WO2015119237A1 - Electronic device and control program - Google Patents

Electronic device and control program Download PDF

Info

Publication number
WO2015119237A1
WO2015119237A1 PCT/JP2015/053360 JP2015053360W WO2015119237A1 WO 2015119237 A1 WO2015119237 A1 WO 2015119237A1 JP 2015053360 W JP2015053360 W JP 2015053360W WO 2015119237 A1 WO2015119237 A1 WO 2015119237A1
Authority
WO
WIPO (PCT)
Prior art keywords
vibration
vibrator
frequency
localization
control unit
Prior art date
Application number
PCT/JP2015/053360
Other languages
French (fr)
Japanese (ja)
Inventor
武昭 杉村
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Publication of WO2015119237A1 publication Critical patent/WO2015119237A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/016Input arrangements with force or tactile feedback as computer generated output to the user

Definitions

  • the present invention relates to an electronic device and a control program. This application claims priority based on Japanese Patent Application No. 2014-021986 for which it applied on February 7, 2014, and uses the content here.
  • a portable navigation device that supports navigation when a user moves while the user holds the casing is known (for example, see Patent Document 1).
  • This portable navigation device arranges at least three active elements that generate vibrations at different positions and controls the vibration intensity of the active elements, so that a user holding the apparatus with his / her palm can feel as if only a single vibration element is present. Is recognized (vibration occurs at a predetermined position).
  • aspects of the present invention provide an electronic device and a control program that can express a trajectory of vibration movement with emphasis.
  • One aspect of the present invention includes first and second vibrators that generate vibrations, and a vibration control unit that controls vibrations of the first and second vibrators.
  • the first vibrator is vibrated at the first frequency so that the vibration amplitude gradually decreases
  • the second vibrator is vibrated at the second frequency so that the vibration amplitude gradually increases.
  • the electronic device is characterized in that
  • a computer of an electronic device including first and second vibrators that generate vibrations and a vibration control unit that controls vibrations of the first and second vibrators is provided in a predetermined manner.
  • the first vibrator is vibrated at the first frequency so that the vibration amplitude gradually decreases
  • the second vibrator is vibrated at the second frequency so that the vibration amplitude gradually increases. It is a control program for performing the control step to be performed.
  • FIG. 1 is a schematic diagram illustrating an example of an external configuration of an electronic apparatus 1 according to the first embodiment of the present invention.
  • FIG. 2 is a configuration diagram illustrating an example of a functional configuration of the electronic apparatus 1 according to the present embodiment.
  • the electronic device 1 has, for example, a substantially rectangular shape when viewed in the Z direction, and has a configuration in which the touch panel 10, the main body 20, and the back cover 30 are stacked in the Z direction.
  • FIG. 1A shows an external configuration of the electronic device 1 as viewed from the touch panel 10 side.
  • FIG. 1B illustrates an external configuration of the electronic device as viewed from the back cover 30 side.
  • the shape of the electronic device 1 shown in FIG. 1 is an example, and is not limited to this.
  • the electronic device 1 may be a wearable device having a shape that matches the shape of a part of a human body. More specifically, the electronic device 1 may be a device having a helmet shape that matches the shape of a human head.
  • the configuration of the electronic apparatus 1 will be described using an XYZ orthogonal coordinate system.
  • the stacking direction of each component of the electronic device 1 is defined as the Z direction.
  • a plane orthogonal to the Z direction is defined as an XY plane, and directions orthogonal to the XY plane are defined as an X direction and a Y direction, respectively.
  • the touch panel 10 displays an image input from the control unit 90 accommodated in the main body unit 20, detects a position (coordinates) where the user touches the surface with a finger or the like, and outputs the detected position (coordinates) to the control unit 90.
  • the user is a user of the electronic device 1.
  • the touch panel 10 is configured by combining, for example, a liquid crystal display device that displays an image and a contact detection mechanism.
  • Various contact detection mechanisms can be used.
  • a contact detection mechanism using various systems such as a resistive film system, a capacitance system, an infrared system, and a surface acoustic wave system can be employed.
  • the touch panel 10 may be an organic EL (Electroluminescence) display device or the like instead of a liquid crystal display (LCD).
  • the main body 20 includes an imaging unit (camera) 40, a communication unit 50, an I / O unit 52 (I / O port, I / O interface), a storage unit 60, a speaker 70, and an acceleration sensor shown in FIG. 75, the vibration generating unit 80, the control unit 90, and the like are accommodated.
  • the main body 20 may house a power supply circuit, a battery, a GPS (Global Positioning System) receiver, and the like in a casing.
  • a hole 32 is formed in the back cover 30 to expose the lens 42 of the imaging unit 40.
  • the back cover 30 is attached with a mount 35 on which various operation switches such as a release button for operating the imaging unit 40 can be mounted.
  • the imaging unit 40 is a digital camera using a solid-state imaging device such as a CCD (Charge Coupled Device) or a CMOS (Complementary Metal Oxide Semiconductor). Note that the imaging unit 40 may be a video camera.
  • a solid-state imaging device such as a CCD (Charge Coupled Device) or a CMOS (Complementary Metal Oxide Semiconductor). Note that the imaging unit 40 may be a video camera.
  • the communication unit 50 performs wireless communication using a wireless LAN network such as Wi-Fi (registered trademark), Bluetooth (registered trademark), infrared communication, a mobile phone network, a PHS network, or the like.
  • the communication unit 50 may include a network card that functions as a communication interface when the electronic device is connected by wire.
  • the I / O unit 52 includes, for example, a USB (Universal Serial Bus) terminal, an HDMI (registered trademark) (High Definition Multimedia Interface) terminal, a terminal to which an SD card or the like is mounted.
  • Speaker 70 outputs sound based on the sound data generated by control unit 90.
  • the acceleration sensor 75 is, for example, a three-axis acceleration sensor, detects accelerations (including gravitational acceleration) that act on the electronic device 1 in the X direction, the Y direction, and the Z direction, respectively, and detects the detection results by the control unit 90. Output to.
  • the electronic device 1 only needs to reproduce vibrations, and may not include the imaging unit 40, the communication unit 50, the I / O unit 52, the speaker 70, and the acceleration sensor 75.
  • the vibration generator 80 generates vibration based on the drive signal generated by the controller 90.
  • the vibration generating unit 80 includes a plurality of vibrators as shown in FIG.
  • FIG. 3 is a partial perspective view illustrating the arrangement positions of the vibrators included in the vibration generating unit 80 of the present embodiment.
  • the vibration generation unit 80 includes, for example, vibrators 80 (1), 80 (2), 80 (3), 80 ( 4). These vibrators are attached to the housing or support member of the main body 20 or the back cover 30.
  • a voice coil motor VCM
  • an eccentric motor is used as the vibrator.
  • the vibrator When the voice coil motor is used, the vibrator generates, for example, vibration in the Z direction with respect to a part or the whole of the electronic device 1.
  • the vibration generating unit 80 may include a vibrator in the vicinity of two corners located diagonally of the electronic device 1 or may include a vibrator at other positions. Further, the number of vibrators is not limited to four as shown in FIG. 3, and it is sufficient that two or more vibrators are provided.
  • the mode of vibration generated by the vibration generator 80 can be changed by changing factors such as amplitude, frequency, phase, and duty.
  • the control unit 90 controls the entire electronic device 1 including the vibration generating unit 80.
  • the control unit 90 includes a vibration control unit (not shown) as the functional unit.
  • the vibration control unit controls the vibration of the vibration generating unit 80 by outputting a vibration signal to the vibration generating unit 80.
  • the control performed by the vibration control unit will be described as control performed by the control unit 90.
  • the storage unit 60 is a storage device such as a flash memory, HDD (Hard Disk Drive), RAM (Random Access Memory), ROM (Read Only Memory), and registers.
  • a program (firmware) executed by a CPU (Central Processing Unit) of the control unit 90 is stored in advance.
  • the storage unit 60 stores a calculation result obtained by the CPU performing a calculation process.
  • the storage unit 60 stores content data received from another apparatus via the communication unit 50, content data read from a device attached to the I / O unit 52, and the like.
  • the storage unit 60 corresponds to, for example, the image data 62 as information for the control unit 90 to control the vibration generating unit 80 in addition to the image data 62 that is the original data of the image displayed on the touch panel 10.
  • the attached localization data 64 is stored. The localization data 64 will be described with reference to FIG.
  • FIG. 4 is a diagram illustrating the relationship between the image data 62 and the localization data 64 stored in the storage unit 60 of the present embodiment.
  • the localization data 64 for example, for each moving image included in the image data 62, a period in which the localization vibration is generated, the coordinates of the vibration localization, and data related to the reference amplitude are associated with each other.
  • moving image data is held as the image data 62, but still image data may be held as the image data 62.
  • the localization data 64 may not be associated with the image data 62.
  • the control unit 90 may generate the localization data 64 in real time.
  • the vibration localization is a position where the user wants to feel that vibration is occurring in a state where the electronic device 1 is held by the palm P of the user.
  • the vibration localization is a position recognized as a position where vibration is generated by a user holding the electronic device 1.
  • this vibration localization is also referred to as vibration localization.
  • the control unit 90 controls the vibration localization based on the localization data 64.
  • controlling vibration localization is also referred to as localization of vibration.
  • controlling the vibration localization means that the control unit 90 controls the vibration mode of each vibrator so that the vibration is localized at a certain coordinate in a space where the user wants to feel that the vibration is occurring. Is to control.
  • a mechanism in which the control unit 90 localizes vibration based on the localization data will be described.
  • FIG. 5 is a schematic diagram illustrating an example of vibration localization controlled by the electronic apparatus 1 of the present embodiment.
  • the position Pv ⁇ b> 0 is a position where the user wants to feel that vibration is occurring in a state where the electronic device 1 is held by the user's palm P with the touch panel 10 facing upward.
  • the control unit 90 can make the user feel that vibration is occurring at the position Pv0 by controlling the vibration localization.
  • the effect that allows the user to feel that the vibration is generated at the position where the vibrator is not arranged is referred to as a sense of localization.
  • a sense of orientation is phantom sensation, that is, a specific position between two or more positions when two or more positions on the user's skin are vibrated (stimulated) at the same time.
  • the user feels as if the vibration is localized.
  • the control unit 90 controls the vibrators 80 (1) to 80 (4) so that the position of the center of gravity obtained by weighting the positions of the vibrators 80 (1) to 80 (4) with the vibration intensity matches the position Pv0. ).
  • the intensity of vibration means amplitude, frequency, etc., or a combination thereof, and hereinafter, it is assumed to be amplitude.
  • each vibrator is attached to the back cover 30, for example, vibration is easily transmitted to the user's palm P by being held by the user's palm P in the state shown in FIG.
  • FIG. 6 is a schematic diagram illustrating an example of a combination of amplitudes of the vibrators of the present embodiment.
  • FIG. 6 illustrates a combination of amplitudes of the transducers 80 (1) to 80 (4) in which the center of gravity weighted with the amplitude coincides with the position Pv0.
  • the amplitude when the vibrator is not vibrating is 0 (zero) ⁇ K, and the amplitude of the maximum vibration that can be generated by the vibrator is 1 ⁇ K. This K is a reference amplitude.
  • control unit 90 vibrates the vibrator 80 (1) with an amplitude of 0.45 ⁇ K, vibrates the vibrator 80 (3) with an amplitude of 0.55 ⁇ K, and vibrates the vibrator 80 (4).
  • control state 1 the user holding the electronic apparatus 1 in the state of FIG. 5 may feel that vibration is occurring in the vicinity of the position Pv0. it can.
  • the vibrator 80 (2) is not vibrated (amplitude 0 ⁇ K).
  • Expression (1) represents the addition or subtraction of each vibration of the vibrator 80 (1) to the vibrator 80 (4) in the X direction component.
  • Expression (2) represents the addition or subtraction of each vibration of the vibrator 80 (1) to the vibrator 80 (4) in the Y direction component.
  • the term to which the vibrator 80 (1) contributes is (+ 0.9 ⁇ 0.45 ⁇ K)
  • the term to which the vibrator 80 (3) contributes is (+ 0.9 ⁇ 0.55 ⁇ K
  • the term to which the vibrator 80 (4) contributes is ( ⁇ 0.9 ⁇ 1 ⁇ K).
  • the term to which the vibrator 80 (1) contributes is (+ 0.9 ⁇ 0.45 ⁇ K)
  • the term to which the vibrator 80 (3) contributes is ( ⁇ 0.9 ⁇ 0.55 ⁇ K)
  • the term to which the vibrator 80 (4) contributes is ( ⁇ 0.9 ⁇ 1 ⁇ K).
  • control unit 90 vibrates the vibrator 80 (2) with an amplitude of 0.45 ⁇ K and vibrates the vibrator 80 (3) with an amplitude of 1 ⁇ K.
  • (4) may be vibrated with an amplitude of 0.55 ⁇ K (control state 2).
  • control unit 90 vibrates the vibrator 80 (1) and the vibrator 80 (2) with an amplitude of 0.22 ⁇ K, and causes the vibrator 80 (3) and the vibrator 80 (4) to have an amplitude of 0.78 ⁇ You may vibrate with K (control state 3).
  • the control unit 90 causes the user to vibrate at the position Pv0 by selecting an arbitrary control state. You can make them feel.
  • the numerical values such as 0.45, 0.55, 1, 0.22, and 0.78 described above are merely examples, and the control unit 90 sets an arbitrary numerical value as long as the center of gravity can be matched with the position Pv0. can do.
  • FIG. 7 is a schematic diagram illustrating an example of a locus of vibration localization movement controlled by the electronic apparatus 1 of the present embodiment.
  • the control unit 90 performs control to move the vibration localization by changing the amplitude of each vibrator based on the localization data as time passes.
  • the locus LC1 is a part of a line segment connecting the vibrator 80 (1) and the vibrator 80 (4).
  • the vibrator 80 (1) is a vibration source movement source vibrator
  • the vibrator 80 (4) is a vibration position movement destination vibrator.
  • the control unit 90 first localizes the vibration at the position Pv1. At this time, similarly to the case where the vibration is localized at the position Pv0 described above, the control unit 90 controls the vibration mode of each vibrator based on the localization data to localize the vibration at the position Pv1. Specifically, the control unit 90 stops the vibration of the vibrator 80 (2) and the vibrator 80 (3), and the vibration amplitude of the vibrator 80 (1) and the vibration of the vibrator 80 (4). And the vibration is localized at the position Pv1.
  • the control unit 90 stops the output of the drive signal output from the control unit 90 to the vibrator. Further, the control unit 90 may stop the vibration of the vibrator by outputting a drive signal in which the vibrator has an amplitude of 0 (zero).
  • control unit 90 vibrates the vibrator 80 (1) and the vibrator 80 (4) by setting the vibration amplitude of the vibrator 80 (1) to an amplitude larger than the amplitude of the vibrator 80 (4).
  • the control unit 90 can localize the vibration to an arbitrary coordinate on the locus LC1 by changing the ratio between the amplitude of the vibration of the vibrator 80 (1) and the amplitude of the vibrator 80 (4). it can.
  • the control unit 90 causes the vibrator 80 (1) to vibrate by setting the vibration amplitude of the vibrator 80 (1) to a certain amplitude within the range of 0 to 1 ⁇ K.
  • control unit 90 sets the vibrator 80 (4) to an amplitude smaller than the amplitude of the vibrator 80 (1) within the range of 0 to 1 ⁇ K. Vibrate. That is, the control unit 90 vibrates at least two vibrators selected based on the locus of movement of the vibration localization. Thereby, the vibration is localized at the position Pv1.
  • the control unit 90 controls the vibration mode of each vibrator so that the vibration localization moves from the position Pv1 to the position Pv2. Specifically, the control unit 90 gradually increases the amplitude of the vibrator 80 (4) while gradually decreasing the amplitude of vibration of the vibrator 80 (1) as time passes. As a result, the ratio between the amplitude of the vibration of the vibrator 80 (1) and the amplitude of the vibrator 80 (4) changes, and the vibration localization moves from the position Pv1 to the position Pv2.
  • the control unit 90 of the present embodiment controls the vibration frequency in addition to the vibration amplitude of each vibrator. An example of the vibration waveform of the vibrator controlled by the control unit 90 will be described with reference to FIG.
  • FIG. 8 is a graph showing an example of the waveform of the drive signal output by the control unit 90 of the present embodiment.
  • the horizontal axis indicates the time t
  • the vertical axis indicates the amplitude A of the vibration of the vibrator.
  • the control unit 90 when the vibration localization is moved from the position Pv1 to the position Pv2, the control unit 90 outputs a drive signal having a waveform W1A shown in FIG. 8A to the vibrator 80 (4).
  • the control unit 90 outputs a drive signal having a waveform W1B shown in FIG. 8B to the vibrator 80 (1).
  • the time from time t1 to time t4 is 200 [ms] as an example.
  • the waveform W1A and the waveform W1B may be stored in advance in the storage unit 60 as the localization data 64, or may be generated by calculation of the control unit 90.
  • This waveform W1A is an example of a drive signal whose amplitude gradually increases as time t passes, as indicated by the envelope Env1A of the amplitude of the waveform W1A.
  • the waveform W1B is an example of a drive signal whose amplitude gradually decreases as time t passes, as indicated by the envelope Env1B of the amplitude of the waveform W1B.
  • the controller 90 gradually decreases the amplitude of vibration of the vibrator 80 (1) by supplying the drive signal having the waveform W1B to the vibrator 80 (1). Further, the controller 90 gradually increases the amplitude of the vibration of the vibrator 80 (4) by supplying the drive signal having the waveform W1A to the vibrator 80 (4). Thereby, the control unit 90 moves the vibration localization from the position Pv1 to the position Pv2 along the locus LC1.
  • the control unit 90 vibrates the vibrator 80 (1) at the first frequency f1, and vibrates the vibrator 80 (4) at the second frequency f2 different from the first frequency f1.
  • the frequency of the waveform W1A is lower than the frequency of the waveform W1B. More specifically, the frequency of the waveform W1A is 50 [Hz], and the frequency of the waveform W1B is 200 [Hz].
  • the frequency of the waveform W1B is also referred to as a first frequency f1 as a reference frequency for comparison.
  • the frequency of the waveform W1A is also referred to as the second frequency f2.
  • the first frequency f1 is 200 [Hz]
  • the second frequency f2 is 50 [Hz] lower than the first frequency f1. That is, the control unit 90 vibrates the vibrator 80 (1) at the first frequency f1, and vibrates the vibrator 80 (4) at the second frequency f2 that is lower than the first frequency f1.
  • the vibrator 80 (1) is an example of a vibrator selected from a plurality of vibrators as a vibrator indicating the movement source side of the locus of movement of vibration localization.
  • the vibrator 80 (4) is an example of a vibrator selected from a plurality of vibrators as a vibrator indicating the movement destination side of the locus of movement of vibration localization.
  • control unit 90 vibrates the vibrator 80 (1) selected from the plurality of vibrators as the vibrator indicating the movement source side of the vibration localization movement locus at the first frequency f1.
  • control unit 90 sets the vibrator 80 (4) selected from the plurality of vibrators as the vibrator indicating the movement destination side of the vibration localization movement locus to the second frequency f2 lower than the first frequency f1. Vibrate by.
  • the control unit 90 vibrates each vibrator so that a high frequency component increases in the movement source of the vibration localization locus LC1 (for example, in the vicinity of the position Pv1).
  • the control unit 90 vibrates each vibrator so that a low frequency component is increased at the destination of the vibration localization locus LC1 (for example, near the position Pv2).
  • a relatively high frequency component is also referred to as a “high frequency component”
  • a relatively low frequency component is also referred to as a “low frequency component”.
  • the control unit 90 lowers the vibration frequency at the movement destination lower than the vibration frequency at the movement source.
  • the electronic device 1 can give a strong impression to the user as if some object has moved along the locus LC1 of movement of the vibration localization.
  • the strong impression given by the electronic device 1 includes an impression that the electronic device 1 itself is moving toward the movement path LC1 of the vibration localization, that is, the movement direction of the vibration localization.
  • the strong impression given by the electronic device 1 includes an impression that the reverberation of the movement of the vibration localization occurs after the movement of the vibration localization stops.
  • the vibration-destination moving destination vibrator vibrates at a lower frequency than the movement-source vibrator, thereby enhancing the impression of the vibration localization moving destination.
  • the frequency of the waveform W1A is 50 [Hz] and the frequency of the waveform W1B is 200 [Hz]. However, if the frequency of the waveform W1A is lower than the frequency of the waveform W1B. Well, it is not limited to this number.
  • the frequency characteristics when various sensory receptors present on the user's skin receive vibration as a whole of these sensory receptors are approximately 0.3 to 1000 [Hz].
  • these sensory receptors as a sensory receptor that receives a stimulus that causes the above-described phantom sensation, there is a Patini body.
  • the frequency characteristic when the Patinny body receives vibration is about 30 to 1000 [Hz]. Therefore, the vibration frequency of each vibrator for generating phantom sensation is preferably about 40 to 1000 [Hz].
  • the frequency at which the user's skin can perceive the vibration generated by the vibrator as a vibration is about 300 [Hz] or less. Therefore, it is preferable that the vibration frequency of each vibrator for impressing the movement of the vibration localization is about 30 to 300 [Hz].
  • the frequency ratio between the second frequency f2 which is a low frequency and the first frequency f1 which is a high frequency is about 1: 2 to 1: 4, the movement of vibration localization is strongly increased. You can make an impression.
  • the second frequency f2 is 50 [Hz]
  • the first frequency f1 is preferably about 30 to 150 [Hz]
  • the second frequency f2 is preferably about 60 to 300 [Hz].
  • control unit 90 supplies the drive signal having the waveform W1B illustrated in FIG. 8B to the vibrator 80 (1) with the passage of time t, so that the vibration of the vibrator 80 (1) can be reduced. Decrease the amplitude.
  • the controller 90 supplies the drive signal having the waveform W1A shown in FIG. 8A to the vibrator 80 (4), thereby gradually increasing the vibration amplitude of the vibrator 80 (4). . That is, the control unit 90 gradually decreases the high frequency component due to the vibration of the vibrator 80 (1) and gradually increases the low frequency component due to the vibration of the vibrator 80 (4) as the vibration localization moves. Each vibrator is vibrated. As a result, the vibration amplitude ratio of the vibrator 80 (1) and the vibration amplitude ratio of the vibrator 80 (4) are smoothly switched as time t passes. Therefore, the user can feel as if the vibration localization is moving smoothly.
  • the envelopes of the drive signal for driving the vibrator are expressed by various functions. be able to.
  • the envelope of the drive signal whose amplitude gradually increases in this example, the envelope Env1A
  • the envelope Env1A may be a curve (that is, a straight line) represented by a linear function, and may be represented by a quadratic function, an exponential function, or the like. It may be a curved line.
  • the envelope may change stepwise as long as the user does not feel uncomfortable.
  • the envelope may be a curve represented by a linear function, a quadratic function, an exponential function, etc.
  • the envelope may change stepwise.
  • the controller 90 can change the impression of the movement of the vibration localization felt by the user by variously deforming the envelope. Further, the control unit 90 controls the image displayed on the touch panel 10 in association with the function representing the drive signal, thereby changing the vibration localization movement impression felt by the user according to the content of the image. Can do.
  • the control unit 90 controls the amplitude and vibration frequency of a vibrator that is selected in advance based on the vibration localization locus, but the present invention is not limited to this.
  • the control unit 90 may include a selection unit that selects a transducer to be controlled as its function unit.
  • the selection unit selects one vibrator and the other vibrator from a plurality of vibrators based on the movement locus of the vibration localization.
  • the selection unit uses the vibrator 80 (1) as the vibrator indicating the movement source side of the vibration localization movement locus. select.
  • the selection unit selects the vibrator 80 (4) as the vibrator indicating the movement destination side of the locus of movement of the vibration localization.
  • the vibration localization is moved along the locus LC2 shown in FIG. 10
  • all the vibrators that is, the vibrators indicating the movement source side of the movement locus of the vibration localization
  • the vibrators 80 (1) to (4) are selected.
  • the selection unit selects all the vibrators, that is, the vibrators 80 (1) to (4) as the vibrators indicating the movement destination side of the locus of movement of the vibration localization.
  • the electronic device 1 includes the selection unit, and thus can control the vibration localization even when the vibrator to be controlled is not determined in advance.
  • FIG. 9 is a flowchart illustrating an example of a flow of processing executed by the control unit 90 of the present embodiment. The process of the flowchart in FIG. 9 is repeatedly executed while a moving image associated with the localization data 64 is being reproduced, for example.
  • control unit 90 reads the localization data 64 from the storage unit 60 (step S10).
  • control unit 90 refers to the read localization data 64 and determines whether or not it is within a period in which localization vibration is generated (step S20). If the control unit 90 determines that it is not within the period for generating the localized vibration (step S20: NO), it ends one routine of the flowchart of FIG. In addition, when the control unit 90 determines that it is within the period in which the localization vibration is generated (step S20: YES), the process proceeds to step S30.
  • the control unit 90 selects a transducer to be controlled based on the localization data 64 read in step S10 (selection step). Further, the control unit 90 calculates the vibration frequency, the locus of vibration localization, the envelope of the amplitude, that is, the parameter of the drive signal, based on the localization data 64 (parameter calculation step). . Specifically, the control unit 90 calculates a high frequency vibration frequency (first vibration frequency) and a low frequency vibration frequency (second vibration frequency) based on the localization data 64 (step) S30). As an example, the control unit 90 calculates the vibration frequency of each vibrator by setting the first frequency f1 in the range of 100 to 200 [Hz] and the second frequency f2 in the range of 60 to 300 [Hz]. To do. Further, as an example, the control unit 90 sets the vibration frequency of each vibrator so that the frequency ratio between the second frequency f2 and the first frequency f1 is 1: 2 to 1: 4. calculate.
  • control unit 90 calculates a start position (start coordinate) and an end position (end coordinate) of the trajectory of vibration localization based on the localization data 64 (step S40).
  • the control unit 90 also determines the amplitude envelope of each transducer based on the start position (start coordinates), end position (end coordinates) calculated in step S40, and information indicating the moving speed of the vibration localization. (Envelope) is calculated (step S50).
  • the information indicating the movement speed of the vibration localization is information indicating the speed or time when the vibration localization moves from the start position (start coordinates) to the end position (end coordinates).
  • the information indicating the movement speed of the vibration localization may be included in the localization data 64, or the control unit 90 may generate the information based on the image data 62 or the like.
  • Step S60 the control unit 90 generates a drive signal for each transducer based on the parameters of the drive signal calculated in steps S30 to S50 (step S60), and outputs the generated drive signal to each transducer.
  • Step S70 Steps S60 and S70 are an example of a vibration control step.
  • control unit 90 determines whether or not the vibration localization has reached the end position (end coordinate) (step S80). When it is determined that the vibration localization has not reached the end position (end coordinate) (step S80: NO), the control unit 90 returns the process to step S70 and continues outputting the drive signal. Further, when it is determined that the vibration localization has reached the end position (end coordinate) (step S80: YES), the control unit 90 ends one routine of the flowchart of FIG.
  • the vibrator 80 (1) is located at a predetermined position that the user wants to feel that vibration is occurring.
  • To 80 (4) are vibrated so that the position of the center of gravity obtained by weighting the positions of 80 to (4) with the intensity of vibration matches a predetermined position. Therefore, it is possible to make the user feel that vibration is occurring at a predetermined position, and to provide the user with a high level of realism.
  • the vibrator 80 (1) is vibrated at the first frequency f1, and the vibrator 80 (4) is second frequency f2 different from the first frequency f1. Vibrate with.
  • the electronic device 1 or the like it is possible to give a strong impression to the user as if any object has moved along the locus LC1 of vibration localization movement.
  • the vibration localization is controlled by changing the amplitudes of the two vibrators when moving the vibration localization from the position Pv1 to the position Pv2 has been described.
  • the controller 90 may control the vibration localization by simultaneously changing the amplitudes of the three or four vibrators.
  • trajectory of a vibration localization is shown in FIG. 10 and FIG.
  • FIG. 10 is a schematic diagram showing a first modified example of the locus of vibration localization controlled by the control unit 90 of the present embodiment.
  • the control unit 90 may control the vibration localization by moving the vibration localization along the movement locus LC2 from the position Pv3 to the position Pv4.
  • the trajectory LC2 is a vibration localization trajectory in which the position Pv3 located between the vibrator 80 (1) and the vibrator 80 (2) is the start position of movement in the X direction.
  • the locus LC2 is a locus of vibration localization in which the position Pv4 between the transducer 80 (3) and the transducer 80 (4) is the end position of the movement in the X direction.
  • the control unit 90 controls the amplitudes of all four vibrators to localize the vibration at the position Pv3 or the position Pv4. As described above, the control unit 90 may localize the vibration at an arbitrary position by controlling the amplitudes of the plurality of vibrators.
  • the electronic device 1 can give the user an impression that the electronic device 1 moves in the ⁇ Y direction by moving the vibration localization along the locus LC2. At this time, when the user holds the ⁇ Y direction in the direction of gravity (vertically downward), the electronic device 1 gives an impression that the electronic device 1 itself is pulled in the direction of gravity. Can be given to.
  • FIG. 11 is a schematic diagram showing a second modified example of the locus of vibration localization controlled by the control unit 90 of the present embodiment.
  • the control unit 90 moves the vibration localization along the locus LC3-1 from a certain position to the position Pv5, and further moves the vibration localization along the locus LC3-2 from the position Pv5 to the position Pv6.
  • the vibration localization may be controlled. That is, the control unit 90 can control the vibration localization not only by designating the position (coordinates) of the vibration localization but also by designating the locus of the vibration localization. Further, the control unit 90 can control the vibration localization not only by making the locus of vibration localization a straight line but also by making an arbitrary curve.
  • FIG. 12 is a schematic diagram showing a locus of vibration localization controlled by the control unit 90 according to the second embodiment of the present invention.
  • the control unit 90 controls the vibration localization by moving the vibration localization along the locus LC4 from the position Pv7 to the position Pv8.
  • the position Pv7 and the position Pv8 are positions where the coordinates in the Z direction are different. That is, the control unit 90 controls the vibration localization in the XYZ space.
  • the position Pv7 is a position on the back side ( ⁇ Z direction) of the touch panel 10 of the electronic device 1.
  • the position Pv8 is a position on the near side (+ Z direction) of the touch panel 10 of the electronic device 1.
  • the control unit 90 according to the present embodiment can control the vibration localization even when the locus of movement of the vibration localization is the back and front directions of the electronic device 1.
  • the vibrator showing the back side of the locus of movement of the vibration localization and the vibrator showing the near side of the locus of movement of the vibration localization in this specific example will be described.
  • the position Pv7 is located in the ⁇ Z direction (back side) with respect to the position Pv8. That is, the position Pv7 is a position on the far side of the locus LC4 of vibration localization movement.
  • the position Pv7 is closer to the vibrator 80 (1) and the vibrator 80 (2) than the position Pv8.
  • the contribution ratio of the amplitude of the vibrator 80 (1) and the vibrator 80 (2) is the contribution of the amplitude of the vibrator 80 (3) and the vibrator 80 (4). Greater than rate.
  • the vibrator 80 (1) and the vibrator 80 (2) are vibrators that indicate the back side of the locus of movement of vibration localization.
  • the position Pv8 is located in the + Z direction (front side) with respect to the position Pv7. That is, the position Pv8 is a position on the near side of the locus LC4 of vibration localization movement.
  • the position Pv8 is closer to the vibrator 80 (3) and the vibrator 80 (4) than the position Pv7. Therefore, when the vibration is localized at the position Pv8, the contribution ratio of the amplitude of the vibrator 80 (3) and the vibrator 80 (4) is the contribution of the amplitude of the vibrator 80 (1) and the vibrator 80 (2). Greater than rate.
  • the vibrator 80 (3) and the vibrator 80 (4) are vibrators that indicate the near side of the locus of movement of vibration localization.
  • FIG. 13 is a graph showing an example of the waveform of the drive signal output by the control unit 90 of the present embodiment.
  • the horizontal axis indicates time t
  • the vertical axis indicates the amplitude A of the vibration of the vibrator.
  • the control unit 90 transmits the drive signal of the waveform W2A shown in FIG. 13A to the vibrator 80 (3) and the vibrator 80 (4). Output to.
  • the control unit 90 outputs a drive signal having a waveform W2B shown in FIG. 13B to the vibrator 80 (1) and the vibrator 80 (2).
  • the time from time t1 to time t5 is, for example, 2000 [ms].
  • the waveform W2A and the waveform W2B may be stored in advance in the storage unit 60 as the localization data 64, or may be generated by calculation of the control unit 90.
  • This waveform W2A is an example of a drive signal whose amplitude gradually increases as time t passes, as indicated by the envelope Env2A of the amplitude of the waveform W2A.
  • the waveform W2B is an example of a drive signal whose amplitude gradually decreases as time t passes, as indicated by the envelope Env2B of the amplitude of the waveform W2B.
  • the controller 90 supplies the drive signal having the waveform W2B to the vibrator 80 (1) and the vibrator 80 (2), thereby gradually reducing the amplitude of vibration of these vibrators. Further, the control unit 90 supplies the drive signal having the waveform W2A to the vibrator 80 (3) and the vibrator 80 (4), thereby gradually reducing the amplitude of vibration of these vibrators.
  • the controller 90 vibrates the vibrator 80 (1) and the vibrator 80 (2) at the first frequency f1, and the vibrator 80 (3) and the vibrator 80 (4) have the first frequency f1. Vibrates at a different third frequency f3.
  • the frequency of the waveform W2A is higher than the frequency of the waveform W2B.
  • the frequency of the waveform W2A is 100 [Hz]
  • the frequency of the waveform W2B is 50 [Hz].
  • the frequency of the waveform W2B is also referred to as a first frequency f1 as a reference frequency for comparison.
  • the frequency of the waveform W2A is also referred to as a third frequency f3.
  • the first frequency f1 is 50 [Hz]
  • the third frequency f3 is 100 [Hz].
  • control unit 90 vibrates the vibrator 80 (1) and the vibrator 80 (2) at the first frequency f1, and causes the vibrator 80 (3) and the vibrator 80 (4) to vibrate from the first frequency f1. Is vibrated at a higher third frequency f3.
  • the control unit 90 increases the frequency of the vibration on the near side to the frequency of the vibration on the far side of the trajectory LC4.
  • the electronic device 1 can give a strong impression to the user as if some object has moved along the trajectory LC4 of the vibration localization movement, that is, from the back side to the near side of the electronic device 1. .
  • control unit 90 outputs the drive signal having the waveform W2A shown in FIG. 13A to the vibrator 80 (1) and the vibrator 80 (2), and the drive signal having the waveform W2B shown in FIG. It is also possible to output to the vibrator 80 (3) and the vibrator 80 (4).
  • the electronic device 1 gives a strong impression as if some object has moved along the locus LC4 in the opposite direction to the locus LC4, that is, from the near side to the far side of the electronic device 1. Can be given to.
  • the control unit 90 vibrates the vibrator 80 (1) and the vibrator 80 (2) at the first frequency f1, and causes the vibrator 80 (3) and the vibrator 80 (4) to be the first. Is oscillated at a third frequency f3 higher than the first frequency f1.
  • the control unit 90 selects from a plurality of vibrators as the vibrator indicating the back side of the movement locus of the vibration localization.
  • the vibrator to be vibrated is vibrated at the first frequency f1.
  • control unit 90 vibrates a vibrator selected from a plurality of vibrators as a vibrator indicating the near side of the vibration localization movement locus at a third frequency f3 higher than the first frequency f1.
  • the control unit 90 can move the vibration localization from the position Pv7 to the position Pv8 along the locus LC4. That is, the control unit 90 can move the vibration localization from the back ( ⁇ Z) side to the front (+ Z) side in the XYZ space.
  • the control unit 90 selects a third oscillator that is selected from a plurality of transducers as a transducer that indicates the back side of the locus of movement of vibration localization, and has a third frequency higher than the first frequency f1.
  • the control unit 90 can also vibrate a vibrator selected from a plurality of vibrators with a first frequency f1 as a vibrator indicating the near side of the locus of movement of vibration localization. Accordingly, the control unit 90 can move the vibration localization from the position Pv8 to the position Pv7, that is, along the locus LC4 in the direction opposite to the locus LC4. That is, the control unit 90 can move the vibration localization from the front (+ Z) side to the back ( ⁇ Z) side in the XYZ space.
  • control unit 90 can localize vibrations at arbitrary coordinates in the XYZ space by combining the control according to the first embodiment and the control according to the second embodiment.
  • control unit 90 can move the vibration localization along an arbitrary locus in the XYZ space by combining the control according to the first embodiment and the control according to the second embodiment.
  • the program for realizing the control function may be recorded on a computer-readable recording medium, and the program recorded on the recording medium may be read by the computer system and executed.
  • the “computer system” is a computer system built in the electronic device 1 and includes an OS and hardware such as peripheral devices.
  • the “computer-readable recording medium” refers to a storage device such as a flexible medium, a magneto-optical disk, a portable medium such as a ROM or a CD-ROM, and a hard disk incorporated in a computer system.
  • the “computer-readable recording medium” is a medium that dynamically holds a program for a short time, such as a communication line when transmitting a program via a network such as the Internet or a communication line such as a telephone line,
  • a volatile memory inside a computer system that serves as a server or a client may be included that holds a program for a certain period of time.
  • the program may be a program for realizing a part of the functions described above, and may be a program capable of realizing the functions described above in combination with a program already recorded in a computer system.
  • Each functional block of the electronic device 1 may be individually made into a processor, or a part or all of them may be integrated into a processor. Further, the method of circuit integration is not limited to LSI, and may be realized by a dedicated circuit or a general-purpose processor. In addition, when an integrated circuit technology that replaces LSI appears due to the advancement of semiconductor technology, an integrated circuit based on the technology may be used.
  • SYMBOLS 1 Electronic device, 10 ... Touch panel, 20 ... Main-body part, 30 ... Back cover, 32 ... Hole part, 35 ... Mount part, 40 ... Imaging part, 42 ... Lens, 50 ... Communication part, 52 ... I / O part, 60... Storage unit, 70... Speaker, 75... Acceleration sensor, 80.

Abstract

 An electronic device is provided with a first and second vibrator for generating vibration, and a vibration control unit for controlling the vibration of the first and second vibrators, the vibration control unit causing, within a prescribed time domain, the first vibrator to vibrate at a first frequency so that the amplitude of the vibration decreases gradually, and the second vibrator to vibrate at a second frequency so that the amplitude of the vibration decreases gradually.

Description

電子機器、および制御プログラムElectronic device and control program
 本発明は、電子機器、および制御プログラムに関する。
 本願は、2014年2月7日に出願された日本国特願2014-021986号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to an electronic device and a control program.
This application claims priority based on Japanese Patent Application No. 2014-021986 for which it applied on February 7, 2014, and uses the content here.
 ユーザが筐体を保持した状態で、ユーザの移動時のナビゲーションの支援を行う携帯ナビゲーション装置が知られている(例えば、特許文献1参照)。この携帯ナビゲーション装置は、振動を発生させる少なくとも3個の能動素子を異なる位置に配置し、能動素子の振動強度を制御することによって、装置を掌で保持するユーザに、あたかも単一の振動素子のみが存在する(所定の位置で振動が発生している)ように認識させるものとしている。 A portable navigation device that supports navigation when a user moves while the user holds the casing is known (for example, see Patent Document 1). This portable navigation device arranges at least three active elements that generate vibrations at different positions and controls the vibration intensity of the active elements, so that a user holding the apparatus with his / her palm can feel as if only a single vibration element is present. Is recognized (vibration occurs at a predetermined position).
日本国特開2012-127940号Japanese Unexamined Patent Publication No. 2012-127940
 しかしながら、従来の技術では、あたかも単一の振動素子のみが存在する(所定の位置で振動が発生している)ように表現できるにとどまり、所定の位置で発生させている振動を移動させる際に、その振動を移動させた軌跡を強調して表現することまではできない場合がある。本発明の態様は、振動の移動の軌跡を強調して表現することができる電子機器、および制御プログラムを提供する。 However, in the conventional technique, it can be expressed as if there is only a single vibration element (vibration is generated at a predetermined position), and when the vibration generated at the predetermined position is moved. In some cases, it is impossible to emphasize and express the locus of the vibration. Aspects of the present invention provide an electronic device and a control program that can express a trajectory of vibration movement with emphasis.
 本発明の一態様は、振動を発生する第1及び第2の振動子と、前記第1及び第2の振動子の振動を制御する振動制御部と、を備え、前記振動制御部は、所定の時間領域において、前記第1の振動子を振動の振幅が漸減するように第1の周波数で振動させるとともに、前記第2の振動子を振動の振幅が漸増するように第2の周波数で振動させることを特徴とする電子機器である。 One aspect of the present invention includes first and second vibrators that generate vibrations, and a vibration control unit that controls vibrations of the first and second vibrators. In the time domain, the first vibrator is vibrated at the first frequency so that the vibration amplitude gradually decreases, and the second vibrator is vibrated at the second frequency so that the vibration amplitude gradually increases. The electronic device is characterized in that
 また、本発明の一態様は、振動を発生する第1及び第2の振動子と、前記第1及び第2の振動子の振動を制御する振動制御部とを備える電子機器のコンピュータに、所定の時間領域において、前記第1の振動子を振動の振幅が漸減するように第1の周波数で振動させるとともに、前記第2の振動子を振動の振幅が漸増するように第2の周波数で振動させる制御ステップを実行させるための制御プログラムである。 In one embodiment of the present invention, a computer of an electronic device including first and second vibrators that generate vibrations and a vibration control unit that controls vibrations of the first and second vibrators is provided in a predetermined manner. In the time domain, the first vibrator is vibrated at the first frequency so that the vibration amplitude gradually decreases, and the second vibrator is vibrated at the second frequency so that the vibration amplitude gradually increases. It is a control program for performing the control step to be performed.
 本発明の態様によれば、振動の移動の軌跡を強調して表現することができる。 According to the aspect of the present invention, it is possible to emphasize and express the locus of vibration movement.
本発明の第1の実施形態に係る電子機器の外観構成の一例を示す模式図である。It is a schematic diagram which shows an example of the external appearance structure of the electronic device which concerns on the 1st Embodiment of this invention. 本実施形態の電子機器の機能構成の一例を示す構成図である。It is a block diagram which shows an example of a function structure of the electronic device of this embodiment. 本実施形態の振動発生部が備える振動子の配設位置を例示した部分透視図である。It is the partial perspective view which illustrated the arrangement position of the vibrator with which the vibration generating part of this embodiment is provided. 本実施形態の記憶部に記憶される画像データと定位データとの関係を例示した図である。It is the figure which illustrated the relationship between the image data memorize | stored in the memory | storage part of this embodiment, and localization data. 本実施形態の電子機器が制御する振動定位の一例を示す模式図である。It is a schematic diagram which shows an example of the vibration localization which the electronic device of this embodiment controls. 本実施形態の各振動子の振幅の組み合わせの一例を示す模式図である。It is a schematic diagram which shows an example of the combination of the amplitude of each vibrator | oscillator of this embodiment. 本実施形態の電子機器が制御する振動定位の移動の軌跡の一例を示す模式図である。It is a schematic diagram which shows an example of the locus | trajectory of the movement of the vibration localization which the electronic device of this embodiment controls. 本実施形態の制御部が出力する駆動信号の波形の一例を示すグラフである。It is a graph which shows an example of the waveform of the drive signal which the control part of this embodiment outputs. 本実施形態の制御部が実行する処理の流れの一例を示すフローチャートである。It is a flowchart which shows an example of the flow of the process which the control part of this embodiment performs. 本実施形態の制御部が制御する振動定位の軌跡の第1の変形例を示す模式図である。It is a schematic diagram which shows the 1st modification of the locus | trajectory of the vibration localization which the control part of this embodiment controls. 本実施形態の制御部が制御する振動定位の軌跡の第2の変形例を示す模式図である。It is a schematic diagram which shows the 2nd modification of the locus | trajectory of the vibration localization which the control part of this embodiment controls. 本発明の第2の実施形態の制御部が制御する振動定位の軌跡を示す模式図である。It is a schematic diagram which shows the locus | trajectory of the vibration localization which the control part of the 2nd Embodiment of this invention controls. 本実施形態の制御部が出力する駆動信号の波形の一例を示すグラフである。It is a graph which shows an example of the waveform of the drive signal which the control part of this embodiment outputs.
[第1の実施形態]
 以下、図面を参照しながら本発明の実施形態について説明する。
 図1は、本発明の第1の実施形態に係る電子機器1の外観構成の一例を示す模式図である。また、図2は、本実施形態に係る電子機器1の機能構成の一例を示す構成図である。
[First embodiment]
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic diagram illustrating an example of an external configuration of an electronic apparatus 1 according to the first embodiment of the present invention. FIG. 2 is a configuration diagram illustrating an example of a functional configuration of the electronic apparatus 1 according to the present embodiment.
 電子機器1は、図1に示すように、例えば、Z方向視で略矩形の形状を有し、タッチパネル10、本体部20、背面カバー30がZ方向に積層された構成となっている。図1(A)は、電子機器1をタッチパネル10側から見た外観構成を示す。また、図1(B)は、電子機器を背面カバー30側から見た外観構成を示す。 As shown in FIG. 1, the electronic device 1 has, for example, a substantially rectangular shape when viewed in the Z direction, and has a configuration in which the touch panel 10, the main body 20, and the back cover 30 are stacked in the Z direction. FIG. 1A shows an external configuration of the electronic device 1 as viewed from the touch panel 10 side. FIG. 1B illustrates an external configuration of the electronic device as viewed from the back cover 30 side.
 なお、図1に示す電子機器1の形状は一例であって、これに限られない。例えば、電子機器1は、人間の体の一部の形状にあわせた形状を有するウェアラブル装置であってもよい。より具体的には、電子機器1は、人間の頭の形状にあわせたヘルメット形状を有する装置であってもよい。 In addition, the shape of the electronic device 1 shown in FIG. 1 is an example, and is not limited to this. For example, the electronic device 1 may be a wearable device having a shape that matches the shape of a part of a human body. More specifically, the electronic device 1 may be a device having a helmet shape that matches the shape of a human head.
 以下、本実施形態において、XYZ直交座標系を用いて電子機器1の構成を説明する。
 XYZ直交座標系において、電子機器1の各構成要素の積層方向をZ方向とする。また、Z方向に直交する平面をXY平面とし、XY平面において直交する方向をそれぞれX方向及びY方向とする。
Hereinafter, in the present embodiment, the configuration of the electronic apparatus 1 will be described using an XYZ orthogonal coordinate system.
In the XYZ orthogonal coordinate system, the stacking direction of each component of the electronic device 1 is defined as the Z direction. A plane orthogonal to the Z direction is defined as an XY plane, and directions orthogonal to the XY plane are defined as an X direction and a Y direction, respectively.
 タッチパネル10は、本体部20に収容された制御部90から入力される画像を表示するとともに、その表面にユーザが指などで触れた位置(座標)を検出し、制御部90に出力する。ここで、ユーザとは、電子機器1の利用者である。タッチパネル10は、例えば、画像を表示する液晶ディスプレイ装置と接触検知機構が組みわされて構成される。接触検知機構としては種々のものを用いることができ、例えば、抵抗膜方式、静電容量方式、赤外線方式、表面弾性波方式などの種々の方式を利用した接触検知機構が採用され得る。
 また、タッチパネル10は、液晶ディスプレイ(LCD;Liquid Crystal Display)に代えて、有機EL(Electroluminescence)表示装置などが用いられてもよい。
The touch panel 10 displays an image input from the control unit 90 accommodated in the main body unit 20, detects a position (coordinates) where the user touches the surface with a finger or the like, and outputs the detected position (coordinates) to the control unit 90. Here, the user is a user of the electronic device 1. The touch panel 10 is configured by combining, for example, a liquid crystal display device that displays an image and a contact detection mechanism. Various contact detection mechanisms can be used. For example, a contact detection mechanism using various systems such as a resistive film system, a capacitance system, an infrared system, and a surface acoustic wave system can be employed.
The touch panel 10 may be an organic EL (Electroluminescence) display device or the like instead of a liquid crystal display (LCD).
 本体部20は、筐体内に、図2に示す撮像部(カメラ)40、通信部50、I/O部52(I/Oポート、I/Oインターフェース)、記憶部60、スピーカ70、加速度センサ75、振動発生部80、制御部90などを収容する。また、本体部20は、電源回路やバッテリ、GPS(Global Positioning System)受信機などを筐体に収容してもよい。背面カバー30には、孔部32が形成され、撮像部40のレンズ42を露出させている。また、背面カバー30には、撮像部40を操作するためのリリースボタンなど、各種操作スイッチを搭載可能なマウント部35が取り付けられる。 The main body 20 includes an imaging unit (camera) 40, a communication unit 50, an I / O unit 52 (I / O port, I / O interface), a storage unit 60, a speaker 70, and an acceleration sensor shown in FIG. 75, the vibration generating unit 80, the control unit 90, and the like are accommodated. The main body 20 may house a power supply circuit, a battery, a GPS (Global Positioning System) receiver, and the like in a casing. A hole 32 is formed in the back cover 30 to expose the lens 42 of the imaging unit 40. The back cover 30 is attached with a mount 35 on which various operation switches such as a release button for operating the imaging unit 40 can be mounted.
 撮像部40は、例えば、CCD(Charge Coupled Device)やCMOS(Complementary Metal Oxide Semiconductor)などの固体撮像素子を利用したデジタルカメラである。なお、撮像部40は、ビデオカメラであってもよい。 The imaging unit 40 is a digital camera using a solid-state imaging device such as a CCD (Charge Coupled Device) or a CMOS (Complementary Metal Oxide Semiconductor). Note that the imaging unit 40 may be a video camera.
 通信部50は、例えば、Wi-Fi(登録商標)などの無線LAN網、Bluetooth(登録商標)、赤外線通信、携帯電話網、PHS網などを利用した無線通信を行う。
 また、通信部50は、電子機器が有線接続された際に通信インターフェースとして機能するネットワークカードなどを含んでもよい。I/O部52は、例えば、USB(Universal Serial Bus)端子やHDMI(登録商標)(High Definition Multimedia Interface)端子、SDカードなどが装着される端子などを含む。
The communication unit 50 performs wireless communication using a wireless LAN network such as Wi-Fi (registered trademark), Bluetooth (registered trademark), infrared communication, a mobile phone network, a PHS network, or the like.
The communication unit 50 may include a network card that functions as a communication interface when the electronic device is connected by wire. The I / O unit 52 includes, for example, a USB (Universal Serial Bus) terminal, an HDMI (registered trademark) (High Definition Multimedia Interface) terminal, a terminal to which an SD card or the like is mounted.
 スピーカ70は、制御部90により生成された音声データに基づき、音声を出力する。 Speaker 70 outputs sound based on the sound data generated by control unit 90.
 加速度センサ75は、例えば3軸式の加速度センサであり、電子機器1に対してX方向、Y方向、Z方向にそれぞれ作用する加速度(重力加速度を含む)を検出し、検出結果を制御部90に出力する。 The acceleration sensor 75 is, for example, a three-axis acceleration sensor, detects accelerations (including gravitational acceleration) that act on the electronic device 1 in the X direction, the Y direction, and the Z direction, respectively, and detects the detection results by the control unit 90. Output to.
 なお、電子機器1は、振動を再生できればよく、この撮像部40、通信部50、I/O部52、スピーカ70、加速度センサ75を備えていないものであってもよい。 The electronic device 1 only needs to reproduce vibrations, and may not include the imaging unit 40, the communication unit 50, the I / O unit 52, the speaker 70, and the acceleration sensor 75.
 振動発生部80は、制御部90により生成された駆動信号に基づき、振動を発生させる。この振動発生部80は、図3に示すように複数の振動子を備えている。 The vibration generator 80 generates vibration based on the drive signal generated by the controller 90. The vibration generating unit 80 includes a plurality of vibrators as shown in FIG.
 図3は、本実施形態の振動発生部80が備える振動子の配設位置を例示した部分透視図である。具体的には、振動発生部80は、図3に示すように、例えば、電子機器1の四隅付近に配設された振動子80(1)、80(2)、80(3)、80(4)を備える。これらの振動子は、本体部20の筐体または支持部材、或いは背面カバー30などに取り付けられる。振動子としては、例えば、ボイスコイルモータ(VCM)や偏心モータなどが用いられる。ボイスコイルモータを用いる場合、振動子は、電子機器1の一部または全体に対して、例えばZ方向の振動を発生させる。 FIG. 3 is a partial perspective view illustrating the arrangement positions of the vibrators included in the vibration generating unit 80 of the present embodiment. Specifically, as illustrated in FIG. 3, the vibration generation unit 80 includes, for example, vibrators 80 (1), 80 (2), 80 (3), 80 ( 4). These vibrators are attached to the housing or support member of the main body 20 or the back cover 30. For example, a voice coil motor (VCM) or an eccentric motor is used as the vibrator. When the voice coil motor is used, the vibrator generates, for example, vibration in the Z direction with respect to a part or the whole of the electronic device 1.
 なお、振動子の配置は図3に示すものに限らず、他の配置であってもよい。例えば、振動発生部80は、電子機器1の対角に位置する二隅付近に振動子を備えていてもよいし、その他の位置に振動子を備えていてもよい。また、振動子の数は、図3に示す4つに限らず、2つ以上の振動子を備えていればよい。この振動発生部80が発生させる振動の態様は、振幅、周波数、位相、デューティなどの要素を変更することにより変更することができる。 It should be noted that the arrangement of the vibrators is not limited to that shown in FIG. For example, the vibration generating unit 80 may include a vibrator in the vicinity of two corners located diagonally of the electronic device 1 or may include a vibrator at other positions. Further, the number of vibrators is not limited to four as shown in FIG. 3, and it is sufficient that two or more vibrators are provided. The mode of vibration generated by the vibration generator 80 can be changed by changing factors such as amplitude, frequency, phase, and duty.
 制御部90は、振動発生部80を含めた電子機器1全体の制御を行う。この制御部90は、その機能部としての振動制御部(不図示)を備えている。この振動制御部は、振動発生部80に振動信号を出力することにより、振動発生部80の振動を制御する。なお、以下の説明においては、この振動制御部が行う制御を、制御部90が行う制御として説明する。 The control unit 90 controls the entire electronic device 1 including the vibration generating unit 80. The control unit 90 includes a vibration control unit (not shown) as the functional unit. The vibration control unit controls the vibration of the vibration generating unit 80 by outputting a vibration signal to the vibration generating unit 80. In the following description, the control performed by the vibration control unit will be described as control performed by the control unit 90.
 記憶部60は、例えば、フラッシュメモリ、HDD(Hard Disk Drive)、RAM(Random Access Memory)、ROM(Read Only Memory)、レジスタなどの記憶装置である。記憶部60には、制御部90のCPU(Central Processing Unit)が実行するプログラム(ファームウェア)が予め格納される。また、記憶部60には、CPUが演算処理を行った演算結果が格納される。また、記憶部60には、他装置から通信部50を介して受信したコンテンツデータ、I/O部52に装着された機器から読み出されたコンテンツデータなどが格納される。また、記憶部60には、タッチパネル10に表示させる画像の元データとなる画像データ62の他、例えば、制御部90が振動発生部80を制御するための情報として、例えば、画像データ62に対応付けられた定位データ64が格納されている。この定位データ64について、図4を参照して説明する。 The storage unit 60 is a storage device such as a flash memory, HDD (Hard Disk Drive), RAM (Random Access Memory), ROM (Read Only Memory), and registers. In the storage unit 60, a program (firmware) executed by a CPU (Central Processing Unit) of the control unit 90 is stored in advance. In addition, the storage unit 60 stores a calculation result obtained by the CPU performing a calculation process. In addition, the storage unit 60 stores content data received from another apparatus via the communication unit 50, content data read from a device attached to the I / O unit 52, and the like. The storage unit 60 corresponds to, for example, the image data 62 as information for the control unit 90 to control the vibration generating unit 80 in addition to the image data 62 that is the original data of the image displayed on the touch panel 10. The attached localization data 64 is stored. The localization data 64 will be described with reference to FIG.
 図4は、本実施形態の記憶部60に記憶される画像データ62と定位データ64との関係を例示した図である。定位データ64では、例えば、画像データ62に含まれる各動画像に対して、定位の振動を発生させる期間と、振動定位の座標と、基準振幅に関するデータとが対応付けられている。なお、図4では、画像データ62として動画像のデータが保持されるものとしたが、画像データ62として静止画像のデータが保持されるものとしてもよい。また、定位データ64は、画像データ62と関連付けられていなくてもよい。また、制御部90が、定位データ64をリアルタイムに生成してもよい。 FIG. 4 is a diagram illustrating the relationship between the image data 62 and the localization data 64 stored in the storage unit 60 of the present embodiment. In the localization data 64, for example, for each moving image included in the image data 62, a period in which the localization vibration is generated, the coordinates of the vibration localization, and data related to the reference amplitude are associated with each other. In FIG. 4, moving image data is held as the image data 62, but still image data may be held as the image data 62. Further, the localization data 64 may not be associated with the image data 62. Further, the control unit 90 may generate the localization data 64 in real time.
 ここで、振動定位とは、電子機器1がユーザの掌Pによって保持された状態において、ユーザに振動が発生していると感じさせたい位置である。換言すれば、振動定位とは、電子機器1を保持するユーザによって振動が発生している位置として認識される位置である。以下の説明において、この振動定位を、振動の定位とも記載する。制御部90は、この定位データ64に基づいて、振動定位を制御する。なお、以下の説明において、振動定位を制御することを、振動を定位させるとも記載する。ここで、振動定位を制御するとは、制御部90が各振動子の振動態様を制御することにより、ユーザに振動が発生していると感じさせたい空間内のある座標に振動を定位させるように制御することである。次に、制御部90が、定位データに基づいて振動を定位させる仕組みについて説明する。 Here, the vibration localization is a position where the user wants to feel that vibration is occurring in a state where the electronic device 1 is held by the palm P of the user. In other words, the vibration localization is a position recognized as a position where vibration is generated by a user holding the electronic device 1. In the following description, this vibration localization is also referred to as vibration localization. The control unit 90 controls the vibration localization based on the localization data 64. In the following description, controlling vibration localization is also referred to as localization of vibration. Here, controlling the vibration localization means that the control unit 90 controls the vibration mode of each vibrator so that the vibration is localized at a certain coordinate in a space where the user wants to feel that the vibration is occurring. Is to control. Next, a mechanism in which the control unit 90 localizes vibration based on the localization data will be described.
[振動定位の制御]
 図5は、本実施形態の電子機器1が制御する振動定位の一例を示す模式図である。この図5において、位置Pv0とは、電子機器1がタッチパネル10を上側にしてユーザの掌Pによって保持された状態において、ユーザに振動が発生していると感じさせたい位置である。制御部90は、振動定位の制御を行うことにより、位置Pv0に振動が発生しているとユーザに感じさせることができる。このように、振動子が配置されていない位置で振動が発生していると感じさせることができる効果は、定位感と称される。定位感とは、ファントム・センセーション(Phantom Sensation)、すなわち、ユーザの皮膚の2点以上の位置を同時に振動させた(刺激した)場合に、その2点以上の位置の間に在る特定の位置に、あたかも振動の定位があるようにユーザが感じる感覚である。
[Control of vibration localization]
FIG. 5 is a schematic diagram illustrating an example of vibration localization controlled by the electronic apparatus 1 of the present embodiment. In FIG. 5, the position Pv <b> 0 is a position where the user wants to feel that vibration is occurring in a state where the electronic device 1 is held by the user's palm P with the touch panel 10 facing upward. The control unit 90 can make the user feel that vibration is occurring at the position Pv0 by controlling the vibration localization. Thus, the effect that allows the user to feel that the vibration is generated at the position where the vibrator is not arranged is referred to as a sense of localization. A sense of orientation is phantom sensation, that is, a specific position between two or more positions when two or more positions on the user's skin are vibrated (stimulated) at the same time. In addition, the user feels as if the vibration is localized.
 制御部90は、例えば、振動子80(1)~80(4)の位置を、振動の強度で重み付けした重心の位置が位置Pv0に一致するように、振動子80(1)~80(4)を振動させる。振動の強度とは、振幅、周波数など、或いはこれらの組み合わせを意味し、以下では振幅であるものとする。また、各振動子は、例えば背面カバー30に取り付けられるため、図5に示す状態でユーザの掌Pによって保持されることで、ユーザの掌Pに振動が伝達され易くなっている。 For example, the control unit 90 controls the vibrators 80 (1) to 80 (4) so that the position of the center of gravity obtained by weighting the positions of the vibrators 80 (1) to 80 (4) with the vibration intensity matches the position Pv0. ). The intensity of vibration means amplitude, frequency, etc., or a combination thereof, and hereinafter, it is assumed to be amplitude. Further, since each vibrator is attached to the back cover 30, for example, vibration is easily transmitted to the user's palm P by being held by the user's palm P in the state shown in FIG.
 図6は、本実施形態の各振動子の振幅の組み合わせの一例を示す模式図である。この図6においては、位置Pv0に、振幅で重み付けした重心が一致する振動子80(1)~80(4)の振幅の組み合わせを例示している。図6において、電子機器1のXY方向に関する中心線の交点をXY平面の原点(X,Y)=(0,0)と定義した。そして、振動子80(1)の座標を(X,Y)=(+0.9,+0.9)、振動子80(2)の座標を(X,Y)=(-0.9,+0.9)、振動子80(3)の座標を(X,Y)=(+0.9,-0.9)、振動子80(4)の座標を(X,Y)=(-0.9,-0.9)、位置Pv0の座標を(X,Y)=(0,-0.5)とした。ここで、振動子が振動していない場合の振幅が0(ゼロ)×Kであり、振動子が発生可能な最大の振動の振幅が1×Kである。
 このKとは、基準振幅である。この場合、制御部90は、例えば、振動子80(1)を振幅0.45×Kで振動させ、振動子80(3)を振幅0.55×Kで振動させ、振動子80(4)を振幅1×Kで振動させる(以下、制御状態1とする)ことにより、電子機器1を図5の状態で保持するユーザに、位置Pv0の付近で振動が発生していると感じさせることができる。
 なお、この設定においては、振動子80(2)は振動させない(振幅0×K)。
FIG. 6 is a schematic diagram illustrating an example of a combination of amplitudes of the vibrators of the present embodiment. FIG. 6 illustrates a combination of amplitudes of the transducers 80 (1) to 80 (4) in which the center of gravity weighted with the amplitude coincides with the position Pv0. In FIG. 6, the intersection of the center lines in the XY direction of the electronic device 1 is defined as the origin (X, Y) = (0, 0) of the XY plane. The coordinates of the vibrator 80 (1) are (X, Y) = (+ 0.9, +0.9), and the coordinates of the vibrator 80 (2) are (X, Y) = (− 0.9, +0. 9) The coordinates of the vibrator 80 (3) are (X, Y) = (+ 0.9, −0.9), and the coordinates of the vibrator 80 (4) are (X, Y) = (− 0.9, −0.9), and the coordinates of the position Pv0 are (X, Y) = (0, −0.5). Here, the amplitude when the vibrator is not vibrating is 0 (zero) × K, and the amplitude of the maximum vibration that can be generated by the vibrator is 1 × K.
This K is a reference amplitude. In this case, for example, the control unit 90 vibrates the vibrator 80 (1) with an amplitude of 0.45 × K, vibrates the vibrator 80 (3) with an amplitude of 0.55 × K, and vibrates the vibrator 80 (4). Is vibrated with an amplitude of 1 × K (hereinafter referred to as control state 1), the user holding the electronic apparatus 1 in the state of FIG. 5 may feel that vibration is occurring in the vicinity of the position Pv0. it can.
In this setting, the vibrator 80 (2) is not vibrated (amplitude 0 × K).
 すなわち、下記の式(1)、(2)に示すように、振動子80(1)~振動子80(4)からの各振動のX方向成分の振動、及び、Y方向成分の振動がそれぞれ加減されることによって、位置Pv0の座標(X,Y)=(0,-0.5)の付近において、振動が発生しているとユーザに感じさせることができる。式(1)は、X方向成分における振動子80(1)~振動子80(4)の各振動の加減を表す。式(2)は、Y方向成分における振動子80(1)~振動子80(4)の各振動の加減を表す。 That is, as shown in the following formulas (1) and (2), the vibration in the X direction component and the vibration in the Y direction component of each vibration from the vibrators 80 (1) to 80 (4) are respectively By adjusting, the user can feel that vibration is occurring in the vicinity of the coordinate (X, Y) = (0, −0.5) of the position Pv0. Expression (1) represents the addition or subtraction of each vibration of the vibrator 80 (1) to the vibrator 80 (4) in the X direction component. Expression (2) represents the addition or subtraction of each vibration of the vibrator 80 (1) to the vibrator 80 (4) in the Y direction component.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 上記の式(1)において、振動子80(1)が寄与している項は、(+0.9×0.45×K)であり、振動子80(3)が寄与している項は、(+0.9×0.55×K)であり、振動子80(4)が寄与している項は、(-0.9×1×K)である。 In the above equation (1), the term to which the vibrator 80 (1) contributes is (+ 0.9 × 0.45 × K), and the term to which the vibrator 80 (3) contributes is (+ 0.9 × 0.55 × K), and the term to which the vibrator 80 (4) contributes is (−0.9 × 1 × K).
 上記の式(2)において、振動子80(1)が寄与している項は、(+0.9×0.45×K)であり、振動子80(3)が寄与している項は、(-0.9×0.55×K)であり、振動子80(4)が寄与している項は、(-0.9×1×K)である。 In the above equation (2), the term to which the vibrator 80 (1) contributes is (+ 0.9 × 0.45 × K), and the term to which the vibrator 80 (3) contributes is (−0.9 × 0.55 × K), and the term to which the vibrator 80 (4) contributes is (−0.9 × 1 × K).
 また、制御部90は、上記制御状態1に代えて、振動子80(2)を振幅0.45×Kで振動させ、振動子80(3)を振幅1×Kで振動させ、振動子80(4)を振幅0.55×Kで振動させてもよい(制御状態2)。また、制御部90は、振動子80(1)および振動子80(2)を振幅0.22×Kで振動させ、振動子80(3)および振動子80(4)を振幅0.78×Kで振動させてもよい(制御状態3)。このように、振幅で重み付けした重心の位置が位置Pv0に一致する振動態様の組み合わせは複数存在し、制御部90は、任意の制御状態を選択することにより、ユーザに位置Pv0で振動が発生していると感じさせることができる。なお、上記した0.45、0.55、1、0.22、0.78といった数値はあくまで一例であり、制御部90は、重心を位置Pv0に一致させることができれば、任意の数値を設定することができる。 Further, instead of the control state 1, the control unit 90 vibrates the vibrator 80 (2) with an amplitude of 0.45 × K and vibrates the vibrator 80 (3) with an amplitude of 1 × K. (4) may be vibrated with an amplitude of 0.55 × K (control state 2). In addition, the control unit 90 vibrates the vibrator 80 (1) and the vibrator 80 (2) with an amplitude of 0.22 × K, and causes the vibrator 80 (3) and the vibrator 80 (4) to have an amplitude of 0.78 × You may vibrate with K (control state 3). As described above, there are a plurality of combinations of vibration modes in which the position of the center of gravity weighted by the amplitude coincides with the position Pv0, and the control unit 90 causes the user to vibrate at the position Pv0 by selecting an arbitrary control state. You can make them feel. The numerical values such as 0.45, 0.55, 1, 0.22, and 0.78 described above are merely examples, and the control unit 90 sets an arbitrary numerical value as long as the center of gravity can be matched with the position Pv0. can do.
[振動定位の移動の軌跡を強調する制御]
 次に、制御部90が振動定位を移動させる場合に、この移動の軌跡を強調する制御の一例について、図7および図8を参照して説明する。
 図7は、本実施形態の電子機器1が制御する振動定位の移動の軌跡の一例を示す模式図である。制御部90は、定位データに基づく各振動子の振幅を、時刻の経過とともに変化させることにより、振動定位を移動させる制御を行う。ここで、図7に示す位置Pv1から位置Pv2に軌跡LC1に沿って振動定位を移動させる場合を具体例として説明する。
 ここで、軌跡LC1とは、振動子80(1)と振動子80(4)とを結ぶ線分の一部である。また、この一例においては、振動子80(1)が、振動定位の移動元の振動子であり、振動子80(4)が、振動定位の移動先の振動子である。
[Control to emphasize the trajectory of vibration localization movement]
Next, an example of control for emphasizing the movement locus when the control unit 90 moves the vibration localization will be described with reference to FIGS.
FIG. 7 is a schematic diagram illustrating an example of a locus of vibration localization movement controlled by the electronic apparatus 1 of the present embodiment. The control unit 90 performs control to move the vibration localization by changing the amplitude of each vibrator based on the localization data as time passes. Here, a case where the vibration localization is moved along the locus LC1 from the position Pv1 to the position Pv2 shown in FIG. 7 will be described as a specific example.
Here, the locus LC1 is a part of a line segment connecting the vibrator 80 (1) and the vibrator 80 (4). In this example, the vibrator 80 (1) is a vibration source movement source vibrator, and the vibrator 80 (4) is a vibration position movement destination vibrator.
 この具体例の場合、制御部90は、まず位置Pv1に振動を定位させる。このとき制御部90は、上述した位置Pv0に振動を定位させる場合と同様に、定位データに基づいて各振動子の振動態様を制御して、位置Pv1に振動を定位させる。具体的には、制御部90は、振動子80(2)、振動子80(3)の振動を停止させるとともに、振動子80(1)の振動の振幅と、振動子80(4)の振動の振幅とを制御して、位置Pv1に振動を定位させる。ここで、振動子の振動を停止させる場合、制御部90は、制御部90から振動子に出力する駆動信号の出力を停止する。また、制御部90は、振動子の振幅が0(ゼロ)になるようにした駆動信号を出力することにより、振動子の振動を停止させてもよい。 In the case of this specific example, the control unit 90 first localizes the vibration at the position Pv1. At this time, similarly to the case where the vibration is localized at the position Pv0 described above, the control unit 90 controls the vibration mode of each vibrator based on the localization data to localize the vibration at the position Pv1. Specifically, the control unit 90 stops the vibration of the vibrator 80 (2) and the vibrator 80 (3), and the vibration amplitude of the vibrator 80 (1) and the vibration of the vibrator 80 (4). And the vibration is localized at the position Pv1. Here, when stopping the vibration of the vibrator, the control unit 90 stops the output of the drive signal output from the control unit 90 to the vibrator. Further, the control unit 90 may stop the vibration of the vibrator by outputting a drive signal in which the vibrator has an amplitude of 0 (zero).
 また、制御部90は、振動子80(1)の振動の振幅を、振動子80(4)の振幅よりも大きい振幅にして、振動子80(1)と振動子80(4)とを振動させる。このとき制御部90は、振動子80(1)の振動の振幅と、振動子80(4)の振幅との比率を変化させることにより、軌跡LC1上の任意の座標に振動を定位させることができる。この一例においては、制御部90は、振動子80(1)の振動の振幅を0~1×Kの範囲内のある振幅にして、振動子80(1)を振動させる。また、制御部90は、振動子80(4)の振動の振幅を0~1×Kの範囲内の、振動子80(1)の振幅よりも小さい振幅にして、振動子80(4)を振動させる。つまり、制御部90は、振動定位の移動の軌跡に基づいて選択される少なくとも2つの振動子を、それぞれ振動させる。これにより、位置Pv1に振動が定位する。 Further, the control unit 90 vibrates the vibrator 80 (1) and the vibrator 80 (4) by setting the vibration amplitude of the vibrator 80 (1) to an amplitude larger than the amplitude of the vibrator 80 (4). Let At this time, the control unit 90 can localize the vibration to an arbitrary coordinate on the locus LC1 by changing the ratio between the amplitude of the vibration of the vibrator 80 (1) and the amplitude of the vibrator 80 (4). it can. In this example, the control unit 90 causes the vibrator 80 (1) to vibrate by setting the vibration amplitude of the vibrator 80 (1) to a certain amplitude within the range of 0 to 1 × K. Further, the control unit 90 sets the vibrator 80 (4) to an amplitude smaller than the amplitude of the vibrator 80 (1) within the range of 0 to 1 × K. Vibrate. That is, the control unit 90 vibrates at least two vibrators selected based on the locus of movement of the vibration localization. Thereby, the vibration is localized at the position Pv1.
 次に、制御部90は、振動定位が位置Pv1から位置Pv2に移動するように、各振動子の振動態様を制御する。具体的には、制御部90は、時間の経過とともに振動子80(1)の振動の振幅を漸減させつつ、振動子80(4)の振幅を漸増させる。これにより、振動子80(1)の振動の振幅と、振動子80(4)の振幅との比率が変化し、振動定位が位置Pv1から位置Pv2に移動する。ここで、本実施形態の制御部90は、振動定位を移動させる場合に、各振動子の振動の振幅に加えて、振動の周波数を制御する。この制御部90が制御する振動子の振動波形の一例について、図8を参照して説明する。 Next, the control unit 90 controls the vibration mode of each vibrator so that the vibration localization moves from the position Pv1 to the position Pv2. Specifically, the control unit 90 gradually increases the amplitude of the vibrator 80 (4) while gradually decreasing the amplitude of vibration of the vibrator 80 (1) as time passes. As a result, the ratio between the amplitude of the vibration of the vibrator 80 (1) and the amplitude of the vibrator 80 (4) changes, and the vibration localization moves from the position Pv1 to the position Pv2. Here, when the vibration localization is moved, the control unit 90 of the present embodiment controls the vibration frequency in addition to the vibration amplitude of each vibrator. An example of the vibration waveform of the vibrator controlled by the control unit 90 will be described with reference to FIG.
 図8は、本実施形態の制御部90が出力する駆動信号の波形の一例を示すグラフである。この図8の各グラフにおいて、横軸は時刻tを示し、縦軸は振動子の振動の振幅の大きさAを示す。制御部90は、上述の一例において、振動定位を位置Pv1から位置Pv2に移動させる場合に、図8(A)に示す波形W1Aの駆動信号を振動子80(4)に出力する。また、この場合に、制御部90は、図8(B)に示す波形W1Bの駆動信号を振動子80(1)に出力する。ここで、時刻t1から時刻t4までの時間は、一例として200[ms]である。なお、この波形W1Aおよび波形W1Bは、定位データ64として記憶部60に予め記憶されていてもよく、制御部90の演算によって生成されてもよい。 FIG. 8 is a graph showing an example of the waveform of the drive signal output by the control unit 90 of the present embodiment. In each graph of FIG. 8, the horizontal axis indicates the time t, and the vertical axis indicates the amplitude A of the vibration of the vibrator. In the above example, when the vibration localization is moved from the position Pv1 to the position Pv2, the control unit 90 outputs a drive signal having a waveform W1A shown in FIG. 8A to the vibrator 80 (4). In this case, the control unit 90 outputs a drive signal having a waveform W1B shown in FIG. 8B to the vibrator 80 (1). Here, the time from time t1 to time t4 is 200 [ms] as an example. Note that the waveform W1A and the waveform W1B may be stored in advance in the storage unit 60 as the localization data 64, or may be generated by calculation of the control unit 90.
 この波形W1Aとは、波形W1Aの振幅の包絡線Env1Aが示すように、時刻tの経過とともに振幅が漸増する駆動信号の一例である。また、波形W1Bとは、波形W1Bの振幅の包絡線Env1Bが示すように、時刻tの経過とともに振幅が漸減する駆動信号の一例である。制御部90は、波形W1Bの駆動信号を振動子80(1)に供給することにより、振動子80(1)の振動の振幅を漸減させる。また、制御部90は、波形W1Aの駆動信号を振動子80(4)に供給することにより、振動子80(4)の振動の振幅を漸増させる。これにより、制御部90は、振動定位を位置Pv1から位置Pv2に軌跡LC1に沿って移動させる。 This waveform W1A is an example of a drive signal whose amplitude gradually increases as time t passes, as indicated by the envelope Env1A of the amplitude of the waveform W1A. The waveform W1B is an example of a drive signal whose amplitude gradually decreases as time t passes, as indicated by the envelope Env1B of the amplitude of the waveform W1B. The controller 90 gradually decreases the amplitude of vibration of the vibrator 80 (1) by supplying the drive signal having the waveform W1B to the vibrator 80 (1). Further, the controller 90 gradually increases the amplitude of the vibration of the vibrator 80 (4) by supplying the drive signal having the waveform W1A to the vibrator 80 (4). Thereby, the control unit 90 moves the vibration localization from the position Pv1 to the position Pv2 along the locus LC1.
 ここで、制御部90は、振動子80(1)を第1の周波数f1で振動させ、振動子80(4)を第1の周波数f1とは異なる第2の周波数f2で振動させる。具体的には、波形W1Aの周波数は、波形W1Bの周波数よりも低い。さらに具体的には、波形W1Aの周波数は50[Hz]であり、波形W1Bの周波数は200[Hz]である。以下の説明において、波形W1Bの周波数を、比較の基準周波数としての、第1の周波数f1とも記載する。また、波形W1Aの周波数を、第2の周波数f2とも記載する。 Here, the control unit 90 vibrates the vibrator 80 (1) at the first frequency f1, and vibrates the vibrator 80 (4) at the second frequency f2 different from the first frequency f1. Specifically, the frequency of the waveform W1A is lower than the frequency of the waveform W1B. More specifically, the frequency of the waveform W1A is 50 [Hz], and the frequency of the waveform W1B is 200 [Hz]. In the following description, the frequency of the waveform W1B is also referred to as a first frequency f1 as a reference frequency for comparison. The frequency of the waveform W1A is also referred to as the second frequency f2.
 また、この一例においては、第1の周波数f1は200[Hz]であり、第2の周波数f2は、第1の周波数f1よりも低い50[Hz]である。すなわち、制御部90は、振動子80(1)を第1の周波数f1で振動させ、振動子80(4)を第1の周波数f1よりも低い第2の周波数f2で振動させる。上述したように、振動子80(1)とは、振動定位の移動の軌跡の移動元側を示す振動子として複数の振動子から選択される振動子の一例である。また、振動子80(4)とは、振動定位の移動の軌跡の移動先側を示す振動子として複数の振動子から選択される振動子の一例である。すなわち、制御部90は、振動定位の移動の軌跡の移動元側を示す振動子として複数の振動子から選択される振動子80(1)を第1の周波数f1によって振動させる。また、制御部90は、振動定位の移動の軌跡の移動先側を示す振動子として複数の振動子から選択される振動子80(4)を第1の周波数f1よりも低い第2の周波数f2によって振動させる。 Further, in this example, the first frequency f1 is 200 [Hz], and the second frequency f2 is 50 [Hz] lower than the first frequency f1. That is, the control unit 90 vibrates the vibrator 80 (1) at the first frequency f1, and vibrates the vibrator 80 (4) at the second frequency f2 that is lower than the first frequency f1. As described above, the vibrator 80 (1) is an example of a vibrator selected from a plurality of vibrators as a vibrator indicating the movement source side of the locus of movement of vibration localization. The vibrator 80 (4) is an example of a vibrator selected from a plurality of vibrators as a vibrator indicating the movement destination side of the locus of movement of vibration localization. That is, the control unit 90 vibrates the vibrator 80 (1) selected from the plurality of vibrators as the vibrator indicating the movement source side of the vibration localization movement locus at the first frequency f1. In addition, the control unit 90 sets the vibrator 80 (4) selected from the plurality of vibrators as the vibrator indicating the movement destination side of the vibration localization movement locus to the second frequency f2 lower than the first frequency f1. Vibrate by.
 換言すれば、制御部90は、振動定位の軌跡LC1の移動元(例えば、位置Pv1の付近)においては、高い周波数の成分が多くなるようにして、各振動子を振動させる。また、制御部90は、振動定位の軌跡LC1の移動先(例えば、位置Pv2の付近)においては、低い周波数の成分が多くなるようにして、各振動子を振動させる。なお、以下の説明において、振動子が振動する周波数の成分のうち、相対的に高い周波数の成分を「高周波成分」とも記載し、相対的に低い周波数の成分を「低周波成分」とも記載する。 In other words, the control unit 90 vibrates each vibrator so that a high frequency component increases in the movement source of the vibration localization locus LC1 (for example, in the vicinity of the position Pv1). In addition, the control unit 90 vibrates each vibrator so that a low frequency component is increased at the destination of the vibration localization locus LC1 (for example, near the position Pv2). In the following description, among the frequency components at which the vibrator vibrates, a relatively high frequency component is also referred to as a “high frequency component”, and a relatively low frequency component is also referred to as a “low frequency component”. .
 ここで、電子機器1を保持するユーザの掌Pに振動が伝達される際に、振動の周波数が低い場合には、振動の周波数が高い場合に比べて、ユーザが感じる振動定位の印象が強いことがある。このため、制御部90は、振動定位を軌跡LC1に沿って移動させる場合に、移動元における振動の周波数よりも移動先における振動の周波数を低くする。これにより、電子機器1は、振動定位の移動の軌跡LC1に沿って何らかの物体が移動したかのような強い印象をユーザに与えることができる。
 ここで電子機器1が与える強い印象には、振動定位の移動の軌跡LC1、すなわち振動定位の移動方向に向けて電子機器1自体が動いているような印象を含む。また、この電子機器1が与える強い印象には、振動定位の移動が止まった後に、振動定位の移動の余韻が生じているような印象を含む。このように振動定位の移動先の振動子が、移動元の振動子に比べて低周波数で振動することにより、振動定位の移動先の印象が強調される。
Here, when the vibration is transmitted to the palm P of the user holding the electronic device 1, when the vibration frequency is low, the impression of the vibration localization felt by the user is stronger than when the vibration frequency is high. Sometimes. For this reason, when moving the vibration localization along the trajectory LC1, the control unit 90 lowers the vibration frequency at the movement destination lower than the vibration frequency at the movement source. Thereby, the electronic device 1 can give a strong impression to the user as if some object has moved along the locus LC1 of movement of the vibration localization.
Here, the strong impression given by the electronic device 1 includes an impression that the electronic device 1 itself is moving toward the movement path LC1 of the vibration localization, that is, the movement direction of the vibration localization. In addition, the strong impression given by the electronic device 1 includes an impression that the reverberation of the movement of the vibration localization occurs after the movement of the vibration localization stops. As described above, the vibration-destination moving destination vibrator vibrates at a lower frequency than the movement-source vibrator, thereby enhancing the impression of the vibration localization moving destination.
 なお、この具体例においては、波形W1Aの周波数は50[Hz]であり、波形W1Bの周波数は200[Hz]であるとして説明したが、波形W1Aの周波数は、波形W1Bの周波数よりも低ければよく、この数値に限定されるものではない。 In this specific example, the frequency of the waveform W1A is 50 [Hz] and the frequency of the waveform W1B is 200 [Hz]. However, if the frequency of the waveform W1A is lower than the frequency of the waveform W1B. Well, it is not limited to this number.
 ここで、ユーザの皮膚に存在する様々な感覚受容器が、これらの感覚受容器全体として振動を受容する場合の周波数特性は、約0.3~1000[Hz]である。これらの感覚受容器のうち、上述したファントム・センセーションを生じさせる刺激を受容する感覚受容器としては、パチニ小体がある。このパチニ小体が振動を受容する場合の周波数特性は、約30~1000[Hz]である。したがって、ファントム・センセーションを生じさせるための各振動子の振動周波数は、約40~1000[Hz]であることが好ましい。 Here, the frequency characteristics when various sensory receptors present on the user's skin receive vibration as a whole of these sensory receptors are approximately 0.3 to 1000 [Hz]. Among these sensory receptors, as a sensory receptor that receives a stimulus that causes the above-described phantom sensation, there is a Patini body. The frequency characteristic when the Patinny body receives vibration is about 30 to 1000 [Hz]. Therefore, the vibration frequency of each vibrator for generating phantom sensation is preferably about 40 to 1000 [Hz].
 また、ユーザの皮膚が、振動子が発生させる振動を振動として知覚できる周波数は、約300[Hz]以下である。したがって、振動定位の移動を印象づけるための各振動子の振動周波数は、約30~300[Hz]であることが好ましい。 Further, the frequency at which the user's skin can perceive the vibration generated by the vibrator as a vibration is about 300 [Hz] or less. Therefore, it is preferable that the vibration frequency of each vibrator for impressing the movement of the vibration localization is about 30 to 300 [Hz].
 また、低い周波数である第2の周波数f2と、高い周波数である第1の周波数f1との間の周波数の比が、1:2~1:4程度である場合に、振動定位の移動を強く印象づけることができる。例えば、第2の周波数f2が50[Hz]である場合には、第1の周波数f1が100~200[Hz]程度であると、振動定位の移動を強く印象づけることができる。これらのことから、第1の周波数f1は、30~150[Hz]程度であり、第2の周波数f2は、60~300[Hz]程度であることが好ましい。 Further, when the frequency ratio between the second frequency f2 which is a low frequency and the first frequency f1 which is a high frequency is about 1: 2 to 1: 4, the movement of vibration localization is strongly increased. You can make an impression. For example, when the second frequency f2 is 50 [Hz], if the first frequency f1 is about 100 to 200 [Hz], the movement of vibration localization can be impressed strongly. Therefore, the first frequency f1 is preferably about 30 to 150 [Hz], and the second frequency f2 is preferably about 60 to 300 [Hz].
 また、制御部90は、時刻tの経過に伴って、図8(B)に示した波形W1Bの駆動信号を振動子80(1)に供給することにより、振動子80(1)の振動の振幅を漸減させる。また、制御部90は、これと同時に、図8(A)に示した波形W1Aの駆動信号を振動子80(4)に供給することにより、振動子80(4)の振動の振幅を漸増させる。つまり、制御部90は、振動定位の移動に伴って、振動子80(1)の振動による高周波成分を漸減させるとともに、振動子80(4)の振動による低周波成分を漸増させて、複数の振動子をそれぞれ振動させる。これにより、振動子80(1)の振動の振幅の比率と、振動子80(4)の振動の振幅の比率とが、時刻tの経過とともに滑らかに入れ替わる。そのため、振動定位が滑らかに移動しているようにユーザに感じさせることができる。 Further, the control unit 90 supplies the drive signal having the waveform W1B illustrated in FIG. 8B to the vibrator 80 (1) with the passage of time t, so that the vibration of the vibrator 80 (1) can be reduced. Decrease the amplitude. At the same time, the controller 90 supplies the drive signal having the waveform W1A shown in FIG. 8A to the vibrator 80 (4), thereby gradually increasing the vibration amplitude of the vibrator 80 (4). . That is, the control unit 90 gradually decreases the high frequency component due to the vibration of the vibrator 80 (1) and gradually increases the low frequency component due to the vibration of the vibrator 80 (4) as the vibration localization moves. Each vibrator is vibrated. As a result, the vibration amplitude ratio of the vibrator 80 (1) and the vibration amplitude ratio of the vibrator 80 (4) are smoothly switched as time t passes. Therefore, the user can feel as if the vibration localization is moving smoothly.
 なお、振動子を駆動する駆動信号の包絡線(この一例においては、図8(A)に示した包絡線Env1A、および図8(B)に示した包絡線Env1B)は、さまざまな関数によって表すことができる。例えば、振幅が漸増する駆動信号の包絡線(この一例においては、包絡線Env1A)は、一次関数によって表される曲線(すなわち、直線)であってもよく、二次関数や指数関数等によって表される曲線であってもよい。また、ユーザに違和感が生じない程度であれば、包絡線はステップ状に変化してもよい。また、振幅が漸減する駆動信号の包絡線(この一例においては、包絡線Env1B)についても同様に、包絡線は一次関数、二次関数、指数関数等によって表される曲線であってもよく、ユーザに違和感が生じない程度であれば、包絡線はステップ状に変化してもよい。制御部90は、この包絡線を様々に変形させることにより、ユーザが感じる振動定位の移動の印象を変化させることができる。さらに、制御部90は、タッチパネル10に表示する画像と、駆動信号を表す関数とを関連付けて制御することにより、画像の内容に応じてユーザが感じる振動定位の移動の印象をさまざまに変化させることができる。 Note that the envelopes of the drive signal for driving the vibrator (in this example, the envelope Env1A shown in FIG. 8A and the envelope Env1B shown in FIG. 8B) are expressed by various functions. be able to. For example, the envelope of the drive signal whose amplitude gradually increases (in this example, the envelope Env1A) may be a curve (that is, a straight line) represented by a linear function, and may be represented by a quadratic function, an exponential function, or the like. It may be a curved line. Further, the envelope may change stepwise as long as the user does not feel uncomfortable. Similarly, for the envelope of the drive signal whose amplitude gradually decreases (in this example, the envelope Env1B), the envelope may be a curve represented by a linear function, a quadratic function, an exponential function, etc. As long as the user does not feel discomfort, the envelope may change stepwise. The controller 90 can change the impression of the movement of the vibration localization felt by the user by variously deforming the envelope. Further, the control unit 90 controls the image displayed on the touch panel 10 in association with the function representing the drive signal, thereby changing the vibration localization movement impression felt by the user according to the content of the image. Can do.
 なお、ここまで、制御部90が振動定位の軌跡に基づいて予め選択されている振動子に対して、その振幅や振動周波数の制御を行う例について説明したが、これに限られない。
 具体的には、制御部90は、制御対象の振動子を選択する選択部を、その機能部として備えていてもよい。この選択部は、振動定位の移動の軌跡に基づいて、複数の振動子から一方の振動子と、他方の振動子とを選択する。具体的な一例として、選択部は、図7に示す軌跡LC1に沿って振動定位を移動させる場合には、振動定位の移動の軌跡の移動元側を示す振動子として振動子80(1)を選択する。また、この場合に選択部は、振動定位の移動の軌跡の移動先側を示す振動子として振動子80(4)を選択する。
 また、具体的な他の一例として、図10に示す軌跡LC2に沿って振動定位を移動させる場合には、振動定位の移動の軌跡の移動元側を示す振動子として、すべての振動子、すなわち振動子80(1)~(4)を選択する。また、この場合に選択部は、振動定位の移動の軌跡の移動先側を示す振動子として、すべての振動子、すなわち振動子80(1)~(4)を選択する。
 このように、電子機器1は、選択部を備えることによって、予め制御対象の振動子が定められていない場合であっても、振動定位を制御することができる。
Heretofore, an example has been described in which the control unit 90 controls the amplitude and vibration frequency of a vibrator that is selected in advance based on the vibration localization locus, but the present invention is not limited to this.
Specifically, the control unit 90 may include a selection unit that selects a transducer to be controlled as its function unit. The selection unit selects one vibrator and the other vibrator from a plurality of vibrators based on the movement locus of the vibration localization. As a specific example, when the selection unit moves the vibration localization along the locus LC1 illustrated in FIG. 7, the selection unit uses the vibrator 80 (1) as the vibrator indicating the movement source side of the vibration localization movement locus. select. In this case, the selection unit selects the vibrator 80 (4) as the vibrator indicating the movement destination side of the locus of movement of the vibration localization.
Further, as another specific example, when the vibration localization is moved along the locus LC2 shown in FIG. 10, all the vibrators, that is, the vibrators indicating the movement source side of the movement locus of the vibration localization, The vibrators 80 (1) to (4) are selected. In this case, the selection unit selects all the vibrators, that is, the vibrators 80 (1) to (4) as the vibrators indicating the movement destination side of the locus of movement of the vibration localization.
As described above, the electronic device 1 includes the selection unit, and thus can control the vibration localization even when the vibrator to be controlled is not determined in advance.
[電子機器1の動作]
 図9は、本実施形態の制御部90が実行する処理の流れの一例を示すフローチャートである。図9のフローチャートの処理は、例えば、定位データ64が対応付けられた動画像の再生が行われている間、繰り返し実行される。
[Operation of Electronic Device 1]
FIG. 9 is a flowchart illustrating an example of a flow of processing executed by the control unit 90 of the present embodiment. The process of the flowchart in FIG. 9 is repeatedly executed while a moving image associated with the localization data 64 is being reproduced, for example.
 まず、制御部90は、定位データ64を記憶部60から読み出す(ステップS10)。 First, the control unit 90 reads the localization data 64 from the storage unit 60 (step S10).
 次に、制御部90は、読み出した定位データ64を参照して、定位の振動を発生させる期間内であるか否かを判定する(ステップS20)。制御部90は、定位の振動を発生させる期間内でないと判定した場合(ステップS20:NO)、図9のフローチャートの1ルーチンを終了する。また、制御部90は、定位の振動を発生させる期間内であると判定した場合(ステップS20:YES)、処理をステップS30に進める。 Next, the control unit 90 refers to the read localization data 64 and determines whether or not it is within a period in which localization vibration is generated (step S20). If the control unit 90 determines that it is not within the period for generating the localized vibration (step S20: NO), it ends one routine of the flowchart of FIG. In addition, when the control unit 90 determines that it is within the period in which the localization vibration is generated (step S20: YES), the process proceeds to step S30.
 次に、制御部90は、ステップS10において読み出した定位データ64に基づいて、制御対象の振動子を選択する(選択ステップ)。また、制御部90は、この定位データ64に基づいて、選択した各振動子の振動周波数、振動定位の軌跡、振幅の包絡線(エンベロープ)、すなわち駆動信号のパラメータを算出する(パラメータ算出ステップ)。具体的には、制御部90は、定位データ64に基づいて、高周波側の振動周波数(第1の振動周波数)と、低周波側の振動周波数(第2の振動周波数)とを算出する(ステップS30)。一例として、制御部90は、第1の周波数f1を100~200[Hz]の範囲にし、第2の周波数f2は、60~300[Hz]の範囲にして、各振動子の振動周波数を算出する。また、一例として、制御部90は、第2の周波数f2と、第1の周波数f1との間の周波数の比が1:2~1:4となるようにして、各振動子の振動周波数を算出する。 Next, the control unit 90 selects a transducer to be controlled based on the localization data 64 read in step S10 (selection step). Further, the control unit 90 calculates the vibration frequency, the locus of vibration localization, the envelope of the amplitude, that is, the parameter of the drive signal, based on the localization data 64 (parameter calculation step). . Specifically, the control unit 90 calculates a high frequency vibration frequency (first vibration frequency) and a low frequency vibration frequency (second vibration frequency) based on the localization data 64 (step) S30). As an example, the control unit 90 calculates the vibration frequency of each vibrator by setting the first frequency f1 in the range of 100 to 200 [Hz] and the second frequency f2 in the range of 60 to 300 [Hz]. To do. Further, as an example, the control unit 90 sets the vibration frequency of each vibrator so that the frequency ratio between the second frequency f2 and the first frequency f1 is 1: 2 to 1: 4. calculate.
 次に、制御部90は、定位データ64に基づいて、振動定位の移動の軌跡の開始位置(開始座標)と、終了位置(終了座標)とを算出する(ステップS40)。 Next, the control unit 90 calculates a start position (start coordinate) and an end position (end coordinate) of the trajectory of vibration localization based on the localization data 64 (step S40).
 また、制御部90は、ステップS40において算出した開始位置(開始座標)と、終了位置(終了座標)と、振動定位の移動速度を示す情報とに基づいて、各振動子の振幅の包絡線(エンベロープ)を算出する(ステップS50)。この振動定位の移動速度を示す情報とは、開始位置(開始座標)から、終了位置(終了座標)までに振動定位が移動する際の速度または時間を示す情報である。 The control unit 90 also determines the amplitude envelope of each transducer based on the start position (start coordinates), end position (end coordinates) calculated in step S40, and information indicating the moving speed of the vibration localization. (Envelope) is calculated (step S50). The information indicating the movement speed of the vibration localization is information indicating the speed or time when the vibration localization moves from the start position (start coordinates) to the end position (end coordinates).
 なお、振動定位の移動速度を示す情報は、定位データ64に含まれていてもよく、制御部90が画像データ62などに基づいて生成してもよい。 Note that the information indicating the movement speed of the vibration localization may be included in the localization data 64, or the control unit 90 may generate the information based on the image data 62 or the like.
 次に、制御部90は、ステップS30~S50において算出した駆動信号のパラメータに基づいて、各振動子に対する駆動信号を生成し(ステップS60)、生成した駆動信号を各振動子に対して出力する(ステップS70)。このステップS60およびステップS70は、振動制御ステップの一例である。 Next, the control unit 90 generates a drive signal for each transducer based on the parameters of the drive signal calculated in steps S30 to S50 (step S60), and outputs the generated drive signal to each transducer. (Step S70). Steps S60 and S70 are an example of a vibration control step.
 また、制御部90は、振動定位が終了位置(終了座標)に到達したか否かを判定する(ステップS80)。制御部90は、振動定位が終了位置(終了座標)に到達していないと判定した場合(ステップS80:NO)には、処理をステップS70に戻して、駆動信号の出力を継続する。また、制御部90は、振動定位が終了位置(終了座標)に到達したと判定した場合(ステップS80:YES)には、図9のフローチャートの1ルーチンを終了する。 Further, the control unit 90 determines whether or not the vibration localization has reached the end position (end coordinate) (step S80). When it is determined that the vibration localization has not reached the end position (end coordinate) (step S80: NO), the control unit 90 returns the process to step S70 and continues outputting the drive signal. Further, when it is determined that the vibration localization has reached the end position (end coordinate) (step S80: YES), the control unit 90 ends one routine of the flowchart of FIG.
 以上説明した本実施形態の電子機器1、およびその制御プログラム(以下、電子機器1等)によれば、振動が発生しているとユーザに感じさせたい所定の位置に対し、振動子80(1)~80(4)の位置を振動の強度で重み付けした重心の位置が所定の位置に一致するように、振動子80(1)~80(4)を振動させる。そのため、ユーザに、所定の位置で振動が発生していると感じさせることができ、ユーザに高度な臨場感を提供することができる。 According to the electronic device 1 and the control program (hereinafter, electronic device 1 or the like) of the present embodiment described above, the vibrator 80 (1) is located at a predetermined position that the user wants to feel that vibration is occurring. ) To 80 (4) are vibrated so that the position of the center of gravity obtained by weighting the positions of 80 to (4) with the intensity of vibration matches a predetermined position. Therefore, it is possible to make the user feel that vibration is occurring at a predetermined position, and to provide the user with a high level of realism.
 また、本実施形態の電子機器1等によれば、振動子80(1)を第1の周波数f1で振動させ、振動子80(4)を第1の周波数f1とは異なる第2の周波数f2で振動させる。これにより、電子機器1等によれば、振動定位の移動の軌跡LC1に沿って何らかの物体が移動したかのような強い印象をユーザに与えることができる。 Further, according to the electronic device 1 or the like of the present embodiment, the vibrator 80 (1) is vibrated at the first frequency f1, and the vibrator 80 (4) is second frequency f2 different from the first frequency f1. Vibrate with. Thereby, according to the electronic device 1 or the like, it is possible to give a strong impression to the user as if any object has moved along the locus LC1 of vibration localization movement.
 なお、上述した一例において、振動定位を位置Pv1から位置Pv2に移動させる際に、2つの振動子の振幅を変化させることにより、振動定位を制御する場合について説明したが、これに限られない。制御部90は、3つまたは4つの振動子の振幅を同時に変化させることにより、振動定位を制御してもよい。また、振動定位の軌跡の変形例を図10および図11に示す。 In the above-described example, the case where the vibration localization is controlled by changing the amplitudes of the two vibrators when moving the vibration localization from the position Pv1 to the position Pv2 has been described. However, the present invention is not limited to this. The controller 90 may control the vibration localization by simultaneously changing the amplitudes of the three or four vibrators. Moreover, the modification of the locus | trajectory of a vibration localization is shown in FIG. 10 and FIG.
 図10は、本実施形態の制御部90が制御する振動定位の軌跡の第1の変形例を示す模式図である。制御部90は、図10に示すように、位置Pv3から位置Pv4まで、移動の軌跡LC2に沿って振動定位を移動させるようにして、振動定位を制御してもよい。この軌跡LC2とは、X方向において、振動子80(1)と振動子80(2)との間にある位置Pv3を移動の開始位置にする振動定位の軌跡である。また、この軌跡LC2とは、X方向において、振動子80(3)と振動子80(4)との間にある位置Pv4を移動の終了位置にする振動定位の軌跡である。この場合、制御部90は、4つすべての振動子の振幅を制御して、位置Pv3または位置Pv4に振動を定位させる。このように、制御部90は、複数の振動子の振幅を制御することにより、任意の位置に振動を定位させてもよい。電子機器1は、この軌跡LC2に沿って振動定位を移動させることにより、電子機器1が-Y方向に移動するような印象をユーザに与えることができる。このとき、ユーザが、-Y方向を重力方向(鉛直下方向)にして保持している場合には、電子機器1は、この電子機器1自体が重力方向に引っ張られているような印象をユーザに与えることができる。 FIG. 10 is a schematic diagram showing a first modified example of the locus of vibration localization controlled by the control unit 90 of the present embodiment. As shown in FIG. 10, the control unit 90 may control the vibration localization by moving the vibration localization along the movement locus LC2 from the position Pv3 to the position Pv4. The trajectory LC2 is a vibration localization trajectory in which the position Pv3 located between the vibrator 80 (1) and the vibrator 80 (2) is the start position of movement in the X direction. Further, the locus LC2 is a locus of vibration localization in which the position Pv4 between the transducer 80 (3) and the transducer 80 (4) is the end position of the movement in the X direction. In this case, the control unit 90 controls the amplitudes of all four vibrators to localize the vibration at the position Pv3 or the position Pv4. As described above, the control unit 90 may localize the vibration at an arbitrary position by controlling the amplitudes of the plurality of vibrators. The electronic device 1 can give the user an impression that the electronic device 1 moves in the −Y direction by moving the vibration localization along the locus LC2. At this time, when the user holds the −Y direction in the direction of gravity (vertically downward), the electronic device 1 gives an impression that the electronic device 1 itself is pulled in the direction of gravity. Can be given to.
 図11は、本実施形態の制御部90が制御する振動定位の軌跡の第2の変形例を示す模式図である。制御部90は、図11に示すように、ある位置から位置Pv5まで軌跡LC3-1に沿って振動定位を移動させ、さらに、位置Pv5から位置Pv6まで軌跡LC3-2に沿って振動定位を移動させるようにして、振動定位を制御してもよい。すなわち、制御部90は、振動定位の位置(座標)を指定することによるだけでなく、振動定位の軌跡を指定することによっても、振動定位を制御することができる。また、制御部90は、振動定位の軌跡を直線にするだけでなく、任意の曲線にして、振動定位を制御することができる。 FIG. 11 is a schematic diagram showing a second modified example of the locus of vibration localization controlled by the control unit 90 of the present embodiment. As shown in FIG. 11, the control unit 90 moves the vibration localization along the locus LC3-1 from a certain position to the position Pv5, and further moves the vibration localization along the locus LC3-2 from the position Pv5 to the position Pv6. In this manner, the vibration localization may be controlled. That is, the control unit 90 can control the vibration localization not only by designating the position (coordinates) of the vibration localization but also by designating the locus of the vibration localization. Further, the control unit 90 can control the vibration localization not only by making the locus of vibration localization a straight line but also by making an arbitrary curve.
[第2の実施形態]
 以下、図面を参照して、本発明の第2の実施形態を説明する。なお、上述した第1の実施形態と同様である構成及び動作については、同一の符号を付して、説明を簡略化あるいは省略する。本実施形態の電子機器1は、振動定位の座標をXY平面内だけでなくZ軸方向にも制御可能な点において、第1の実施形態と異なる。以下、本実施形態の制御部90が振動定位を制御する構成について説明する。
[Second Embodiment]
Hereinafter, a second embodiment of the present invention will be described with reference to the drawings. In addition, about the structure and operation | movement similar to 1st Embodiment mentioned above, the same code | symbol is attached | subjected and description is simplified or abbreviate | omitted. The electronic device 1 according to the present embodiment is different from the first embodiment in that the coordinates of the vibration localization can be controlled not only in the XY plane but also in the Z-axis direction. Hereinafter, a configuration in which the control unit 90 of the present embodiment controls the vibration localization will be described.
 図12は、本発明の第2の実施形態の制御部90が制御する振動定位の軌跡を示す模式図である。制御部90は、図12に示すように、位置Pv7から位置Pv8まで軌跡LC4に沿って振動定位を移動させるようにして、振動定位を制御する。ここで、位置Pv7と、位置Pv8とは、Z方向の座標が相違する位置である。つまり、制御部90は、XYZ空間内において振動定位を制御する。この一例においては、位置Pv7とは、電子機器1のタッチパネル10の奥側(-Z方向)の位置である。また、位置Pv8とは、電子機器1のタッチパネル10の手前側(+Z方向)の位置である。本実施形態の制御部90は、振動定位の移動の軌跡が電子機器1の奥および手前方向である場合においても、振動定位を制御することができる。 FIG. 12 is a schematic diagram showing a locus of vibration localization controlled by the control unit 90 according to the second embodiment of the present invention. As shown in FIG. 12, the control unit 90 controls the vibration localization by moving the vibration localization along the locus LC4 from the position Pv7 to the position Pv8. Here, the position Pv7 and the position Pv8 are positions where the coordinates in the Z direction are different. That is, the control unit 90 controls the vibration localization in the XYZ space. In this example, the position Pv7 is a position on the back side (−Z direction) of the touch panel 10 of the electronic device 1. The position Pv8 is a position on the near side (+ Z direction) of the touch panel 10 of the electronic device 1. The control unit 90 according to the present embodiment can control the vibration localization even when the locus of movement of the vibration localization is the back and front directions of the electronic device 1.
 ここで、この具体例における、振動定位の移動の軌跡の奥側を示す振動子、および振動定位の移動の軌跡の手前側を示す振動子について説明する。この一例において、位置Pv7は、位置Pv8に対して-Z方向(奥側)に位置する。すなわち、位置Pv7とは、振動定位の移動の軌跡LC4の奥側の位置である。ここで、位置Pv7は、位置Pv8に比べて振動子80(1)および振動子80(2)に近い位置にある。このため、位置Pv7に振動を定位させる場合に、振動子80(1)および振動子80(2)の振幅の寄与率が、振動子80(3)および振動子80(4)の振幅の寄与率よりも大きい。この場合、振動子80(1)および振動子80(2)が、振動定位の移動の軌跡の奥側を示す振動子である。 Here, the vibrator showing the back side of the locus of movement of the vibration localization and the vibrator showing the near side of the locus of movement of the vibration localization in this specific example will be described. In this example, the position Pv7 is located in the −Z direction (back side) with respect to the position Pv8. That is, the position Pv7 is a position on the far side of the locus LC4 of vibration localization movement. Here, the position Pv7 is closer to the vibrator 80 (1) and the vibrator 80 (2) than the position Pv8. For this reason, when the vibration is localized at the position Pv7, the contribution ratio of the amplitude of the vibrator 80 (1) and the vibrator 80 (2) is the contribution of the amplitude of the vibrator 80 (3) and the vibrator 80 (4). Greater than rate. In this case, the vibrator 80 (1) and the vibrator 80 (2) are vibrators that indicate the back side of the locus of movement of vibration localization.
 また、この一例において、位置Pv8は、位置Pv7に対して+Z方向(手前側)に位置する。すなわち、位置Pv8とは、振動定位の移動の軌跡LC4の手前側の位置である。ここで、位置Pv8は、位置Pv7に比べて振動子80(3)および振動子80(4)に近い位置にある。このため、位置Pv8に振動を定位させる場合に、振動子80(3)および振動子80(4)の振幅の寄与率が、振動子80(1)および振動子80(2)の振幅の寄与率よりも大きい。この場合、振動子80(3)および振動子80(4)が、振動定位の移動の軌跡の手前側を示す振動子である。次に、制御部90がZ方向に振動定位を制御する仕組みについて、図13を参照して説明する。 In this example, the position Pv8 is located in the + Z direction (front side) with respect to the position Pv7. That is, the position Pv8 is a position on the near side of the locus LC4 of vibration localization movement. Here, the position Pv8 is closer to the vibrator 80 (3) and the vibrator 80 (4) than the position Pv7. Therefore, when the vibration is localized at the position Pv8, the contribution ratio of the amplitude of the vibrator 80 (3) and the vibrator 80 (4) is the contribution of the amplitude of the vibrator 80 (1) and the vibrator 80 (2). Greater than rate. In this case, the vibrator 80 (3) and the vibrator 80 (4) are vibrators that indicate the near side of the locus of movement of vibration localization. Next, a mechanism in which the control unit 90 controls the vibration localization in the Z direction will be described with reference to FIG.
 図13は、本実施形態の制御部90が出力する駆動信号の波形の一例を示すグラフである。この図13の各グラフにおいて、横軸は時刻tを示し、縦軸は振動子の振動の振幅の大きさAを示す。制御部90は、上述の一例において、振動定位を位置Pv7から位置Pv8に移動させる場合に、図13(A)に示す波形W2Aの駆動信号を振動子80(3)および振動子80(4)に出力する。また、この場合に、制御部90は、図13(B)に示す波形W2Bの駆動信号を振動子80(1)および振動子80(2)に出力する。ここで、時刻t1から時刻t5までの時間は、一例として2000[ms]である。なお、この波形W2Aおよび波形W2Bは、定位データ64として記憶部60に予め記憶されていてもよく、制御部90の演算によって生成されてもよい。 FIG. 13 is a graph showing an example of the waveform of the drive signal output by the control unit 90 of the present embodiment. In each graph of FIG. 13, the horizontal axis indicates time t, and the vertical axis indicates the amplitude A of the vibration of the vibrator. In the above example, when the vibration localization is moved from the position Pv7 to the position Pv8, the control unit 90 transmits the drive signal of the waveform W2A shown in FIG. 13A to the vibrator 80 (3) and the vibrator 80 (4). Output to. In this case, the control unit 90 outputs a drive signal having a waveform W2B shown in FIG. 13B to the vibrator 80 (1) and the vibrator 80 (2). Here, the time from time t1 to time t5 is, for example, 2000 [ms]. The waveform W2A and the waveform W2B may be stored in advance in the storage unit 60 as the localization data 64, or may be generated by calculation of the control unit 90.
 この波形W2Aとは、波形W2Aの振幅の包絡線Env2Aが示すように、時刻tの経過とともに振幅が漸増する駆動信号の一例である。また、波形W2Bとは、波形W2Bの振幅の包絡線Env2Bが示すように、時刻tの経過とともに振幅が漸減する駆動信号の一例である。制御部90は、波形W2Bの駆動信号を振動子80(1)および振動子80(2)に供給することにより、これらの振動子の振動の振幅を漸減させる。また、制御部90は、波形W2Aの駆動信号を振動子80(3)および振動子80(4)に供給することにより、これらの振動子の振動の振幅を漸減させる。この制御部90は、振動子80(1)および振動子80(2)を第1の周波数f1で振動させ、振動子80(3)および振動子80(4)を第1の周波数f1とは異なる第3の周波数f3で振動させる。 This waveform W2A is an example of a drive signal whose amplitude gradually increases as time t passes, as indicated by the envelope Env2A of the amplitude of the waveform W2A. The waveform W2B is an example of a drive signal whose amplitude gradually decreases as time t passes, as indicated by the envelope Env2B of the amplitude of the waveform W2B. The controller 90 supplies the drive signal having the waveform W2B to the vibrator 80 (1) and the vibrator 80 (2), thereby gradually reducing the amplitude of vibration of these vibrators. Further, the control unit 90 supplies the drive signal having the waveform W2A to the vibrator 80 (3) and the vibrator 80 (4), thereby gradually reducing the amplitude of vibration of these vibrators. The controller 90 vibrates the vibrator 80 (1) and the vibrator 80 (2) at the first frequency f1, and the vibrator 80 (3) and the vibrator 80 (4) have the first frequency f1. Vibrates at a different third frequency f3.
 具体的には、波形W2Aの周波数は、波形W2Bの周波数よりも高い。具体的には、波形W2Aの周波数は100[Hz]であり、波形W2Bの周波数は50[Hz]である。
 なお、以下の説明において、波形W2Bの周波数を、比較の基準周波数としての第1の周波数f1とも記載する。また、波形W2Aの周波数を、第3の周波数f3とも記載する。
 また、この一例においては、上述したように第1の周波数f1は50[Hz]であり、第3の周波数f3は100[Hz]である。すなわち、制御部90は、振動子80(1)および振動子80(2)を第1の周波数f1で振動させ、振動子80(3)および振動子80(4)を第1の周波数f1よりも高い第3の周波数f3で振動させる。
Specifically, the frequency of the waveform W2A is higher than the frequency of the waveform W2B. Specifically, the frequency of the waveform W2A is 100 [Hz], and the frequency of the waveform W2B is 50 [Hz].
In the following description, the frequency of the waveform W2B is also referred to as a first frequency f1 as a reference frequency for comparison. Further, the frequency of the waveform W2A is also referred to as a third frequency f3.
In this example, as described above, the first frequency f1 is 50 [Hz], and the third frequency f3 is 100 [Hz]. That is, the control unit 90 vibrates the vibrator 80 (1) and the vibrator 80 (2) at the first frequency f1, and causes the vibrator 80 (3) and the vibrator 80 (4) to vibrate from the first frequency f1. Is vibrated at a higher third frequency f3.
 ここで、電子機器1を保持するユーザの掌Pに振動が伝達される際に、振動の周波数が低い場合には、振動定位の座標が奥(-Z)側にあるように感じられる。また、振動の周波数が高い場合には、ユーザが感じる振動定位の座標が手前(+Z)側にあるように感じられる。このため、制御部90は、振動定位を軌跡LC4に沿って移動させる場合に、軌跡LC4の奥側における振動の周波数よりも、手前側における振動の周波数を高くする。
 これにより、電子機器1は、振動定位の移動の軌跡LC4に沿って、すなわち、電子機器1の奥側から手前側に、何らかの物体が移動したかのような強い印象をユーザに与えることができる。
Here, when the vibration is transmitted to the palm P of the user holding the electronic device 1, if the vibration frequency is low, it is felt that the vibration localization coordinates are on the back (−Z) side. Further, when the vibration frequency is high, it is felt that the vibration localization coordinates felt by the user are on the front (+ Z) side. For this reason, when moving the vibration localization along the trajectory LC4, the control unit 90 increases the frequency of the vibration on the near side to the frequency of the vibration on the far side of the trajectory LC4.
Thereby, the electronic device 1 can give a strong impression to the user as if some object has moved along the trajectory LC4 of the vibration localization movement, that is, from the back side to the near side of the electronic device 1. .
 また、制御部90は、図13(A)に示す波形W2Aの駆動信号を振動子80(1)および振動子80(2)に出力し、図13(B)に示す波形W2Bの駆動信号を振動子80(3)および振動子80(4)に出力することもできる。この場合には、電子機器1は、軌跡LC4と逆向きに、この軌跡LC4に沿って、すなわち、電子機器1の手前側から奥側に、何らかの物体が移動したかのような強い印象をユーザに与えることができる。 Further, the control unit 90 outputs the drive signal having the waveform W2A shown in FIG. 13A to the vibrator 80 (1) and the vibrator 80 (2), and the drive signal having the waveform W2B shown in FIG. It is also possible to output to the vibrator 80 (3) and the vibrator 80 (4). In this case, the electronic device 1 gives a strong impression as if some object has moved along the locus LC4 in the opposite direction to the locus LC4, that is, from the near side to the far side of the electronic device 1. Can be given to.
 以上説明したように、制御部90は、振動子80(1)および振動子80(2)を第1の周波数f1で振動させ、振動子80(3)および振動子80(4)を第1の周波数f1よりも高い第3の周波数f3で振動させる。換言すれば、振動定位の移動の軌跡が電子機器1の奥側から手前方向である場合において、制御部90は、振動定位の移動の軌跡の奥側を示す振動子として複数の振動子から選択される振動子を第1の周波数f1によって振動させる。また、制御部90は、振動定位の移動の軌跡の手前側を示す振動子として複数の振動子から選択される振動子を第1の周波数f1よりも高い第3の周波数f3によって振動させる。これにより、制御部90は、振動定位を位置Pv7から位置Pv8に軌跡LC4に沿って移動させることができる。すなわち、制御部90は、振動定位をXYZ空間内において奥(-Z)側から手前(+Z)側に移動させることができる。
 また、この例とは逆に、制御部90は、振動定位の移動の軌跡の奥側を示す振動子として複数の振動子から選択される振動子を第1の周波数f1よりも高い第3の周波数f3によって振動させることもできる。また、制御部90は、振動定位の移動の軌跡の手前側を示す振動子として複数の振動子から選択される振動子を第1の周波数f1によって振動させることもできる。これにより、制御部90は、振動定位を位置Pv8から位置Pv7に、すなわち軌跡LC4と逆向きに軌跡LC4に沿って移動させることができる。すなわち、制御部90は、振動定位をXYZ空間内において手前(+Z)側から奥(-Z)側に移動させることができる。
As described above, the control unit 90 vibrates the vibrator 80 (1) and the vibrator 80 (2) at the first frequency f1, and causes the vibrator 80 (3) and the vibrator 80 (4) to be the first. Is oscillated at a third frequency f3 higher than the first frequency f1. In other words, when the locus of movement of the vibration localization is in the forward direction from the back side of the electronic device 1, the control unit 90 selects from a plurality of vibrators as the vibrator indicating the back side of the movement locus of the vibration localization. The vibrator to be vibrated is vibrated at the first frequency f1. Further, the control unit 90 vibrates a vibrator selected from a plurality of vibrators as a vibrator indicating the near side of the vibration localization movement locus at a third frequency f3 higher than the first frequency f1. Thereby, the control unit 90 can move the vibration localization from the position Pv7 to the position Pv8 along the locus LC4. That is, the control unit 90 can move the vibration localization from the back (−Z) side to the front (+ Z) side in the XYZ space.
Contrary to this example, the control unit 90 selects a third oscillator that is selected from a plurality of transducers as a transducer that indicates the back side of the locus of movement of vibration localization, and has a third frequency higher than the first frequency f1. It can also be vibrated by the frequency f3. The control unit 90 can also vibrate a vibrator selected from a plurality of vibrators with a first frequency f1 as a vibrator indicating the near side of the locus of movement of vibration localization. Accordingly, the control unit 90 can move the vibration localization from the position Pv8 to the position Pv7, that is, along the locus LC4 in the direction opposite to the locus LC4. That is, the control unit 90 can move the vibration localization from the front (+ Z) side to the back (−Z) side in the XYZ space.
 なお、この制御部90は、上述した第1の実施形態による制御と、第2の実施形態による制御を組み合わせることによって、XYZ空間内の任意の座標に振動を定位させることができる。また、制御部90は、上述した第1の実施形態による制御と、第2の実施形態による制御を組み合わせることによって、XYZ空間内の任意の軌跡に沿って振動定位を移動させることができる。 Note that the control unit 90 can localize vibrations at arbitrary coordinates in the XYZ space by combining the control according to the first embodiment and the control according to the second embodiment. In addition, the control unit 90 can move the vibration localization along an arbitrary locus in the XYZ space by combining the control according to the first embodiment and the control according to the second embodiment.
 なお、上述した各実施形態における電子機器1の一部をコンピュータで実現するようにしてもよい。その場合、この制御機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することによって実現してもよい。なお、ここでいう「コンピュータシステム」とは、電子機器1に内蔵されたコンピュータシステムであって、OSや周辺機器等のハードウェアを含むものとする。また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間、動的にプログラムを保持するもの、その場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリのように、一定時間プログラムを保持しているものも含んでもよい。また上記プログラムは、前述した機能の一部を実現するためのものであってもよく、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであってもよい。
 また、上述した実施形態における電子機器1の各機能ブロックの一部、または全部を、LSI(Large Scale Integration)等の集積回路として実現してもよい。電子機器1の各機能ブロックは個別にプロセッサ化してもよいし、一部、または全部を集積してプロセッサ化してもよい。また、集積回路化の手法はLSIに限らず専用回路、または汎用プロセッサで実現してもよい。
 また、半導体技術の進歩によりLSIに代替する集積回路化の技術が出現した場合、当該技術による集積回路を用いてもよい。
In addition, you may make it implement | achieve a part of electronic device 1 in each embodiment mentioned above with a computer. In that case, the program for realizing the control function may be recorded on a computer-readable recording medium, and the program recorded on the recording medium may be read by the computer system and executed. Here, the “computer system” is a computer system built in the electronic device 1 and includes an OS and hardware such as peripheral devices. The “computer-readable recording medium” refers to a storage device such as a flexible medium, a magneto-optical disk, a portable medium such as a ROM or a CD-ROM, and a hard disk incorporated in a computer system. Furthermore, the “computer-readable recording medium” is a medium that dynamically holds a program for a short time, such as a communication line when transmitting a program via a network such as the Internet or a communication line such as a telephone line, In this case, a volatile memory inside a computer system that serves as a server or a client may be included that holds a program for a certain period of time. The program may be a program for realizing a part of the functions described above, and may be a program capable of realizing the functions described above in combination with a program already recorded in a computer system.
Moreover, you may implement | achieve part or all of each functional block of the electronic device 1 in embodiment mentioned above as integrated circuits, such as LSI (Large Scale Integration). Each functional block of the electronic device 1 may be individually made into a processor, or a part or all of them may be integrated into a processor. Further, the method of circuit integration is not limited to LSI, and may be realized by a dedicated circuit or a general-purpose processor.
In addition, when an integrated circuit technology that replaces LSI appears due to the advancement of semiconductor technology, an integrated circuit based on the technology may be used.
 以上、図面を参照してこの発明の一実施形態について詳しく説明してきたが、具体的な構成は上述のものに限られることはなく、この発明の要旨を逸脱しない範囲内において様々な設計変更等をすることが可能である。 As described above, the embodiment of the present invention has been described in detail with reference to the drawings. However, the specific configuration is not limited to the above, and various design changes and the like can be made without departing from the scope of the present invention. It is possible to
 1…電子機器、10‥タッチパネル、20‥本体部、30‥背面カバー、32‥孔部、35‥マウント部、40‥撮像部、42‥レンズ、50‥通信部、52‥I/O部、60‥記憶部、70‥スピーカ、75‥加速度センサ、80‥振動発生部、90‥制御部 DESCRIPTION OF SYMBOLS 1 ... Electronic device, 10 ... Touch panel, 20 ... Main-body part, 30 ... Back cover, 32 ... Hole part, 35 ... Mount part, 40 ... Imaging part, 42 ... Lens, 50 ... Communication part, 52 ... I / O part, 60... Storage unit, 70... Speaker, 75... Acceleration sensor, 80.

Claims (8)

  1.  振動を発生する第1及び第2の振動子と、
     前記第1及び第2の振動子の振動を制御する振動制御部と、
     を備え、
     前記振動制御部は、所定の時間領域において、前記第1の振動子を振動の振幅が漸減するように第1の周波数で振動させるとともに、前記第2の振動子を振動の振幅が漸増するように第2の周波数で振動させる
     ことを特徴とする電子機器。
    First and second vibrators that generate vibrations;
    A vibration control unit that controls vibrations of the first and second vibrators;
    With
    The vibration control unit causes the first vibrator to vibrate at a first frequency so that the vibration amplitude gradually decreases and the second vibrator gradually increases the vibration amplitude in a predetermined time region. An electronic device characterized in that the electronic device is vibrated at a second frequency.
  2.  前記第1の周波数は、前記第2の周波数より高い周波数であることを特徴とする請求項1に記載の電子機器。 2. The electronic apparatus according to claim 1, wherein the first frequency is higher than the second frequency.
  3.  前記第1の周波数は、前記第2の周波数より低い周波数であることを特徴とする請求項1に記載の電子機器。 2. The electronic apparatus according to claim 1, wherein the first frequency is lower than the second frequency.
  4.  3つ以上の振動子を備えることを特徴とする請求項1に記載の電子機器。 The electronic apparatus according to claim 1, further comprising three or more vibrators.
  5.  3つ以上の振動子を備えることを特徴とする請求項2に記載の電子機器。 3. The electronic apparatus according to claim 2, further comprising three or more vibrators.
  6.  3つ以上の振動子を備えることを特徴とする請求項3に記載の電子機器。 4. The electronic apparatus according to claim 3, further comprising three or more vibrators.
  7.  自電子機器に接触する利用者によって振動が発生している位置として認識される振動定位の移動の軌跡に基づいて、複数の振動子から前記第1の振動子と、前記第2の振動子とを選択する選択部
     をさらに備えることを特徴とする請求項1から請求項6のいずれか一項に記載の電子機器。
    Based on a trajectory of movement of vibration localization recognized as a position where vibration is generated by a user in contact with the electronic device, the first vibrator, the second vibrator, The electronic device according to claim 1, further comprising a selection unit that selects the electronic device.
  8.  振動を発生する第1及び第2の振動子と、前記第1及び第2の振動子の振動を制御する振動制御部とを備える電子機器のコンピュータに、
     所定の時間領域において、前記第1の振動子を振動の振幅が漸減するように第1の周波数で振動させるとともに、前記第2の振動子を振動の振幅が漸増するように第2の周波数で振動させる制御ステップ
     を実行させるための制御プログラム。
    A computer of an electronic device including first and second vibrators that generate vibrations and a vibration control unit that controls vibrations of the first and second vibrators,
    In a predetermined time region, the first vibrator is vibrated at a first frequency so that the vibration amplitude gradually decreases, and the second vibrator is vibrated at a second frequency so that the vibration amplitude gradually increases. A control program for executing control steps to vibrate.
PCT/JP2015/053360 2014-02-07 2015-02-06 Electronic device and control program WO2015119237A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-021986 2014-02-07
JP2014021986 2014-02-07

Publications (1)

Publication Number Publication Date
WO2015119237A1 true WO2015119237A1 (en) 2015-08-13

Family

ID=53778037

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/053360 WO2015119237A1 (en) 2014-02-07 2015-02-06 Electronic device and control program

Country Status (1)

Country Link
WO (1) WO2015119237A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017045418A (en) * 2015-08-28 2017-03-02 富士通テン株式会社 Input device, display device, and program
JP2017049688A (en) * 2015-08-31 2017-03-09 富士通テン株式会社 Input device, display device, and program

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110157052A1 (en) * 2009-12-24 2011-06-30 Samsung Electronics Co., Ltd. Method and apparatus for generating vibrations in portable terminal
US20130179780A1 (en) * 2012-01-05 2013-07-11 Sony Mobile Communications Japan, Inc. Personal digital assistant
WO2013151155A1 (en) * 2012-04-06 2013-10-10 株式会社ニコン Data processing device and data processing program

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110157052A1 (en) * 2009-12-24 2011-06-30 Samsung Electronics Co., Ltd. Method and apparatus for generating vibrations in portable terminal
US20130179780A1 (en) * 2012-01-05 2013-07-11 Sony Mobile Communications Japan, Inc. Personal digital assistant
WO2013151155A1 (en) * 2012-04-06 2013-10-10 株式会社ニコン Data processing device and data processing program

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TATSUYA OOKA: "Development of small vibrotactile device for substitutive display of tangential force by position control of phantom sensation", DAI 13 KAI THE VIRTUAL REALITY SOCIETY OF JAPAN TAIKAI RONBUNSHU, 26 September 2008 (2008-09-26), pages 300 - 303 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017045418A (en) * 2015-08-28 2017-03-02 富士通テン株式会社 Input device, display device, and program
JP2017049688A (en) * 2015-08-31 2017-03-09 富士通テン株式会社 Input device, display device, and program

Similar Documents

Publication Publication Date Title
JP6480557B2 (en) Multi-channel haptic device with adjustable orientation
US10062247B2 (en) Vibration generation system, storage medium having stored therein vibration generation program, and vibration generation method
JP6243595B2 (en) Information processing system, information processing program, information processing control method, and information processing apparatus
KR20150079471A (en) Systems and methods for a haptically-enabled projected user interface
US10474238B2 (en) Systems and methods for virtual affective touch
EP3333674A1 (en) Systems and methods for compliance simulation with haptics
US11887281B2 (en) Information processing device, head-mounted display, and image displaying method
WO2015119237A1 (en) Electronic device and control program
JP2018023601A (en) Voice processing program, information processing program, voice processing method, voice processing device, and game program
JP6380149B2 (en) Gaze guidance system and gaze guidance device
JP6136759B2 (en) Electronic device and electronic device control program
JP6731376B2 (en) Aerial image projection device and aerial image projection method
JP6610658B2 (en) Electronic device and program
EP3367216A1 (en) Systems and methods for virtual affective touch
WO2018155128A1 (en) Display device, control device, and vehicle
JP6868788B2 (en) Output controller, output control method, and program
WO2023112144A1 (en) Vibration sensing position control apparatus, vibration sensing position control method, and vibration sensing position control program
JP6493599B2 (en) Electronics
JP2018137083A (en) Electronic apparatus, controller, vehicle, control program and operation method of electronic apparatus
WO2018155134A1 (en) Electronic apparatus, vehicle, control device, control program and method for operating electronic apparatus
JP2015032019A (en) Electronic device and control program for the same
JP2017134699A (en) Electronic instrument and program
JP2015001853A (en) Electronic apparatus, control method, and control program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15746917

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15746917

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP