT의 각 밴드 클래스에 대하여 개별적으로 설정될 수 있다.
Threshx, HighQ: 서빙 주파수보다 보다 높은 우선순위의 RAT/주파수로의 셀 재선택시 단말에 의해 사용되는 Squal 임계값을 dB 단위로 특정한다. 특정 임계값이 E-UTRAN 및 UTRAN FDD의 각 주파수에 대하여 개별적으로 설정될 수 있다.
Threshx, LowP: 서빙 주파수보다 보다 낮은 우선순위의 RAT/주파수로의 셀 재선택시 단말에 의해 사용되는 Srxlev 임계값을 dB 단위로 특정한다. 특정 임계값이 E-UTRAN 및 UTRAN의 각 주파수, GERAN 주파수의 각 그룹, CDMA2000 HRPD의 각 밴드 클래스 및 CDMA2000 1xRTT의 각 밴드 클래스에 대하여 개별적으로 설정될 수 있다.
Threshx, LowQ: 서빙 주파수보다 보다 낮은 우선순위의 RAT/주파수로의 셀 재선택시 단말에 의해 사용되는 Squal 임계값을 dB 단위로 특정한다. 특정 임계값이 E-UTRAN 및 UTRAN FDD의 각 주파수에 대하여 개별적으로 설정될 수 있다.
ThreshServing, LowP: 보다 낮은 RAT/주파수로의 셀 재선택시 서빙 셀 상의 단말에 의해 사용되는 Srxlev 임계값을 dB 단위로 특정한다.
ThreshServing, LowQ: 보다 낮은 RAT/주파수로의 셀 재선택시 서빙 셀 상의 단말에 의해 사용되는 Squal 임계값을 dB 단위로 특정한다.
SIntraSerachP: 인트라-주파수 측정에 대한 Srxlev 임계값을 dB 단위로 특정한다.
SIntraSerachQ: 인트라-주파수 측정에 대한 Squal 임계값을 dB 단위로 특정한다.
SnonIntraSerachP: E-UTRAN 인터-주파수 및 인터-RAT 측정에 대한 Srxlev 임계값을 dB 단위로 특정한다.
SnonIntraSerachQ: E-UTRAN 인터-주파수 및 인터-RAT 측정에 대한 Squal 임계값을 dB 단위로 특정한다.
한편 셀 재선택 정보는 네트워크와 단말간 RRC 연결 해제를 위해 전송되는 RRC 메시지인 RRC 연결 해제 메시지에 포함되어 단말에 제공될 수도 있다. 예를 들어, RRC 연결 해제 메시지에는 E-UTRAN의 부반송파 주파수 리스트 및 셀 재선택 우선순위, UTRA-FDD의 부반송파 주파수 리스트 및 셀 재선택 우선순위, UTRA-TDD의 부반송파 주파수 리스트 및 셀 재선택 우선순위, GERAN의 부반송파 주파수 리스트 및 셀 재선택 우선순위, CDMA2000 HRPD의 밴드 클래스 리스트 및 셀 재선택 우선순위, CDMA2000 1xRTT의 밴드 클래스 리스트 및 셀 재선택 우선순위 등을 포함할 수 있다.
이하에서, RLM(Radio Link Monitoring)에 대하여 설명하도록 한다.
단말은 PCell의 하향링크 무선 링크 품질을 감지하기 위해 셀 특정 참조 신호(cell-specific reference signal)을 기반으로 하향링크 품질을 모니터링한다. 단말은 PCell의 하향링크 무선 링크 품질 모니터링 목적으로 하향링크 무선 링크 품질을 추정하고 그것을 임계값 Qout 및 Qin과 비교한다. 임계값 Qout은 하향링크 무선 링크가 안정적으로 수신될 수 없는 수준으로서 정의되며, 이는 PDFICH 에러를 고려하여 가상의 PDCCH 전송(hypothetical PDCCH transmission)의 10% 블록 에러율에 상응한다. 임계값 Qin은 Qout의 레벨보다 더 안정적으로 수신될 수 있는 하향링크 무선 링크 품질 레벨로 정의되며, 이는 PCFICH 에러를 고려하여 가상의 PDCCH 전송의 2% 블록 에러율에 상응한다.
이제 무선 링크 실패(Radio Link Failure; RLF)에 대하여 설명한다.
단말은 서비스를 수신하는 서빙셀과의 무선 링크의 품질 유지를 위해 지속적으로 측정을 수행한다. 단말은 서빙셀과의 무선 링크의 품질 악화(deterioration)로 인하여 현재 상황에서 통신이 불가능한지 여부를 결정한다. 만약, 서빙셀의 품질이 너무 낮아서 통신이 거의 불가능한 경우, 단말은 현재 상황을 무선 연결 실패로 결정한다.
만약 무선 링크 실패가 결정되면, 단말은 현재의 서빙셀과의 통신 유지를 포기하고, 셀 선택(또는 셀 재선택) 절차를 통해 새로운 셀을 선택하고, 새로운 셀로의 RRC 연결 재확립(RRC connection re-establishment)을 시도한다.
3GPP LTE의 스펙에서는 정상적인 통신을 할 수 없는 경우로 아래와 같은 예시를 들고 있다.
- 단말의 물리 계층의 무선 품질 측정 결과를 기반으로 단말이 하향 통신 링크 품질에 심각한 문제가 있다고 판단한 경우(RLM 수행 중 PCell의 품질이 낮다고 판단한 경우)
- MAC 부계층에서 랜덤 액세스(random access) 절차가 계속적으로 실패하여 상향링크 전송에 문제가 있다고 판단한 경우.
- RLC 부계층에서 상향 데이터 전송이 계속적으로 실패하여 상향 링크 전송에 문제가 있다고 판단한 경우.
- 핸드오버를 실패한 것으로 판단한 경우.
- 단말이 수신한 메시지가 무결성 검사(integrity check)를 통과하지 못한 경우.
이하에서는 RRC 연결 재확립(RRC connection re-establishment) 절차에 대하여 보다 상세히 설명한다.
도 7은 RRC 연결 재확립 절차를 나타내는 도면이다.
도 7을 참조하면, 단말은 SRB 0(Signaling Radio Bearer #0)을 제외한 설정되어 있던 모든 무선 베어러(radio bearer) 사용을 중단하고, AS(Access Stratum)의 각종 부계층을 초기화 시킨다(S810). 또한, 각 부계층 및 물리 계층을 기본 구성(default configuration)으로 설정한다. 이와 같은 과정중에 단말은 RRC 연결 상태를 유지한다.
단말은 RRC 연결 재설정 절차를 수행하기 위한 셀 선택 절차를 수행한다(S820). RRC 연결 재확립 절차 중 셀 선택 절차는 단말이 RRC 연결 상태를 유지하고 있음에도 불구하고, 단말이 RRC 아이들 상태에서 수행하는 셀 선택 절차와 동일하게 수행될 수 있다.
단말은 셀 선택 절차를 수행한 후 해당 셀의 시스템 정보를 확인하여 해당 셀이 적합한 셀인지 여부를 판단한다(S830). 만약 선택된 셀이 적절한 E-UTRAN 셀이라고 판단된 경우, 단말은 해당 셀로 RRC 연결 재확립 요청 메시지(RRC connection reestablishment request message)를 전송한다(S840).
한편, RRC 연결 재확립 절차를 수행하기 위한 셀 선택 절차를 통하여 선택된 셀이 E-UTRAN 이외의 다른 RAT을 사용하는 셀이라고 판단된 경우, RRC 연결 재확립 절차를 중단되고, 단말은 RRC 아이들 상태로 진입한다(S850).
단말은 셀 선택 절차 및 선택한 셀의 시스템 정보 수신을 통하여 셀의 적절성 확인은 제한된 시간 내에 마치도록 구현될 수 있다. 이를 위해 단말은 RRC 연결 재확립 절차를 개시함에 따라 타이머를 구동시킬 수 있다. 타이머는 단말이 적합한 셀을 선택하였다고 판단된 경우 중단될 수 있다. 타이머가 만료된 경우 단말은 RRC 연결 재확립 절차가 실패하였음을 간주하고 RRC 아이들 상태로 진입할 수 있다. 이 타이머를 이하에서 무선 링크 실패 타이머라고 언급하도록 한다. LTE 스펙 TS 36.331에서는 T311이라는 이름의 타이머가 무선 링크 실패 타이머로 활용될 수 있다. 단말은 이 타이머의 설정 값을 서빙 셀의 시스템 정보로부터 획득할 수 있다.
단말로부터 RRC 연결 재확립 요청 메시지를 수신하고 요청을 수락한 경우, 셀은 단말에게 RRC 연결 재확립 메시지(RRC connection reestablishment message)를 전송한다.
셀로부터 RRC 연결 재확립 메시지를 수신한 단말은 SRB1에 대한 PDCP 부계층과 RLC 부계층을 재구성한다. 또한 보안 설정과 관련된 각종 키 값들을 다시 계산하고, 보안을 담당하는 PDCP 부계층을 새로 계산한 보안키 값들로 재구성한다. 이를 통해 단말과 셀간 SRB 1이 개방되고 RRC 제어 메시지를 주고 받을 수 있게 된다. 단말은 SRB1의 재개를 완료하고, 셀로 RRC 연결 재확립 절차가 완료되었다는 RRC 연결 재확립 완료 메시지(RRC connection reestablishment complete message)를 전송한다(S860).
반면, 단말로부터 RRC 연결 재확립 요청 메시지를 수신하고 요청을 수락하지 않은 경우, 셀은 단말에게 RRC 연결 재확립 거절 메시지(RRC connection reestablishment reject message)를 전송한다.
RRC 연결 재확립 절차가 성공적으로 수행되면, 셀과 단말은 RRC 연결 재설정 절차를 수행한다. 이를 통하여 단말은 RRC 연결 재확립 절차를 수행하기 전의 상태를 회복하고, 서비스의 연속성을 최대한 보장한다.

이하에서는 3GPP 액세스 네트워크와 다른 액세스 네트워크간 인터워킹(interworking)에 대하여 설명하도록 한다.
3GPP에서는 Rel-8부터 비-3GPP 액세스 네트워크(e.g. WLAN)와의 연동을 도입하면서 접속 가능한 액세스 네트워크를 발견하고, 선택하기 하기 위한 ANDSF (Access Network Discovery and Selection Functions)를 규격화하였다. ANDSF는 단말의 위치에서 접속 가능한 액세스 네트워크 발견 정보(e.g. WLAN, WiMAX 위치 정보 등), 사업자의 정책을 반영시킬 수 있는 시스템간 이동성 정책(Inter-System Mobility Policies; ISMP), 시스템간 라우팅 정책(Inter-System Routing Policy; ISRP)을 전달하며, 이 정보를 기반으로 단말은 어떤 트래픽을 어떤 액세스 네트워크을 경유하여 전송할지 결정할 수 있다. ISMP는 단말이 하나의 활성화된(active) 액세스 네트워크 연결(예를 들어, WLAN 또는 3GPP)을 선택하는 것에 대한 네트워크 선택 규칙을 포함할 수 있다. ISRP는 단말이 잠재적인 하나 이상의 활성화된 액세스 네트워크 연결(예를 들어, WLAN과 3GPP 모두)을 선택하는 것에 대한 네트워크 선택 규칙을 포함할 수 있다. 시스템간 라우팅 정책에는 MAPCON (Multiple Access PDN Connectivity), IFOM (IP Flow Mobility), 비-심리스 WLAN 오프로딩(non-seamless WLAN offloading)이 포함된다. ANDSF와 단말 사이의 동적인 전달(dynamic provision)을 위해 OMA DM(Open Mobile Alliance Device Management) 등이 사용된다.
MAPCON은 3GPP 액세스 네트워크와 비-3GPP 액세스 네트워크를 경유하여 동시에 다수의 패킷 데이터 네트워크에 연결(multiple PDN connectivity)을 설정, 유지 및 전체 활성화된 PDN 연결(active PDN connection) 단위의 심리스 트래픽 오프로딩(seamless traffic offloading) 이 가능한 기술을 규격화 한 것이다. 이를 위해 ANDSF 서버는 오프로딩을 수행할 APN (Access Point Name) 정보, 액세스 네트워크 간의 우선순위 (routing rule), 오프로딩 방법이 적용되는 시간 (Time of Day) 그리고 오프로딩을 할 액세스 네트워크 (Validity Area) 정보 등을 제공한다. 여기서, 오프로딩은 제1 액세스 네트워크에서 제2 액세스 네트워크로 부하/트래픽을 이동시키는 것으로 정의할 수 있다.
IFOM은 MAPCON 보다는 융통성 있고 세분화된 단위의 IP 플로우 단위의 이동성 및 심리스 오프로딩(seamless offloading)을 지원한다. IFOM의 기술적 특징은 MAPCON과 달리 단말이 같은 액세스 포인트 네임(APN)을 사용하여 패킷 데이터 네트워크에 연결되는 경우라도 서로 다른 액세스 네트워크를 통해 접속 가능하며, 이동성 및 오프로딩의 단위가 패킷 데이터 네트워크(PDN)이 아닌 특정 서비스 IP 트래픽 플로우 단위로 이동이 가능하게 함으로써, 서비스 제공의 유연성을 가진다. 이를 위해 ANDSF 서버는 오프로딩을 수행할 IP 플로우 정보, 액세스 네트워크 간의 우선순위 (routing rule), 오프로딩 방법이 적용되는 시간 (Time of Day) 그리고 오프로딩을 할 액세스 네트워크 (Validity Area) 정보 등을 제공한다.
비-심리스 WLAN 오프로딩은 어떤 특정 IP 트래픽의 경로를 WLAN으로 바꾸는 것뿐만 아니라 EPC를 경유하지 않도록 트래픽을 완전히 오프로딩 시키는 기술을 말한다. 이는 이동성 지원을 위해 P-GW에 앵커링(anchoring)을 하지 않기 때문에 오프로딩된 IP 트래픽을 다시 3GPP 액세스 네트워크로 끊김 없이 이동시킬 수 없다. 이를 위해 ANDSF 서버는 단말에게 IFOM을 수행하기 위해 제공하는 정보와 유사한 정보를 제공한다.
도 8은 3GPP 액세스 네트워크 및 WLAN 액세스 네트워크가 공존하는 환경의 예시를 나타내는 도면이다.
도 8을 참조하면, 3GPP 액세스 네트워크로서 기지국 1(1310)을 중심으로 하는 셀 1과 기지국 2(1320)를 중심으로 하는 셀 2가 전개되어 있다. 또한, WLAN 액세스 네트워크로서 셀 1 내에 위치하는 액세스 포인트(Access Point; AP) 1(1330)을 중심으로 하는 BSS(Basic Service Set) 1, AP2(1340)를 중심으로 하는 BSS 2가 전개되어 있으며, 셀 2내에 존재하는 AP3(1350)을 중심으로 하는 BSS 3이 전개되어 있다. 셀의 커버리지는 실선으로 도시되어 있으며, BSS의 커버리지는 점선으로 도시되어 있다.
단말(1300)은 3GPP 액세스 네트워크 및 WLAN 액세스 네트워크 중 적어도 하나를 통한 통신을 수행할 수 있도록 설정된 것을 가정한다. 이 경우, 단말(1300)은 스테이션(station)이라고 불리울 수도 있을 것이다.
최초, 단말(1300)은 셀1 내에서 BS 1(1310)과 연결을 확립하여 3GPP 액세스 네트워크를 통한 트래픽 처리를 할 수 있다.
단말(1300)이 셀 1의 커버리지 내에서 이동중에 BSS 1의 커버리지 내에 진입한 상태라고 가정하자. 이 경우, 만약 단말(1300)과 BS 1(1310) 사이에서 트래픽 처리가 원할하지 않거나 AP 1(1330)과의 사이에서 보다 트래픽 처리가 원할하다면, 3GPP 액세스 네트워크에서 WLAN 액세스 네트워크로 트래픽을 이동시키는 것이 효율적일 것이다.
이하에서는 3GPP 액세스 네트워크에서의 트래픽 조종 방법에 대해 설명한다. 트래픽 조종(traffic steering)이란 3GPP 액세스 네트워크 및/또는 비-GPP 액세스 네트워크를 통해 가변적으로 처리될 수 있도록 트래픽 또는 트래픽의 경로를 조종하는 것을 의미한다. 이하, 3GPP 액세스 네트워크는 UTRAN/E-UTRAN이고, 비-3GPP 액세스 네트워크는 WLAN 액세스 네트워크인 것을 예시한다. 그리고, 설명의 편의상 3GPP 액세스 네트워크는 제1 네트워크, RAN 또는 LTE, 비-3GPP 액세스 네트워크는 제2 네트워크 또는 WLAN으로 칭할 수 있다.
도 9는 트래픽 조종 방법의 일 예를 나타낸다.
도 9를 참조하면, eNB/RNC는 제1 네트워크(RAN)의 기지국이고 WLAN AP는 제2 네트워크의 기지국이라 할 수 있다. eNB/RNC는 시스템 정보를 통해 RAN 보조 정보를 단말에게 제공할 수 있다. RAN 보조 정보는 네트워크 보조 정보라 칭할 수 있다. RAN 보조 정보는 브로드캐스트되거나 전용 신호를 통해 제공될 수 있다.
RAN 보조 정보는 다음 파라미터들 중 적어도 하나를 포함할 수 있다.
파라미터 기술(Description)
부하 정보
(Load Information)
UMTS/LTE 부하를 직/간접으로 지시.
(예를 들어, UMTS/LTE 부하의 퍼센티지를 표시하거나, 오프로드 퍼센티지를 표시)
자원 할당(Resource Allocation) 단말이 UMTS/LTE에서 받을 수 있는 최대 자원 할당
WLAN 문턱치들(임계값)
(WLAN Thresholds)
WLAN 수신신호세기 지시자(RSSI)의 문턱치, WLAN BSS 부하 문턱치 및 WLAN WAN 메트릭 문턱치
가용한 하향링크 및 상향링크 백홀 대역에 대한 문턱치.
RAN 문턱치들(임계값)
(RAN Thresholds)
RSRP/ RSCP 문턱치들
3GPP RAN 측정을 위한 RSRP 측정 문턱치
WLAN 측정을 위한 RSCP 측정 문턱치
단말은 RAN 보조 정보에 포함된 파라미터들에 기반하여 제1 네트워크에서 제2 네트워크로 부하를 이동 즉, 오프로드할 수 있다.
어떤 조건 하에서 부하를 이동시킬 것인지를 나타내는 규칙을 RAN 규칙이라 할 수 있다. 단말은 RAN 규칙을 적용할 때, RAN 보조 정보에 의하여 제공된 파라미터들을 이용할 수 있다.
예를 들어, RAN 규칙은 다음과 같이 정해질 수 있다. 즉, 제1 네트워크의 RSRP(reference signal received power)가 문턱치 s보다 작고, 제1 네트워크의 부하/트래픽이 문턱치 x보다 크고, 제2 네트워크의 RSSI(received signal strength indicator)가 문턱치 r보다 크고 제2 네트워크의 부하/트래픽이 문턱치 y 보다 작다면 부하를 제2 네트워크로 이동시킬 수 있다.
또는 제1 네트워크의 RSRP가 문턱치 s’보다 크고, 제1 네트워크의 부하/트래픽이 문턱치 x’보다 작고, 제2 네트워크의 RSSI가 문턱치 r’보다 작고 제2 네트워크의 부하/트래픽이 문턱치 y’ 보다 크다면 부하를 제1 네트워크로 이동시킬 수 있다. 이러한 RAN 규칙에서 사용되는 문턱치 s,s’,x,x’가 표 2의 RAN 보조 정보에 의하여 제공되는 RAN 문턱치들일 수 있고, r, r’,y,y’은 WRAN 문턱치들일 수 있다.
또는 RAN 규칙의 다른 예로, 제1 네트워크의 RSRP(reference signal received power)가 문턱치 s보다 작고, 제2 네트워크의 RSSI(received signal strength indicator)가 문턱치 r보다 크고 제2 네트워크의 부하/트래픽이 문턱치 y 보다 작다면 부하를 제2 네트워크로 이동시킬 수 있다. 그렇지 않고, 제1 네트워크의 RSRP가 문턱치 s’보다 크거나, 제2 네트워크의 RSSI가 문턱치 r’보다 작거나 또는 제2 네트워크의 부하/트래픽이 문턱치 y’ 보다 크다면 부하를 제1 네트워크로 이동시킬 수 있다.
보다 구체적으로 WLAN으로의 트래픽 조종 조건 및 3GPP 액세스 네트워크로의 트래픽 조종 조건은 다음과 같을 수 있다.
(Ⅰ) WLAN 액세스 네트워크로의 트래픽 조종 조건
1) RSRP 측정값 (measured_RSRP) < 낮은 RSRP 임계값 (Threshold_RSRP_low) , 3GPP 부하 측정값 (measured_3GPPLoad) > 높은 3GPP 부하 임계값(Threshold_3GPPLoad_High) : 즉, 제1 네트워크인 LTE의 RSRP의 측정값이 문턱치보다 낮고 부하 측정 값은 문턱치보다 높은 조건을 만족하는 경우이다.
2) WLAN 부하 측정값 (measured_WLANLoad) < 낮은 WLAN 부하 임계값(Threshold_WLANLoad_low), WLAN 신호 세기 측정값(measured_WLANsignal) > 높은 WLAN 신호 세기 임계값(Threshold_WLANsignal_high) : 즉, 제2 네트워크인 WLAN의 신호 세기가 문턱치보다 높고 부하 측정 값은 낮은 조건을 만족하는 경우이다.
만약, 단말이 제2 네트워크에서 제1 네트워크로 트래픽을 이동시키고자 하는 경우라면, 트래픽 조종 조건은 다음과 같을 수 있다.
(Ⅱ) 3GPP 액세스 네트워크로의 트래픽 조종 조건
- RSRP 측정값 (measured_RSRP) > 높은 RSRP 임계값 (Threshold_RSRP_high)
- 3GPP 부하 측정값 (measured_3GPPLoad) < 낮은 3GPP 부하 임계값(Threshold_3GPPLoad_High)
- WLAN 부하 측정값 (measured_WLANLoad) > 높은 WLAN 부하 임계값 (Threshold_WLANLoad_high)
- WLAN 신호 세기 측정값 (measured_WLANsignal) < 낮은 WLAN 신호 세기 임계값 (Threshold_WLANsignal_low)
한편, 전술한 트래픽 조종 조건 평가에서 상기 하나 이상의 조건들이 and/or로 결합된 채로 설정될 수 있다. 예를 들어, 하나 이상의 조건이 결합되어 구현된 트래픽 조종 평가 조건은 아래와 같이 구현될 수 있다.
- WLAN로 트래픽 조종을 위한 트래픽 조종 평가 조건: (measured_RSRP < Threshold_RSRP_low) and (measured_WLANLoad < Threshold_WLANLoad_low) and (measured_WLANsignal > Threshold_WLANsignal_high)
- 3GPP로 트래픽 조종을 위한 트래픽 조종 평가 조건: (measured_RSRP > Threshold_RSRP_low) or (measured_WLANLoad > Threshold_WLANLoad_high) or (measured_WLANsignal < Threshold_WLANsignal_low)
도 10은 트래픽 조종 방법의 다른 예를 나타낸다.
도 10을 참조하면, eNB/RNC는 제1 네트워크(RAN)의 기지국이고 WLAN AP는 제2 네트워크의 기지국이라 할 수 있다. eNB/RNC는 단말에게 접속 네트워크 선택 및 트래픽 조종과 관련된 파라미터, 즉, RAN 규칙에 따른 트래픽 조종 평가를 위한 파라미터를 전송한다(S101). 여기서, RAN 규칙은 3GPP 액세스 네트워크 및/또는 WLAN 액세스 네트워크의 부하, 신호 품질 등의 측정 파라미터들을 반영한 연동 정책에 관한 규칙을 의미한다. 상기 파라미터는 브로드캐스트되거나 전용 신호를 통해 제공될 수 있다.
RAN 규칙 및 RAN 규칙에 관한 파라미터는 아래와 같이 설정될 수 있다.
1) RAN 규칙은 WLAN로의 트래픽 조종이 허용되는지 여부를 지시할 수 있다.
2) RAN 규칙은 단말이 3GPP 액세스 네트워크로부터 WLAN 액세스 네트워크로의 트래픽 조종 수행이 허용되는 또는 요구되는 조건인 트래픽 조종 평가 조건을 지시할 수 있다. RAN 규칙에 따른 조건은 LTE 셀에 대한 측정 결과들의 평가를 수반할 수 있다. 또한, RAN 규칙에 따른 조건은 WLAN에 대한 측정 결과들의 평가를 수반할 수 있다. 평가는 상기 측정 결과와 트래픽 조종 정보 내에서 지시되는 RAN 규칙 파라미터(e.g. 측정 임계값 등)와 비교하는 것일 수 있다.
3) RAN 규칙은 단말이 WLAN 액세스 네트워크로부터 3GPP 액세스 네트워크로의 트래픽 조종 수행이 허용되는 또는 요구되는 조건을 지시할 수 있다.
4) RAN 규칙은 단말이 3GPP 액세스 네트워크로부터 트래픽 조종을 수행하는 것이 허용되거나 또는 요구되는 대상 WLAN 액세스 네트워크를 지시할 수 있다.
5) RAN 규칙은 WLAN 액세스 네트워크로 라우팅이 허용되는 트래픽 타입을 지시할 수 있다. 또는, RAN 규칙은 WLAN 액세스 네트워크로 라우팅이 허용되는, 즉 3GPP 액세스 네트워크에 의해서만 서비스될 수 있는 하나 이상의 트래픽을 지시할 수 있다.
단말은 전술한 파라미터 값을 단말이 측정한 값들과 비교하여, 그 결과에 따라 제1 네트워크에서 제2 네트워크로 부하를 이동시킬 수 있다(S102).

이제 본 발명에 대해 설명한다.
전술한 바와 같이, 단말은 초기에 전원이 켜지면 사용 가능한 PLMN(public land mobile network)을 검색하고 서비스를 받을 수 있는 적절한 PLMN을 선택한다. 단말은 적절한 PLMN을 선택/등록한 후, 선택한 PLMN이 제공하는 셀들 중에서 상기 단말이 적절한 서비스를 제공받을 수 있는 신호 품질과 특성을 가진 셀을 선택한다. 그리고, 상기 셀에서 트래픽에 따라 제1 방식의 네트워크(예를 들어 3GPP LTE/LTE-A)와 제2 방식의 네트워크(예를 들어, 무선 랜) 간에서 트래픽 조종을 수행할 수 있다. 상기 셀은 제1 방식의 네트워크와 제2 방식의 네트워크 간의 트래픽 조종을 위한 정책/파라미터들을 제공하며 이를 RAN 보조 정보라 할 수 있다.
그런데, 각 이동통신 네트워크 운영자는 비용/효율/전략 측면에서 상기 셀을 공유할 수도 있다. 즉, 제1 이동통신 네트워크 운영자(제1 PLMN)에 의하여 운영되는 셀을 제2 이동통신 네트워크 운영자(제2 PLMN)도 공유할 수 있다(물론, 그 반대의 경우도 가능하다).
즉, 복수의 이동통신 네트워크 운영자들은 동일한 셀을 공유할 수 있는데, 이를 RAN 공유라 칭한다. 즉, 특정 셀은 복수의 PLMN에 의하여 공유될 수 있다. 이처럼, 공유되는 셀은 PLMN ID들을 포함하는 리스트(이를 PLMN-ID 리스트라 칭한다)를 브로드캐스트할 수 있다. 다음 표는 셀이 브로드캐스트하는 시스템 정보의 일 예이며, 이 시스템 정보에는 PLMN-ID 리스트를 포함할 수 있다.
-- ASN1STA

SystemInformationBlockType1 ::= SEQUENCE {
cellAccessRelatedInfo SEQUENCE {
plmn-IdentityList PLMN-IdentityList,
trackingAreaCode TrackingAreaCode,
cellIdentity CellIdentity,
cellBarred ENUMERATED {barred, notBarred},
intraFreqReselection ENUMERATED {allowed, notAllowed},
csg-Indication BOOLEAN,
csg-Identity CSG-Identity OPTIONAL-- Need OR
},
cellSelectionInfo SEQUENCE {
q-RxLevMin Q-RxLevMin,
q-RxLevMinOffset INTEGER (1..8) OPTIONAL-- Need OP
},
p-Max P-Max OPTIONAL, -- Need OP
freqBandIndicator FreqBandIndicator,
schedulingInfoList SchedulingInfoList,
tdd-Config TDD-Config OPTIONAL,-- Cond TDD
si-WindowLength ENUMERATED {
ms1, ms2, ms5, ms10, ms15, ms20,
ms40},
systemInfoValueTag INTEGER (0..31),
nonCriticalExtension SystemInformationBlockType1-v890-IEs OPTIONAL
}

SystemInformationBlockType1-v890-IEs::=SEQUENCE {
lateNonCriticalExtension OCTET STRING (CONTAINING SystemInformationBlockType1-v8h0-IEs) OPTIONAL,-- Need OP
nonCriticalExtension SystemInformationBlockType1-v920-IEsOPTIONAL
}

SystemInformationBlockType1-v8h0-IEs ::=SEQUENCE {
multiBandInfoList MultiBandInfoList OPTIONAL,-- Need OR
nonCriticalExtension SEQUENCE {} OPTIONAL-- Need OP
}

SystemInformationBlockType1-v920-IEs ::=SEQUENCE {
ims-EmergencySupport-r9 ENUMERATED {true} OPTIONAL,-- Need OR
cellSelectionInfo-v920 CellSelectionInfo-v920 OPTIONAL,-- Cond RSRQ
nonCriticalExtension SystemInformationBlockType1-v11xy-IEs OPTIONAL
}

SystemInformationBlockType1-v11xy-IEs ::=SEQUENCE {
tdd-Config-v11xy TDD-Config-v11xy OPTIONAL,-- Cond TDD-OR
nonCriticalExtension SEQUENCE {} OPTIONAL-- Need OP
}

PLMN-IdentityList ::= SEQUENCE (SIZE (1..6)) OF PLMN-IdentityInfo

PLMN-IdentityInfo ::= SEQUENCE {
plmn-Identity PLMN-Identity,
cellReservedForOperatorUse ENUMERATED {reserved, notReserved}
}

SchedulingInfoList ::= SEQUENCE (SIZE (1..maxSI-Message)) OF SchedulingInfo

SchedulingInfo ::=SEQUENCE {
si-Periodicity ENUMERATED {
rf8, rf16, rf32, rf64, rf128, rf256, rf512},
sib-MappingInfo SIB-MappingInfo
}

SIB-MappingInfo ::= SEQUENCE (SIZE (0..maxSIB-1)) OF SIB-Type

SIB-Type ::= ENUMERATED {
sibType3, sibType4, sibType5, sibType6,
sibType7, sibType8, sibType9, sibType10,
sibType11, sibType12-v920, sibType13-v920,
sibType14-v11xy, sibType15-v11x0,
spare3, spare2, spare1, ...}

CellSelectionInfo-v920 ::= SEQUENCE {
q-QualMin-r9 Q-QualMin-r9,
q-QualMinOffset-r9 INTEGER (1..8) OPTIONAL-- Need OP
}

-- ASN1STOP
상기 표 3에서 ‘plmn-IdentityList’는 PLMN ID들의 리스트(list)이며, PLMN ID가 순서를 가지고 기재된다. 이 PLMN-ID 리스트에서 최초 기재된 PLMN ID가 프라이머리 PLMN이고, 그 다음에 위치하는 PLMN ID가 세컨더리 PLMN이다. 프라이머리 PLMN은 하나 뿐이며, 세컨더리 PLMN은 하나 또는 복수가 될 수 있다.
한편, 하나의 셀이 복수의 PLMN에 의하여 공유될 때, 종래에는 하나의 RAN 보조 정보(RAN assistance information)만이 제공되었으며, 이를 서로 다른 PLMN이 공통적으로 적용하였다. 일반적으로 프라이머리 PLMN의 정책에 주로 부합하는 RAN 보조 정보가 전송된다. 따라서, 세컨더리 PLMN으로 해당 셀에 접속한 단말은 해당 세컨더리 PLMN에 최적화되지 못한 RAN 보조 정보를 적용하게 된다.
다시 말해, 특정 셀이 제1 PLMN에 최적화된 RAN 보조 정보만을 제공하고, 제2 PLMN에 등록한 단말이 상기 셀에 접속한 경우에는 최적화된 RAN 보조 정보를 제공받을 수 없을 수 있다.
도 11은 종래 복수의 PLMN과 RAN 보조 정보의 연관 예를 나타낸다.
도 11을 참조하면, 셀은 시스템 정보를 통해 PLMN-ID 리스트를 브로드캐스트할 수 있다. PLMN-ID 리스트에 pPLMN, sPLMN_1, sPLMN_2, sPLMN_3이 포함되어 있다고 가정하자. 그리고 상기 셀은 pPLMN에 최적화된 RAN 보조 정보 #1을 전송하고 있고 가정하자. 이 경우, 단말은 상기 셀에 어떤 PLMN을 통해 접속하였던 간에 상기 RAN 보조 정보 #1을 적용하게 된다. 만약, 단말이 sPLMN_1을 통해 상기 셀에 접속하였다면 상기 단말은 최적화되지 않은 RAN 보조 정보를 적용하게 된다.
이하에서는 전술한 종래 기술에서의 문제점을 해결할 수 있는 다양한 방법을 설명한다.
도 12는 본 발명의 일 실시예에 따른, 셀에서 RAN 보조 정보를 제공하는 방법을 나타낸다.
도 12를 참조하면, 셀은 복수의 PLMN들을 시스템 정보를 통해 알려줄 수 있다. 예를 들어, 프라이머리 PLMN(pPLMN)과 세컨더리 PLMN(sPLMN_1, sPLMN_2, sPLMN_3)들을 PLMN-ID 리스트를 통해 알려줄 수 있다. 이 경우, 상기 셀은 프라이머리 PLMN에 대한 RAN 보조 정보와 세컨더리 PLMN들에 공통적으로 적용될 수 있는 RAN 보조 정보를 제공할 수 있다. 즉, 셀이 제공하는 RAN 보조 정보는 2개 종류로 구분될 수 있다. 첫번째 종류는 프라이머리 PLMN에 적용되는 RAN 보조 정보이고, 두번째 종류는 모든 세컨더리 PLMN에 공통적으로 적용될 수 있는 RAN 보조 정보이다.
도 13은 본 발명의 다른 실시예에 따른, 셀에서 RAN 보조 정보를 제공하는 방법을 나타낸다.
도 13을 참조하면, 셀은 복수의 PLMN들을 시스템 정보를 통해 알려줄 수 있다. 예를 들어, 프라이머리 PLMN(pPLMN)과 세컨더리 PLMN(sPLMN_1, sPLMN_2, sPLMN_3)들을 PLMN-ID 리스트를 통해 알려줄 수 있다. 이 경우, 셀은 프라이머리 PLMN과 세컨더리 PLMN 각각에 적용될 수 있는 RAN 보조 정보를 제공할 수 있다. 즉, 상기 셀은 상기 셀이 시그널링한 PLMN-ID 리스트에 포함된 PLMN의 개수만큼의 RAN 보조 정보를 제공할 수 있다.
도 13에서 pPLMN에는 RAN 보조 정보 #1이 적용되고, sPLMN_1에는 RAN 보조 정보 #2가 적용되고, sPLMN_2에는 RAN 보조 정보 #3이 적용되고, sPLMN_3에는 RAN 보조 정보 #4가 적용될 수 있다. 각 세컨더리 PLMN과 대응되는 RAN 보조 정보는 1:1 관계일 수 있으며, 서로 다른 세컨더리 PLMN에는 서로 다른 RAN 보조 정보가 적용될 수 있다.

한편, 복수의 PLMN들에 대해 복수의 RAN 보조 정보들이 제공될 때, 각 PLMN에 어떤 RAN 보조 정보가 적용되는지, 또한, 이를 어떤 방식으로 단말에게 알려줄 것인지가 문제될 수 있다. 즉, PLMN과 RAN 보조 정보 간의 연관 관계와 이러한 연관 관계를 단말에게 어떻게 알려줄 것인지가 문제될 수 있다.
도 14는 시스템 정보로 시그널링된 PLMN ID의 리스트들과 RAN 보조 정보들 간의 연관 관계 및 이를 알려주는 방법을 나타낸다.
도 14를 참조하면, 셀은 RAN 보조 정보들을 제공할 때, PLMN-ID 리스트에 포함된 PLMN들의 개수와 동일한 개수의 RAN 보조 정보들을 제공하고, 또한, 상기 PLMN-ID 리스트에 포함된 PLMN들의 순서와 동일한 순서로 대응하는 RAN 보조 정보를 제공할 수 있다. 즉, 셀은 RAN 보조 정보에 연관되는 PLMN을 명시적으로 지시하지 않을 수 있고 묵시적으로 제공할 수 있다.
단말은 상기 셀이 브로드캐스트하는 PLMN-ID 리스트의 순서와 RAN 보조 정보들의 순서에 기반하여 각 PLMN에 대응하는 RAN 보조 정보를 식별할 수 있다.
예컨대, 셀이 브로드캐스트하는 PLMN-ID 리스트에 pPLMN, sPLMN_1, sPLMN_2, sPLMN_3의 순서로 총 4개의 PLMN ID들을 포함한다고 하자. 그리고 RAN 보조 정보들을 포함하는 시스템 정보(SIB17)가 다음 표와 같이 제공되었다고 가정하자.
-- ASN1START

SystemInformationBlockType17-r12 ::=SEQUENCE {
wlan-OffloadInfoPerPLMN-List-r12 SEQUENCE (SIZE (1..maxPLMN-r11)) OF
WLAN-OffloadInfoPerPLMN-r12 OPTIONAL, -- Need OR
lateNonCriticalExtension OCTET STRING OPTIONAL,
...
}

WLAN-OffloadInfoPerPLMN-r12 ::= SEQUENCE {
wlan-OffloadConfigCommon-r12 WLAN-OffloadConfig-r12 OPTIONAL, -- Need OR
wlan-Id-List-r12 WLAN-Id-List-r12 OPTIONAL-- Need OR
}

WLAN-Id-List-r12 ::= SEQUENCE (SIZE (1..maxWLAN-Id-r12)) OF WLAN-Id-r12

WLAN-Id-r12 ::=
CHOICE {
ssid-r12 OCTET STRING (SIZE (1..32)),
bssid-r12 OCTET STRING (SIZE (6)),
hessid-r12 OCTET STRING (SIZE (6))
}

-- ASN1STOP
상기 표에서 ‘wlan-OffloadInfoPerPLMN-List’는 ‘WLAN-OffloadInfoPerPLMN’를 ‘maxPLMN’개 포함할 수 있다. 각 ‘WLAN-OffloadInfoPerPLMN’는 ‘WLAN-OffloadConfig’를 포함하며, ‘WLAN-OffloadConfig’는 전술한 표 2와 같은 트래픽 조종에 관련된 다양한 문턱치들을 포함할 수 있다. 여기서, ‘WLAN-OffloadInfoPerPLMN’또는 ‘WLAN-OffloadConfig’가 RAN 보조 정보의 일 예가 될 수 있다. 그리고, 상기 표에서 ‘bssid’는 WLAN에서 정의하는 기본 서비스 집합 ID(basic service set identifier)를 나타낸다. ‘hessid’는 WLAN에서 정의하는 동질 확장 서비스 집합 ID(homogenous extended service set identifier)를 나타낸다. ‘ssid’는 WLAN에서 정의하는 서비스 집합 ID를 나타낸다.
상기 SIB17 내에서, RAN 보조 정보들이 RAN 보조 정보 #1, #3, #4, #2의 순서로 제공되었다고 가정하자.
그러면, 도 14에 도시한 바와 같이, pPLMN에는 RAN 보조 정보 #1이 연관되고, sPLMN_1에는 RAN 보조 정보 #3이 연관되고, sPLMN_2에는 RAN 보조 정보 #4가 연관되고, sPLMN_3에는 RAN 보조 정보 #2가 연관된다.
즉, 셀은 명시적으로 각 RAN 보조 정보가 연관되는 PLMN 정보를 제공하지 않으며, PLMN-ID 리스트에서의 PLMN의 순서와 시스템 정보(SIB17)에 포함된 대응하는 RAN 보조 정보들의 순서를 일치시켜 PLMN과 RAN 보조 정보의 연관 관계를 알려주는 것이다.
한편, 상기 도 14의 변형 예로, 프라이머리 PLMN에 연관되는 RAN 보조 정보 는 시그널링 순서에 무관하게 결정되고, 세컨더리 PLMN들에 연관되는 RAN 보조 정보들만 시그널링 순서에 따라 결정되는 것도 가능한다. 예를 들어, 프라이머리 PLMN에 연관되는 RAN 보조 정보는 SIB 4를 통해 제공되는데, 상기 SIB 4의 확장 부분에서 추가적인 RAN 보조 정보가 제공될 수 있으며, 이러한 추가적으로 제공되는 RAN 보조 정보는 시그널링 순서에 기반하여 연관되는 세컨더리 PLMN이 결정될 수 있다.

도 15는 본 발명의 일 실시예에 따른 트래픽 조종 방법을 나타낸다.
도 15를 참조하면, 단말은 PLMN ID들을 특정 순서로 기재한 PLMN-ID 리스트를 포함하는 제1 시스템 정보를 수신한다(S121). 제1 시스템 정보는 상기 단말이 셀에 접속하는 것이 허용되는지 여부를 평가하는데 필요한 정보를 포함하는 시스템 정보이며, 전술한 표 3의 시스템 정보가 제1 시스템 정보의 예가 될 수 있다.
단말은 RAN 보조 정보를 포함하는 제2 시스템 정보를 수신한다(S122). 전술한 표 4의 시스템 정보가 제2 시스템 정보의 예가 될 수 있다. 전술한 바와 같이 RAN 보조 정보는 제1 네트워크와 제2 네트워크 간의 트래픽 조종에 관한 정보를 포함할 수 있다. RAN 보조 정보는 표 2를 참조하여 설명한 바와 같이, 제1 네트워크로부터 수신한 신호 측정에 대한 문턱치 및 상기 제2 네트워크로부터 수신한 신호 측정에 대한 문턱치를 포함할 수 있다. 그리고, 제1 네트워크는 E-UTRAN(Evolved-UMTS Terrestrial Radio Access Network)이고, 제2 네트워크는 WLAN(Wireless Local Area Network)일 수 있다.
도 14에서 설명한 바와 같이, 상기 제2 시스템 정보는 PLMN 별로 RAN 보조 정보를 제공하고, 제1 시스템 정보에 포함된 PLMN-ID 리스트에 포함된 PLMN들의 개수와 동일한 개수의 RAN 보조 정보를 포함할 수 있다. 또한, 상기 PLMN-ID 리스트에 포함된 PLMN들의 순서와 동일한 순서로 대응하는 RAN 보조 정보를 포함할 수 있다.
단말은 제1, 2 시스템 정보에 기반하여 제1 네트워크와 제2 네트워크 간에서 트래픽을 조종한다(S123).
도 16은 도 15의 트래픽 조종 방법을 적용하는 구체적 예를 나타낸다.
도 16을 참조하면, 셀 내의 제1 네트워크(LTE)는 단말에게 PLMN-ID 리스트를 제공한다(S131). 또한, 제1 네트워크는 상기 단말에게 RAN 보조 정보를 제공한다(S132). RAN 보조 정보들은 시스템 정보에 포함되어 제공될 수 있으며, PLMN-ID 리스트에 포함된 PLMN의 개수와 동일하게 제공될 수 있다. 또한, PLMN-ID 리스트와 동일 순서로 대응하는 RAN 보조 정보들이 제공될 수 있다.
단말은 PLMN 에 대응되는 RAN 보조 정보를 검출한다(S133). 예를 들어, 단말은 상기 단말이 등록한 PLMN(이를 registered RPLMN, RPLMN이라 칭한다)에 대응되는 RAN 보조 정보를 검출할 수 있다. 단말은 PLMN-ID 리스트 상에서 PLMN ID의 순서와 상기 시스템 정보에 포함되는 RAN 보조 정보의 순서에 기반하여 단말이 등록한 PLMN 에 대응하는 RAN 보조 정보를 검출할 수 있다.
단말은 트래픽 조종 조건을 평가하고(S134), 트래픽 조종 조건 평가 결과에 따라 트래픽을 제1 네트워크와 제2 네트워크 간에서 오프로드할 수 있다(S135).

한편, 세컨더리 PLMN들과 RAN 보조 정보들 간의 연관은 명시적으로 시그널링될 수도 있다. 즉, RAN 보조 정보가 시그널링될 때, 상기 RAN 보조 정보가 연관되는 PLMN도 함께 명시적으로 시그널링될 수 있다.
도 17은 시스템 정보로 시그널링된 PLMN ID의 리스트들과 RAN 보조 정보들 간의 연관 관계 및 이를 알려주는 다른 방법을 나타낸다.
도 17을 참조하면, 셀은 RAN 보조 정보를 시스템 정보를 통해 시그널링 할 때, RAN 보조 정보가 연관되는 세컨더리 PLMN의 ID를 함께 시그널링할 수 있다. RAN 보조 정보는 함께 시그널링되는 세컨더리 PLMN의 ID를 가지는 PLMN에 연관된다.
즉, 셀은 pPLMN에 대응되는 RAN 보조 정보 #1 이외에 추가적으로 RAN 보조 정보 #2, 3, 4를 전송할 수 있는데, 이 때, 어떤 PLMN에 적용되는지를 명시적으로 세컨더리 PLMN의 ID를 통해 알려주는 것이다. 도 17에서 RAN 보조 정보 #2는 sPLMN_1에 적용되고, RAN 보조 정보 #3은 sPLMN_2에 적용되고, RAN 보조 정보 #4는 sPLMN_3에 적용된다.
한편, 셀은 모든 RAN 보조 정보에 연관되는 PLMN에 대한 정보를 포함하지 않고, 일부 RAN 보조 정보만 대응되는 PLMN ID를 제공할 수도 있다. 이 때, 단말은 연관되는 PLMN에 대한 정보를 포함하지 않는 RAN 보조 정보는 명시적으로 어떤 RAN 보조 정보와도 연관되지 않은 세컨더리 PLMN에 연관되는 것으로 간주할 수 있다.
도 18은 연관되는 세컨더리 PLMN에 대한 정보를 포함하지 않는 RAN 보조 정보가 포함된 경우, PLMN과의 연관을 예시한다.
도 18을 참조하면, 셀은 pPLMN에 적용되는 RAN 보조 정보 #1을 전송한다. 그리고 추가적으로 RAN 보조 정보 #2에는 ‘sPLMN_1’이라는 연관되는 세컨더리 PLMN의 ID를 포함하여 전송하고, RAN 보조 정보 #3에는 연관되는 세컨더리 PLMN에 대한 정보를 포함하지 않고 전송할 수 있다. 이 경우, 단말은 sPLMN_2, sPLMN_3이 명시적으로 어떤 RAN 보조 정보에도 연관되어 있지 않으므로, 상기 RAN 보조 정보 #3이 상기 sPLMN_2, sPLMN_3에 연관된다고 간주할 수 있다.
도 19는 단말이 어떤 PLMN을 통해 특정 셀에 캠프 온하였을 때 적용하는 RAN 보조 정보를 나타낸다.
도 19를 참조하면, 단말은 프라이머리 PLMN과 복수의 세컨더리 PLMN들 중에서 특정한 PLMN(이를 편의상 RPLMN이라 하자)을 통해 공유된 셀에 캠프 온 할 수 있다. 이 때, 단말은 상기 특정한 PLMN(RPLMN)에 연관된 RAN 보조 정보를 적용한다. 만약, 단말이 프라이머리 PLMN을 통해 공유된 셀에 캠프 온하였다면, 상기 단말은 프라이머리 PLMN에 연관된 RAN 보조 정보를 적용한다. 만약, 단말이 세컨더리 PLMN을 통해 공유된 셀에 캠프 온하였다면, 상기 단말은 세컨더리 PLMN에 연관된 RAN 보조 정보를 적용한다.
도 20은 본 발명의 실시예가 구현될 수 있는 무선 장치를 나타내는 블록도이다.
도 20을 참조하면, 무선 장치(1100)는 프로세서(1110), 메모리(1120) 및 RF부(radio frequency unit, 1130)을 포함한다.
프로세서(1110)는 제안된 기능, 과정 및/또는 방법을 구현한다. 프로세서(1110)는 PLMN의 ID들을 특정 순서로 기재한 PLMN-ID 리스트를 포함하는 제1 시스템 정보를 수신하고, 제1 네트워크와 제2 네트워크 간의 트래픽 조종에 관한 RAN 보조 정보를 포함하는 제2 시스템 정보를 수신한 후, 제1, 2 시스템 정보에 기반하여 제1, 2 네트워크 간에서 트래픽 조종을 수행한다. 이 때, 제2 시스템 정보는 PLMN 별로 RAN 보조 정보를 제공하고, 상기 PLMN-ID 리스트에 포함된 PLMN들의 개수와 동일한 개수의 RAN 보조 정보를 포함한다. 또한, PLMN-ID 리스트에 포함된 PLMN들의 상기 특정 순서와 동일한 순서로 RAN 보조 정보를 포함한다.
RF부(1130)은 프로세서(1110)와 연결되어 무선 신호를 송신 및 수신한다. RF부(1130)는 3GPP 기반 액세스 네트워크를 통신 및 비-3GPP 기반 액세스 네트워크를 통신을 위한 하나 이상의 RF부를 포함할 수 있다.
프로세서(1110)는 ASIC(application-specific integrated circuit), 다른 칩셋, 논리 회로 및/또는 데이터 처리 장치를 포함할 수 있다. 도 20에서 단일 프로세서(1110)는 각 액세스 네트워크 통신을 위한 모든 RF부에 대하여 제어 관리하는 하도록 도시되어 있지만, 본 발명에 따른 무선 장치는 이에 한정되지 않는다. 각 액세스 네트워크 통신을 위한 각각의 RF 부는 각각의 프로세서와 기능적으로 결합되는 실시예도 가능할 수 있다.
메모리(1120)는 ROM(read-only memory), RAM(random access memory), 플래쉬 메모리, 메모리 카드, 저장 매체 및/또는 다른 저장 장치를 포함할 수 있다. RF부(1130)는 무선 신호를 처리하기 위한 베이스밴드 회로를 포함할 수 있다. 실시예가 소프트웨어로 구현될 때, 상술한 기법은 상술한 기능을 수행하는 모듈(과정, 기능 등)로 구현될 수 있다. 모듈은 메모리(1120)에 저장되고, 프로세서(1110)에 의해 실행될 수 있다. 메모리(1120)는 프로세서(1110) 내부 또는 외부에 있을 수 있고, 잘 알려진 다양한 수단으로 프로세서(1110)와 연결될 수 있다.

Claims (14)

  1. 무선 통신 시스템에서 단말(User Equipment: UE)에 의해 수행되는 트래픽 조종 방법에 있어서,
    PLMN(public land mobile network)의 ID(identity)들을 특정 순서로 기재한 PLMN-ID 리스트를 포함하는 제1 시스템 정보를 수신하고,
    제1 네트워크와 제2 네트워크 간의 트래픽 조종에 관한 RAN 보조 정보를 포함하는 제2 시스템 정보를 수신하고, 및
    상기 제1, 2 시스템 정보에 기반하여 상기 제1, 2 네트워크 간에서 트래픽 조종을 수행하되,
    상기 제2 시스템 정보는 PLMN 별로 RAN 보조 정보를 제공하고, 상기 PLMN-ID 리스트에 포함된 PLMN들의 개수와 동일한 개수의 RAN 보조 정보를 포함하고, 상기 PLMN-ID 리스트에 포함된 PLMN들의 상기 특정 순서와 동일한 순서로 RAN 보조 정보를 포함하는 것을 특징으로 하는 방법.
  2. 제 1항에 있어서,
    상기 제1 시스템 정보는 상기 단말이 셀에 접속하는 것이 허용되는지 여부를 평가하는데 필요한 정보를 포함하는 시스템 정보인 것을 특징으로 하는 방법.
  3. 제 1 항에 있어서,
    상기 PLMN-ID 리스트에 N(N은 2 이상의 자연수)개의 PLMN ID들이 차례로 기재된 경우,
    상기 PLMN-ID 리스트에 포함된 PLMN들의 순서와 동일한 순서로 각 PLMN에 연관되는 N개의 RAN 보조 정보가 상기 제2 시스템 정보에 포함되는 것을 특징으로 하는 방법.
  4. 제 1 항에 있어서, 상기 PLMN-ID 리스트에 첫번째로 기재된 PLMN ID는 프라이머리 PLMN의 ID인 것을 특징으로 하는 방법.
  5. 제 1항에 있어서, 상기 제1 네트워크는 E-UTRAN(Evolved-UMTS Terrestrial Radio Access Network)이고, 상기 제2 네트워크는 WLAN(Wireless Local Area Network)인 것을 특징으로 하는 방법.
  6. 제 1항에 있어서, 상기 RAN 보조 정보는 상기 제1 네트워크로부터 수신한 신호 측정에 대한 문턱치 및 상기 제2 네트워크로부터 수신한 신호 측정에 대한 문턱치를 포함하는 것을 특징으로 하는 방법.
  7. 제 1항에 있어서,
    상기 단말은 상기 제 2 시스템 정보 중 상기 단말이 등록한 PLMN에 연관되는 RAN 보조 정보에 기반하여 상기 제 1 네트워크와 상기 제 2 네트워크 간의 트래픽 조종을 수행하는 것을 특징으로 하는 방법.
  8. 무선 통신 시스템에서 동작하는 단말에 있어서, 상기 단말은,
    무선 신호를 송신 및 수신하는 RF(Radio Frequenc) 부; 및
    상기 RF부와 기능적으로 결합하여 동작하는 프로세서;를 포함하되, 상기 프로세서는,
    PLMN(public land mobile network)의 ID(identity)들을 특정 순서로 기재한 PLMN-ID 리스트를 포함하는 제1 시스템 정보를 수신하고,
    제1 네트워크와 제2 네트워크 간의 트래픽 조종에 관한 RAN 보조 정보를 포함하는 제2 시스템 정보를 수신하고, 및
    상기 제1, 2 시스템 정보에 기반하여 상기 제1, 2 네트워크 간에서 트래픽 조종을 수행하되,
    상기 제2 시스템 정보는 PLMN 별로 RAN 보조 정보를 제공하고, 상기 PLMN-ID 리스트에 포함된 PLMN들의 개수와 동일한 개수의 RAN 보조 정보를 포함하고, 상기 PLMN-ID 리스트에 포함된 PLMN들의 상기 특정 순서와 동일한 순서로 RAN 보조 정보를 포함하는 것을 특징으로 하는 단말.
  9. 제 8 항에 있어서,
    상기 제1 시스템 정보는 상기 단말이 셀에 접속하는 것이 허용되는지 여부를 평가하는데 필요한 정보를 포함하는 시스템 정보인 것을 특징으로 하는 단말.
  10. 제 8 항에 있어서,
    상기 PLMN-ID 리스트에 N(N은 2 이상의 자연수)개의 PLMN ID들이 차례로 기재된 경우,
    상기 PLMN-ID 리스트에 포함된 PLMN들의 순서와 동일한 순서로 각 PLMN에 연관되는 N개의 RAN 보조 정보가 상기 제2 시스템 정보에 포함되는 것을 특징으로 하는 단말.
  11. 제 8 항에 있어서, 상기 PLMN-ID 리스트에 첫번째로 기재된 PLMN ID는 프라이머리 PLMN의 ID인 것을 특징으로 하는 단말.
  12. 제 8 항에 있어서, 상기 제1 네트워크는 E-UTRAN(Evolved-UMTS Terrestrial Radio Access Network)이고, 상기 제2 네트워크는 WLAN(Wireless Local Area Network)인 것을 특징으로 하는 단말.
  13. 제 8 항에 있어서, 상기 RAN 보조 정보는 상기 제1 네트워크로부터 수신한 신호 측정에 대한 문턱치 및 상기 제2 네트워크로부터 수신한 신호 측정에 대한 문턱치를 포함하는 것을 특징으로 하는 단말.
  14. 제 8 항에 있어서,
    상기 프로세서는 상기 제 2 시스템 정보 중 상기 단말이 등록한 PLMN에 연관되는 RAN 보조 정보에 기반하여 상기 제 1 네트워크와 상기 제 2 네트워크 간의 트래픽 조종을 수행하는 것을 특징으로 하는 단말.
PCT/KR2015/001293 2014-02-09 2015-02-09 무선 통신 시스템에서 트래픽 조종 방법 및 이를 이용하는 장치 WO2015119472A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/114,657 US9838953B2 (en) 2014-02-09 2015-02-09 Method for steering traffic in wireless communication system and device using same
KR1020167020316A KR101805336B1 (ko) 2014-02-09 2015-02-09 무선 통신 시스템에서 트래픽 조종 방법 및 이를 이용하는 장치
CN201580007803.2A CN105981432B (zh) 2014-02-09 2015-02-09 用于在无线通信系统中导向业务的方法和使用该方法的装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201461937583P 2014-02-09 2014-02-09
US61/937,583 2014-02-09

Publications (1)

Publication Number Publication Date
WO2015119472A1 true WO2015119472A1 (ko) 2015-08-13

Family

ID=53778215

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/001293 WO2015119472A1 (ko) 2014-02-09 2015-02-09 무선 통신 시스템에서 트래픽 조종 방법 및 이를 이용하는 장치

Country Status (4)

Country Link
US (1) US9838953B2 (ko)
KR (1) KR101805336B1 (ko)
CN (1) CN105981432B (ko)
WO (1) WO2015119472A1 (ko)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107547443A (zh) * 2016-06-24 2018-01-05 北京佰才邦技术有限公司 一种服务提供商标识类型指示方法、装置和相关设备
WO2018084539A3 (ko) * 2016-11-01 2018-08-09 삼성전자 주식회사 무선 통신 시스템에서 서비스 제공 방법 및 장치
WO2019066473A1 (ko) * 2017-09-27 2019-04-04 삼성전자 주식회사 차세대 이동통신 시스템에서 서비스에 적합한 코어 네트워크를 선택하는 방법 및 장치
WO2019143154A1 (ko) * 2018-01-19 2019-07-25 엘지전자 주식회사 무선 통신 시스템에서 네트워크로의 액세스를 제어하는 방법 및 이를 위한 장치
CN110892754A (zh) * 2017-07-13 2020-03-17 三星电子株式会社 用于在无线通信系统中执行切换的方法和设备

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10009805B2 (en) * 2014-04-07 2018-06-26 Thomson Licensing Method of controlling handover in mobile communication networks and apparatus and system implementing the method
US10313915B2 (en) 2014-05-16 2019-06-04 Lg Electronics Inc. Method and apparatus of traffic steering between a 3GPP access network and WLAN
US11317332B2 (en) * 2015-11-12 2022-04-26 Telefonaktiebolaget Lm Ericsson (Publ) Method for cell selection
US20170142766A1 (en) * 2015-11-17 2017-05-18 Electronics And Telecommunications Research Institute Method and apparatus for controlling access of terminal equipment in wireless communication system
WO2018086692A1 (en) * 2016-11-10 2018-05-17 Telefonaktiebolaget Lm Ericsson (Publ) Mechanisms for initial access to a radio access network
US11297125B2 (en) * 2016-12-19 2022-04-05 Arris Enterprises Llc Steering between content streaming devices using derived link metrics and channel utilization information
KR102366074B1 (ko) 2017-07-11 2022-02-22 삼성전자 주식회사 무선 접속 네트워크에서 WiFi 네트워크로의 핸드오버를 수행하는 방법 및 장치
US11838754B2 (en) * 2017-10-02 2023-12-05 Telefonaktiebolaget Lm Ericsson (Publ) Securing network steering information
US10708835B2 (en) * 2017-12-26 2020-07-07 At&T Intellecutual Property I, L.P. Control of wireless fidelity access for 5G or other next generation network
EP3753328A4 (en) * 2018-02-13 2021-05-26 ZTE Corporation SYSTEM AND METHOD FOR PERFORMING COMMUNICATIONS IN A MULTI-RAT NETWORK
US10880815B2 (en) * 2018-05-11 2020-12-29 FG Innovation Company Limited Method and apparatus for receiving system information
EP3854171A1 (en) 2018-09-17 2021-07-28 Telefonaktiebolaget Lm Ericsson (Publ) Re-establishing a radio resource control connection using a security token comprising a globally unique cell identifier
EP3854172A1 (en) 2018-09-17 2021-07-28 Telefonaktiebolaget Lm Ericsson (Publ) Resuming a radio resource control connection using a security token comprising a globally unique cell identifier
US11399322B2 (en) * 2018-09-17 2022-07-26 Telefonaktiebolaget Lm Ericsson (Publ) User equipment, network node and methods in a wireless communications network
CN108966331B (zh) * 2018-09-29 2021-07-09 Oppo广东移动通信有限公司 小区注册方法、装置、无线路由设备、终端及存储介质
CN113261345B (zh) * 2019-01-10 2024-05-28 索尼集团公司 基站设备、无线通信设备和无线通信系统
US10904862B2 (en) 2019-05-16 2021-01-26 Sprint Communications Company L.P. Wireless access point assistance to wireless user devices for wireless communication network selection
KR20210093063A (ko) * 2020-01-17 2021-07-27 삼성전자주식회사 무선 통신 시스템에서 주파수 밴드 리스트를 제공하는 방법 및 장치
WO2021187926A1 (en) * 2020-03-20 2021-09-23 Samsung Electronics Co., Ltd. Method and apparatus for handling en-dc cell reselection indicator in next-generation mobile communication system
CN113810935A (zh) * 2020-06-12 2021-12-17 中兴通讯股份有限公司 逻辑小区状态更新方法、装置、基站、终端及存储介质
CN112492665B (zh) * 2020-12-04 2023-05-30 北京小米移动软件有限公司 随机接入方法和装置、plmn标识发送方法和装置
US20230319929A1 (en) * 2022-03-30 2023-10-05 Qualcomm Incorporated Rrc reestablishment between tn and ntn

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101055109B1 (ko) * 2007-07-25 2011-08-08 엘지전자 주식회사 세션 이동 방법 및 세션 연속성을 지원하는 방법
WO2012060668A2 (ko) * 2010-11-05 2012-05-10 엘지전자 주식회사 무선 통신 시스템에서 단말의 plmn 정보 수신 방법 및 이를 위한 장치
WO2012138091A2 (ko) * 2011-04-05 2012-10-11 엘지전자 주식회사 데이터 전송 방법 및 사용자 장치
KR20130017663A (ko) * 2011-08-11 2013-02-20 에스케이텔레콤 주식회사 이기종 네트워크 기반 데이터 동시 전송 서비스 방법 및 이에 적용되는 장치
KR20130086048A (ko) * 2010-10-25 2013-07-30 알까뗄 루슨트 다중-액세스 통신 시스템에서 사용자 장비에 의한 IP 트래픽의 라우팅을 위해 액세스 네트워크/액세스 기술 선택의 제어, 및 QoS 지원

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7917152B2 (en) * 2003-06-27 2011-03-29 Nokia Corporation Enhanced fast handover procedures
KR102106989B1 (ko) 2012-01-27 2020-05-06 삼성전자 주식회사 이동 통신 시스템에서 시스템 부하를 조절하기 위해, 엑세스를 효율적으로 제어하는 방법 및 장치
CN103546932B (zh) * 2012-07-17 2016-12-21 中国移动通信集团公司 一种网络切换的方法、装置、网元及系统
RU2621072C2 (ru) 2012-12-19 2017-05-31 ЭлДжи ЭЛЕКТРОНИКС ИНК. Способ осуществления связи в системе беспроводной связи, поддерживающий сеть множественного доступа, и поддерживающее это устройство
US10334517B2 (en) * 2013-12-23 2019-06-25 Sony Corporation Communications system, infrastructure equipment, communication terminal and method
US20160277956A1 (en) * 2014-03-03 2016-09-22 Telefonaktiebolaget L M Ericsson (Publ) Methods and Devices for Improving Connection Procedures in Radio Access Networks
US9877256B2 (en) * 2014-03-24 2018-01-23 Intel IP Corporation Systems, devices, and methods for interworking between a universal mobile telecommunications system (UMTS) network and a wireless local area network (WLAN)

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101055109B1 (ko) * 2007-07-25 2011-08-08 엘지전자 주식회사 세션 이동 방법 및 세션 연속성을 지원하는 방법
KR20130086048A (ko) * 2010-10-25 2013-07-30 알까뗄 루슨트 다중-액세스 통신 시스템에서 사용자 장비에 의한 IP 트래픽의 라우팅을 위해 액세스 네트워크/액세스 기술 선택의 제어, 및 QoS 지원
WO2012060668A2 (ko) * 2010-11-05 2012-05-10 엘지전자 주식회사 무선 통신 시스템에서 단말의 plmn 정보 수신 방법 및 이를 위한 장치
WO2012138091A2 (ko) * 2011-04-05 2012-10-11 엘지전자 주식회사 데이터 전송 방법 및 사용자 장치
KR20130017663A (ko) * 2011-08-11 2013-02-20 에스케이텔레콤 주식회사 이기종 네트워크 기반 데이터 동시 전송 서비스 방법 및 이에 적용되는 장치

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107547443A (zh) * 2016-06-24 2018-01-05 北京佰才邦技术有限公司 一种服务提供商标识类型指示方法、装置和相关设备
US10425886B2 (en) 2016-06-24 2019-09-24 Baicells Technologies Co. Ltd. Method and apparatus for indicating type of participating service provider identity
WO2018084539A3 (ko) * 2016-11-01 2018-08-09 삼성전자 주식회사 무선 통신 시스템에서 서비스 제공 방법 및 장치
US10873959B2 (en) 2016-11-01 2020-12-22 Samsung Electronics Co., Ltd. Method and device for providing service in wireless communication system
US11546928B2 (en) 2016-11-01 2023-01-03 Samsung Electronics Co., Ltd. Method and device for providing service in wireless communication system
CN110892754B (zh) * 2017-07-13 2022-11-01 三星电子株式会社 用于在无线通信系统中执行切换的方法和设备
CN110892754A (zh) * 2017-07-13 2020-03-17 三星电子株式会社 用于在无线通信系统中执行切换的方法和设备
WO2019066473A1 (ko) * 2017-09-27 2019-04-04 삼성전자 주식회사 차세대 이동통신 시스템에서 서비스에 적합한 코어 네트워크를 선택하는 방법 및 장치
US11558811B2 (en) 2017-09-27 2023-01-17 Samsung Electronics Co., Ltd. Method and apparatus for selecting core network suitable for service in next generation mobile communication system
WO2019143154A1 (ko) * 2018-01-19 2019-07-25 엘지전자 주식회사 무선 통신 시스템에서 네트워크로의 액세스를 제어하는 방법 및 이를 위한 장치
CN111615848B (zh) * 2018-01-19 2022-12-23 Lg电子株式会社 在无线通信系统中控制对网络的接入的方法及其设备
US11252647B2 (en) 2018-01-19 2022-02-15 Lg Electronics Inc. Method for controlling access to network in wireless communication system and device for same
CN111615848A (zh) * 2018-01-19 2020-09-01 Lg电子株式会社 在无线通信系统中控制对网络的接入的方法及其设备
US12022384B2 (en) 2018-01-19 2024-06-25 Lg Electronics Inc. Method for controlling access to network in wireless communication system and device for same

Also Published As

Publication number Publication date
US9838953B2 (en) 2017-12-05
KR101805336B1 (ko) 2018-01-10
US20160353361A1 (en) 2016-12-01
CN105981432A (zh) 2016-09-28
CN105981432B (zh) 2019-06-28
KR20160104016A (ko) 2016-09-02

Similar Documents

Publication Publication Date Title
JP6377790B2 (ja) 多重アクセスネットワークを支援する無線通信システムにおける通信方法及びこれを支援する装置
KR101805336B1 (ko) 무선 통신 시스템에서 트래픽 조종 방법 및 이를 이용하는 장치
JP6393731B2 (ja) 多重アクセスネットワークを支援する無線通信システムにおける通信方法及びこれを支援する装置
KR101726197B1 (ko) 다중 액세스 네트워크를 지원하는 무선 통신 시스템에서 선택적 트래픽 처리 방법 및 이를 지원하는 장치
WO2014119968A1 (ko) 무선 통신 시스템에서 트래픽 조종 방법 및 이를 지원하는 장치
WO2014119966A1 (ko) 무선 통신 시스템에서 트래픽 조종 방법 및 이를 지원하는 장치
WO2015020446A1 (ko) 무선 통신 시스템에서 트래픽을 조종하는 방법 및 장치
WO2014098504A1 (ko) 다중 액세스 네트워크를 지원하는 무선 통신 시스템에서 통신 방법 및 이를 지원하는 장치
WO2014098535A1 (ko) 무선 통신 시스템에서 통신 방법 및 이를 지원하는 장치
WO2015072752A1 (ko) 무선 통신 시스템에서 트래픽 조종 방법 및 이를 지원하는 장치
WO2016003224A1 (ko) 기지국의 인터워킹 수행 방법 및 이를 이용하는 기지국
WO2015084081A1 (ko) 무선 통신 시스템에서 트래픽 조종 방법 및 이를 이용하는 장치
KR101790912B1 (ko) 무선 통신 시스템에서 단말의 동작 방법 및 이를 이용하는 단말
KR102367974B1 (ko) 무선 통신 시스템에서 단말의 인터워킹 수행 방법 및 이를 이용하는 단말
WO2016003223A1 (ko) 무선통신 시스템에서 인터워킹을 보조하기 위한 단말의 동작 방법 및 이를 이용하는 단말
KR102381818B1 (ko) 무선 통신 시스템에서 단말의 동작 방법 및 이를 이용하는 단말

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15746687

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167020316

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15114657

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15746687

Country of ref document: EP

Kind code of ref document: A1