WO2015119250A1 - Antenna device, antenna system, microwave power utilization system, and power utilization method - Google Patents

Antenna device, antenna system, microwave power utilization system, and power utilization method Download PDF

Info

Publication number
WO2015119250A1
WO2015119250A1 PCT/JP2015/053401 JP2015053401W WO2015119250A1 WO 2015119250 A1 WO2015119250 A1 WO 2015119250A1 JP 2015053401 W JP2015053401 W JP 2015053401W WO 2015119250 A1 WO2015119250 A1 WO 2015119250A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
antenna
microwave
antenna device
circulator
Prior art date
Application number
PCT/JP2015/053401
Other languages
French (fr)
Japanese (ja)
Inventor
智宏 高橋
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Publication of WO2015119250A1 publication Critical patent/WO2015119250A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/248Supports; Mounting means by structural association with other equipment or articles with receiving set provided with an AC/DC converting device, e.g. rectennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/28Adaptation for use in or on aircraft, missiles, satellites, or balloons
    • H01Q1/288Satellite antennas
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/005Mechanical details of housing or structure aiming to accommodate the power transfer means, e.g. mechanical integration of coils, antennas or transducers into emitting or receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/20Circuit arrangements or systems for wireless supply or distribution of electric power using microwaves or radio frequency waves
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/20Circuit arrangements or systems for wireless supply or distribution of electric power using microwaves or radio frequency waves
    • H02J50/27Circuit arrangements or systems for wireless supply or distribution of electric power using microwaves or radio frequency waves characterised by the type of receiving antennas, e.g. rectennas

Definitions

  • the present invention relates to an antenna device, an antenna system, a microwave power utilization system, and a power utilization method.
  • phased array antenna a plurality of sets of circuits (transmission / reception modules) configured by connecting amplifiers and phase shifters to antenna elements or antenna element groups are provided.
  • antenna elements or antenna element groups are arranged in an arbitrary plane. Then, beam scanning can be performed by individually adding phases to the transmission signal by the phase shifter.
  • thermoelectric conversion device that effectively uses exhaust heat generated by a transmission / reception module in a phased array antenna by converting it into electric power by a thermoelectric power generation module is disclosed (for example, see Patent Document 1). If the electric power converted by this thermoelectric converter is used effectively, the efficiency of electric power can be improved.
  • a phased array antenna in which a circuit for detecting the level of unwanted radio waves input to the amplifier is provided, and a display device for displaying the detection signal is provided (for example, see Patent Document 2).
  • a circuit for detecting the level of unwanted radio waves input to the amplifier is provided, and a display device for displaying the detection signal is provided (for example, see Patent Document 2).
  • a satellite-mounted array antenna in which a planar antenna is deployed on the front of the artificial satellite, a microwave transmission antenna is provided on the satellite body, and a rectenna for receiving microwaves is provided on the back of each sub-array of the planar antenna.
  • the power of the phase shifter and the semiconductor circuit for transmission / reception is transmitted as microwaves from the satellite body to each sub-array.
  • This rectenna converts radio waves from artificial satellites into DC power, and operates the phase shifter with the converted power.
  • thermoelectric conversion device In the thermoelectric conversion device disclosed in Patent Document 1, heat energy is converted into electric energy using a thermoelectric element. However, the conversion efficiency from heat energy to electric energy by the thermoelectric element is not necessarily high.
  • the phased array antenna disclosed in Patent Document 2 can detect a failure, thereby preventing the reception system function from being lowered and improving the efficiency of the system.
  • this phased array antenna does not improve power efficiency.
  • the present invention has been made to solve the above-described problems, and an object thereof is to provide an antenna device, an antenna system, a microwave power utilization system, and a power utilization method that can improve power efficiency. To do.
  • the antenna element outputs a transmission signal as an electromagnetic wave.
  • the circulator has one terminal for outputting a transmission signal to the antenna element and outputting a signal sent from the antenna element.
  • the amplifier outputs the amplified transmission signal to the circulator.
  • the phase shifter adds a phase to the transmission signal and outputs it to the amplifier.
  • a plurality of circuits each including an antenna element, a circulator, an amplifier, and a phase shifter are provided.
  • a rectifier circuit connected to one terminal of the circulator and converting AC power into DC power is provided in each set of circuits.
  • the current collector collects DC power converted by each rectifier circuit.
  • the coupling power between the antenna elements and the reflected power of the antenna element alone can be converted to DC power using the rectifier circuit and reused as power supply power. In this way, power efficiency can be improved.
  • Embodiment 1 FIG. First, a first embodiment of the present invention will be described.
  • the antenna device 18 is configured around the phased array antenna device 11.
  • the phased array antenna device 11 includes a transmission signal transmitting antenna element 1, a circulator 2 electrically connected to the antenna element 1, an amplifier 3 electrically connected to the circulator 2, and an amplifier 3 electrically. And a connected phase shifter 4.
  • a plurality of circuit sets each including the antenna element 1, the circulator 2, the amplifier 3, and the phase shifter 4 are provided.
  • the phased array antenna device 11 further includes one oscillator 5 electrically connected to the plurality of phase shifters 4.
  • the phased array antenna device 11 further includes a rectifier circuit 6 connected to one terminal of the circulator 2 (a terminal that outputs a signal from the antenna element 1).
  • the rectifier circuit 6 is provided for each set of circuits described above.
  • the phased array antenna device 11 further includes a current collector 7.
  • the current collector 7 is connected to a plurality of rectifier circuits 6.
  • the antenna element 1 sends a transmission signal as an electromagnetic wave beam.
  • the antenna element 1 may be an antenna element group in which a plurality of antenna elements are bundled.
  • the number of antenna elements 1 is n.
  • Each antenna element 1 is numbered # 1 to #n.
  • antenna elements 1 (# 1) to antenna element (#n) will be appropriately described.
  • the circulator 2 is a three-terminal element that is generally used to separate transmission and reception signals.
  • the circulator 2 outputs the signal input to the first terminal to the second terminal.
  • the signal input to the second terminal is output to the third terminal.
  • the output of the amplifier 3 is connected to the first terminal, the antenna element 1 is connected to the second terminal, and a rectifier circuit 6 described later is connected to the third element.
  • the circulator 2 has one terminal (third terminal) for outputting a transmission signal input to the first terminal to the antenna element 1 connected to the second terminal and outputting a signal transmitted from the antenna element 1.
  • the signal is output to a rectifier circuit 6 connected to the terminal, which will be described later. Further, by providing the circulator 2 between the amplifier 3 and the antenna element 1, the amplifier 3 is not affected by the load fluctuation of the antenna element 1, and the fluctuation of the output voltage of the amplifier 3 with respect to the load fluctuation can be suppressed. .
  • the amplifier 3 is a high power amplifier (HPA) for transmission signals.
  • the amplifier 3 amplifies the transmission signal using power supplied from a power source (not shown).
  • the amplifier 3 outputs the amplified transmission signal to the circulator 2.
  • HPA high power amplifier
  • the phase shifter 4 adjusts the phase of the transmission signal. That is, the phase shifter 4 gives a phase for forming a desired beam to the transmission signal and outputs it to the amplifier 3. Thereby, the beam scanning of the transmission signal output from the antenna element 1 is performed.
  • the oscillator 5 is an oscillation circuit and outputs an electrical signal (transmission signal).
  • the output transmission signal is input to the phase shifter 4.
  • a transmission signal output from the oscillator 5 passes through a phase shifter 4 capable of arbitrarily setting a phase as a transmission signal, an amplifier 3 for amplifying power, and a circulator 2 having directionality, and then an electromagnetic wave beam (transmission signal) from the antenna element 1. ).
  • the electromagnetic wave beam (transmission signal) is scanned by the phase applied to the phase shifter 4.
  • the reflected power A that is not radiated and reflected by the antenna element 1 itself, the electromagnetic coupling power between the antenna elements 1 (the electromagnetic coupling power between the antenna elements, or the coupling) B) is generated.
  • FIG. 3 shows a configuration of a conventional antenna device (transmission system) for dealing with these electric powers.
  • This antenna device is also a phased array antenna for signal transmission.
  • the conventional phased array antenna apparatus includes an antenna element 1, a circulator 2, an amplifier 3, and a phase shifter 4.
  • the configuration of the phased array antenna apparatus 11 of FIG. The same.
  • the terminator 12 is connected to one terminal of the circulator 2 (the third terminal from which the signal from the antenna element 1 is output) in each circuit set.
  • the reflected power A of the antenna element 1 itself and the electromagnetic coupling power B between the antenna elements 1 are converted into thermal energy by the terminator 12 through the circulator 2.
  • the antenna device 18 has components for the purpose of effective use of the energy of the reflected power A and the coupling power B consumed as heat. is doing. These components are the rectifier circuit 6 and the current collector 7.
  • the rectifier circuit 6 is connected to one terminal (third terminal) of the circulator 2.
  • the rectifier circuit 6 is provided for each circuit set.
  • the rectifier circuit 6 converts the reflected power A and the coupling power B, that is, AC power into DC power.
  • the current collector 7 is connected to all the rectifier circuits 6.
  • the current collector 7 collects the DC power converted by each rectifier circuit 6 and synthesizes the collected DC power.
  • the antenna device 18 further includes a DC-DC converter 8.
  • the DC-DC converter 8 is connected to the current collector 7.
  • the DC-DC converter 8 converts the DC power collected by the current collector 7 into a voltage having a predetermined magnitude.
  • FIG. 4 shows a circuit configuration when this power is used as power source power for an active element such as the amplifier 3. As shown in FIG. 4, the output of the DC-DC converter 8 is input to each amplifier 3.
  • this power can be used as the power of the entire system including the phased array antenna device 11, for example, system control power, cooling (for example, air cooling) system power, mechanical driving power, and the like.
  • FIG. 5 shows a circuit configuration when this power is used as control power of the controller 23 that controls the oscillator 5, for example.
  • the antenna elements 1 of the phased array antenna device 11 are arranged in a distributed manner.
  • a plurality of rows of antenna elements 1 arranged linearly at equal intervals are arranged in parallel to each other so that the positions of the antenna elements 1 are different from adjacent rows.
  • the power input to each antenna element 1 generates reflected power A (see FIG. 2) due to impedance mismatch between the input / output unit (for example, the amplifier 3) to the antenna element 1 and the antenna element 1.
  • electromagnetic coupling power (coupling power) B is also generated between adjacent antenna elements 1.
  • the antenna element 1 (# 1) there are six adjacent antenna elements 1, antenna element 1 (# 2) to antenna element 1 (# 7).
  • the reflected power from the antenna element 1 (# 1) and the coupling power to the antenna elements 1 (# 2 to # 7) are not radiated to the external space, and the radiation efficiency of the phased array antenna device 11 is deteriorated.
  • the reflection loss (return loss) of the antenna element 1 (# 1) is ⁇ 20 dB
  • the coupling power from the antenna element 1 (# 2) to the antenna element 1 (# 7) is ⁇ 20 dB.
  • the reflection loss is 1%
  • the coupling loss to the adjacent element is 1 ⁇ 6%
  • these electric powers from the antenna element 1 are converted into DC power by the rectifier circuit 6 through the circulator 2 and collected by the current collector 7.
  • the efficiency of the rectifier circuit microwave-DC power conversion efficiency
  • a maximum DC power of 7 ⁇ X / 100% can be obtained.
  • X 80%
  • 5.6% DC power can be obtained.
  • 93% of the total radiation can be recovered as spatial radiation and 5.6% as DC power. That is, the reflected power A from the antenna element 1 and the electromagnetic coupling power B between the antenna elements 1 can contribute to the improvement of the power efficiency of the phased array antenna device 11.
  • FIG. 7 shows a circuit diagram of a half-wave rectifier circuit as an example of the rectifier circuit 6.
  • the half-wave rectifier circuit is a rectifier element that rectifies only during a forward voltage period.
  • the converter 15 drops the voltage.
  • a diode 13 is used as a rectifying element. With this diode 13, only the positive part of the AC sine wave is extracted. The positive portion of the AC sine wave is smoothed by the capacitor 14 and a DC voltage is output to the load resistor 16.
  • the rectifier circuit 6 is not limited to the half-wave rectifier circuit shown in FIG.
  • a full-wave rectifier circuit such as a bridge full-wave rectifier circuit
  • a half-wave voltage doubler rectifier circuit or a full-wave voltage doubler rectifier circuit
  • the full-wave rectifier circuit is a circuit that outputs a positive absolute voltage from an alternating current input that extends between positive and negative.
  • the bridge full-wave rectifier circuit is a circuit using a bridge circuit composed of four diodes in the full-wave rectifier circuit.
  • a half-wave voltage doubler rectifier circuit charges the first capacitor with an alternating half-wave, adds this voltage to the next half-wave, rectifies it, and charges the second capacitor, thereby approximately double the output power.
  • the full-wave voltage doubler rectifier circuit is a circuit that obtains about twice as much DC power by alternately charging a capacitor with a diode and charging the capacitor with a diode. These circuits are circuits that convert AC power into DC power.
  • the rectifier circuit 6 may be a circuit having a function of converting microwave power into DC power.
  • FIG. 8 shows an operation flow of the antenna device 18.
  • AC power flowing through each circulator 2 is converted into DC power using the rectifier circuit 6 (step S1).
  • the DC power converted by all the rectifier circuits 6 is collected by the current collector 7 (step S2).
  • the power collected by the current collector 7 is reused as the power supply voltage of the phased array antenna device 11 (step S3).
  • the reuse method is realized by the circuit configurations shown in FIGS.
  • the rectifier circuit 6 is connected to one terminal of the circulator 2, and the coupled power between the antenna elements 1 is collected in the current collector 7 via the rectifier circuit 6. Electricity.
  • the coupling power between the antenna elements 1 and the reflected power of the antenna element 1 alone can be converted to DC power using the rectifier circuit 6 and reused as power supply power. In this way, power efficiency can be improved.
  • Embodiment 2 FIG. Next, a second embodiment of the present invention will be described.
  • FIG. 9 shows the configuration of an antenna device 19 according to Embodiment 2 of the present invention.
  • the antenna device 19 according to the second embodiment of the present invention is the same as the antenna device 18 according to the first embodiment except that the antenna device 19 further includes a secondary battery 17.
  • the transmission signal excited by the oscillator 5 is radiated as an electromagnetic wave beam from the antenna element 1 via the phase shifter 4 capable of arbitrarily setting the phase, the amplifier 3 for amplifying the transmission signal, and the circulator 2 having directivity.
  • the rectifier circuit 6 is connected to one terminal of the circulator 2.
  • the reflected power A and the coupling power B are rectified by the rectifier circuit 6 via the circulator 2 and converted into a DC voltage.
  • the DC voltage converted by each rectifier circuit 6 is collected by the current collector 7.
  • the DC-DC converter 8 converts the collected DC voltage into an appropriate voltage.
  • the secondary battery 17 is charged by the converted voltage.
  • the power charged in the secondary battery 17 can be used as power to an active element such as the amplifier 3 as shown in FIG. Further, as shown in FIG. 11, for example, this power is distributed as system control power (for example, the power of the controller 23 that is the same as the controller 23 shown in FIG. 5), air-cooling system power, power for driving the machine, and the like. be able to. In addition, it can be used as a backup power source in an emergency.
  • system control power for example, the power of the controller 23 that is the same as the controller 23 shown in FIG. 5
  • air-cooling system power power for driving the machine, and the like.
  • it can be used as a backup power source in an emergency.
  • FIG. 12 shows an operation flow of the antenna device 19.
  • AC power flowing through each circulator 2 is converted into DC power using the rectifier circuit 6 (step S1).
  • the DC power converted by all the rectifier circuits 6 is collected by the current collector 7 (step S2).
  • the collected power is stored in the secondary battery (step S4).
  • the secondary battery 17 in addition to the effect of the antenna device 1 according to the first embodiment, power is stored in the secondary battery 17. Thereby, the electric power of the secondary battery 17 can be used for another device, or used as a standby power source when the electric power is insufficient, so that the power utilization range can be further expanded.
  • Embodiment 3 FIG. Next, a third embodiment of the present invention will be described.
  • FIG. 13 shows the configuration of an antenna system 100 according to Embodiment 3 of the present invention.
  • this antenna system 100 another power transmission antenna 20 is arranged in the vicinity of or far from the antenna device 18 of the first embodiment and the antenna device 19 of the second embodiment.
  • the antenna devices 18 and 19 lose the power supply for some reason, the antenna devices 18 and 19 lose their functions.
  • another power transmission antenna 20 is arranged at a place where the power can be stably supplied.
  • the power transmission antenna 20 irradiates the antenna devices 18 and 19 with microwaves according to the oscillator 5.
  • the power transmission antenna 20 may be a reflector antenna, a phased array antenna, or the like. That is, the configuration of the power transmission antenna 20 is not limited as long as it can radiate microwaves.
  • the function can be recovered by the microwaves transmitted from the power transmission antenna 20.
  • the antenna system 100 can be effectively applied to a phased array antenna provided in an artificial satellite. That is, even if the antenna devices 18 and 19 provided in the artificial satellite lose power, the power of the artificial satellite antenna can be recovered by sending a microwave from a ground antenna or the like.
  • Embodiment 4 FIG. Next, a fourth embodiment of the present invention will be described.
  • FIG. 14 shows the configuration of a microwave power utilization system 200 according to Embodiment 4 of the present invention.
  • the microwave power utilization system 200 is a system that generates an apparatus or a chemical substance that generates iron by irradiating microwaves.
  • the microwave power utilization system 200 includes a phased array antenna device 11, a DC-DC converter 8, and a microwave irradiation chamber 24. Note that the microwave power utilization system can be applied to other than iron manufacturing and chemical reaction as long as the system uses the electric power of the irradiated microwave.
  • an irradiated object 22 to which microwaves are irradiated by heating or chemical reaction is installed.
  • the irradiated body 22 is, for example, fine ore or a chemical substance before reaction generation.
  • the antenna element 1 of the phased array antenna device 11 is installed in the microwave irradiation chamber 24.
  • the object 22 can be effectively irradiated with microwaves by controlling the beam irradiation direction.
  • the irradiated object 22 does not necessarily absorb all the microwave energy, and some power is reflected, transmitted, and scattered. Further, since the main lobe of each antenna element is radiated toward the irradiated object 22, the microwave energy of the side lobe radiated in a direction different from the main lobe is not irradiated on the irradiated object 22, and the microwave Reflected and scattered at the wall of the irradiation chamber 24.
  • the reflection, transmission, and scattering energy are indicated by arrows. These energies are scattered in the microwave irradiation chamber 24 and may be irradiated again to the irradiated object 22, or may be received by the phased array antenna device 11 and consumed as thermal energy. In this case, the energy efficiency of the entire system is reduced.
  • the antenna for irradiating the microwave is a phased array antenna here, an antenna capable of radiating microwaves such as a reflector antenna may be used. In short, as long as it is an antenna that transmits microwave power to the irradiated object 22, the configuration is not limited.
  • the antenna device 18 according to the first embodiment when used as the phased array antenna, the energy reflected, transmitted, and scattered by the irradiated object 22 is received by the phased array antenna device 11, and the DC power is output by the rectifier circuit 6.
  • the current is collected by the current collector 7 and converted to an appropriate voltage by the DC-DC converter 8.
  • the electric power whose voltage has been converted can be reused as in the above embodiments.
  • This power is used, for example, as power supply power for an active element such as the amplifier 3.
  • This power is used as the power of the entire system including the phased array antenna device 11, for example, system control power, power of the air cooling system, power for driving the machine, and the like.
  • the power efficiency in the microwave power utilization system 200 can be improved.
  • Embodiment 5 FIG. Next, a fifth embodiment of the present invention will be described.
  • FIG. 15 shows the configuration of a microwave power utilization system 200 according to Embodiment 5 of the present invention.
  • the microwave power utilization system 200 according to this embodiment is a system for charging the secondary battery 17 with the power converted into an appropriate voltage by the DC-DC converter 8 as in the fourth embodiment. .
  • the power charged in the secondary battery 17 is used as power source power for an active element such as the amplifier 3 as shown in FIG. Further, the power charged in the secondary battery 17 can be distributed to, for example, system control power, air cooling system power, mechanical drive power, and the like. In addition, the secondary battery 17 can be used as a backup power source in an emergency.
  • Embodiment 6 FIG. Next, a sixth embodiment of the present invention will be described.
  • FIG. 16 shows the configuration of a microwave power utilization system 200 according to Embodiment 6 of the present invention.
  • an antenna group (rectenna element group) 26 including a rectifier circuit 6 is installed in a part of the microwave irradiation chamber 24.
  • the rectenna element group 26 includes a plurality of rectenna elements 25.
  • the rectenna element group 26 may be disposed on the entire inner wall of the microwave irradiation chamber 24.
  • the rectenna element 25 includes an antenna element 1 and a rectifier circuit 6.
  • the antenna element 1 may be an antenna element group.
  • the antenna element 1 receives microwaves.
  • the rectifier circuit 6 converts the microwave power received by the antenna element 1 into DC power.
  • the energy reflected, transmitted, scattered, or radiated as a side lobe by the irradiated object 22 is received by the rectenna element group 26 and converted into energy of DC power.
  • This DC power is collected by the current collector 7. Further, this power and DC power obtained from the phased array antenna device 11 are combined by the current collector 7 and converted into an appropriate voltage by the DC-DC converter 8.
  • the converted voltage power is input to the phased array antenna device 11.
  • This power is used, for example, as power supply power for an active element such as the amplifier 3.
  • This power is used as the power of the entire system including the phased array antenna device 11, for example, system control power, power of the air cooling system, power for driving the machine, and the like.
  • the power efficiency can be further improved.
  • Embodiment 7 FIG. Next, a seventh embodiment of the present invention will be described.
  • FIG. 18 shows the configuration of a microwave power utilization system 200 according to Embodiment 7 of the present invention.
  • the antenna device 19 phased array antenna device 11
  • the antenna device 19 is used.
  • the energy reflected, transmitted, scattered, or radiated as a side lobe by the irradiated object 22 is received by the rectenna element group 26, and the energy is converted to DC power through the rectifier circuit 6.
  • This DC power is collected by the current collector 7. Further, this power and the DC power obtained from the phased array antenna device 11 are combined by the current collector 7 and converted to an appropriate voltage by the DC-DC converter 8. As a result, the secondary battery 17 is charged with power by the converted voltage.
  • the power charged in the secondary battery 17 can be used as power source power for active elements such as the amplifier 3.
  • this power can be allocated to, for example, system control power, air cooling system power, power for machine driving, and the like, and can also be used as a backup power source in an emergency.
  • the collected power is used as power supply power for the amplifier 3, but it may be used as power for the oscillator 5, the phase shifter 4, and the like.
  • the recovered power is used as the power of the phased array antenna device 11, but may be used as the power of another device.
  • the present invention is applied to a phased array antenna for transmission, but the present invention is not limited to this.
  • the present invention can also be applied to a phased array antenna for transmission and reception.

Abstract

An antenna element (1) outputs a transmission signal as an electromagnetic wave. A circulator (2) outputs the transmission signal to the antenna element (1), and has one terminal from which a signal transmitted from the antenna element (1) is outputted. An amplifier (3) outputs the amplified transmission signal to the circulator (2). A phase shifter (4) imparts a phase to the transmission signal and outputs the transmission signal to the amplifier (3). A plurality of circuit groups each provided with the antenna element (1), the circulator (2), the amplifier (3), and the phase shifter (4) are provided. A rectifier circuit (6) which is connected to one terminal of the circulator (2) and converts alternating-current power to direct-current power is provided in each of the circuit groups. A power collection unit (7) collects the direct-current power obtained by the conversion by each of the rectifier circuits (6).

Description

アンテナ装置、アンテナシステム、マイクロ波電力利用システム及び電力利用方法Antenna device, antenna system, microwave power utilization system, and power utilization method
 この発明は、アンテナ装置、アンテナシステム、マイクロ波電力利用システム及び電力利用方法に関する。 The present invention relates to an antenna device, an antenna system, a microwave power utilization system, and a power utilization method.
 フェーズドアレイアンテナでは、アンテナ素子又はアンテナ素子群にそれぞれ増幅器、移相器が接続されて構成される回路(送受信モジュール)が複数組設けられている。フェーズドアレイアンテナでは、アンテナ素子又はアンテナ素子群は、任意の面内に配列されている。そして、移相器で送信信号に位相を個別に付与することでビーム走査が可能になる。 In the phased array antenna, a plurality of sets of circuits (transmission / reception modules) configured by connecting amplifiers and phase shifters to antenna elements or antenna element groups are provided. In a phased array antenna, antenna elements or antenna element groups are arranged in an arbitrary plane. Then, beam scanning can be performed by individually adding phases to the transmission signal by the phase shifter.
 フェーズドアレイアンテナでは、送信信号を増幅する増幅器等の効率、アンテナ素子(アンテナ素子群)の反射損失を含む放射効率、アンテナ素子間の結合(カップリング)に起因する損失等の電力効率に関する課題がある。 In a phased array antenna, there are problems related to power efficiency such as efficiency of an amplifier that amplifies a transmission signal, radiation efficiency including reflection loss of antenna elements (antenna element group), and loss due to coupling (coupling) between antenna elements. is there.
 そこで、例えば、フェーズドアレイアンテナにおける送受信モジュールで発生した排熱を、熱電発電モジュールで電力に変換して有効利用する熱電変換装置が開示されている(例えば、特許文献1参照)。この熱電変換装置で変換された電力を有効利用すれば、電力の効率化を図ることができる。 Therefore, for example, a thermoelectric conversion device that effectively uses exhaust heat generated by a transmission / reception module in a phased array antenna by converting it into electric power by a thermoelectric power generation module is disclosed (for example, see Patent Document 1). If the electric power converted by this thermoelectric converter is used effectively, the efficiency of electric power can be improved.
 また、増幅器に入力される不要電波のレベルを検出する回路が設けられ、その検出信号を表示する表示装置が設けられたフェーズドアレイアンテナが開示されている(例えば、特許文献2参照)。この回路により、故障検出が行われ、受信系機能の低下が防止され、システムの効率化が図られている。 Also, a phased array antenna is disclosed in which a circuit for detecting the level of unwanted radio waves input to the amplifier is provided, and a display device for displaying the detection signal is provided (for example, see Patent Document 2). With this circuit, failure detection is performed, deterioration of the reception system function is prevented, and the efficiency of the system is improved.
 さらに、人工衛星前面に平面アンテナを展開し、衛星本体にマイクロ波送電用アンテナが設けられ、平面アンテナの各サブアレーの裏面にマイクロ波受電用のレクテナが設けられた衛星搭載用アレーアンテナが開示されている(例えば、特許文献3参照)。この衛星搭載用アレーアンテナによれば、移相器及び送受信用半導体回路の電源電力が、衛星本体から各サブアレーにマイクロ波として送電される。このレクテナで人工衛星からの電波を直流電力に変換し、変換した電力で移相器を動作させている。 Further, a satellite-mounted array antenna is disclosed in which a planar antenna is deployed on the front of the artificial satellite, a microwave transmission antenna is provided on the satellite body, and a rectenna for receiving microwaves is provided on the back of each sub-array of the planar antenna. (For example, refer to Patent Document 3). According to this satellite-mounted array antenna, the power of the phase shifter and the semiconductor circuit for transmission / reception is transmitted as microwaves from the satellite body to each sub-array. This rectenna converts radio waves from artificial satellites into DC power, and operates the phase shifter with the converted power.
特開2013-120899号公報JP 2013-120899 A 特開昭63-108210号公報JP 63-108210 A 特開平6-90114号公報Japanese Patent Laid-Open No. 6-90114
 特許文献1に開示された熱電変換装置では、熱電素子を用いて、熱エネルギを電気エネルギに変換する。しかしながら、熱電素子による熱エネルギから電気エネルギへの変換効率は必ずしも高いものではない。 In the thermoelectric conversion device disclosed in Patent Document 1, heat energy is converted into electric energy using a thermoelectric element. However, the conversion efficiency from heat energy to electric energy by the thermoelectric element is not necessarily high.
 また、特許文献2に開示されたフェーズドアレイアンテナでは故障検出を行うことにより、受信系機能の低下を防ぎ、システムの効率化を図ることはできる。しかしながら、このフェーズドアレイアンテナでは、電力効率の改善までは行われていない。 Also, the phased array antenna disclosed in Patent Document 2 can detect a failure, thereby preventing the reception system function from being lowered and improving the efficiency of the system. However, this phased array antenna does not improve power efficiency.
 特許文献3に開示された衛星搭載用アレーアンテナによれば、衛星本体からサブアレーへの電源ケーブルが不要となり、重量が軽減される。しかしながら、衛星搭載用アレーアンテナでは、電力効率の改善までは行われていない。 According to the satellite-mounted array antenna disclosed in Patent Document 3, a power cable from the satellite body to the sub-array becomes unnecessary and the weight is reduced. However, in the satellite-mounted array antenna, power efficiency has not been improved.
 この発明は上記のような問題点を解決するためになされたものであり、電力効率を改善することができるアンテナ装置、アンテナシステム、マイクロ波電力利用システム及び電力利用方法を提供することを目的とする。 The present invention has been made to solve the above-described problems, and an object thereof is to provide an antenna device, an antenna system, a microwave power utilization system, and a power utilization method that can improve power efficiency. To do.
 上記目的を達成するために、この発明に係るアンテナ装置において、アンテナ素子は、送信信号を電磁波として出力する。サーキュレータは、送信信号をアンテナ素子に出力するとともに、アンテナ素子から送られる信号を出力する一端子を有する。増幅器は、増幅された送信信号をサーキュレータに出力する。移相器は、送信信号に位相を付与して増幅器に出力する。アンテナ素子、サーキュレータ、増幅器、移相器を備える回路は複数組設けられている。サーキュレータの一端子に接続され、交流電力を直流電力に変換する整流回路が回路の各組に設けられている。集電部は、各整流回路で変換された直流電力を集電する。 In order to achieve the above object, in the antenna device according to the present invention, the antenna element outputs a transmission signal as an electromagnetic wave. The circulator has one terminal for outputting a transmission signal to the antenna element and outputting a signal sent from the antenna element. The amplifier outputs the amplified transmission signal to the circulator. The phase shifter adds a phase to the transmission signal and outputs it to the amplifier. A plurality of circuits each including an antenna element, a circulator, an amplifier, and a phase shifter are provided. A rectifier circuit connected to one terminal of the circulator and converting AC power into DC power is provided in each set of circuits. The current collector collects DC power converted by each rectifier circuit.
 この発明によれば、アンテナ素子間の結合電力及びアンテナ素子単体の反射電力を、整流回路を用いて直流電力に変換し、電源電力として再利用することができる。このようにすれば、電力効率の改善を図ることができる。 According to the present invention, the coupling power between the antenna elements and the reflected power of the antenna element alone can be converted to DC power using the rectifier circuit and reused as power supply power. In this way, power efficiency can be improved.
この発明の実施の形態1に係るアンテナ装置の構成を示すブロック図である。It is a block diagram which shows the structure of the antenna device which concerns on Embodiment 1 of this invention. 反射電力及びカップリング電力を示す図である。It is a figure which shows reflected electric power and coupling electric power. 比較例としての従来のアンテナ装置の構成を示すブロック図である。It is a block diagram which shows the structure of the conventional antenna device as a comparative example. 集電した電力を増幅器の電源電力として用いる場合を示す図である。It is a figure which shows the case where the collected electric power is used as power supply power of an amplifier. 集電した電力を制御部の電源電力として用いる場合を示す図である。It is a figure which shows the case where the collected electric power is used as power supply electric power of a control part. アンテナ素子の配置例を模式的に示す図である。It is a figure which shows typically the example of arrangement | positioning of an antenna element. 整流回路の一例である半波整流回路の構成を示す回路図である。It is a circuit diagram which shows the structure of the half wave rectifier circuit which is an example of a rectifier circuit. 実施の形態1に係るアンテナ装置の動作の流れを説明するフローチャートである。3 is a flowchart for explaining an operation flow of the antenna device according to the first embodiment. この発明の実施の形態2に係るアンテナ装置の構成を示すブロック図である。It is a block diagram which shows the structure of the antenna device which concerns on Embodiment 2 of this invention. 二次電池の電力を増幅器の電源として用いる場合を示す図である。It is a figure which shows the case where the electric power of a secondary battery is used as a power supply of an amplifier. 二次電池の電力を制御部の電源電力として用いる場合を示す図である。It is a figure which shows the case where the electric power of a secondary battery is used as power supply power of a control part. 実施の形態2に係るアンテナ装置の動作の流れを説明するフローチャートである。6 is a flowchart for explaining an operation flow of the antenna device according to the second embodiment. この発明の実施の形態3に係るアンテナ装置の構成を示すブロック図である。It is a block diagram which shows the structure of the antenna device which concerns on Embodiment 3 of this invention. この発明の実施の形態4に係るマイクロ波電力利用システムの構成を示すブロック図である。It is a block diagram which shows the structure of the microwave electric power utilization system which concerns on Embodiment 4 of this invention. この発明の実施の形態5に係るマイクロ波電力利用システムの構成を示すブロック図である。It is a block diagram which shows the structure of the microwave electric power utilization system which concerns on Embodiment 5 of this invention. この発明の実施の形態6に係るマイクロ波電力利用システムの構成を示すブロック図である。It is a block diagram which shows the structure of the microwave electric power utilization system which concerns on Embodiment 6 of this invention. レクテナ素子群の構成を示すブロック図である。It is a block diagram which shows the structure of a rectenna element group. この発明の実施の形態7に係るマイクロ波電力利用システムの構成を表すブロック図である。It is a block diagram showing the structure of the microwave electric power utilization system which concerns on Embodiment 7 of this invention.
 この発明の実施の形態について、図面を参照して詳細に説明する。 Embodiments of the present invention will be described in detail with reference to the drawings.
実施の形態1.
 まず、この発明の実施の形態1について説明する。
Embodiment 1 FIG.
First, a first embodiment of the present invention will be described.
 図1に示すように、アンテナ装置18は、フェーズドアレイアンテナ装置11を中心に構成されている。フェーズドアレイアンテナ装置11は、送信信号送信用のアンテナ素子1と、アンテナ素子1と電気的に接続されたサーキュレータ2と、サーキュレータ2と電気的に接続された増幅器3と、増幅器3と電気的に接続された移相器4と、を備える。フェーズドアレイアンテナ装置11では、アンテナ素子1と、サーキュレータ2と、増幅器3と、移相器4と、を備える回路の組が複数設けられている。 As shown in FIG. 1, the antenna device 18 is configured around the phased array antenna device 11. The phased array antenna device 11 includes a transmission signal transmitting antenna element 1, a circulator 2 electrically connected to the antenna element 1, an amplifier 3 electrically connected to the circulator 2, and an amplifier 3 electrically. And a connected phase shifter 4. In the phased array antenna device 11, a plurality of circuit sets each including the antenna element 1, the circulator 2, the amplifier 3, and the phase shifter 4 are provided.
 フェーズドアレイアンテナ装置11は、複数の移相器4と電気的に接続された1つの発振器5をさらに備える。フェーズドアレイアンテナ装置11は、サーキュレータ2の一端子(アンテナ素子1からの信号を出力する端子)に接続された整流回路6をさらに備える。整流回路6は、上述した回路の組ごとに設けられている。フェーズドアレイアンテナ装置11は、集電部7をさらに備える。集電部7は、複数の整流回路6と接続されている。 The phased array antenna device 11 further includes one oscillator 5 electrically connected to the plurality of phase shifters 4. The phased array antenna device 11 further includes a rectifier circuit 6 connected to one terminal of the circulator 2 (a terminal that outputs a signal from the antenna element 1). The rectifier circuit 6 is provided for each set of circuits described above. The phased array antenna device 11 further includes a current collector 7. The current collector 7 is connected to a plurality of rectifier circuits 6.
 アンテナ素子1は、電磁波ビームとしての送信信号を送出する。アンテナ素子1は、複数のアンテナ素子を束ねたアンテナ素子群であってもよい。ここでは、アンテナ素子1の数をnとする。各アンテナ素子1は、#1~#nにナンバリングされている。以下では、適宜、アンテナ素子1(♯1)~アンテナ素子(♯n)と表記する。 The antenna element 1 sends a transmission signal as an electromagnetic wave beam. The antenna element 1 may be an antenna element group in which a plurality of antenna elements are bundled. Here, the number of antenna elements 1 is n. Each antenna element 1 is numbered # 1 to #n. Hereinafter, antenna elements 1 (# 1) to antenna element (#n) will be appropriately described.
 サーキュレータ2は、一般的に送受信号を分離するために用いられる3端子素子である。サーキュレータ2は、第1端子に入力された信号を第2端子に出力する。第2端子に入力された信号は、第3端子に出力される。第1端子に増幅器3の出力が接続され、第2端子にアンテナ素子1が接続され、第3素子に後述する整流回路6が接続される。サーキュレータ2は、第1端子に入力された送信信号を、第2端子に接続されたアンテナ素子1に出力するとともに、アンテナ素子1から送られる信号を出力する一端子(第3端子)を有し、その端子に接続された後述する整流回路6へその信号を出力する。また、増幅器3とアンテナ素子1との間にサーキュレータ2を設けることにより、増幅器3はアンテナ素子1の負荷変動の影響を受けることなく、負荷変動に対する増幅器3の出力電圧の変動を抑えることができる。 The circulator 2 is a three-terminal element that is generally used to separate transmission and reception signals. The circulator 2 outputs the signal input to the first terminal to the second terminal. The signal input to the second terminal is output to the third terminal. The output of the amplifier 3 is connected to the first terminal, the antenna element 1 is connected to the second terminal, and a rectifier circuit 6 described later is connected to the third element. The circulator 2 has one terminal (third terminal) for outputting a transmission signal input to the first terminal to the antenna element 1 connected to the second terminal and outputting a signal transmitted from the antenna element 1. The signal is output to a rectifier circuit 6 connected to the terminal, which will be described later. Further, by providing the circulator 2 between the amplifier 3 and the antenna element 1, the amplifier 3 is not affected by the load fluctuation of the antenna element 1, and the fluctuation of the output voltage of the amplifier 3 with respect to the load fluctuation can be suppressed. .
 増幅器3は、送信信号用の高電力増幅器(HPA)である。増幅器3は、不図示の電源から供給される電力を用いて、送信信号を増幅する。増幅器3は、増幅された送信信号をサーキュレータ2に出力する。 The amplifier 3 is a high power amplifier (HPA) for transmission signals. The amplifier 3 amplifies the transmission signal using power supplied from a power source (not shown). The amplifier 3 outputs the amplified transmission signal to the circulator 2.
 移相器4は、送信信号の位相を調整する。すなわち、移相器4は、所望のビームを形成するための位相を送信信号に付与して増幅器3に出力する。これにより、アンテナ素子1から出力される送信信号のビーム走査が行われる。 The phase shifter 4 adjusts the phase of the transmission signal. That is, the phase shifter 4 gives a phase for forming a desired beam to the transmission signal and outputs it to the amplifier 3. Thereby, the beam scanning of the transmission signal output from the antenna element 1 is performed.
 発振器5は、発振回路であり、電気信号(送信信号)を出力する。出力された送信信号が、移相器4に入力される。 The oscillator 5 is an oscillation circuit and outputs an electrical signal (transmission signal). The output transmission signal is input to the phase shifter 4.
 発振器5から出力された送信信号は、送信信号として任意に位相設定が可能な移相器4、電力を増幅させる増幅器3、方向性をもつサーキュレータ2を経て、アンテナ素子1から電磁波ビーム(送信信号)として放射される。この電磁波ビーム(送信信号)は、移相器4に付与された位相により、ビーム走査される。 A transmission signal output from the oscillator 5 passes through a phase shifter 4 capable of arbitrarily setting a phase as a transmission signal, an amplifier 3 for amplifying power, and a circulator 2 having directionality, and then an electromagnetic wave beam (transmission signal) from the antenna element 1. ). The electromagnetic wave beam (transmission signal) is scanned by the phase applied to the phase shifter 4.
 このような回路構成では、図2に示すように、アンテナ素子1自体で放射されず反射される反射電力A、アンテナ素子1間の電磁界結合電力(アンテナ素子間電磁界結合電力、あるいはカップリング電力と呼ぶ)Bが発生する。 In such a circuit configuration, as shown in FIG. 2, the reflected power A that is not radiated and reflected by the antenna element 1 itself, the electromagnetic coupling power between the antenna elements 1 (the electromagnetic coupling power between the antenna elements, or the coupling) B) is generated.
 図3には、これらの電力に対処するための従来のアンテナ装置(送信系)の構成が示されている。このアンテナ装置も、信号送出用のフェーズドアレイアンテナである。図3に示すように、従来のフェーズドアレイアンテナ装置は、アンテナ素子1と、サーキュレータ2と、増幅器3と、移相器4と、を備える構成は、図1のフェーズドアレイアンテナ装置11の構成と同じである。 FIG. 3 shows a configuration of a conventional antenna device (transmission system) for dealing with these electric powers. This antenna device is also a phased array antenna for signal transmission. As shown in FIG. 3, the conventional phased array antenna apparatus includes an antenna element 1, a circulator 2, an amplifier 3, and a phase shifter 4. The configuration of the phased array antenna apparatus 11 of FIG. The same.
 このフェーズドアレイアンテナ装置では、それぞれの回路の組において、サーキュレータ2の一方の端子(アンテナ素子1からの信号が出力される第3端子)に、終端器12が接続されている。このフェーズドアレイアンテナ装置では、アンテナ素子1自体の反射電力A、アンテナ素子1間の電磁界結合電力Bは、サーキュレータ2を通じて終端器12で熱エネルギに変換される。 In this phased array antenna apparatus, the terminator 12 is connected to one terminal of the circulator 2 (the third terminal from which the signal from the antenna element 1 is output) in each circuit set. In this phased array antenna apparatus, the reflected power A of the antenna element 1 itself and the electromagnetic coupling power B between the antenna elements 1 are converted into thermal energy by the terminator 12 through the circulator 2.
 これに対し、図1に示すように、この実施の形態1に係るアンテナ装置18は、この熱として消費される反射電力A、カップリング電力Bのエネルギの有効利用を目的とする構成要素を有している。この構成要素が、整流回路6及び集電部7である。 On the other hand, as shown in FIG. 1, the antenna device 18 according to the first embodiment has components for the purpose of effective use of the energy of the reflected power A and the coupling power B consumed as heat. is doing. These components are the rectifier circuit 6 and the current collector 7.
 整流回路6は、サーキュレータ2の一端子(第3端子)に接続される。整流回路6は、回路の組ごとに設けられている。整流回路6は、反射電力A、カップリング電力B、すなわち交流電力を直流電力に変換する。 The rectifier circuit 6 is connected to one terminal (third terminal) of the circulator 2. The rectifier circuit 6 is provided for each circuit set. The rectifier circuit 6 converts the reflected power A and the coupling power B, that is, AC power into DC power.
 集電部7は、すべての整流回路6と接続されている。集電部7は、各整流回路6で変換された直流電力を集電し、集電した直流電力を合成する。 The current collector 7 is connected to all the rectifier circuits 6. The current collector 7 collects the DC power converted by each rectifier circuit 6 and synthesizes the collected DC power.
 アンテナ装置18は、DC-DCコンバータ8をさらに備える。DC-DCコンバータ8は、集電部7と接続されている。DC-DCコンバータ8は、集電部7で集電された直流電力を、所定の大きさの電圧に変換する。 The antenna device 18 further includes a DC-DC converter 8. The DC-DC converter 8 is connected to the current collector 7. The DC-DC converter 8 converts the DC power collected by the current collector 7 into a voltage having a predetermined magnitude.
 集電部7にて合成された集電電力は、DC-DCコンバータ8にて適切な電圧に変換され、このフェーズドアレイアンテナ装置11に入力され、再利用される。図4には、この電力は、例えば、増幅器3などのアクティブ素子の電源電力として用いられる場合の回路構成が示されている。図4に示すように、DC-DCコンバータ8の出力は、各増幅器3に入力されている。 The collected power synthesized by the current collecting unit 7 is converted into an appropriate voltage by the DC-DC converter 8 and input to the phased array antenna device 11 for reuse. FIG. 4 shows a circuit configuration when this power is used as power source power for an active element such as the amplifier 3. As shown in FIG. 4, the output of the DC-DC converter 8 is input to each amplifier 3.
 また、この電力は、フェーズドアレイアンテナ装置11を含むシステム全体の電力、例えば、システム制御電力、冷却(例えば、空冷)システムの電力、機械駆動のための電力等として用いることもできる。図5には、この電力が、例えば、発振器5を制御する制御器23の制御電力として用いられる場合の回路構成が示されている。 Also, this power can be used as the power of the entire system including the phased array antenna device 11, for example, system control power, cooling (for example, air cooling) system power, mechanical driving power, and the like. FIG. 5 shows a circuit configuration when this power is used as control power of the controller 23 that controls the oscillator 5, for example.
 図6に示すように、フェーズドアレイアンテナ装置11のアンテナ素子1が分散配置されている場合について説明する。図6に示す配置方法では、等間隔に直線状に配置されたアンテナ素子1の複数の列が、互いに平行に、隣接する列とではアンテナ素子1の位置が異なるように配置される。なお、アンテナ素子をできるだけ均等に高密度に配置できれば、他の配置方法でもよい。それぞれのアンテナ素子1に入力された電力では、アンテナ素子1への入出力部(例えば増幅器3)とアンテナ素子1とのインピーダンスの不整合による反射電力A(図2参照)が発生する。また、隣接するアンテナ素子1の間で電磁界結合電力(カップリング電力)B(図2参照)も発生する。アンテナ素子1(#1)には、隣接するアンテナ素子1として、アンテナ素子1(#2)~アンテナ素子1(#7)の6つが存在する。 As shown in FIG. 6, the case where the antenna elements 1 of the phased array antenna device 11 are arranged in a distributed manner will be described. In the arrangement method shown in FIG. 6, a plurality of rows of antenna elements 1 arranged linearly at equal intervals are arranged in parallel to each other so that the positions of the antenna elements 1 are different from adjacent rows. Note that other arrangement methods may be used as long as the antenna elements can be arranged as densely as possible. The power input to each antenna element 1 generates reflected power A (see FIG. 2) due to impedance mismatch between the input / output unit (for example, the amplifier 3) to the antenna element 1 and the antenna element 1. Further, electromagnetic coupling power (coupling power) B (see FIG. 2) is also generated between adjacent antenna elements 1. In the antenna element 1 (# 1), there are six adjacent antenna elements 1, antenna element 1 (# 2) to antenna element 1 (# 7).
 アンテナ素子1(#1)からの反射電力、アンテナ素子1(#2~#7)への結合電力は外部空間には放射されず、フェーズドアレイアンテナ装置11の放射効率を劣化させる。例えば、アンテナ素子1(#1)の反射損失(リターンロス)を-20dBとし、アンテナ素子1(#2)~アンテナ素子1(#7)への結合電力を-20dBとする。この場合、反射損失が1%、隣接素子への結合損失が1×6%となり、放射効率は100-1-6=93%となる。 The reflected power from the antenna element 1 (# 1) and the coupling power to the antenna elements 1 (# 2 to # 7) are not radiated to the external space, and the radiation efficiency of the phased array antenna device 11 is deteriorated. For example, the reflection loss (return loss) of the antenna element 1 (# 1) is −20 dB, and the coupling power from the antenna element 1 (# 2) to the antenna element 1 (# 7) is −20 dB. In this case, the reflection loss is 1%, the coupling loss to the adjacent element is 1 × 6%, and the radiation efficiency is 100-1−6 = 93%.
 この実施の形態1に係るアンテナ装置18では、アンテナ素子1からのこれらの電力が、サーキュレータ2を通じて整流回路6にて直流電力に変換され、集電部7で集電される。ここで、整流回路の効率(マイクロ波―直流電力変換効率)をX%とすると、最大7×X/100%の直流電力を得ることができる。例えば、X=80%とすると、5.6%の直流電力が得られる。これにより、総放射のうち93%を空間放射分として、5.6%を直流電力として回収することができる。すなわち、アンテナ素子1からの反射電力A、アンテナ素子1間の電磁界結合電力Bをフェーズドアレイアンテナ装置11の電力効率の改善に寄与させることができる。 In the antenna device 18 according to the first embodiment, these electric powers from the antenna element 1 are converted into DC power by the rectifier circuit 6 through the circulator 2 and collected by the current collector 7. Here, assuming that the efficiency of the rectifier circuit (microwave-DC power conversion efficiency) is X%, a maximum DC power of 7 × X / 100% can be obtained. For example, if X = 80%, 5.6% DC power can be obtained. Thereby, 93% of the total radiation can be recovered as spatial radiation and 5.6% as DC power. That is, the reflected power A from the antenna element 1 and the electromagnetic coupling power B between the antenna elements 1 can contribute to the improvement of the power efficiency of the phased array antenna device 11.
 図7には、整流回路6の一例としての半波整流回路の回路図が示されている。半波整流回路は、整流素子で、順電圧の期間のみ整流する回路である。図7に示す回路では、変換器15が電圧を降下させる。この回路では、整流素子としてダイオード13が用いられている。このダイオード13により、交流の正弦波の正の部分のみが取り出される。この交流の正弦波の正の部分がコンデンサ14によって平滑化され、負荷抵抗16に直流電圧が出力される。 FIG. 7 shows a circuit diagram of a half-wave rectifier circuit as an example of the rectifier circuit 6. The half-wave rectifier circuit is a rectifier element that rectifies only during a forward voltage period. In the circuit shown in FIG. 7, the converter 15 drops the voltage. In this circuit, a diode 13 is used as a rectifying element. With this diode 13, only the positive part of the AC sine wave is extracted. The positive portion of the AC sine wave is smoothed by the capacitor 14 and a DC voltage is output to the load resistor 16.
 なお、整流回路6としては、図7に示す半波整流回路に限られない。例えば、全波整流回路(ブリッジ全波整流回路など)、半波倍電圧整流回路、全波倍電圧整流回路であってもよい。全波整流回路は、正負にまたがる交流入力から正の絶対電圧を出力する回路である。ブリッジ全波整流回路とは、全波整流回路のうち、4つのダイオードから成るブリッジ回路を用いた回路である。半波倍電圧整流回路とは、交流の半波で第1のコンデンサを充電し、この電圧を次の半波に加え整流し、第2のコンデンサを充電することにより、約2倍の出力電力を得る回路である。全波倍電圧整流回路は、ダイオードによってのキャパシタの充電とダイオードによってのキャパシタの充電が交互に行われ、約2倍の直流電力を得る回路である。これらの回路は、いずれも交流電力を直流電力に変換する回路である。要は、整流回路6は、マイクロ波による電力を直流電力に変換する機能を有する回路であればよい。 The rectifier circuit 6 is not limited to the half-wave rectifier circuit shown in FIG. For example, a full-wave rectifier circuit (such as a bridge full-wave rectifier circuit), a half-wave voltage doubler rectifier circuit, or a full-wave voltage doubler rectifier circuit may be used. The full-wave rectifier circuit is a circuit that outputs a positive absolute voltage from an alternating current input that extends between positive and negative. The bridge full-wave rectifier circuit is a circuit using a bridge circuit composed of four diodes in the full-wave rectifier circuit. A half-wave voltage doubler rectifier circuit charges the first capacitor with an alternating half-wave, adds this voltage to the next half-wave, rectifies it, and charges the second capacitor, thereby approximately double the output power. It is the circuit which obtains. The full-wave voltage doubler rectifier circuit is a circuit that obtains about twice as much DC power by alternately charging a capacitor with a diode and charging the capacitor with a diode. These circuits are circuits that convert AC power into DC power. In short, the rectifier circuit 6 may be a circuit having a function of converting microwave power into DC power.
 次に、この実施の形態に係るアンテナ装置18の動作について説明する。図8には、アンテナ装置18の動作の流れが示されている。図8に示すように、まず、各サーキュレータ2を介して流れる交流電力を、それぞれ整流回路6を用いて直流電力に変換する(ステップS1)。続いて、すべての整流回路6で変換された直流電力を集電部7で集電する(ステップS2)。続いて、集電部7で集電された電力を、フェーズドアレイアンテナ装置11の電源電圧として再利用する(ステップS3)。再利用の方法は、図4、図5の回路構成により実現される。 Next, the operation of the antenna device 18 according to this embodiment will be described. FIG. 8 shows an operation flow of the antenna device 18. As shown in FIG. 8, first, AC power flowing through each circulator 2 is converted into DC power using the rectifier circuit 6 (step S1). Subsequently, the DC power converted by all the rectifier circuits 6 is collected by the current collector 7 (step S2). Subsequently, the power collected by the current collector 7 is reused as the power supply voltage of the phased array antenna device 11 (step S3). The reuse method is realized by the circuit configurations shown in FIGS.
 以上詳細に説明したように、この実施の形態によれば、サーキュレータ2の一端子に整流回路6が接続され、アンテナ素子1間の結合電力等が、整流回路6を経て集電部7に集電される。この構成により、アンテナ素子1間の結合電力及びアンテナ素子1単体の反射電力を、整流回路6を用いて直流電力に変換し、電源電力として再利用することができる。このようにすれば、電力効率の改善を図ることができる。 As described in detail above, according to this embodiment, the rectifier circuit 6 is connected to one terminal of the circulator 2, and the coupled power between the antenna elements 1 is collected in the current collector 7 via the rectifier circuit 6. Electricity. With this configuration, the coupling power between the antenna elements 1 and the reflected power of the antenna element 1 alone can be converted to DC power using the rectifier circuit 6 and reused as power supply power. In this way, power efficiency can be improved.
実施の形態2.
 次に、この発明の実施の形態2について説明する。
Embodiment 2. FIG.
Next, a second embodiment of the present invention will be described.
 図9には、この発明の実施の形態2に係るアンテナ装置19の構成が示されている。図9に示すように、この発明の実施の形態2に係るアンテナ装置19は、二次電池17をさらに備える他は、上記実施の形態1に係るアンテナ装置18と同じである。 FIG. 9 shows the configuration of an antenna device 19 according to Embodiment 2 of the present invention. As shown in FIG. 9, the antenna device 19 according to the second embodiment of the present invention is the same as the antenna device 18 according to the first embodiment except that the antenna device 19 further includes a secondary battery 17.
 発振器5により励振された送信信号は、任意に位相設定が可能な移相器4、送信信号を増幅させる増幅器3、方向性をもつサーキュレータ2を経由して、アンテナ素子1から電磁波ビームとして放射される。また、整流回路6は、サーキュレータ2の一端子と接続されている。反射電力A及びカップリング電力Bは、サーキュレータ2を介して整流回路6で整流され、直流電圧に変換される。各整流回路6で変換された直流電圧は、集電部7で集電される。DC-DCコンバータ8は、集電された直流電圧を適切な電圧に変換する。変換された電圧により、二次電池17が充電される。 The transmission signal excited by the oscillator 5 is radiated as an electromagnetic wave beam from the antenna element 1 via the phase shifter 4 capable of arbitrarily setting the phase, the amplifier 3 for amplifying the transmission signal, and the circulator 2 having directivity. The The rectifier circuit 6 is connected to one terminal of the circulator 2. The reflected power A and the coupling power B are rectified by the rectifier circuit 6 via the circulator 2 and converted into a DC voltage. The DC voltage converted by each rectifier circuit 6 is collected by the current collector 7. The DC-DC converter 8 converts the collected DC voltage into an appropriate voltage. The secondary battery 17 is charged by the converted voltage.
 二次電池17に充電された電力は、図10に示すように、増幅器3などのアクティブ素子への電力として用いることができる。また、この電力は、図11に示すように、例えば、システムの制御電力(例えば図5に示す制御器23と同じ制御器23の電力)、空冷システム電力、機械駆動のための電力等として振り分けることができる。このほか、非常時におけるバックアップ電源として用いることも可能である。 The power charged in the secondary battery 17 can be used as power to an active element such as the amplifier 3 as shown in FIG. Further, as shown in FIG. 11, for example, this power is distributed as system control power (for example, the power of the controller 23 that is the same as the controller 23 shown in FIG. 5), air-cooling system power, power for driving the machine, and the like. be able to. In addition, it can be used as a backup power source in an emergency.
 次に、この実施の形態に係るアンテナ装置19の動作について説明する。図12には、アンテナ装置19の動作の流れが示されている。図12に示すように、まず、各サーキュレータ2を介して流れる交流電力を、それぞれ整流回路6を用いて直流電力に変換する(ステップS1)。続いて、すべての整流回路6で変換された直流電力を集電部7で集電する(ステップS2)。続いて、集電した電力を、二次電池に蓄電する(ステップS4)。 Next, the operation of the antenna device 19 according to this embodiment will be described. FIG. 12 shows an operation flow of the antenna device 19. As shown in FIG. 12, first, AC power flowing through each circulator 2 is converted into DC power using the rectifier circuit 6 (step S1). Subsequently, the DC power converted by all the rectifier circuits 6 is collected by the current collector 7 (step S2). Subsequently, the collected power is stored in the secondary battery (step S4).
 以上詳細に説明したように、実施の形態2によれば、上記実施の形態1に係るアンテナ装置1の効果に加え、二次電池17に電力を蓄える。これにより、二次電池17の電力を、他の装置のために用いたり、電力が不足したときの予備電源として用いたりして、電力の活用範囲をさらに広げることができる。 As described above in detail, according to the second embodiment, in addition to the effect of the antenna device 1 according to the first embodiment, power is stored in the secondary battery 17. Thereby, the electric power of the secondary battery 17 can be used for another device, or used as a standby power source when the electric power is insufficient, so that the power utilization range can be further expanded.
実施の形態3.
 次に、この発明の実施の形態3について説明する。
Embodiment 3 FIG.
Next, a third embodiment of the present invention will be described.
 図13には、この発明の実施の形態3に係るアンテナシステム100の構成が示されている。図13に示すように、このアンテナシステム100では、実施の形態1のアンテナ装置18と、実施の形態2におけるアンテナ装置19の近傍若しくは遠方に、別の送電アンテナ20が配置されている。 FIG. 13 shows the configuration of an antenna system 100 according to Embodiment 3 of the present invention. As shown in FIG. 13, in this antenna system 100, another power transmission antenna 20 is arranged in the vicinity of or far from the antenna device 18 of the first embodiment and the antenna device 19 of the second embodiment.
 アンテナ装置18、19が何らかの理由で電源電力を喪失した場合、アンテナ装置18、19はその機能を失うことになる。この電源電力の喪失に対処するため、電源が安定して供給できる場所に、別の送電アンテナ20が配置されている。送電アンテナ20は、発振器5に従ってアンテナ装置18、19に対してマイクロ波を照射する。 When the antenna devices 18 and 19 lose the power supply for some reason, the antenna devices 18 and 19 lose their functions. In order to cope with the loss of the power supply, another power transmission antenna 20 is arranged at a place where the power can be stably supplied. The power transmission antenna 20 irradiates the antenna devices 18 and 19 with microwaves according to the oscillator 5.
 このマイクロ波は、アンテナ装置18、19のアンテナ素子1で受信される。受信されたマイクロ波による電力は、サーキュレータ2、整流回路6、集電部7、DC-DCコンバータ8を経由して直流電力に変換される。この直流電力は、アンテナ装置18、19に配分される。配分された電力により、アンテナ装置18、19は、その機能を復旧することができる。送電アンテナ20は、反射鏡アンテナであってもよいし、フェーズドアレイアンテナ等であってもよい。すなわち、送電アンテナ20は、マイクロ波を放射できるものであれば、その構成に制限はない。 This microwave is received by the antenna element 1 of the antenna devices 18 and 19. The received microwave power is converted into DC power via the circulator 2, the rectifier circuit 6, the current collector 7, and the DC-DC converter 8. This DC power is distributed to the antenna devices 18 and 19. The antenna devices 18 and 19 can recover their functions by the allocated power. The power transmission antenna 20 may be a reflector antenna, a phased array antenna, or the like. That is, the configuration of the power transmission antenna 20 is not limited as long as it can radiate microwaves.
 以上詳細に説明したように、この実施の形態によれば、アンテナ装置18、19が電源電力を喪失したとしても、送電アンテナ20から送られるマイクロ波により、その機能を回復することができる。 As described in detail above, according to this embodiment, even if the antenna devices 18 and 19 lose power, the function can be recovered by the microwaves transmitted from the power transmission antenna 20.
 このアンテナシステム100は、人工衛星に設けられたフェーズドアレイアンテナにも有効に適用することが可能である。すなわち、人工衛星に設けられたアンテナ装置18、19が電力を喪失したとしても、地上のアンテナ等からマイクロ波を送ることにより、人工衛星のアンテナの電力を回復することができる。 The antenna system 100 can be effectively applied to a phased array antenna provided in an artificial satellite. That is, even if the antenna devices 18 and 19 provided in the artificial satellite lose power, the power of the artificial satellite antenna can be recovered by sending a microwave from a ground antenna or the like.
実施の形態4.
 次に、この発明の実施の形態4について説明する。
Embodiment 4 FIG.
Next, a fourth embodiment of the present invention will be described.
 図14には、この発明の実施の形態4のマイクロ波電力利用システム200の構成が示されている。このマイクロ波電力利用システム200は、マイクロ波を照射して鉄を生成する装置又は化学物質を生成するシステムである。図14に示すように、このマイクロ波電力利用システム200は、フェーズドアレイアンテナ装置11と、DC-DCコンバータ8と、マイクロ波照射室24を備えている。なお、マイクロ波電力利用システムは、照射されるマイクロ波が持つ電力を利用するシステムであれば、製鉄や化学反応以外にも適用できる。 FIG. 14 shows the configuration of a microwave power utilization system 200 according to Embodiment 4 of the present invention. The microwave power utilization system 200 is a system that generates an apparatus or a chemical substance that generates iron by irradiating microwaves. As shown in FIG. 14, the microwave power utilization system 200 includes a phased array antenna device 11, a DC-DC converter 8, and a microwave irradiation chamber 24. Note that the microwave power utilization system can be applied to other than iron manufacturing and chemical reaction as long as the system uses the electric power of the irradiated microwave.
 マイクロ波照射室24内には、マイクロ波により加熱あるいは化学反応が起こされマイクロ波が照射される被照射体22が設置されている。被照射体22は、例えば、粉鉱石や反応生成前の化学物質等である。フェーズドアレイアンテナ装置11のアンテナ素子1は、マイクロ波照射室24内に設置されている。 In the microwave irradiation chamber 24, an irradiated object 22 to which microwaves are irradiated by heating or chemical reaction is installed. The irradiated body 22 is, for example, fine ore or a chemical substance before reaction generation. The antenna element 1 of the phased array antenna device 11 is installed in the microwave irradiation chamber 24.
 マイクロ波照射のためにフェーズドアレイアンテナ装置11を用いれば、ビーム照射方向を制御することで、被照射体22に効果的にマイクロ波を照射することができる。 If the phased array antenna device 11 is used for microwave irradiation, the object 22 can be effectively irradiated with microwaves by controlling the beam irradiation direction.
 しかしながら、被照射体22は、必ずしも全てのマイクロ波エネルギを吸収できずに、一部の電力は反射、透過、散乱する。また、各アンテナ素子の主ローブは被照射体22に向けて放射されるので、主ローブとは異なる方向に放射されるサイドローブのマイクロ波エネルギは被照射体22には照射されず、マイクロ波照射室24の壁にて、反射、散乱する。 However, the irradiated object 22 does not necessarily absorb all the microwave energy, and some power is reflected, transmitted, and scattered. Further, since the main lobe of each antenna element is radiated toward the irradiated object 22, the microwave energy of the side lobe radiated in a direction different from the main lobe is not irradiated on the irradiated object 22, and the microwave Reflected and scattered at the wall of the irradiation chamber 24.
 図14では、反射、透過、散乱エネルギが矢印で示されている。これらのエネルギは、マイクロ波照射室24内で散乱され、被照射体22に再度照射される場合もあれば、フェーズドアレイアンテナ装置11で受信され、熱エネルギとして消費される場合もある。この場合、システム全体としてのエネルギ効率の低下を招くことになる。 In FIG. 14, the reflection, transmission, and scattering energy are indicated by arrows. These energies are scattered in the microwave irradiation chamber 24 and may be irradiated again to the irradiated object 22, or may be received by the phased array antenna device 11 and consumed as thermal energy. In this case, the energy efficiency of the entire system is reduced.
 マイクロ波を照射するためのアンテナを、ここではフェーズドアレイアンテナとしているが、反射鏡アンテナ等のマイクロ波が放射できるアンテナであってもよい。要は、被照射体22にマイクロ波の電力を伝送するアンテナであれば、その構成に制限はない。 Although the antenna for irradiating the microwave is a phased array antenna here, an antenna capable of radiating microwaves such as a reflector antenna may be used. In short, as long as it is an antenna that transmits microwave power to the irradiated object 22, the configuration is not limited.
 ここで、フェーズドアレイアンテナとして実施の形態1に係るアンテナ装置18を用いた場合、被照射体22を反射、透過、散乱したエネルギは、フェーズドアレイアンテナ装置11で受信され、整流回路6で直流電力に変換、集電部7で集電され、DC-DCコンバータ8で適切な電圧に変換される。電圧が変換された電力は、上記各実施の形態と同様に、再利用が可能となる。この電力は、例えば、増幅器3などのアクティブ素子の電源電力として用いられる。また、この電力は、フェーズドアレイアンテナ装置11を含むシステム全体の電力、例えば、システム制御電力、空冷システムの電力、機械駆動のための電力等として用いられる。 Here, when the antenna device 18 according to the first embodiment is used as the phased array antenna, the energy reflected, transmitted, and scattered by the irradiated object 22 is received by the phased array antenna device 11, and the DC power is output by the rectifier circuit 6. The current is collected by the current collector 7 and converted to an appropriate voltage by the DC-DC converter 8. The electric power whose voltage has been converted can be reused as in the above embodiments. This power is used, for example, as power supply power for an active element such as the amplifier 3. This power is used as the power of the entire system including the phased array antenna device 11, for example, system control power, power of the air cooling system, power for driving the machine, and the like.
 以上詳細に説明したように、この実施の形態によれば、マイクロ波電力利用システム200における電力効率を改善することができる。 As described in detail above, according to this embodiment, the power efficiency in the microwave power utilization system 200 can be improved.
実施の形態5.
 次に、この発明の実施の形態5について説明する。
Embodiment 5 FIG.
Next, a fifth embodiment of the present invention will be described.
 図15には、この発明の実施の形態5に係るマイクロ波電力利用システム200の構成が示されている。この実施の形態に係るマイクロ波電力利用システム200は、上記実施の形態4と同様に、DC-DCコンバータ8にて適切な電圧に変換された電力を、二次電池17に充電するシステムである。 FIG. 15 shows the configuration of a microwave power utilization system 200 according to Embodiment 5 of the present invention. The microwave power utilization system 200 according to this embodiment is a system for charging the secondary battery 17 with the power converted into an appropriate voltage by the DC-DC converter 8 as in the fourth embodiment. .
 二次電池17に充電された電力は、例えば、図9に示すように、増幅器3などのアクティブ素子の電源電力として用いられる。また、二次電池17に充電された電力は、例えば、システムの制御電力、空冷システム電力、機械駆動のための電力等に振り分けることができる。このほか、二次電池17は、非常時におけるバックアップ電源として用いることができる。 The power charged in the secondary battery 17 is used as power source power for an active element such as the amplifier 3 as shown in FIG. Further, the power charged in the secondary battery 17 can be distributed to, for example, system control power, air cooling system power, mechanical drive power, and the like. In addition, the secondary battery 17 can be used as a backup power source in an emergency.
 以上詳細に説明したように、この実施の形態によれば、二次電池17に電力を蓄えることにより、さらに、電力の活用範囲を広げることができる。 As described in detail above, according to this embodiment, by storing electric power in the secondary battery 17, it is possible to further expand the range of utilization of electric power.
実施の形態6.
 次に、この発明の実施の形態6について説明する。
Embodiment 6 FIG.
Next, a sixth embodiment of the present invention will be described.
 図16には、この発明の実施の形態6に係るマイクロ波電力利用システム200の構成が示されている。図16に示すように、この実施の形態では、マイクロ波照射室24内の一部には、整流回路6を備えるアンテナ群(レクテナ素子群)26が設置されている。レクテナ素子群26は、複数のレクテナ素子25を備える。レクテナ素子群26は、マイクロ波照射室24の内壁全体に配設されていてもよい。 FIG. 16 shows the configuration of a microwave power utilization system 200 according to Embodiment 6 of the present invention. As shown in FIG. 16, in this embodiment, an antenna group (rectenna element group) 26 including a rectifier circuit 6 is installed in a part of the microwave irradiation chamber 24. The rectenna element group 26 includes a plurality of rectenna elements 25. The rectenna element group 26 may be disposed on the entire inner wall of the microwave irradiation chamber 24.
 図17に示すように、レクテナ素子25は、アンテナ素子1と整流回路6とを備える。アンテナ素子1は、アンテナ素子群であってもよい。アンテナ素子1は、マイクロ波を受信する。整流回路6は、アンテナ素子1で受信したマイクロ波電力を直流電力に変換する。 As shown in FIG. 17, the rectenna element 25 includes an antenna element 1 and a rectifier circuit 6. The antenna element 1 may be an antenna element group. The antenna element 1 receives microwaves. The rectifier circuit 6 converts the microwave power received by the antenna element 1 into DC power.
 被照射体22で反射、透過、散乱、もしくはサイドローブとして放射されたエネルギは、レクテナ素子群26で受信され、直流電力のエネルギに変換される。この直流電力は集電部7にて集電される。さらに、この電力とフェーズドアレイアンテナ装置11から得られる直流電力が集電部7にて合成され、DC-DCコンバータ8で適切な電圧に変換される。変換された電圧の電力は、フェーズドアレイアンテナ装置11に入力される。これにより、電力の再利用が可能となる。この電力は、例えば、増幅器3などのアクティブ素子の電源電力として用いられる。また、この電力は、フェーズドアレイアンテナ装置11を含むシステム全体の電力、例えば、システム制御電力、空冷システムの電力、機械駆動のための電力等として用いられる。 The energy reflected, transmitted, scattered, or radiated as a side lobe by the irradiated object 22 is received by the rectenna element group 26 and converted into energy of DC power. This DC power is collected by the current collector 7. Further, this power and DC power obtained from the phased array antenna device 11 are combined by the current collector 7 and converted into an appropriate voltage by the DC-DC converter 8. The converted voltage power is input to the phased array antenna device 11. As a result, power can be reused. This power is used, for example, as power supply power for an active element such as the amplifier 3. This power is used as the power of the entire system including the phased array antenna device 11, for example, system control power, power of the air cooling system, power for driving the machine, and the like.
 以上詳細に説明したように、この実施の形態によれば、レクテナ素子群26を備えることにより、電力効率をさらに改善することができる。 As described in detail above, according to this embodiment, by providing the rectenna element group 26, the power efficiency can be further improved.
実施の形態7.
 次に、この発明の実施の形態7について説明する。
Embodiment 7 FIG.
Next, a seventh embodiment of the present invention will be described.
 図18には、この発明の実施の形態7に係るマイクロ波電力利用システム200の構成が示されている。図18に示すように、この実施の形態では、実施の形態2に係るアンテナ装置19(フェーズドアレイアンテナ装置11)が用いられている。 FIG. 18 shows the configuration of a microwave power utilization system 200 according to Embodiment 7 of the present invention. As shown in FIG. 18, in this embodiment, the antenna device 19 (phased array antenna device 11) according to the second embodiment is used.
 被照射体22で反射、透過、散乱、もしくはサイドローブとして放射されたエネルギは、レクテナ素子群26で受信され、そのエネルギが、整流回路6を通じて直流電力に変換される。この直流電力は集電部7にて集電される。さらに、この電力とフェーズドアレイアンテナ装置11から得られる直流電力とは、集電部7にて合成され、DC-DCコンバータ8で適切な電圧に変換される。この結果、変換された電圧による電力が二次電池17に充電される。 The energy reflected, transmitted, scattered, or radiated as a side lobe by the irradiated object 22 is received by the rectenna element group 26, and the energy is converted to DC power through the rectifier circuit 6. This DC power is collected by the current collector 7. Further, this power and the DC power obtained from the phased array antenna device 11 are combined by the current collector 7 and converted to an appropriate voltage by the DC-DC converter 8. As a result, the secondary battery 17 is charged with power by the converted voltage.
 二次電池17に充電された電力は、増幅器3などのアクティブ素子の電源電力として用いることができる。また、この電力は、例えば、システム制御電力、空冷システム電力、機械駆動のための電力等に振り分けることができるほか、非常時におけるバックアップ電源として用いることができる。 The power charged in the secondary battery 17 can be used as power source power for active elements such as the amplifier 3. In addition, this power can be allocated to, for example, system control power, air cooling system power, power for machine driving, and the like, and can also be used as a backup power source in an emergency.
 以上詳細に説明したように、この実施の形態によれば、二次電池17に電力を蓄えることにより、電力の活用範囲をさらに広げることができる。 As described in detail above, according to this embodiment, by storing power in the secondary battery 17, it is possible to further expand the utilization range of power.
 上記各実施の形態では、集電された電力を、増幅器3の電源電力として用いたが、発振器5、移相器4等の電力として用いても良い。 In each of the above embodiments, the collected power is used as power supply power for the amplifier 3, but it may be used as power for the oscillator 5, the phase shifter 4, and the like.
 上記各実施の形態では、回収した電力をフェーズドアレイアンテナ装置11の電力として用いたが、他の装置の電力として用いてもよい。 In each of the above embodiments, the recovered power is used as the power of the phased array antenna device 11, but may be used as the power of another device.
 上記各実施の形態では、送信用のフェーズドアレイアンテナにこの発明を適用したが、本発明はこれには限られない。この発明は、送受信用のフェーズドアレイアンテナに適用することも可能である。 In each of the above embodiments, the present invention is applied to a phased array antenna for transmission, but the present invention is not limited to this. The present invention can also be applied to a phased array antenna for transmission and reception.
 この発明は、この発明の広義の精神と範囲を逸脱することなく、様々な実施の形態及び変形が可能とされるものである。また、上述した実施の形態は、この発明を説明するためのものであり、この発明の範囲を限定するものではない。すなわち、この発明の範囲は、実施の形態ではなく、特許請求の範囲によって示される。そして、特許請求の範囲内及びそれと同等の発明の意義の範囲内で施される様々な変形が、この発明の範囲内とみなされる。 The present invention is capable of various embodiments and modifications without departing from the broad spirit and scope of the present invention. The above-described embodiments are for explaining the present invention and do not limit the scope of the present invention. In other words, the scope of the present invention is shown not by the embodiments but by the claims. Various modifications within the scope of the claims and within the scope of the equivalent invention are considered to be within the scope of the present invention.
 本出願は、2014年2月10日に出願された、日本国特許出願特願2014-23725号に基づく。本明細書中に日本国特許出願特願2014-23725号の明細書、特許請求の範囲、図面全体を参照として取り込むものとする。 This application is based on Japanese Patent Application No. 2014-23725 filed on February 10, 2014. The specification, claims, and entire drawings of Japanese Patent Application No. 2014-23725 are incorporated herein by reference.
1 アンテナ素子、2 サーキュレータ、3 増幅器、4 移相器、5 発振器、6 整流回路、7 集電部、8 DC-DCコンバータ、11 フェーズドアレイアンテナ装置、12 終端器、13 ダイオード、14 コンデンサ、15 変換器、16 負荷抵抗、17 二次電池、18、19 アンテナ装置、20 送電アンテナ、21 アンテナ装置、22 被照射体、23 制御器、24 マイクロ波照射室、25 レクテナ素子、26 レクテナ素子群、100 アンテナシステム、200 マイクロ波電力利用システム。 1 antenna element, 2 circulator, 3 amplifier, 4 phase shifter, 5 oscillator, 6 rectifier circuit, 7 current collector, 8 DC-DC converter, 11 phased array antenna device, 12 terminator, 13 diode, 14 capacitor, 15 Converter, 16 load resistance, 17 secondary battery, 18, 19 antenna device, 20 power transmission antenna, 21 antenna device, 22 irradiated body, 23 controller, 24 microwave irradiation room, 25 rectenna element, 26 rectenna element group, 100 antenna system, 200 microwave power utilization system.

Claims (11)

  1.  送信信号を電磁波として出力するアンテナ素子と、
     前記送信信号を前記アンテナ素子に出力するとともに、前記アンテナ素子から送られる信号を出力する一端子を有するサーキュレータと、
     増幅された前記送信信号を前記サーキュレータに出力する増幅器と、
     前記送信信号に位相を付与して前記増幅器に出力する移相器と、
     を備える回路が複数組設けられ、
     前記サーキュレータの前記一端子に接続され、交流電力を直流電力に変換する整流回路が前記回路の各組に設けられ、
     前記各整流回路で変換された直流電力を集電する集電部を備える
     アンテナ装置。
    An antenna element that outputs a transmission signal as an electromagnetic wave;
    A circulator having one terminal for outputting the transmission signal to the antenna element and outputting a signal transmitted from the antenna element;
    An amplifier that outputs the amplified transmission signal to the circulator;
    A phase shifter that adds a phase to the transmission signal and outputs the phase to the amplifier;
    A plurality of sets of circuits including
    A rectifier circuit connected to the one terminal of the circulator and converting AC power into DC power is provided in each set of the circuits,
    An antenna device comprising: a current collector that collects DC power converted by the rectifier circuits.
  2.  前記集電部で集電された直流電力の電圧を所定の大きさの電圧に変換するDC-DCコンバータをさらに備える、
     請求項1に記載のアンテナ装置。
    A DC-DC converter that converts the voltage of the DC power collected by the current collector into a voltage of a predetermined magnitude;
    The antenna device according to claim 1.
  3.  前記増幅器は、
     前記DC-DCコンバータで電圧が変換された直流電力を用いて前記送信信号を増幅する、
     請求項2に記載のアンテナ装置。
    The amplifier is
    Amplifying the transmission signal using DC power whose voltage has been converted by the DC-DC converter;
    The antenna device according to claim 2.
  4.  前記DC-DCコンバータで電圧が変換された直流電力を電源電力としてシステム制御、冷却、機械駆動を行う、
     請求項2に記載のアンテナ装置。
    System control, cooling, and mechanical driving are performed using DC power converted in voltage by the DC-DC converter as power supply power.
    The antenna device according to claim 2.
  5.  前記DC-DCコンバータで電圧が変換された直流電力を蓄える二次電池をさらに備える、
     請求項2に記載のアンテナ装置。
    A secondary battery that stores direct-current power converted in voltage by the DC-DC converter;
    The antenna device according to claim 2.
  6.  請求項1から5のいずれか一項に記載のアンテナ装置と、
     前記アンテナ装置に、マイクロ波を送信するマイクロ波送信アンテナと、
     を備えるアンテナシステム。
    An antenna device according to any one of claims 1 to 5;
    A microwave transmission antenna for transmitting microwaves to the antenna device;
    An antenna system comprising:
  7.  被照射体が室内に設置されるマイクロ波照射室と、
     前記マイクロ波照射室内にマイクロ波を放射する請求項1から5のいずれか一項に記載のアンテナ装置と、
     を備えるマイクロ波電力利用システム。
    A microwave irradiation chamber in which an object to be irradiated is installed indoors;
    The antenna device according to any one of claims 1 to 5, which radiates microwaves into the microwave irradiation chamber;
    A microwave power utilization system comprising:
  8.  前記マイクロ波照射室内部に放射されたマイクロ波を受信するレクテナ素子群をさらに備え、
     前記レクテナ素子群では、
     前記マイクロ波を受信する複数のアンテナ素子と、
     前記各アンテナ素子で受信されたマイクロ波の交流電力をそれぞれ直流電力に変換する複数の整流回路と、
     前記複数の整流回路で変換された直流電力を集電する集電部と、
     を備える請求項7に記載のマイクロ波電力利用システム。
    Further comprising a rectenna element group for receiving microwaves emitted into the microwave irradiation chamber;
    In the rectenna element group,
    A plurality of antenna elements for receiving the microwave;
    A plurality of rectifier circuits for converting microwave AC power received by each antenna element into DC power, respectively;
    A current collector that collects DC power converted by the plurality of rectifier circuits;
    A microwave power utilization system according to claim 7.
  9.  前記集電部で集電された直流電力の電圧を所定の大きさの電圧に変換するDC-DCコンバータをさらに備える、
     請求項7に記載のマイクロ波電力利用システム。
    A DC-DC converter that converts the voltage of the DC power collected by the current collector into a voltage of a predetermined magnitude;
    The microwave power utilization system according to claim 7.
  10.  前記DC-DCコンバータで電圧が変換された直流電力を蓄える二次電池をさらに備える、
     請求項9に記載のマイクロ波電力利用システム。
    A secondary battery that stores direct-current power converted in voltage by the DC-DC converter;
    The microwave power utilization system according to claim 9.
  11.  アンテナ素子と、前記アンテナ素子と接続されたサーキュレータと、前記サーキュレータと接続された増幅器と、前記増幅器と接続された移相器と、を備える回路が複数組設けられたフェーズドアレイアンテナの電力利用方法において、
     前記回路の各組の前記各サーキュレータを介して流れる交流電力をそれぞれ整流回路を用いて直流電力に変換し、
     すべての前記整流回路で変換された直流電力を集電部で集電する、
     電力利用方法。
    Power utilization method of phased array antenna provided with a plurality of sets of circuits each including an antenna element, a circulator connected to the antenna element, an amplifier connected to the circulator, and a phase shifter connected to the amplifier In
    AC power flowing through each circulator in each set of the circuits is converted into DC power using a rectifier circuit, respectively.
    The DC power collected by all the rectifier circuits is collected by the current collector,
    How to use electricity.
PCT/JP2015/053401 2014-02-10 2015-02-06 Antenna device, antenna system, microwave power utilization system, and power utilization method WO2015119250A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014023725 2014-02-10
JP2014-023725 2014-02-10

Publications (1)

Publication Number Publication Date
WO2015119250A1 true WO2015119250A1 (en) 2015-08-13

Family

ID=53778047

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/053401 WO2015119250A1 (en) 2014-02-10 2015-02-06 Antenna device, antenna system, microwave power utilization system, and power utilization method

Country Status (1)

Country Link
WO (1) WO2015119250A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017153352A (en) * 2016-02-26 2017-08-31 ザ・ボーイング・カンパニーThe Boeing Company Radio frequency energy harvesting system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008278097A (en) * 2007-04-27 2008-11-13 Ntt Docomo Inc Radio communication device and power supplying method for the radio communication device
WO2011052653A1 (en) * 2009-10-29 2011-05-05 日本電業工作株式会社 Power regeneration apparatus, power regeneration method, power storage system, power storage method, and high-frequency apparatus
JP2012213031A (en) * 2011-03-31 2012-11-01 Sony Corp Communication device and communication method
JP2012235329A (en) * 2011-05-02 2012-11-29 Mitsubishi Electric Corp Radio transmitter
JP2013026817A (en) * 2011-07-21 2013-02-04 Mitsubishi Electric Corp Phased array antenna
JP2013038481A (en) * 2011-08-04 2013-02-21 Sony Corp Radio communication apparatus and electronic device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008278097A (en) * 2007-04-27 2008-11-13 Ntt Docomo Inc Radio communication device and power supplying method for the radio communication device
WO2011052653A1 (en) * 2009-10-29 2011-05-05 日本電業工作株式会社 Power regeneration apparatus, power regeneration method, power storage system, power storage method, and high-frequency apparatus
JP2012213031A (en) * 2011-03-31 2012-11-01 Sony Corp Communication device and communication method
JP2012235329A (en) * 2011-05-02 2012-11-29 Mitsubishi Electric Corp Radio transmitter
JP2013026817A (en) * 2011-07-21 2013-02-04 Mitsubishi Electric Corp Phased array antenna
JP2013038481A (en) * 2011-08-04 2013-02-21 Sony Corp Radio communication apparatus and electronic device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017153352A (en) * 2016-02-26 2017-08-31 ザ・ボーイング・カンパニーThe Boeing Company Radio frequency energy harvesting system

Similar Documents

Publication Publication Date Title
US11233425B2 (en) Wireless power receiver having an antenna assembly and charger for enhanced power delivery
JP5366058B2 (en) Wireless power transmission system
Li Wireless power transmission: State-of-the-arts in technologies and potential applications
US10547198B2 (en) Wireless charging system of using multi-frequency for wireless charging at long and short distance
US8447238B2 (en) RF transmitter device and method for operating the same
US20080054638A1 (en) Hybrid power harvesting and method
CN110168809B (en) Microwave wireless charger focusing microwave field
Mahmood et al. A comparative study of wireless power transmission techniques
JP5457709B2 (en) X-ray generator and X-ray measuring apparatus
JP2011004479A (en) Wireless power supply device
WO2015119250A1 (en) Antenna device, antenna system, microwave power utilization system, and power utilization method
Patel et al. RF energy harvesting
Woo et al. Extendable array rectenna for a microwave wireless power transfer system
KR20170008901A (en) A energy harvesting system using a broadband Electromagnetic waves
Kawahara et al. In-pipe wireless microrobot
US9960707B2 (en) Parallel power converter
Pirzada et al. A mid-range wireless power transfer system for portable electronic devices using beam forming
WO2023228753A1 (en) Power reception device and control method
WO2021118453A1 (en) A wireless power receiver
JP2000278888A (en) Inter-satellite power transmission system
Coultis et al. Capacitive powered sensor network using a series transmission line
Douyère et al. “Grand Bassin” Case Study: An Original Proof-Of-Concept Prototype for Wireless Power Transportation
Sharma Advanced trends in wireless electricity transmission using semiconductor devices
Baghel et al. Efficient Modeling of DC-RF module of Space Solar Power Satellite with Improved Antenna design and Metasurface
KR20170062268A (en) Wireless power transfer method, apparatus and system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15746537

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 15746537

Country of ref document: EP

Kind code of ref document: A1