WO2015119362A1 - Anticancer adjuvant composition containing rip3 expression promoter as active ingredient, method for screening for anticancer adjuvant enhancing sensitivity of anticancer drug by promoting rip3 expression, and method for monitoring sensitivity of anticancer drug - Google Patents

Anticancer adjuvant composition containing rip3 expression promoter as active ingredient, method for screening for anticancer adjuvant enhancing sensitivity of anticancer drug by promoting rip3 expression, and method for monitoring sensitivity of anticancer drug Download PDF

Info

Publication number
WO2015119362A1
WO2015119362A1 PCT/KR2014/011376 KR2014011376W WO2015119362A1 WO 2015119362 A1 WO2015119362 A1 WO 2015119362A1 KR 2014011376 W KR2014011376 W KR 2014011376W WO 2015119362 A1 WO2015119362 A1 WO 2015119362A1
Authority
WO
WIPO (PCT)
Prior art keywords
rip3
expression
cancer
protein
cancer cells
Prior art date
Application number
PCT/KR2014/011376
Other languages
French (fr)
Korean (ko)
Inventor
김유선
구기방
윤정호
김우중
조유나
Original Assignee
아주대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to CA2938821A priority Critical patent/CA2938821A1/en
Priority to MX2016010177A priority patent/MX2016010177A/en
Priority to NZ723237A priority patent/NZ723237A/en
Priority to RU2016135933A priority patent/RU2016135933A/en
Priority to US15/116,591 priority patent/US10391115B2/en
Priority to CN201480077473.XA priority patent/CN106132435B/en
Priority to JP2016568771A priority patent/JP6464436B2/en
Priority to AU2014382143A priority patent/AU2014382143B2/en
Application filed by 아주대학교산학협력단 filed Critical 아주대학교산학협력단
Priority to EP14882054.1A priority patent/EP3103475B1/en
Priority to SG11201606439VA priority patent/SG11201606439VA/en
Priority claimed from KR1020140164963A external-priority patent/KR101721407B1/en
Publication of WO2015119362A1 publication Critical patent/WO2015119362A1/en
Priority to IL247120A priority patent/IL247120A0/en
Priority to PH12016501554A priority patent/PH12016501554A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/337Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having four-membered rings, e.g. taxol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7028Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages
    • A61K31/7034Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin
    • A61K31/704Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin attached to a condensed carbocyclic ring system, e.g. sennosides, thiocolchicosides, escin, daunorubicin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7042Compounds having saccharide radicals and heterocyclic rings
    • A61K31/7048Compounds having saccharide radicals and heterocyclic rings having oxygen as a ring hetero atom, e.g. leucoglucosan, hesperidin, erythromycin, nystatin, digitoxin or digoxin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7042Compounds having saccharide radicals and heterocyclic rings
    • A61K31/7052Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides
    • A61K31/706Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/90Enzymes; Proenzymes
    • G01N2333/91Transferases (2.)
    • G01N2333/912Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • G01N2333/91205Phosphotransferases in general
    • G01N2333/9121Phosphotransferases in general with an alcohol group as acceptor (2.7.1), e.g. general tyrosine, serine or threonine kinases
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2500/00Screening for compounds of potential therapeutic value
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/70Mechanisms involved in disease identification
    • G01N2800/7023(Hyper)proliferation
    • G01N2800/7028Cancer

Definitions

  • the present invention relates to an anticancer adjuvant composition comprising a RIP3 expression promoter as an active ingredient and a method of combined administration with an anticancer agent.
  • the present invention also relates to an anticancer adjuvant screening method for promoting RIP3 expression and enhancing anticancer drug sensitivity and an anticancer drug sensitivity monitoring method through RIP3 expression.
  • the present invention also provides a method for providing anti-cancer drug sensitivity diagnostic biomarker composition comprising the RIP3 gene or a protein expressed from the gene and information necessary for anticancer drug susceptibility prognosis.
  • Receptor-interacting protein kinase-3 (RIP3 or RIPK3) is an important protein for apoptosis and plays a role in apoptosis by death receptors or apoptosis by other cellular stresses. .
  • RIP3 Receptor-interacting protein kinase-3
  • RIP1 Receptor-interacting protein kinase-3
  • MLKL mixed lineage kinase domain-like protein
  • the regulated mechanism of this signal transduction system is driven by apoptosis-regulating proteins, which regulate cell death and immune responses in lymphocytes, keratinocytes, and intestinal epithelial cells. Regulated necrosis plays a role in many etiological processes, such as degenerative, immune, and infectious and ischemic damage.
  • An object of the present invention is to provide an anticancer adjuvant pharmaceutical composition comprising a receptor-interacting protein kinase-3 (RIP3) protein expression promoter or an activator and an anticancer agent and a method for enhancing cancer cell death, which is used in combination with an anticancer agent.
  • RIP3 receptor-interacting protein kinase-3
  • An object of the present invention is to provide an anticancer adjuvant screening method for promoting RIP3 (Receptor-interacting protein kinase-3) expression to enhance anticancer drug sensitivity and an anticancer drug sensitivity monitoring method through RIP3 expression.
  • RIP3 Receptor-interacting protein kinase-3
  • Another object of the present invention is to provide an anticancer drug sensitivity diagnostic biomarker composition comprising a RIP3 gene or a protein expressed from the gene.
  • Still another object of the present invention is to provide a kit for predicting and diagnosing a cancer drug susceptibility diagnostic kit comprising a primer for amplifying the RIP3 gene or an antibody or aptamer specifically binding to a protein expressed from the gene.
  • Still another object of the present invention is to provide information necessary for anticancer susceptibility prognosis and anticancer agent reactivity, including measuring the expression level of RIP3 from a cancer patient sample.
  • the present invention provides a pharmaceutical composition for adjuvant anticancer comprising a receptor-interacting protein kinase-3 (RIP3) protein expression promoter or activator.
  • a receptor-interacting protein kinase-3 (RIP3) protein expression promoter or activator comprising a receptor-interacting protein kinase-3 (RIP3) protein expression promoter or activator.
  • the present invention is a receptor-interacting protein kinase-3 (RIP3) protein expression promoter or activator; And it provides a method for enhancing cancer cell death, characterized in that the anticancer agent in combination with cancer cells.
  • RIP3 receptor-interacting protein kinase-3
  • the present invention comprises the steps of contacting the test substance to cancer cells; Measuring the level of expression or activity of a receptor-interacting protein kinase-3 (RIP3) protein in cancer cells in contact with the test substance; And it provides a method for screening an anticancer adjuvant comprising the step of selecting a test substance with increased expression or activity of the RIP3 protein compared to the control sample.
  • a receptor-interacting protein kinase-3 RIP3
  • the present invention comprises the steps of measuring the expression or activity of the RIP3 protein in cancer cells; Measuring the expression or activity of RIP3 protein in normal tissue cells; And if the expression or activity of the RIP3 protein measured in the normal tissue cells compared to the expression or activity of the RIP3 protein is low
  • the anti-cancer drug susceptibility monitoring method comprising the step of determining the resistance to cancer.
  • the present invention comprises the steps of treating the cancer cells RIP3 protein expression promoter or activator; Measuring the expression or activity of RIP3 protein in the treated cancer cells; And when the expression or activity of the RIP3 protein after the treatment is increased by 50 to 100% compared to the control sample before the treatment provides an anticancer drug sensitivity enhancement method comprising the step of determining that the anticancer drug sensitivity.
  • the present invention provides a biomarker composition for diagnosing anticancer drug sensitivity comprising the RIP3 gene or a protein expressed from the gene.
  • the biomarker may predict cancer in tissues.
  • the present invention provides a kit for diagnosing anticancer agent sensitivity comprising a primer for amplifying the RIP3 gene or an antibody or aptamer specifically binding to a protein expressed from the gene.
  • the kit may provide information necessary for predictive diagnosis of cancer in the tissue.
  • the present invention comprises the steps of measuring the expression level of RIP3 in a cancer patient sample; Measuring the expression level of RIP3 in the normal control sample; And determining that the anti-cancer drug resistance is low when the expression level of the RIP3 protein measured in the cancer patient sample is lower than the expression level of the RIP3 protein measured in the normal control sample.
  • the present invention relates to an anticancer adjuvant composition
  • an anticancer adjuvant composition comprising a RIP3 expression promoter as an active ingredient and a method of coadministration with an anticancer agent.
  • a triple negative (ER, PR, Her2 negative) patient presenting a problem in cancer treatment 90 RIP3 expression was found to be low in%, indicating a significant decrease in RIP3 expression in cancer tissues compared to normal tissues of the same patient, suggesting that RIP3 is selectively lacking during tumor development and growth.
  • pretreatment with demethylating agents to induce RIP3 expression, followed by conventional chemotherapy would be an effective treatment strategy.
  • the present invention relates to an anticancer adjuvant screening method that promotes RIP3 expression and enhances anticancer drug susceptibility and an anticancer drug susceptibility monitoring method through RIP3 expression.
  • RIP3 expression regulation affects the anticancer drug resistance of cancer cells.
  • RIP3 expression when RIP3 expression is inhibited, cancer cells are resistant to anticancer drugs, and thus the activity of the anticancer agent is decreased.
  • RIP3 when RIP3 is expressed, it was confirmed that cancer cell death was increased depending on anticancer agent concentration. This is expected to be an effective strategy for screening anticancer adjuvants to monitor the sensitivity of anticancer drugs and to enhance the anticancer drug sensitivity in chemotherapy.
  • Figure 3 is the result of RIP3 expression by the demethylating agent 5-azacytidine (5-AZA).
  • 5 is a result of the cancer cell line death sensitization by the combination of the demethylating agent (5-AD and 5-AZA) and the anticancer agent.
  • Fig. 6 shows the results of inhibition of cancer cell line killing sensitization effect of demethylating agent (5-AD) by inhibition of RIP3 expression.
  • FIG. 7 is an immunostaining picture of RIP3 of representative normal breast tissue and breast cancer tissue.
  • FIGS. 8 and 9 are representative H-score schematics for immunostaining of RIP3 in normal breast and breast cancer tissues.
  • FIG. 11 shows the survival rate of T47D according to the concentration-specific treatment of the anticancer agent in cells in which RIP3 expression is suppressed.
  • RIP3-dependent apoptosis may have an effect on cytotoxicity in chemotherapeutic agents.
  • RIP3 expression is inhibited, and this inhibition of RIP3 expression is not only resistant to apoptosis by death receptors, but also to a variety of standard anticancer therapies such as chemotherapeutic agents, particularly DNA damaging drugs or taxanes. It could be confirmed that it gives resistance.
  • the present inventors were able to confirm that the regulation of RIP3 expression affects the resistance to anticancer drugs of cancer cell lines.
  • RIP3 expression when RIP3 expression is inhibited, cancer cells become resistant to anticancer drugs and the activity of the anticancer drugs is inhibited, whereas RIP3 is expressed.
  • the present invention When it was confirmed that the cancer cell death is increased depending on the anticancer agent concentration was completed the present invention.
  • the RIP3 protein expression promoter or activator may be a compound, peptide, peptide mimetics, aptamers, antibodies and natural products that specifically bind to the gene expression control region of RIP3.
  • the composition can induce demethylation of RIP3 protein.
  • the cancer may be, but is not limited to, breast cancer, cervical cancer, liver cancer or colon cancer.
  • peptide mimetics in the present invention is a peptide or nonpeptide that inhibits the binding domain of the RIP3 protein leading to RIP3 activity.
  • the term "Aptamer” is a single-stranded nucleic acid (DNA, RNA or modified nucleic acid) having a stable tertiary structure by itself and having a characteristic that can bind with high affinity and specificity to a target molecule. Aptamers are compared to single antibodies because of their inherent high affinity (usually pM levels) and their specificity to bind to target molecules, and thus have high potential as alternative antibodies, particularly as "chemical antibodies.”
  • the pharmaceutical composition of the present invention may include chemicals, nucleotides, antisenses, siRNA oligonucleotides, and natural extracts as active ingredients.
  • the pharmaceutical compositions or complex preparations of the present invention may be prepared using pharmaceutically acceptable and physiologically acceptable auxiliaries in addition to the active ingredients, which may include excipients, disintegrants, sweeteners, binders, coatings, swelling agents, lubricants. Solubilizers such as lubricants and flavoring agents can be used.
  • the pharmaceutical composition of the present invention may be preferably formulated into a pharmaceutical composition by containing one or more pharmaceutically acceptable carriers in addition to the active ingredient for administration.
  • Acceptable pharmaceutical carriers in compositions formulated in liquid solutions are sterile and physiologically compatible, including saline, sterile water, Ringer's solution, buffered saline, albumin injectable solutions, dextrose solution, maltodextrin solution, glycerol, ethanol and One or more of these components may be mixed and used, and other conventional additives such as antioxidants, buffers and bacteriostatic agents may be added as necessary. Diluents, dispersants, surfactants, binders and lubricants may also be added in addition to formulate into injectable formulations, pills, capsules, granules or tablets such as aqueous solutions, suspensions, emulsions and the like.
  • compositions of the present invention may be granules, powders, coated tablets, tablets, capsules, suppositories, syrups, juices, suspensions, emulsions, drops or injectable solutions and sustained release formulations of the active compounds, and the like.
  • the pharmaceutical compositions of the present invention may be administered in a conventional manner via intravenous, intraarterial, intraperitoneal, intramuscular, intraarterial, intraperitoneal, sternum, transdermal, nasal, inhalation, topical, rectal, oral, intraocular or intradermal routes.
  • An effective amount of the active ingredient of the pharmaceutical composition of the present invention means an amount required to prevent or treat a disease.
  • the type of disease the severity of the disease, the type and amount of the active and other ingredients contained in the composition, the type of formulation and the age, weight, general health, sex and diet, sex and diet, time of administration, route of administration and composition of the patient. It can be adjusted according to various factors including the rate of secretion, the duration of treatment, and the drug used concurrently.
  • the inhibitor of the present invention when administered once or several times a day, is administered once or several times a day, when the compound is 0.1ng / kg to 10g / kg, a polypeptide,
  • 0.1ng / kg ⁇ 10g / kg antisense nucleotides, siRNA, shRNAi, miRNA can be administered at a dose of 0.01ng / kg ⁇ 10g / kg.
  • the present invention is a receptor-interacting protein kinase-3 (RIP3) protein expression promoter or activator; And it provides a method for enhancing cancer cell death, characterized in that the anticancer agent in combination with cancer cells.
  • RIP3 receptor-interacting protein kinase-3
  • treating cancer cells with a receptor-interacting protein kinase-3 (RIP3) protein expression promoter or activator may comprise the step of administering an anticancer agent to the treated cancer cells.
  • a receptor-interacting protein kinase-3 (RIP3) protein expression promoter or activator may comprise the step of administering an anticancer agent to the treated cancer cells.
  • the cancer cells may be breast cancer cells, cervical cancer cells, liver cancer cells or colorectal cancer cells, and the anticancer agent may be doxorubicin or etoposide, but is not limited thereto.
  • the present invention comprises the steps of contacting a test substance to cancer cells; Measuring the level of expression or activity of a receptor-interacting protein kinase-3 (RIP3) protein in cancer cells in contact with the test substance; And it provides a method for screening an anticancer adjuvant comprising the step of selecting a test substance with increased expression or activity of the RIP3 protein compared to the control sample.
  • a receptor-interacting protein kinase-3 RIP3
  • the expression or activity level of the RIP3 protein is reverse transcriptase-polymerase chain reaction (RT-PCR), enzyme immunoassay (ELISA), immunohistochemistry, Western blotting and flow cytometry. It may be measured by any one selected from the group consisting of assays (FACS), but is not limited thereto.
  • RT-PCR reverse transcriptase-polymerase chain reaction
  • ELISA enzyme immunoassay
  • FACS assays
  • the anticancer adjuvant may enhance the sensitivity of the anticancer agent. More specifically, the anticancer agent is preferably doxorubicin, etoposide, or taxol, but is not limited thereto.
  • test material refers to an unknown candidate used in screening to examine whether it affects the expression level of a gene or affects the expression or activity of a protein. do.
  • the sample includes, but is not limited to, chemicals, nucleotides, antisense-RNAs, small interference RNAs (siRNAs), and natural extracts.
  • the present invention comprises the steps of measuring the expression or activity of the RIP3 protein in cancer cells; Measuring the expression or activity of RIP3 protein in normal tissue cells; And if the expression or activity of the RIP3 protein measured in the normal tissue cells compared to the expression or activity of the RIP3 protein is low
  • the anti-cancer drug susceptibility monitoring method comprising the step of determining the resistance to cancer.
  • the cancer cells may be breast cancer cells, cervical cancer cells, liver cancer cells or colorectal cancer cells, and the anticancer agent may be, but is not limited to, doxorubicin, etoposide, or taxol. .
  • the present invention comprises the steps of treating the cancer cells RIP3 protein expression promoter or activator; Measuring the expression or activity of RIP3 protein in the treated cancer cells; And when the expression or activity of the RIP3 protein after the treatment is increased by 50 to 100% compared to the control sample before the treatment provides an anticancer drug sensitivity enhancement method comprising the step of determining that the anticancer drug sensitivity.
  • the present invention provides a biomarker composition for diagnosing anticancer drug sensitivity comprising the RIP3 gene or a protein expressed from the gene.
  • diagnosis refers to determining the susceptibility of an object to a particular disease or condition, determining whether an object currently has a particular disease or condition, or as long as a person has a particular disease or condition. Determining the prognosis of the object, or therametrics (eg, monitoring the condition of the object to provide information about treatment efficacy).
  • the present invention provides a kit for diagnosing anticancer agent sensitivity comprising a primer for amplifying the RIP3 gene or an antibody or aptamer specifically binding to a protein expressed from the gene.
  • primer refers to a nucleic acid sequence having a short free 3-terminal hydroxyl group, which can form complementary templates and base pairs and act as a starting point for template strand copying. Refers to a nucleic acid sequence. Primers can initiate DNA synthesis in the presence of four different nucleoside triphosphates and reagents for polymerization (ie, DNA polymerase or reverse transcriptase) at appropriate buffers and temperatures. PCR conditions, sense and antisense primer lengths may be appropriately selected according to techniques known in the art.
  • the expression level of the RIP3 may be measured through an antigen-antibody reaction, and more specifically, the antigen-antibody response may be performed according to various quantitative or qualitative immunoassay protocols developed in the prior art.
  • the immunoassay format includes enzyme immunoassay (ELISA), radioimmunoassay (RIA), sandwich assay, western blotting, immunoprecipitation, immunohistochemical staining, and flow cytometry (flow). cytometry), fluorescence activated cell sorting (FACS), enzyme substrate coloration, and antigen-antibody aggregation.
  • patient sample includes samples such as tissues, cells, whole blood, serum, plasma, saliva, sputum, cerebrospinal fluid, or urine that differ from the normal control in the expression level of RIP3, a cancer marker susceptibility diagnostic biomarker. However, it is not limited thereto.
  • Various cancer cell lines were cultured in media presented by ATCC. DLD1, HeLa, MCF7 were incubated in DMEM with 10% fetal bovine serum, 2 mM glutamine, 100 U / mL penicillin and 100 ug / mL streptomycin. HCC1937, BT-549, MDA-MB231, MDA-MB468, SK-BR3, ZR75-1, T47D contains 10% fetal bovine serum, 2 mM glutamine, 100 U / mL penicillin And RPMI with 100 / mL streptomycin added.
  • HMLE Mammary epithelial cells
  • MISSION short-hairpin RNA (shRNA) plasmids targeting the coding site or 3 'UTR of hRIP3 mRNA (NM_006871) and non-target control sequences (NM-027088) were obtained from Sigma-Aldrich.
  • Lentivirus plasmids were transfected into 293T cells (System Biosciences, LV900A-1) using Lipofectamine 2000 (Invitrogen, 11668019). Pseudoviral particles were collected two days after lentiviral plasmid transfection and infected with various cancer cells in the presence of polybrene (10 ⁇ g / mL). Two days after infection, infected cells were selected with puromycin and RIP3 knockdown was confirmed by immunoblotting. Cells not previously expressing endogenous RIP3 were treated with 5-AD for 4 days later, and then analyzed by immunoblotting.
  • Cells were lysed in M2 buffer. Equal amounts of cell extracts were analyzed via SDS-PAGE and Western blot and visualized with increased chemiluminescence (ECL, Amersham).
  • Apoptosis was measured using a tetrazolium dye colorimetric test [MTT Assay] and measured at 570 nm.
  • Immunohistochemical analysis was performed using UltraVision LP Detection System TL-060-HD (Thermo Scientific, Bioanalytica) according to the manufacturer's instructions. Thin paraffin sections (4.5 ⁇ m) were removed with xylene and rehydrated in various concentrations of aqueous ethanol. Antigen recovery was performed by heating the slides for 15 minutes with a microwave in 10 mM citrate buffer (pH 6.0). The endogenous peroxidase activity was blocked by reacting with 3% hydrogen peroxide dissolved in TBS for 10 minutes and reacted overnight at 4 ° C. with an anti-RIP3 antibody diluted 1: 300.
  • H-score 3'-diaminobenzidine
  • the cancer cell lines were cultured at 10-20% density, treated with 5-AD twice for 4 days, and then RIP3 expression patterns were analyzed using Western blotting.
  • the demethylating agent (5-AD, 2uM) was treated to three cancer cell lines (HeLa, MDA-MB231, BT549) that do not express RIP3, expression of RIP3 was induced. This means that the expression of RIP3 is suppressed (FIG. 2).
  • the cancer cell lines were initially cultured at a density of 10-20%, and then treated with 5-AD or 5-AZA twice for 4 days to induce the expression of RIP3. After culturing the same number of drug-treated HeLa cancer cell lines, the same concentration of anticancer agent was treated to analyze the sensitization effect by the demethylating agent.
  • the Lenti-virus system was used to create stable cells that continuously inhibit RIP3 expression in cervical cancer cell lines (HeLa cell lines).
  • HeLa cell lines cervical cancer cell lines
  • expression of RIP3 is inhibited by shRNA despite 5-AD treatment. Therefore, the function of RIP3 could be confirmed in the sensitizing effect of the combination of anticancer and demethylating agents.
  • Non-target cell lines and shRIP3 cell lines were initially cultured at 10-20% density, and then treated with 5-AD twice for 4 days to determine the expression of RIP3. And the sensitizing effect by the combined treatment with the anti-cancer drug cultured the same number was analyzed using a cell death experiment (MTT assay) (Fig. 6).
  • Demethylating agents are not drugs specific to specific proteins, and therefore may cause expression of various proteins in addition to RIP3. Therefore, in order to determine whether apoptosis sensitization effect by the combination of anticancer agent and demethylating agent is effected by proteins other than RIP3, experiments were performed using shRIP3 cell line that specifically inhibits RIP3 expression. In non-target cell lines, 5-AD treatment produces a sensitizing effect in combination with anticancer agents by the expression of RIP3, but 5-AD in shRIP3 cell lines that specifically inhibit RIP3 expression. RIP3 is not expressed by the shRNA system even after treatment.
  • Paraffin blocks were prepared by separating tumor tissue from non-tumor tissue from 132 breast cancer patients.
  • the prepared paraffin block was cut to a thickness of 4.5 ⁇ m and used for plating on slides.
  • the non-specific enzyme reaction is removed with hydrogen peroxide, and then the hidden antigen is disassembled using a citric acid solvent.
  • the diluted normal serum is reacted for 20 minutes to block the nonspecific reaction, followed by 24 hours reaction with RIP3 (1: 300).
  • the secondary antibody conjugated with biotinin is washed with water for 30 minutes.
  • avidin-biotin complex After reacting with avidin-biotin complex for 30 minutes, it is washed with water, and then dyed for 5 minutes with DAB colorant. After staining the nucleus with hematoxylin, it is washed with water and enclosed.
  • the intensity of color development with DAB was set to 0 (no color development), 1 (weak color development), 2 (medium color), 3 (strong color development), and the range of the dyed area and the intensity was expressed as H-score. Staining results were analyzed by a pathologist.
  • the experimental results showed immunostaining pictures of RIP3 of representative normal breast tissue and breast cancer tissue, and the results were plotted with H-score (FIGS. 7, 8 and 9). It was confirmed that the expression of RIP3 is significantly decreased in cancer tissues compared to normal breast tissues.
  • HT-29 cells (American Tissue Culture Collection) were cultured in a 37 ° C. incubator using DMEM medium supplemented with penicillin-streptomycin (10 IU / ml) and 10% FBS.
  • the shRNAi double helix used in the present invention was commercially synthesized from Sigma-Aldrich.
  • the shRNA used in the present invention was designed for the targeting of the coding region of the human RIPK3 mRNA sequence (NCBI Reference sequence NM_006871).
  • HT-29 cells were dispensed 2 ⁇ 10 5 in 35 mm dish. The next day the cells were transformed with shRNA particles with polybrene (10ug / ml) according to the protocol instructions.
  • the control group used shRNAs that did not target specific proteins (NCBI Reference sequence NM_027088).
  • HT-29 cells transformed with RIP3 shRNA were incubated for 48 hours after 2.5uM of doxorubicin, 5uM and 50uM of etoposide and 100uM, and the test was performed with 0.1mg of MTT (3-([ Replace with fresh medium containing 4,5-dimethylthiazol-2-yl0] -2,5-diphenyltetrazolium bromide) and incubate for another 2 hours.
  • MTT 3-([ Replace with fresh medium containing 4,5-dimethylthiazol-2-yl0] -2,5-diphenyltetrazolium bromide
  • the control group reduced cell viability depending on the concentration of Doxorubicin and Etoposide, whereas the experimental group knocked down RIP3 using shRNA cells compared to the control group. It was confirmed that the survival rate was increased.
  • RIP3 In order to confirm that RIP3 also affects breast cancer cells, T47D cells expressing RIP3 were used. First, RIP3 was transformed by the same method described in Example 6.
  • RIP3 expression regulation affects the resistance to cancer cell lines.
  • cancer cells become resistant to anticancer drugs and the activity of anticancer drugs is inhibited, whereas RIP3 is expressed. Cancer cell death was increased depending on the concentration of anticancer drugs.
  • FIG. 12 shows a metastatic relapse-free survival graph for 10 years of 1,166 breast cancer patients.

Abstract

The present invention relates to an anticancer adjuvant pharmaceutical composition containing a receptor-interacting protein kinase-3 (RIP3) protein expression promoter or activator as an active ingredient. In addition, the present invention provides a method for enhancing cancer cell death, by administering, to cancer cells, a RIP3 protein expression promoter or activator and an anticancer drug in combination. Additionally, the present invention relates to: a method for screening for an anticancer adjuvant which enhances the sensitivity of an anticancer drug by promoting RIP3 expression; and a method for monitoring the sensitivity of an anticancer drug through whether RIP3 is expressed. Therefore, it is expected that pretreating a demethylating agent so as to induce RIP3 expression and then using a conventional chemotherapeutic agent in a patient lacking RIP3 expression could be an effective treatment strategy. In addition, it is expected that monitoring the sensitivity of an anticancer drug and screening for an anticancer adjuvant enhancing the sensitivity of an anticancer drug in cancer treatment could be an effective strategy.

Description

RIP3 발현촉진제를 유효성분으로 포함하는 항암보조용 조성물, RIP3 발현을 촉진하여 항암제 감수성을 증진시키는 항암 보조제 스크리닝 방법 및 항암제 감수성 모니터링 방법Anticancer adjuvant composition comprising RIP3 expression promoter as an active ingredient, anticancer adjuvant screening method for promoting RIP3 expression and anticancer agent susceptibility monitoring method
본 발명은 RIP3 발현촉진제를 유효성분으로 포함하는 항암보조용 조성물 및 항암제와의 병용투여 방법에 관한 것이다. 또한, 본 발명은 RIP3 발현을 촉진하여 항암제 감수성을 증진시키는 항암 보조제 스크리닝 방법 및 RIP3 발현 여부를 통한 항암제 감수성 모니터링 방법에 관한 것이다. 또한, 본 발명은 RIP3 유전자 또는 상기 유전자로부터 발현된 단백질을 포함하는 항암제 감수성 진단용 바이오마커 조성물 및 항암제 감수성 예후 진단에 필요한 정보를 제공하는 방법을 제공한다. The present invention relates to an anticancer adjuvant composition comprising a RIP3 expression promoter as an active ingredient and a method of combined administration with an anticancer agent. The present invention also relates to an anticancer adjuvant screening method for promoting RIP3 expression and enhancing anticancer drug sensitivity and an anticancer drug sensitivity monitoring method through RIP3 expression. The present invention also provides a method for providing anti-cancer drug sensitivity diagnostic biomarker composition comprising the RIP3 gene or a protein expressed from the gene and information necessary for anticancer drug susceptibility prognosis.
수용체-작용 단백질 인산화효소-3(Receptor-interacting protein kinase-3; RIP3 또는 RIPK3)는 세포사멸에 중요한 단백질로서, 죽음수용체에 의한 세포사멸이나 다른 세포적 스트레스에 의한 세포사멸에서 그 역할을 수행한다. 이들 세포사멸 신호는 인산화나 탈아세틸화에 의존적인 RIP1과의 복합체 및 혼합 혈통 인산화효소 도메인-유사 단백질(Mixed lineage kinase domain-like protein; MLKL)과의 결합을 통해 이루어지며 미토콘드리아에 존재하는 단백질이 관여하는 것으로 알려져 있다. 이러한 신호 전달계의 조절된 기전이 사멸조절 단백질들에 의해 이루어져서 발생뿐만 아니라 혈액세포 (lymphocytes), 피부세포 (keratinocyte), 그리고 장내 상피세포의 세포사멸, 면역반응들을 조절하게 된다. 조절된 괴사(Regulated necrosis)는 퇴행성, 면역성, 그리고 감염질환과 허혈성 손상과 같은 많은 병인론적 과정에서 그 역할을 더하고 있다. Receptor-interacting protein kinase-3 (RIP3 or RIPK3) is an important protein for apoptosis and plays a role in apoptosis by death receptors or apoptosis by other cellular stresses. . These apoptosis signals are via complexation with RIP1, which is dependent on phosphorylation or deacetylation, and by binding to a mixed lineage kinase domain-like protein (MLKL), a protein present in the mitochondria. It is known to be involved. The regulated mechanism of this signal transduction system is driven by apoptosis-regulating proteins, which regulate cell death and immune responses in lymphocytes, keratinocytes, and intestinal epithelial cells. Regulated necrosis plays a role in many etiological processes, such as degenerative, immune, and infectious and ischemic damage.
본 발명의 목적은 RIP3(Receptor-interacting protein kinase-3) 단백질 발현 촉진제 또는 활성화제를 유효성분으로 포함하는 항암 보조용 약학조성물 및 이를 항암제와 병용투여하는 것을 특징으로 하는 암세포 사멸 증진 방법을 제공하는데 있다. Disclosure of Invention An object of the present invention is to provide an anticancer adjuvant pharmaceutical composition comprising a receptor-interacting protein kinase-3 (RIP3) protein expression promoter or an activator and an anticancer agent and a method for enhancing cancer cell death, which is used in combination with an anticancer agent. have.
본 발명의 목적은 RIP3(Receptor-interacting protein kinase-3) 발현을 촉진하여 항암제 감수성을 증진시키는 항암 보조제 스크리닝 방법 및 RIP3 발현 여부를 통한 항암제 감수성 모니터링 방법을 제공하는데 있다.Disclosure of Invention An object of the present invention is to provide an anticancer adjuvant screening method for promoting RIP3 (Receptor-interacting protein kinase-3) expression to enhance anticancer drug sensitivity and an anticancer drug sensitivity monitoring method through RIP3 expression.
본 발명의 다른 목적은 RIP3 유전자 또는 상기 유전자로부터 발현된 단백질을 포함하는 항암제 감수성 진단용 바이오마커 조성물을 제공하는데 있다.Another object of the present invention is to provide an anticancer drug sensitivity diagnostic biomarker composition comprising a RIP3 gene or a protein expressed from the gene.
본 발명의 또 다른 목적은 RIP3 유전자를 증폭하기 위한 프라이머 또는 상기 유전자로부터 발현된 단백질에 특이적으로 결합하는 항체 또는 앱타머를 포함하는 항암제 감수성 진단용 키트 및 조직내 암을 예측진단할 수 있는 키트를 제공하는데 있다.Still another object of the present invention is to provide a kit for predicting and diagnosing a cancer drug susceptibility diagnostic kit comprising a primer for amplifying the RIP3 gene or an antibody or aptamer specifically binding to a protein expressed from the gene. To provide.
본 발명의 또 다른 목적은 암환자 시료로부터 RIP3의 발현 수준을 측정하는 단계를 포함하는 항암제 감수성 예후 진단 및 항암제 반응성에 필요한 정보를 제공하는데 있다.Still another object of the present invention is to provide information necessary for anticancer susceptibility prognosis and anticancer agent reactivity, including measuring the expression level of RIP3 from a cancer patient sample.
상기 목적을 달성하기 위하여, 본 발명은 RIP3(Receptor-interacting protein kinase-3) 단백질 발현 촉진제 또는 활성화제를 유효성분으로 포함하는 항암 보조용 약학조성물을 제공한다.In order to achieve the above object, the present invention provides a pharmaceutical composition for adjuvant anticancer comprising a receptor-interacting protein kinase-3 (RIP3) protein expression promoter or activator.
또한, 본 발명은 RIP3(Receptor-interacting protein kinase-3) 단백질 발현 촉진제 또는 활성화제; 및 항암제를 암세포에 병용투여하는 것을 특징으로 하는 암세포 사멸 증진 방법을 제공한다.In addition, the present invention is a receptor-interacting protein kinase-3 (RIP3) protein expression promoter or activator; And it provides a method for enhancing cancer cell death, characterized in that the anticancer agent in combination with cancer cells.
또한, 본 발명은 암세포에 시험물질을 접촉시키는 단계; 상기 시험물질을 접촉한 암세포에서 RIP3(Receptor-interacting protein kinase-3) 단백질의 발현 또는 활성 정도를 측정하는 단계; 및 대조구 시료와 비교하여 상기 RIP3 단백질의 발현 또는 활성 정도가 증가한 시험물질을 선별하는 단계를 포함하는 항암 보조제 스크리닝 방법을 제공한다.In addition, the present invention comprises the steps of contacting the test substance to cancer cells; Measuring the level of expression or activity of a receptor-interacting protein kinase-3 (RIP3) protein in cancer cells in contact with the test substance; And it provides a method for screening an anticancer adjuvant comprising the step of selecting a test substance with increased expression or activity of the RIP3 protein compared to the control sample.
또한, 본 발명은 암세포에서 RIP3 단백질의 발현 또는 활성 정도를 측정하는 단계; 정상조직세포에서 RIP3 단백질의 발현 또는 활성 정도를 측정하는 단계; 및 상기 정상조직세포에서 측정된 RIP3 단백질의 발현 또는 활성 대비 상기 암세포에서 측정된 RIP3 단백질의 발현 또는 활성이 낮은 경우 항암제 저항성이 있다고 판단하는 단계를 포함하는 항암제 감수성 모니터링 방법을 제공한다.In addition, the present invention comprises the steps of measuring the expression or activity of the RIP3 protein in cancer cells; Measuring the expression or activity of RIP3 protein in normal tissue cells; And if the expression or activity of the RIP3 protein measured in the normal tissue cells compared to the expression or activity of the RIP3 protein is low The anti-cancer drug susceptibility monitoring method comprising the step of determining the resistance to cancer.
또한, 본 발명은 RIP3 단백질 발현 촉진제 또는 활성화제를 암세포에 처리하는 단계; 상기 처리된 암세포에서 RIP3 단백질의 발현 또는 활성 정도를 측정하는 단계; 및 상기 처리 전 대조구 시료 대비 상기 처리 후 RIP3 단백질의 발현 또는 활성이 50 내지 100% 증가한 경우 항암제 감수성이 증진되었다고 판단하는 단계를 포함하는 항암제 감수성 증진방법을 제공한다.In addition, the present invention comprises the steps of treating the cancer cells RIP3 protein expression promoter or activator; Measuring the expression or activity of RIP3 protein in the treated cancer cells; And when the expression or activity of the RIP3 protein after the treatment is increased by 50 to 100% compared to the control sample before the treatment provides an anticancer drug sensitivity enhancement method comprising the step of determining that the anticancer drug sensitivity.
또한, 본 발명은 RIP3 유전자 또는 상기 유전자로부터 발현된 단백질을 포함하는 항암제 감수성 진단용 바이오마커 조성물을 제공한다. 상기 바이오마커는 조직내 암을 예측진단할 수도 있다.In addition, the present invention provides a biomarker composition for diagnosing anticancer drug sensitivity comprising the RIP3 gene or a protein expressed from the gene. The biomarker may predict cancer in tissues.
또한, 본 발명은 RIP3 유전자를 증폭하기 위한 프라이머 또는 상기 유전자로부터 발현된 단백질에 특이적으로 결합하는 항체 또는 앱타머를 포함하는 항암제 감수성 진단용 키트를 제공한다. 또한, 상기 키트를 통해 조직내 암의 예측진단에 필요한 정보를 제공할 수 있다.In addition, the present invention provides a kit for diagnosing anticancer agent sensitivity comprising a primer for amplifying the RIP3 gene or an antibody or aptamer specifically binding to a protein expressed from the gene. In addition, the kit may provide information necessary for predictive diagnosis of cancer in the tissue.
또한, 본 발명은 암환자 시료에서 RIP3의 발현 수준을 측정하는 단계; 정상 대조구 시료에서 RIP3의 발현 수준을 측정하는 단계; 및 상기 정상 대조구 시료에서 측정된 RIP3 단백질의 발현 수준 대비 상기 암환자 시료에서 측정된 RIP3 단백질의 발현 수준이 낮은 경우 항암제 저항성이 있다고 판단하는 단계를 포함하는 항암제 감수성 예후 진단에 필요한 정보를 제공하는 방법을 제공한다.In addition, the present invention comprises the steps of measuring the expression level of RIP3 in a cancer patient sample; Measuring the expression level of RIP3 in the normal control sample; And determining that the anti-cancer drug resistance is low when the expression level of the RIP3 protein measured in the cancer patient sample is lower than the expression level of the RIP3 protein measured in the normal control sample. To provide.
본 발명은 RIP3 발현촉진제를 유효성분으로 포함하는 항암보조용 조성물 및 항암제와의 병용투여 방법에 관한 것으로서, 현재 암치료에 있어 문제가 제기되는 Triple negative (ER, PR, Her2 음성) 환자의 경우 90%에서 낮은 RIP3 발현을 확인할 수 있는데, 같은 환자의 정상조직에 비해 암조직에서의 현저한 RIP3 발현저하는 RIP3가 종양의 발생과 성장 동안 선택적으로 결여되는 것을 암시하고 있다 할 수 있으므로, RIP3의 발현이 결여된 환자의 경우 탈메틸화제를 전처치하여 RIP3의 발현을 유도한 후, 컨벤션한 화학요법제를 쓰는 것이 효과적 치료전략이 될 수 있을 것으로 예상된다. 또한 본 발명은 RIP3 발현을 촉진하여 항암제 감수성을 증진시키는 항암 보조제 스크리닝 방법 및 RIP3 발현 여부를 통한 항암제 감수성 모니터링 방법에 관한 것으로서, 현재 암치료에 있어 문제가 제기되는 Triple negative (ER, PR, Her2 음성) 환자의 경우 90%에서 낮은 RIP3 발현을 확인할 수 있는데, RIP3 발현 조절이 암세포의 항암제 저항성에 영향을 미치는 것을 확인할 수 있었으며, 특히 RIP3 발현이 억제되는 경우 암세포가 항암제에 내성을 가져 항암제의 활성이 억제되는 반면, RIP3가 발현되는 경우 항암제 농도 의존적으로 암세포의 사멸이 증가 되는 것을 확인하였다. 이는 항암치료에 있어서 항암제의 감수성을 모니터링하고, 항암제 감수성을 증진시키는 항암 보조제를 스크리닝하는데 효과적 전략이 될 수 있을 것으로 예상된다.The present invention relates to an anticancer adjuvant composition comprising a RIP3 expression promoter as an active ingredient and a method of coadministration with an anticancer agent. In the case of a triple negative (ER, PR, Her2 negative) patient presenting a problem in cancer treatment, 90 RIP3 expression was found to be low in%, indicating a significant decrease in RIP3 expression in cancer tissues compared to normal tissues of the same patient, suggesting that RIP3 is selectively lacking during tumor development and growth. In patients with deficiency, pretreatment with demethylating agents to induce RIP3 expression, followed by conventional chemotherapy would be an effective treatment strategy. In addition, the present invention relates to an anticancer adjuvant screening method that promotes RIP3 expression and enhances anticancer drug susceptibility and an anticancer drug susceptibility monitoring method through RIP3 expression. In 90% of patients, low RIP3 expression was found, and it was confirmed that RIP3 expression regulation affects the anticancer drug resistance of cancer cells.In particular, when RIP3 expression is inhibited, cancer cells are resistant to anticancer drugs, and thus the activity of the anticancer agent is decreased. In contrast, when RIP3 is expressed, it was confirmed that cancer cell death was increased depending on anticancer agent concentration. This is expected to be an effective strategy for screening anticancer adjuvants to monitor the sensitivity of anticancer drugs and to enhance the anticancer drug sensitivity in chemotherapy.
도 1은 정상 유방 및 유방암 세포주에서의 RIP3 발현 분석 결과이다.1 shows the results of RIP3 expression analysis in normal breast and breast cancer cell lines.
도 2는 탈메틸화제인 5-아자-2'-데옥시사이티딘(5-aza-2'-deoxycytidine; 5-AD)에 의한 RIP3 발현 결과이다.2 is a result of RIP3 expression by 5-aza-2'-deoxycytidine (5-AD) as a demethylating agent.
도 3은 탈메틸화제인 5-아자사이티딘(5-azacytidine; 5-AZA)에 의한 RIP3 발현 결과이다. Figure 3 is the result of RIP3 expression by the demethylating agent 5-azacytidine (5-AZA).
도 4는 탈메틸화제(5-AD)와 항암제의 병합처리에 의한 암세포주 사멸 감작 결과이다.4 is a result of cancer cell line death sensitization by the combination of the demethylating agent (5-AD) and the anticancer agent.
도 5는 탈메틸화제(5-AD 및 5-AZA)와 항암제의 병합처리에 의한 암세포주 사멸 감작 결과이다.5 is a result of the cancer cell line death sensitization by the combination of the demethylating agent (5-AD and 5-AZA) and the anticancer agent.
도 6은 RIP3 발현 억제에 의한 탈메틸화제(5-AD)의 암세포주 사멸 감작 효과의 억제 결과이다. Fig. 6 shows the results of inhibition of cancer cell line killing sensitization effect of demethylating agent (5-AD) by inhibition of RIP3 expression.
도 7은 대표적인 정상 유방 조직과 유방암 조직의 RIP3의 면역염색 사진이다.7 is an immunostaining picture of RIP3 of representative normal breast tissue and breast cancer tissue.
도 8 및 도 9는 정상 유방 조직과 유방암 조직의 RIP3의 면역염색에 대한 대표적인 H-score 도식 결과이다.8 and 9 are representative H-score schematics for immunostaining of RIP3 in normal breast and breast cancer tissues.
도 10은 RIP3의 발현이 억제된 세포에서 항암제의 농도별 처리에 따른 HT-29 생존율 결과이다.10 is a result of HT-29 survival rate according to the treatment according to the concentration of the anticancer agent in the cells inhibited RIP3 expression.
도 11은 RIP3의 발현이 억제된 세포에서 항암제의 농도별 처리에 따른 T47D의 생존율 결과이다.11 shows the survival rate of T47D according to the concentration-specific treatment of the anticancer agent in cells in which RIP3 expression is suppressed.
도 12는 1,166명의 유방암 환자의 10년 동안 전이 재발 없는 생존율(metastatic relapse-free survival) 그래프이다.12 is a graph of metastatic relapse-free survival for 10 years of 1,166 breast cancer patients.
이에, 본 발명자들은 RIP3-의존적 세포사멸이 화학요법제에서의 세포독성에 효과를 줄 수 있다는 것을 확인하였다. 많은 암세포주에서 RIP3의 발현이 억제되어 있으며, 이러한 RIP3 발현 저해가 죽음수용체에 의한 세포사멸에 대한 저항성 뿐만 아니라 화학요법제, 특히 DNA 손상 약물이나 탁산(taxanes)과 같은 다양한 스텐다드 항암요법제에 대한 저항성을 주는 것을 확인할 수 있었다. 본 발명에서 사용한 탈메틸화제인 5-아자-2'-데옥시사이티딘(5-aza-2'-deoxycytidine; 5-AD)에 의한 RIP3의 발현이 복귀되었으며 화학요법제에 대한 감수성이 증가된 것을 확인할 수 있었는데, 이러한 결과는 RIP3의 발현이 결여된 환자의 경우 탈메틸화제를 전처치하여 RIP3의 발현을 유도한 후, 컨벤션한 화학요법제를 쓰는 것이 효과적 치료전략이 될 수 있다는 것을 확인하고 본 발명을 완성하였다.Thus, the inventors confirmed that RIP3-dependent apoptosis may have an effect on cytotoxicity in chemotherapeutic agents. In many cancer cell lines, RIP3 expression is inhibited, and this inhibition of RIP3 expression is not only resistant to apoptosis by death receptors, but also to a variety of standard anticancer therapies such as chemotherapeutic agents, particularly DNA damaging drugs or taxanes. It could be confirmed that it gives resistance. The expression of RIP3 by 5-aza-2'-deoxycytidine (5-AD), which is a demethylating agent used in the present invention, was restored and the sensitivity to the chemotherapeutic agent was increased. These results confirmed that in patients with lack of RIP3 expression, pretreatment with demethylating agent induces RIP3 expression, followed by the use of conventional chemotherapeutic agents. The invention has been completed.
또한, 본 발명자들은 RIP3 발현 조절이 암세포주의 항암제에 대한 저항성에 영향을 미치는 것을 확인할 수 있었으며, 특히 RIP3 발현이 억제되는 경우 항암제에 대해 암세포가 내성을 가져 항암제의 활성이 억제되는 반면, RIP3가 발현되는 경우 항암제 농도 의존적으로 암세포의 사멸이 증가되는 것을 확인하고 본 발명을 완성하였다.In addition, the present inventors were able to confirm that the regulation of RIP3 expression affects the resistance to anticancer drugs of cancer cell lines.In particular, when RIP3 expression is inhibited, cancer cells become resistant to anticancer drugs and the activity of the anticancer drugs is inhibited, whereas RIP3 is expressed. When it was confirmed that the cancer cell death is increased depending on the anticancer agent concentration was completed the present invention.
본 발명은 RIP3(Receptor-interacting protein kinase-3) 단백질 발현 촉진제 또는 활성화제를 유효성분으로 포함하는 항암 보조용 약학조성물을 제공한다. The present invention provides a pharmaceutical composition for adjuvant anticancer comprising a receptor-interacting protein kinase-3 (RIP3) protein expression promoter or an activator.
상세하게는, 상기 RIP3 단백질 발현 촉진제 또는 활성화제는 RIP3의 유전자 발현조절 부위에 특이적으로 결합하는 화합물, 펩티드, 펩티드 미메틱스, 앱타머, 항체 및 천연물일 수 있다. 상세하게는, 상기 조성물은 RIP3 단백질의 탈메틸화를 유도할 수 있다. Specifically, the RIP3 protein expression promoter or activator may be a compound, peptide, peptide mimetics, aptamers, antibodies and natural products that specifically bind to the gene expression control region of RIP3. Specifically, the composition can induce demethylation of RIP3 protein.
바람직하게는, 상기 암은 유방암, 자궁경부암, 간암 또는 대장암일 수 있지만, 이에 제한되는 것은 아니다.Preferably, the cancer may be, but is not limited to, breast cancer, cervical cancer, liver cancer or colon cancer.
바람직하게는, 상기 RIP3 단백질은 사람, 소, 염소, 양, 돼지, 마우스, 토끼 등의 포유류를 포함하는 RIP3을 가지는 모든 진핵 생물 유래의 단백질일 수 있으며, 예를 들어 인간 RIP3(NCBI accession no. NP_006862.2)일 수 있다. Preferably, the RIP3 protein may be a protein from all eukaryotic organisms having RIP3, including mammals such as humans, cattle, goats, sheep, pigs, mice, rabbits, for example human RIP3 (NCBI accession no. NP_006862.2).
본 발명에서 용어 "펩티드 미메틱스(Peptide Mimetics)"는 RIP3 활성을 이끄는 RIP3 단백질의 결합 도메인을 억제하는 펩티드 또는 비펩티드이다.The term "peptide mimetics" in the present invention is a peptide or nonpeptide that inhibits the binding domain of the RIP3 protein leading to RIP3 activity.
본 발명에서 용어 "앱타머(Aptamer)"는 그 자체로 안정된 삼차구조를 가지면서 표적분자에 높은 친화성과 특이성으로 결합할 수 있는 특징을 가진 단일가닥 핵산(DNA, RNA 또는 변형핵산)이다. 앱타머는 고유의 높은 친화성(보통 pM 수준)과 특이성으로 표적분자에 결합할 수 있다는 특성 때문에 단일 항체와 비교가 되고, 특히 "화학 항체"라고 할 만큼 대체 항체로서의 높은 가능성이 있다.In the present invention, the term "Aptamer" is a single-stranded nucleic acid (DNA, RNA or modified nucleic acid) having a stable tertiary structure by itself and having a characteristic that can bind with high affinity and specificity to a target molecule. Aptamers are compared to single antibodies because of their inherent high affinity (usually pM levels) and their specificity to bind to target molecules, and thus have high potential as alternative antibodies, particularly as "chemical antibodies."
본 발명의 "항체"는 RIP3 주입을 통해 제조된 것 또는 시판되어 구입한 것이 모두 사용 가능하다. 또한, 상기 항체는 다클론 항체, 단클론 항체 및 에피토프와 결합할 수 있는 단편 등을 포함한다. 다클론 항체는 상기 RIP3을 동물에 주사하고, 해당 동물로부터 채혈하여 항체를 포함하는 혈청을 수득하는 종래의 방법에 의해 생산할 수 있다. 이러한 다클론 항체는 당업계에 알려진 어떠한 방법에 의해서든 정제될 수 있고, 염소, 토끼, 양, 원숭이, 말, 돼지, 소, 개 등의 임의의 동물 종 숙주로부터 만들어질 수 있다.단클론 항체는 연속 세포주의 배양을 통한 항체 분자의 생성을 제공하는 어떠한 기술을 사용하여도 제조할 수 있다. 이러한 기술로는 이들로 한정되는 것은 아니지만 하이브리도마 기술, 사람 B-세포주 하이브리도마 기술 및 EBV-하이브리도마 기술이 포함된다."Antibodies" of the present invention can be used both those prepared through RIP3 injection or commercially available. In addition, the antibodies include polyclonal antibodies, monoclonal antibodies, fragments capable of binding epitopes, and the like. Polyclonal antibodies can be produced by conventional methods of injecting the RIP3 into an animal and collecting blood from the animal to obtain a serum comprising the antibody. Such polyclonal antibodies can be purified by any method known in the art and can be made from any animal species host, such as goats, rabbits, sheep, monkeys, horses, pigs, cattle, dogs, and the like. It can be prepared using any technique that provides for the production of antibody molecules through the culture of continuous cell lines. Such techniques include, but are not limited to, hybridoma technology, human B-cell line hybridoma technology, and EBV-hybridoma technology.
본 발명의 약학 조성물은 화학물질, 뉴클레오타이드, 안티센스, siRNA 올리고뉴클레오타이드 및 천연물 추출물을 유효성분으로 포함할 수 있다. 본 발명의 약학 조성물 또는 복합 제제는 유효 성분 이외에 약제학적으로 적합하고 생리학적으로 허용되는 보조제를 사용하여 제조될 수 있으며, 상기 보조제로는 부형제, 붕해제, 감미제, 결합제, 피복제, 팽창제, 윤활제, 활택제 또는 향미제 등의 가용화제를 사용할 수 있다. 본 발명의 약학 조성물은 투여를 위해서 유효 성분 이외에 추가로 약제학적으로 허용 가능한 담체를 1 종 이상 포함하여 의약 조성물로 바람직하게 제제화할 수 있다. 액상 용액으로 제제화되는 조성물에 있어서 허용 가능한 약제학적 담체로는, 멸균 및 생체에 적합한 것으로서, 식염수, 멸균수, 링거액, 완충 식염수, 알부민 주사용액, 덱스트로즈 용액, 말토 덱스트린 용액, 글리세롤, 에탄올 및 이들 성분 중 1 성분 이상을 혼합하여 사용할 수 있으며, 필요에 따라 항산화제, 완충액, 정균제 등 다른 통상의 첨가제를 첨가할 수 있다. 또한 희석제, 분산제, 계면활성제, 결합제 및 윤활제를 부가적으로 첨가하여 수용액, 현탁액, 유탁액 등과 같은 주사용 제형, 환약, 캡슐, 과립 또는 정제로 제제화할 수 있다. The pharmaceutical composition of the present invention may include chemicals, nucleotides, antisenses, siRNA oligonucleotides, and natural extracts as active ingredients. The pharmaceutical compositions or complex preparations of the present invention may be prepared using pharmaceutically acceptable and physiologically acceptable auxiliaries in addition to the active ingredients, which may include excipients, disintegrants, sweeteners, binders, coatings, swelling agents, lubricants. Solubilizers such as lubricants and flavoring agents can be used. The pharmaceutical composition of the present invention may be preferably formulated into a pharmaceutical composition by containing one or more pharmaceutically acceptable carriers in addition to the active ingredient for administration. Acceptable pharmaceutical carriers in compositions formulated in liquid solutions are sterile and physiologically compatible, including saline, sterile water, Ringer's solution, buffered saline, albumin injectable solutions, dextrose solution, maltodextrin solution, glycerol, ethanol and One or more of these components may be mixed and used, and other conventional additives such as antioxidants, buffers and bacteriostatic agents may be added as necessary. Diluents, dispersants, surfactants, binders and lubricants may also be added in addition to formulate into injectable formulations, pills, capsules, granules or tablets such as aqueous solutions, suspensions, emulsions and the like.
본 발명의 의약 조성물의 약제 제제 형태는 과립제, 산제, 피복정, 정제, 캡슐제, 좌제, 시럽, 즙, 현탁제, 유제, 점적제 또는 주사 가능한 액제 및 활성 화합물의 서방출형 제제 등이 될 수 있다. 본 발명의 의약 조성물은 정맥내, 동맥내, 복강내, 근육내, 동맥내, 복강내, 흉골내, 경피, 비측내, 흡입, 국소, 직장, 경구, 안구내 또는 피내 경로를 통해 통상적인 방식으로 투여할 수 있다. 본 발명의 의약 조성물의 유효성분의 유효량은 질환의 예방 또는 치료 요구되는 양을 의미한다. 따라서, 질환의 종류, 질환의 중증도, 조성물에 함유된 유효 성분 및 다른 성분의 종류 및 함량, 제형의 종류 및 환자의 연령, 체중, 일반 건강 상태, 성별 및 식이, 투여 시간, 투여 경로 및 조성물의 분비율, 치료 기간, 동시 사용되는 약물을 비롯한 다양한 인자에 따라 조절될 수 있다. 이에 제한되는 것은 아니나, 예컨대, 성인의 경우, 1일 1회 내지 수회 투여시, 본 발명의 저해제는 1일 1회 내지 수회 투여시, 화합물일 경우 0.1ng/kg~10g/kg, 폴리펩타이드, 단백질 또는 항체일 경우 0.1ng/kg~10g/kg, 안티센스 뉴클레오타이드, siRNA, shRNAi, miRNA일 경우 0.01ng/kg~10g/kg의 용량으로 투여할 수 있다. Pharmaceutical formulation forms of the pharmaceutical compositions of the present invention may be granules, powders, coated tablets, tablets, capsules, suppositories, syrups, juices, suspensions, emulsions, drops or injectable solutions and sustained release formulations of the active compounds, and the like. Can be. The pharmaceutical compositions of the present invention may be administered in a conventional manner via intravenous, intraarterial, intraperitoneal, intramuscular, intraarterial, intraperitoneal, sternum, transdermal, nasal, inhalation, topical, rectal, oral, intraocular or intradermal routes. Can be administered. An effective amount of the active ingredient of the pharmaceutical composition of the present invention means an amount required to prevent or treat a disease. Thus, the type of disease, the severity of the disease, the type and amount of the active and other ingredients contained in the composition, the type of formulation and the age, weight, general health, sex and diet, sex and diet, time of administration, route of administration and composition of the patient. It can be adjusted according to various factors including the rate of secretion, the duration of treatment, and the drug used concurrently. For example, in adults, when administered once or several times a day, the inhibitor of the present invention is administered once or several times a day, when the compound is 0.1ng / kg to 10g / kg, a polypeptide, In the case of proteins or antibodies, 0.1ng / kg ~ 10g / kg, antisense nucleotides, siRNA, shRNAi, miRNA can be administered at a dose of 0.01ng / kg ~ 10g / kg.
또한, 본 발명은 RIP3(Receptor-interacting protein kinase-3) 단백질 발현 촉진제 또는 활성화제; 및 항암제를 암세포에 병용투여하는 것을 특징으로 하는 암세포 사멸 증진 방법을 제공한다. In addition, the present invention is a receptor-interacting protein kinase-3 (RIP3) protein expression promoter or activator; And it provides a method for enhancing cancer cell death, characterized in that the anticancer agent in combination with cancer cells.
상세하게는, RIP3(Receptor-interacting protein kinase-3) 단백질 발현 촉진제 또는 활성화제를 암세포에 처리하는 단계; 및 상기 처리된 암세포에 항암제를 투여하는 단계를 포함할 수 있다.Specifically, treating cancer cells with a receptor-interacting protein kinase-3 (RIP3) protein expression promoter or activator; And it may comprise the step of administering an anticancer agent to the treated cancer cells.
바람직하게는, 상기 암세포는 유방암세포, 자궁경부암세포, 간암세포 또는 대장암세포일 수 있고, 상기 항암제는 독소루비신(doxorubicin) 또는 에토포사이드(etoposide)일 수 있지만, 이에 제한되는 것은 아니다. Preferably, the cancer cells may be breast cancer cells, cervical cancer cells, liver cancer cells or colorectal cancer cells, and the anticancer agent may be doxorubicin or etoposide, but is not limited thereto.
본 발명은 암세포에 시험물질을 접촉시키는 단계; 상기 시험물질을 접촉한 암세포에서 RIP3(Receptor-interacting protein kinase-3) 단백질의 발현 또는 활성 정도를 측정하는 단계; 및 대조구 시료와 비교하여 상기 RIP3 단백질의 발현 또는 활성 정도가 증가한 시험물질을 선별하는 단계를 포함하는 항암 보조제 스크리닝 방법을 제공한다. The present invention comprises the steps of contacting a test substance to cancer cells; Measuring the level of expression or activity of a receptor-interacting protein kinase-3 (RIP3) protein in cancer cells in contact with the test substance; And it provides a method for screening an anticancer adjuvant comprising the step of selecting a test substance with increased expression or activity of the RIP3 protein compared to the control sample.
바람직하게는, 상기 RIP3 단백질의 발현 또는 활성 정도는 역전사 중합효소 연쇄반응(Reverse Transcription-Polymerase chain Reaction, RT-PCR), 효소면역분석법(ELISA), 면역조직화학, 웨스턴 블랏(Western Blotting) 및 유세포 분석법(FACS)으로 구성된 군으로부터 선택된 어느 하나로 측정될 수 있지만, 이에 제한되는 것은 아니다.Preferably, the expression or activity level of the RIP3 protein is reverse transcriptase-polymerase chain reaction (RT-PCR), enzyme immunoassay (ELISA), immunohistochemistry, Western blotting and flow cytometry. It may be measured by any one selected from the group consisting of assays (FACS), but is not limited thereto.
상세하게는, 상기 항암 보조제는 항암제의 감수성을 증진시킬 수 있다. 보다 상세하게는, 상기 항암제는 독소루비신(doxorubicin), 에토포사이드(etoposide) 또는 탁솔(taxol)이 바람직하지만, 이에 제한되는 것은 아니다.In detail, the anticancer adjuvant may enhance the sensitivity of the anticancer agent. More specifically, the anticancer agent is preferably doxorubicin, etoposide, or taxol, but is not limited thereto.
본 발명의 스크리닝 방법을 언급하면서 사용되는 용어 "시험물질"은 유전자의 발현량에 영향을 미치거나, 단백질의 발현 또는 활성에 영향을 미치는지 여부를 검사하기 위하여 스크리닝에서 이용되는 미지의 후보 물질을 의미한다. 상기 시료는 화학물질, 뉴클레오타이드, 안티센스-RNA, siRNA(small interference RNA) 및 천연물 추출물을 포함하나, 이에 제한되는 것은 아니다.As used to refer to the screening method of the present invention, the term "test material" refers to an unknown candidate used in screening to examine whether it affects the expression level of a gene or affects the expression or activity of a protein. do. The sample includes, but is not limited to, chemicals, nucleotides, antisense-RNAs, small interference RNAs (siRNAs), and natural extracts.
또한, 본 발명은 암세포에서 RIP3 단백질의 발현 또는 활성 정도를 측정하는 단계; 정상조직세포에서 RIP3 단백질의 발현 또는 활성 정도를 측정하는 단계; 및 상기 정상조직세포에서 측정된 RIP3 단백질의 발현 또는 활성 대비 상기 암세포에서 측정된 RIP3 단백질의 발현 또는 활성이 낮은 경우 항암제 저항성이 있다고 판단하는 단계를 포함하는 항암제 감수성 모니터링 방법을 제공한다. In addition, the present invention comprises the steps of measuring the expression or activity of the RIP3 protein in cancer cells; Measuring the expression or activity of RIP3 protein in normal tissue cells; And if the expression or activity of the RIP3 protein measured in the normal tissue cells compared to the expression or activity of the RIP3 protein is low The anti-cancer drug susceptibility monitoring method comprising the step of determining the resistance to cancer.
바람직하게는, 상기 암세포는 유방암세포, 자궁경부암세포, 간암세포 또는 대장암세포일 수 있고, 상기 항암제는 독소루비신(doxorubicin), 에토포사이드(etoposide) 또는 탁솔(taxol)일 수 있지만, 이에 제한되는 것은 아니다. Preferably, the cancer cells may be breast cancer cells, cervical cancer cells, liver cancer cells or colorectal cancer cells, and the anticancer agent may be, but is not limited to, doxorubicin, etoposide, or taxol. .
또한, 본 발명은 RIP3 단백질 발현 촉진제 또는 활성화제를 암세포에 처리하는 단계; 상기 처리된 암세포에서 RIP3 단백질의 발현 또는 활성 정도를 측정하는 단계; 및 상기 처리 전 대조구 시료 대비 상기 처리 후 RIP3 단백질의 발현 또는 활성이 50 내지 100% 증가한 경우 항암제 감수성이 증진되었다고 판단하는 단계를 포함하는 항암제 감수성 증진방법을 제공한다.In addition, the present invention comprises the steps of treating the cancer cells RIP3 protein expression promoter or activator; Measuring the expression or activity of RIP3 protein in the treated cancer cells; And when the expression or activity of the RIP3 protein after the treatment is increased by 50 to 100% compared to the control sample before the treatment provides an anticancer drug sensitivity enhancement method comprising the step of determining that the anticancer drug sensitivity.
또한, 본 발명은 RIP3 유전자 또는 상기 유전자로부터 발현된 단백질을 포함하는 항암제 감수성 진단용 바이오마커 조성물을 제공한다.In addition, the present invention provides a biomarker composition for diagnosing anticancer drug sensitivity comprising the RIP3 gene or a protein expressed from the gene.
본 명세서에서 용어 “진단”은 특정 질병 또는 질환에 대한 한 객체의 감수성(susceptibility)을 판정하는 것, 한 객체가 특정 질병 또는 질환을 현재 가지고 있는지 여부를 판정하는 것, 특정 질병 또는 질환에 걸린 한 객체의 예후(prognosis)를 판정하는 것, 또는 테라메트릭스(therametrics)(예컨대, 치료 효능에 대한 정보를 제공하기 위하여 객체의 상태를 모니터링하는 것)을 포함한다.As used herein, the term “diagnosis” refers to determining the susceptibility of an object to a particular disease or condition, determining whether an object currently has a particular disease or condition, or as long as a person has a particular disease or condition. Determining the prognosis of the object, or therametrics (eg, monitoring the condition of the object to provide information about treatment efficacy).
또한, 본 발명은 RIP3 유전자를 증폭하기 위한 프라이머 또는 상기 유전자로부터 발현된 단백질에 특이적으로 결합하는 항체 또는 앱타머를 포함하는 항암제 감수성 진단용 키트를 제공한다.In addition, the present invention provides a kit for diagnosing anticancer agent sensitivity comprising a primer for amplifying the RIP3 gene or an antibody or aptamer specifically binding to a protein expressed from the gene.
본 명세서에서 용어 "프라이머"는 짧은 자유 3-말단 수산화기(free 3' hydroxyl group)를 가지는 핵산 서열로 상보적인 템플레이트(template)와 염기쌍을 형성할 수 있고 템플레이트 가닥 복사를 위한 시작 지점으로서 작용하는 짧은 핵산 서열을 말한다. 프라이머는 적절한 완충용액 및 온도에서 중합반응을 위한 시약(즉, DNA 폴리머라제 또는 역전사효소) 및 상이한 4 가지의 뉴클레오사이드 트리포스페이트의 존재하에서 DNA 합성을 개시할 수 있다. PCR 조건, 센스 및 안티센스 프라이머의 길이는 당업계에 공지된 기술에 따라 적절히 선택될 수 있다.As used herein, the term "primer" refers to a nucleic acid sequence having a short free 3-terminal hydroxyl group, which can form complementary templates and base pairs and act as a starting point for template strand copying. Refers to a nucleic acid sequence. Primers can initiate DNA synthesis in the presence of four different nucleoside triphosphates and reagents for polymerization (ie, DNA polymerase or reverse transcriptase) at appropriate buffers and temperatures. PCR conditions, sense and antisense primer lengths may be appropriately selected according to techniques known in the art.
또한 본 발명의 키트는 마커 성분에 특이적으로 결합하는 항체, 기질과의 반응에 의해서 발색하는 표지체가 접합된 2차 항체 접합체(conjugate), 상기 표지체와 발색 반응할 발색 기질 용액, 세척액 및 효소반응 정지용액 등을 포함할 수 있으며, 사용되는 시약 성분을 포함하는 다수의 별도 패키징 또는 컴파트먼트로 제작될 수 있다.In addition, the kit of the present invention is an antibody that specifically binds to a marker component, a secondary antibody conjugate conjugated with a label that is developed by reaction with a substrate, a color substrate solution to be reacted with the label, a washing solution, and an enzyme. It may include a reaction stop solution and the like, and may be prepared in a number of separate packaging or compartments containing the reagent components used.
상기 2차 항체 접합체의 표지체는 발색반응을 하는 통상의 발색제가 바람직하며, HRP(horseradish peroxidase), 염기성 탈인산화효소(alkaline phosphatase), 콜로이드 골드(coloid gold), FITC(poly L-lysine-fluorescein isothiocyanate), RITC(rhodamine-B-isothiocyanate) 등의 형광물질(fluorescein), 및 색소(dye) 등이 사용될 수 있다.The label of the secondary antibody conjugate is preferably a conventional coloring agent that performs a color reaction, horseradish peroxidase (HRP), basic dephosphatase (alkaline phosphatase), colloidal gold (coloid gold), poly L-lysine-fluorescein (FITC) isothiocyanate, fluorescent materials such as rhodamine-B-isothiocyanate (RITC), dyes, and the like.
또한, 본 발명은 암환자 시료에서 RIP3의 발현 수준을 측정하는 단계; 정상 대조구 시료에서 RIP3의 발현 수준을 측정하는 단계; 및 상기 정상 대조구 시료에서 측정된 RIP3 단백질의 발현 수준 대비 상기 암환자 시료에서 측정된 RIP3 단백질의 발현 수준이 낮은 경우 항암제 저항성이 있다고 판단하는 단계를 포함하는 항암제 감수성 예후 진단에 필요한 정보를 제공하는 방법을 제공한다. In addition, the present invention comprises the steps of measuring the expression level of RIP3 in a cancer patient sample; Measuring the expression level of RIP3 in the normal control sample; And determining that the anti-cancer drug resistance is low when the expression level of the RIP3 protein measured in the cancer patient sample is lower than the expression level of the RIP3 protein measured in the normal control sample. To provide.
상세하게는 상기 RIP3의 발현 수준은 항원-항체 반응을 통해 측정될 수 있으며, 보다 상세하게는 상기 항원-항체 반응은 종래에 개발된 다양한 정량적 또는 정성적 면역분석 프로토콜에 따라 실시될 수 있다. 상기 면역분석 포맷은 효소 면역분석법(ELISA), 방사능면역분석법(radioimmunoassay, RIA), 샌드위치 측정법(sandwich assay), 웨스턴 블롯팅, 면역침강법, 면역조직화학염색법(immunohistochemical staining), 유체 세포측정법 (flow cytometry), 형광활성화 세포분류법(FACS), 효소기질발색법 및 항원-항체 응집법을 포함하지만, 이에 한정되는 것은 아니다.Specifically, the expression level of the RIP3 may be measured through an antigen-antibody reaction, and more specifically, the antigen-antibody response may be performed according to various quantitative or qualitative immunoassay protocols developed in the prior art. The immunoassay format includes enzyme immunoassay (ELISA), radioimmunoassay (RIA), sandwich assay, western blotting, immunoprecipitation, immunohistochemical staining, and flow cytometry (flow). cytometry), fluorescence activated cell sorting (FACS), enzyme substrate coloration, and antigen-antibody aggregation.
본 명세서에서 용어 “환자 시료”란 항암제 감수성 진단용 바이오 마커인 RIP3의 발현수준에 있어서 정상 대조구와 차이가 나는 조직, 세포, 전혈, 혈청, 혈장, 타액, 객담, 뇌척수액, 또는 뇨와 같은 시료를 포함하지만, 이에 한정되는 것은 아니다.As used herein, the term “patient sample” includes samples such as tissues, cells, whole blood, serum, plasma, saliva, sputum, cerebrospinal fluid, or urine that differ from the normal control in the expression level of RIP3, a cancer marker susceptibility diagnostic biomarker. However, it is not limited thereto.
이하, 본 발명의 이해를 돕기 위하여 실시예를 들어 상세하게 설명하기로 한다. 다만 하기의 실시예는 본 발명의 내용을 예시하는 것일 뿐 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해 제공되는 것이다.Hereinafter, examples will be described in detail to help understand the present invention. However, the following examples are merely to illustrate the content of the present invention is not limited to the scope of the present invention. The embodiments of the present invention are provided to more completely explain the present invention to those skilled in the art.
< 실험예 >Experimental Example
하기의 실험예들은 본 발명에 따른 각각의 실시예에 공통적으로 적용되는 실험예를 제공하기 위한 것이다.The following experimental examples are intended to provide experimental examples that are commonly applied to each embodiment according to the present invention.
1. 시약1. Reagent
RIP3 항체는 Abcam으로부터 구입하였다. Actin 항체, 독소루비신(Doxorubicin), 에토포사이드(etoposide), 5-AD, 5-AZA는 Sigma-Aldrich로부터 구했다.RIP3 antibodies were purchased from Abcam. Actin antibody, Doxorubicin, etoposide, 5-AD, 5-AZA were obtained from Sigma-Aldrich.
2. 세포 배양2. Cell Culture
다양한 암세포주는 ATCC에서 제시하는 배지에서 배양하였다. DLD1, HeLa, MCF7은 10 % 우태아혈청(fetal bovine serum), 2 mM 글루타민(glutamine), 100 U/mL 페니실린(penicillin) 및 100ug/mL 스트렙토마이신(streptomycin)이 첨가된 DMEM에서 배양되었다. HCC1937, BT-549, MDA- MB231, MDA-MB468, SK-BR3, ZR75-1, T47D는 10 % 우태아혈청(fetal bovine serum), 2 mM 글루타민(glutamine), 100 U/mL 페니실린(penicillin) 및 100/mL 스트렙토마이신(streptomycin)이 첨가된 RPMI에서 배양되었다. Various cancer cell lines were cultured in media presented by ATCC. DLD1, HeLa, MCF7 were incubated in DMEM with 10% fetal bovine serum, 2 mM glutamine, 100 U / mL penicillin and 100 ug / mL streptomycin. HCC1937, BT-549, MDA-MB231, MDA-MB468, SK-BR3, ZR75-1, T47D contains 10% fetal bovine serum, 2 mM glutamine, 100 U / mL penicillin And RPMI with 100 / mL streptomycin added.
3. 정상 인간 세포3. Normal human cells
유방 상피세포(mammary epithelial cells; HME)는 Clonetics Corp. (San Diego, CA)로부터 얻었다. HMLE는 정상 유방 상피세포인데, hTERT로 불사화(immortalized)되었으며, 또한 SV40 large 및 small T 항원으로 레트로바이러스에 의해 감염되었다.Mammary epithelial cells (HME) were produced by Clonetics Corp. (San Diego, CA). HMLE is a normal mammary epithelial cell, immortalized with hTERT and also infected by retrovirus with SV40 large and small T antigens.
4. 인간 유방암 조직 제조4. Human Breast Cancer Tissue Manufacturing
인간 유방암 및 비교 정상 샘플은 연세대학교 의과대학(서울, 대한민국)으로부터 얻었다. 모든 케이스에 있어서, 모든 참가자로부터 동의서를 받았고, 본 연구는 연세대학교 기관윤리심의위원회(Institutional Review Board; IRB)의 승인을 받았다Human breast cancer and comparative normal samples were obtained from Yonsei University College of Medicine (Seoul, South Korea). In all cases, informed consent was obtained from all participants, and this study was approved by the Yonsei Institutional Review Board (IRB).
5. 렌티바이러스(Lentiviral) shRNA 실험5. Lentiviral shRNA Experiment
hRIP3 mRNA (NM_006871)의 코딩 부위 또는 3' UTR을 표적으로 하는 MISSION short-hairpin RNA (shRNA) 플라스미드 및 비-표적 대조군 서열 (NM-027088)은 Sigma-Aldrich로부터 구했다. 렌티바이러스 플라스미드는 리포펙타민 2000 (Invitrogen, 11668019)을 이용하여 293T cells (System Biosciences, LV900A-1)로 형질감염시켰다. 위바이러스성 입자(Pseudoviral particles)는 렌티바이러스 플라스미드 형질감염 2일 후 수집되었고, 폴리브린(polybrene) (10 μg/mL) 존재하에서 여러 암세포로 감염시켰다. 감염 2일 후, 퓨로마이신(puromycin)으로 감염 세포는 선별하였고, RIP3 녹다운(knockdown)은 면역블랏팅으로 확인하였다. 기존에 내재성 RIP3를 발현하지 않는 세포는 추후 4일 동안 5-AD를 처리하였고, 그 후 면역블랏팅으로 분석하였다.MISSION short-hairpin RNA (shRNA) plasmids targeting the coding site or 3 'UTR of hRIP3 mRNA (NM_006871) and non-target control sequences (NM-027088) were obtained from Sigma-Aldrich. Lentivirus plasmids were transfected into 293T cells (System Biosciences, LV900A-1) using Lipofectamine 2000 (Invitrogen, 11668019). Pseudoviral particles were collected two days after lentiviral plasmid transfection and infected with various cancer cells in the presence of polybrene (10 μg / mL). Two days after infection, infected cells were selected with puromycin and RIP3 knockdown was confirmed by immunoblotting. Cells not previously expressing endogenous RIP3 were treated with 5-AD for 4 days later, and then analyzed by immunoblotting.
6. 웨스턴 블랏 분석(면역블랏팅)6. Western Blot Analysis (Immunoblotting)
세포들은 M2 완충액에서 용해되었다. 동량의 세포 추출물을 SDS-PAGE 및 웨스턴 블랏을 통해 분석하여, 증가된 화학발광(enhanced chemiluminescence; ECL, Amersham)으로 가시화하였다.Cells were lysed in M2 buffer. Equal amounts of cell extracts were analyzed via SDS-PAGE and Western blot and visualized with increased chemiluminescence (ECL, Amersham).
7. 세포독성 분석 7. Cytotoxicity Assay
세포사멸은 tetrazolium dye colorimetric test [MTT Assay]을 사용하여 측정하였고, 570nm에서 측정하였다.Apoptosis was measured using a tetrazolium dye colorimetric test [MTT Assay] and measured at 570 nm.
8. 면역조직화학(Immunohistochemistry) 분석8. Immunohistochemistry Analysis
면역조직화학 분석은 제조사의 지시에 따라 UltraVision LP Detection System TL-060-HD (Thermo Scientific, Bioanalytica)를 이용하였다. 얇은 파라핀 부분(4.5 μm)은 자일렌으로 제거되었고, 여러 농도의 에탄올 수용액에서 다시 수화되었다. 항원 회복은 10 mM 시트레이트(citrate) 완충액 (pH 6.0)에서 전자렌지로 15분 동안 슬라이드를 가열하여 수행하였다. TBS에 녹인 3% 과산화수소에 10분 동안 반응시킴으로써 내인성 퍼록시다제(peroxidase) 활성을 차단시켰고, 1:300으로 희석된 항-RIP3 항체로 4℃에서 밤새도록 반응시켰다. 크로모겐(chromogen)은 3, 3'-디아미노벤지딘(3, 3'-diaminobenzidine) (TL-015-HD, Thermo Scientific, Bioanalytica, Greece) 용액으로 5분 동안 반응시켰고, Meyer’s hematoxylin으로 대비염색하였다. 면역조직화학 염색은 염색된 세포 비율 및 면역염색 세기를 기초로 측정하였다. 본 발명은 H-score를 사용하였는데, 이는 염색된 세포 비율(%) 및 염색 세기[0(음성), 1(약함), 2(중간) 또는 3(강함)]를 곱하여 구했다. H-score는 0 내지 300의 범위를 가진다. 종양 및 정상 조직에서 각 샘플당 동일한 시간으로 염색을 수행하였다. 염색 결과는 임상 데이터에 대해서는 알지 못하는 전문 병리학자에 의해 해석되었다. Immunohistochemical analysis was performed using UltraVision LP Detection System TL-060-HD (Thermo Scientific, Bioanalytica) according to the manufacturer's instructions. Thin paraffin sections (4.5 μm) were removed with xylene and rehydrated in various concentrations of aqueous ethanol. Antigen recovery was performed by heating the slides for 15 minutes with a microwave in 10 mM citrate buffer (pH 6.0). The endogenous peroxidase activity was blocked by reacting with 3% hydrogen peroxide dissolved in TBS for 10 minutes and reacted overnight at 4 ° C. with an anti-RIP3 antibody diluted 1: 300. Chromogen was reacted for 5 minutes with 3, 3'-diaminobenzidine (TL-015-HD, Thermo Scientific, Bioanalytica, Greece) solution and counterstained with Meyer's hematoxylin. . Immunohistochemical staining was determined based on percentage of stained cells and immunostaining intensity. The present invention used H-score, which was obtained by multiplying the percentage of stained cells and the staining intensity [0 (negative), 1 (weak), 2 (medium) or 3 (strong)]. H-scores range from 0 to 300. Staining was performed at the same time for each sample in tumor and normal tissue. Staining results were interpreted by a professional pathologist who did not know the clinical data.
9. 통계 분석9. Statistical Analysis
데이터는 평균 ± S.D로 나타냈다. 통계분석은 ANOVA 및 unpaired Student′s t-test를 사용하여 수행하였다. 0.01 또는 이보다 낮은 P-value의 경우, 통계학적 유의성이 있는 것으로 판단되었다. 통계학적 계산은 Windows Version 12.0의 SPSS software를 사용하여 수행하였다(SPSS, Chicago, IL).Data is shown as mean ± SD. Statistical analysis was performed using ANOVA and unpaired Student's t-test. For P-values of 0.01 or lower, it was judged to have statistical significance. Statistical calculations were performed using SPSS software of Windows Version 12.0 (SPSS, Chicago, IL).
< 실시예 1 > 유방암 세포주에서의 RIP3 발현 분석Example 1 RIP3 Expression Analysis in Breast Cancer Cell Lines
암세포주를 용해(lysis)하여 단백질을 분리한 후, SDS-PAGE를 이용하여 웨스턴 블랏팅(Western blotting)을 실시하였다. 유방암 세포주의 RIP3 발현 패턴을 분석한 결과, 60% 이상의 세포주에서 RIP3가 발현하지 않음을 확인하였다. RIP3가 암세포주에서는 특정 메커니즘에 의해서 억제되어 있음을 확인하였다(도 1).After lysis of the cancer cell lines to separate proteins, Western blotting was performed using SDS-PAGE. As a result of analyzing the RIP3 expression pattern of the breast cancer cell line, it was confirmed that RIP3 is not expressed in 60% or more cell lines. It was confirmed that RIP3 is inhibited by a specific mechanism in cancer cell lines (FIG. 1).
< 실시예 2 > 탈메틸화제에 의한 RIP 발현 분석Example 2 RIP Expression Analysis by Demethylating Agent
암세포주를 10~20% 밀도로 배양한 후, 4일 동안 2회에 걸쳐서 5-AD를 처리한 후, 웨스턴 블랏팅(Western blotting) 기법을 이용하여 RIP3 발현 패턴 분석하였다. RIP3가 발현하지 않는 3가지 암세포주(HeLa, MDA-MB231, BT549)에 탈메틸화제(5-AD, 2uM)를 처리하였을 경우, RIP3의 발현이 유도됨을 확인하였으며, 이러한 결과는 암세포주에서는 메틸화에 의해서 RIP3의 발현이 억제되고 있음을 의미한다(도 2).The cancer cell lines were cultured at 10-20% density, treated with 5-AD twice for 4 days, and then RIP3 expression patterns were analyzed using Western blotting. When the demethylating agent (5-AD, 2uM) was treated to three cancer cell lines (HeLa, MDA-MB231, BT549) that do not express RIP3, expression of RIP3 was induced. This means that the expression of RIP3 is suppressed (FIG. 2).
또한, 암세포주를 10~20% 밀도로 배양한 후, 4일 동안 2회에 걸쳐서 5-AZA를 처리한 후, 웨스턴 블랏팅(Western blotting) 기법을 이용하여 RIP3 발현 패턴 분석하였다. RIP3가 발현하지 않는 DLD-1 대장암 세포주에 5AD와 유사한 계열의 5-AZA를 농도별로 처리하였을 경우, RIP3의 발현이 유도됨을 확인하였으며, 이러한 결과는 RIP3가 메틸화에 의해서 암세포주에서 발현이 억제되고 있음을 반증하는 것이다(도 3). In addition, after incubating cancer cell lines with a density of 10 to 20%, treated with 5-AZA twice for 4 days, RIP3 expression patterns were analyzed using Western blotting technique. When the concentration of 5-AZA similar to 5AD was treated in DLD-1 colorectal cancer cell line that does not express RIP3, it was confirmed that RIP3 expression was induced, and these results showed that RIP3 inhibited expression in cancer cell line by methylation. It is disproving that it is (FIG. 3).
< 실시예 3 > <Example 3> 탈메틸화제와 항암제의 병합 처리에 의한 암세포주 사멸 감작Sensitization of Cancer Cell Lines by Combination of Demethylating Agent and Anticancer Agent
암세포주를 10~20% 밀도로 초기 배양한 후, 4일 동안 2회에 걸쳐서 5-AD 또는 5-AZA를 처리하여 RIP3의 발현을 유도하였다. 약물을 처리하지 않은 동일한 HeLa 암세포주와 동일한 개수를 배양한 후, 동일한 농도의 항암제를 처리하여 탈메틸화제에 의한 감작효과를 분석하였다. The cancer cell lines were initially cultured at a density of 10-20%, and then treated with 5-AD or 5-AZA twice for 4 days to induce the expression of RIP3. After culturing the same number of drug-treated HeLa cancer cell lines, the same concentration of anticancer agent was treated to analyze the sensitization effect by the demethylating agent.
5-AD에 의한 RIP3의 발현을 유도한 후, 항암제와 병합처리할 경우 암세포주의 사멸이 감작되는 효과를 확인함으로써, RIP3가 항암제에 의한 암세포주 사멸이 관련 있음을 확인하였다(도 4).After inducing the expression of RIP3 by 5-AD, and confirming the effect that the death of cancer cell line is sensitized when combined with the anticancer agent, it was confirmed that RIP3 is associated with the death of cancer cell line by the anticancer agent (Fig. 4).
또한, 5-AD 외에 RIP3의 발현을 유도하는 5-AZA의 경우도 RIP3의 발현을 유도한 후, 항암제와 병합처리하였을 경우 암세포주의 감작 효과를 확인하였다(도 5).In addition, in the case of 5-AZA, which induces the expression of RIP3 in addition to 5-AD, the sensitizing effect of cancer cell lines was confirmed when inducing RIP3 expression and in combination with anticancer agents (FIG. 5).
< 실시예 4 > RIP3 발현 억제에 의한 탈메틸화제의 암세포주 사멸 감작 효과의 억제Example 4 Inhibition of Cancer Cell Line Death Sensitization Effect of Demethylating Agent by RIP3 Inhibition
렌티 바이러스 시스템(Lenti-virus system)을 사용하여 자궁경부암 세포주(HeLa 세포주)에서 지속적으로 RIP3의 발현을 억제하는 안정적인 세포(stable cell)을 만들었다. 비-표적(Non-target)과 반대로 shRIP3 세포주의 경우, 5-AD를 처리함에도 불구하고 shRNA에 의해서 RIP3의 발현이 억제된다. 그러므로 항암제와 탈메틸화제의 병합처리에 의한 감작효과에서 RIP3의 기능을 확인할 수 있었다. 비-표적(Non-target) 세포주와 shRIP3 세포주를 10~20% 밀도로 초기배양한 후, 4일 동안 2회에 걸쳐서 5-AD를 처리하여 RIP3의 발현 유무를 판별하였다. 그리고 동일한 개수를 배양한 항암제와의 병합처리에 의한 감작효과에 대해 세포사멸 실험(MTT assay)을 이용하여 분석하였다(도 6). The Lenti-virus system was used to create stable cells that continuously inhibit RIP3 expression in cervical cancer cell lines (HeLa cell lines). In contrast to non-target shRIP3 cell lines, expression of RIP3 is inhibited by shRNA despite 5-AD treatment. Therefore, the function of RIP3 could be confirmed in the sensitizing effect of the combination of anticancer and demethylating agents. Non-target cell lines and shRIP3 cell lines were initially cultured at 10-20% density, and then treated with 5-AD twice for 4 days to determine the expression of RIP3. And the sensitizing effect by the combined treatment with the anti-cancer drug cultured the same number was analyzed using a cell death experiment (MTT assay) (Fig. 6).
탈메틸화제(5-AD, 5-AZA)는 특정 단백질에 특이적인 약물이 아니기 때문에, RIP3 외에 다양한 단백질의 발현을 야기할 수 있다. 그러므로 항암제와 탈메틸화제의 병합처리에 의한 세포사멸 감작 효과가 RIP3가 아닌 다른 단백질에 의한 효과 유무인지를 판별하기 위해서 특이적으로 RIP3의 발현을 억제하는 shRIP3 세포주를 사용하여 실험을 진행하였다. 비-표적(non-target) 세포주에서는 5-AD를 처리할 경우, RIP3의 발현에 의해서 항암제와의 병합처리에서 감작효과가 발생하지만, 특이적으로 RIP3의 발현을 억제한 shRIP3 세포주에서는 5-AD를 처리하더라도 shRNA system에 의해서 RIP3가 발현되지 않는다. 이러한 결과를 토대로 세포사멸 실험을 진행하였을 때 RIP3가 발현하지 않는 shRIP3 세포주의 경우, 감작효과가 억제되는 결과를 통해서 탈메틸화제와 항암제와의 병합처리에서의 감작 효과는 RIP3가 중요한 분자임을 확인할 수 있으며, RIP3의 발현을 촉진시킴으로써 암세포주의 사멸을 증가시킬 수 있는 새로운 항암전략을 제시한다.Demethylating agents (5-AD, 5-AZA) are not drugs specific to specific proteins, and therefore may cause expression of various proteins in addition to RIP3. Therefore, in order to determine whether apoptosis sensitization effect by the combination of anticancer agent and demethylating agent is effected by proteins other than RIP3, experiments were performed using shRIP3 cell line that specifically inhibits RIP3 expression. In non-target cell lines, 5-AD treatment produces a sensitizing effect in combination with anticancer agents by the expression of RIP3, but 5-AD in shRIP3 cell lines that specifically inhibit RIP3 expression. RIP3 is not expressed by the shRNA system even after treatment. Based on these results, in the apoptosis experiment, in the shRIP3 cell line that does not express RIP3, the sensitizing effect was suppressed, and the sensitizing effect in the combination of demethylating agent and anticancer agent was confirmed that RIP3 is an important molecule. It also suggests a new anticancer strategy that can increase the death of cancer cell lines by promoting the expression of RIP3.
< 실시예 5 > 정상 유방 조직 및 유방암 조직의 면역 염색 분석Example 5 Immunostaining Analysis of Normal Breast and Breast Cancer Tissues
132명의 유방암 환자에서 종양(Tumor) 조직과 비-종양(non-Tumor) 조직을 분리하여 파라핀 블록을 제작하였다. 제작된 파라핀 블록은 4.5㎛의 두께로 박절 후 슬라이드에 도말시켜 사용하였다. 자일렌(Xylene)으로 탈파라핀화와 에탄올-물 농도별 수용액으로 함수과정을 거친 후 과산화수소로 비특이적 효소 반응을 제거 후 시트르산 용매를 이용해 숨겨진 항원을 해체한다. 다음으로 희석된 정상 혈청을 20분간 반응시켜 비특이적인 반응을 차단 후 RIP3를 (1:300)으로 24시간 반응시킨다. 수세 후 바이오티닌이 결합된 2차 항체를 30분간 반응 후 수세한다. 아비딘-바이오틴(Avidin-biotin) 복합체로 30분간 반응 후 수세과정을 거치고 DAB 발색제를 사용하여 5분간 발색시킨 후 헤마톡실린(Hematoxylin)으로 핵을 염색 후 수세를 거쳐 봉입과정을 거친다.Paraffin blocks were prepared by separating tumor tissue from non-tumor tissue from 132 breast cancer patients. The prepared paraffin block was cut to a thickness of 4.5 μm and used for plating on slides. After deparaffinization with xylene and hydration with an aqueous solution of ethanol-water concentration, the non-specific enzyme reaction is removed with hydrogen peroxide, and then the hidden antigen is disassembled using a citric acid solvent. Next, the diluted normal serum is reacted for 20 minutes to block the nonspecific reaction, followed by 24 hours reaction with RIP3 (1: 300). After washing with water, the secondary antibody conjugated with biotinin is washed with water for 30 minutes. After reacting with avidin-biotin complex for 30 minutes, it is washed with water, and then dyed for 5 minutes with DAB colorant. After staining the nucleus with hematoxylin, it is washed with water and enclosed.
DAB으로 발색된 정도 세기를 0 (발색없음), 1 (약한발색), 2 (중간), 3 (강한발색)으로 기준을 정하였으며 염색된 범위와 세기를 곱한 값을 H-score로 나타내었으며, 염색 결과 분석은 병리과 전문의를 통해 감수하였다.The intensity of color development with DAB was set to 0 (no color development), 1 (weak color development), 2 (medium color), 3 (strong color development), and the range of the dyed area and the intensity was expressed as H-score. Staining results were analyzed by a pathologist.
실험 결과는 대표적인 정상 유방 조직과 유방암 조직의 RIP3의 면역염색 사진을 나타내었으며, 그 결과를 H-score로 도식화하였다(도 7, 도 8 및 도 9). 정상 유방조직에 비해 암조직에서 RIP3의 발현이 현저히 떨어지는 것을 확인할 수 있었다. The experimental results showed immunostaining pictures of RIP3 of representative normal breast tissue and breast cancer tissue, and the results were plotted with H-score (FIGS. 7, 8 and 9). It was confirmed that the expression of RIP3 is significantly decreased in cancer tissues compared to normal breast tissues.
< 실시예 6 > RIP3의 발현이 억제된 세포에서 항암제의 농도별 처리에 따른 HT-29의 생존율 분석<Example 6> Survival analysis of HT-29 according to the treatment according to the concentration of anticancer agent in the cells inhibited RIP3 expression
HT-29 세포들(American Tissue Culture Collection)은 페니실린-스트렙토마이신 (10IU/ml)과 10% FBS가 첨가된 DMEM 배지를 이용하여 37℃ 인큐베이터에서 배양하였다. 본 발명에서 사용한 shRNAi 이중 나선은 Sigma-Aldrich에서 상업적으로 합성되었다. 본 발명에서 사용된 shRNA는 human RIPK3 mRNA 서열의 코딩 영역의 타겟을 위해 디자인되었다(NCBI Reference sequence NM_006871).HT-29 cells (American Tissue Culture Collection) were cultured in a 37 ° C. incubator using DMEM medium supplemented with penicillin-streptomycin (10 IU / ml) and 10% FBS. The shRNAi double helix used in the present invention was commercially synthesized from Sigma-Aldrich. The shRNA used in the present invention was designed for the targeting of the coding region of the human RIPK3 mRNA sequence (NCBI Reference sequence NM_006871).
먼저 배양된 HT-29 세포를 35mm Dish에 2×105 분주하였다. 다음날 프로토콜의 지시에 따라 상기세포를 폴리브린(polybrene) (10ug/ml)과 함께 shRNA particle을 이용하여 형질전환시켰다. 대조군은 특정 단백을 타겟하지 않는 shRNA를 이용하였다(NCBI Reference sequence NM_027088).Firstly cultured HT-29 cells were dispensed 2 × 10 5 in 35 mm dish. The next day the cells were transformed with shRNA particles with polybrene (10ug / ml) according to the protocol instructions. The control group used shRNAs that did not target specific proteins (NCBI Reference sequence NM_027088).
상기 제조된 형질전환 세포내에서 생성되는 RIP3 단백질양을 측정하기 위하여, 먼저 PBS를 이용하여 형질전환된 HT-29세포를 세척한 후 용해 버퍼를 처리하여 상등액을 수득한 다음 BIO-RARD 사의 Western Blot KIT을 이용하여 단백질을 분리하였다. 분리된 단백질은 적정 항체와 반응을 한 후 (항-β-액틴 (1:5,000, Sigma), 항-RIP3 (1:1,000, Abcam) 및 2차 HRP-컨주게이트 항체 (Jackson) HRP는 Immunobilon Western Chemiluminescent HRP substrate KIT (Thermo)를 이용하여 검출하였다. In order to measure the amount of RIP3 protein produced in the transformed cells, the HT-29 cells transformed using PBS were first washed, and then treated with lysis buffer to obtain a supernatant, followed by Western Blot of BIO-RARD. Proteins were separated using KIT. The isolated protein reacted with the titration antibody (anti-β-actin (1: 5,000, Sigma), anti-RIP3 (1: 1,000, Abcam) and secondary HRP-conjugated antibody (Jackson) HRP were immunobilon western Detected using Chemiluminescent HRP substrate KIT (Thermo).
그 결과 도 10에 나타난 바와 같이, RIP3 shRNA로 형질전환된 HT-29 세포내 RIP3 단백질이 거의 검출되지 않은 것으로 나타났으며, 이를 통해 형질전환된 RIP3 shRNA가 RIP3 유전자를 효과적으로 넉다운(Kncok-down) 시키는 것을 확인할 수 있었다.As a result, as shown in FIG. 10, almost no RIP3 protein was detected in HT-29 cells transformed with RIP3 shRNA, and the transformed RIP3 shRNA effectively knocked down the RIP3 gene. I could confirm that.
본 발명자들은 RIP3 유전자가 항암제 감수성과 관련이 있는 지를 확인하기 위해 RIP3 shRNA로 형질전환된 HT-29에 독소루비신(Doxorubicin)과 에토포사이드 (Etoposide)를 농도별로 처리한 후 상기 암세포의 세포 생존율을 측정하였다. 자세하게는 RIP3 shRNA로 형질전환된 HT-29 세포들은 독소루비신(Doxorubicin) 2.5uM, 5uM 과 에토포사이드 (Etoposide) 50uM, 100uM 처리 한 후 48시간 동안 배양하였으며, 테스트는 0.1mg의 MTT(3-([4,5-dimethylthiazol-2-yl0]-2,5-diphenyltetrazolium bromide)를 포함하는 신선한 배지로 교체된 후 2시간 동안 더 배양한다. 살아있는 세포가 용해된 테트라졸리움염을 자주색의 포마잔(formazan) 결정으로 환원시켜 만든 침전물에 대해 색상 분석(colormatric)을 사용하여 행해진다. 그 후, 배지는 제거하고 생성된 포마잔 결정은 DMSO 500ul로 용해하여 ELISA reader (at 570nm)를 이용하여 흡광도를 측정하였다. 세포 생존율은 100% 생존율로 정의된 대조군에 따른 상대 퍼센트로 나타내었다.To determine whether the RIP3 gene is related to anticancer susceptibility, we measured the cell survival rate of the cancer cells after treatment with doxorubicin and etoposide in HT-29 transformed with RIP3 shRNA. . Specifically, HT-29 cells transformed with RIP3 shRNA were incubated for 48 hours after 2.5uM of doxorubicin, 5uM and 50uM of etoposide and 100uM, and the test was performed with 0.1mg of MTT (3-([ Replace with fresh medium containing 4,5-dimethylthiazol-2-yl0] -2,5-diphenyltetrazolium bromide) and incubate for another 2 hours.Terazolium salt with live cells dissolved in purple formazan Precipitates made by reduction with crystals were subjected to color analysis (colormatric), after which the medium was removed and the resulting formazan crystals were dissolved in 500 ul of DMSO and absorbance was measured using an ELISA reader (at 570 nm). Cell viability is expressed as relative percentage according to the control defined as 100% viability.
그 결과, 도 10(오른쪽)에서 나타낸 바와 같이 대조군은 독소루비신(Doxorubicin) 및 에토포사이드 (Etoposide)의 농도에 의존하여 세포 생존율이 감소되는 반면, shRNA를 이용하여 RIP3를 넉다운시킨 실험군은 대조군에 비해서 세포생존율이 증가되어 있음을 확인하였다. As a result, as shown in FIG. 10 (right), the control group reduced cell viability depending on the concentration of Doxorubicin and Etoposide, whereas the experimental group knocked down RIP3 using shRNA cells compared to the control group. It was confirmed that the survival rate was increased.
< 실시예 7 > <Example 7> RIP3의 발현이 억제된 세포에서 항암제의 농도별 처리에 따른 T47D의 생존율 분석Survival Analysis of T47D by Anti-cancer Agents in RIP3-Inhibited Cells
RIP3가 유방암세포에도 영향을 미치는지 확인하기 위하여 RIP3가 발현하는 T47D 세포를 이용하였다. 먼저 < 실시예 6 >에 기술한 동일한 방법으로 RIP3를 형질전환시켰다. In order to confirm that RIP3 also affects breast cancer cells, T47D cells expressing RIP3 were used. First, RIP3 was transformed by the same method described in Example 6.
웨스턴 블랏팅 방법을 통해, RIP3 shRNA로 형질전환된 T47D에서 RIP3 단백질이 거의 검출되지 않은 것으로 나타났으며, RIP3 유전자는 효과적으로 넉다운시킨 것을 확인할 수 있었다(도 11). RIP3가 유방암세포 T47D에서 항암제 감수성을 증가시키는지 확인하기 위하여 MTT 분석을 시행하였다. 대조군과 RIP3 넉다운된 실험군에 독소루비신과 에토포사이드, 탁솔을 도 11(오른쪽)에 나타난 농도별로 48시간 반응하였다. MTT 분석에 의하면 대조군에서는 항암제의 농도에 따라 사멸한 반면 RIP3가 형질전환된 세포주는 특히, 에토포사이드를 처리한 실험군에서 대조군에 비해 항암제 저항성이 현저히 증가하였다.Through Western blotting method, almost no RIP3 protein was detected in T47D transformed with RIP3 shRNA, and it was confirmed that the RIP3 gene was effectively knocked down (FIG. 11). MTT analysis was performed to determine whether RIP3 increases anticancer drug sensitivity in breast cancer cell T47D. Doxorubicin, etoposide, and Taxol were reacted for 48 hours at the concentrations shown in FIG. According to the MTT analysis, the control group was killed according to the concentration of anticancer agent, whereas the cell line transformed with RIP3 significantly increased the anticancer drug resistance, especially in the experimental group treated with etoposide.
이를 통해 RIP3 발현 조절이 항암제 암세포주에 대한 저항성에 영향을 미치는 것을 확인 할 수 있었으며, 특히 RIP3 발현이 억제되는 경우 항암제에 대해 암세포가 내성을 가져 항암제의 활성이 억제되는 반면, RIP3가 발현되는 경우 항암제 농도 의존적으로 암세포의 사멸이 증가 되는 것을 알 수 있었다.Through this, it could be confirmed that RIP3 expression regulation affects the resistance to cancer cell lines. In particular, when RIP3 expression is inhibited, cancer cells become resistant to anticancer drugs and the activity of anticancer drugs is inhibited, whereas RIP3 is expressed. Cancer cell death was increased depending on the concentration of anticancer drugs.
< 실시예 8 > 유방암 환자의 10년 동안 전이 재발 없는 생존율(metastatic relapse-free survival) 분석Example 8 Metastatic Relapse-free Survival Analysis of 10 Years of Breast Cancer Patients
도 12은 1,166명의 유방암 환자의 10년 동안 전이 재발 없는 생존율(metastatic relapse-free survival) 그래프를 나타낸다. RIP3의 유전자 발현 정도를 50% 이상 및 50% 이하로 하여 생존율을 분석한 결과, 통계적으로 p<0.0085 의 의미 있는 차이를 보임이 나타나 RIP3 의 발현 정도가 환자의 생존율에 영향을 미침을 증명하였다. 결과는 Jezequel et al.(Breast Cancer Research and Treatment 2012;131:765-75)에 의해 디자인된 Breast Cancer Gene-Expression Miner v3.0 software를 이용하여 분석하였다. FIG. 12 shows a metastatic relapse-free survival graph for 10 years of 1,166 breast cancer patients. As a result of analyzing the survival rate with the gene expression level of RIP3 above 50% and below 50%, there was statistically significant difference of p <0.0085, demonstrating that the expression level of RIP3 affects the survival rate of patients. Results were analyzed using Breast Cancer Gene-Expression Miner v3.0 software designed by Jezequel et al. (Breast Cancer Research and Treatment 2012; 131: 765-75).
이상으로 본 발명의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시예일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.Having described the specific parts of the present invention in detail, it will be apparent to those skilled in the art that such specific descriptions are merely preferred embodiments, and thus the scope of the present invention is not limited thereto. will be. Thus, the substantial scope of the present invention will be defined by the appended claims and their equivalents.

Claims (21)

  1. RIP3(Receptor-interacting protein kinase-3) 단백질 발현 촉진제 또는 활성화제를 유효성분으로 포함하는 항암 보조용 약학조성물.Anti-cancer auxiliary pharmaceutical composition comprising a receptor-interacting protein kinase-3 (RIP3) protein expression promoter or activator.
  2. 제1항에 있어서, 상기 RIP3 단백질 발현 촉진제 또는 활성화제는 RIP3에 특이적으로 결합하는 화합물, 펩티드, 펩티드 미메틱스, 앱타머, 항체 및 천연물로 구성된 군으로부터 선택된 어느 하나인 것을 특징으로 하는 항암 보조용 약학조성물. According to claim 1, wherein the RIP3 protein expression promoter or activator is any one selected from the group consisting of compounds, peptides, peptide mimetics, aptamers, antibodies and natural products that specifically bind to RIP3 Auxiliary pharmaceutical composition.
  3. 제1항에 있어서, 상기 조성물은 RIP3 단백질의 탈메틸화를 유도하는 것을 특징으로 하는 항암 보조용 약학조성물.According to claim 1, wherein the composition is an anticancer adjuvant pharmaceutical composition, characterized in that to induce demethylation of RIP3 protein.
  4. 제1항에 있어서, 상기 암은 유방암, 자궁경부암, 간암 또는 대장암인 것을 특징으로 하는 항암 보조용 약학조성물. According to claim 1, wherein the cancer cancer cancer, cervical cancer, liver cancer or colon cancer, characterized in that the auxiliary pharmaceutical composition for cancer.
  5. RIP3(Receptor-interacting protein kinase-3) 단백질 발현 촉진제 또는 활성화제; 및 항암제를 암세포에 병용투여하는 것을 특징으로 하는 암세포 사멸 증진 방법.Receptor-interacting protein kinase-3 (RIP3) protein expression promoters or activators; And a cancer cell death enhancing method comprising administering an anticancer agent to the cancer cells in combination.
  6. 제5항에 있어서, RIP3(Receptor-interacting protein kinase-3) 단백질 발현 촉진제 또는 활성화제를 암세포에 처리하는 단계; 및The method of claim 5, further comprising: treating cancer cells with a receptor-interacting protein kinase-3 (RIP3) protein expression promoter or activator; And
    상기 처리된 암세포에 항암제를 투여하는 단계를 포함하는 것을 특징으로 하는 암세포 사멸 증진 방법.Cancer cell death enhancement method comprising the step of administering an anticancer agent to the treated cancer cells.
  7. 제5항에 있어서, 상기 암세포는 유방암세포, 자궁경부암세포, 간암세포 또는 대장암세포인 것을 특징으로 하는 암세포 사멸 증진 방법.The method of claim 5, wherein the cancer cells are breast cancer cells, cervical cancer cells, liver cancer cells, or colon cancer cells.
  8. 제5항에 있어서, 상기 항암제는 독소루비신(doxorubicin) 또는 에토포사이드(etoposide)인 것을 특징으로 하는 암세포 사멸 증진 방법.The method of claim 5, wherein the anticancer agent is doxorubicin or etoposide.
  9. 암세포에 시험물질을 접촉시키는 단계;Contacting the test substance with cancer cells;
    상기 시험물질을 접촉한 암세포에서 RIP3(Receptor-interacting protein kinase-3) 단백질의 발현 또는 활성 정도를 측정하는 단계; 및 Measuring the level of expression or activity of a receptor-interacting protein kinase-3 (RIP3) protein in cancer cells in contact with the test substance; And
    대조구 시료와 비교하여 상기 RIP3 단백질의 발현 또는 활성 정도가 증가한 시험물질을 선별하는 단계를 포함하는 항암 보조제 스크리닝 방법.A method for screening an anticancer adjuvant comprising screening a test substance with increased expression or activity of the RIP3 protein compared to a control sample.
  10. 제9항에 있어서, 상기 RIP3 단백질의 발현 또는 활성 정도는 역전사 중합효소 연쇄반응(Reverse Transcription-Polymerase chain Reaction, RT-PCR), 효소면역분석법(ELISA), 면역조직화학, 웨스턴 블랏(Western Blotting) 및 유세포 분석법(FACS)으로 구성된 군으로부터 선택된 어느 하나로 측정하는 것을 특징으로 하는 항암 보조제 스크리닝 방법.10. The method of claim 9, wherein the expression or activity of the RIP3 protein is Reverse Transcription-Polymerase chain Reaction (RT-PCR), enzyme immunoassay (ELISA), immunohistochemistry, Western Blotting And flow cytometry (FACS). The method for screening an anticancer adjuvant characterized in that it is measured by any one selected from the group consisting of.
  11. 제9항에 있어서, 상기 암세포는 유방암세포, 자궁경부암세포, 간암세포 또는 대장암세포인 것을 특징으로 하는 항암 보조제 스크리닝 방법.The method of claim 9, wherein the cancer cells are breast cancer cells, cervical cancer cells, liver cancer cells, or colon cancer cells.
  12. 제9항에 있어서, 상기 항암 보조제는 항암제의 감수성을 증진시키는 것을 특징으로 하는 항암 보조제 스크리닝 방법.10. The method of claim 9, wherein the anticancer adjuvant enhances the sensitivity of the anticancer agent.
  13. 제12항에 있어서, 상기 항암제는 독소루비신(doxorubicin), 에토포사이드(etoposide) 또는 탁솔(taxol)인 것을 특징으로 하는 항암 보조제 스크리닝 방법.The method of claim 12, wherein the anticancer agent is doxorubicin, etoposide, or taxol.
  14. 암세포에서 RIP3 단백질의 발현 또는 활성 정도를 측정하는 단계;Measuring the expression or activity of RIP3 protein in cancer cells;
    정상조직세포에서 RIP3 단백질의 발현 또는 활성 정도를 측정하는 단계; 및Measuring the expression or activity of RIP3 protein in normal tissue cells; And
    상기 정상조직세포에서 측정된 RIP3 단백질의 발현 또는 활성 대비 상기 암세포에서 측정된 RIP3 단백질의 발현 또는 활성이 낮은 경우 항암제 저항성이 있다고 판단하는 단계를 포함하는 항암제 감수성 모니터링 방법.Anticancer drug sensitivity monitoring method comprising the step of determining that the anti-cancer drug resistance when the expression or activity of the RIP3 protein measured in the cancer cells is low compared to the expression or activity of the RIP3 protein measured in the normal tissue cells.
  15. 제14항에 있어서, 상기 암세포는 유방암세포, 자궁경부암세포, 간암세포 또는 대장암세포인 것을 특징으로 하는 항암제 감수성 모니터링 방법.15. The method of claim 14, wherein the cancer cells are breast cancer cells, cervical cancer cells, liver cancer cells, or colon cancer cells.
  16. 제14항에 있어서, 상기 항암제는 독소루비신(doxorubicin), 에토포사이드(etoposide) 또는 탁솔(taxol)인 것을 특징으로 하는 항암제 감수성 모니터링 방법.The method of claim 14, wherein the anticancer agent is doxorubicin, etoposide, or taxol.
  17. RIP3 단백질 발현 촉진제 또는 활성화제를 암세포에 처리하는 단계; Treating the cancer cells with a RIP3 protein expression promoter or activator;
    상기 처리된 암세포에서 RIP3 단백질의 발현 또는 활성 정도를 측정하는 단계; 및Measuring the expression or activity of RIP3 protein in the treated cancer cells; And
    상기 처리 전 대조구 시료 대비 상기 처리 후 RIP3 단백질의 발현 또는 활성이 50 내지 100% 증가한 경우 항암제 감수성이 증진되었다고 판단하는 단계를 포함하는 항암제 감수성 증진방법.Anti-cancer drug sensitivity enhancement method comprising the step of determining that the anti-cancer drug sensitivity is increased when the expression or activity of the RIP3 protein after the treatment is increased by 50 to 100% compared to the control sample before the treatment.
  18. RIP3 유전자 또는 상기 유전자로부터 발현된 단백질을 포함하는 항암제 감수성 진단용 바이오마커 조성물.Anti-cancer drug sensitivity diagnostic biomarker composition comprising the RIP3 gene or a protein expressed from the gene.
  19. RIP3 유전자를 증폭하기 위한 프라이머 또는 상기 유전자로부터 발현된 단백질에 특이적으로 결합하는 항체 또는 앱타머를 포함하는 항암제 감수성 진단용 키트.Anti-cancer drug sensitivity diagnostic kit comprising a primer for amplifying the RIP3 gene or an antibody or aptamer specifically binding to a protein expressed from the gene.
  20. 암환자 시료에서 RIP3의 발현 수준을 측정하는 단계;Measuring the expression level of RIP3 in a cancer patient sample;
    정상 대조구 시료에서 RIP3의 발현 수준을 측정하는 단계; 및Measuring the expression level of RIP3 in the normal control sample; And
    상기 정상 대조구 시료에서 측정된 RIP3 단백질의 발현 수준 대비 상기 암환자 시료에서 측정된 RIP3 단백질의 발현 수준이 낮은 경우 항암제 저항성이 있다고 판단하는 단계를 포함하는 항암제 감수성 예후 진단에 필요한 정보를 제공하는 방법.A method for providing anti-cancer drug susceptibility prognosis comprising determining that the anti-cancer drug resistance is low when the expression level of the RIP3 protein measured in the cancer patient sample is lower than the expression level of the RIP3 protein measured in the normal control sample.
  21. 제20항에 있어서, 상기 RIP3의 발현 수준은 항원-항체 반응을 통해 측정하는 것을 특징으로 하는 항암제 감수성 예후 진단에 필요한 정보를 제공하는 방법.The method of claim 20, wherein the expression level of RIP3 is measured by an antigen-antibody response.
PCT/KR2014/011376 2014-02-07 2014-11-25 Anticancer adjuvant composition containing rip3 expression promoter as active ingredient, method for screening for anticancer adjuvant enhancing sensitivity of anticancer drug by promoting rip3 expression, and method for monitoring sensitivity of anticancer drug WO2015119362A1 (en)

Priority Applications (12)

Application Number Priority Date Filing Date Title
JP2016568771A JP6464436B2 (en) 2014-02-07 2014-11-25 An anti-cancer adjuvant composition comprising a receptor-coupled protein kinase-3 (RIP3) expression promoter as an active ingredient, and an anti-cancer adjuvant that promotes the sensitivity of the anti-cancer drug by promoting the expression of receptor-coupled protein kinase-3 (RIP3) Screening method and anticancer drug sensitivity monitoring method
NZ723237A NZ723237A (en) 2014-02-07 2014-11-25 Anticancer adjuvant composition containing rip3 expression promoter as active ingredient, method for screening for anticancer adjuvant enhancing sensitivity of anticancer drug by promoting rip3 expression, and method for monitoring sensitivity of anticancer drug
RU2016135933A RU2016135933A (en) 2014-02-07 2014-11-25 COMPOSITION FOR ANTICANCER DRUG AUXILIARY comprising means to induce the expression RIP3, as an active ingredient, a method for screening ANTICANCER AUXILIARY drug, increases the sensitivity to anticancer drugs by stimulating RIP3 EXPRESSION, AND METHOD FOR CONTROL OF SENSITIVITY TO anticancer drugs
US15/116,591 US10391115B2 (en) 2014-02-07 2014-11-25 Anticancer adjuvant composition containing RIP3 expression promoter as active ingredient, method for screening for anticancer adjuvant enhancing sensitivity of anticancer drug by promoting RIP3 expression, and method for monitoring sensitivity of anticancer drug
CN201480077473.XA CN106132435B (en) 2014-02-07 2014-11-25 Method and kit for screening anticancer adjuvant for enhancing sensitivity of anticancer drug by promoting expression of RIP3
CA2938821A CA2938821A1 (en) 2014-02-07 2014-11-25 Anticancer adjuvant composition containing rip3 expression promoter as active ingredient, method for screening for anticancer adjuvant enhancing sensitivity of anticancer drug by promoting rip3 expression, and method for monitoring sensitivity of anticancer drug
AU2014382143A AU2014382143B2 (en) 2014-02-07 2014-11-25 Anticancer adjuvant composition containing RIP3 expression promoter as active ingredient, method for screening for anticancer adjuvant enhancing sensitivity of anticancer drug by promoting RIP3 expression, and method for monitoring sensitivity of anticancer drug
MX2016010177A MX2016010177A (en) 2014-02-07 2014-11-25 Antica.
EP14882054.1A EP3103475B1 (en) 2014-02-07 2014-11-25 Anticancer adjuvant composition containing rip3 expression promoter as active ingredient, method for screening for anticancer adjuvant enhancing sensitivity of anticancer drug by promoting rip3 expression, and method for monitoring sensitivity of anticancer drug
SG11201606439VA SG11201606439VA (en) 2014-02-07 2014-11-25 Anticancer adjuvant composition containing rip3 expression promoter as active ingredient, method for screening for anticancer adjuvant enhancing sensitivity of anticancer drug by promoting rip3 expression, and method for monitoring sensitivity of anticancer drug
IL247120A IL247120A0 (en) 2014-02-07 2016-08-04 Anticancer adjuvant composition containing rip3 expression promoter as active ingredient, method for screening for anticancer adjuvant enhancing sensitivity of anticancer drug by promoting rip3 expression, and method for monitoring sensitivity of anticancer drug
PH12016501554A PH12016501554A1 (en) 2014-02-07 2016-08-05 Anticancer adjuvant composition containing rip3 expression promoter as active ingredient, method for screening for anticancer adjuvant enhancing sensitivity of anticancer drug by promoting rip3 expression, and method for monitoring sensitivity of anticancer drug

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR10-2014-0014242 2014-02-07
KR10-2014-0014243 2014-02-07
KR20140014242 2014-02-07
KR20140014243 2014-02-07
KR10-2014-0164963 2014-11-25
KR1020140164963A KR101721407B1 (en) 2014-02-07 2014-11-25 Method for screening anticancer supplement agents inducing RIP3 expression for enhancing sensitivity to anticancer agents and method for monitoring sensitivity to anticancer agents

Publications (1)

Publication Number Publication Date
WO2015119362A1 true WO2015119362A1 (en) 2015-08-13

Family

ID=53778140

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/011376 WO2015119362A1 (en) 2014-02-07 2014-11-25 Anticancer adjuvant composition containing rip3 expression promoter as active ingredient, method for screening for anticancer adjuvant enhancing sensitivity of anticancer drug by promoting rip3 expression, and method for monitoring sensitivity of anticancer drug

Country Status (1)

Country Link
WO (1) WO2015119362A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008104543A2 (en) * 2007-02-26 2008-09-04 Inserm (Institut National De La Sante Et De La Recherche Medicale) Method for predicting the occurrence of metastasis in breast cancer patients
US20100323034A1 (en) * 2008-01-31 2010-12-23 Keio University Method for determination of sensitivity to anti-cancer agent
KR20130124961A (en) * 2010-12-09 2013-11-15 에프. 호프만-라 로슈 아게 Agtr1 as a marker for bevacizumab combination therapies

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008104543A2 (en) * 2007-02-26 2008-09-04 Inserm (Institut National De La Sante Et De La Recherche Medicale) Method for predicting the occurrence of metastasis in breast cancer patients
US20100323034A1 (en) * 2008-01-31 2010-12-23 Keio University Method for determination of sensitivity to anti-cancer agent
KR20130124961A (en) * 2010-12-09 2013-11-15 에프. 호프만-라 로슈 아게 Agtr1 as a marker for bevacizumab combination therapies

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
FU, ZEZE ET AL.: "The anti-tumor effect of shikonin on osteosarcoma by inducing RIP1 and RIP3 dependent necroptosis", BMC CANCER, vol. 13, no. 580, 2013, pages 1 - 10, XP021169391 *
HE, JIN-XUE ET AL.: "Differential sensitivity of RIP3-proficient and deficient murine fibroblasts to camptothecin anticancer drug", ACTA PHARMACOLOGICA SINICA, vol. 33, no. 3, 2012, pages 426 - 428, XP055216920 *
JEZEQUEL ET AL., BREAST CANCER RESEARCH AND TREATMENT, vol. 131, 2012, pages 765 - 75

Similar Documents

Publication Publication Date Title
Cao et al. Retinoic acid–related orphan receptor C regulates proliferation, glycolysis, and chemoresistance via the PD-L1/ITGB6/STAT3 signaling axis in bladder cancer
Xu et al. Bisphenol A induces proliferative effects on both breast cancer cells and vascular endothelial cells through a shared GPER-dependent pathway in hypoxia
Xu et al. NFATC1 promotes cell growth and tumorigenesis in ovarian cancer up-regulating c-Myc through ERK1/2/p38 MAPK signal pathway
Wang et al. Hedgehog signaling non-canonical activated by pro-inflammatory cytokines in pancreatic ductal adenocarcinoma
Rodriguez et al. Diminished expression of CRHR2 in human colon cancer promotes tumor growth and EMT via persistent IL-6/Stat3 signaling
Liu et al. Genistein-induced differentiation of breast cancer stem/progenitor cells through a paracrine mechanism
Song et al. Tripartite motif-containing protein 3 plays a role of tumor inhibitor in cervical cancer
EP3103475B1 (en) Anticancer adjuvant composition containing rip3 expression promoter as active ingredient, method for screening for anticancer adjuvant enhancing sensitivity of anticancer drug by promoting rip3 expression, and method for monitoring sensitivity of anticancer drug
Li et al. PPARGC1A is upregulated and facilitates lung cancer metastasis
Bai et al. Long noncoding RNA EZR‑AS1 promotes tumor growth and metastasis by modulating Wnt/β‑catenin pathway in breast cancer
Choi et al. MicroRNA-200 family governs ovarian inclusion cyst formation and mode of ovarian cancer spread
Ye et al. Prostaglandin E2 receptor 3 (EP3) signaling promotes migration of cervical cancer via urokinase-type plasminogen activator receptor (uPAR)
Von Roemeling et al. Functional genomics identifies novel genes essential for clear cell renal cell carcinoma tumor cell proliferation and migration
WO2017217807A2 (en) Biomarker comprising nckap1 as effective ingredient for diagnosing colorectal cancer or for predicting metastasis and prognosis of colorectal cancer
Xu et al. UPF1/circRPPH1/ATF3 feedback loop promotes the malignant phenotype and stemness of GSCs
WO2017022932A1 (en) Composition for anticancer adjuvant comprising rip3 expression promotor as active ingredient, method for screening anticancer adjuvant which promotes rip3 expression and enhances sensitivity of anticancer agent, and method for monitoring sensitivity of anticancer agent
Mao et al. OCT3/4 enhances tumor immune response by upregulating the TET1-dependent NRF2/MDM2 axis in bladder cancer
Liang et al. circANKRD17 (has_circ_0007883) confers paclitaxel resistance of ovarian cancer via interacting with FUS to stabilize FOXR2
WO2015119362A1 (en) Anticancer adjuvant composition containing rip3 expression promoter as active ingredient, method for screening for anticancer adjuvant enhancing sensitivity of anticancer drug by promoting rip3 expression, and method for monitoring sensitivity of anticancer drug
WO2017007276A1 (en) Pharmaceutical composition for inhibiting resistance against anticancer drugs of patient suffering from ovarian cancer comprising nag-1 inhibitor as active ingredient
KR101721407B1 (en) Method for screening anticancer supplement agents inducing RIP3 expression for enhancing sensitivity to anticancer agents and method for monitoring sensitivity to anticancer agents
WO2019103456A2 (en) Biomarker composition for diagnosing radiation-resistant cancer or for predicting prognosis of radiation therapy containing pmvk as active ingredient
JP7012363B2 (en) Biomarkers for predicting the therapeutic effect of FSTL1 inhibitors in cancer patients
Zhuang et al. HIF‑1α and MBP1 are associated with the progression of breast cancer cells by repressing β‑catenin transcription
WO2023287079A1 (en) Biomarker composition for predicting triple negative breast cancer metastasis, containing csde1 as active ingredient

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14882054

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2938821

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 15116591

Country of ref document: US

Ref document number: 247120

Country of ref document: IL

Ref document number: MX/A/2016/010177

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 2016568771

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12016501554

Country of ref document: PH

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112016018173

Country of ref document: BR

REEP Request for entry into the european phase

Ref document number: 2014882054

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014882054

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2014382143

Country of ref document: AU

Date of ref document: 20141125

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: A201609283

Country of ref document: UA

Ref document number: 2016/0792.1

Country of ref document: KZ

ENP Entry into the national phase

Ref document number: 2016135933

Country of ref document: RU

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112016018173

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20160805