WO2015119414A1 - Fresh water-producing secondary battery - Google Patents

Fresh water-producing secondary battery Download PDF

Info

Publication number
WO2015119414A1
WO2015119414A1 PCT/KR2015/001106 KR2015001106W WO2015119414A1 WO 2015119414 A1 WO2015119414 A1 WO 2015119414A1 KR 2015001106 W KR2015001106 W KR 2015001106W WO 2015119414 A1 WO2015119414 A1 WO 2015119414A1
Authority
WO
WIPO (PCT)
Prior art keywords
secondary battery
sodium
negative electrode
positive electrode
combination
Prior art date
Application number
PCT/KR2015/001106
Other languages
French (fr)
Korean (ko)
Inventor
김영식
박정선
정무영
Original Assignee
국립대학법인 울산과학기술대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020150009386A external-priority patent/KR20150091984A/en
Application filed by 국립대학법인 울산과학기술대학교 산학협력단 filed Critical 국립대학법인 울산과학기술대학교 산학협력단
Priority to JP2016549730A priority Critical patent/JP2017510937A/en
Publication of WO2015119414A1 publication Critical patent/WO2015119414A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/08Hybrid cells; Manufacture thereof composed of a half-cell of a fuel-cell type and a half-cell of the secondary-cell type
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/4604Treatment of water, waste water, or sewage by electrochemical methods for desalination of seawater or brackish water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • H01M10/38Construction or manufacture
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46133Electrodes characterised by the material
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/46195Cells containing solid electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0002Aqueous electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a secondary battery capable of layer discharge. More specifically, the present invention relates to a secondary battery capable of producing fresh water in a layer discharge process. [Technique to become background of invention]
  • a secondary battery means a battery that can be charged and discharged by converting between chemical energy and electrical energy by using a material capable of electrochemical reaction at the positive electrode and the negative electrode.
  • a typical example of such a battery is a lithium secondary battery that generates electrical energy by a change in the chemical potential (chemi cal potent al) when lithium ions are intercalated / deintercalated at a positive electrode and a negative electrode.
  • the lithium secondary is manufactured by using a material capable of reversible intercalation / deintercalation of lithium ions as a positive electrode and a negative electrode active material, and filling an organic electrolyte or a polymer electrolyte between the positive electrode and the negative electrode.
  • lithium is present in a limited amount on the earth and is generally obtained through a difficult process from minerals, salt lakes and the like. Accordingly, there is a problem in that high cost and high energy are used for manufacturing a battery, and a situation in which a next generation secondary battery capable of replacing lithium is required.
  • Desalination technology is used for evaporation, reverse osmosis, electrodialysis, forward osmosis, etc., and research is being conducted to minimize the use of energy required for desalination.
  • the secondary battery and the desalination apparatus are separately developed and installed separately, the secondary batteries and the desalination apparatuses are required to be developed in order to integrate and operate them in one apparatus.
  • seawater is used, and a freshwater producing secondary battery capable of producing freshwater from seawater is provided. [Solution of problem]
  • a secondary battery includes a positive electrode unit including a sodium-containing solution and a positive electrode current collector impregnated in the sodium-containing solution; A negative electrode portion comprising a liquid organic electrolyte and a negative electrode electrode impregnated in the liquid organic electrolyte and having a negative electrode active material charge on the surface thereof; A solid electrolyte positioned between the anode portion and the cathode portion; And a fresh water discharge part connected to the anode part to draw out fresh water generated from the anode part to the outside during layer formation.
  • the fresh water discharge part may include a discharge pipe connected to the positive electrode part containing the sodium-containing solution and selectively opened and closed to discharge fresh water.
  • the anode portion may further include an inlet portion connected to one side and an outlet portion for supplying a sodium-containing solution to the anode portion and / or an outlet portion for discharging the sodium-containing solution at the anode portion.
  • the cathode terminal may further include a cathode terminal electrically connected to the cathode current collector. It may further include a negative electrode terminal electrically connected to the negative electrode.
  • the organic electrolyte in the negative electrode portion may include a non-aqueous organic solvent and / or sodium salt.
  • the non-aqueous organic solvent may be a carbonate-based, ester-based, ether-based, ketone-based, alcohol-based, aprotic solvent, or a combination thereof.
  • the sodium salt is NaC10 4 , NaPF 4 , NaPF 5 , NaAsF 6) NaTFSI, Na Bet i (NaN [S0 2 C 2 F 5 ] 2 ), NaCF 3 S0 5 . Or combinations thereof.
  • the negative electrode active material layer formed on the negative electrode includes a negative electrode active material, a conductive material, and / or a binder, the negative electrode active material is a carbon-based material, sodium alloy material, sodium intercalation, and / or It may include a composite material of a combination thereof.
  • the negative active material may include all electrode materials having a potential of less than 4.07 V vs Na / Na + .
  • the carbonaceous material may be natural graphite, artificial graphite, soft carbon, hard carbon, or a combination thereof.
  • the sodium alloy material may be Si, Sn, Bi, Si0 2 , Sb 2 0 4) Si / C, Sb / C composite (compos i te), SnSb / C composite (compos i te), amorphous (amorphous) ) P / C Composites, or combinations thereof.
  • the sodium intercalation material is Li 4 Ti 5 0 12 , NaCo 2 0 4) Na 2 Ti 3 0 7 , Fe 3 0 4 , Ti0 2 , TiS 2 , VS 2 , Sb 2 0 4 ( Sb / C composite ( composite, SnSb / C composite, amorphous P / C composite, or a combination thereof.
  • the electrode material having a potential of less than 4.07 V vs Na / Na + is Na 2 FeP0 4 F, NaFeP0 4 (
  • the conductive material may be a natural alum, artificial alum, carbon black, acetylene black, ketjen black, or a carbon-based material such as carbon fiber; Metal powders that are copper, nickel, aluminum, or silver; Metal fibers; Conductive polymers; Or a combination thereof.
  • the binder is polyvinyl alcohol, carboxymethyl cellulose, hydroxypropyl cellulose, polyvinyl chloride, carboxylated polyvinyl chloride polyvinyl fluoride, polymer containing ethylene oxide, polyvinylpyridone, polyurethane, Polytetrafluoroethylene, polyvinylidene fluoride, polyethylene polypropylene, styrene-butadiene rubber, acrylated styrene-butadiene rubber, epoxy resin, nylon, or combinations thereof.
  • the solid electrolyte is beta-alumina ( ⁇ - ⁇ 1 2 0 3 ), amorphous ionic conductivity material (phosphorus-based glass, oxide one based glass, oxide / sulfide based glass), Nasicon (Na super ionic conductor, NASI CON ), Sodium sulfide-based solid electrolyte, sodium oxide-based solid electrolyte, or a combination thereof.
  • the cathode current collector is a carbon paper. Carbon fiber, carbon cloth, carbon felt, metal thin film, or a combination thereof.
  • the positive electrode current collector may have a structure coated with carbon black such as a vulcan, metal catalyst, metal oxide catalyst, conductive material, graphene oxide, or a combination thereof.
  • the porosity of the positive electrode current collector may be 1 to 250.
  • the secondary battery may be generated at the positive electrode portion of the following reaction formula 1 and / or reaction formula 2 during discharge.
  • the secondary battery may occur at the positive electrode portion of Scheme 3 and / or Scheme 4 during charging.
  • the sodium containing solution may be seawater.
  • a secondary battery can be manufactured at a lower cost by using abundant and easy to obtain resources such as seawater.
  • FIG. 1 is a view schematically showing the principle of a secondary battery according to the present embodiment.
  • FIGS. 2 and 3 are diagrams showing a schematic configuration of a secondary battery according to the present embodiment.
  • FIG 4 and 5 are schematic views for explaining the operation of the secondary battery according to the present embodiment.
  • 6 is a graph showing charge and discharge characteristics of the secondary battery according to the present embodiment.
  • 7 is a graph illustrating cycle characteristics of a rechargeable battery according to the present embodiment.
  • 8 is a graph showing the electrical energy efficiency according to the scanning speed of the secondary battery according to the present embodiment.
  • 9 and 10 are graphs of the concentrations of Na silver and C1 ions after layer charging of the secondary battery according to the present embodiment.
  • 11 and 12 are graphs showing the desalination efficiency according to the scanning speed of the secondary battery according to the present embodiment. [Specific contents to carry out invention]
  • 1 to 5 schematically show a secondary battery according to the present embodiment.
  • this embodiment will be described with reference to FIGS. 1 to 5.
  • the secondary battery 100 of this embodiment is a secondary battery having a structure using seawater as an example of a sodium-containing solution.
  • 1 illustrates a schematic principle of a secondary battery. It can be seen from FIG. 1—that the secondary battery according to the present embodiment is driven by using the potential difference according to the change in the concentration of sodium ions in the sodium-containing solution (eg, seawater).
  • FIGS. 2 and 3 illustrate the internal structure of the secondary battery according to the present embodiment, and a secondary battery briefly manufactured for performing a layer discharge experiment.
  • the secondary battery 100 of this embodiment includes a positive electrode portion 10 including a sodium containing solution and a positive electrode current collector 12 impregnated in the sodium containing solution; A negative electrode portion 20 including a liquid organic electrolyte and a negative electrode 22 impregnated in the liquid organic electrolyte and having a negative electrode active material layer; A solid electrolyte 30 positioned between the anode portion and the cathode portion; And a fresh water discharge part 40 connected to the positive electrode part to draw out fresh water generated from the positive electrode part to the outside by the secondary battery layer charge.
  • reference numeral 60 is a body forming the outline of the secondary battery.
  • the body 60 accommodates an anode part and a cathode part therein and electrically insulates the anode part and the cathode part *.
  • the body 60 may be made of polyethylene material, for example.
  • the body is not particularly limited in form or material thereof.
  • the positive electrode part 10 may include a positive electrode terminal 62 electrically connected to the positive electrode current collector 12 and installed to extend outside the body 60.
  • the positive terminal 62 may be made of, for example, a metal material such as stainless steel.
  • the negative electrode unit may include a negative electrode terminal 64 electrically connected to the negative electrode 22 and installed to extend outside the body.
  • the negative terminal 64 is provided separately from the negative electrode and the negative terminal Can be electrically connected.
  • the negative electrode current collector constituting the negative electrode terminal may be extended to the outside of the body 60 to serve as a negative electrode terminal.
  • the fresh water discharge unit 40 is installed in the positive electrode unit 10 containing the sodium-containing solution is selectively opened and closed after the battery layer charge or charge is completed to discharge the fresh water. . .
  • the negative electrode unit may be replaced with a new structure including the negative electrode active material.
  • Reaction Schemes 1 and / or 2 may occur at the positive electrode portion during discharge.
  • the secondary battery according to the present embodiment may occur at the following reaction formula 3 and / or tetravalent positive electrode portion during layer charging.
  • the layer discharge of the battery can be made from the reaction.
  • Batteries of this structure use sodium as an energy source instead of lithium, which may be the next generation alternative to lithium.
  • layer discharge may be possible using sodium-containing solutions (eg seawater) and human body fluids of similar composition.
  • sodium-containing solutions eg seawater
  • human body fluids of similar composition eg seawater
  • the application is very It can be extended in various ways.
  • One side of the positive electrode 10 may be connected to the inlet 50 of the sodium-containing solution.
  • an outlet for discharging the sodium-containing solution from the anode to the outside may be provided separately from the inlet. It may be possible to continuously supply the sodium-containing solution to the anode portion via the inlet portion 50 and the outlet portion installed in the anode portion 10.
  • the secondary battery 100 is removed by moving sodium to the negative electrode part in the positive electrode part by a semi-formulation occurring in the positive electrode part 10 during layer formation.
  • the sodium-containing solution contained in the anode portion was converted into fresh water.
  • the fresh water in the anode part may be drawn out to the outside by opening the fresh water discharge part 40 connected to the anode part 10 when all the sodium in the anode part is removed and the layer is completed.
  • the fresh water discharge portion 40 may include a discharge pipe 42 is installed at the lower end of the anode portion 10 and selectively opened and closed.
  • the secondary battery may have a structure in which fresh water is drawn out through the outflow part, if necessary, using the outflow part provided to distribute sodium to the positive electrode part as a fresh water discharge part.
  • the secondary battery of the present embodiment can supply electrical energy through layer discharge of the secondary battery and convert seawater into fresh water during charging.
  • the negative electrode unit may include an organic electrolyte.
  • the organic electrolyte in the negative electrode portion may include a non-aqueous organic solvent and / or sodium salt.
  • the non-aqueous organic solvent serves as a medium through which ions involved in the electrochemical reaction of the cell can move.
  • the non-aqueous organic solvent may be a carbonate, ester, ether, ketone, alcohol or aprotic solvent.
  • the carbonate solvent include dimethyl carbonate (DMC), diethyl carbonate (DEC), dipropyl carbonate (DPC), methylpropyl carbonate (MPC), ethylpropyl carbonate (EPC), methylethyl carbonate (MEC), and ethylene carbonate ( EC), propylene carbonate (PC), butylene carbonate (BC) and the like can be used
  • the ester solvent is methyl acetate, ethyl acetate, n-propyl acetate, 1, 1-dimethylethyl acetate, methyl propionate , Ethylpropionate, ⁇ -butyrolactone, decanolide, valerolactone, mevalonol actone, Caprolactone and the like can be used.
  • ether solvent dibutyl ether, tetraethylene glycol dimethyl ether, triethylene glycol dimethyl ether, tetraglyme, diglyme, dimethicane, 2-methyltetrahydrofuran, tetrahydrofuran, etc.
  • ketone solvent cyclonucleanone may be used.
  • ethyl alcohol, isopropyl alcohol, etc. may be used as the alcohol solvent, and the aprotic solvent may be R-CN (R is a C 2 to C 2 0 linear, branched or cyclic hydrocarbon.
  • amides such as dioxolane sulfolanes such as 1,3-dioxolane and the like. Can be.
  • the non-aqueous organic solvent may be used alone or in combination of one or more, and the mixing ratio in the case of using one or more in combination can be appropriately adjusted according to the desired battery performance, which is widely understood by those skilled in the art. Can be.
  • the carbonate-based solvent it is preferable to use a mixture of cyclic (cyc l i c) carbonate and chain carbonate.
  • the cyclic carbonate and the chain carbonate may be mixed and used in a volume ratio of about 1: 1 to about 1: 9, so that the performance of the electrolyte may be excellent.
  • the non-aqueous organic solvent may further include the aromatic hydrocarbon organic solvent in the carbonate solvent.
  • the ' carbonate-based solvent and the aromatic hydrocarbon-based organic solvent may be mixed in a volume ratio of about 1: 1 to about 30: 1.
  • the aromatic hydrocarbon-based organic solvent of the following Chemical Formula 4 may be used.
  • R 6 are each independently hydrogen, halogen, C1 to An alkyl group of CIO, a haloalkyl group of CI to CIO, or a combination thereof.
  • the aromatic hydrocarbon organic solvent is benzene, fluorobenzene,
  • 1.4-difluoroluene, 1,2,3-trifluoroluene, 1,2,4 ⁇ trifluoroluene, chloroluene, 1,2-dichloroluene, 1,3-dichloro Luene, 1,4-dichloroluene, 1,2,3-trichloroluene, 1,2,4-trichloroluene, iodoluene, 1,2-diaioluluene, 1,3- Diiodoluene, 1,4-Diiodoluene, 1,2,3-triiodoluene, 1,2,4 ⁇ triiodoluene, xylene or a combination thereof may be used.
  • the non-aqueous electrolyte may further include vinylene carbonate or an ethylene carbonate compound of Formula 5 to improve battery life.
  • R 7 and R 8 are each independently hydrogen, a halogen group, a cyano group (CN), a nitro group (N0 2 ) or a fluoroalkyl group of C1 to C5, and at least one of R 7 and R 8 Is a halogen group, cyano group (CN), nitro group (N0 2 ) or a C1 to C5 fluoroalkyl group.
  • Representative examples of the ethylene carbonate-based compound include difluoro ethylene carbonate, chloroethylene carbonate, dichloroethylene carbonate, bromoethylene carbonate, dibromoethylene carbonate, nitroethylene carbonate cyanoethylene carbonate, fluoroethylene carbonate, and the like. Can be mentioned.
  • the amount of vinylene carbonate or the ethylene carbonate-based compound may be appropriately adjusted to improve the life.
  • the sodium salt may be NaC10 4 , NaPF 4 , NaPF 6 , NaAsF 6 , NaTFSI, Na Beti (NaN [S0 2 C 2 F 5 ] 2 ), NaCF 3 SO 5 or a combination thereof.
  • the concentration of the sodium salt may be from 0.001 to 10M, more specifically, may be in the range of 0.1 to 2.0M.
  • concentration of the sodium salt is included in the above range, since the electrolyte has an appropriate conductivity and viscosity, it can exhibit excellent electrolyte performance, and sodium ions can move effectively.
  • the negative electrode active material layer positioned on the surface of the negative electrode may include a negative electrode active material, a conductive material, and / or a binder.
  • the anode active material may include a composite material which is a carbonaceous material, a sodium alloy material, a sodium intercalation, and / or a combination thereof.
  • the negative active material may include all electrode materials having a potential of less than 4.07 V vs Na / Na + .
  • the carbonaceous material may be natural graphite, artificial graphite, soft carbon, hard carbon, or a combination thereof. More specifically, it may be a hard carbon.
  • the sodium alloy material may be Si, Sn, Bi, Si0 2 , Sb 2 0 4 , Si / C, Sb / C composite, SnSb / C composite, amorphous P / C complex, or a combination thereof.
  • the sodium intercalation material is Li 4 Ti 5 0 12 , NaCo 2 0 4 ( Na 2 Ti 3 0 7 , Fe 3 0 4 , Ti0 2 , Ti3 ⁇ 4, VS 2 , Sb 2 0 4 , Sb / C composite (composite ), A SnSb / C composite, an amorphous P / C composite, or a combination thereof, and more specifically, the sodium intercalation material may be Li 4 Ti 5 0 12 . .
  • the electrode material having a potential lower than 4.07 V vs Na / Na + is Na 2 FeP0 4 F, NaFeP0 4 , BP0E, ⁇ HFC, Na 3 V (P0 4 ) 3 / C, ⁇ 3 ⁇ .5 ⁇ 0 4 . 8 ⁇ 0 . 7 or a combination thereof.
  • the negative electrode active material layer also includes a binder, and may optionally further include a conductive material.
  • the binder adheres the negative electrode active material particles to each other well, and also adheres the negative electrode active material to the current collector, and representative examples thereof include polyvinyl alcohol, carboxymethyl cellulose, hydroxypropyl cellulose, polyvinyl chloride, and carbon.
  • Polyvinylchloride, polyvinylfluoride, polymers containing ethylene oxide, polyvinylpyridone, polyurethane, polytetrafluoroethylene, polyvinylidene fluoride, polyethylene, polypropylene, styrene-butadiene rubber Acrylated styrene-butadiene rubber, epoxy resin, nylon, etc. may be used, but is not limited thereto.
  • the conductive material is used to impart conductivity to the electrode. Any conductive material may be used as long as it does not cause chemical change in the battery to be constructed. Examples thereof include natural alum, artificial alum, carbon black, acetylene black, and ketjen black. Carbon-based materials such as carbon fiber; Metal materials such as metal powder or metal fibers such as copper, nickel, aluminum and silver; Conductive polymers such as polyphenylene derivatives; Or a conductive material containing a mixture thereof.
  • copper foil nickel foil, stainless steel foil, titanium foil, nickel foam, copper foam, a polymer substrate coated with a conductive metal, or a combination thereof may be used.
  • the negative electrode is prepared by mixing an active material, a binder, and a conductive material in a solvent to prepare an active material composition, and applying the composition to a current collector to produce a negative electrode. Since such an electrode manufacturing method is well known in the art, detailed description thereof will be omitted.
  • the solvent ⁇ may be N-methylpyridone and the like, but is not limited thereto.
  • the solid electrolyte is a material that can be the moving speed of the sodium ion stability and fast solution and the organic solution, the beta-alumina ( ⁇ - ⁇ 1 2 3 ⁇ 4), amorphous ionic conductivity material (phosphorus-based gl ass, oxide-based glass, oxide / sulfide-based glass, Na super ion conductor (NASI CON), sodium sulfide-based solid electrolyte, sodium oxide-based solid electrolyte, or a combination thereof.
  • the beta-alumina ⁇ - ⁇ 1 2 3 ⁇ 4
  • amorphous ionic conductivity material phosphorus-based gl ass, oxide-based glass, oxide / sulfide-based glass, Na super ion conductor (NASI CON)
  • sodium sulfide-based solid electrolyte sodium oxide-based solid electrolyte, or a combination thereof.
  • the solid electrolyte may be nasicon, in which case the ionic conductivity may be further improved.
  • the positive electrode current collector included in the positive electrode portion may be carbon paper, carbon fiber, carbon cloth, carbon felt, metal thin film, or a combination thereof, and more specifically, may be carbon paper. In the case of carbon paper, it is possible to minimize the by-products resulting from the oxidation / reduction reaction of other metal ions contained in the sodium-containing solution.
  • the positive electrode current collector may have a structure coated with carbon black such as a vulcan, metal catalyst, metal oxide catalyst, conductive material, graphene oxide, or a combination thereof.
  • the porosity of the positive electrode current collector may range from 1 to 250 m . When satisfying such a range, more electrode reactions can be induced by constructing an electrode having a large surface area. Examples and comparative examples of the present invention are described below. The following examples are merely examples of the present invention and the present invention is not limited to the following examples.
  • Carbon paper (Fuel Cel l Store, 2050-A) was used as the positive electrode current collector. After adding the seawater in the positive electrode container, the positive electrode current collector was impregnated with seawater to prepare a positive electrode.
  • the voids of the carbon paper are 28 / m.
  • Stainless steel (McMASTER) was used as the current collector.
  • An electrode was prepared.
  • the organic electrolyte was prepared by mixing ethylene carbonate (EC): diethylene carbonate (DEC) (1: 1vol ratio) and 1M NaC10 4 sodium salt (Aldr i ch).
  • NASICON Na 3 Zr 2 Si 2 P0 12
  • the solid electrolyte was made through a solid id-state react ion in the laboratory. Solid phase reactions well known in the art will be omitted for specific methods.
  • a solid electrolyte was placed between the positive electrode and the negative electrode.
  • the thickness of the solid electrolyte is 1 mm.
  • An inlet and an outlet for supplying a sodium-containing solution were installed on the side and bottom of the vessel forming the anode, and the outlet installed at the bottom of the vessel was used as a freshwater discharge portion for discharging fresh water.
  • 6 is a graph showing the layer discharge characteristics of the secondary battery according to the present embodiment. 6 shows that sodium ions dissolved in seawater accumulate in the hard carbon in the negative electrode by layering the seawater battery in this embodiment. Accumulated sodium ions are discharged back into the sea water, producing electricity when the battery is discharged. The layer voltage is about 3V on average, and the discharge voltage is about 2.3V on average. In the first cycle, an irreversible capacity of about 31% was observed, which represents the amount of sodium ions consumed in the formation of the solid electrolyte interface (SEI) that forms on the surface of the cathode when it first enters the cathode. After SEI formation, it shows stable reversible capacity. Cycle characteristic evaluation
  • FIG. 7 is a graph illustrating cycle characteristics of a rechargeable battery according to the present embodiment. As shown in FIG. 7, the present example shows a stable reversible capacity after SEI formation in the first cycle, and shows an effect of 84% even after about 40 cycles.
  • FIG. 8 is a graph showing the electrical energy efficiency according to the scanning speed in the secondary battery according to the present embodiment.
  • a "voltage, increase the scanning speed to 0.1mA, 0.2mA was measured at 0.05mA. As shown in FIG. 8, it can be seen that at 0.05 mA, the voltage is 3.98 V, and when the scanning speed is increased to 0.1 mA and 0.2 mA, the voltage increases to 4.32 V and 4.54 V, respectively.
  • the electrical energy required to layer the secondary battery of this embodiment is 0.199mW, 0.432mW, 0.0908mW at 0.05mA, 0.1mA, 0.2mA, respectively.
  • 9 and 10 charge the secondary battery of this example in units of 10 hours up to 50 hours at a scanning speed of 0.2 mA, and then measure the concentrations of Na ions and C1 ions using ion chromatography.
  • points represent measured values and straight lines represent correction values through linear fitting.
  • 9 shows the value obtained by measuring Na ion concentration. 9, it can be seen that when the secondary battery of the present embodiment is layered, the Na ion concentration decreases by about 830 ppm. 10 has shown the value which measured the density
  • 11 and 12 show the desalination efficiency according to the scanning speed of the secondary battery of this embodiment. Concentrations were measured in units of 10 hours for 50 hours while increasing the scanning speed from 0.05 mA to 0.1 and 0.2 mA. 11 and 12 are graphs measuring Na ion concentration and CI ion concentration using IC respectively. 11 and 12 are shown after linear fitting.
  • the absolute value of the tilt device of 0.05 mA was 11.94 and the absolute value of the slope increased to 16.00 and 16.63 as the scan rate was increased to 0.1 and 0.2 mA.
  • the absolute value of the slope is 18.51 at the scan rate of 0.05 mA and the scan rate is 0.
  • the value increased to 1, 0.2mA the absolute value of the gradient increased to 36.00 and 45.29, respectively. From this, it was confirmed that the desalination efficiency can be increased by increasing the scanning speed and injecting large electric energy.
  • the present invention is not limited to the above embodiments, but may be manufactured in various forms, and a person having ordinary knowledge in the art to which the present invention pertains has another specific form without changing the technical spirit or essential features of the present invention. It will be appreciated that the present invention may be practiced as. Therefore, it should be understood that the embodiments described above are exemplary in all respects and not restrictive.

Abstract

The present invention relates to a secondary battery and a secondary battery system, and provided is a fresh water-producing secondary battery, comprising: a positive electrode unit including a sodium-containing solution and a positive electrode current collector impregnated in the sodium-containing solution; a negative electrode unit including a liquid organic electrolyte and a negative electrode impregnated in the liquid organic electrolyte and having a negative electrode active material layer; a solid electrolyte positioned between the positive electrode unit and the negative electrode unit; and a fresh water discharge unit connected to the positive electrode unit so as to discharge, to the outside, the fresh water generated from the positive electrode unit during charging.

Description

【명세서】  【Specification】
【발명의 명칭】  [Name of invention]
담수 생산 이차전지  Freshwater Production Secondary Battery
【기술분야]  Technical Field
본 발명은 층방전이 가능한 이차 전지에 관한 것이다. 보다 상세하게 본 발명은 층방전 과정에서 담수를 생산할 수 있도록 된 이차 전지에 관한 것이다. 【발명의 배경이 되는 기술】  The present invention relates to a secondary battery capable of layer discharge. More specifically, the present invention relates to a secondary battery capable of producing fresh water in a layer discharge process. [Technique to become background of invention]
일반적으로 이차 전지는 양극과 음극에 전기 화학 반웅이 가능한 물질을 사용함으로써, 화학 에너지와 전기 에너지 간의 전환을 통해 충전과 방전이 가능한 전지를 의미한다. 이러한 전지 중 대표적인 예로는 양극 및 음극에서 리튬 이온이 인터칼레이션 /디인터칼레이션될 때의 화학전위 (chemi cal potent i al )의 변화에 의하여 전기 에너지를 생성하는 리튬 이차 전지가 있다. 상기 리튬 이차. 전지는 리튬 이온의 가역적인 인터칼레이션 /디인터칼레이션이 가능한 물질을 양극과 음극 활물질로 사용하고, 상기 양극과 음극 사이에 유기 전해액 또는 폴리머 전해액을 충전시켜 제조한다. 다만, 리튬은 지구상에 한정된 양만이 존재하며 일반적으로 광물, 염호 등으로부터 어려운 공정을 통해 수득되고 있다. 이에 전지의 제조를 위해 고비용과 고에너지가 사용되는 문제가 있어, 리튬을 대체할 수 있는 차세대 이차 전지가 필요한 실정이다.  In general, a secondary battery means a battery that can be charged and discharged by converting between chemical energy and electrical energy by using a material capable of electrochemical reaction at the positive electrode and the negative electrode. A typical example of such a battery is a lithium secondary battery that generates electrical energy by a change in the chemical potential (chemi cal potent al) when lithium ions are intercalated / deintercalated at a positive electrode and a negative electrode. The lithium secondary. The battery is manufactured by using a material capable of reversible intercalation / deintercalation of lithium ions as a positive electrode and a negative electrode active material, and filling an organic electrolyte or a polymer electrolyte between the positive electrode and the negative electrode. However, lithium is present in a limited amount on the earth and is generally obtained through a difficult process from minerals, salt lakes and the like. Accordingly, there is a problem in that high cost and high energy are used for manufacturing a battery, and a situation in which a next generation secondary battery capable of replacing lithium is required.
이차 전지와 별도로 수질 오염이나 가뭄으로 인한 음용수 부족을 해결하기 위한 담수화 기술도 다양하게 연구되고 있다. 담수화 기술은 증발법, 역삼투법, 전기투석법, 정삼투법 등이 사용되고 있으며, 담수화에 필요한 에너지의 사용을 최소화하기 위한 연구가 진행되고 있다.  Apart from secondary batteries, various desalination technologies for solving drinking water shortages due to water pollution or drought are also being studied. Desalination technology is used for evaporation, reverse osmosis, electrodialysis, forward osmosis, etc., and research is being conducted to minimize the use of energy required for desalination.
종래의 경우, 상기한 이차 전지와 담수화 장치는 각각 별도로 개발되어 개별적으로 설치되어 사용되고 있어, 이들을 하나의 장치로 통합시켜 운영하기 위한 기술의 개발이 요구되고 있다.  In the related art, since the secondary battery and the desalination apparatus are separately developed and installed separately, the secondary batteries and the desalination apparatuses are required to be developed in order to integrate and operate them in one apparatus.
【발명의 내용】 ᅳ 【해결하고자 하는 과제】  【Contents of the Invention】 ᅳ 【Problems to Solve】
리륨 대신 해수를 이용하며, 해수로부터 담수를 생산할 수 있도록 된 담수 생산 이차 전지를 제공한다. [과제의 해결 수단】 Instead of lithium, seawater is used, and a freshwater producing secondary battery capable of producing freshwater from seawater is provided. [Solution of problem]
본 구현예의 이차 전지는, 나트륨 함유 용액 및 상기 나트륨 함유 용액에 함침된 양극 집전체를 포함하는 양극부; 액상의 유기 전해질 및 상기 액상의 유기 전해질에 함침되고 표면에 음극 활물질 충을 구비한 음극 전극을 포함하는 음극부 ; 상기 양극부와 상기 음극부 사이에 위치하는 고체 전해질; 및 상기 양극부에 연결되어 층전 시 양극부에서 발생되는 담수를 외부로 인출하는 담수배출부;를 포함할 수 있다.  A secondary battery according to the present embodiment includes a positive electrode unit including a sodium-containing solution and a positive electrode current collector impregnated in the sodium-containing solution; A negative electrode portion comprising a liquid organic electrolyte and a negative electrode electrode impregnated in the liquid organic electrolyte and having a negative electrode active material charge on the surface thereof; A solid electrolyte positioned between the anode portion and the cathode portion; And a fresh water discharge part connected to the anode part to draw out fresh water generated from the anode part to the outside during layer formation.
상기 담수배출부는 나트륨 함유 용액이 수용된 양극부에 연결되고 선택적으로 개폐되어 담수를 배출하는 배출관을 포함할 수 있다.  The fresh water discharge part may include a discharge pipe connected to the positive electrode part containing the sodium-containing solution and selectively opened and closed to discharge fresh water.
상기 양극부는 일 측면에 연결되어 나트륨 함유 용액을 양극부로 공급하는 유입부 또는 /및 양극부의 나트륨 함유 용액을 배출하는 유출부를 더 포함할 수 있다.  The anode portion may further include an inlet portion connected to one side and an outlet portion for supplying a sodium-containing solution to the anode portion and / or an outlet portion for discharging the sodium-containing solution at the anode portion.
상기 양극 집전체에 전기적으로 연결되는 양극단자를 더 포함할 수 있다. 상기 음극 전극에 전기적으로 연결되는 음극단자를 더 포함할 수 있다. 상기 음극부 내 유기 전해질은, 비수성 유기 용매 및 /또는 나트륨염을 포함할 수 있다.  The cathode terminal may further include a cathode terminal electrically connected to the cathode current collector. It may further include a negative electrode terminal electrically connected to the negative electrode. The organic electrolyte in the negative electrode portion may include a non-aqueous organic solvent and / or sodium salt.
상기 비수성 유기 용매는 카보네이트계, 에스테르계, 에테르계, 케톤계, 알코올계, 비양성자성 용매, 또는 이들의 조합일 수 있다.  The non-aqueous organic solvent may be a carbonate-based, ester-based, ether-based, ketone-based, alcohol-based, aprotic solvent, or a combination thereof.
상기 나트륨염은 NaC104 , NaPF4 , NaPF5 , NaAsF6 ) NaTFSI , Na Bet i (NaN[S02C2F5]2) , NaCF3S05. 또는 이들의 조합일 수 있다. The sodium salt is NaC10 4 , NaPF 4 , NaPF 5 , NaAsF 6) NaTFSI, Na Bet i (NaN [S0 2 C 2 F 5 ] 2 ), NaCF 3 S0 5 . Or combinations thereof.
상기 음극 전극에 형성되는 음극 활물질 층은, 음극 활물질, 도전재, 및 /또는 바인더를 포함하고, 상기 음극 활물질은 탄소계 재료, 나트륨 알로이 (al l oy) 물질, 나트륨 인터칼레이션, 및 /또는 이들의 조합인 복합물질을 포함할 수 있다.  The negative electrode active material layer formed on the negative electrode includes a negative electrode active material, a conductive material, and / or a binder, the negative electrode active material is a carbon-based material, sodium alloy material, sodium intercalation, and / or It may include a composite material of a combination thereof.
상기 음극 활물질은 전위가 4.07 V vs Na/Na+ 보다 작은 모든 전극물질을 포함할 수 있다. The negative active material may include all electrode materials having a potential of less than 4.07 V vs Na / Na + .
상기 탄소계 재료는 천연흑연, 인조혹연, 소프트카본, 하드카본, 또는 이들의 조합일 수 있다.  The carbonaceous material may be natural graphite, artificial graphite, soft carbon, hard carbon, or a combination thereof.
상기 나트륨 알로이 (al loy) 물질은 Si , Sn, Bi, Si02 , Sb204 ) Si /C , Sb/C 복합체 (compos i te) , SnSb/C 복합체 (compos i te), 비정질 (amorphous) P/C 복합체 (composite), 또는 이들의 조합일 수 있다. The sodium alloy material may be Si, Sn, Bi, Si0 2 , Sb 2 0 4) Si / C, Sb / C composite (compos i te), SnSb / C composite (compos i te), amorphous (amorphous) ) P / C Composites, or combinations thereof.
상기 나트륨 인터칼레이션 물질은 Li4Ti5012, NaCo204) Na2Ti307, Fe304, Ti02, TiS2, VS2, Sb204( Sb/C 복합체 (composite), SnSb/C 복합체 (composite), 비정질 (amorphous) P/C 복합체 (composite), 또는 이들의 조합일 수 있다. The sodium intercalation material is Li 4 Ti 5 0 12 , NaCo 2 0 4) Na 2 Ti 3 0 7 , Fe 3 0 4 , Ti0 2 , TiS 2 , VS 2 , Sb 2 0 4 ( Sb / C composite ( composite, SnSb / C composite, amorphous P / C composite, or a combination thereof.
상기 전위가 4.07 V vs Na/Na+ 보다 작은 전극물질은 Na2FeP04F, NaFeP04( The electrode material having a potential of less than 4.07 V vs Na / Na + is Na 2 FeP0 4 F, NaFeP0 4 (
BPOE, NMHFC, Na3V(P04)3/C, Na1.5VPO4.sFo.7 또는 이들의 조합일 수 있다. BPOE, NMHFC, Na 3 V (P0 4 ) 3 / C, Na1.5VPO4.sFo.7 or a combination thereof.
상기 도전재는 천연 혹연, 인조 혹연, 카본 블랙, 아세틸렌 블랙, 케첸블랙, 또는 탄소섬유인 탄소계 물질; 구리, 니켈, 알루미늄, 또는 은인 금속 분말; 금속 섬유; 도전성 폴리머; 또는 이들의 흔합물;일 수 있다.  The conductive material may be a natural alum, artificial alum, carbon black, acetylene black, ketjen black, or a carbon-based material such as carbon fiber; Metal powders that are copper, nickel, aluminum, or silver; Metal fibers; Conductive polymers; Or a combination thereof.
상기 바인더는 폴리비닐알콜, 카르복시메틸셀를로즈, 히드록시프로필셀를로즈, 폴리비닐클로라이드, 카르복실화된 폴리비닐클로라이드 폴리비닐플루오라이드, 에틸렌 옥사이드를 포함하는 폴리머, 폴리비닐피를리돈, 폴리우레탄, 폴리테트라플루오로에틸렌, 폴리비닐리덴 플루오라이드, 폴리에틸렌 폴리프로필렌, 스티렌-부타디엔 러버 , 아크릴레이티드 스티렌-부타디엔 러버, 에폭시 수지, 나일론, 또는 이들의 조합일 수 있다.  The binder is polyvinyl alcohol, carboxymethyl cellulose, hydroxypropyl cellulose, polyvinyl chloride, carboxylated polyvinyl chloride polyvinyl fluoride, polymer containing ethylene oxide, polyvinylpyridone, polyurethane, Polytetrafluoroethylene, polyvinylidene fluoride, polyethylene polypropylene, styrene-butadiene rubber, acrylated styrene-butadiene rubber, epoxy resin, nylon, or combinations thereof.
상기 고체 전해질은, 베타-알루미나 (β-Α1203), 비정질 이온 전도도 물질 (phosphorus-based glass , oxide一 based glass, oxide/sulf ide based glass) , 나시콘 (Na super ionic conductor, NASI CON) , 나트륨황화물계 고체전해질, 나트륨산화물계 고체전해질, 또는 이들의 조합을 포함할 수 있다. The solid electrolyte is beta-alumina (β-Α1 2 0 3 ), amorphous ionic conductivity material (phosphorus-based glass, oxide one based glass, oxide / sulfide based glass), Nasicon (Na super ionic conductor, NASI CON ), Sodium sulfide-based solid electrolyte, sodium oxide-based solid electrolyte, or a combination thereof.
상기 양극 집전체는 탄소 페이퍼,. 탄소 섬유, 탄소 천, 탄소 펠트, 금속박막, 또는 이들의 조합일 수 있다. The cathode current collector is a carbon paper. Carbon fiber, carbon cloth, carbon felt, metal thin film, or a combination thereof.
상기 양극 집전체는 벌칸과 같은 카본블랙, 금속류 촉매, 산화금속류 촉매, 도전재, 그래핀 산화물, 또는 이들의 조합을 코팅한 구조일 수 있다.  The positive electrode current collector may have a structure coated with carbon black such as a vulcan, metal catalyst, metal oxide catalyst, conductive material, graphene oxide, or a combination thereof.
상기 양극 집전체의 기공도는 1 내지 250 일 수 있다.  The porosity of the positive electrode current collector may be 1 to 250.
상기 이차 전지는 방전 시 하기 반웅식 1 및 /또는 반응식 2가 양극부에서 일어날 수 있다.  The secondary battery may be generated at the positive electrode portion of the following reaction formula 1 and / or reaction formula 2 during discharge.
[반응식 1]  Scheme 1
Na+ + ¾0 + e— -> NaOH + 1/2¾ Na + + ¾0 + e—-> NaOH + 1 / 2¾
[반응식 2]  Scheme 2
Na+ + 1/2¾0 + 1/402 + eᅳ -> NaOH 상기 이차 전지는 충전 시 하기 반응식 3 및 /또는 반응식 4가 양극부에서 일어날 수 있다. Na + + 1 / 2¾0 + 1/402 + e ᅳ-> NaOH The secondary battery may occur at the positive electrode portion of Scheme 3 and / or Scheme 4 during charging.
[반웅식 3]  [Banungsik 3]
NaCl -> Na + 1/2C12 NaCl-> Na + 1 / 2C1 2
[반응식 4]  Scheme 4
NaOH -> Na + 1/2¾0 + 1/402 NaOH-> Na + 1 / 2¾0 + 1/40 2
상기 나트륨 함유 용액은 해수일 수 있다.  The sodium containing solution may be seawater.
【발명의 효과】  【Effects of the Invention】
본 구현예에 의하면, 해수와 같은 풍부하고 획득이 용이한 자원을 이용함으로써 보다 낮은 비용으로 이차 전지를 제조할 수 있다.  According to this embodiment, a secondary battery can be manufactured at a lower cost by using abundant and easy to obtain resources such as seawater.
또한, 이차 전지의 층방전 과정에서 해수를 담수로 변환하여 제공할 수 있게 되어, 별도의 담수화시설 없이 보다 적은 에너지로 음용수 부족을 해결할 수 있게 된다.  In addition, it is possible to provide seawater converted to fresh water in the layer discharge process of the secondary battery, it is possible to solve the lack of drinking water with less energy without a separate desalination facility.
또한, 해수를 이용하여 전기의 층방전은 물론 담수 생산이 가능하여, 전력과 더불어 물 부족 문제를 동시에 해결할 수 있다.  In addition, it is possible to produce fresh water as well as layer discharge of electricity by using sea water, and solve the water shortage problem at the same time with power.
【도면의 간단한 설명】.  【Brief Description of Drawings】.
도 1은 본 실시예에 따른 이차 전지의 원리를 개략적으로 나타낸 도면이다ᅳ  1 is a view schematically showing the principle of a secondary battery according to the present embodiment.
도 2와 도 3은 본 실시예에 따른 이차 전지의 개략적인 구성을 도시한 도면이다.  2 and 3 are diagrams showing a schematic configuration of a secondary battery according to the present embodiment.
도 4와 도 5는 본 실시예에 따른 이차 전지의 작용을 설명하기 위한 개략적인 도면이다.  4 and 5 are schematic views for explaining the operation of the secondary battery according to the present embodiment.
도 6은 본 실시예에 따른 이차 전지의 충방전 특성을 나타낸 그래프이다. 도 7은 본 실시예에 따른 이차 전지의 사이클 특성을 나타낸 그래프이다. 도 8은 본 실시예에 따른 이차 전지의 주사속도에 따른 전기에너지 효율을 나타내는 그래프이다.  6 is a graph showing charge and discharge characteristics of the secondary battery according to the present embodiment. 7 is a graph illustrating cycle characteristics of a rechargeable battery according to the present embodiment. 8 is a graph showing the electrical energy efficiency according to the scanning speed of the secondary battery according to the present embodiment.
도 9와 도 10 본 실시예에 따른 이차 전지의 층전 후 Na 이은과 C1 이온의 농도를 측정한 그래프이다.  9 and 10 are graphs of the concentrations of Na silver and C1 ions after layer charging of the secondary battery according to the present embodiment.
도 11과 도 12는 본 실시예에 따른 이차 전지의 주사속도에 따른 담수화 효율을 나타낸 그래프이다. 【발명을 실시하기 위한 구체적인 내용】 11 and 12 are graphs showing the desalination efficiency according to the scanning speed of the secondary battery according to the present embodiment. [Specific contents to carry out invention]
°1하, 본 발명의 실시예를 상세히 설명하기로 한다. 다만, 이는 예시로서 제시되는 것으로, 이에 의해 본 발명이 제한되지는 않으며 본 발명은 후술할 청구항의 범주에 의해 정의될 뿐이다. 도 1 내지 도 5는 본 실시예에 따른 이차 전지를 개략적으로 도시하고 있다. 이하 도 1 내지 도 5를 참조하여 본 실시예에 대해 설명하도록 한다.  Hereinafter, embodiments of the present invention will be described in detail. However, this is presented as an example, whereby the present invention is not limited and the present invention is defined only by the scope of the claims to be described later. 1 to 5 schematically show a secondary battery according to the present embodiment. Hereinafter, this embodiment will be described with reference to FIGS. 1 to 5.
본 실시예의 이차 전지 ( 100)는 나트륨 함유 용액의 일 예로써 해수를 사용하는 구조의 이차 전지이다. 도 1은 이차 전지의 개략적인 원리를 나타낸 것이다. 도 1로부터—나트륨 함유 용액 (예를 들어, 해수) 내 나트륨 이온의 농도 변화에 따른 전위 차이를 이용하여 본 실시예에 따른 이차 전지가 구동되는 것을 알 수 있다.  The secondary battery 100 of this embodiment is a secondary battery having a structure using seawater as an example of a sodium-containing solution. 1 illustrates a schematic principle of a secondary battery. It can be seen from FIG. 1—that the secondary battery according to the present embodiment is driven by using the potential difference according to the change in the concentration of sodium ions in the sodium-containing solution (eg, seawater).
도 2와 도 3은 본 실시예에 따른 이차 전지의 내부 구성과, 층방전 실험 수행을 위해 간략하게 제조된 이차 전지를 도시하고 있다. ,  2 and 3 illustrate the internal structure of the secondary battery according to the present embodiment, and a secondary battery briefly manufactured for performing a layer discharge experiment. ,
본 실시예의 이차 전지 ( 100)는, 나트륨 함유 용액 및 상기 나트륨 함유 용액에 함침된 양극 집전체 ( 12)를 포함하는 양극부 ( 10) ; 액상의 유기 전해질, 상기 액상의 유기 전해질에 함침되고 음극 활물질 층을 구비한 음극 전극 (22)을 포함하는 음극부 (20) ; 상기 양극부와 상기 음극부 사이에 위치하는 고체 전해질 (30) ; 및 상기 양극부에 연결되어 이차 전지 층전에 의해 양극부에서 발생되는 담수를 외부로 인출하는 담수배출부 (40)를 포함한다.  The secondary battery 100 of this embodiment includes a positive electrode portion 10 including a sodium containing solution and a positive electrode current collector 12 impregnated in the sodium containing solution; A negative electrode portion 20 including a liquid organic electrolyte and a negative electrode 22 impregnated in the liquid organic electrolyte and having a negative electrode active material layer; A solid electrolyte 30 positioned between the anode portion and the cathode portion; And a fresh water discharge part 40 connected to the positive electrode part to draw out fresh water generated from the positive electrode part to the outside by the secondary battery layer charge.
도 2에서 도면부호 (60)은 이차 전지의 외형을 이루는 몸체이다. 상기 몸체 (60)는 내부에 양극부와 음극부를 수용하며 양극부와 음극부 * 전기적으로 절연시킨다. .상기 몸체 (60)는 예를 들어 폴리에틸렌 재질로 이루어질 수 있다. 상기 몸체는 그 형태나 그 재질에 있어서 특별히 한정되지 않는다.  In FIG. 2, reference numeral 60 is a body forming the outline of the secondary battery. The body 60 accommodates an anode part and a cathode part therein and electrically insulates the anode part and the cathode part *. The body 60 may be made of polyethylene material, for example. The body is not particularly limited in form or material thereof.
상기 양극부 ( 10)는 양극 집전체 ( 12)와 전기적으로 연결되고 상기 몸체 (60) 외측으로 연장 설치되는 양극 단자 (62)를 구비할 수 있다. 상기 양극 단자 (62)는 예를 들어, 스테인레스 스틸 등의 금속 재질로 이루어질 수 있다.  The positive electrode part 10 may include a positive electrode terminal 62 electrically connected to the positive electrode current collector 12 and installed to extend outside the body 60. The positive terminal 62 may be made of, for example, a metal material such as stainless steel.
. 상기 음극부는 음극 전극 (22)과 전기적으로 연결되고 몸체 외측으로 연장 설치되는 음극 단자 (64)를 구비할 수 있다.  . The negative electrode unit may include a negative electrode terminal 64 electrically connected to the negative electrode 22 and installed to extend outside the body.
상기 음극 단자 (64)는 음극 전극과 별도로 구비되어 음극 단자와 전기적으로 연결될 수 있다. 이러한 구조 외에, 예를 들어 음극 단자를 구성하는 음극 집전체를 몸체 (60) 외측으로 연장 설치하여 음극 단자 역할을 수행할 수 있다. The negative terminal 64 is provided separately from the negative electrode and the negative terminal Can be electrically connected. In addition to such a structure, for example, the negative electrode current collector constituting the negative electrode terminal may be extended to the outside of the body 60 to serve as a negative electrode terminal.
상기 담수배출부 (40)는 나트륨 함유 용액이 수용된 양극부 ( 10)에 설치되어 전지 층전시 또는 충전 완료 후 선택적으로 개폐되어 담수를 배출하게 된다. . .  The fresh water discharge unit 40 is installed in the positive electrode unit 10 containing the sodium-containing solution is selectively opened and closed after the battery layer charge or charge is completed to discharge the fresh water. . .
또한, 도 4와 도 5는 본 실시예의 이차 전지 층방전시 작용을 개략적으로 도시하고 있다. 상기 구조에서 음극부는 음극 활물질을 포함하는 새로운 구조로 대체될 수 있다.  4 and 5 schematically show the action during the secondary battery layer discharge of this embodiment. In the structure, the negative electrode unit may be replaced with a new structure including the negative electrode active material.
본 실시예에 따른 이차 전지는 방전 시 하기 반응식 1 및 /또는 2가 양극부에서 일어날 수 있다.  In the secondary battery according to the present embodiment, Reaction Schemes 1 and / or 2 may occur at the positive electrode portion during discharge.
[반응식 1]  Scheme 1
Na+ + H20 + e" -> NaOH + 1/2H2 Na + + H 2 0 + e " -> NaOH + 1 / 2H 2
[반응식 2] ' Scheme 2 '
Na+ + 1/2H20 + 1/402 + e" —> NaOH Na + + 1 / 2H 2 0 + 1/40 2 + e " —> NaOH
또한, 본 실시예에 따른 이차 전지는 층전 시 하기 반웅식 3 및 /또는 4가 양극부에서 일어날 수 있다.  In addition, the secondary battery according to the present embodiment may occur at the following reaction formula 3 and / or tetravalent positive electrode portion during layer charging.
[반웅식 3]  [Banungsik 3]
NaCl -> Na + 1/2C12. NaCl-> Na + 1 / 2C1 2 .
' [반응식 4]  'Scheme 4
NaOH -> Na + 1/2¾0 + 1/402 상기 반응식 1 내지 3 이외의 부가적인 반웅들도 발생할 수 있으나, .이차 전지로서의 구동에 주요한 영향을 미치는 반응은 전술한 상기 세 개의 반웅식일 수 있다. NaOH-> Na + 1 / 2¾0 + 1/40 2 Additional reactions other than Schemes 1 to 3 may occur, but . The reaction which has a major influence on the driving as the secondary battery may be the above three reactions.
상기 반웅으로부터 전지의 층방전이 이루어질 수 있다. 이러한 구조의 전지는 리튬 대신 나트륨을 에너지원으로 이용하기 때문에 리튬 이후의 차세대 대안이 될 수 있다.  The layer discharge of the battery can be made from the reaction. Batteries of this structure use sodium as an energy source instead of lithium, which may be the next generation alternative to lithium.
또한, 나트륨 함유 용액 (예를 들어, 해수)과 유사 조성의 인간의 체액을 이용해서도 층방전이 가능할 것으로 예상된다. 이러할 경우 응용분야는 매우 다양하게 확장될 수 있다. It is also anticipated that layer discharge may be possible using sodium-containing solutions (eg seawater) and human body fluids of similar composition. In this case, the application is very It can be extended in various ways.
상기 양극부 ( 10)의 일 측면에는 나트륨 함유 용액의 유입부 (50)가 연결 설치될 수 있다. 또한, 유입부와 별도로 양극부에서 나트륨 함유 용액을 외부로 배출하는 유출부가 설치될 수 있다. 양극부 (10)에 설치된 유입부 (50)와 유출부를 통해 양극부로 나트륨 함유 용액을 지속적으로 공급하는 것이 가능할 수 있다. 도 4와 도 5에 도시된 바와 같이 , 상기 이차 전지 ( 100)는 층전 시 양극부 (10)에서 일어나는 반웅식에 의해 양극부 내에서 나트륨이 음극부로 이동하여 제거된다. 이에, 양극부 내에 수용된 나트륨 함유 용액은 담수로 변환돤다. 양극부 내의 담수는 예를 들어, 층전이 완료되어 양극부 내의 나트륨이 모두 제거되었을 때 양극부 ( 10)에 연결된 담수배출부 (40)를 개방하여 외부로 인출할 수 있다.  One side of the positive electrode 10 may be connected to the inlet 50 of the sodium-containing solution. In addition, an outlet for discharging the sodium-containing solution from the anode to the outside may be provided separately from the inlet. It may be possible to continuously supply the sodium-containing solution to the anode portion via the inlet portion 50 and the outlet portion installed in the anode portion 10. As shown in FIG. 4 and FIG. 5, the secondary battery 100 is removed by moving sodium to the negative electrode part in the positive electrode part by a semi-formulation occurring in the positive electrode part 10 during layer formation. Thus, the sodium-containing solution contained in the anode portion was converted into fresh water. For example, the fresh water in the anode part may be drawn out to the outside by opening the fresh water discharge part 40 connected to the anode part 10 when all the sodium in the anode part is removed and the layer is completed.
상기 담수배출부 (40)는 양극부 ( 10)의 하단에 설치되어 선택적으로 개폐되는 배출관 (42)을 포함할 수 있다. 상기한 구조 외에, 본 이차 전지는 양극부로 나트륨을 유통시키기 위해 구비된 유출부를 담수배출부로 이용하여, 필요시 유출부를 통해 담수를 인출하는 구조일 수 있다. ' The fresh water discharge portion 40 may include a discharge pipe 42 is installed at the lower end of the anode portion 10 and selectively opened and closed. In addition to the above-described structure, the secondary battery may have a structure in which fresh water is drawn out through the outflow part, if necessary, using the outflow part provided to distribute sodium to the positive electrode part as a fresh water discharge part. '
이와 같이, 본 실시예의 이차 전지는 이차 전지의 층방전을 통해 전기 에너지를 공급하며 더불어 충전시 해수를 담수로 변환하여 제공할 수 있게 된다. 상기 음극부는 유기 전해질을 포함할 수 있다. 상기 음극부 내 유기 전해질은, 비수성 유기 용매 및 /또는 나트륨염을 포함할 수 있다.  As described above, the secondary battery of the present embodiment can supply electrical energy through layer discharge of the secondary battery and convert seawater into fresh water during charging. The negative electrode unit may include an organic electrolyte. The organic electrolyte in the negative electrode portion may include a non-aqueous organic solvent and / or sodium salt.
상기 비수성 유기 용매는 전지의 전기화학적 반웅에 관여하는 이온들이 이동할 수 있는 매질 역할을 한다.  The non-aqueous organic solvent serves as a medium through which ions involved in the electrochemical reaction of the cell can move.
상기 비수성 유기용매로는 카보네이트계, 에스테르계, 에테르계, 케톤계, 알코올계 또는 비양성자성 용매를 사용할 수 있다. 상기 카보네이트계 용매로는 디메틸 카보네이트 (DMC) , 디에틸 카보네이트 (DEC) , 디프로필 카보네이트 (DPC) , 메틸프로필 카보네이트 (MPC) , 에틸프로필 카보네이트 (EPC) , 메틸에틸 카보네이트 (MEC) , 에틸렌 카보네이트 (EC) , 프로필렌 카보네이트 (PC) , 부틸렌 카보네이트 (BC) 등이 사용될 수 있으며, 상기 에스테르계 용매로는 메틸 아세테이트, 에틸 아세테이트, n-프로필 아세테이트, 1 , 1-디메틸에틸 아세테이트, 메틸프로피오네이트, 에틸프로피오네이트, γ-부티로락톤, 데카놀라이드 (decanol ide) , 발레로락톤, 메발로노락톤 (mevalonol actone) , 카프로락톤 (caprol actone) 등이 사용될 수 있다. 상기 에테르계 용매로는 디부틸 에테르, 테트라에틸렌 글리콜 디메틸 에테르, 트리에틸렌 글리콜 디메틸 에테르, 테트라글라임, 디글라임, 디메특시에탄, 2-메틸테트라히드로퓨란, 테트라히드로퓨란 등이 사용될 수 있으며, 상기 케톤계 용매로는 시클로핵사논 등이 사용될 수 있다. 또한 상기 알코올계 용매로는 에틸알코올., 이소프로필 알코올 등이 사용될 수 있으며, 상기 비양성자성 용매로는 R-CN(R은 C2 내지 C20의 직쇄상, 분지상 또는 환 구조의 탄화수소기이며, 이중결합 방향 환 또는 에테르 결합을 포함할 수 있다) 등의 니트릴류 디메틸포름아미드.등의 아미드류, 1,3-디옥솔란 등의 디옥솔란류 설포란 (sul fol ane)류 둥이 사용될 수 있다. The non-aqueous organic solvent may be a carbonate, ester, ether, ketone, alcohol or aprotic solvent. Examples of the carbonate solvent include dimethyl carbonate (DMC), diethyl carbonate (DEC), dipropyl carbonate (DPC), methylpropyl carbonate (MPC), ethylpropyl carbonate (EPC), methylethyl carbonate (MEC), and ethylene carbonate ( EC), propylene carbonate (PC), butylene carbonate (BC) and the like can be used, and the ester solvent is methyl acetate, ethyl acetate, n-propyl acetate, 1, 1-dimethylethyl acetate, methyl propionate , Ethylpropionate, γ -butyrolactone, decanolide, valerolactone, mevalonol actone, Caprolactone and the like can be used. As the ether solvent, dibutyl ether, tetraethylene glycol dimethyl ether, triethylene glycol dimethyl ether, tetraglyme, diglyme, dimethicane, 2-methyltetrahydrofuran, tetrahydrofuran, etc. may be used. As the ketone solvent, cyclonucleanone may be used. In addition, ethyl alcohol, isopropyl alcohol, etc. may be used as the alcohol solvent, and the aprotic solvent may be R-CN (R is a C 2 to C 2 0 linear, branched or cyclic hydrocarbon. Nitrile dimethylformamide, such as a double bond aromatic ring or ether bond), and amides such as dioxolane sulfolanes such as 1,3-dioxolane and the like. Can be.
상기 비수성 유기 용매는 단독으로 또는 하나 이상 흔합하여 사용할 수 있으며, 하나 이상 흔합하여 사용하는 경우의 흔합 비율은 목적하는 전지 성능에 따라 적절하게 조절할 수 있고, 이는 당해 분야에 종사하는 사람들에게는 널리 이해될 수 있다.  The non-aqueous organic solvent may be used alone or in combination of one or more, and the mixing ratio in the case of using one or more in combination can be appropriately adjusted according to the desired battery performance, which is widely understood by those skilled in the art. Can be.
또한, 상기 카보네이트계 용매의 경우 환형 (cyc l i c ) 카보네이트와 사슬형 (chain) 카보네이트를 흔합하여 사용하는 것이 좋다. 이 경우 환형 카보네이트와 사슬형 카보네이트는 약 1 : 1 내지 약 1 : 9의 부피비로 흔합하여 사용하는 것이 전해액의 성능이 우수하게 나타날 수 있다.  In addition, in the case of the carbonate-based solvent, it is preferable to use a mixture of cyclic (cyc l i c) carbonate and chain carbonate. In this case, the cyclic carbonate and the chain carbonate may be mixed and used in a volume ratio of about 1: 1 to about 1: 9, so that the performance of the electrolyte may be excellent.
상기 비수성 유기용매는 상기 카보네이트계 용매에 상기 방향족 탄화수소계 유기용매를 더 포함할 수도 있다. 이때 상기 '카보네이트계 용매와 방향족 탄화수소계 유기용매는 약 1 : 1 내지 약 30 : 1의 부피비로 흔합될 수 상기 방향족 탄화수소계 유기용매로는 하기 화학식 4의 방향족 탄화수소계 화합물이 사용될 수 있다. The non-aqueous organic solvent may further include the aromatic hydrocarbon organic solvent in the carbonate solvent. In this case, the ' carbonate-based solvent and the aromatic hydrocarbon-based organic solvent may be mixed in a volume ratio of about 1: 1 to about 30: 1. The aromatic hydrocarbon-based organic solvent of the following Chemical Formula 4 may be used.
[  [
Figure imgf000009_0001
상기 화학식 4에서, ¾ 내지 . R6는 각각 독립적으로 수소, 할로겐, C1 내지 CIO의 알킬기, CI 내지 CIO의 할로알킬기 또는 이들의 조합이다.
Figure imgf000009_0001
In Chemical Formula 4, ¾ to . R 6 are each independently hydrogen, halogen, C1 to An alkyl group of CIO, a haloalkyl group of CI to CIO, or a combination thereof.
상기 방향족 탄화수소계 유기용매는 벤젠, 플루오로벤젠, The aromatic hydrocarbon organic solvent is benzene, fluorobenzene,
1, 2-디플루오로벤젠, 1, 3-디플루오로벤젠, 1, 4-디플루오로벤젠,1, 2-difluorobenzene, 1, 3-difluorobenzene, 1, 4-difluorobenzene,
1,2,3-트리플루오로벤젠, 1,2,4ᅳ트리플루오로벤젠, 클로로벤젠, 1,2-디클로로벤젠1,2,3-trifluorobenzene, 1,2,4 ᅳ trifluorobenzene, chlorobenzene, 1,2-dichlorobenzene
1.3-디클로로벤젠, 1,4—디클로로벤젠, 1,2,3-트리클로로벤젠, 1,2, 4-트리클로로벤젠, 아이오도벤젠, 1,2-디아이오도벤젠, 1,3-디아이오도벤젠, 1,4-디아이오도벤젠, 1,2,3-트리아이오도벤젠, 1,2,4ᅳ트리아이오도벤젠, 를루엔, 플루오로를루엔, 1, 2—디플루오로를루엔, 1, 3-디플루오로를루엔,1.3-dichlorobenzene, 1,4—dichlorobenzene, 1,2,3-trichlorobenzene, 1,2,4-trichlorobenzene, iodobenzene, 1,2-diiodobenzene, 1,3-diaiodo Benzene, 1,4-Diiodobenzene, 1,2,3-triiodobenzene, 1,2,4 ᅳ triiodobenzene, toluene, fluoroluene, 1, 2-difluoroluene, 1 , 3-difluoroluene ,
1.4-디플루오로를루엔, 1,2,3—트리플루오로를루엔, 1,2,4ᅳ트리플루오로를루엔, 클로로를루엔, 1,2-디클로로를루엔, 1,3-디클로로를루엔, 1,4-디클로로를루엔, 1,2,3-트리클로로를루엔, 1,2,4-트리클로로를루엔, 아이오도를루엔, 1,2-디아이오도를루엔, 1,3-디아이오도를루엔, 1,4-디아이오도를루엔, 1,2,3-트리아이오도를루엔, 1,2,4ᅳ트리아이오도를루엔, 자일렌 또는 이들의 조합을 사용할 수 있다ᅳ 1.4-difluoroluene, 1,2,3-trifluoroluene, 1,2,4 ᅳ trifluoroluene, chloroluene, 1,2-dichloroluene, 1,3-dichloro Luene, 1,4-dichloroluene, 1,2,3-trichloroluene, 1,2,4-trichloroluene, iodoluene, 1,2-diaioluluene, 1,3- Diiodoluene, 1,4-Diiodoluene, 1,2,3-triiodoluene, 1,2,4 ᅳ triiodoluene, xylene or a combination thereof may be used.
상기 비수성 전해질은 전지 수명을 향상시키기 위하여 비닐렌 카보네이트 또는 하기 화학식 5의 에틸렌 카보네이트계 화합물을 더욱 포함할 수도 있다.  The non-aqueous electrolyte may further include vinylene carbonate or an ethylene carbonate compound of Formula 5 to improve battery life.
[  [
Figure imgf000010_0001
상기 화학식 5에서, R7 및 R8는 각각 독립적으로 수소, 할로겐기, 시아노기 (CN), 니트로기 (N02) 또는 C1 내지 C5의 플루오로알킬기이며 , 상기 R7과 R8중 적어도 하나는 할로겐기, 시아노기 (CN), 니트로기 (N02) 또는 C1 내지 C5의 플루오로알킬기이다. - 상기 에틸렌 카보네이트계 화합물의 대표적인 예로는 디플루오로 에틸렌카보네이트, 클로로에¾렌 카보네이트, 디클로로에틸렌 카보네이트, 브로모에틸렌 카보네이트, 디브로모에틸렌 카보네이트, 니트로에틸렌 카보네이트 시아노에틸렌 카보네이트, 플루오로에틸렌 카보네이트 등을 들 수 있다. 상기 비닐렌 카보네이트 또는 상기 에틸렌 카보네이트계 화합물을 더욱 사용하는 경우 그 사용량을 적절하게 조절하여 수명을 향상시킬 수 있다. - 상기 나트륨염은 상기 비수성 유기 용매에 용해되어, 전지 내에서 나트륨 이온의 공급원으로 작용하여 기본적인 이차 전지의 작동을 가능하게 하고, 양극과 음극 사이의 나트륨 이온의 이동을 촉진하는 역할을 하는 물질이다.
Figure imgf000010_0001
In Formula 5, R 7 and R 8 are each independently hydrogen, a halogen group, a cyano group (CN), a nitro group (N0 2 ) or a fluoroalkyl group of C1 to C5, and at least one of R 7 and R 8 Is a halogen group, cyano group (CN), nitro group (N0 2 ) or a C1 to C5 fluoroalkyl group. Representative examples of the ethylene carbonate-based compound include difluoro ethylene carbonate, chloroethylene carbonate, dichloroethylene carbonate, bromoethylene carbonate, dibromoethylene carbonate, nitroethylene carbonate cyanoethylene carbonate, fluoroethylene carbonate, and the like. Can be mentioned. remind When the vinylene carbonate or the ethylene carbonate-based compound is further used, the amount of vinylene carbonate or the ethylene carbonate-based compound may be appropriately adjusted to improve the life. A substance that dissolves in the non-aqueous organic solvent and acts as a source of sodium ions in the cell to enable the operation of a basic secondary cell and to promote the movement of sodium ions between the positive and negative electrodes. to be.
보다 구체적으로 , 상기 나트륨염은 NaC104, NaPF4, NaPF6, NaAsF6, NaTFSI , Na Beti (NaN[S02C2F5]2), NaCF3S05 또는 이들의 조합일 수 있다. More specifically, the sodium salt may be NaC10 4 , NaPF 4 , NaPF 6 , NaAsF 6 , NaTFSI, Na Beti (NaN [S0 2 C 2 F 5 ] 2 ), NaCF 3 SO 5 or a combination thereof.
상기 나트륨염의 농도는 0.001 내지 10M일 수 있으며, 보다 구체적으로, 0.1 내지 2.0M 범위 내일 수 있다. 나트륨염의 농도가 상기 범위에 포함되면, 전해질이 적절한 전도도 및 점도를 가지므로 우수한 전해질 성능을 나타낼 수 있고, 나트륨 이온이 효과적으로 이동할 수 있다.  The concentration of the sodium salt may be from 0.001 to 10M, more specifically, may be in the range of 0.1 to 2.0M. When the concentration of the sodium salt is included in the above range, since the electrolyte has an appropriate conductivity and viscosity, it can exhibit excellent electrolyte performance, and sodium ions can move effectively.
상기 음극 전극 표면에 위치하는 음극 활물질 층은, 음극 활물질, 도전재, 및 /또는 바인더를 포함할 수 있다. 상기 음극 활물질은 탄소계 재료, 나트륨 알로이 (alloy) 물질, .나트륨 인터칼레이션, 및 /또는 이들의 조합인 복합물질을 포함할 수 있다.  The negative electrode active material layer positioned on the surface of the negative electrode may include a negative electrode active material, a conductive material, and / or a binder. The anode active material may include a composite material which is a carbonaceous material, a sodium alloy material, a sodium intercalation, and / or a combination thereof.
상기 음극 활물질은 전위가 4.07 V vs Na/Na+ 보다 작은 모든 전극물질을 포함할 수 있다. The negative active material may include all electrode materials having a potential of less than 4.07 V vs Na / Na + .
상기 탄소계 재료는 천연흑연, 인조혹연, 소프트카본, 하드카본, 또는 이들의 조합이 될 수 있다. 보다 구체적으로 하드카본일 수 있다.  The carbonaceous material may be natural graphite, artificial graphite, soft carbon, hard carbon, or a combination thereof. More specifically, it may be a hard carbon.
상기 나트륨 알로이 (alloy) 물질은 Si, Sn, Bi, Si02, Sb204, Si/C, Sb/C 복합체 (composite), SnSb/C 복합체 (compos i te), 비정질 (amorphous) P/C 복합체 (composite), 또는 이들의 조합일 수 있다. The sodium alloy material may be Si, Sn, Bi, Si0 2 , Sb 2 0 4 , Si / C, Sb / C composite, SnSb / C composite, amorphous P / C complex, or a combination thereof.
상기 나트륨 인터칼레이션 물질은 Li4Ti5012, NaCo204( Na2Ti307, Fe304, Ti02, Ti¾, VS2, Sb204, Sb/C 복합체 (composite), SnSb/C 복합체 (composite) , 비정질 (amorphous) P/C 복합체 (composite), 또는 이들의 조합이 될 수 있다. 보다 구체적으로 상기 나트륨 인터칼레이션 물질은 Li4Ti5012 일 수 있다. The sodium intercalation material is Li 4 Ti 5 0 12 , NaCo 2 0 4 ( Na 2 Ti 3 0 7 , Fe 3 0 4 , Ti0 2 , Ti¾, VS 2 , Sb 2 0 4 , Sb / C composite (composite ), A SnSb / C composite, an amorphous P / C composite, or a combination thereof, and more specifically, the sodium intercalation material may be Li 4 Ti 5 0 12 . .
상기 전위가 4.07 V vs Na/Na+ 보다 작은 전극물질은 Na2FeP04F, NaFeP04, BP0E, 匪 HFC, Na3V(P04)3/C, Ν3ι.5νΡ04.8Ρ0.7 또는 이들의 조합일 수 있다. The electrode material having a potential lower than 4.07 V vs Na / Na + is Na 2 FeP0 4 F, NaFeP0 4 , BP0E, 匪 HFC, Na 3 V (P0 4 ) 3 / C, Ν 3ι.5 νΡ0 4 . 8 Ρ 0 . 7 or a combination thereof.
상기 음극 활물질 층은 또한 바인더를 포함하며, 선택적으로 도전재를 더욱 포함할 수도 있다.. 상기 바인더는 음극 활물질 입자들을 서로 잘 부착시키고, 또한 음극 활물질을 전류 집전체에 잘 부착시키는 역할을 하며, 그 대표적인 예로 폴리비닐알콜, 카르복시메틸셀를로즈 , 히드록시프로필셀를로즈 , 폴리비닐클로라이드, 카르복실화된 폴리비닐클로라이드, 폴리비닐플루오라이드, 에틸렌 옥사이드를 포함하는 폴리머, 플리비닐피를리돈, 폴리우레탄, 폴리테트라플루오로에틸렌, 폴리비닐리덴 플루오라이드, ·폴리에틸렌, 폴리프로필렌, 스티렌-부타디엔 러버, 아크릴레이티드 스티렌-부타디엔 러버, 에폭시 수지, 나일론 등을 사용할 수 있으나, 이에 한정되는 것은 아니다. The negative electrode active material layer also includes a binder, and may optionally further include a conductive material. The binder adheres the negative electrode active material particles to each other well, and also adheres the negative electrode active material to the current collector, and representative examples thereof include polyvinyl alcohol, carboxymethyl cellulose, hydroxypropyl cellulose, polyvinyl chloride, and carbon. Polyvinylchloride, polyvinylfluoride, polymers containing ethylene oxide, polyvinylpyridone, polyurethane, polytetrafluoroethylene, polyvinylidene fluoride, polyethylene, polypropylene, styrene-butadiene rubber Acrylated styrene-butadiene rubber, epoxy resin, nylon, etc. may be used, but is not limited thereto.
상기 도전재는 전극에 도전성을 부여하기 위해 사용되는 것으로서, 구성되는 전지에 있어서 화학변화를 야기하지 않고 전자 전도성 재료이면 어떠한 것도 사용가능하며, 그 예로 천연 혹연, 인조 혹연, 카본 블랙, 아세틸렌 블랙, 케첸블랙, 탄소섬유 등의 탄소계 물질; 구리, 니켈, 알루미늄, 은 등의 금속 분말 또는 금속 섬유 등의 금속계 물질 ; 폴리페닐렌 유도체 등의 도전성 폴리머; 또는 이들의 혼합물을 포함하는 도전성 재료를 사용할 수 있다.  The conductive material is used to impart conductivity to the electrode. Any conductive material may be used as long as it does not cause chemical change in the battery to be constructed. Examples thereof include natural alum, artificial alum, carbon black, acetylene black, and ketjen black. Carbon-based materials such as carbon fiber; Metal materials such as metal powder or metal fibers such as copper, nickel, aluminum and silver; Conductive polymers such as polyphenylene derivatives; Or a conductive material containing a mixture thereof.
상기 집전체로는 구리 박, 니켈 박, 스테인레스강 박, 티타늄 박, 니켈 발포체 ( foam) , 구리 발포체, 전도성 금속이 코팅된 폴리머 기재, 또는 이들의 조합을 사용할 수 있다.  As the current collector, copper foil, nickel foil, stainless steel foil, titanium foil, nickel foam, copper foam, a polymer substrate coated with a conductive metal, or a combination thereof may be used.
상기 음극은 활물질, 바인더, 및 도전재를 용매 중에서 흔합하여 활물질 조성물을 제조하고, 이 조성물을 전류 집전체에 도포하여 음극 전극을 제조한다. 이와 같은 전극 제조 방법은 당해 분야에 널리 알려진 내용이므로 본 명세서에서 상세한 설명은 생략하기로 한다. 상기 용매^는 N-메틸피를리돈 등을 사용할 수 있으나 이에 한정되는 것은 아니다.  The negative electrode is prepared by mixing an active material, a binder, and a conductive material in a solvent to prepare an active material composition, and applying the composition to a current collector to produce a negative electrode. Since such an electrode manufacturing method is well known in the art, detailed description thereof will be omitted. The solvent ^ may be N-methylpyridone and the like, but is not limited thereto.
상기 고체 전해질은, 상기 고체 전해질은 나트륨 이온의 이동 속도가 빠르고 수용액 및 유기용액과 안정할 수 있는 물질로서, 베타-알루미나 (β-Α12¾) , 비정질 이온 전도도 물질 (phosphorus-based gl ass , oxide-based glass , oxide/sul f ide based glass ) , 나시콘 (Na super ioni c conductor , NASI CON) , 나트륨황화물계 고체전해질, 나트륨산화물계 고체전해질, 또는 이들의 조합을 포함할 수 있다. The solid electrolyte, the solid electrolyte is a material that can be the moving speed of the sodium ion stability and fast solution and the organic solution, the beta-alumina (β-Α1 2 ¾), amorphous ionic conductivity material (phosphorus-based gl ass, oxide-based glass, oxide / sulfide-based glass, Na super ion conductor (NASI CON), sodium sulfide-based solid electrolyte, sodium oxide-based solid electrolyte, or a combination thereof.
보다 구체적으로 상기 고체 전해질은 나시콘일 수 있으며, 이러한 경우 이온 전도도가 보다 개선될 수 있다. 상기 양극부 내 포함되는 상기 양극 집전체는 탄소 페이퍼, 탄소 섬유, 탄소 천, 탄소 펠트, 금속박막, 또는 이들의 조합일 수 있으며, 보다 구체적으로 탄소 페이퍼일 수 있다. 탄소 페이퍼의 경우 나트륨 함유 용액 내 포함된 기타 금속 이온의 산화 /환원 반응으로부터 발생할 수 있는 부산물을 최소화할 수 있다. More specifically, the solid electrolyte may be nasicon, in which case the ionic conductivity may be further improved. The positive electrode current collector included in the positive electrode portion may be carbon paper, carbon fiber, carbon cloth, carbon felt, metal thin film, or a combination thereof, and more specifically, may be carbon paper. In the case of carbon paper, it is possible to minimize the by-products resulting from the oxidation / reduction reaction of other metal ions contained in the sodium-containing solution.
또한, 상기 양극 집전체는 벌칸과 같은 카본블랙, 금속류 촉매, 산화금속류 촉매, 도전재, 그래핀 산화물, 또는 이들의 조합을 코팅한 구조일 수 있다.  In addition, the positive electrode current collector may have a structure coated with carbon black such as a vulcan, metal catalyst, metal oxide catalyst, conductive material, graphene oxide, or a combination thereof.
상기 양극 집전체의 기공도의 범위는 1 내지 250 m 일 수 있다. 이러한 범위를 만족시ᅵ키는 경우, 넓은 표면적을 가진 전극을 구성하여 보다 많은 전극반웅을 유도할 수 있다ᅳ 이하 본 발명의 실시예 및 비교예를 기재한다. 하기의 실시예는 본 발명의 일 실시예일 뿐 본 발명이 하기 실시예에 한정되는 것은 아니다. 실시예: 이차 전지의 제조 The porosity of the positive electrode current collector may range from 1 to 250 m . When satisfying such a range, more electrode reactions can be induced by constructing an electrode having a large surface area. Examples and comparative examples of the present invention are described below. The following examples are merely examples of the present invention and the present invention is not limited to the following examples. Example: Preparation of Secondary Battery
양극부의 제조  Manufacture of anode part
카본 페이퍼 (Fuel Cel l Store , 2050-A)를 양극 집전체로 이용하였다. 양극부 용기 내 해수를 투입 후 상기 양극 집전체를 해수에 함침시켜 양극부를 제조하였다.  Carbon paper (Fuel Cel l Store, 2050-A) was used as the positive electrode current collector. After adding the seawater in the positive electrode container, the positive electrode current collector was impregnated with seawater to prepare a positive electrode.
' 상기 카본 페이퍼의 공극를은 28/ m이다. 음극부의 제조  The voids of the carbon paper are 28 / m. Preparation of Cathode Part
스테인리스 스틸 (McMASTER)을 집전체로 이용하였다. 상기 집전체 상에 하드 카본 (MTI ) :도전재인 super P 카본 블랙 (TIMCAL) :바인더인 폴리 (테라플루오로에틸렌)을 70 : 20 : 10 (중량 %)로 흔합하여 음극 활물질층을 형성하여 음극 전극을 제조하였다.  Stainless steel (McMASTER) was used as the current collector. On the current collector, a hard carbon (MTI): conductor super P carbon black (TIMCAL): binder poly (terrafluoroethylene) is mixed at 70:20:10 (wt%) to form a negative electrode active material layer to form a negative electrode. An electrode was prepared.
음극부 내 유기 전해질을 투입 후 상기 제조된 음극 전극을 함침시켰다. 상기 유기 전해질은 에틸렌 카보네이트 (EC) :디에틸렌 카보네이트 (DEC) ( 1 : 1부피비) 및 1M의 NaC104 나트륨염 (Aldr i ch)을 흔합하여 제조하였다. 고체 전해질의 제조 After the addition of the organic electrolyte in the negative electrode portion, the prepared negative electrode was impregnated. The organic electrolyte was prepared by mixing ethylene carbonate (EC): diethylene carbonate (DEC) (1: 1vol ratio) and 1M NaC10 4 sodium salt (Aldr i ch). Preparation of Solid Electrolyte
NASICON (Na3Zr2Si2P012)을 고체 전해질로 사용하였다. 상기 고체 전해질은 본 실험실에서 고상 반옹 (sol id-state react ion) 을 거쳐 만들어 졌다. 당업계에 잘 알려진 고상 반응으로 구체적인 방법에 대해서는 생략하도록 한다. NASICON (Na 3 Zr 2 Si 2 P0 12 ) was used as the solid electrolyte. The solid electrolyte was made through a solid id-state react ion in the laboratory. Solid phase reactions well known in the art will be omitted for specific methods.
상기 양극부 및 음극부 사이에 고체 전해질을 위치시켰다. 상기 고체 전해질의 두께는 1mm이다. 담수배출부의 제조  A solid electrolyte was placed between the positive electrode and the negative electrode. The thickness of the solid electrolyte is 1 mm. Manufacture of fresh water discharge
양극부를 이루는 용기의 측면과 하단에 나트륨 함유 용액을 공급하는 유입부와 유출부를 설치하고, 용기 하단에 설치된 상기 유출부를 담수가 배출되는 담수배출부로 이용하였다.  An inlet and an outlet for supplying a sodium-containing solution were installed on the side and bottom of the vessel forming the anode, and the outlet installed at the bottom of the vessel was used as a freshwater discharge portion for discharging fresh water.
담수배출부인 유출부에는 개폐밸브를 설치하여 필요시 양극부 내의 담수를 배출할 수 있도록 하였다. 양극부 내에 나트륨 함유 용액을 공급하고 충전 개시 후 층전이 완료되어 양극부 내의 나트륨이 모두 음극부로 이동되었을 때를 1사이클로 하여, 매 사이클마다 상기 개폐밸브를 개방하여 양극부 내의 담수를 외부로 배출하였다. 실험예: 전지 특성 평가  An open / close valve was installed at the outlet, which is a fresh water discharge part, to discharge fresh water in the anode part if necessary. The sodium-containing solution was supplied into the anode portion, and when the layer was completed after the start of filling, all the sodium in the anode portion was moved to the cathode portion as one cycle, and the opening / closing valve was opened every cycle to discharge fresh water in the anode portion to the outside. . Experimental Example: Battery Characteristic Evaluation
층방전 특성 평가  Floor discharge characteristic evaluation
도 6은 본 실시예에 따른 이차 전지의 층방전 특성을 나타낸 그래프이다. 도 6으로부터, 본 실시예의 경우 해수 전지를 층전함으로써 해수에 녹아 있는 나트륨 이온이 음극에 있는 하드 카본에 축적되는 것을 알 수 있다. 축적된 나트륨 이온은 전지를 방전할 때 전기를 생산하면서 다시 해수에 방전된다. 층전 전압은 약 평균 3 V 이며, 방전 전압은 평균 약 2.3V 에서 나타남을 볼 수 있다. 첫 사이클에서 약 31% 의 비가역 용량이 나타났는데, 이것은 나트륨 이온이 처음 음극으로 처음 들어갈 때 음극 표면에 생성되는 고체 전해질 계면 (Sol i d Electrolyte Interface , SEI ) 형성 시 소모되는 양을 나타낸다. SEI 형성후, 안정된 가역용량을 보여주고 있다. 사이클 특성 평가 6 is a graph showing the layer discharge characteristics of the secondary battery according to the present embodiment. 6 shows that sodium ions dissolved in seawater accumulate in the hard carbon in the negative electrode by layering the seawater battery in this embodiment. Accumulated sodium ions are discharged back into the sea water, producing electricity when the battery is discharged. The layer voltage is about 3V on average, and the discharge voltage is about 2.3V on average. In the first cycle, an irreversible capacity of about 31% was observed, which represents the amount of sodium ions consumed in the formation of the solid electrolyte interface (SEI) that forms on the surface of the cathode when it first enters the cathode. After SEI formation, it shows stable reversible capacity. Cycle characteristic evaluation
도 7은 본 실시예에 따른 이차 전지의 사이클 특성을 나타낸 그래프이다. 도 7에 도시된 바와 같이, 본 실시예의 경우 첫사이클에서 SEI 형성후 안정한 가역 용량을 보이고 있으며 , 약 40 사이클 후에도 84% 의 효을을 보이고 있는 것을 알 수 있다.  7 is a graph illustrating cycle characteristics of a rechargeable battery according to the present embodiment. As shown in FIG. 7, the present example shows a stable reversible capacity after SEI formation in the first cycle, and shows an effect of 84% even after about 40 cycles.
도 8은 본 실시예에 따른 이차 전지에서 주사속도에 따른 전기에너지 효율을 보여주는 그래프이다. 0.05mA에서 0.1mA, 0.2mA로 주사속도를' 높이며 전압을 측정하였다. 도 8에서와 같이, 0.05mA에서는 3.98V의 전압을 나타내고, 0.1mA, 0.2mA로 주사속도를 증가시키면 각각 4.32V, 4.54V로 전압이 증가하는 것을 알 수 있다. 본 실시예의 이차전지를 층전하는데 필요한 전기에너지를 계산해보면 0.05mA, 0.1mA, 0.2mA 일 때 각각 0.199mW, 0.432mW, 0.0908mW이다. 담수화 특성 평가 8 is a graph showing the electrical energy efficiency according to the scanning speed in the secondary battery according to the present embodiment. A "voltage, increase the scanning speed to 0.1mA, 0.2mA was measured at 0.05mA. As shown in FIG. 8, it can be seen that at 0.05 mA, the voltage is 3.98 V, and when the scanning speed is increased to 0.1 mA and 0.2 mA, the voltage increases to 4.32 V and 4.54 V, respectively. When calculating the electrical energy required to layer the secondary battery of this embodiment is 0.199mW, 0.432mW, 0.0908mW at 0.05mA, 0.1mA, 0.2mA, respectively. Desalination Characterization
도 9와 도 10은 0.2mA의 주사속도에서 50시간까지 10시간 단위로 본 실시예의 이차 전지를 충전한 후, 이온 크로마토그래피를 이용하여 Na 이온과 C1 이온의 농도를 측정한 것이다. 도 9와 도 10의 그래프에서 점은 측정값을 나타내고 직선은 linear fitting을 통한 보정값을 나타낸다. 도 9는 Na ion 농도를 측정한 값을 나타내고 있다. 도 9를 통해, 본 실시예의 이차전지를 층전하면 Na ion 농도는 약 830ppm이 감소함을 알 수 있다. 또한, 도 10은 C1 ion의 농도를 측정한 값을 나타내고 있다. 도 10을 통해 충전 후 CI ion의 농도는 약 2100 ρρηι이 감소함을 알 수 있다. 도 9와 도 10의 그래프로부터 본 실시예의 이차 전지가 구동되는데 Na ion과 CI ion을 이용한다는 것을 알 수 있으며 층전될 때 해수가 담수화 되는 것을 확인 할 수 있다.  9 and 10 charge the secondary battery of this example in units of 10 hours up to 50 hours at a scanning speed of 0.2 mA, and then measure the concentrations of Na ions and C1 ions using ion chromatography. In the graphs of FIGS. 9 and 10, points represent measured values and straight lines represent correction values through linear fitting. 9 shows the value obtained by measuring Na ion concentration. 9, it can be seen that when the secondary battery of the present embodiment is layered, the Na ion concentration decreases by about 830 ppm. 10 has shown the value which measured the density | concentration of C1 ion. It can be seen from FIG. 10 that the concentration of CI ion after charging is reduced to about 2100 ρρηι. It can be seen from the graphs of FIG. 9 and FIG. 10 that the secondary battery of the present embodiment uses Na ions and CI ions and desalination of sea water when layered.
도 11과 도 12는 본 실시예의 이차 전지의 주사속도에 따른 담수화 효율을 나타낸다. 주사속도를 0.05mA에서 0.1, 0.2mA로 증가시키면서 50시간 동안 10시간 단위로 농도를 측정하였다. 도 11과 도 12는 각각 IC를 이용하여 Na ion농도와 CI ion농도를 측정한 그래프이다. 도 11과 도 12의 그래프의 직선은 linear fitting을 한 후 도시되었다.  11 and 12 show the desalination efficiency according to the scanning speed of the secondary battery of this embodiment. Concentrations were measured in units of 10 hours for 50 hours while increasing the scanning speed from 0.05 mA to 0.1 and 0.2 mA. 11 and 12 are graphs measuring Na ion concentration and CI ion concentration using IC respectively. 11 and 12 are shown after linear fitting.
도 11에서 0.05mA의 기을기의 절대치는 11.94이고 0.1, 0.2mA로 주사속도를 높일수록 기울기의 절대치는 16.00, 16.63으로 증가하였다. 또한 도 12에서는 0.05mA의 주사속도에서 기울기의 절대치는 18.51이며 주사속도를 0 . 1, 0.2mA로 증가시킴에 따라 기을기의 절대치는 각각 36.00, 45.29로 증가하였다. 이로부터 주사속도를 높여 큰 전기에너지를 주입함으로써 담수화 효율을 증가시킬 수 있음을 확인하였다. 본 발명은 상기 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 제조될 수 있으며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징올 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. In FIG. 11, the absolute value of the tilt device of 0.05 mA was 11.94 and the absolute value of the slope increased to 16.00 and 16.63 as the scan rate was increased to 0.1 and 0.2 mA. Also At 12, the absolute value of the slope is 18.51 at the scan rate of 0.05 mA and the scan rate is 0. As the value increased to 1, 0.2mA, the absolute value of the gradient increased to 36.00 and 45.29, respectively. From this, it was confirmed that the desalination efficiency can be increased by increasing the scanning speed and injecting large electric energy. The present invention is not limited to the above embodiments, but may be manufactured in various forms, and a person having ordinary knowledge in the art to which the present invention pertains has another specific form without changing the technical spirit or essential features of the present invention. It will be appreciated that the present invention may be practiced as. Therefore, it should be understood that the embodiments described above are exemplary in all respects and not restrictive.

Claims

【특허청구범위】 【Patent Claims】
【청구항 1】 【Claim 1】
나트륨 함유 용액 및 상기 나트륨 함유 용액에 함침된 양극 집전체를 포함하는 양극부; A positive electrode unit including a sodium-containing solution and a positive electrode current collector impregnated with the sodium-containing solution;
액상의 유기 전해질 및 상기 액상의 유기 전해질에 함침되고 음극 활물질 층을 구비한 음극 전극을 포함하는 음극부; a negative electrode portion including a liquid organic electrolyte and a negative electrode impregnated with the liquid organic electrolyte and having a negative electrode active material layer;
상기 양극부와 상기 음극부 사이에 위치하는 고체 전해질; 및 a solid electrolyte positioned between the anode portion and the cathode portion; and
상기 양극부에 연결되어 층전 시 양극부에서 발생되는 담수를 외부로 인출하는 담수배출부; a fresh water discharge unit connected to the anode unit and withdrawing fresh water generated from the anode unit during floor charging to the outside;
를 포함하는 담수 생산 이차 전지 . Fresh water production secondary battery containing.
【청구항 2】 【Claim 2】
제 1항에 있어서, ' In clause 1, '
상기 담수배출부는 나트륨 함유 용액이 수용된 양극부에 설치되어 전지 층전시 또는 충전 완료 후 선택적으로 개폐되어 담수를 배출하는 배출관을 포함하는 담수 생산 이차 전지 . The fresh water discharge unit is installed in the anode part containing the sodium-containing solution and is selectively opened and closed after the battery layer is displayed or charging is completed. A fresh water production secondary battery including a discharge pipe for discharging fresh water.
【청구항 3】 【Claim 3】
제 1 항에 있어서, According to claim 1,
상기 양극 집전체에 전기적으로 연결되는 양극 단자 및 /또는 상기 음극 전극에 전기적으로 연결되는 음극 단자를 더 포함하는 담수 생산 이차 전지. A fresh water production secondary battery further comprising a positive electrode terminal electrically connected to the positive electrode current collector and/or a negative electrode terminal electrically connected to the negative electrode.
【청구항 4】 【Claim 4】
제 1항 또는 제 2항에 있어서, According to claim 1 or 2,
상기 양극부는 일 측면에 연결되어 나트륨 함유 용액을 양극부로 공급하는 유입부 또는 /및 양극부의 나트륨 함유 용액을 배출하는 유출부를 더 포함하는 담수 생산 이차 전지 . The anode unit is connected to one side and further includes an inlet unit for supplying a sodium-containing solution to the anode unit and/or an outlet unit for discharging the sodium-containing solution from the anode unit.
【청구항 5] [Claim 5]
거 U항 또는 게 2항에 있어서, 상기 음극부 내 유기 전해질은, 비수성 유기 용매 및 /또는 나트륨염을 포함하는 것인 담수 생산 이차 전지 . In clause U or clause 2, The organic electrolyte in the cathode portion includes a non-aqueous organic solvent and/or a sodium salt.
【청구항 6】 【Claim 6】
제 5항에 있어서, According to clause 5,
상기 비수성 유기 용매는 카보네이트계, 에스테르계, 에테르계, 케톤계, 알코올계, 비양성자성 용매, 또는 이들의 조합이고, The non-aqueous organic solvent is a carbonate-based, ester-based, ether-based, ketone-based, alcohol-based, aprotic solvent, or a combination thereof,
' 상기 나트륨염은 NaC104, NaPF4) NaPF6) NaAsF6, NaTFSI, Na Beti (NaN[S02C2F5]2), NaCF3S05) 또는 이들의 조합인 것인 담수 생산 이차 전지 . ' The sodium salt is NaC10 4 , NaPF 4) NaPF 6) NaAsF 6 , NaTFSI, Na Beti (NaN[S0 2 C 2 F 5 ] 2 ), NaCF 3 S0 5) or a combination thereof, a freshwater production secondary battery. .
【청구항 7】 【Claim 7】
제 1항 또는 제 2항에 있어서, According to paragraph 1 or 2,
상기 음극 활물질 층은, 음극 활물질, 도전재, 및 /또는 바인더를 포함하고, 상기 음극 활물질은 탄소계 재료, 나트륨 알로이 (alloy) 물질 , 나트륨 인터칼레이션, 전위가 4.07 V vs Na/Na+ 보다 작은 모든 전극물질, 및 /또는 이들의 조합인 복합물질을 포함하는 것인 담수 생산 이차 전지 . The negative electrode active material layer includes a negative electrode active material, a conductive material, and/or a binder, and the negative electrode active material is a carbon-based material, a sodium alloy material, sodium intercalation, and a potential of 4.07 V vs Na/Na + A freshwater production secondary battery comprising all small electrode materials, and/or composite materials that are a combination thereof.
【청구항 8】 【Claim 8】
게 7항에 있어서, In paragraph 7,
상기 전위가 4.07 V vs Na/Na+ 보다 작은 전극물질은 N¾FeP04F, NaFeP04, Electrode materials with a potential less than 4.07 V vs Na/Na + are N¾FeP0 4 F, NaFeP0 4 ,
BPOE, NMHFC, Na3V(P04)3/C( Na1.5VPO4.sFo.7 또는 이들의 조합인 담수 생산 이차 전지ᅳ BPOE, NMHFC, Na 3 V(P0 4 ) 3 /C ( Na1.5VPO4.sFo.7 or a combination thereof freshwater production secondary battery ᅳ
【청구항 9】 【Claim 9】
제 7항에 있어서, In clause 7,
상기 탄소계 재료는 천연혹연, 인조혹연, 소프트카본, 하드카본, 또는 이들의 조합인 것인 담수 생산 이차 전지. The carbon-based material is a freshwater produced secondary battery that is natural graphite, artificial graphite, soft carbon, hard carbon, or a combination thereof.
【청구항 10】 【Claim 10】
게 7항에 있어서, 상기 나트륨 알로이 (alloy) 물질은 Si, Sn, Bi, Si02) Sb204, Si/C, Sb/C 복합체 (composite), SnSb/C 복합체 (composite), 비정질 (amorphous) P/C 복합체 (composite), 또는 이들의 조합인 담수 생산 이차 전지. In paragraph 7, The sodium alloy material is Si, Sn, Bi, Si0 2) Sb 2 0 4 , Si/C, Sb/C composite, SnSb/C composite, amorphous P/C composite. (composite), or a freshwater production secondary battery that is a combination thereof.
【청구항 11】 【Claim 11】
저 17항에 있어서, In paragraph 17,
상기 나트륨 인터칼레이션 물질은 Li4Ti5012, NaCo204, Na2Ti307, Fe304, Ti02, TiS2, VS2, Sb204, Sb/C 복합체 (composite), SnSb/C 복합체 (composite), 비정질 (amorphous) P/C 복합체 (composite) , 또는 이들의 조합인 것인 담수 생산 이차 전지 · The sodium intercalation material is Li 4 Ti 5 0 12 , NaCo 2 0 4 , Na 2 Ti 3 0 7 , Fe 3 0 4 , Ti0 2 , TiS 2 , VS 2 , Sb 2 0 4 , Sb/C complex ( composite), SnSb/C composite (composite), amorphous P/C composite (composite), or a combination of these freshwater production secondary batteries.
【청구항 12】 【Claim 12】
제 7항에 있어서, In clause 7,
상기 도전재는 천연 흑연, 인조 혹연, 카본 블랙, 아세틸렌 블랙, 케첸블랙, 또는 탄소섬유인 탄소계 물질; 구리, 니켈, 알루미늄, 또는 은인 금속 분말; 금속 섬유; 도전성 폴리머; 또는 이들의 흔합물;인 것인 담수 생산 이차 전지 . The conductive material is a carbon-based material such as natural graphite, artificial graphite, carbon black, acetylene black, Ketjen black, or carbon fiber; Metal powders that are copper, nickel, aluminum, or silver; metal fiber; conductive polymer; Or a mixture thereof; a freshwater production secondary battery.
【청구항 13】 【Claim 13】
제 7항에 있어서, In clause 7,
상기 바인더는 폴리비닐알콜, 카르복시메틸셀를로즈, 히드록시프로필셀롤로즈, 폴리비닐클로라이드, 카르복실화된 폴리비닐클로라이드, 폴리비닐플루오라이드, 에틸렌 옥사이드를 포함하는 폴리머, 폴리비닐피를리돈, 폴리우레탄, 폴리테트라플루오로에틸렌, 폴리비닐리덴 플루오라이드, 폴리에틸렌, 폴리프로필렌, 스티렌-부타디엔 러버, 아크릴레이티드 스티렌-부타디엔 러버, 에폭시 수지, 나일론, 또는 이들의 조합인 것인 담수 생산 이차 전지. The binder is polyvinyl alcohol, carboxymethyl cellulose, hydroxypropyl cellulose, polyvinyl chloride, carboxylated polyvinyl chloride, polyvinyl fluoride, polymer containing ethylene oxide, polyvinyl pyrlidone, polyurethane. A freshwater production secondary battery made of polytetrafluoroethylene, polyvinylidene fluoride, polyethylene, polypropylene, styrene-butadiene rubber, acrylated styrene-butadiene rubber, epoxy resin, nylon, or a combination thereof.
【청구항 14】 【Claim 14】
제 1항 또는 제 2항에 있어서, According to paragraph 1 or 2,
상기 고체 전해질은, 베타-알루미나 (β-Α1203), 비정질 이온 전도'도 물질 (phosphorus-based gl ass , oxide-based gl ass , oxide/ sul f i de based gl ass) , 나시콘 (Na super ioni c conductor , NASI CON) , 나트륨황화물계 고체전해질, 나트륨산화물계 고체전해질, 또는 이들의 조합을 포함하는 것인 담수 생산 이차 전지 The solid electrolyte is beta-alumina (β-Α1 2 0 3 ), an amorphous ion conductive material. (phosphorus-based gl ass, oxide-based gl ass, oxide/sul fi de based gl ass), Nasicon (Na super ionic conductor, NASI CON), sodium sulfide-based solid electrolyte, sodium oxide-based solid electrolyte, or these A freshwater production secondary battery comprising a combination of
【청구항 15】 【Claim 15】
제 1항 또는 제 2항에 있어서, According to paragraph 1 or 2,
상기 양극 집전체는 탄소 페이퍼, 탄소 섬유, 탄소 천, 탄소 펠트, 금속박막, 또는 이들의 조합인 것인 담수 생산 이차 전지. The positive electrode current collector is a freshwater production secondary battery that is carbon paper, carbon fiber, carbon cloth, carbon felt, metal thin film, or a combination thereof.
【청구항 16】 【Claim 16】
제 15 항에 있어서, According to clause 15,
상기 양극 집전체는 벌칸을 포함하는 카본블랙, 금속류 촉매 , 산화금속류 촉매, 도전재, 그래핀 산화물, 또는 이들의 조합을 코팅한 구조의 담수 생산 이차 전지 . The positive electrode current collector is a freshwater production secondary battery coated with carbon black containing Vulcan, a metal catalyst, a metal oxide catalyst, a conductive material, graphene oxide, or a combination thereof.
【청구항 17】 【Claim 17】
거 U항 또는 제 2항에 있어서 In Paragraph U or Paragraph 2
상기 양극 집전체의 기공도는 1 내지 250 인 담수 생산 이차 전지 . A freshwater-produced secondary battery whose porosity of the positive electrode current collector is 1 to 250.
[청구항 18】 [Claim 18]
계 1항 또는 제 2항에 있어서, According to paragraph 1 or 2,
상기 이차 전지는 방전 시 하기 반웅식 1 및 /또는 2가 양극부에서 일어나는 것인 담수 생산 이차 전지. The secondary battery is a freshwater-producing secondary battery in which the following reactions 1 and/or 2 occur at the anode portion during discharge.
[반응식 1] [Scheme 1]
Na+ + ¾0 + e" -> NaOH + 1/2¾ Na + + ¾0 + e " -> NaOH + 1/2¾
[반웅식 2] [Banwoongsik 2]
Na+ + 1/2¾0 + 1/402 + e 一> NaOH Na + + 1/2¾0 + 1/40 2 + e 一> NaOH
【청구항 19】 게 1항 또는 제 2항에 있어서, 【Claim 19】 In paragraph 1 or 2,
상기 이차 전지는 층전 시 하기 반웅식 3 및 /또는 4 가 양극부에서 어나는 것인 담수 생산 이차 전지 . The secondary battery is a freshwater-producing secondary battery in which the following reactions 3 and/or 4 are generated at the anode during layer charging.
[반웅식 3] [Banwoongsik 3]
NaCI -> Na + 1/2C12 NaCl -> Na + 1/2C1 2
[반웅식 4] [Banwoongsik 4]
NaOH — > Na + 1/2H20 + 1/402 NaOH — > Na + 1/2H 2 0 + 1/40 2
【청구항 20】 【Claim 20】
.제 1항 또는 제 2항에 있어서, . According to claim 1 or 2,
상기 나트륨 함유 용액은 해수인 것인 담수 생산 이차 전지 A freshwater production secondary battery wherein the sodium-containing solution is seawater.
PCT/KR2015/001106 2014-02-04 2015-02-03 Fresh water-producing secondary battery WO2015119414A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016549730A JP2017510937A (en) 2014-02-04 2015-02-03 Freshwater production secondary battery

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2014-0012555 2014-02-04
KR20140012555 2014-02-04
KR1020150009386A KR20150091984A (en) 2014-02-04 2015-01-20 Sea water secondary battery for manufacturing desalinated water
KR10-2015-0009386 2015-01-20

Publications (1)

Publication Number Publication Date
WO2015119414A1 true WO2015119414A1 (en) 2015-08-13

Family

ID=53778171

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/001106 WO2015119414A1 (en) 2014-02-04 2015-02-03 Fresh water-producing secondary battery

Country Status (1)

Country Link
WO (1) WO2015119414A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018524758A (en) * 2016-06-03 2018-08-30 ユニスト(ウルサン ナショナル インスティテュート オブ サイエンス アンド テクノロジー) Secondary battery module and method of manufacturing secondary battery module
KR20200133053A (en) * 2019-05-15 2020-11-26 울산과학기술원 Secondary battery for desalinated water production and desalinated apparatus including the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007517979A (en) * 2003-12-11 2007-07-05 アメリカン パシフィック コーポレイション Electrolytic method for producing alkali alcoholates using solid membranes of ion-conducting ceramics
WO2009011841A1 (en) * 2007-07-13 2009-01-22 Ceramatec, Inc. Cleansing agent generator and dispenser
KR20120062799A (en) * 2009-08-20 2012-06-14 제너럴 일렉트릭 캄파니 Solid electrolyte producing assembly and method
KR101190610B1 (en) * 2012-04-13 2012-10-15 한국기계연구원 Method for generation of electrical power and desalination using hybrid of forward osmosis and fuel cell and hybrid generation system of electrical power and desalination using forward osmosis and fuel cell using thereof
WO2013134114A2 (en) * 2012-03-04 2013-09-12 Indiana University Research And Technology Center Method and apparatus for extracting energy and metal from seawater electrodes

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007517979A (en) * 2003-12-11 2007-07-05 アメリカン パシフィック コーポレイション Electrolytic method for producing alkali alcoholates using solid membranes of ion-conducting ceramics
WO2009011841A1 (en) * 2007-07-13 2009-01-22 Ceramatec, Inc. Cleansing agent generator and dispenser
KR20120062799A (en) * 2009-08-20 2012-06-14 제너럴 일렉트릭 캄파니 Solid electrolyte producing assembly and method
WO2013134114A2 (en) * 2012-03-04 2013-09-12 Indiana University Research And Technology Center Method and apparatus for extracting energy and metal from seawater electrodes
KR101190610B1 (en) * 2012-04-13 2012-10-15 한국기계연구원 Method for generation of electrical power and desalination using hybrid of forward osmosis and fuel cell and hybrid generation system of electrical power and desalination using forward osmosis and fuel cell using thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018524758A (en) * 2016-06-03 2018-08-30 ユニスト(ウルサン ナショナル インスティテュート オブ サイエンス アンド テクノロジー) Secondary battery module and method of manufacturing secondary battery module
US10573928B2 (en) 2016-06-03 2020-02-25 Unist (Ulsan National Institute Of Science And Technology) Rechargeable battery module and method for manufacturing the same
KR20200133053A (en) * 2019-05-15 2020-11-26 울산과학기술원 Secondary battery for desalinated water production and desalinated apparatus including the same
KR102240030B1 (en) * 2019-05-15 2021-04-14 울산과학기술원 Secondary battery for desalinated water production and desalinated apparatus including the same

Similar Documents

Publication Publication Date Title
US10992002B2 (en) Secondary battery
KR20150091984A (en) Sea water secondary battery for manufacturing desalinated water
Walter et al. Challenges and benefits of post-lithium-ion batteries
Wan et al. Energy storage chemistry in aqueous zinc metal batteries
KR20150091834A (en) Sea water secondary battery for capturing co_2
KR20160121998A (en) Secondary battery and pouch type secondary battery
Zhang et al. Assembly of aqueous rechargeable magnesium ions battery capacitor: the nanowire Mg-OMS-2/graphene as cathode and activated carbon as anode
KR101788180B1 (en) SEA WATER SECONDARY BATTERY FOR MANUFACTURING Cl OR ACTIVE MATERIAL, APPARATUS AND METHOD FOR TREATING BALLAST WATER USING THE SAME
CN102763254B (en) High energy density redox flow device
US8828574B2 (en) Electrolyte compositions for aqueous electrolyte lithium sulfur batteries
JP5099299B2 (en) Positive electrode material for lithium secondary battery, method for producing the same, and lithium secondary battery
WO2016114141A1 (en) Aqueous electrolyte solution for electrical storage device, and electrical storage device including said aqueous electrolyte solution
TWI633697B (en) A material for use in cathode of a sodium-ion secondary cell
CN104335395B (en) Anode active material for lithium secondary battery and the lithium secondary battery comprising the material
KR20160136703A (en) Hybrid battery system
CN107799721A (en) Prelithiation negative pole including its secondary cell and their manufacture method
WO2014121276A2 (en) Metal sulfide electrodes and energy storage devices thereof
CN108242560A (en) Zinc-base Dual-ion cell and preparation method thereof
KR20080091883A (en) High capacity electrode for lithium secondary battery and lithium secondary battery containing the same
TW201826592A (en) Anodes, cathodes, and separators for batteries and methods to make and use same
CN108172895A (en) Secondary cell
WO2010124172A2 (en) A metal air battery system
KR20180003813A (en) A battery using solution containing sodium and attachable battery
JP2020024819A (en) Positive active material for aqueous zinc ion battery
Li et al. Reversible transformation of a zinc salt-boosted high areal capacity manganese dioxide cathode for energy-dense and stable aqueous zinc batteries

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15745851

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016549730

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15745851

Country of ref document: EP

Kind code of ref document: A1