WO2015118207A1 - New cry protein of bacillus thuringiensis with insecticide activity for controlling hemipterans - Google Patents

New cry protein of bacillus thuringiensis with insecticide activity for controlling hemipterans Download PDF

Info

Publication number
WO2015118207A1
WO2015118207A1 PCT/ES2015/070083 ES2015070083W WO2015118207A1 WO 2015118207 A1 WO2015118207 A1 WO 2015118207A1 ES 2015070083 W ES2015070083 W ES 2015070083W WO 2015118207 A1 WO2015118207 A1 WO 2015118207A1
Authority
WO
WIPO (PCT)
Prior art keywords
sequence
delta
endotoxin
seq
protein
Prior art date
Application number
PCT/ES2015/070083
Other languages
Spanish (es)
French (fr)
Inventor
Primitivo Caballero Murillo
Leopoldo PALMA DOVIS
Íñigo RUÍZ DE ESCUDERO FUENTEMILLA
Delia MUÑOZ LABIANO
Jesús MURILLO MARTÍNEZ
Colin Berry
Original Assignee
Universidad Pública de Navarra
Consejo Superior De Investigaciones Científicas
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad Pública de Navarra, Consejo Superior De Investigaciones Científicas filed Critical Universidad Pública de Navarra
Publication of WO2015118207A1 publication Critical patent/WO2015118207A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/32Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Bacillus (G)
    • C07K14/325Bacillus thuringiensis crystal protein (delta-endotoxin)
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N37/00Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids
    • A01N37/44Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids containing at least one carboxylic group or a thio analogue, or a derivative thereof, and a nitrogen atom attached to the same carbon skeleton by a single or double bond, this nitrogen atom not being a member of a derivative or of a thio analogue of a carboxylic group, e.g. amino-carboxylic acids
    • A01N37/46N-acyl derivatives
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N63/00Biocides, pest repellants or attractants, or plant growth regulators containing microorganisms, viruses, microbial fungi, animals or substances produced by, or obtained from, microorganisms, viruses, microbial fungi or animals, e.g. enzymes or fermentates
    • A01N63/50Isolated enzymes; Isolated proteins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8279Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance
    • C12N15/8286Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance for insect resistance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/146Genetically Modified [GMO] plants, e.g. transgenic plants

Definitions

  • the present invention relates to the field of biopesticides and transgenic plants capable of expressing them. More specifically, the invention relates to a new gene that encodes a Cry protein (or delta-endotoxin), to the protein itself encoded by said gene, to the systems for its expression (vectors and host cells), and to the use of said gene and / or said protein to fight pests of Myzus persicae (Sulzer), the aphid commonly known as a green aphid, both by using a composition containing the protein and by transgenic plants in which the gene is expressed.
  • Cry protein or delta-endotoxin
  • Bacillus thuringiensis is a Gram positive, ubiquitous and sporulant bacterium that frequently synthesizes various proteins (Cry, Cyt and Vip) with insecticidal activity against a wide range of insects that cause pests such as lepidoptera (Dulmage, 1970; Estruch et al. , 1996), beetles (Estruch and Yu, 1998; Krieg et al., 1983), diptera (Federici et al., 2003; Goldberg, 1977) and hemiptera (Porcar et al., 2009; Sattar and Maiti, 201 1) .
  • Bt produces insecticidal proteins during sporulation that appear as parasporal crystals, crystals that are predominantly composed of one or more Cry or Cyt proteins.
  • Cry proteins are so named because they are the proteins of the parasporal inclusions (crystals, which give rise to the abbreviation Cry) of Bt that have an experimentally verifiable toxic effect against a target organism or that have a significant sequence similarity with a protein Known Cry, while Cyt proteins are the proteins of the Bes parasporal inclusions that exhibit hemolytic (cytolytic, which results in the abbreviation Cyt) or that have a significant sequence similarity with a known Cyt protein.
  • Cry proteins belong to a class of bacterial toxins known as pore-forming toxins. Bry Cry proteins in particular do not exhibit insecticidal activity until they have been ingested and solubilized in the gut of the insect, where the ingested form (protoxin) is hydrolyzed by proteases to give rise to the active toxic molecule (toxin). Together with some Cyt proteins, they are included in the delta-endotoxin group. Cry proteins generally have five conserved sequence blocks, and three conserved structural domains: domain I or domain N, domain II or domain M and domain III or domain C, which receive that denomination by the regions where they appear in the protein: zone of the amino end (N), middle zone (M) and carboxyl end zone (C).
  • Domain III domain C
  • carbohydrate-binding proteins such as the cellulose binding domain of 1,4-glucanase C, galactose oxidase, sialidase, ⁇ -glucoronidase, the domain of binding to carbohydrates of xylanase U and ⁇ -galactosidase.
  • the protoxin form of many Cry proteins has an extension at the carboxyl end that makes its length greater than that of other protoxins in the family, an extension that is considered to be dispensable for toxicity but is believed to play a role in the formation of the crystalline inclusion bodies within the bacteria.
  • Insecticides based on delta-endotoxins have been intensively used, which has even led to the emergence of resistance in some species.
  • the family of aphids or aphids ⁇ Aphididae), better known as aphids, contains large numbers of parasites of angiosperm plants, which originate some of the main pests that affect different agricultural crops.
  • the green aphid, Myzus persicae (Sulzer, 1776), is one of the main polyphagous pests in many regions of the world (Harrington, 2007) including Spain (Diaz et al., 2006).
  • the application WO2010099365 discloses both natural sequences of genes identified in different strains of Bacillus thur ⁇ ngiensis (SEQ ID NOs: 1 to 47 of said application) and synthetic sequences prepared from the above (SEQ ID Nos: 97 to 196 of said application WO2010099365) , which give rise to proteins that lack the C-terminal "crystalline domain" present in most delta-endotoxins.
  • SEQ ID Nos: 97 to 196 of said application WO2010099365 Myzus persicae is cited as one of the possible pests to combat.
  • Example 19 of said application describes an assay in which efficacy against another aphid, Aphis glycines, of proteins is tested.
  • Synthetic derivatives of the Axmi171 protein (a distant homologue of the Cry12Aa2 protein, encoded by the sequence inserted in the construction described in sequence number 204 of application WO2010099365 and patent US8318900B2, sequence encoding the amino acid sequence identified with the number 205); the maximum mortality value obtained, 2 (that is, 25-50% of the containers showed 100% mortality) is only achieved with a concentrated extract of E.
  • Example 18 tests carried out also with derivatives of said Axmi171 protein are described, specifically with different concentrations of the form of the protein obtained after cleaving with the factor Xa a fusion protein that included the protein of union to the maltose and resuspend the precipitate formed in water, but where the activity against a hemiptera is determined that does not belong to the aphid family but to another family, the Miridae family, specifically Lygus hesperus, finding that a concentration of 50 ppm (50 ⁇ g / ml) is sufficient to give rise to 80% mortality in said hemiptera.
  • Application W09516778 proposes to feed aphids with an artificial diet containing Cry proteins prepared in a suitable formulation (solubilized in an aqueous medium or in the form of a suspension of solids) by means of a feeder device, prepared on a laboratory scale, where aphids are separated from the diet by a thin plastic membrane.
  • a feeder device prepared on a laboratory scale
  • transgenic plants in which the promoter to which the Cry protein gene is attached is chosen so that said Cry protein is expressed in the vascular tissue of the plant, preferably in the phloem, since that ensures that Aphids ingest protein when feeding on the plant.
  • This request does not show any example in which the effectiveness of the Cry protein expression strategy in the phloem of transgenic plants is demonstrated.
  • Example 2 As regards artificial feeding, only W09516778 describes trials with the potato aphid, Macrosiphum euphorbiae (Thomas), which demonstrate that high concentrations of the CryIIIA protein are necessary to observe an effect (Example 1).
  • Example 2 try to compare the effectiveness of CrylA (c), CryIIA, CryIIIA, CrylllB2, CrylllB3, CryIVD and a mixture of Cry type I (CrylA (a), CrylA (b) proteins , CryIC and CryIF), all of them in aqueous suspension; Although the difference in the concentrations added in each case makes comparisons difficult, the result shows that only the CrylA (c) protein showed no activity insecticide against Macrosiphum euphorbiae, while the CryIIA protein (at 200 ng / ⁇ ) resulted in a rapid onset of mortality, which was close to 100% after two days of feeding, the other proteins being less effective.
  • the remaining proteins tested showed varying percentages of insecticidal activity, taking 4 to 5 days to observe a mortality close to 100% in the case of the Cryl protein mixture (where the total concentration was close to 400 ⁇ 9 / ⁇ , equivalent to 400 mg / ml)), in the case of CryIIIA protein (at 400 ng / ⁇ , equivalent to 400 ⁇ g / ml) and in that of CryIVD protein (at 350 ng / ⁇ , equivalent to 350 ⁇ g / ml) and up to 7 days or more in the case of CrylllB2 proteins (at 150 ng / ⁇ , equivalent to 150 ⁇ g ml) and CrylllB3 (132 ⁇ g / ⁇ ⁇ , equivalent to 132 mg / ml).
  • the present invention provides a solution to said problem.
  • the present invention relates, in a first aspect, to an isolated nucleic acid molecule comprising a nucleotide sequence encoding a delta-endotoxin, characterized in that the nucleotide sequence encoding a delta-endotoxin is represented by SEQ ID NO : 1 or has at least 90% identity with it.
  • the nucleotide sequence encoding a delta-endotoxin and which is represented by SEQ ID NO: 1 will also be referred to hereinafter as "the gene of the present invention", “the cry gene of the present invention” or “the new cry gene ".
  • the nucleic acid molecule defined in this first aspect of the invention will be referred to as the nucleic acid molecule of the present invention.
  • the present invention also relates to a vector in which it is Insert the nucleic acid molecule of the present invention, a vector that will be considered hereafter a vector of the present invention.
  • the invention also relates to a host cell comprising a vector of the invention, that is, a host cell of the present invention.
  • the invention relates to a transgenic plant comprising a host cell of the present invention that is a plant cell, as well as a transgenic seed comprising a nucleic acid molecule of the present invention.
  • polypeptide of the present invention that is, a polypeptide comprising an amino acid sequence characterized in that said amino acid sequence:
  • a) is represented by SEQ ID NO: 2;
  • b) is the sequence of a delta-endotoxin that is encoded by the sequence represented by SEQ ID NO: 1 or by a sequence that has at least 90% identity with it, or
  • c) is the sequence of a delta-endotoxin that has at least 80% identity with the sequence represented by SEQ ID NO: 2.
  • the amino acid sequence represented by SEQ ID NO: 2 as well as the sequence that has at least 80% identity with it or the sequence of a delta-endotoxin that is encoded by the sequence represented by SEQ ID NO: 1 or by a sequence that has at least 90% identity with it, the delta-endotoxin of the present invention will be considered hereinafter.
  • An aspect of the invention is also a composition comprising a polypeptide of the present invention, a vector of the present invention and / or a host cell of the present invention. Such compositions will be considered the compositions of the present invention.
  • composition of the present invention to combat pests of at least one hemiptera, preferably because the hemiptera is an aphid, and especially preference for the aphid Myzus persicae.
  • a further aspect of the invention is a method for the production of a polypeptide of the present invention, comprising:
  • an aspect of the invention is also an antibody that specifically binds to a polypeptide of the present invention, especially an antibody that specifically binds to the fragment of said polypeptide that constitutes the delta-endotoxin of the present invention.
  • Fig. 1 Multiple alignment of active Cry protein sequences against different aphid species.
  • the Cry protein of the present invention (CryBMI) and the protein represented by the sequence with identification number 205 are included in US8318900B2 (Seq205-US8318900).
  • Fig. 2 Representative dendrogram of the phylogenetic relationship between Cry proteins active against aphids.
  • the Cry protein of the present invention (CryBMI) and the protein represented by the sequence with identification number 205 are included in US8318900B2 (Seq205-US8318900).
  • the length of the horizontal bar located below the lower protein line, CryIAa corresponds to a taxonomic distance of 0.2, calculated based on the percentage of identity of the alignments of the amino acid sequences, as indicated in the figure itself .
  • Fig. 3 Scheme of the recombinant expression vector pET-28b (+) used to insert the cryBMI gene and then used to transform Escherichia coli BL21 (DE3) cells and express the insecticidal protein of the present invention under control of the bacteriophage promoter T7 (Promoter T7) inducible by IPTG.
  • the insertion position of the cryBMI gene and the size of the plasmid before insertion of said gene is indicated (5369 base pairs, abbreviated as bp).
  • Fig. 4 Photograph of the SDS-PAGE gel obtained by electrophoresis a sample of the CryBMI protein expressed in Escherichia coli and purified on a nickel column. The band corresponding to the sample (right lane, labeled "Cry") is indicated with an arrow and the estimated size (89 kDa); in the left lane, corresponding to the marker, the size of the two bands between which the CryBMI sample band is located is indicated.
  • Fig. 5 Photograph of the elements used in the bioassay of insecticidal activity.
  • the present invention is based on the identification and isolation of a Bacillus thur ⁇ ngiensis (Bt) gene, as well as the identification, isolation, production and insecticidal evaluation of its product, a new Bt Cry protein that is toxic against the Myzus aphid Persicae or green aphid.
  • This new gene and its product can be used for the development of new biopesticides and the construction of transgenic plants resistant to green aphids.
  • the nucleotide sequence of the new isolated gene represented by SEQ ID NO: 1
  • the amino acid sequence of the protein encoded by said gene represented by SEQ ID NO: 2
  • Evidence of the insecticidal capacity of this protein is also provided, such as the calculation of the value of the mean lethal concentration (LC 50 ), (which is the concentration of toxin that causes death in 50% of the insects that have been treated) , which has been found to be a lower concentration than those described for other Cry proteins applied to other pest hemiptera, particularly lower than those described so far for other aphids.
  • LC 50 mean lethal concentration
  • the present application provides a detailed description of the new Cry protein and the gene that encodes it, which are significantly different, in sequence and in some structural characteristics, from the sequences corresponding to other Cry proteins and, in particular, quite different from the proteins. Cry with proven insecticidal activity described so far.
  • the structural analysis schematized in Fig. 1 shows that the protein whose isolation and production is described later in the present application (indicated in said Fig. 1 as CryBMI) is a 89 kDa protein that has the characteristic structure of delta- endotoxins, including the N, M and C domains that generally They are present in Cry proteins. In the C domain in particular, an area similar to a carbohydrate binding domain is observed, specifically a galactose binding domain. Therefore, the protein whose isolation and production is disclosed in the present application, together with the identification and isolation of its coding sequence, is called in the present application the Cry protein of the present invention, the delta-endotoxin of the present application. invention or simply the protein of the present invention.
  • the representative dendrogram of the phylogenetic relationship between active and aphid Cry proteins of Fig. 2 shows that the Cry protein of the present invention is not closely related to any of said proteins, indicating that it corresponds to a protein not described to date.
  • Said protein has been provisionally assigned the abbreviated designation CryBMI in relation to the research group (Microbial Bioinsecticides).
  • the comparative analyzes performed based on searches in databases of other known nucleotide sequences and their comparison with respect to SEQ ID NO: 1, on the one hand, and of known protein sequences and their comparison with respect to SEQ ID NO : 2, on the other hand, have allowed us to corroborate not only that the new Cry protein (or delta-endotoxin) of the present invention is new, as is its coding sequence, because its sequences do not coincide with any other amino acid sequence or Nucleotides, respectively, previously known, but also detect differences with other related sequences.
  • nucleotide sequence of the gene of the present invention (SEQ ID NO: 1) with other nucleotide sequences has allowed us to verify that no nucleotide sequence is found that has a percentage of identity that reaches the value of 90%, or higher, with respect to SEQ ID NO: 1.
  • the maximum percentage of identity 87%, corresponds to the nucleotide sequence with the number 38 in the family of the international patent application WO 2010099365 and US Pat. US8318900, to which Japanese application JP 2012519000-A also belongs, a sequence that encodes the protein that responds to sequence 87 of said family.
  • sequence 169 of WO2010099365 also appear among the list of sequences with the highest percentage of homology with respect to SEQ ID NO: 1 (see Table 4 below).
  • sequence 122 of JP 2012519000-A with which the gene of the present invention has an identity of 70%.
  • sequence 169 of WO2010099365 belongs to the group of synthetic genes described in said patent application that lack the "crystalline" domain of the carboxyl end which is present in many delta-endotoxins, and which is believed to be involved in the formation of crystalline inclusion bodies within Bt.
  • the CDS coding sequence with accession number KC156704, which is said to correspond to a pesticide protein of Bacillus thur ⁇ ngiensis, strain ARP242, also has an identity percentage of 87% with respect to SEQ ID NO: 1, but not it appears to present among the information available from its accession number the mention of any publication or other document in which its pesticide activity is demonstrated, with no mention of any possible application to hemiptera, aphids in particular, or Myzus persists in particular.
  • CDS coding sequences
  • sequence of the protein itself of the present invention results in the identity percentages being reduce.
  • sequences extracted from patent documents Table 3
  • the highest percentage of identity does not reach 80% (76.20%) and corresponds to sequence 87 of the family of US8318900 and international patent application WO2010099365, which is precisely the amino acid sequence encoded by the sequence 38 of said applications, that is, the nucleotide sequence with which SEQ ID NO: 1 has the highest percentage of identity.
  • sequence 84 of the family of US Pat. US 8461421 and the international patent application WO2009158470 has an identity percentage greater than 50% (57.91%).
  • the rest of the sequences extracted from patent applications all of which belong to the latter family cited, have identity percentages below 40% with respect to SEQ ID NO: 2.
  • neither the comparative search by the gene sequence nor the search by the protein sequence allows to locate sequences that correspond to Cry proteins with known activity against hemiptera (especially against aphids) and that have a high percentage of identity (at least 50%) with the gene and / or protein of the present invention.
  • sequence corresponding to the Cry protein or derivatives thereof with which insecticidal activity tests are carried out in the patent family of the international application WO2010099365 and the patent are not shown in any of Tables 2, 3 or 4 from the USA US8318900B2.
  • the delta-endotoxin of the present invention is quite different from other Cry proteins active against aphids described so far.
  • the Cry protein with known activity against aphids that has a higher percentage of identity with the Cry protein of the present invention is the Cry3Aa protein, with which it only shares a 26.3% identity
  • the identity does not reach 20%.
  • the new Cry protein of the present invention is the first Ct protein of Bt with significant insecticidal activity against aphids in general and, in particular, the Bry's first Cry protein for which it is reported to possess insecticidal activity against the green aphid, Myzus persicae, so, consequently, it is an object of the present invention, together with the gene that encodes it, as well as the use as insecticide of the compositions containing the gene and / or the protein, including the generation of transgenic plants that express said gene.
  • Example 18 of the application WO2010099365 and US8318900B2 made with unnatural derivatives of the protein represented by the sequence 205 of these documents, where the concentration of 50 ⁇ g / ml results in an 80% mortality of the hemiptera Lygus hesperus, from the Miridae family, a concentrated extract obtained from E. coli being necessary for one of the derivatives thereof Protein results in 100% mortality in 25-50% of the containers when the test is performed with an aphid, Aphis glycines.
  • aphids are not very susceptible to Bt Cry toxins (Chougule and Bonning, 2012). This fact, together with the ability of aphids to generate resistance to synthetic chemical insecticides, increases the importance of discovering new, more toxic proteins to implement alternative control methods based on Bt toxins.
  • the new Cry protein of the present invention is It presents as such an alternative, and can be adapted to the development of control methods based on new formulated bioinsecticides and the construction of transgenic plants resistant to green aphids and other susceptible aphid species.
  • the coding sequence of this new protein can be used to transform bacterial heterologous hosts or plant cells by well known and routine techniques in genetic engineering, either to produce new copies of the protein or as an intermediate step for the generation of transgenic plants that express it.
  • a previous step is usually its insertion into a "vector", a DNA molecule that allows the objective to be achieved to be achieved, either the expression of the gene (expression vectors) or the transfer of molecules or DNA constructs between different host cells, such as the transformation of plant cells, often including the subsequent obtaining of a transgenic plant (the so-called transformation vectors, which are often also expression vectors, or include what is they call "expression cassettes").
  • a previous step is the generation of "expression cassettes", in which the gene to be expressed is operatively linked to a promoter that allows its expression in a system of interest and that often they also contain some additional regulatory sequence or useful for expression, such as a 3 'untranslated region or, especially when expression in eukaryotic cells, a signal sequence or a leader sequence that facilitates the transport of the peptide being formed is desired , or once translated, to a particular cellular organelle, such as chloroplasts, endoplasmic reticulum, Golgi apparatus ...; It is also common for the "expression cassette” to be formed by inserting the coding sequence to be expressed in the vector in a precise place, so that it is attached to the desired elements.
  • promoter depends on the system in which it is desired that the gene to which it will be operatively linked be expressed. Thus, for example, when the protein is to be produced, for example, in a microorganism, such as a bacterium, it will be necessary to choose a promoter that allows expression in said bacterium.
  • a promoter that allows expression in said bacterium.
  • One of the most commonly used bacteria for protein expression is Escherichia coli, for which there are many promoters and expression vectors that contain them well known to those skilled in the art.
  • Plasmid-like expression vectors are easy to locate and choose not only from commercial catalogs, but from databases dedicated to these types of vectors such as Addgene's (http://www.addgene.org), where, for example, the structure of plasmid pET-28b (+) used in the examples of the present invention can be consulted.
  • microbial hosts available for transformation with expression vectors could be the Bt 4Q7 crystalline strain (not producing other endotoxins) available at the Bacillus Genetic Stock Center, Bacillus megaterium (Mobitec, Germany), Pseudomona spp. or yeasts
  • the insecticidal protein produced remains encapsulated in the bacterial soma so that the same microorganism would become the active material of the biopesticide, easily recoverable by centrifugation.
  • This microencapsulation would also protect the protein from environmental factors (eg UV), extending its useful life in the environment.
  • the option of coating said proteins with substances (nanoparticles) that similarly protect said toxin is also an attractive alternative.
  • This new cry gene can also be optimized for expression in plant cells in the construction of transgenic insect-resistant plants, through the use of techniques already described and well known in genetic engineering.
  • the plant transformation methods of the invention involve the introduction of a nucleotide construct, including in gene to be transferred, into a plant.
  • introduction is meant to provide the plant with the construction of nucleotides in such a way that the construction accesses the interior of a plant cell.
  • the methods of the present invention do not require that a particular method be used for the introduction of a nucleotide construct into a plant.
  • Methods for introducing nucleotide constructs into plants are known in the art, including, but not limited to, stable transformation methods, transient transformation methods, and virus mediated methods.
  • Plant means whole plants, plant organs (for example, leaves, stems, roots, etc.), seeds, plant cells, propagules, embryos and their progeny. Plant cells (or plant cells) can be differentiated or undifferentiated (for example, calluses, cells in suspension culture, protoplasts, leaf cells, root cells, phloem cells, pollen).
  • transgenic plants or “transformed plants” or “stably transformed” cells or tissues plants refer to plants that have incorporated or integrated nucleic acid sequences or exogenous DNA fragments into one or more plant cells. These nucleic acid sequences include those that are exogenous, or not present in the cell of the non-transformed plant, as well as those that may be endogenous, or that are present in the cell of the non-transformed plant.
  • heterologous generally refers to nucleic acid sequences that are not endogenous to the cell or part of the native genome in which they are present, and that have been added to the cell by infection, transfection, microinjection, electroporation , microprojection, or similar.
  • the transgenic plants of the present invention will be those that express the gene of the present invention or a sequence coding for a delta-endotoxin that has at least 90% identity with the sequence of the gene of the present invention (SEQ ID NO: 1 ).
  • the transgenic plant may further comprise one or more additional genes for insect resistance, and / or any additional gene that imparts an agronomic trait of interest.
  • the gene to be expressed in this case, the gene of the present invention, or coding sequences that have at least 90% identity with it
  • the gene to be expressed will be part of a construct (an expression cassette, such as described above) in which the gene will be operatively linked to a promoter that will control its transcription, as well as to a non-translated 3 'zone that will allow termination of transcription and polyadenylation of the transcript.
  • a construct an expression cassette, such as described above
  • the gene will be operatively linked to a promoter that will control its transcription, as well as to a non-translated 3 'zone that will allow termination of transcription and polyadenylation of the transcript.
  • termination regions for example, those present in the Ti plasmid of Agrobacterium tumefaciens, such as the termination regions of octopine synthase and nopaline synthase may be suitable.
  • a signal peptide may also be included that facilitates the transfer of the peptide that is being formed to the endopiásmic reticulum. It may also be interesting to design the plant expression cassette so that it contains at least one intron, such that the processing of the mRNA intron is required for its expression.
  • this "plant expression cassette” is inserted or inserted into a "plant transformation vector”.
  • This plant transformation vector may be composed of one or more DNA vectors necessary to achieve plant transformation.
  • DNA vectors necessary to achieve plant transformation.
  • Binary vectors, as well as vectors with auxiliary plasmids, are the most commonly used for Agrobacterium-mediated transformation, when the size and complexity of the DNA segments necessary to achieve efficient transformation is quite large.
  • Binary vectors typically contain a plasmid vector containing the cis-acting sequences necessary for the transfer of T-DNA (such as the left border and the right border), a selection marker that is designed to be able to express itself in a plant cell, and a "gene of interest" (a gene designed to be able to express itself in a cell of a plant from which generation is desired of transgenic plants which, in the present case, would be the gene of the present invention or a coding sequence that has at least 90% identity with it). Also present in this plasmid vector are sequences required for replication in bacteria. The cis-acting sequences are arranged in such a way as to allow efficient transfer in plant cells and expression therein.
  • the selection marker gene and the gene of the present invention lie between the left and right edges.
  • a second plasmid vector contains the trans-acting factors that mediate the transfer of Agrobacterium T-DNA to plant cells.
  • This plasmid often contains the virulence functions (Vir genes) that allow the infection of plant cells by Agrobacterium, and the transfer of DNA by cleavage of the sequences of the borders and the transfer of DNA mediated by vir, as understood in the technique (Heliens and uilineaux, 2000).
  • Various types of Agrobacterium strains can be used for plant transformation (for example, LBA4404, GV3101, EHAIOI, EHA105, etc.).
  • the second plasmid vector is not necessary for the transformation of plants by other methods such as microprojection, microinjection, electroporation, polyethiengiicol, etc.
  • plant transformation methods involve the transfer of heterogeneous DNA to the plant's target cells (for example, immature or mature embryos, suspension cultures, undifferentiated callus, protoplasts, etc.), followed by the application of a level maximum threshold for appropriate selection (depending on the marker gene will be selected) to recover cells from transformed plants from a group of an unprocessed cell mass.
  • target cells for example, immature or mature embryos, suspension cultures, undifferentiated callus, protoplasts, etc.
  • a level maximum threshold for appropriate selection (depending on the marker gene will be selected) to recover cells from transformed plants from a group of an unprocessed cell mass.
  • the expianies are normally transferred to a fresh supply of the same medium and are routinely grown.
  • the transformed cells differentiate into outbreaks after placing them in regeneration medium supplemented with a maximum threshold level of selection agent.
  • the shoots are then transferred to a selective rooting medium for the recovery of shoots with roots or rooted seedlings.
  • the transgenic seedling then grows into a mature plant and produces fertile seeds.
  • the explants are normally transferred to a fresh supply of the same medium and are routinely grown.
  • a general description of the techniques and methods to generate transgenic plants can be found in publications such as Ayres and Park (Ayres and Park, 1994) and Bommineni and Jauhar (1997). Since the transformed material contains many cells, Any sample of said transformed material contains transformed and non-transformed cells. The ability to kill non-transformed cells and allow transformed cells to proliferate results in the cultivation of transformed plants. Often, the ability to eliminate non-transformed cells is a limitation for the rapid recovery of transformed plant cells and the successful generation of transgenic plants.
  • the transformation protocols as well as the protocols for introducing nucleotide sequences into plants may vary depending on the type of plant or plant cell that is to be transformed, that is, monocot or dicot.
  • the generation of transgenic plants can be carried out by various methods, including, but not limited to, microinjection, electroporation, direct gene transfer, introduction of heterologous DNA through Agrobacterium into plant cells (transformation mediated by Agrobacterium), bombardment of plant cells with DNA adhered to particles, acceleration of ballistic particles, transformation by means of an aerosol beam, transformation with Lec1, and various other methods not mediated by particles.
  • an appropriate maximum threshold level of selection is then applied in the medium to eliminate the non-transformed cells and separate and proliferate the hypothetically transformed cells that survive this selection treatment by periodically transferring them to a fresh medium, through continuous passes and maintaining the appropriate selection conditions.
  • Numerous markers have been developed for use with plant cells, such as chloramphenicol resistance, G418 aminogycoside, hygromycin resistance, or the like.
  • Molecular and biochemical methods can be used to confirm the presence of the heterologous gene of interest integrated in the genome of the transgenic plant, a gene of interest that, in the case of the transgenic plants of the present invention, is the gene of the present invention or a coding sequence with an identity percentage of at least 90% with it.
  • Cells that have been transformed can be cultured to give rise to plants in a conventional manner. These plants can then be cultured, and either be pollinated with the same transformed strain or with different strains, and the resulting hybrid has constitutive expression of the desired phenotypic characteristic, in this case, the expression of the Cry protein of the present invention
  • Two or more generations can be cultivated to ensure that the expression of the desired phenotypic characteristic is maintained and inherited stably and then harvest the seeds to ensure that the expression of the desired phenotypic characteristic has been achieved.
  • the present invention provides transformed seeds (also referred to as “transgenic seeds”) having a nucieotidic construction of the present invention, (eg, an expression cassette in which the gene of the invention it is linked, stably, to a promoter that allows its expression in plants and to a suitable sequence of termination, stably incorporated into its genome).
  • transformed seeds also referred to as "transgenic seeds” having a nucieotidic construction of the present invention, (eg, an expression cassette in which the gene of the invention it is linked, stably, to a promoter that allows its expression in plants and to a suitable sequence of termination, stably incorporated into its genome).
  • the transformation or integration of the heterologous gene into the plant genome can be confirmed by various methods such as the analysis of nucleic acids, proteins and metabolites associated with the integrated gene.
  • the analysis of the presence of the integrated gene, the generation of its mRNA or the presence of the protein to be expressed, the protein of the present invention or a protein that has a high degree can be performed. of identity with it.
  • PCR analysis is a rapid method to detect in cells, tissues or transformed outbreaks, the presence of the gene incorporated at an earlier stage before transplanting it into the soil, by routine methods for those skilled in the art (see, for example, Sambrook and Russeli, 2001).
  • PCR can be carried out using specific oligonucleotide primers that allow amplifying the gene of interest from the start codon (ATG) to the translation stop codon (TTA) (direct primer oligonucieotide 5 ' -ATGAACCAAAATTATAAGAACAATG-3', (SEQ ID NO: 3)
  • Reverse primer oligonucieotide 5 CAAATCAAAAATTCAAACTGAATAAGTTA3 '(SEQ ID NO: 4)
  • the amplicon could also be obtained, purified and labeled either by radioactive ( 32 P) or non-radioactive (digoxigenin) methods and used as a specific probe.
  • Plant transformation can be confirmed by Southern blot analysis of genomic DNA (Sambrook and Russeli, 2001). In general, total DNA is extracted from the transformant, digested with appropriate restriction enzymes, fractionated on an agarose gei and transferred to a nitroceiuous or nylon membrane. Next, a membrane assay is performed with the DNA transferred with, for example, a fragment of the target DNA (a fragment of the gene of the present invention, in this case, or a sequence that has at least 90% identity with it) to confirm the integration of the gene introduced into the genome of the plant.
  • a fragment of the target DNA a fragment of the gene of the present invention, in this case, or a sequence that has at least 90% identity with it
  • RNA is isolated from specific tissues of the transformant, fractionated on an agarose-formaldehyde gel, and transferred to a nyion filter according to standard procedures that are routinely used by Those skilled in the art (Sambrook and Russeli, 2001).
  • the expression of the RNA encoded by the gene of the present invention or by a coding sequence that has at least 90% identity with it is tested by hybridization of the filter with a radioactive probe derived from the sequence of the ⁇ to endotoxin gene of the invention, by methods known in the art (Sambrook and Russel !, 2001).
  • the presence of the protein encoded by the delta-endotoxin gene of the present invention can also be confirmed by Western blotting, biochemical tests or the like carried out in transgenic plants by standard procedures (Sambrook and Russeil, 2001, supra). ), using antibodies that bind to one or more epitopes present in the delta-endotoxin protein of the present invention.
  • antibodies directed to other Cry proteins with which the Cry protein of the present invention share epitopes can be used.
  • Another alternative is the preparation of specific antibodies against the new Cry protein of the present invention and, similarly, using Anti-6xHis_Tag (Sigma-Aldrich) antibodies against the tail of 6 histidines fused to the carboxyl end of the recombinant CyBM1 protein and which are encoded in the vector pET-28b (+).
  • Anti-6xHis_Tag Sigma-Aldrich antibodies against the tail of 6 histidines fused to the carboxyl end of the recombinant CyBM1 protein and which are encoded in the vector pET-28b (+).
  • monoclonal antibodies which are homogeneous antibodies produced by a hybrid cell resulting from the fusion of a clone of B lymphocytes descended from a single and single stem cell and a tumor plasma cell, which guarantees its perpetuity (Kohier & Milstein, 1975).
  • lymphocyte a clone of B lymphocytes descended from a single and single stem cell and a tumor plasma cell
  • myeloma cell combines the genetic information necessary for synthesis of the desired antibody and a capacity for protein synthesis, allowing its indefinite multiplication both in vitro and in vivo.
  • splenocytes obtained from female BALB / c mice previously injected intraperitoneally with the complete form of the Cry protein of the present invention, are fused with murine myeloma cells X63-Ag8.653, in the presence of 50% polyethylene glycol (PEG) 4000 (Boehringer Mannheim, Barcelona, Spain). Hybridoma cultures can be maintained as described by Estévez et al. (1994).
  • anti-Cry monoclonal antibodies are obtained from ascites fluid injected mice, intraperitoneally, with the cells of the Selected hybridoma (2x10 6 cells / mouse, for example). Partial purification of the antibodies can be performed by precipitation of ascites with saturated ammonium sulfate (SAS). In any case, currently in Spain there are many biomedical companies specializing in the production of monoclonal antibodies on demand, which can be ordered to produce.
  • SAS saturated ammonium sulfate
  • the presence of the delta-endotoxin transgene of the invention can also be detected by tests of its pesticidal activity in fertile plants. Plants that show optimal activity are selected for later reproduction. There are methods available in the art for testing pest activity, such as mixing the protein and using it in feeding assays, as in the Examples shown later in the present application.
  • transgenic plants that express the delta-endotoxin of the present invention, whereby said transgenic plants will have insecticidal activity against at least one aphid, preferably Myzus persicae, so that the The use of such transgenic plants to combat aphid pests and / or confer resistance to the plants, in particular Myzus persicae, is also an object of the present invention.
  • the way in which the cells of transgenic plants are generated is not critical for the purposes of the present invention.
  • the main objective of the present invention is to combat hemiptera pests, preferably aphids, including Myzus persicae in particular, it is a particularly interesting embodiment of the present invention that in which selectively transformed (transgenic) plants express the delta-endotoxin of the present invention in the vascular tissue of the plant, in particular in phloem tissue, as disclosed in application W095 / 16778, to facilitate ingestion of delta-endotoxin by aphids to fight.
  • This can be achieved by choosing as a promoter operably linked to the gene of the present invention, or to a coding sequence with a percentage of identity of at least 90% therewith, a promoter that facilitates expression in said tissues.
  • suitable promoters are those mentioned in said international patent application, such as the 4xB2 + A CaMV35S cauliflower mosaic virus promoter.
  • the present invention can be used for the transformation of any type of plant.
  • Plants for which special preference is given are those that suffer damage caused by aphids, in particular by Myzus persicae, or in which it has been found that said aphid facilitates the transmission of viruses.
  • transgenic peach Panus tigrsica
  • apricot apricot
  • plum apricot
  • plum apricot
  • plum of the genus Prunus
  • citrus crucifixes
  • nightshade grasses and even ornamental plants.
  • compositions containing the delta-endotoxin of the invention or a system capable of expressing it can also be used -endotoxin of the invention.
  • the active ingredients (the delta-endotoxin of the present invention or a microorganism that expresses it) of the present invention are normally applied in the form of compositions (the pesticidal compositions of the present invention) and can be applied to the crop or plant area to be treated. , simultaneously or consecutively, with other compounds.
  • These compounds can be fertilizers, herbicides, cryoprotectants, surfactants, detergents, soaps, oils, latent pesticides, polymers, or biodegradable vehicle formulations that allow long-term dosing in a target area after a single application of the formulation.
  • Suitable carriers and adjuvants may be solid or liquid and correspond to the substances normally employed in the formulation technology, for example, natural mineral substances, solvents, dispersants, wetting agents, binders or fertilizers.
  • the formulations can be prepared in the form of "edible baits” or "pest traps" be formed to allow feeding or ingestion by a target pest of the pesticide formulation; An example of such devices can be found in application W09516778.
  • compositions of the present invention comprising at least the delta-endotoxin of the present invention or an expression system thereof, such as Bacillus thuringiensis Bt H1.5 cells or a recombinant microorganism comprising
  • the gene of the invention operatively linked to a promoter that allows expression in said microorganism includes application on the leaves, seed coating and application in the soil.
  • the composition may be formulated in the form of powder, granule, aerosol, emulsion, colloid, solution, or the like, and may be Prepare by conventional means such as desiccation, lyophilization, homogenization, extraction, filtration, centrifugation, sedimentation, or concentration of a cell culture comprising the polypeptide corresponding to the delta-endotoxin of the present invention.
  • the formulations may also vary with respect to weather conditions, environmental considerations, the desired frequency of application and / or the severity of the infestation.
  • compositions described can be carried out by formulating any bacterial cell of the aforementioned, (which, in the case of Bacillus thuringiensis, can be, for example, a suspension of spores or crystalline forms), or the formulation of the protein of the present invention, previously produced and isolated, with the desired agriculturally acceptable vehicle.
  • compositions comprising the delta-endotoxin of the present invention can be found in Example 3 of the present application, where the soluble protein was diluted in an aqueous solution containing sucrose, specifically 20% w / v sucrose, which was the artificial diet prepared for aphids.
  • Other formulation examples can be found, for example, in the international application W09516778, where delta-endotoxins are in crystalline form and are prepared in the form of an aqueous suspension.
  • compositions may be formulated prior to administration in an appropriate medium, and may be prepared in the desired manner by known means such as lyophilization, subsequent freeze drying, or drying, or in a suitable aqueous vehicle, medium or diluent. , such as saline or other buffer.
  • the formulated compositions may be in the form of a powder or granular material, or a suspension in oil (vegetable or mineral), or water or oil / water emulsions, or as a wettable powder, or in combination with any other suitable vehicle for agricultural application
  • suitable vehicle covers all adjuvants, inert components, dispersants, surfactants, adhesives, binders, etc., which are commonly used in pesticide formulation technology, which are well known to those skilled in pesticide formulation.
  • the formulations can be mixed with one or more solid or liquid adjuvants and prepared by various means, for example, mixing until homogenization, mixing and / or milling of the pesticidal composition with suitable adjuvants using conventional formulation techniques.
  • Suitable formulations and application methods are described, for example, in US Pat. N and 6468523, incorporated herein by reference.
  • Another possible alternative is that the gene of the present invention is cloned for expression in strain Bt 4Q7, or in microorganisms such as Bacillus megater ⁇ um, Pseudomonas spp., Or yeasts, in which the produced delta-endotoxin produced remains encapsulated in the soma bacterial, so that the same microorganism would become the active biopesticide, easily recoverable by centrifugation.
  • This microencapsulation would also protect the protein from environmental factors (eg UV), extending its useful life in the environment.
  • the option of coating said proteins with substances (nanoparticles) that protect similarly to delta-endotoxin is also a possible alternative.
  • Microencapsulated delta-endotoxin can be used in spray applications, either independently, or in rotations with Bt-based insecticides that express other possible delta-endotoxins of interest.
  • Plants can also be treated with one or more chemical compositions, including one or more herbicides, insecticides, or fungicides.
  • the present invention relates to an isolated nucleic acid molecule comprising a nucleotide sequence encoding a delta-endotoxin, characterized in that the nucleotide sequence encoding a delta-endotoxin is represented by SEQ ID NO: 1 or has at least 90% identity with it.
  • the percentage of identity can be selected, for example, from the group of 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5 %, 99.6%, 99.7%, 99.8%, 99.9%, percentages of identity that are considered to give rise to a delta-endotoxin sufficiently identical to delta-endotoxin whose isolation and production is described more later in Examples of the present invention.
  • nucleotide sequence encoding a delta-endotoxin is exactly that represented by SEQ ID NO: 1, thus being a possible embodiment of this aspect of the invention that the nucleotide sequence of the nucleic acid molecule be represented exactly by SEQ ID NO: 1.
  • the determination of the percentage of identity between two sequences can be carried out with the usual computer resources, based on mathematical algorithms, such as the BLASTN and BLASTP programs used in the later Examples of the present application, using, for example, the parameters which appear by default, as well as with other alternative applications known to those skilled in the art, such as Gapped Blast and PSI-Blast (Altschul et al., 1997), or others.
  • the Cry protein of the present invention has a domain similar to ricin b, which is not present in other Cry proteins with activity against aphids. Therefore, it is preferred that, whatever the percent identity with SEQ ID NO: 1, it is maintained that the nucleotide sequence encoding a delta-endotoxin comprises a sequence fragment encoding a domain similar to ricin b.
  • Preferred embodiments of the present invention compatible with the foregoing, are those in which the nucleotide sequence encoding a delta-endotoxin has activity against at least one species of hemiptera insect. It is especially preferred that it has activity against at least one species of aphid and, especially, that it has activity against aphid Myzus persicae.
  • Another aspect of the invention is the "constructs” or “expression cassettes” that enable the gene to be expressed in an expression system or host of interest, as well as the vectors containing said constructs and, which facilitate the introduction of the gene in said systems and / or their expression in them.
  • the invention also relates to an isolated nucleic acid molecule as any of those defined above as part of the present invention, in which the nucleotide sequence encoding the delta-endotoxin of the invention is operably linked to a promoter. .
  • a promoter which may be promoters capable of directing the expression of the sequence in a plant cell, in a bacterium (preferably selected from the group Escher ⁇ chia coli, Bacillus thuringiensis, Pseudomonas spp.) or in a yeast such as Saccharomyces cerevisiae.
  • Embodiments of this aspect of the invention are those in which the delta-endotoxin coding sequence is operably linked to some additional control sequence, such as a 3 'untranslated region.
  • Another aspect of the invention are the vectors comprising the delta-endotoxin coding sequence of the present invention, preferably linked to other elements so as to form the "constructs" or "expression cassettes" previously defined.
  • another aspect of the invention is a vector comprising a nucleotide sequence encoding a delta-endotoxin, characterized in that the nucleotide sequence encoding a delta-endotoxin is represented by SEQ ID NO: 1 or has at least 90 % identity with it, or a nucleic acid molecule in which said nucleotide sequence is comprised, that is, a vector into which the nucleic acid molecule that constitutes the first aspect of the present invention is inserted.
  • the vector is chosen according to the system where the expression is desired or which You want to transform with him.
  • the vector is a plasmid, which allows obtaining a high number of copies in suitable bacteria transformed with it and, if the promoter is suitable, also allows the expression of the delta-endotoxin of the present invention. in the bacterium, being possible the production and purification of delta-endotoxin from bacterial cultures.
  • the plasmid is a plasmid that can be replicated (and expressed) in yeasts, as is the case of the so-called 2 micron plasmid (2 ⁇ ), from Saccharomyces cer ⁇ visiae.
  • a preferred embodiment is that in which the plasmid allows the expression of the delta-endotoxin of the present invention in a bacterium chosen from Escherichia coli, Pseudomonas spp., Bacillus megaterium or Bacillus thur ⁇ ngiensis; In the latter case, there is a special preference for strain Bt 4Q7.
  • the vector can also be a plant transformation vector, an embodiment compatible, among others, with the alternative that the vector is a plasmid. It is especially preferred that said transformation vector is constructed in such a way that the nucleotide sequence encoding the delta-endotoxin represented by SEQ ID NO: 1 or the coding sequence that has at least 90% identity thereto is operably linked to a promoter capable of directing the expression of said nucleotide sequence in a plant cell, such as the cauliflower mosaic virus promoter (CaMV promoter) or the 4xB2 + A CaMV35S variant; Within this embodiment, it is particularly preferred that the coding sequence is also operatively linked to other control or regulatory sequences that facilitate or enable expression in plants, such as termination sequences or even leader sequences, although the presence of regulatory sequences is equally compatible with any vector, including those of expression in bacteria.
  • a promoter capable of directing the expression of said nucleotide sequence in a plant cell
  • CaMV promoter cauliflower mosaic virus promoter
  • the structure of the transformation vector should be such that the entire construction or "expression cassette" (promoter, coding sequence and regulatory or control sequences) can be transferred as such a structural assembly to the plant genome. It is also a preferred embodiment, compatible with all of the above, that in which the delta-endotoxin coding sequence of the present invention is linked to the coding sequence of a second polypeptide, in phase with it, and the entire assembly under the control of the same promoter, so that the expression of the sequence of coding sequences results in a fusion protein.
  • Another aspect of the invention is the host cells comprising at least one vector of the present invention.
  • bacteria cells especially those of the Escher ⁇ chia coli group, Pseudomonas spp., Bacillus megater ⁇ um or Bacillus thuringiensis, the latter species in which there is a special preference for the strain Bt 4Q7.
  • the cell can also be a plant cell. It is also possible, among other embodiments, that the cell is a yeast cell, particularly Saccharomyces cer ⁇ visiae.
  • a further aspect of the present invention is transgenic plants comprising cells transformed with vectors of the present invention. Therefore, an aspect of the present invention is a transgenic plant comprising at least one host cell comprising at least one vector of the present invention.
  • a further aspect of the invention may be considered to be a seed comprising a nucleic acid molecule of the present invention, that is, an isolated nucleic acid molecule comprising a nucleotide sequence encoding a delta-endotoxin, characterized in that the nucleotide sequence encoding a delta-endotoxin is represented by SEQ ID NO: 1 or has at least 90% identity with it.
  • SEQ ID NO: 1 the nucleotide sequence encoding a delta-endotoxin is represented by SEQ ID NO: 1 or has at least 90% identity with it.
  • the present invention also relates to a polypeptide comprising an amino acid sequence characterized in that said amino acid sequence: a) is represented by SEQ ID NO: 2;
  • b) is the sequence of a delta-endotoxin that is encoded by the sequence represented by SEQ ID NO: 1 or by a sequence that has at least 90% identity with it, or
  • c) is the sequence of a delta-endotoxin that has at least 80% identity with the sequence represented by SEQ ID NO: 2.
  • any of the sequences that meet the definition of a), b) or c) is considered a protein (delta-endotoxin) of the present invention. It is especially preferred that the protein has three structural domains that correspond to the N, M and C domains of the Cry proteins. Very especially, it is preferred that the amino acid sequence of delta-endotoxin comprises a domain similar to ricin b.
  • the percentage of identity may be, among others, 100% being option a). It is a possible embodiment that the polypeptide corresponds exactly to that represented by SEQ ID NO: 2.
  • the polypeptide has insecticidal activity against at least one hemipter, preferably at least one species of aphid, having special preference for having insecticidal activity against the aphid Myzus persicae.
  • the delta-endotoxin sequence of the present invention is linked to a second polypeptide, forming a fusion protein.
  • a second polypeptide can be mentioned the maltose binding protein, as in example 18 of the application WO2010 / 099365.
  • the delta-endotoxin of the present invention may also be linked to other amino acid sequences of possible interest, such as a 5 'leader sequence or, for example, a histidine tail that facilitates its subsequent isolation.
  • an aspect of the present invention is also a composition
  • a composition comprising a polypeptide of the present invention as defined in the preceding paragraphs, a vector of the present invention or a host cell of the present invention, a composition that is considered a composition. of the present invention.
  • the composition also comprises an excipient and / or an agronomically acceptable carrier.
  • the composition may be in various forms, preferably suitable forms so that the composition can be administered as pesticidal compositions, such as powder, granulate, emulsion, colloid, suspension or solution.
  • the suspension or solution may be aqueous or it may be that the liquid vehicle is, for example, an oil or an emulsion.
  • composition comprises a polypeptide of the present invention or a host cell of the present invention.
  • bacterial or yeast host cells particularly cells of a species selected from Pseudomonas spp., Bacillus megater ⁇ um, Bacillus thur ⁇ ngiensis Bt 4Q7 or Saccharomyces cerivisae.
  • the composition comprises a polypeptide of the present invention
  • it may be part of a solid, liquid or prepared composition to be administered as an aerosol.
  • the polypeptide may be in crystalline form, so that it will form a suspension in the event that the composition is prepared in an aqueous vehicle, or it may be solubilized in a liquid vehicle, which may be aqueous.
  • compositions of the present invention may contain other different additional components, including various other pesticides or compounds that increase their action, including Bacillus thuringiensis spores, which may belong to strain Bt 1.5H, to strain Bt 4Q7, to any other natural strain, or to recombinant strains, including recombinant strains comprising the vectors of the present invention.
  • various other pesticides or compounds that increase their action including Bacillus thuringiensis spores, which may belong to strain Bt 1.5H, to strain Bt 4Q7, to any other natural strain, or to recombinant strains, including recombinant strains comprising the vectors of the present invention.
  • an additional aspect of the present invention is the use of the compositions of the present invention to combat hemiptera pests, especially aphids, and very especially pests. of the aphid Myzus persicae.
  • the use of the present invention is to combat pests that cause damage to plants, plant crops, or to the products of their harvest.
  • the plants to be treated are plants that are damaged by Myzus persicae infestations or plants in which said aphid can act as a virus transmitter.
  • these plants are mainly the peach tree and other fruit trees of the genus Prunus, as well as citrus, crucifixes, solnaceae and even conifers and ornamental plants.
  • peach tree apricot tree, plum, almond tree, other species of the genus Prunus, citrus, potato, tomato and other species of the Solanaceae family
  • the use comprises the administration of the compositions of the invention by any known method, as previously mentioned, appropriate according to the formulation of the composition, such as spraying, administration in irrigation water, direct deposition on plant organs or together at the base of it ...
  • Another aspect of the invention is a method for the production of a polypeptide of the present invention.
  • the method comprises the steps of:
  • the recombinant organism may be, for example, a transgenic plant of the present invention or a host cell of the present invention or another recombinant microorganism, preferably a bacterial or yeast cell that either comprises an expression vector of the present invention, or either it has integrated into its genome a nucleic acid molecule of the present invention, especially if in said nucleic acid molecule the nucleotide sequence encoding a delta-endotoxin was already operably linked to a promoter that allows its expression in said recombinant microorganism.
  • Example 2 of the present invention An example of purification of the polypeptide of the present invention, in this case the delta-endotoxin of SEQ ID NO: 2, is presented in Example 2 of the present invention, in which recombinant Escherichia coli cells are obtained and cultured. with a plasmid expressing said delta-endotoxin, inducing the expression of delta-endotoxin with IPTG and proceeding to purification from the culture, purification that can be carried out by any known means, such as affinity chromatography as in the Example 2 cited.
  • polypeptide forms of the present invention comprising fusion proteins or amino acid helper sequences such as histidine tails may be of particular utility for the isolation of the polypeptide from the present invention, an additional step may be necessary in which the auxiliary sequence or the second polypeptide of the fusion protein is cleaved, for example by the use of a suitable endoprotease.
  • a further aspect of the present invention is an antibody that specifically binds to a polypeptide of the present invention.
  • the antibody specifically binds to the fragment of the polypeptide constituting the delta-endotoxin of the present invention, with particular preference for the embodiment in which the delta-endotoxin sequence is that represented by SEQ ID NO: 2.
  • the antibody is a monoclonal antibody.
  • the new cry gene was identified in the strain of Bacillus thuringiensis Bt H1 .5, a strain belonging to the Bt collection of the Public University of Navarra, Laboratory of Microbial Bioinsecticides (Iriarte et al., 1998; Iriarte et al., 2000: articles that describe how the sampling was done and the collection was built).
  • the strain Bt H1 .5 specifically was isolated on the island of El Hierro, Canary Islands, Spain.
  • This strain was grown in LB medium (Luria-Bertani) at 28 e C for 16 hours at 200 rpm and its total DNA (genomic plus plasmid) was purified with the Wizard® DNA purification kit (Promega), following the manufacturer's instructions for the isolation of DNA from Gram positive bacteria, which implies the pretreatment of bacterial cells with lysozyme at a final concentration of 10 mg / ml and a 30 minute incubation at 37 e C.
  • the total DNA was used to generate a combined "pooled" library according to the instructions of lllumina, Inc. for the preparation of samples with the TruSeq TM lepreps truseq / truseqsampleprep / truseq sample prep poolinq quide 15042173 a.pdf) system. It was sequenced using HiSeq TM 2000 Sequencing System technology (lllumina® Sequencing) in single reading mode, with a reading size of 50 nucleotides (GATC Biotech, Germany).
  • sequences obtained were analyzed using Blast (Altschul et al., 1990) with databases constructed with sequences of Bt toxins such as Cry (crystalline), Cyt (cytolytic), Vip1, Vip2 and Vip3 (vegetative insecticidal proteins), Sip ( protein secretable insecticides) already described as well as those produced by the bacterium Bacillus sphaericus such as Mtx 1, Mtx2 and Mtx3 (mosquito toxins) and Bina BinB binaries (Berry, 2012), which were obtained from public databases such as Genbank (Benson et al., 2005).
  • Bt toxins such as Cry (crystalline), Cyt (cytolytic), Vip1, Vip2 and Vip3 (vegetative insecticidal proteins), Sip ( protein secretable insecticides) already described as well as those produced by the bacterium Bacillus sphaericus such as Mtx 1, Mtx2 and Mtx3 (mosquito toxins) and Bina BinB binaries
  • the RAST (Rapid Annotation using Subsystem Technology) automated annotation server (Aziz et al., 2008) was also used, which is a fully automated system to annotate complete or almost complete bacterial and archaea genomes, providing genome annotations. high quality of the entire phylogenetic tree (http://rast.nmpdr.org).
  • CDSs ribosomal RNA
  • tRNA transfer RNA
  • This server also allows the download of the results in different formats (GenBank, Fasta, GFF, etc.) and navigation in the annotated genome thus facilitating comparative analysis with other annotated genomes.
  • the new cry gene was identified by using Blast (Blastx) and the ORF (Open Reading Frame) or manually defined coding sequence from the start codon (ATG) to the stop codon (TAA) and with regarding the homologous sequence of reference with greater coverage and percentage of identity.
  • Blastx Blastx
  • ORF Open Reading Frame
  • ATG start codon
  • TAA stop codon
  • the typical ribosome binding sequence or Shine-Dalgarno sequence was also taken into account, which consists of the following 5'- AAGGAGG-3 'nucleotides, prior to the ATG start codon and separated by 7 nucleotides in sequence 5 '-TTTATGC-3'.
  • This ribosome binding sequence or Shine-Dalgarno sequence has already been identified in Bacillus anthracis, a species that is closely related to Bacillus thur ⁇ ngiensis (Steichen et al., 2003).
  • This ORF whose sequence is represented by SEQ ID NO: 1, had a total length of 2,397 bp (base pairs), encodes a protein of 799 amino acids, with an approximate molecular weight of 89 kDa, amino acid sequence that is represented by SEQ ID NO: 2.
  • the amino acid sequence of the new protein had a maximum Blast (BlastP) identity of 76.56% and 76.20% when compared against other proteins previously described in public databases, both comparing with "nr" sequences (non-redundant protein sequences), and comparing with "pat” sequences (proprietary protein sequences), respectively. Since the proteins with the highest percentage of identity were all Cry proteins or delta-endotoxins, the protein of the present invention is a new Cry protein.
  • Tables 2 and 3 show the results obtained when performing the BlastP through public use resources accessible for this purpose on the website of the National Center for Biotechnology Information (NCBI) in the USA.
  • NCBI National Center for Biotechnology Information
  • the Geneious Pro v6.1 .7 software (Drummond et al., 2014) and its Geneious Alignment tool were used to perform multiple alignment of the CryBMI protein sequence against other known Cry proteins, for which it has been described that they present activity against aphids, including the protein represented by the sequence with identification number 205 in US8318900B2 and in international application WO2010099365 (referred to hereinafter as Seq205- US8318900).
  • the results of said alignment are shown in Fig. 1.
  • This alignment was subsequently used to generate the representative dendrogram of the phylogenetic relationship between the various Cry active proteins against aphids that is represented in Fig. 2 with the Geneious Tree Builder tool and obtain a matrix of% identity of each of them ( Table 5).
  • the new Cry protein like the others (except Cry2Aa, Cry1 1Aa and Seq205-US8318900), turned out to be a Cry protein with three domains N, M and C, the domains that are considered responsible for insecticidal activity against different insect species.
  • the new Cry protein of the present invention (CryBMI), however, has a unique feature represented by a sequence fragment homologous to a conserved domain of ricin (InterPro access number IPR000772) consisting of 148 amino acids located at the carboxyl end between positions 652 to 799 and represented by the sequence TPTPEPVVDGIYQIVTALNNSSVAENGGPTTRGGPDQVKLSPFYNSTDQKWEFIYDSNE DVYTIRNLAGGFLTYFMLNPGYPVLAIRPQWATENQKWIVEPAGNGYYYLRSKSVPTEAA FAPNAADGSVVRSTMSAGSVVRNMSKGDV more specifically, a domain similar to that of the B chain of natural ricin, which is the chain that has activity as lectin (i.e., a protein that binds carbohydrates), as it binds to terminal galactose residues present in cell surfaces
  • the natural ricin that is produced in the seeds of castor plants is a heterogenethyl
  • the new cry gene was amplified by PCR ⁇ Polymerase Chain Reactior ⁇ ) using an error-proof Taq polymerase (PrimeSTAR HS DNA polymerase, Takara) with a direct primer that allowed to add a restriction target ⁇ / col (5 ' -CC / 47GGATGAACCAAAATTATAACAACAATG ⁇ 3 ⁇ (SEQ ID NO: 5) immediately before the start codon (ATG) and a reverse primer that allowed to add a Saft restriction target (5'-
  • the amplified fragment was ligated to the pJET vector (Thermo Scientific) following the instructions provided by the manufacturer, separated from the cloning vector by digestion with the restriction enzymes A / col and Sa / I and purified from the agarose gel with the Nucleospin Gel kit and PCR Cleanup (Macherey-Nagel).
  • the purified fragment was subcloned into the expression vector pET-28b (+) (Novagen) (see Fig. 3) predigested with the Restriction restriction enzymes col / col and Sa / I and following routine molecular biology techniques described by Sambrook and Russell (Sambrook and Russell, 2001).
  • This vector has a strong promoter for viral RNA polymerase of Phage T7 and an antibiotic resistance gene Kanamycin to facilitate its selection.
  • the recombinant expression vector represented in Fig. 3, was obtained, it was used to transform Escher ⁇ chia coli BL21 (DE3) cells (Life Technologies), following routine molecular biology techniques described by Sambrook and Russell (Sambrook and Russell , 2001). These cells carry in their genome the gene encoding the viral polymerase RNA of phage T7 inducible by IPTG (isopropyl ⁇ -D-1-thiogalactopyranoside), which recognizes the promoter encoded in the expression vector pET-28b (+) (Novagen ) and transcribes the cloned gene leading to the production of the protein encoded by such a gene.
  • IPTG isopropyl ⁇ -D-1-thiogalactopyranoside
  • the production of the CryBMI recombinant protein was carried out in the obtained Escher ⁇ chia coli cells, inducing its expression with 1 mM (final concentration) of IPTG at 37 e C and a 200 rpm of agitation for 16 hours.
  • the purification of the recombinant carrier protein of a 6 histidine tail was carried out by means of affinity chromatography on nickel columns with TED (triscarboxymethyl-ethylene diamine) as chelating ligand, with the Protino Ni-Ted 1000 kit (Macherey -Nagel), following the manufacturer's instructions.
  • the concentration of the purified soluble protein was determined by the Bradford method (Bradford, 1976).
  • the new Cry protein produced in E. coli was obtained in the soluble phase at an approximate concentration of 1 mg / ml from one liter of culture medium.
  • the analysis of the insecticidal activity was carried out by means of a simplification of the bioassay methodology described by Sadeghi et al. (Sadeghi et al., 2009) using nymphs of M. persicae of first stage (N1) supplied by the insectarium of the research center of the present inventors. Briefly, the soluble protein was diluted in an artificial aphid diet which consisted of 20% P / V sucrose in sterile distilled water. Each dilution was incorporated between two sheets of Parafilm® "M" (Bemis Flexible Packaging, Nena, Wiscosin, USA) and covering small circular boxes 3 cm in diameter (1.5 cm high) without lid. Each box contained 15 nymphs N1.
  • Fig. 5 shows photographs of the boxes used, covered with Parafilm® "M” and with the artificial diet drop between two layers of said material.
  • the bioassays were carried out in a chamber under the following controlled conditions: temperature 25 ° C, 70% rdative humidity and under a 16: 8 hour light / dark photoperiod, respectively. The mortality produced was recorded at 72 hours.
  • the LC 50 determined was only 32.7 ⁇ g / ml. This value can be considered the lowest LC 50 described to date for a Cry protein of Bt applied to a species of hemiptera plague.
  • Bommineni V.M., Jauhar P.P, 1997, "an evaluation of target-cells and tissues used in genetic-transformation of cereals", Maydica, 42 (2), 107-120.
  • Vip3A a novel Bacillus thur ⁇ ngiensis vegetative insecticidal protein with a wide spectrum of activities against lepidopteran insects. Proceedings of the National
  • Sattar, S., Maiti, M.K., 201 1. Molecular characterization of a novel vegetative insecticidal protein from Bacillus thuringiensis effective against sap-sucking insect pest. Journal of Microbiology Biotechnology 21, 937-946.

Abstract

The invention relates to a novel gene encoding a Cry (or delta-endotoxin) protein, to the actual protein encoded by said gene, to the systems for the expression of same (vectors and host cells), and to the use of said gene and/or said protein for controlling hemipteran pests, preferably the green aphid, Myzus persicae, both by using a composition containing the novel protein and/or a system for the expression thereof, and by using transgenic plants wherein the gene is expressed. Said transgenic plants and compositions are especially interesting as the novel Cry protein has an especially good insecticide capacity against Myzus persicae compared to other known Cry proteins which exhibited a smaller insecticide capacity against aphids and none were known to be active against Myzus persicae.

Description

DESCRIPCIÓN  DESCRIPTION
Nueva proteína Cry de Bacillus thuringiensis con actividad insecticida para combatir un hemíptero New Cry protein from Bacillus thuringiensis with insecticidal activity to fight a hemiptera
Campo de la invención Field of the Invention
La presente invención se refiere al campo de los biopesticidas y de las plantas transgénicas capaces de expresarlos. Más concretamente, la invención se refiere a un nuevo gen que codifica una proteína Cry (o delta-endotoxina), a la propia proteína codificada por dicho gen, a los sistemas para la expresión de la misma (vectores y células hospedadoras), y a la utilización de dicho gen y/o dicha proteína para combatir plagas de Myzus persicae (Sulzer), el áfido comúnmente conocido como pulgón verde, tanto mediante el uso de una composición que contenga la proteína como mediante plantas transgénicas en las que se expresa el gen.  The present invention relates to the field of biopesticides and transgenic plants capable of expressing them. More specifically, the invention relates to a new gene that encodes a Cry protein (or delta-endotoxin), to the protein itself encoded by said gene, to the systems for its expression (vectors and host cells), and to the use of said gene and / or said protein to fight pests of Myzus persicae (Sulzer), the aphid commonly known as a green aphid, both by using a composition containing the protein and by transgenic plants in which the gene is expressed.
Antecedentes de la invención Background of the invention
Bacillus thuringiensis (Bt) es una bacteria Gram positiva, ubicua y esporulante que frecuentemente sintetiza diversas proteínas (Cry, Cyt y Vip) con actividad insecticida contra una amplia gama de insectos que causan plagas tales como lepidópteros (Dulmage, 1970; Estruch et al., 1996), coleópteros (Estruch and Yu, 1998; Krieg et al., 1983), dípteros (Federici et al., 2003; Goldberg, 1977) y hemípteros (Porcar et al., 2009; Sattar and Maiti, 201 1 ). Bt produce proteínas insecticidas durante la esporulación que aparecen como cristales paraesporales, cristales que están compuestos predominantemente de una o más proteínas Cry o Cyt. Las proteínas Cry se denominan así porque son las proteínas de las inclusiones paraesporales (cristales, que dan lugar a la abreviatura Cry) de Bt que presentan un efecto tóxico experimentalmente verificable frente a un organismo diana o que tienen una similitud de secuencia significativa con una proteína Cry conocida, mientras que las proteínas Cyt son las proteínas de las inclusiones paraesporales de Bt que exhiben actividad hemolítica (citolítica, que da lugar a la abreviatura Cyt) o que tienen una similitud de secuencia significativa con una proteína Cyt conocida.  Bacillus thuringiensis (Bt) is a Gram positive, ubiquitous and sporulant bacterium that frequently synthesizes various proteins (Cry, Cyt and Vip) with insecticidal activity against a wide range of insects that cause pests such as lepidoptera (Dulmage, 1970; Estruch et al. , 1996), beetles (Estruch and Yu, 1998; Krieg et al., 1983), diptera (Federici et al., 2003; Goldberg, 1977) and hemiptera (Porcar et al., 2009; Sattar and Maiti, 201 1) . Bt produces insecticidal proteins during sporulation that appear as parasporal crystals, crystals that are predominantly composed of one or more Cry or Cyt proteins. Cry proteins are so named because they are the proteins of the parasporal inclusions (crystals, which give rise to the abbreviation Cry) of Bt that have an experimentally verifiable toxic effect against a target organism or that have a significant sequence similarity with a protein Known Cry, while Cyt proteins are the proteins of the Bes parasporal inclusions that exhibit hemolytic (cytolytic, which results in the abbreviation Cyt) or that have a significant sequence similarity with a known Cyt protein.
Las proteínas Cry pertenecen a una clase de toxinas bacterianas conocidas como toxinas formadoras de poros. Las proteínas Cry de Bt en particular no exhiben actividad insecticida hasta que no han sido ingeridas y solubilizadas en el intestino del insecto, donde la forma ingerida (protoxina) es hidrolizada por proteasas para dar lugar a la molécula tóxica activa (toxina). Junto con algunas proteínas Cyt, se engloban dentro del grupo de las delta-endotoxinas. Las proteínas Cry generalmente presentan cinco bloques de secuencia conservados, y tres dominios estructurales conservados: dominio I o dominio N, dominio II o dominio M y dominio III o dominio C, que reciben esa denominación por las regiones donde aparecen en la proteína: zona del extremo amino (N), zona media (M) y zona del extremo carboxilo (C). Esos tres dominios estructurales son responsables de su actividad insecticida contra distintas especies de insectos, así como también contra células cancerígenas de origen humano (parasporinas) (Ohba et al., 2009). De estos últimos, se considera que los dominios M y C en particular están implicados en el reconocimiento y unión al receptor, y se consideran por ello determinantes de su especificidad como toxinas. El dominio III (dominio C) presenta a menudo una homología estructural con proteínas que se unen a hidratos de carbono como el dominio de unión a celulosa de la 1 ,4^-glucanasa C, galactosa oxidasa, sialidasa, β-glucoronidasa, el dominio de unión a hidratos de carbono de la xilanasa U y β-galactosidasa. La forma de protoxina de muchas proteínas Cry presenta una extensión en el extremo carboxilo que hace que su longitud sea mayor que la de otras protoxinas de la familia, extensión que se considera dispensable para la toxicidad pero que se cree que juega un papel en la formación de los cuerpos de inclusión cristalinos dentro de la bacteria. Cry proteins belong to a class of bacterial toxins known as pore-forming toxins. Bry Cry proteins in particular do not exhibit insecticidal activity until they have been ingested and solubilized in the gut of the insect, where the ingested form (protoxin) is hydrolyzed by proteases to give rise to the active toxic molecule (toxin). Together with some Cyt proteins, they are included in the delta-endotoxin group. Cry proteins generally have five conserved sequence blocks, and three conserved structural domains: domain I or domain N, domain II or domain M and domain III or domain C, which receive that denomination by the regions where they appear in the protein: zone of the amino end (N), middle zone (M) and carboxyl end zone (C). These three structural domains are responsible for their insecticidal activity against different insect species, as well as against human cancer cells (parasporins) (Ohba et al., 2009). Of the latter, it is considered that the M and C domains in particular are involved in recognition and receptor binding, and are therefore considered determinants of their specificity as toxins. Domain III (domain C) often has a structural homology with carbohydrate-binding proteins such as the cellulose binding domain of 1,4-glucanase C, galactose oxidase, sialidase, β-glucoronidase, the domain of binding to carbohydrates of xylanase U and β-galactosidase. The protoxin form of many Cry proteins has an extension at the carboxyl end that makes its length greater than that of other protoxins in the family, an extension that is considered to be dispensable for toxicity but is believed to play a role in the formation of the crystalline inclusion bodies within the bacteria.
Los insecticidas basados en delta-endotoxinas han tenido un uso intensivo, que ha dado lugar incluso a la aparición de resistencias en algunas especies.  Insecticides based on delta-endotoxins have been intensively used, which has even led to the emergence of resistance in some species.
Dentro del orden de los hemípteros {Hemipterá), la familia de los afididos o áfidos {Aphididae), más conocidos como pulgones, contiene gran número de parásitos de plantas angiospermas, que originan algunas de las principales plagas que afectan a diferentes cultivos agrícolas. El pulgón verde, Myzus persicae (Sulzer, 1776), es una de las principales plagas polífagas en muchas regiones del mundo (Harrington, 2007) incluida España (Diaz et al., 2006). Afecta también a un gran número de cultivos agrícolas de gran importancia económica (Harrington, 2007), entre los que se incluyen distintos frutales (como los de algunos cítricos, el melocotonero y otros árboles del género Prunus) y cultivos herbáceos como solanáceas, gramíneas y cruciferas. En dichos cultivos no sólo produce daños directos por alimentación, sino también por ser un eficiente vector transmisor de varios virus fitopatógenos causantes de enfermedades vegetales muy perjudiciales (Nebreda et al., 2004). Es más, recientemente se ha descrito que esta especie se ha hecho resistente a algunos de los insecticidas químicos de síntesis más comúnmente utilizados para su control en Europa (Slater et al., 2012). Actualmente, se conocen varias proteínas Cry de Bt con actividad insecticida contra áfidos. Sin embargo, no han resultado especialmente tóxicas contra estos insectos, ya que son necesarias elevadas dosis para matar entre el 50% y el 100% de los insectos tratados (Chougule and Bonning, 2012; Porcar et al., 2009). La Tabla 1 que se muestra a continuación resume las toxicidades conocidas de proteínas Cry contra especies de áfidos que causan plagas, de acuerdo con los datos de Chougule and Bonning (Chougule and Boning, 2012). Within the order of the hemiptera {Hemipterá), the family of aphids or aphids {Aphididae), better known as aphids, contains large numbers of parasites of angiosperm plants, which originate some of the main pests that affect different agricultural crops. The green aphid, Myzus persicae (Sulzer, 1776), is one of the main polyphagous pests in many regions of the world (Harrington, 2007) including Spain (Diaz et al., 2006). It also affects a large number of agricultural crops of great economic importance (Harrington, 2007), including different fruit trees (such as some citrus fruits, peach trees and other trees of the genus Prunus) and herbaceous crops such as Solanaceae, grasses and crucifixes In these crops, it not only produces direct food damage, but also because it is an efficient vector for the transmission of several phytopathogenic viruses that cause very harmful plant diseases (Nebreda et al., 2004). Moreover, it has recently been described that this species has become resistant to some of the most commonly used synthetic chemical insecticides for its control in Europe (Slater et al., 2012). Currently, several Bry Cry proteins with insecticidal activity against aphids are known. However, they have not been especially toxic against these insects, since high doses are necessary to kill between 50% and 100% of the treated insects (Chougule and Bonning, 2012; Porcar et al., 2009). Table 1 below summarizes the known toxicities of Cry proteins against aphid species that cause pests, according to data from Chougule and Bonning (Chougule and Boning, 2012).
Tabla 1  Table 1
Toxicidades conocidas de proteínas Cry contra áfidos causantes de plagas  Known toxicities of Cry proteins against pest-causing aphids
Toxina Toxicidad Especificidad Toxin Toxicity Specificity
Pulgón de la patataPotato aphid
Cry2, Cry3, Cry4 Reducida Cry2, Cry3, Cry4 Reduced
{Macrosiphum euphorbiae) {Macrosiphum euphorbiae)
Cry4Aa 1X50: 70 - 100 μg/ml Cry4Aa 1X50: 70 - 100 μg / ml
Pulgón verde de la alfalfa Alfalfa green aphid
Cry1 1 Aa 100% mortalidad a 500 μg/ml Cry1 1 Aa 100% mortality at 500 μg / ml
(Acyrthosiphon pisum) (Acyrthosiphon pisum)
Cry3A 60% mortalidad a 500 μg/ml Cry3A 60% mortality at 500 μg / ml
La solicitud de patente internacional WO2010099365 (perteneciente a la misma familia que la patente de EE.UU. US8318900B2), se refiere a secuencias nucleotídicas que codifican proteínas que presentan homología con las delta-endotoxinas, a composiciones que comprenden dichas proteínas y a métodos para conferir resistencia contra plagas a bacterias, plantas, células vegetales, tejidos y semillas mediante la transformación de dichos organismos con dichas secuencias nucleotídicas. La solicitud WO2010099365 divulga tanto secuencias naturales de genes identificados en distintas cepas de Bacillus thuríngiensis (SEQ ID NOs:1 a 47 de dicha solicitud) como secuencias sintéticas preparadas a partir de las anteriores (SEQ ID Nos:97 a 196 de dicha solicitud WO2010099365), que dan lugar a proteínas que carecen del "dominio cristalino" C- terminal presente en la mayor parte de las delta-endotoxinas. En la solicitud WO2010099365 se cita Myzus persicae como una de las posibles plagas a combatir. Sin embargo, la solicitud no menciona ningún ensayo en el que se pruebe la eficiencia para combatir dicho áfido de las composiciones y métodos divulgados en el documento WO2010099365, aunque sí se definen unas pautas generales para posibles ensayos de áfidos en el Ejemplo 20, sin mostrar preferencia por el uso de ninguna de las delta- endotoxinas divulgadas en el documento. El Ejemplo 19 de dicha solicitud describe un ensayo en el que se prueba la eficacia contra otro áfido, Aphis glycines, de proteínas sintéticas derivadas de la proteína Axmi171 (un homólogo lejano de la proteína Cry12Aa2, codificado por la secuencia insertada en la construcción descrita en la secuencia número 204 de la solicitud WO2010099365 y de la patente US8318900B2, secuencia que codifica la secuencia de aminoácidos identificada con el número 205); el máximo valor de mortalidad obtenido, 2 (es decir, 25-50% de los recipientes mostraban 100% de mortalidad) sólo se consigue con un extracto concentrado de E. coli que expresa la forma de la proteína que carece del dominio N-terminal o con una forma de la proteína obtenida tras escindir con el factor Xa una proteína de fusión que incluía la proteína de unión a la maltosa y resuspender en agua el precipitado formado, mientras que el resto de las variantes dieron lugar a 0-25% de los recipientes con 100% de mortalidad. Sin embargo, en el ejemplo anterior, el Ejemplo 18, se describen ensayos realizados también con derivados de dicha proteína Axmi171 , concretamente con distintas concentraciones de la forma de la proteína obtenida tras escindir con el factor Xa una proteína de fusión que incluía la proteína de unión a la maltosa y resuspender en agua el precipitado formado, pero donde se determina la actividad contra un hemíptero que no pertenece a la familia de los áfidos sino a otra familia, la familia Miridae, concretamente Lygus hesperus, encontrando que una concentración de 50 ppm (50 μg/ml) es suficiente para dar lugar a un 80% de mortalidad en dicho hemíptero. International patent application WO2010099365 (belonging to the same family as US patent US8318900B2), refers to nucleotide sequences encoding proteins that have homology to delta-endotoxins, compositions comprising said proteins and methods for conferring resistance against pests to bacteria, plants, plant cells, tissues and seeds by transforming said organisms with said nucleotide sequences. The application WO2010099365 discloses both natural sequences of genes identified in different strains of Bacillus thuríngiensis (SEQ ID NOs: 1 to 47 of said application) and synthetic sequences prepared from the above (SEQ ID Nos: 97 to 196 of said application WO2010099365) , which give rise to proteins that lack the C-terminal "crystalline domain" present in most delta-endotoxins. In the application WO2010099365 Myzus persicae is cited as one of the possible pests to combat. However, the application does not mention any test in which the efficiency to combat said aphid of the compositions and methods disclosed in WO2010099365 is tested, although general guidelines for possible aphid tests in Example 20 are defined, without showing preference for the use of any of the delta-endotoxins disclosed in the document. Example 19 of said application describes an assay in which efficacy against another aphid, Aphis glycines, of proteins is tested. Synthetic derivatives of the Axmi171 protein (a distant homologue of the Cry12Aa2 protein, encoded by the sequence inserted in the construction described in sequence number 204 of application WO2010099365 and patent US8318900B2, sequence encoding the amino acid sequence identified with the number 205); the maximum mortality value obtained, 2 (that is, 25-50% of the containers showed 100% mortality) is only achieved with a concentrated extract of E. coli that expresses the shape of the protein that lacks the N-terminal domain or with a form of the protein obtained after cleaving with the factor Xa a fusion protein that included the maltose binding protein and resuspending the precipitate formed in water, while the rest of the variants gave rise to 0-25% of containers with 100% mortality. However, in the previous example, Example 18, tests carried out also with derivatives of said Axmi171 protein are described, specifically with different concentrations of the form of the protein obtained after cleaving with the factor Xa a fusion protein that included the protein of union to the maltose and resuspend the precipitate formed in water, but where the activity against a hemiptera is determined that does not belong to the aphid family but to another family, the Miridae family, specifically Lygus hesperus, finding that a concentration of 50 ppm (50 μg / ml) is sufficient to give rise to 80% mortality in said hemiptera.
La solicitud de patente internacional WO2009158470, perteneciente a la familia de la patente de EE.UU. US8461421 B2 y del mismo solicitante que la anterior, describe también nuevos genes que codifican proteínas pesticidas de tipo delta-endotoxinas. Las proteínas y sus respectivos genes se utilizan para preparar formulaciones plaguicidas y para la producción de plantas transgénicas resistentes a las plagas. Myzus persicae es mencionado como una de las posibles plagas a combatir mediante la invención descrita en dicha solicitud de patente internacional, sin precisar la posible delta-endotoxina a utilizar o las condiciones concretas de aplicación. En dicha solicitud, no se menciona tampoco ningún ejemplo en el que se demuestre la utilidad de dichas formulaciones o de dichas plantas transgénicas contra ningún áfido, sino únicamente contra algunos lepidópteros, aunque sí se definen unas pautas generales para posibles ensayos de áfidos en el Ejemplo 8, de nuevo sin mostrar preferencia por el uso de ninguna de las delta-endotoxinas divulgadas en el documento para efectivamente llevarlos a cabo. International patent application WO2009158470, belonging to the family of US Pat. US8461421 B2 and of the same applicant as the previous one, also describes new genes encoding pesticide proteins of the delta-endotoxin type. Proteins and their respective genes are used to prepare pesticide formulations and for the production of pest resistant transgenic plants. Myzus persicae is mentioned as one of the possible pests to combat by the invention described in said international patent application, without specifying the possible delta-endotoxin to be used or the specific conditions of application. In this application, there is also no mention of any example in which the usefulness of said formulations or of said transgenic plants against any aphid is demonstrated, but only against some lepidoptera, although some general guidelines for possible aphid tests are defined in the Example 8, again without showing preference for the use of any of the delta-endotoxins disclosed in the document to effectively carry them out.
Las solicitudes de patente de EE.UU. publicadas como US2012047607A1 y US201204760A1 (ambas con el mismo solicitante, Pionner Hi-Bred International Inc.) se refieren también a nuevos genes de Bacillus thuríngiensis que codifican proteínas plaguicidas de la familia Cry, a composiciones derivadas de los mismos y a métodos e control de plagas que las emplean, incluida la generación de plantas transgénicas que los expresan. Aunque se citan varios áfidos como posibles plagas de interés, entre ellos Myzus persicae en particular, las solicitudes no incluyen ensayos en los que se demuestre la efectividad de las proteínas de dichas invenciones contra ningún áfido. En la solicitud US2012047605A1 , por ejemplo, sólo se describen ensayos realizados con varios lepidópteros, alimentados con una dieta artificial que incluye la proteína Cry divulgada en dicha solicitud, obtenida por mutagénesis. En la solicitud US2012047607A1 , por su parte, se describe un ensayo similar con un coleóptero, Diabrotica virgifera, (Ejemplo 1 ), que incluye también el cálculo de la LC50 y de la EC50 (concentración efectiva media) (Ejemplo 2). U.S. patent applications published as US2012047607A1 and US201204760A1 (both with the same applicant, Pionner Hi-Bred International Inc.) also refer to new Bacillus thuríngiensis genes that encode Cry family pesticide proteins, compositions derived therefrom and methods of control of pests that use them, including the generation of transgenic plants that express them. Although several aphids are cited as possible pests of interest, including Myzus persicae in particular, the applications do not include trials demonstrating the effectiveness of the proteins of such inventions against any aphid. In the application US2012047605A1, for example, only trials with several lepidopterans, fed with an artificial diet including the Cry protein disclosed in said application, obtained by mutagenesis, are described. In the application US2012047607A1, on the other hand, a similar test is described with a beetle, Diabrotica virgifera, (Example 1), which also includes the calculation of LC 50 and EC 50 (average effective concentration) (Example 2).
La solicitud de patente internacional W09516778 sí se refiere específicamente a un método para combatir los daños que los áfidos causan en plantas mediante una proteína tóxica de Bacillus thuringiensis. Dicha solicitud de patente internacional menciona en los antecedentes de la invención la falta de actividad contra los áfidos de los insecticidas basados en Bacillus thuringiensis cuando se utilizan de forma independiente, no dando lugar tampoco a un aumento de la efectividad cuando se combinan con piretrinas. La misma falta de actividad se había encontrado con diversas plantas transgénicas capaces de expresar proteínas insecticidas de Bacillus thuringiensis. La solicitud W09516778 propone alimentar áfidos con una dieta artificial que contiene proteínas Cry preparadas en una formulación adecuada (solubilizada en un medio acuoso o en forma de suspensión de sólidos) por medio de un dispositivo alimentador, preparado a escala de laboratorio, donde los áfidos están separados de la dieta por una fina membrana de plástico. Como alternativa se propone la obtención de plantas transgénicas en las que el promotor al que está unido el gen de la proteína Cry se elige para que dicha proteína Cry se exprese en el tejido vascular de la planta, preferiblemente en el floema, pues eso asegura que los áfidos ingieran la proteína al alimentarse de la planta. Dicha solicitud no muestra ningún ejemplo en el que se demuestre la efectividad de la estrategia de expresión de proteínas Cry en el floema de plantas transgénicas.  International patent application W09516778 does specifically refer to a method to combat the damage that aphids cause in plants by means of a toxic Bacillus thuringiensis protein. Said international patent application mentions in the background of the invention the lack of activity against the aphids of the insecticides based on Bacillus thuringiensis when used independently, neither leading to an increase in effectiveness when combined with pyrethrins. The same lack of activity had been found with various transgenic plants capable of expressing Bacillus thuringiensis insecticidal proteins. Application W09516778 proposes to feed aphids with an artificial diet containing Cry proteins prepared in a suitable formulation (solubilized in an aqueous medium or in the form of a suspension of solids) by means of a feeder device, prepared on a laboratory scale, where aphids are separated from the diet by a thin plastic membrane. Alternatively, it is proposed to obtain transgenic plants in which the promoter to which the Cry protein gene is attached is chosen so that said Cry protein is expressed in the vascular tissue of the plant, preferably in the phloem, since that ensures that Aphids ingest protein when feeding on the plant. This request does not show any example in which the effectiveness of the Cry protein expression strategy in the phloem of transgenic plants is demonstrated.
En cuanto a la alimentación artificial, en la solicitud W09516778 sólo se describen ensayos con el pulgón de la patata, Macrosiphum euphorbiae (Thomas), que demuestran que son necesarias concentraciones elevadas de la proteína CryIIIA para observar un efecto (Ejemplo 1 ). En el Ejemplo 2, por su parte, intenta comparar la efectividad de las proteínas CrylA(c), CryIIA, CryIIIA, CrylllB2, CrylllB3, CryIVD y de una mezcla de proteínas Cry de tipo I (CrylA(a), CrylA(b), CryIC y CryIF), todas ellas en suspensión acuosa; aunque la diferencia en las concentraciones añadidas en cada caso dificulta las comparaciones, el resultado demuestra que sólo la proteína CrylA(c) no mostró actividad insecticida contra Macrosiphum euphorbiae, mientras que la proteína CryIIA (a 200 ng/μΙ) dio lugar a una rápida aparición de la mortalidad, que era cercana al 100% tras dos días de alimentación, siendo menos eficaces las otras proteínas. En la sección dedicada a la descripción detallada de las realizaciones preferidas de la invención de la solicitud W09516778, se considera que las proteínas más eficaces para combatir áfidos, junto con la anterior, son las proteínas CryIIIA, CryIIIB y CryIVD. Esta valoración, sin embargo, no ha sido realizada en ensayos con Myzus persicae. Las restantes proteínas ensayadas mostraron porcentajes variables de actividad insecticida, necesitándose de 4 a 5 días para observar una mortalidad cercana al 100% en el caso de la mezcla de proteínas Cryl (donde la concentración total era próxima a 400 μ9/μΙ, equivalente a 400 mg/ml)), en el caso de la proteína CryIIIA (a 400 ng/μΙ, equivalente a 400 μg/ml) y en el de la proteína CryIVD (a 350 ng/μΙ, equivalente a 350 μg/ml) y hasta 7 días o más en el caso de las proteínas CrylllB2 (a 150 ng/μΙ, equivalente a 150 μg ml) y CrylllB3 (132 μg/μ\, equivalente a 132 mg/ml). As regards artificial feeding, only W09516778 describes trials with the potato aphid, Macrosiphum euphorbiae (Thomas), which demonstrate that high concentrations of the CryIIIA protein are necessary to observe an effect (Example 1). In Example 2, meanwhile, try to compare the effectiveness of CrylA (c), CryIIA, CryIIIA, CrylllB2, CrylllB3, CryIVD and a mixture of Cry type I (CrylA (a), CrylA (b) proteins , CryIC and CryIF), all of them in aqueous suspension; Although the difference in the concentrations added in each case makes comparisons difficult, the result shows that only the CrylA (c) protein showed no activity insecticide against Macrosiphum euphorbiae, while the CryIIA protein (at 200 ng / μΙ) resulted in a rapid onset of mortality, which was close to 100% after two days of feeding, the other proteins being less effective. In the section dedicated to the detailed description of the preferred embodiments of the invention of application W09516778, it is considered that the most effective proteins for fighting aphids, together with the above, are the CryIIIA, CryIIIB and CryIVD proteins. This assessment, however, has not been performed in trials with Myzus persicae. The remaining proteins tested showed varying percentages of insecticidal activity, taking 4 to 5 days to observe a mortality close to 100% in the case of the Cryl protein mixture (where the total concentration was close to 400 μ9 / μΙ, equivalent to 400 mg / ml)), in the case of CryIIIA protein (at 400 ng / μΙ, equivalent to 400 μg / ml) and in that of CryIVD protein (at 350 ng / μΙ, equivalent to 350 μg / ml) and up to 7 days or more in the case of CrylllB2 proteins (at 150 ng / μΙ, equivalent to 150 μg ml) and CrylllB3 (132 μg / μ \, equivalent to 132 mg / ml).
De acuerdo con lo anterior, puede decirse que no se ha descrito hasta ahora ninguna proteína Cry que posea actividad insecticida contra Myzus persicae. According to the above, it can be said that no Cry protein that has insecticidal activity against Myzus persicae has been described so far.
Dada la extensión mundial de Myzus persicae y el gran número de cultivos agrícolas a los que afecta, sería interesante encontrar una proteína con actividad insecticida, por ejemplo del tipo de las endotoxinas, que mostrara una actividad insecticida significativa contra áfidos y, en particular, como Myzus persicae. La presente invención proporciona una solución a dicho problema. Given the worldwide spread of Myzus persicae and the large number of agricultural crops it affects, it would be interesting to find a protein with insecticidal activity, for example of the endotoxin type, that would show significant insecticidal activity against aphids and, in particular, as Myzus persicae. The present invention provides a solution to said problem.
Breve descripción de la invención Brief Description of the Invention
La presente invención se refiere, en un primer aspecto, a una molécula de ácido nucleico aislada que comprende una secuencia de nucleotidos que codifica una delta-endotoxina, caracterizada por que la secuencia de nucleotidos que codifica una delta-endotoxina está representada por SEQ ID NO:1 o presenta al menos un 90% de identidad con la misma. The present invention relates, in a first aspect, to an isolated nucleic acid molecule comprising a nucleotide sequence encoding a delta-endotoxin, characterized in that the nucleotide sequence encoding a delta-endotoxin is represented by SEQ ID NO : 1 or has at least 90% identity with it.
A la secuencia de nucleotidos que codifica una delta-endotoxina y que está representada por SEQ ID NO:1 se aludirá también en lo sucesivo como "el gen de la presente invención", "el gen cry de la presente invención" o "el nuevo gen cry". A la molécula de ácido nucleico definida en este primer aspecto de la invención se aludirá como la molécula de ácido nucleico de la presente invención. The nucleotide sequence encoding a delta-endotoxin and which is represented by SEQ ID NO: 1 will also be referred to hereinafter as "the gene of the present invention", "the cry gene of the present invention" or "the new cry gene ". The nucleic acid molecule defined in this first aspect of the invention will be referred to as the nucleic acid molecule of the present invention.
En aspectos adicionales de la invención, la misma se refiere a un sistema de expresión de la molécula de ácido nucleico anterior y/o de la secuencia codificante comprendida en la misma, y a los vectores de expresión que pueden formar parte de dicho sistema de expresión. Por tanto, la presente invención se refiere también a un vector en el que está inserta la molécula de ácido nucleico de la presente invención, vector que se considerará en adelante un vector de la presente invención. Complementariamente, la invención además se refiere a una célula hospedadora que comprende un vector de la invención, es decir, una célula hospedadora de la presente invención. In further aspects of the invention, it refers to an expression system of the above nucleic acid molecule and / or of the coding sequence comprised therein, and to the expression vectors that may be part of said expression system. Therefore, the present invention also relates to a vector in which it is Insert the nucleic acid molecule of the present invention, a vector that will be considered hereafter a vector of the present invention. In addition, the invention also relates to a host cell comprising a vector of the invention, that is, a host cell of the present invention.
En un aspecto más, la invención se refiere a una planta transgénica que comprende una célula hospedadora de la presente invención que es una célula de planta, así como a una semilla transgénica que comprende una molécula de ácido nucleico de la presente invención. In a further aspect, the invention relates to a transgenic plant comprising a host cell of the present invention that is a plant cell, as well as a transgenic seed comprising a nucleic acid molecule of the present invention.
Otro aspecto de la invención es un polipéptido de la presente invención, es decir, un polipéptido que comprende una secuencia de aminoácidos caracterizada por que dicha secuencia de aminoácidos:  Another aspect of the invention is a polypeptide of the present invention, that is, a polypeptide comprising an amino acid sequence characterized in that said amino acid sequence:
a) es la representada por SEQ ID NO:2;  a) is represented by SEQ ID NO: 2;
b) es la secuencia de una delta-endotoxina que está codificada por la secuencia representada por SEQ ID NO:1 o por una secuencia que presenta al menos un 90% de identidad con la misma, o  b) is the sequence of a delta-endotoxin that is encoded by the sequence represented by SEQ ID NO: 1 or by a sequence that has at least 90% identity with it, or
c) es la secuencia de una delta-endotoxina que presenta al menos un 80% de identidad con la secuencia representada por SEQ ID NO:2.  c) is the sequence of a delta-endotoxin that has at least 80% identity with the sequence represented by SEQ ID NO: 2.
La secuencia de aminoácidos representada por SEQ ID NO:2, así como la secuencia que presenta al menos un 80% de identidad con la misma o la secuencia de una delta- endotoxina que está codificada por la secuencia representada por SEQ ID NO:1 o por una secuencia que presenta al menos un 90% de identidad con la misma, se considerarán en adelante la delta-endotoxina de la presente invención.  The amino acid sequence represented by SEQ ID NO: 2, as well as the sequence that has at least 80% identity with it or the sequence of a delta-endotoxin that is encoded by the sequence represented by SEQ ID NO: 1 or by a sequence that has at least 90% identity with it, the delta-endotoxin of the present invention will be considered hereinafter.
Es también un aspecto de la invención una composición que comprende un polipéptido de la presente invención, un vector de la presente invención y/o una célula hospedadora de la presente invención. Dichas composiciones se considerarán las composiciones de la presente invención. An aspect of the invention is also a composition comprising a polypeptide of the present invention, a vector of the present invention and / or a host cell of the present invention. Such compositions will be considered the compositions of the present invention.
También es un aspecto de la invención el uso de una composición de la presente invención para combatir plagas de al menos un hemíptero, con preferencia por que el hemíptero sea un áfido, y especial preferencia por el áfido Myzus persicae.  It is also an aspect of the invention to use a composition of the present invention to combat pests of at least one hemiptera, preferably because the hemiptera is an aphid, and especially preference for the aphid Myzus persicae.
Un aspecto más de la invención es un método para la producción de un polipéptido de la presente invención, que comprende: A further aspect of the invention is a method for the production of a polypeptide of the present invention, comprising:
a) obtener un organismo recombinante que exprese el polipéptido de la presente invención;  a) obtaining a recombinant organism that expresses the polypeptide of the present invention;
b) cultivar dicho organismo recombinante;  b) culturing said recombinant organism;
c) inducir, de ser necesario, la expresión del polipéptido en dicho organismo recombinante; d) purificar el polipéptido a partir del organismo recombinante. c) inducing, if necessary, the expression of the polypeptide in said recombinant organism; d) purify the polypeptide from the recombinant organism.
Finalmente, también es un aspecto de la invención un anticuerpo que se une específicamente a un polipéptido de la presente invención, especialmente un anticuerpo que se une específicamente al fragmento de dicho polipéptido que constituye la delta- endotoxina de la presente invención. Finally, an aspect of the invention is also an antibody that specifically binds to a polypeptide of the present invention, especially an antibody that specifically binds to the fragment of said polypeptide that constitutes the delta-endotoxin of the present invention.
Breve Descripción de las Figuras Brief Description of the Figures
Fig. 1 : Alineamiento múltiple de secuencias de proteínas Cry activas contra diferentes especies de áfidos. Se incluye la proteína Cry de la presente invención (CryBMI ) y la proteína representada por la secuencia con número de identificación 205 en la patente US8318900B2 (Seq205-US8318900). Bajo cada secuencia aparecen rectángulos sombreados que indican, de haberlos, la situación de los dominios N, M y C, característicos de las delta-endotoxinas insecticidas, así como la de otras regiones significativas (Gal: dominio de unión a galactosa; CW: unión a la pared celular; TMR: región transmembrana; SP: péptido señal) Nótese la presencia de un rectángulo con la etiqueta "Ricina B" (que indica un dominio similar a la ricina B) bajo el extremo derecho de la representación correspondiente a la proteína CryBMI .  Fig. 1: Multiple alignment of active Cry protein sequences against different aphid species. The Cry protein of the present invention (CryBMI) and the protein represented by the sequence with identification number 205 are included in US8318900B2 (Seq205-US8318900). Under each sequence, shaded rectangles appear, indicating, if any, the location of the N, M and C domains, characteristic of insecticidal delta-endotoxins, as well as that of other significant regions (Gal: galactose binding domain; CW: binding to the cell wall; TMR: transmembrane region; SP: signal peptide) Note the presence of a rectangle labeled "Ricin B" (indicating a domain similar to ricin B) under the right end of the corresponding protein representation CryBMI
Fig. 2: Dendrograma representativo de la relación filogenética entre proteínas Cry activas contra áfidos. Se incluye la proteína Cry de la presente invención (CryBMI ) y la proteína representada por la secuencia con número de identificación 205 en la patente US8318900B2 (Seq205-US8318900). La longitud de la barra horizontal situada bajo la línea de la proteína inferior, CryIAa, corresponde a una distancia taxonómica de 0,2, calculada en base al porcentaje de identidad de los alineamientos de las secuencias de aminoácidos, según se indica en la propia figura.  Fig. 2: Representative dendrogram of the phylogenetic relationship between Cry proteins active against aphids. The Cry protein of the present invention (CryBMI) and the protein represented by the sequence with identification number 205 are included in US8318900B2 (Seq205-US8318900). The length of the horizontal bar located below the lower protein line, CryIAa, corresponds to a taxonomic distance of 0.2, calculated based on the percentage of identity of the alignments of the amino acid sequences, as indicated in the figure itself .
Fig. 3: Esquema del vector recombinante de expresión pET-28b(+) utilizado para insertar el gen cryBMI y utilizado entonces para transformar células de Escherichia coli BL21 (DE3) y expresar la proteína insecticida de la presente invención bajo control del promotor del bacteriófago T7 (Promotor T7) inducible por IPTG. Se indica la posición de inserción del gen cryBMI y el tamaño del plásmido antes de la inserción de dicho gen (5369 pares de bases, abreviado como bp). Fig. 3: Scheme of the recombinant expression vector pET-28b (+) used to insert the cryBMI gene and then used to transform Escherichia coli BL21 (DE3) cells and express the insecticidal protein of the present invention under control of the bacteriophage promoter T7 (Promoter T7) inducible by IPTG. The insertion position of the cryBMI gene and the size of the plasmid before insertion of said gene is indicated (5369 base pairs, abbreviated as bp).
Fig. 4: Fotografía del gel de SDS-PAGE obtenido al someter a electroforesis una muestra de la proteína CryBMI expresada en Escherichia coli y purificada en columna de níquel. Se indica con una flecha y el tamaño estimado (89 kDa) la banda correspondiente a la muestra (carril derecho, etiquetado como "Cry"); en el carril izquierdo, correspondiente al marcador, se indica el tamaño de las dos bandas entre las que se localiza la banda de la muestra de CryBMI . Fig. 5: Fotografía de los elementos utilizados en el bioensayo de actividad insecticida. De izquierda a derecha: vista posterior de un fragmento de las tiras de película plástica para laboratorio Parafilm® "M"; vista lateral de una caja de ensayo; vista superior de una caja de ensayo, con 15 ninfas neonatas de Myzus persicae; vista superior de una caja cubierta con una capa de Parafilm® "M" con una gota de dieta + proteína CryBMI ("toxina" en la leyenda de la fotografía") depositada sobre la misma; vista superior de una caja con los mismos elementos que la anterior, en la que la gota de dieta + proteína CryBMI se ha cubierto con una segunda capa de Parafilm® "M". Junto a las cajas (en un nivel superior de la superficie de la fotografía) se muestra un extremo de la pipeta automática utilizada para depositar las gotas de dieta + proteína CryBMI , en la que se ha encajado la punta utilizada para tomar y depositar las muestras. Fig. 4: Photograph of the SDS-PAGE gel obtained by electrophoresis a sample of the CryBMI protein expressed in Escherichia coli and purified on a nickel column. The band corresponding to the sample (right lane, labeled "Cry") is indicated with an arrow and the estimated size (89 kDa); in the left lane, corresponding to the marker, the size of the two bands between which the CryBMI sample band is located is indicated. Fig. 5: Photograph of the elements used in the bioassay of insecticidal activity. From left to right: rear view of a fragment of the Parafilm® "M" plastic laboratory film strips; side view of a test box; top view of a test box, with 15 newborn nymphs of Myzus persicae; top view of a box covered with a layer of Parafilm® "M" with a drop of diet + CryBMI protein ("toxin" in the photo caption ") deposited on it; top view of a box with the same elements as the previous one, in which the diet drop + CryBMI protein has been covered with a second layer of "M" Parafilm®. Next to the boxes (at an upper level of the surface of the photograph) an end of the pipette is shown automatic used to deposit the drops of diet + CryBMI protein, in which the tip used to take and deposit the samples has been fitted.
Descripción detallada de la invención Detailed description of the invention
La presente invención se basa en la identificación y aislamiento de un gen de de Bacillus thuríngiensis (Bt), así como en la identificación, aislamiento, producción y evaluación insecticida de su producto, una nueva proteína Cry de Bt que es tóxica contra el áfido Myzus persicae o pulgón verde. Este nuevo gen y su producto, pueden ser utilizados para el desarrollo de nuevos biopesticidas y la construcción de plantas transgénicas resistentes al pulgón verde.  The present invention is based on the identification and isolation of a Bacillus thuríngiensis (Bt) gene, as well as the identification, isolation, production and insecticidal evaluation of its product, a new Bt Cry protein that is toxic against the Myzus aphid Persicae or green aphid. This new gene and its product can be used for the development of new biopesticides and the construction of transgenic plants resistant to green aphids.
En la presente solicitud se detallan la secuencia de nucleótidos del nuevo gen aislado (representada por SEQ ID NO:1 ) y la secuencia de aminoácidos de la proteína codificada por dicho gen (representada por SEQ ID NO:2). También se aportan pruebas de la capacidad insecticida de dicha proteína, como el cálculo del valor de la concentración letal media (CL50), (que es la concentración de toxina que produce la muerte en el 50% de los insectos que han sido tratados), que ha resultado ser una concentración más baja que las descritas para otras proteínas Cry aplicadas a otros hemípteros plaga, particularmente más baja que las descritas hasta ahora para otros áfidos. In the present application, the nucleotide sequence of the new isolated gene (represented by SEQ ID NO: 1) and the amino acid sequence of the protein encoded by said gene (represented by SEQ ID NO: 2) are detailed. Evidence of the insecticidal capacity of this protein is also provided, such as the calculation of the value of the mean lethal concentration (LC 50 ), (which is the concentration of toxin that causes death in 50% of the insects that have been treated) , which has been found to be a lower concentration than those described for other Cry proteins applied to other pest hemiptera, particularly lower than those described so far for other aphids.
La presente solicitud proporciona una descripción detallada de la nueva proteína Cry y del gen que la codifica, que son significativamente diferentes, en secuencia y en algunas características estructurales, de las secuencias correspondientes a otras proteínas Cry y, en particular, bastante diferentes de las proteínas Cry con actividad insecticida comprobada descritas hasta ahora. The present application provides a detailed description of the new Cry protein and the gene that encodes it, which are significantly different, in sequence and in some structural characteristics, from the sequences corresponding to other Cry proteins and, in particular, quite different from the proteins. Cry with proven insecticidal activity described so far.
El análisis estructural esquematizado en la Fig. 1 muestra que la proteína cuyo aislamiento y producción se describe más adelante en la presente solicitud (indicada en dicha Fig. 1 como CryBMI ) es una proteína de 89 kDa que presenta la estructura característica de las delta-endotoxinas, incluidos los dominios N, M y C que generalmente están presentes en las proteínas Cry. En el dominio C en particular se observa una zona similar a un dominio de unión a hidratos de carbono, concretamente un dominio de unión a galactosa. Por ello, a la proteína cuyo aislamiento y producción se divulga en la presente solicitud, junto con la identificación y aislamiento de su secuencia codificante, se le denomina en la presente solicitud la proteína Cry de la presente invención, la delta- endotoxina de la presente invención o, simplemente, la proteína de la presente invención. El dendrograma representativo de la relación filogenética entre proteínas Cry activas contra áfidos de la Fig. 2 muestra que la proteína Cry de la presente invención no está estrechamente relacionada con ninguna de dichas proteínas, indicando que se corresponde con una proteína no descrita hasta la fecha. A dicha proteína se le ha asignado provisionalmente la denominación abreviada CryBMI en relación al grupo de investigación (Bioinsecticidas Microbianos). The structural analysis schematized in Fig. 1 shows that the protein whose isolation and production is described later in the present application (indicated in said Fig. 1 as CryBMI) is a 89 kDa protein that has the characteristic structure of delta- endotoxins, including the N, M and C domains that generally They are present in Cry proteins. In the C domain in particular, an area similar to a carbohydrate binding domain is observed, specifically a galactose binding domain. Therefore, the protein whose isolation and production is disclosed in the present application, together with the identification and isolation of its coding sequence, is called in the present application the Cry protein of the present invention, the delta-endotoxin of the present application. invention or simply the protein of the present invention. The representative dendrogram of the phylogenetic relationship between active and aphid Cry proteins of Fig. 2 shows that the Cry protein of the present invention is not closely related to any of said proteins, indicating that it corresponds to a protein not described to date. Said protein has been provisionally assigned the abbreviated designation CryBMI in relation to the research group (Microbial Bioinsecticides).
Los análisis comparativos realizados, basados en las búsquedas en bases de datos de otras secuencias de nucleótidos conocidas y su comparación con respecto a SEQ ID NO:1 , por una parte, y de secuencias de proteínas conocidas y su comparación con respecto a SEQ ID NO:2, por otra parte, han permitido corroborar no sólo que la nueva proteína Cry (o delta-endotoxina) de la presente invención es nueva, como también lo es su secuencia codificante, por no coincidir sus secuencias con ninguna otra secuencia de aminoácidos o nucleótidos, respectivamente, previamente conocidas, sino también detectar diferencias con otras secuencias relacionadas.  The comparative analyzes performed, based on searches in databases of other known nucleotide sequences and their comparison with respect to SEQ ID NO: 1, on the one hand, and of known protein sequences and their comparison with respect to SEQ ID NO : 2, on the other hand, have allowed us to corroborate not only that the new Cry protein (or delta-endotoxin) of the present invention is new, as is its coding sequence, because its sequences do not coincide with any other amino acid sequence or Nucleotides, respectively, previously known, but also detect differences with other related sequences.
Así, por ejemplo, la comparación de la secuencia de nucleótidos del gen de la presente invención (SEQ ID NO:1 ) con otras secuencias de nucleótidos ha permitido constatar que no se encuentra ninguna secuencia de nucleótidos que presente un porcentaje de identidad que alcance el valor del 90%, o superior, con respecto a SEQ ID NO:1 . El máximo porcentaje de identidad, 87%, corresponde a la secuencia de nucleótidos con el número 38 en la familia de la solicitud de patente internacional WO 2010099365 y la patente de EE.UU. US8318900, a la que también pertenece la solicitud japonesa JP 2012519000-A, secuencia que codifica la proteína que responde a la secuencia 87 de dicha familia. También aparecen entre la lista de secuencias con mayor porcentaje de homología respecto a SEQ ID NO:1 (véase la Tabla 4 que se presenta más adelante) otras secuencias de nucleótidos divulgadas en la misma familia de documentos de patente, como la secuencia 169 de WO2010099365 (secuencia 122 de JP 2012519000- A), con la que el gen de la presente invención presenta una identidad del 70%. Aparece también en esa misma lista una secuencia divulgada en la familia de documentos de patente de la solicitud internacional WO 2009158470 y la patente de EE.UU. US8461421 (que incluye también a la solicitud de patente de Japón JP201 1526150-A), la secuencia con el número 24 de esta segunda familia de patentes, con la que SEQ ID NO:1 de la presente invención presenta un 71 % de identidad (considerando los nucleótidos 1 a 1345), que se eleva al 76% en el fragmento de 215 nucleótidos comprendido entre el nucleótido 1372 y el nucleótido 1586 de SEQ ID NO:1 ; el fragmento comprendido entre los nucleótidos 1346 y 1371 , sin embargo, no aparece entre los de mayor identidad con la secuencia con el número 24 de la familia de patentes de la solicitud internacional WO 2009158470 y la patente de EE.UU. US8461421 . Thus, for example, the comparison of the nucleotide sequence of the gene of the present invention (SEQ ID NO: 1) with other nucleotide sequences has allowed us to verify that no nucleotide sequence is found that has a percentage of identity that reaches the value of 90%, or higher, with respect to SEQ ID NO: 1. The maximum percentage of identity, 87%, corresponds to the nucleotide sequence with the number 38 in the family of the international patent application WO 2010099365 and US Pat. US8318900, to which Japanese application JP 2012519000-A also belongs, a sequence that encodes the protein that responds to sequence 87 of said family. Other nucleotide sequences disclosed in the same family of patent documents, such as sequence 169 of WO2010099365, also appear among the list of sequences with the highest percentage of homology with respect to SEQ ID NO: 1 (see Table 4 below). (sequence 122 of JP 2012519000-A), with which the gene of the present invention has an identity of 70%. A sequence disclosed in the family of patent documents of the international application WO 2009158470 and US Pat. US8461421 (which also includes the Japanese patent application JP201 1526150-A), the sequence with the number 24 of this second family of patents, with which SEQ ID NO: 1 of the present invention has a 71% identity (considering nucleotides 1 to 1345), which rises to 76% in the 215 nucleotide fragment between nucleotide 1372 and nucleotide 1586 of SEQ ID NO: 1; the fragment between nucleotides 1346 and 1371, however, does not appear among those of greater identity with the sequence with number 24 of the patent family of international application WO 2009158470 and US Pat. US8461421.
Sin embargo, tal como se mencionó previamente en la presente memoria, ninguno de los documentos citados muestra ensayos realizados en los que se demuestre actividad insecticida de alguna de las proteínas codificadas por dichas secuencias de nucleótidos, asumiéndose que tal actividad existe por responder todas las proteínas a la estructura de las delta-endotoxinas. No hay tampoco en dichos documentos ninguna sugerencia de que alguna de esas proteínas codificadas por secuencias con un porcentaje de identidad considerable con el gen de la presente invención pudiera ser especialmente adecuada para áfidos. Es más, la secuencia 169 de WO2010099365 pertenece al grupo de genes sintéticos descritos en dicha solicitud de patente que carecen del dominio "cristalino" del extremo carboxilo que está presente en muchas delta-endotoxinas, y que se cree que está implicado en la formación de cuerpos cristalinos de inclusión dentro de Bt.  However, as previously mentioned herein, none of the documents cited shows tests carried out in which insecticidal activity of any of the proteins encoded by said nucleotide sequences is demonstrated, assuming that such activity exists by responding to all proteins. to the structure of delta-endotoxins. There is also no suggestion in these documents that any of those proteins encoded by sequences with a considerable percentage of identity with the gene of the present invention could be especially suitable for aphids. Moreover, sequence 169 of WO2010099365 belongs to the group of synthetic genes described in said patent application that lack the "crystalline" domain of the carboxyl end which is present in many delta-endotoxins, and which is believed to be involved in the formation of crystalline inclusion bodies within Bt.
La situación es similar en lo que se refiere a otras secuencias de nucleótidos que presentan también un porcentaje de identidad igual o superior al 70% con respecto a la secuencia del gen de la presente invención, representada por SEQ ID NO:1 . Así, la CDS (secuencia codificante) con número de acceso KC156704, que se dice que corresponde a una proteína plaguicida de Bacillus thuríngiensis, cepa ARP242, presenta también un porcentaje de identidad del 87% con respecto a SEQ ID NO:1 , pero no parece presentar entre la información disponible a partir de su número de acceso la mención de ninguna publicación o documento de otro tipo en el que se demuestre su actividad plaguicida, no habiendo mención ninguna de posible aplicación a hemípteros, áfidos en particular, o Myzus persicae en particular. Igual sucede con las CDS correspondientes a las cepas ARP256 (87% de identidad) o ARP277 (70% de identidad) de Bt. Finalmente, además de fragmentos de la secuenciación del genoma completo de Bacillus subtilis, aparecen también porcentajes de identidad altos, pero que no llegan al 75% (74%) con fragmentos reducidos (152 nucleótidos) de secuencias codificantes (CDS) que, hipotéticamente, podrían codificar proteínas Cry a las que se les está asignando una aplicación no plaguicida, sino la de matar células cancerosas. The situation is similar in regard to other nucleotide sequences that also have an identity percentage equal to or greater than 70% with respect to the gene sequence of the present invention, represented by SEQ ID NO: 1. Thus, the CDS (coding sequence) with accession number KC156704, which is said to correspond to a pesticide protein of Bacillus thuríngiensis, strain ARP242, also has an identity percentage of 87% with respect to SEQ ID NO: 1, but not it appears to present among the information available from its accession number the mention of any publication or other document in which its pesticide activity is demonstrated, with no mention of any possible application to hemiptera, aphids in particular, or Myzus persists in particular. The same applies to the CDS corresponding to strains ARP256 (87% identity) or ARP277 (70% identity) of Bt. Finally, in addition to fragments of the complete genome sequencing of Bacillus subtilis, high percentages of identity also appear, but that do not reach 75% (74%) with reduced fragments (152 nucleotides) of coding sequences (CDS) that, hypothetically, could encode Cry proteins that are being assigned a non-pesticide application, but to kill cancer cells.
La comparación realizada utilizando directamente la secuencia de la propia proteína de la presente invención (SEQ ID NO:2) da lugar a que los porcentajes de identidad se reduzcan. Entre las secuencias extraídas de documentos de patentes (Tabla 3), el mayor porcentaje de identidad no llega al 80% (76,20%) y corresponde a la secuencia 87 de la familia de la patente US8318900 y la solicitud de patente internacional WO2010099365, que es precisamente la secuencia de aminoácidos codificada por la secuencia 38 de dichas solicitudes, es decir, la secuencia de nucleótidos con la que SEQ ID NO:1 presenta el mayor porcentaje de identidad. A continuación, sólo la secuencia 84 de la familia de la patente de EE.UU. US8461421 y la solicitud de patente internacional WO2009158470 presenta un porcentaje de identidad superior al 50% (57,91 %). El resto de las secuencias extraídas de solicitudes de patente, pertenecientes todas ellas a esta última familia citada, presentan porcentajes de identidad inferiores al 40% con respecto a SEQ ID NO:2. The comparison made directly using the sequence of the protein itself of the present invention (SEQ ID NO: 2) results in the identity percentages being reduce. Among the sequences extracted from patent documents (Table 3), the highest percentage of identity does not reach 80% (76.20%) and corresponds to sequence 87 of the family of US8318900 and international patent application WO2010099365, which is precisely the amino acid sequence encoded by the sequence 38 of said applications, that is, the nucleotide sequence with which SEQ ID NO: 1 has the highest percentage of identity. Next, only sequence 84 of the family of US Pat. US 8461421 and the international patent application WO2009158470 has an identity percentage greater than 50% (57.91%). The rest of the sequences extracted from patent applications, all of which belong to the latter family cited, have identity percentages below 40% with respect to SEQ ID NO: 2.
La comparación con otras proteínas no redundantes no permite localizar proteínas con mayor grado de identidad con la secuencia de la delta-endotoxina de la presente invención. Sólo la proteína similar a Cry41 Aa1 (número de acceso en Genbank AEH76822.1 ) tiene un porcentaje de identidad cercano al 60%, 57,91 %. Además de esta proteína, sólo una secuencia, que corresponde a una proteína hipotética (número de acceso en Genbank EJR94916.1 ) presenta un porcentaje de identidad mayor al 50% con SEQ ID NO:2.  The comparison with other non-redundant proteins does not allow to locate proteins with a higher degree of identity with the delta-endotoxin sequence of the present invention. Only Cry41 Aa1-like protein (Genbank accession number AEH76822.1) has an identity percentage close to 60%, 57.91%. In addition to this protein, only one sequence, which corresponds to a hypothetical protein (Genbank accession number EJR94916.1) has an identity percentage greater than 50% with SEQ ID NO: 2.
Así, ni la búsqueda comparativa por la secuencia del gen ni la búsqueda por la secuencia de la proteína permite localizar secuencias que correspondan a proteínas Cry con actividad conocida contra hemípteros (especialmente contra áfidos) y que presenten un porcentaje de identidad alto (al menos del 50%) con el gen y/o la proteína de la presente invención. En particular, no aparece en ninguna de las Tablas 2, 3 ó 4 la secuencia correspondiente a la proteína Cry o los derivados de la misma con los que se realizan ensayos de actividad insecticida en la familia de patentes de la solicitud internacional WO2010099365 y la patente de EE.UU. US8318900B2.  Thus, neither the comparative search by the gene sequence nor the search by the protein sequence allows to locate sequences that correspond to Cry proteins with known activity against hemiptera (especially against aphids) and that have a high percentage of identity (at least 50%) with the gene and / or protein of the present invention. In particular, the sequence corresponding to the Cry protein or derivatives thereof with which insecticidal activity tests are carried out in the patent family of the international application WO2010099365 and the patent are not shown in any of Tables 2, 3 or 4 from the USA US8318900B2.
La delta-endotoxina de la presente invención es bastante diferente de otras proteínas Cry activas contra áfidos descritas hasta el momento. Tal como se muestra en la Tabla 5 que aparece más adelante en la presente memoria, la proteína Cry con actividad conocida contra áfidos que presenta mayor porcentaje de identidad con la proteína Cry de la presente invención es la proteína Cry3Aa, con la que sólo comparte un 26,3% de identidad. Con respecto a otras proteínas para las que se haya ensayado su posible actividad contra áfidos (Cry2Aa, Cry4Aa, Cry1 1 Aa e, incluso, la proteína representada por la secuencia con número de identificación 205 en la patente US8318900B2 y de la solicitud de patente internacional WO2010099365), la identidad no llega al 20%. Y, sin embargo, sorprendentemente, los ensayos experimentales descritos más adelante en Ejemplos de la presente solicitud demuestran que la nueva proteína Cry de la presente invención es la primera proteína Cry de Bt con actividad insecticida significativa contra áfidos en general y, en particular, la primera proteína Cry de Bt para la que se divulga que posea actividad insecticida contra el pulgón verde, Myzus persicae, por lo que, en consecuencia, es un objeto de la presente invención, junto con el gen que la codifica, así como el uso como insecticida de las composiciones que contienen el gen y/o la proteína, incluida la generación de plantas transgénicas que expresen dicho gen. The delta-endotoxin of the present invention is quite different from other Cry proteins active against aphids described so far. As shown in Table 5 below, the Cry protein with known activity against aphids that has a higher percentage of identity with the Cry protein of the present invention is the Cry3Aa protein, with which it only shares a 26.3% identity With respect to other proteins for which its possible activity against aphids has been tested (Cry2Aa, Cry4Aa, Cry1 1 Aa and, even, the protein represented by the sequence with identification number 205 in US8318900B2 and the international patent application WO2010099365), the identity does not reach 20%. And yet, surprisingly, the experimental assays described below in Examples of the present application demonstrate that the new Cry protein of the present invention is the first Ct protein of Bt with significant insecticidal activity against aphids in general and, in particular, the Bry's first Cry protein for which it is reported to possess insecticidal activity against the green aphid, Myzus persicae, so, consequently, it is an object of the present invention, together with the gene that encodes it, as well as the use as insecticide of the compositions containing the gene and / or the protein, including the generation of transgenic plants that express said gene.
Es más, los resultados experimentales demuestran que esta proteína presenta una elevada actividad insecticida siendo su CL50 de tan solo 32,7 μg/ml. Este valor es mucho menor que los valores obtenidos con otras proteínas Cry previamente evaluadas en otras especies de áfidos relacionadas con M. persicae (Tabla 1 ). Es también significativa la diferencia en orden de magnitud con las cantidades de otras proteínas Cry utilizadas en ensayos como los que se describen en la solicitud de patente internacional W09516778 donde algunas proteínas análogas, como la mezcla de proteínas Cryl, llega a utilizarse a una concentración próxima a 400 mg/ml, y donde otras proteínas, como CrylllB2, utilizada a una concentración casi un orden de magnitud superior (150 μg ml), necesitan hasta 7 días para dar lugar a una mortalidad cercana al 100% en ensayos dirigidos a áfidos, en los que Myzus persicae no se menciona. Incluso extendiendo el ámbito de comparación a las actividades conocidas sobre otros hemípteros, el valor puede considerarse elevado, como puede comprobarse a partir del Ejemplo 18 de la solicitud WO2010099365 y de la patente US8318900B2, realizado con derivados no naturales de la proteína representada por la secuencia 205 de dichos documentos, donde la concentración de 50 μg/ml da lugar a un 80% de mortalidad del hemíptero Lygus hesperus, de la familia Miridae, siendo necesario un extracto concentrado obtenido de E. coli para que uno de los derivados de la misma proteína dé lugar al 100% de mortalidad en el 25-50% de los recipientes cuando el ensayo se realiza con un áfido, Aphis glycines. En general, como se comentó previamente en la presente solicitud, los áfidos no resultan muy susceptibles a las toxinas Cry de Bt (Chougule and Bonning, 2012). Este hecho, junto a la capacidad de los áfidos para generar resistencias a los insecticidas químicos de síntesis, incrementa la importancia del descubrimiento de nuevas proteínas más tóxicas para implementar métodos alternativos de control basados en toxinas Bt. La nueva proteína Cry de la presente invención se presenta como tal alternativa, pudiendo ser adaptada al desarrollo de métodos de control basados en nuevos formulados bioinsecticidas y la construcción de plantas transgénicas resistentes al pulgón verde y otras especies de áfidos susceptibles. La secuencia codificante de esta nueva proteína puede utilizarse para transformar huéspedes heterólogos bacterianos o células vegetales mediante técnicas bien conocidas y rutinarias en ingeniería genética, bien para producir nuevas copias de la proteína o como paso intermedio para la generación de plantas transgénicas que la expresen. Para ello, un paso previo suele ser su inserción en un "vector", una molécula de ADN que posibilita que se lleve a cabo el objetivo que se pretende conseguir, bien la expresión del gen (vectores de expresión) o bien la transferencia de moléculas o construcciones de ADN entre distintas células hospedadoras, como puede ser la transformación de células de plantas, a menudo incluyendo la posterior obtención de una planta transgénica (los llamados vectores de transformación, que a menudo son también vectores de expresión, o incluyen lo que se llaman "casetes de expresión"). Tanto en uno como en otro casos, es frecuente que un paso previo sea la generación de "casetes de expresión", en las que el gen a expresar está operativamente unido a un promotor que permite su expresión en un sistema de interés y que a menudo contienen también alguna secuencia regulatoria adicional o de utilidad para la expresión, como una región no traducida de 3' o, especialmente cuando se desea la expresión en células eucarióticas, una secuencia señal o una secuencia líder que facilite el transporte del péptido que se está formando, o una vez traducido, a un orgánulo celular determinado, tales como cloroplastos, retículo endoplásmido, aparato de Golgi...; también es habitual que el "cásete de expresión" se forme al insertar la secuencia codificante a expresar en el vector en un lugar preciso, de manera que quede unida a los elementos deseados. Moreover, the experimental results show that this protein has a high insecticidal activity, its CL 50 being only 32.7 μg / ml. This value is much lower than the values obtained with other Cry proteins previously evaluated in other aphid species related to M. persicae (Table 1). The difference in order of magnitude is also significant with the amounts of other Cry proteins used in tests such as those described in international patent application W09516778 where some analogous proteins, such as the Cryl protein mixture, become used at a close concentration. at 400 mg / ml, and where other proteins, such as CrylllB2, used at a concentration almost an order of magnitude greater (150 μg ml), need up to 7 days to result in a mortality close to 100% in aphid-directed assays, in which Myzus persicae is not mentioned. Even extending the scope of comparison to known activities on other hemiptera, the value can be considered high, as can be seen from Example 18 of the application WO2010099365 and US8318900B2, made with unnatural derivatives of the protein represented by the sequence 205 of these documents, where the concentration of 50 μg / ml results in an 80% mortality of the hemiptera Lygus hesperus, from the Miridae family, a concentrated extract obtained from E. coli being necessary for one of the derivatives thereof Protein results in 100% mortality in 25-50% of the containers when the test is performed with an aphid, Aphis glycines. In general, as previously mentioned in the present application, aphids are not very susceptible to Bt Cry toxins (Chougule and Bonning, 2012). This fact, together with the ability of aphids to generate resistance to synthetic chemical insecticides, increases the importance of discovering new, more toxic proteins to implement alternative control methods based on Bt toxins. The new Cry protein of the present invention is It presents as such an alternative, and can be adapted to the development of control methods based on new formulated bioinsecticides and the construction of transgenic plants resistant to green aphids and other susceptible aphid species. The coding sequence of this new protein can be used to transform bacterial heterologous hosts or plant cells by well known and routine techniques in genetic engineering, either to produce new copies of the protein or as an intermediate step for the generation of transgenic plants that express it. For this, a previous step is usually its insertion into a "vector", a DNA molecule that allows the objective to be achieved to be achieved, either the expression of the gene (expression vectors) or the transfer of molecules or DNA constructs between different host cells, such as the transformation of plant cells, often including the subsequent obtaining of a transgenic plant (the so-called transformation vectors, which are often also expression vectors, or include what is they call "expression cassettes"). In both cases, it is common that a previous step is the generation of "expression cassettes", in which the gene to be expressed is operatively linked to a promoter that allows its expression in a system of interest and that often they also contain some additional regulatory sequence or useful for expression, such as a 3 'untranslated region or, especially when expression in eukaryotic cells, a signal sequence or a leader sequence that facilitates the transport of the peptide being formed is desired , or once translated, to a particular cellular organelle, such as chloroplasts, endoplasmic reticulum, Golgi apparatus ...; It is also common for the "expression cassette" to be formed by inserting the coding sequence to be expressed in the vector in a precise place, so that it is attached to the desired elements.
La elección del promotor depende del sistema en el que se desee que se exprese el gen al que va a quedar operativamente unido. Así, por ejemplo, cuando la proteína va a producirse, por ejemplo, en un microorganismo, tal como una bacteria, será necesario elegir un promotor que permita la expresión en dicha bacteria. Una de las bacterias más utilizadas para la expresión de proteínas es Escherichia coli, para la cual hay muchos promotores y vectores de expresión que los contienen bien conocidos por los expertos en la materia. En el caso de Escherichia coli, es habitual insertar los genes a expresar bajo el control de operón lac, como en el Ejemplo 2 de la presente invención, lo cual permite controlar la expresión de la proteína, induciéndola mediante la adición de IPTG (isopropil- β-D-l -tiogalactopiranósido). Son muchos los vectores de expresión conocidos y disponibles comercialmente que permiten la expresión en E. coli, de los cuales son muy utilizados los plásmidos, pero también son habituales y conocidos algunos virus recombinantes preparados a partir de las formas naturales que infectan dicha bacteria, como el bacteriófago lambda. Los vectores de expresión tipo plásmido son fáciles de localizar y de elegir a partir no sólo de catálogos comerciales, sino de bases de datos dedicadas a este tipo de vectores como la de Addgene (http://www.addgene.org), donde puede consultarse, por ejemplo, la estructura del plásmido pET-28b(+) utilizado en los ejemplos de la presente invención. The choice of promoter depends on the system in which it is desired that the gene to which it will be operatively linked be expressed. Thus, for example, when the protein is to be produced, for example, in a microorganism, such as a bacterium, it will be necessary to choose a promoter that allows expression in said bacterium. One of the most commonly used bacteria for protein expression is Escherichia coli, for which there are many promoters and expression vectors that contain them well known to those skilled in the art. In the case of Escherichia coli, it is usual to insert the genes to be expressed under the control of the lac operon, as in Example 2 of the present invention, which allows to control the expression of the protein, inducing it by the addition of IPTG (isopropyl- β-Dl-thiogalactopyranoside). There are many known and commercially available expression vectors that allow expression in E. coli, of which plasmids are widely used, but some recombinant viruses prepared from the natural forms that infect such bacteria are also common and known, such as the bacteriophage lambda. Plasmid-like expression vectors are easy to locate and choose not only from commercial catalogs, but from databases dedicated to these types of vectors such as Addgene's (http://www.addgene.org), where, for example, the structure of plasmid pET-28b (+) used in the examples of the present invention can be consulted.
Otros huéspedes microbianos disponibles para la transformación con vectores de expresión, de especial interés en el presente caso, podrían ser la cepa Bt 4Q7 acristalófera (no productoras de otras endotoxinas) disponible en el Bacillus Genetic Stock Center, Bacillus megaterium (Mobitec, Germany), Pseudomona spp. o levaduras. En estos microorganismos, la proteína insecticida producida permanece encapsulada en el soma bacteriano de tal manera que el mismo microorganismo se convertiría en la materia activa del biopesticida, fácilmente recuperable por centrifugación. Esta microencapsulación, protegería además a la proteína de factores ambientales (ej. UV) alargando su vida útil en el medioambiente. La opción de recubrir dichas proteínas con sustancias (nanopartículas) que protejan de manera similar a dicha toxina resulta también una alternativa atractiva.  Other microbial hosts available for transformation with expression vectors, of particular interest in the present case, could be the Bt 4Q7 crystalline strain (not producing other endotoxins) available at the Bacillus Genetic Stock Center, Bacillus megaterium (Mobitec, Germany), Pseudomona spp. or yeasts In these microorganisms, the insecticidal protein produced remains encapsulated in the bacterial soma so that the same microorganism would become the active material of the biopesticide, easily recoverable by centrifugation. This microencapsulation would also protect the protein from environmental factors (eg UV), extending its useful life in the environment. The option of coating said proteins with substances (nanoparticles) that similarly protect said toxin is also an attractive alternative.
Este nuevo gen cry, puede también optimizarse para su expresión en células vegetales en la construcción de plantas transgénicas resistentes al insecto, mediante la utilización de técnicas ya descritas y bien conocidas de ingeniería genética. This new cry gene can also be optimized for expression in plant cells in the construction of transgenic insect-resistant plants, through the use of techniques already described and well known in genetic engineering.
Los métodos de transformación de plantas de la invención implican la introducción de una construcción nucleotídica, incluyendo en gen a transferir, en una planta. Por "introducción" se entiende proporcionar a la planta la construcción de nucleótidos de tal manera que la construcción acceda al interior de una célula de la planta . Los métodos de la presente invención no requieren que se utilice un método particular para la introducción de una construcción de nucleótidos en una planta. Los métodos para introducir construcciones de nucleótidos en plantas son conocidos en la técnica, incluyendo, pero sin limitarse a, métodos de transformación estable, métodos de transformación transitoria, y métodos mediados por virus.  The plant transformation methods of the invention involve the introduction of a nucleotide construct, including in gene to be transferred, into a plant. By "introduction" is meant to provide the plant with the construction of nucleotides in such a way that the construction accesses the interior of a plant cell. The methods of the present invention do not require that a particular method be used for the introduction of a nucleotide construct into a plant. Methods for introducing nucleotide constructs into plants are known in the art, including, but not limited to, stable transformation methods, transient transformation methods, and virus mediated methods.
Por "planta" se entiende plantas completas, órganos de plantas (por ejemplo, hojas, tallos, raíces, etc ), semillas, células de plantas, propágulos, embriones y la progenie de los mismos. Las células de plantas (o células vegetales) pueden ser diferenciados o indiferenciados (por ejemplo, callos, las células en cultivo en suspensión, protoplastos, células de las hojas, células de la raíz, células del floema, polen).  "Plant" means whole plants, plant organs (for example, leaves, stems, roots, etc.), seeds, plant cells, propagules, embryos and their progeny. Plant cells (or plant cells) can be differentiated or undifferentiated (for example, calluses, cells in suspension culture, protoplasts, leaf cells, root cells, phloem cells, pollen).
Los términos "plantas transgénicas" o "plantas transformadas" o plantas células o tejidos "transformados de forma estable" se refieren a plantas que han incorporado o integrado secuencias de ácidos nucleicos o fragmentos de ADN exógenos en una o más células vegetales. Estas secuencias de ácidos nucleicos incluyen las que son exógenos, o no están presentes en la célula de la planta no transformada, así como aquellas que pueden ser endógenas, o que están presenten en ¡a célula de la planta no transformada. Con el término "heteróloga" generalmente se hace referencia a las secuencias de ácido nucleico que no son endógenas para la célula o parte del genoma nativo en el que están presentes, y que se han añadido a la célula por infección, transfección, microinyección, electroporación , microproyección, u otros similares. The terms "transgenic plants" or "transformed plants" or "stably transformed" cells or tissues plants refer to plants that have incorporated or integrated nucleic acid sequences or exogenous DNA fragments into one or more plant cells. These nucleic acid sequences include those that are exogenous, or not present in the cell of the non-transformed plant, as well as those that may be endogenous, or that are present in the cell of the non-transformed plant. The term "heterologous" generally refers to nucleic acid sequences that are not endogenous to the cell or part of the native genome in which they are present, and that have been added to the cell by infection, transfection, microinjection, electroporation , microprojection, or similar.
Las plantas transgénicas de la presente invención serán aquellas que expresen el gen de la presente invención o una secuencia codificante de una delta-endotoxina que presente al menos un 90% de identidad con la secuencia del gen de la presente invención (SEQ ID NO:1 ). La planta transgénica puede comprender además uno o más genes adicionales para la resistencia a los insectos, y/o cualquier gen adicional que imparta un rasgo agronómico de interés.  The transgenic plants of the present invention will be those that express the gene of the present invention or a sequence coding for a delta-endotoxin that has at least 90% identity with the sequence of the gene of the present invention (SEQ ID NO: 1 ). The transgenic plant may further comprise one or more additional genes for insect resistance, and / or any additional gene that imparts an agronomic trait of interest.
La transformación de células vegetales se puede lograr mediante diversas técnicas bien conocidas por el experto en la materia. Normalmente, el gen que se quiere expresar (en este caso, el gen de la presente invención, o secuencias codificantes que presenten al menos un 90% de identidad con el mismo), estará formando parte de una construcción (un cásete de expresión, como se describió anteriormente) en la que el gen estará unido operativamente a un promotor que controlará su transcripción, así como a una zona no traducida de 3' que permitirá la terminación de la transcripción y la poliadenilación del transcrito. Entre las posibles regiones de terminación pueden ser adecuadas, por ejemplo, las que están presentes en el piásmido Ti de Agrobacterium tumefaciens, tales como las regiones de terminación de la octopina sintasa y la nopalina sintasa. Si se desea, puede incluirse también un péptido señal que facilite la transferencia del péptido que se está formando al retículo endopiásmico. También puede ser interesante diseñar el cásete de expresión de la planta para que contenga al menos un intrón, de tal manera que se requiera el procesamiento del intrón del ARNm para su expresión.  The transformation of plant cells can be achieved by various techniques well known to those skilled in the art. Normally, the gene to be expressed (in this case, the gene of the present invention, or coding sequences that have at least 90% identity with it), will be part of a construct (an expression cassette, such as described above) in which the gene will be operatively linked to a promoter that will control its transcription, as well as to a non-translated 3 'zone that will allow termination of transcription and polyadenylation of the transcript. Among the possible termination regions, for example, those present in the Ti plasmid of Agrobacterium tumefaciens, such as the termination regions of octopine synthase and nopaline synthase may be suitable. If desired, a signal peptide may also be included that facilitates the transfer of the peptide that is being formed to the endopiásmic reticulum. It may also be interesting to design the plant expression cassette so that it contains at least one intron, such that the processing of the mRNA intron is required for its expression.
Normalmente, este "cásete de expresión en plantas" se inserta o está inserto en un "vector de transformación de plantas". Este vector de transformación de plantas puede estar compuesto de uno o más vectores de ADN necesarios para lograr la transformación de la planta. Por ejemplo, es una práctica común en la técnica utilizar vectores de transformación de plantas que se componen de más de un segmento de ADN contiguo. Estos vectores se denominan a menudo "vectores binarios". Los vectores binarios, así como los vectores con plásmidos auxiliares, son los más utilizados para la transformación mediada por Agrobacterium, cuando el tamaño y la complejidad de los segmentos de ADN necesarios para lograr la transformación eficiente es bastante grande. Los vectores binarios contienen típicamente un vector plasmídico que contiene las secuencias que actúan en cis necesarias para la transferencia de T-ADN (tai como el borde izquierdo y el borde derecho), un marcador de selección que está diseñado para ser capaz de expresarse en una célula vegetal, y un "gen de interés" (un gen diseñado para ser capaz de expresarse en una célula de una planta de la cual se desea la generación de plantas transgénicas que, en el presente caso, sería el gen de la presente invención o una secuencia codificante que guarde ai menos un 90% de identidad con el mismo). También están presentes en este vector plasmídico secuencias requeridas para la replicación en bacterias. Las secuencias que actúan en cis están dispuestas de tai manera que permitan la transferencia eficiente en células vegetales y la expresión en las mismas. Por ejemplo, el gen marcador de selección y el gen de la presente invención se encuentran entre ios bordes izquierdo y derecho. A menudo un segundo vector plasmídico contiene los factores que actúan en trans que median la transferencia del T-ADN de Agrobacteríum a las células vegetales. Este piásmido contiene a menudo las funciones de virulencia (genes Vir) que permiten la infección de las células vegetales por Agrobacteríum, y la transferencia de ADN mediante escisión de las secuencias de los bordes y la transferencia de ADN mediada por vir, como se entiende en la técnica (Heliens and uilineaux, 2000). Para la transformación de plantas pueden utilizarse varios tipos de cepas de Agrobacteríum (por ejemplo, LBA4404, GV3101 , EHAIOI, EHA105, etc). El segundo vector plasmídico no es necesario para la transformación de las plantas por otros métodos tales como microproyección, microinyección, electroporación, polietiiengiicol, etc. Normally, this "plant expression cassette" is inserted or inserted into a "plant transformation vector". This plant transformation vector may be composed of one or more DNA vectors necessary to achieve plant transformation. For example, it is a common practice in the art to use plant transformation vectors that are composed of more than one contiguous DNA segment. These vectors are often referred to as "binary vectors." Binary vectors, as well as vectors with auxiliary plasmids, are the most commonly used for Agrobacterium-mediated transformation, when the size and complexity of the DNA segments necessary to achieve efficient transformation is quite large. Binary vectors typically contain a plasmid vector containing the cis-acting sequences necessary for the transfer of T-DNA (such as the left border and the right border), a selection marker that is designed to be able to express itself in a plant cell, and a "gene of interest" (a gene designed to be able to express itself in a cell of a plant from which generation is desired of transgenic plants which, in the present case, would be the gene of the present invention or a coding sequence that has at least 90% identity with it). Also present in this plasmid vector are sequences required for replication in bacteria. The cis-acting sequences are arranged in such a way as to allow efficient transfer in plant cells and expression therein. For example, the selection marker gene and the gene of the present invention lie between the left and right edges. Often a second plasmid vector contains the trans-acting factors that mediate the transfer of Agrobacterium T-DNA to plant cells. This plasmid often contains the virulence functions (Vir genes) that allow the infection of plant cells by Agrobacterium, and the transfer of DNA by cleavage of the sequences of the borders and the transfer of DNA mediated by vir, as understood in the technique (Heliens and uilineaux, 2000). Various types of Agrobacterium strains can be used for plant transformation (for example, LBA4404, GV3101, EHAIOI, EHA105, etc.). The second plasmid vector is not necessary for the transformation of plants by other methods such as microprojection, microinjection, electroporation, polyethiengiicol, etc.
En general, los métodos de transformación de plantas involucran la transferencia de ADN heteróiogo a las células diana de la planta (por ejemplo, embriones inmaduros o maduros, cultivos en suspensión, callo indiferenciado, protoplastos, etc), seguido por la aplicación de un nivel umbral máximo para la selección apropiada (dependiendo del gen marcador seleccionare) para recuperar las células de plantas transformadas a partir de un grupo de una masa celular sin transformar. Los expianíes se transfieren normalmente a un suministro fresco del mismo medio y se cultivan de forma rutinaria. Posteriormente, las células transformadas se diferencian en brotes después de colocarlas en medio de regeneración suplementado con un nivel de umbral máximo de agente de selección. Los brotes son luego transferidos a un medio selectivo de enraizamiento para la recuperación de brotes con raíces o plántulas enraizadas. La plántula transgénica crece entonces dando lugar a una planta madura y produce semillas fértiles. Los explantes se transfieren normalmente a un suministro fresco del mismo medio y se cultivan de forma rutinaria. Una descripción general de las técnicas y métodos para generar plantas transgénicas se encuentran en publicaciones como la de Ayres y Park (Ayres and Park, 1994) y Bommineni y Jauhar (1997). Dado que el material transformado contiene muchas células, cualquier muestra de dicho material transformado contiene células transformadas y no transformadas. La capacidad de matar células no transformadas y permitir que las células transformadas proliferen da lugar a que sean convenientes los cultivos de plantas transformadas. A menudo, la capacidad de eliminar las células no transformadas es una limitación para la rápida recuperación de las células de plantas transformadas y la generación exitosa de plantas transgénicas. In general, plant transformation methods involve the transfer of heterogeneous DNA to the plant's target cells (for example, immature or mature embryos, suspension cultures, undifferentiated callus, protoplasts, etc.), followed by the application of a level maximum threshold for appropriate selection (depending on the marker gene will be selected) to recover cells from transformed plants from a group of an unprocessed cell mass. The expianies are normally transferred to a fresh supply of the same medium and are routinely grown. Subsequently, the transformed cells differentiate into outbreaks after placing them in regeneration medium supplemented with a maximum threshold level of selection agent. The shoots are then transferred to a selective rooting medium for the recovery of shoots with roots or rooted seedlings. The transgenic seedling then grows into a mature plant and produces fertile seeds. The explants are normally transferred to a fresh supply of the same medium and are routinely grown. A general description of the techniques and methods to generate transgenic plants can be found in publications such as Ayres and Park (Ayres and Park, 1994) and Bommineni and Jauhar (1997). Since the transformed material contains many cells, Any sample of said transformed material contains transformed and non-transformed cells. The ability to kill non-transformed cells and allow transformed cells to proliferate results in the cultivation of transformed plants. Often, the ability to eliminate non-transformed cells is a limitation for the rapid recovery of transformed plant cells and the successful generation of transgenic plants.
Los protocolos de transformación así como los protocolos para introducir secuencias de nucleótidos en plantas pueden variar dependiendo del tipo de planta o célula vegetal que se quiera transformar, es decir, monocotiledónea o dicotiledónea. Como se ha mencionado previamente, la generación de plantas transgénicas puede ser realizada por diversos métodos, incluyendo, pero sin limitarse a, microinyección, electroporación, transferencia directa de genes, introducción de ADN heterólogo por medio de Agrobacterium en células de plantas (transformación mediada por Agrobacterium), bombardeo de células vegetales con ADN adherido a partículas, la aceleración de partículas balísticas, transformación mediante un haz de aerosol, la transformación con Lec1 , y diversos otras métodos no mediados por partículas.  The transformation protocols as well as the protocols for introducing nucleotide sequences into plants may vary depending on the type of plant or plant cell that is to be transformed, that is, monocot or dicot. As previously mentioned, the generation of transgenic plants can be carried out by various methods, including, but not limited to, microinjection, electroporation, direct gene transfer, introduction of heterologous DNA through Agrobacterium into plant cells (transformation mediated by Agrobacterium), bombardment of plant cells with DNA adhered to particles, acceleration of ballistic particles, transformation by means of an aerosol beam, transformation with Lec1, and various other methods not mediated by particles.
Tras la integración del ADN foráneo heterólogo en células de la planta, se aplica entonces un nivel umbral máximo de selección apropiada en el medio para eliminar las células no transformadas y separar y hacer proliíerar las células hipotéticamente transformadas que sobreviven a este tratamiento de selección transfiriéndolas periódicamente a un medio fresco, mediante pases continuos y manteniendo las apropiadas condiciones de selección. Se han desarrollado numerosos marcadores para su uso con células vegetales, tales como la resistencia a cloranfenicol, al aminogiicósido G418, resistencia a higromicina, o similares.  After the integration of the heterologous foreign DNA into plant cells, an appropriate maximum threshold level of selection is then applied in the medium to eliminate the non-transformed cells and separate and proliferate the hypothetically transformed cells that survive this selection treatment by periodically transferring them to a fresh medium, through continuous passes and maintaining the appropriate selection conditions. Numerous markers have been developed for use with plant cells, such as chloramphenicol resistance, G418 aminogycoside, hygromycin resistance, or the like.
Se pueden utilizar métodos moleculares y bioquímicos para confirmar la presencia del gen heterólogo de interés integrado en el genoma de la planta transgénica, gen de interés que, en el caso de las plantas transgénicas de la presente invención, es el gen de la presente invención o una secuencia codificante con un porcentaje de identidad de al menos el 90% con el mismo. Molecular and biochemical methods can be used to confirm the presence of the heterologous gene of interest integrated in the genome of the transgenic plant, a gene of interest that, in the case of the transgenic plants of the present invention, is the gene of the present invention or a coding sequence with an identity percentage of at least 90% with it.
Las células que han sido transformadas pueden ser cultivadas para dar lugar a plantas de forma convencional. Estas plantas pueden ser cultivadas a continuación, y, o bien ser polinizadas con la misma cepa transformada o con cepas diferentes, y el híbrido resultante tiene expresión constitutiva de la característica fenotipica deseada, en el presente caso, la expresión de la proteína Cry de la presente invención. Dos o más generaciones se pueden cultivar para asegurar que la expresión de la característica fenotipica deseada se mantiene y se hereda de manera estable y luego cosechar las semillas para asegurar que se ha logrado la expresión de la característica fenotípica deseada. De esta manera, la presente invención proporciona semillas transformadas ( a las que también se hace referencia como "semillas transgénicas") que tiene una construcción nucieotídica de la presente invención, (por ejemplo, un cásete de expresión en el que el gen de la invención está ligado, de manera estable, a un promotor que permite su expresión en plantas y a una secuencia adecuada de terminación, incorporado de manera estable en su genoma). Cells that have been transformed can be cultured to give rise to plants in a conventional manner. These plants can then be cultured, and either be pollinated with the same transformed strain or with different strains, and the resulting hybrid has constitutive expression of the desired phenotypic characteristic, in this case, the expression of the Cry protein of the present invention Two or more generations can be cultivated to ensure that the expression of the desired phenotypic characteristic is maintained and inherited stably and then harvest the seeds to ensure that the expression of the desired phenotypic characteristic has been achieved. Thus, the present invention provides transformed seeds (also referred to as "transgenic seeds") having a nucieotidic construction of the present invention, (eg, an expression cassette in which the gene of the invention it is linked, stably, to a promoter that allows its expression in plants and to a suitable sequence of termination, stably incorporated into its genome).
Tras la introducción de ADN foráneo heterólogo en células de plantas, la transformación o integración del gen heterólogo en el genoma de la planta se puede confirmar por diversos métodos tales como el análisis de ácidos nucleicos, proteínas y metaboiitos asociados con el gen integrado. En este caso en particular, se puede realizar el análisis de la presencia del gen integrado, de la generación de su ARNm o de la presencia de la proteína que se quiere expresar, la proteína de la presente invención o una proteína que presenta un alto grado de identidad con la misma.  After the introduction of heterologous foreign DNA into plant cells, the transformation or integration of the heterologous gene into the plant genome can be confirmed by various methods such as the analysis of nucleic acids, proteins and metabolites associated with the integrated gene. In this particular case, the analysis of the presence of the integrated gene, the generation of its mRNA or the presence of the protein to be expressed, the protein of the present invention or a protein that has a high degree can be performed. of identity with it.
El análisis por PCR es un método rápido para detectar en células, tejidos o brotes transformados, la presencia del gen incorporado en una etapa anterior antes de trasplantarlo en el suelo, mediante métodos rutinarios para los expertos en la materia (véase, por ejemplo, Sambrook y Russeli, 2001 ). La PCR se puede llevar a cabo utilizando los oligonucleótidos cebadores específicos que permitan amplificar ei gen de interés desde el codón de inicio (ATG) hasta el codón de parada de la traducción (TTA) (oligonucieótido cebador directo 5'-ATGAACCAAAATTATAAGAACAATG-3', (SEQ ID NO:3) oligonucieótido cebador inverso 5: CAAATCAAAAATTCAAACTGAATAAGTTA3' (SEQ ID NO:4)). Mediante amplificación por PCR se podría además obtener el amplicón, purificarlo y marcarlo ya sea mediante métodos radioactivos (32P) o no radioactivos (digoxigenina) y utilizarlo como sonda específica. PCR analysis is a rapid method to detect in cells, tissues or transformed outbreaks, the presence of the gene incorporated at an earlier stage before transplanting it into the soil, by routine methods for those skilled in the art (see, for example, Sambrook and Russeli, 2001). PCR can be carried out using specific oligonucleotide primers that allow amplifying the gene of interest from the start codon (ATG) to the translation stop codon (TTA) (direct primer oligonucieotide 5 ' -ATGAACCAAAATTATAAGAACAATG-3', (SEQ ID NO: 3) Reverse primer oligonucieotide 5 : CAAATCAAAAATTCAAACTGAATAAGTTA3 '(SEQ ID NO: 4)). By amplification by PCR, the amplicon could also be obtained, purified and labeled either by radioactive ( 32 P) or non-radioactive (digoxigenin) methods and used as a specific probe.
La transformación de plantas puede ser confirmada por análisis mediante transferencia tipo Southern de ADN genómico (Sambrook y Russeli, 2001 ). En general, ei ADN total se extrae a partir del transformante, se digiere con enzimas de restricción apropiadas, se fracciona en un gei de agarosa y se transfiere a una membrana de nitroceiuiosa o de nylon. A continuación, se realiza un ensayo con la membrana con el ADN transferido con, por ejemplo, un fragmento del ADN diana (un fragmento del gen de la presente invención, en este caso, o una secuencia que tiene al menos un 90% de identidad con el mismo) para confirmar la integración del gen introducido en ei genoma de la planta.  Plant transformation can be confirmed by Southern blot analysis of genomic DNA (Sambrook and Russeli, 2001). In general, total DNA is extracted from the transformant, digested with appropriate restriction enzymes, fractionated on an agarose gei and transferred to a nitroceiuous or nylon membrane. Next, a membrane assay is performed with the DNA transferred with, for example, a fragment of the target DNA (a fragment of the gene of the present invention, in this case, or a sequence that has at least 90% identity with it) to confirm the integration of the gene introduced into the genome of the plant.
En el análisis de transferencia tipo Northern, se aisla ARN a partir de tejidos específicos del transformante, se fraccionan en un gel de agarosa-formaldehído, y se transfiere a un filtro de nyion de acuerdo con procedimientos estándar que se utilizan rutinariamente por los expertos en la técnica (Sambrook y Russeli, 2001 ), La expresión del ARN codificado por el gen de la presente invención o por una secuencia codificante que tiene al menos un 90% de identidad con el mismo se prueba mediante la hibridación del filtro con una sonda radioactiva derivada de la secuencia del gen de ¡a endotoxina de la invención, por métodos conocidos en la técnica (Sambrook y Russel!, 2001 ). In Northern blot analysis, RNA is isolated from specific tissues of the transformant, fractionated on an agarose-formaldehyde gel, and transferred to a nyion filter according to standard procedures that are routinely used by Those skilled in the art (Sambrook and Russeli, 2001). The expression of the RNA encoded by the gene of the present invention or by a coding sequence that has at least 90% identity with it is tested by hybridization of the filter with a radioactive probe derived from the sequence of the α to endotoxin gene of the invention, by methods known in the art (Sambrook and Russel !, 2001).
También se puede confirmar la presencia de la proteína codificada por el gen de ¡a delta- endotoxina de la presente invención mediante transferencia tipo Western, ensayos bioquímicos o similares llevados a cabo en las plantas transgénicas por procedimientos estándar (Sambrook y Russeil, 2001 , supra), utilizando anticuerpos que se unen a uno o más epítopos presentes en la proteína de la delta-endotoxina de ¡a presente invención. Para ello, pueden utilizarse, por ejemplo, anticuerpos dirigidos a otras proteínas Cry con las que la proteína Cry de la presente invención comparta epítopos. Otra alternativa es la preparación de anticuerpos específicos contra la nueva proteína Cry de la presente invención y, de una manera similar, utilizar anticuerpos Anti-6xHis_Tag (Sigma-Aldrich) contra la cola de 6 histidinas fusionadas al extremo carboxilo de la proteína recombinante CyBM1 y que están codificadas en el vector pET-28b(+). La generación de anticuerpos frente a una proteína cualquiera es una técnica habitual, conocida por cualquier experto en la técnica, que puede considerarse rutinaria.  The presence of the protein encoded by the delta-endotoxin gene of the present invention can also be confirmed by Western blotting, biochemical tests or the like carried out in transgenic plants by standard procedures (Sambrook and Russeil, 2001, supra). ), using antibodies that bind to one or more epitopes present in the delta-endotoxin protein of the present invention. For this purpose, for example, antibodies directed to other Cry proteins with which the Cry protein of the present invention share epitopes can be used. Another alternative is the preparation of specific antibodies against the new Cry protein of the present invention and, similarly, using Anti-6xHis_Tag (Sigma-Aldrich) antibodies against the tail of 6 histidines fused to the carboxyl end of the recombinant CyBM1 protein and which are encoded in the vector pET-28b (+). The generation of antibodies against any protein is a common technique, known to any person skilled in the art, which can be considered routine.
Se tiene preferencia por los anticuerpos monoclonales, que son anticuerpos homogéneos producidos por una célula híbrida producto de la fusión de un clon de linfocitos B descendiente de una sola y única célula madre y una célula plasmática tumoral, que garantiza su perpetuidad (Kóhier & Milstein, 1975). Con esta fusión de dos células, una programada para producir un anticuerpo específico pero que no se multiplica indefinidamente (linfocito) y otra inmortal con gran capacidad de crecimiento pero que no produce inmunoglobulina (célula de mieloma), se combina la información genética necesaria para la síntesis del anticuerpo deseado y una capacidad de síntesis proteica, permitiendo su multiplicación indefinida tanto in vitro como in vivo. Para la producción de anticuerpos monoclonales frente a la proteína Cry de la presente invención, los presentes autores de la presente invención tienen preferencia por la metodología descrita por Iglesias et al. (1 997). Brevemente: se fusionan esplenocitos obtenidos de ratones BALB/c hembras, previamente inyectadas intraperitonealmente con la forma completa de la proteína Cry de la presente invención, con células de mieloma murino X63-Ag8.653, en presencia de 50% de polietilenglicol (PEG) 4000 (Boehringer Mannheim, Barcelona, España). Los cultivos de hibridomas se pueden mantener según lo descrito por Estévez et al. (1994). Posteriormente, se obtienen los anticuerpos monoclonales anti-Cry a partir del líquido ascítico de ratones inyectados, vía intraperitoneal, con las células del hibridoma seleccionado (2x106 células/ratón, por ejemplo). La purificación parcial de los anticuerpos se puede realizar mediante precipitación de la ascitis con sulfato amónico saturado (SAS). En cualquier caso, actualmente en España son muchas las compañías biomédicas especializadas en la producción de anticuerpos monoclonales a la carta, a las que se puede encargar su producción. Preference is given to monoclonal antibodies, which are homogeneous antibodies produced by a hybrid cell resulting from the fusion of a clone of B lymphocytes descended from a single and single stem cell and a tumor plasma cell, which guarantees its perpetuity (Kohier & Milstein, 1975). With this fusion of two cells, one programmed to produce a specific antibody but that does not multiply indefinitely (lymphocyte) and another immortal with great growth capacity but that does not produce immunoglobulin (myeloma cell), combines the genetic information necessary for synthesis of the desired antibody and a capacity for protein synthesis, allowing its indefinite multiplication both in vitro and in vivo. For the production of monoclonal antibodies against the Cry protein of the present invention, the present authors of the present invention have a preference for the methodology described by Iglesias et al. (1 997). Briefly: splenocytes obtained from female BALB / c mice, previously injected intraperitoneally with the complete form of the Cry protein of the present invention, are fused with murine myeloma cells X63-Ag8.653, in the presence of 50% polyethylene glycol (PEG) 4000 (Boehringer Mannheim, Barcelona, Spain). Hybridoma cultures can be maintained as described by Estévez et al. (1994). Subsequently, anti-Cry monoclonal antibodies are obtained from ascites fluid injected mice, intraperitoneally, with the cells of the Selected hybridoma (2x10 6 cells / mouse, for example). Partial purification of the antibodies can be performed by precipitation of ascites with saturated ammonium sulfate (SAS). In any case, currently in Spain there are many biomedical companies specializing in the production of monoclonal antibodies on demand, which can be ordered to produce.
En el presente caso, la presencia del transgén de la delta-endotoxina de la invención se puede detectar también mediante pruebas de su actividad plaguicida en plantas fértiles. Las plantas que muestran actividad óptima se seleccionan para su posterior reproducción. Hay métodos disponibles en la técnica para ensayar la actividad de plagas como, por ejemplo, mezclar la proteína y utilizarla en ensayos de alimentación, como en los Ejemplos que se muestran más adelante en la presente solicitud.  In the present case, the presence of the delta-endotoxin transgene of the invention can also be detected by tests of its pesticidal activity in fertile plants. Plants that show optimal activity are selected for later reproduction. There are methods available in the art for testing pest activity, such as mixing the protein and using it in feeding assays, as in the Examples shown later in the present application.
La utilización de cualquiera de las metodologías anteriormente descritas dan lugar a plantas transgénicas que expresan la delta-endotoxina de la presente invención, por lo que dichas plantas transgénicas tendrán actividad insecticida contra, al menos, un áfido, preferiblemente Myzus persicae, de manera que el uso de dichas plantas transgénicas para combatir plagas de áfidos y/o conferir a las plantas resistencia a los mismos, en particular de Myzus persicae, es también un objeto de la presente invención. En principio, la manera en que se generan las células de plantas transgénicas no es crítico para los fines de la presente invención. Sin embargo, puesto que el objetivo principal de la presente invención es combatir las plagas de hemípteros, preferiblemente áfidos, de entre ellos Myzus persicae en particular, es una realización especialmente interesante de la presente invención aquella en la que las plantas transformadas (transgénicas) selectivamente expresan la delta-endotoxina de la presente invención en el tejido vascular de la planta, en particular en el tejido del floema, como se divulga en la solicitud W095/16778, para facilitar la ingestión de la delta-endotoxina por parte de los áfidos a combatir. Esto puede conseguirse eligiendo como promotor operativamente unido al gen de la presente invención, o a una secuencia codificante con un porcentaje de identidad de al menos el 90% con el mismo, un promotor que facilite la expresión en dichos tejidos. Para ello, son promotores adecuados los mismos mencionados en dicha solicitud de patente internacional, tales como el promotor del virus del mosaico de la coliflor 4xB2+A CaMV35S. The use of any of the methodologies described above gives rise to transgenic plants that express the delta-endotoxin of the present invention, whereby said transgenic plants will have insecticidal activity against at least one aphid, preferably Myzus persicae, so that the The use of such transgenic plants to combat aphid pests and / or confer resistance to the plants, in particular Myzus persicae, is also an object of the present invention. In principle, the way in which the cells of transgenic plants are generated is not critical for the purposes of the present invention. However, since the main objective of the present invention is to combat hemiptera pests, preferably aphids, including Myzus persicae in particular, it is a particularly interesting embodiment of the present invention that in which selectively transformed (transgenic) plants express the delta-endotoxin of the present invention in the vascular tissue of the plant, in particular in phloem tissue, as disclosed in application W095 / 16778, to facilitate ingestion of delta-endotoxin by aphids to fight. This can be achieved by choosing as a promoter operably linked to the gene of the present invention, or to a coding sequence with a percentage of identity of at least 90% therewith, a promoter that facilitates expression in said tissues. For this, suitable promoters are those mentioned in said international patent application, such as the 4xB2 + A CaMV35S cauliflower mosaic virus promoter.
La presente invención se puede utilizar para la transformación de cualquier tipo de planta. Las plantas por las que se tiene especial preferencia son aquellas que sufren daños causados por áfidos, en particular por Myzus persicae, o en las que se ha comprobado que dicho pulgón facilita la transmisión de virus. Así, entre otras, se tiene preferencia por plantas transgénicas de melocotonero {Prunus pérsica), albaricoquero, ciruelo y otras plantas del género Prunus, cítricos, cruciferas, solanáceas, gramíneas e, incluso, plantas ornamentales. The present invention can be used for the transformation of any type of plant. Plants for which special preference is given are those that suffer damage caused by aphids, in particular by Myzus persicae, or in which it has been found that said aphid facilitates the transmission of viruses. Thus, among others, there is a preference for transgenic peach (Prunus pérsica), apricot, plum and other plants of the genus Prunus, citrus, crucifixes, nightshade, grasses and even ornamental plants.
Alternativamente, las plantas pueden protegerse mediante la aplicación de una composición que contiene la delta-endotoxina de la invención o un sistema capaz de expresarla. También pueden utilizarse composiciones que comprenden la cepa de Bacillus que contiene en su genoma la secuencia de nucleótidos de la cual se ha aislado el gen de la presente invención, Bacillus thuringiensis Bt H1 .5, u otros microorganismos recombinantes en los que se exprese la delta-endotoxina de la invención.  Alternatively, the plants can be protected by applying a composition containing the delta-endotoxin of the invention or a system capable of expressing it. Compositions comprising the Bacillus strain containing in its genome the nucleotide sequence from which the gene of the present invention, Bacillus thuringiensis Bt H1 .5, or other recombinant microorganisms in which the delta is expressed can also be used -endotoxin of the invention.
Los ingredientes activos (la delta-endotoxina de la presente invención o un microorganismo que la exprese) de la presente invención se aplican normalmente en forma de composiciones (las composiciones plaguicidas de la presente invención) y pueden aplicarse al área de cultivo o planta a tratar, simultáneamente o de forma consecutiva, con otros compuestos. Estos compuestos pueden ser fertilizantes, herbicidas, crioprotectores, agentes tensioactivos, detergentes, jabones, aceites, plaguicidas latentes, polímeros, o formulaciones de vehículos biodegradables que permiten la dosificación a largo plazo en un área de destino después de una sola aplicación de la formulación. También pueden ser herbicidas selectivos, insecticidas químicos, virucidas, microbicidas, amibicidas, pesticidas, fungicidas, bactericidas, nematicidas, molusquicidas o mezclas de varias de estas preparaciones, administradas, si se desea, junto con otros vehículos agrícolamente aceptables, tensioactivos o adyuvantes de la aplicación que se emplean habitualmente en la técnica de la formulación de plaguicidas. Los vehículos y adyuvantes adecuados pueden ser sólidos o líquidos y corresponderse con las sustancias empleadas normalmente en la tecnología de la formulación, por ejemplo, sustancias minerales naturales, disolventes, dispersantes, agentes humectantes, aglutinantes o fertilizantes. Del mismo modo las formulaciones se pueden preparar en forma de "cebos comestibles" o formar "trampas" para plagas para permitir la alimentación o la ingestión por una plaga diana de la formulación plaguicida; un ejemplo de tales dispositivos puede encontrarse en la solicitud W09516778. The active ingredients (the delta-endotoxin of the present invention or a microorganism that expresses it) of the present invention are normally applied in the form of compositions (the pesticidal compositions of the present invention) and can be applied to the crop or plant area to be treated. , simultaneously or consecutively, with other compounds. These compounds can be fertilizers, herbicides, cryoprotectants, surfactants, detergents, soaps, oils, latent pesticides, polymers, or biodegradable vehicle formulations that allow long-term dosing in a target area after a single application of the formulation. They can also be selective herbicides, chemical insecticides, virucidal, microbicides, amoebicides, pesticides, fungicides, bactericides, nematicides, molluscicides or mixtures of several of these preparations, administered, if desired, together with other agriculturally acceptable vehicles, surfactants or adjuvants of the application commonly used in the technique of pesticide formulation. Suitable carriers and adjuvants may be solid or liquid and correspond to the substances normally employed in the formulation technology, for example, natural mineral substances, solvents, dispersants, wetting agents, binders or fertilizers. Similarly, the formulations can be prepared in the form of "edible baits" or "pest traps" be formed to allow feeding or ingestion by a target pest of the pesticide formulation; An example of such devices can be found in application W09516778.
Los métodos de aplicación de una composición de la presente invención, que comprende al menos la delta-endotoxina de la presente invención o un sistema de expresión de la misma, tal como células de Bacillus thuringiensis Bt H1 .5 o de un microorganismo recombinante que comprende el gen de la invención operativamente unido a un promotor que permite la expresión en dicho microorganismo, incluyen la aplicación sobre las hojas, recubrimiento de semillas y aplicación en el suelo. La composición se puede formular en forma de polvo, gránulo, aerosol, emulsión, coloide, solución, o similares, y se puede preparar por medios convencionales tales como la desecación, liofilización, homogeneización, extracción, filtración, centrifugación, sedimentación, o concentración de un cultivo de células que comprenden el polipéptido correspondiente a la delta- endotoxina de la presente invención. The methods of applying a composition of the present invention, comprising at least the delta-endotoxin of the present invention or an expression system thereof, such as Bacillus thuringiensis Bt H1.5 cells or a recombinant microorganism comprising The gene of the invention operatively linked to a promoter that allows expression in said microorganism, includes application on the leaves, seed coating and application in the soil. The composition may be formulated in the form of powder, granule, aerosol, emulsion, colloid, solution, or the like, and may be Prepare by conventional means such as desiccation, lyophilization, homogenization, extraction, filtration, centrifugation, sedimentation, or concentration of a cell culture comprising the polypeptide corresponding to the delta-endotoxin of the present invention.
Las formulaciones también pueden variar con respecto a las condiciones climáticas, las consideraciones ambientales, la frecuencia deseada de aplicación y/o la severidad de la infestación. The formulations may also vary with respect to weather conditions, environmental considerations, the desired frequency of application and / or the severity of the infestation.
Las composiciones descritas pueden efectuarse mediante la formulación de cualquier célula bacteriana de las anteriormente citadas, (que, en el caso de Bacillus thuringiensis, puede ser, por ejemplo, una suspensión de esporas o de formas cristalinas), o la formulación de la proteína de la presente invención, previamente producida y aislada, con el vehículo agrícolamente aceptable deseado.  The compositions described can be carried out by formulating any bacterial cell of the aforementioned, (which, in the case of Bacillus thuringiensis, can be, for example, a suspension of spores or crystalline forms), or the formulation of the protein of the present invention, previously produced and isolated, with the desired agriculturally acceptable vehicle.
Un ejemplo de composición que comprende la delta-endotoxina de la presente invención puede encontrarse en el Ejemplo 3 de la presente solicitud, donde la proteína soluble se diluyó en una disolución acuosa que contenía sacarosa, concretamente sacarosa al 20% p/v, que era la dieta artificial preparada para los áfidos. Otros ejemplos de formulación pueden encontrarse, por ejemplo, en la solicitud internacional W09516778, donde las delta-endotoxinas están en forma cristalina y se preparan en forma de suspensión acuosa.  An example of a composition comprising the delta-endotoxin of the present invention can be found in Example 3 of the present application, where the soluble protein was diluted in an aqueous solution containing sucrose, specifically 20% w / v sucrose, which was the artificial diet prepared for aphids. Other formulation examples can be found, for example, in the international application W09516778, where delta-endotoxins are in crystalline form and are prepared in the form of an aqueous suspension.
En general, las composiciones se pueden formular antes de la administración en un medio apropiado, y se pueden preparar en la forma deseada por medios conocidos tales como liofilización, secado con congelación posterior, o desecación, o en un vehículo acuoso, medio o diluyente adecuado, tal como solución salina u otro tampón. Las composiciones formuladas pueden estar en la forma de un polvo o material granular, o una suspensión en aceite (vegetal o mineral), o agua o emulsiones de aceite / agua, o como un polvo humectable, o en combinación con cualquier otro vehículo adecuado para aplicación agrícola. El término "vehículo agrícolamente aceptable" cubre todos los adyuvantes, componentes inertes, dispersantes, tensioactivos, adhesivos, aglutinantes, etc, que se utilizan habitualmente en la tecnología de formulación de plaguicidas, que son bien conocidos para los expertos en formulación plaguicida. Las formulaciones se pueden mezclar con uno o más adyuvantes sólidos o líquidos y prepararse por diversos medios, por ejemplo, mezcla hasta homogeneización, mezcla y/o molienda de la composición plaguicida con adyuvantes adecuados usando técnicas de formulación convencionales. Formulaciones adecuadas y los métodos de aplicación se describen, por ejemplo, en la Patente de EE.UU. Ne 6468523, incorporada a la presente solicitud por referencia. Otra posible alternativa es que el gen de la presente invención se clone para su expresión en la cepa Bt 4Q7, o en microorganismos como Bacillus megateríum, Pseudomonas spp., o levaduras, en los que la delta-endotoxina producida producida permanece encapsulada en el soma bacteriano, de tal manera que el mismo microorganismo se convertiría en la materia activa del biopesticida, fácilmente recuperable por centrifugación. Esta microencapsulación, protegería además a la proteína de factores ambientales (ej. UV) alargando su vida útil en el medioambiente. La opción de recubrir dichas proteínas con sustancias (nanopartículas) que protejan de manera similar a la delta-endotoxina es también una posible alternativa. In general, the compositions may be formulated prior to administration in an appropriate medium, and may be prepared in the desired manner by known means such as lyophilization, subsequent freeze drying, or drying, or in a suitable aqueous vehicle, medium or diluent. , such as saline or other buffer. The formulated compositions may be in the form of a powder or granular material, or a suspension in oil (vegetable or mineral), or water or oil / water emulsions, or as a wettable powder, or in combination with any other suitable vehicle for agricultural application The term "agriculturally acceptable vehicle" covers all adjuvants, inert components, dispersants, surfactants, adhesives, binders, etc., which are commonly used in pesticide formulation technology, which are well known to those skilled in pesticide formulation. The formulations can be mixed with one or more solid or liquid adjuvants and prepared by various means, for example, mixing until homogenization, mixing and / or milling of the pesticidal composition with suitable adjuvants using conventional formulation techniques. Suitable formulations and application methods are described, for example, in US Pat. N and 6468523, incorporated herein by reference. Another possible alternative is that the gene of the present invention is cloned for expression in strain Bt 4Q7, or in microorganisms such as Bacillus megateríum, Pseudomonas spp., Or yeasts, in which the produced delta-endotoxin produced remains encapsulated in the soma bacterial, so that the same microorganism would become the active biopesticide, easily recoverable by centrifugation. This microencapsulation would also protect the protein from environmental factors (eg UV), extending its useful life in the environment. The option of coating said proteins with substances (nanoparticles) that protect similarly to delta-endotoxin is also a possible alternative.
La delta-endotoxina microencapsulada se puede utilizar en aplicaciones de pulverización, bien de forma independiente, o en rotaciones con insecticidas a base de Bt que exprese otras posibles delta-endotoxinas de interés. Microencapsulated delta-endotoxin can be used in spray applications, either independently, or in rotations with Bt-based insecticides that express other possible delta-endotoxins of interest.
Las plantas también pueden ser tratadas con una o más composiciones químicas, incluyendo uno o más herbicidas, insecticidas, o funguicidas.  Plants can also be treated with one or more chemical compositions, including one or more herbicides, insecticides, or fungicides.
Por todo ello, la presente invención se refiere a una molécula de ácido nucleico aislada que comprende una secuencia de nucleotidos que codifica una delta-endotoxina, caracterizada por que la secuencia de nucleotidos que codifica una delta-endotoxina está representada por SEQ ID NO:1 o presenta al menos un 90% de identidad con la misma. En posibles realizaciones, el porcentaje de identidad puede seleccionarse, por ejemplo, del grupo de 90%, 91 %, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99,5%, 99,6%, 99,7%, 99,8%, 99,9%, porcentajes de identidad que se consideran que dan lugar a una delta-endotoxina suficientemente idéntica a la delta-endotoxina cuyo aislamiento y producción se describe más adelante en Ejemplos de la presente invención. Lógicamente, otra posible realización es aquella en la que la identidad es del 100%, realización que correspondería a la alternativa en la que la secuencia de nucleotidos que codifica una delta-endotoxina es exactamente la representada por SEQ ID NO:1 , siendo así una posible realización de este aspecto de la invención que la secuencia de nucleotidos de la molécula de ácido nucleico esté representada exactamente por SEQ ID NO:1 . Therefore, the present invention relates to an isolated nucleic acid molecule comprising a nucleotide sequence encoding a delta-endotoxin, characterized in that the nucleotide sequence encoding a delta-endotoxin is represented by SEQ ID NO: 1 or has at least 90% identity with it. In possible embodiments, the percentage of identity can be selected, for example, from the group of 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5 %, 99.6%, 99.7%, 99.8%, 99.9%, percentages of identity that are considered to give rise to a delta-endotoxin sufficiently identical to delta-endotoxin whose isolation and production is described more later in Examples of the present invention. Logically, another possible embodiment is one in which the identity is 100%, an embodiment that would correspond to the alternative in which the nucleotide sequence encoding a delta-endotoxin is exactly that represented by SEQ ID NO: 1, thus being a possible embodiment of this aspect of the invention that the nucleotide sequence of the nucleic acid molecule be represented exactly by SEQ ID NO: 1.
La determinación del porcentaje de identidad entre dos secuencias se puede llevar a cabo con los recursos informáticos habituales, basados en algoritmos matemáticos, como pueden ser los programas BLASTN y BLASTP utilizados en los Ejemplos posteriores de la presente solicitud, utilizando, por ejemplo, los parámetros que aparecen por defecto, así como con otras aplicaciones alternativas conocidas por los expertos en la materia, como Gapped Blast y PSI-Blast (Altschul et al., 1997), u otros. The determination of the percentage of identity between two sequences can be carried out with the usual computer resources, based on mathematical algorithms, such as the BLASTN and BLASTP programs used in the later Examples of the present application, using, for example, the parameters which appear by default, as well as with other alternative applications known to those skilled in the art, such as Gapped Blast and PSI-Blast (Altschul et al., 1997), or others.
Tal como se comenta más adelante, la proteína Cry de la presente invención presenta un dominio similar a la ricina b, que no está presente en otras proteínas Cry con actividad contra áfidos. Por ello, se prefiere que, cualquiera que sea el porcentaje de identidad con SEQ ID NO:1 , se mantenga que la secuencia de nucleotidos que codifica una delta- endotoxina comprende un fragmento de secuencia que codifica un dominio similar a la ricina b. As discussed below, the Cry protein of the present invention has a domain similar to ricin b, which is not present in other Cry proteins with activity against aphids. Therefore, it is preferred that, whatever the percent identity with SEQ ID NO: 1, it is maintained that the nucleotide sequence encoding a delta-endotoxin comprises a sequence fragment encoding a domain similar to ricin b.
Son realizaciones preferidas de la presente invención, compatibles con las anteriores, aquellas en las que la secuencia de nucleotidos que codifica una delta-endotoxina tiene actividad contra al menos una especie de insecto hemíptero. Se prefiere especialmente que presente actividad contra al menos una especie de áfido y, muy especialmente, que tenga actividad contra el áfido Myzus persicae.  Preferred embodiments of the present invention, compatible with the foregoing, are those in which the nucleotide sequence encoding a delta-endotoxin has activity against at least one species of hemiptera insect. It is especially preferred that it has activity against at least one species of aphid and, especially, that it has activity against aphid Myzus persicae.
Otro aspecto de la invención lo constituyen las "construcciones" o "casetes de expresión" que posibilitan que el gen se exprese en un sistema de expresión u hospedador de interés, así como los vectores que contienen dichas construcciones y, que facilitan la introducción del gen en dichos sistemas y/o su expresión en los mismos.  Another aspect of the invention is the "constructs" or "expression cassettes" that enable the gene to be expressed in an expression system or host of interest, as well as the vectors containing said constructs and, which facilitate the introduction of the gene in said systems and / or their expression in them.
Por ello, la invención se refiere también a una molécula de ácido nucleico aislada como cualquiera de las definidas anteriormente como parte de la presente invención, en la que la secuencia de nucleotidos que codifica la delta-endotoxina de la invención está operativamente unida a un promotor. Según donde se desee expresar el gen (la secuencia de nucleotidos que codifica la delta-endotoxina de la invención), se tendrá preferencia por distintos posibles promotores, que pueden ser promotores capaces de dirigir la expresión de la secuencia en una célula de planta, en una bacteria (preferiblemente seleccionada del grupo de Escheríchia coli, Bacillus thuringiensis, Pseudomonas spp.) o en una levadura como Saccharomyces cerevisiae. Son posibles realizaciones de este aspecto de la invención aquellas en las que la secuencia codificante de la delta- endotoxina está operativamente unida a alguna secuencia de control adicional, tal como una región no traducida de 3'. Therefore, the invention also relates to an isolated nucleic acid molecule as any of those defined above as part of the present invention, in which the nucleotide sequence encoding the delta-endotoxin of the invention is operably linked to a promoter. . Depending on where it is desired to express the gene (the nucleotide sequence encoding the delta-endotoxin of the invention), preference will be given to different possible promoters, which may be promoters capable of directing the expression of the sequence in a plant cell, in a bacterium (preferably selected from the group Escheríchia coli, Bacillus thuringiensis, Pseudomonas spp.) or in a yeast such as Saccharomyces cerevisiae. Embodiments of this aspect of the invention are those in which the delta-endotoxin coding sequence is operably linked to some additional control sequence, such as a 3 'untranslated region.
Otro aspecto de la invención son los vectores que comprenden la secuencia codificante de la delta-endotoxina de la presente invención, preferiblemente ligada a otros elementos de manera que formen las "construcciones" o "casetes de expresión" previamente definidos. Así, otro aspecto de la invención es un vector que comprende una secuencia de nucleotidos que codifica una delta-endotoxina, caracterizada por que la secuencia de nucleotidos que codifica una delta-endotoxina está representada por SEQ ID NO:1 o presenta al menos un 90% de identidad con la misma, o una molécula de ácido nucleico en la que esté comprendida dicha secuencia de nucleotidos, es decir, un vector en el que está inserta la molécula de ácido nucleico que constituye el primer aspecto de la presente invención. El vector se elige según el sistema donde se desea la expresión o que se desea transformar con él. En una realización preferida, el vector es un plásmido, lo que permite obtener un número elevado de copias en bacterias adecuadas transformadas con él y, en caso de que el promotor sea adecuado, permite también la expresión de la delta- endotoxina de la presente invención en la bacteria, siendo posible la producción y purificación de la delta-endotoxina a partir de cultivos bacterianos. También está comprendida dentro del alcance de la invención la realización en la que el plásmido es un plásmido que puede replicarse (y expresarse) en levaduras, como es el caso del llamado plásmido de 2 mieras (2 μ), de Saccharomyces cerívisiae. Una realización preferida es aquella en la que el plásmido permite la expresión de la delta-endotoxina de la presente invención en una bacteria que se elige entre Escherichia coli, Pseudomonas spp., Bacillus megaterium o Bacillus thuríngiensis; en este último caso, se tiene especial preferencia por la cepa Bt 4Q7. Another aspect of the invention are the vectors comprising the delta-endotoxin coding sequence of the present invention, preferably linked to other elements so as to form the "constructs" or "expression cassettes" previously defined. Thus, another aspect of the invention is a vector comprising a nucleotide sequence encoding a delta-endotoxin, characterized in that the nucleotide sequence encoding a delta-endotoxin is represented by SEQ ID NO: 1 or has at least 90 % identity with it, or a nucleic acid molecule in which said nucleotide sequence is comprised, that is, a vector into which the nucleic acid molecule that constitutes the first aspect of the present invention is inserted. The vector is chosen according to the system where the expression is desired or which You want to transform with him. In a preferred embodiment, the vector is a plasmid, which allows obtaining a high number of copies in suitable bacteria transformed with it and, if the promoter is suitable, also allows the expression of the delta-endotoxin of the present invention. in the bacterium, being possible the production and purification of delta-endotoxin from bacterial cultures. Also within the scope of the invention is the embodiment in which the plasmid is a plasmid that can be replicated (and expressed) in yeasts, as is the case of the so-called 2 micron plasmid (2 μ), from Saccharomyces cerívisiae. A preferred embodiment is that in which the plasmid allows the expression of the delta-endotoxin of the present invention in a bacterium chosen from Escherichia coli, Pseudomonas spp., Bacillus megaterium or Bacillus thuríngiensis; In the latter case, there is a special preference for strain Bt 4Q7.
El vector puede ser también un vector de transformación de plantas, realización compatible, entre otras, con la alternativa de que el vector sea un plásmido. Se prefiere especialmente que dicho vector de transformación esté construido de la manera que la secuencia de nucleótidos que codifica la delta-endotoxina representada por SEQ ID NO:1 o la secuencia codificante que presenta al menos un 90% de identidad con la misma está operativamente unida a un promotor capaz de dirigir la expresión de dicha secuencia de nucleótidos en una célula de planta, como puede ser el promotor del virus del mosaico de la coliflor (promotor de CaMV) o la variante 4xB2+A CaMV35S; dentro de esta realización, se prefiere particularmente que la secuencia codificante esté también operativamente unida a otras secuencias de control o regulatorias que faciliten o posibiliten la expresión en plantas, como secuencias de terminación o, incluso, secuencias líder, aunque la presencia de secuencias regulatorias es igualmente compatible con cualquier vector, incluidos los de expresión en bacterias. Con especialmente preferencia, la estructura del vector de transformación deberá ser tal que toda la construcción o "cásete de expresión" (promotor, secuencia codificante y secuencias regulatorias o de control) pueda resultar transferido como tal conjunto estructural al genoma de la planta. Es también una realización preferida, compatible con todas las anteriores, aquella en la que la secuencia codificante de la delta-endotoxina de la presente invención está unida a la secuencia codificante de un segundo polipéptido, en fase con ella, y todo el conjunto bajo el control del mismo promotor, de manera que la expresión de la sucesión de secuencias codificantes dé lugar a una proteína de fusión. Otro aspecto más de la invención lo constituyen las células hospedadoras que comprendan al menos un vector de la presente invención. Tal como se ha discutido previamente, entre los posibles hospedadores preferidos están las células de bacterias, muy especialmente las del grupo de Escheríchia coli, Pseudomonas spp., Bacillus megateríum o Bacillus thuringiensis, especie esta última en la que se tiene especial preferencia por la cepa Bt 4Q7. La célula puede ser también una célula de planta. También es posible, entre otras realizaciones, que la célula sea una célula de levadura, particularmente de Saccharomyces cerívisiae. The vector can also be a plant transformation vector, an embodiment compatible, among others, with the alternative that the vector is a plasmid. It is especially preferred that said transformation vector is constructed in such a way that the nucleotide sequence encoding the delta-endotoxin represented by SEQ ID NO: 1 or the coding sequence that has at least 90% identity thereto is operably linked to a promoter capable of directing the expression of said nucleotide sequence in a plant cell, such as the cauliflower mosaic virus promoter (CaMV promoter) or the 4xB2 + A CaMV35S variant; Within this embodiment, it is particularly preferred that the coding sequence is also operatively linked to other control or regulatory sequences that facilitate or enable expression in plants, such as termination sequences or even leader sequences, although the presence of regulatory sequences is equally compatible with any vector, including those of expression in bacteria. With particular preference, the structure of the transformation vector should be such that the entire construction or "expression cassette" (promoter, coding sequence and regulatory or control sequences) can be transferred as such a structural assembly to the plant genome. It is also a preferred embodiment, compatible with all of the above, that in which the delta-endotoxin coding sequence of the present invention is linked to the coding sequence of a second polypeptide, in phase with it, and the entire assembly under the control of the same promoter, so that the expression of the sequence of coding sequences results in a fusion protein. Another aspect of the invention is the host cells comprising at least one vector of the present invention. As previously discussed, among the possible preferred hosts are bacteria cells, especially those of the Escheríchia coli group, Pseudomonas spp., Bacillus megateríum or Bacillus thuringiensis, the latter species in which there is a special preference for the strain Bt 4Q7. The cell can also be a plant cell. It is also possible, among other embodiments, that the cell is a yeast cell, particularly Saccharomyces cerívisiae.
Un aspecto más de la presente invención son las plantas transgénicas que comprenden células transformadas con vectores de la presente invención. Por tanto, es un aspecto de la presente invención una planta transgénica que comprende al menos una célula hospedadora que comprende al menos un vector de la presente invención. Por planta, como ya se mencionó anteriormente, puede entenderse una planta completa o cualquier parte de la misma, así como las formas previas en su desarrollo que dan lugar a la planta complementamente desarollada, incluidas las plántulas y las semillas. Por su importancia, puede considerarse que un aspecto adicional de la invención es una semilla que comprende una molécula de ácido nucleico de la presente invención, es decir, una molécula de ácido nucleico aislada que comprende una secuencia de nucleótidos que codifica una delta-endotoxina, caracterizada por que la secuencia de nucleótidos que codifica una delta-endotoxina está representada por SEQ ID NO:1 o presenta al menos un 90% de identidad con la misma. Tanto en el caso de las plantas como en el de las semillas, se prefieren las plantas que sufren daños causados por áfidos {Myzus persicae en particular), o en las que se ha comprobado que dichos insectos facilitan la transmisión de virus. Así, entre otras, se tiene preferencia por plantas, partes de plantas o semillas de melocotonero {Prunus pérsica), albaricoquero {Prunus armeniaca), ciruelo {Prunus domestica), almendro {Prunus dulcís), otras especies del género Prunus, cítricos, patata, tomate y otras especies de la familia Solanaceae, tabaco, remolacha, remolacha azucarera, caña de azúcar, girasol, apio, mostaza, pimiento, calabaza, alcachofa, espárrago, judías, brécol, coles de Bruselas, repollo, coliflor, col, col rizada, zanahoria, pepino, nabo, berenjena, lechuga, perejil, chirivía, guisante, alfalfa, pimiento, rábano, espinaca, berro, sandía, melón, maíz, sorgo, mijo, trigo, cebada, centeno, avena, arroz, soja, colza, cártamo, maní, batata, yuca, café, coco, piña, cacao, té, plátano, aguacate, higo, guayaba, mango, papaya, olivo, algodón, coniferas, azalea, hortensia, hibisco, rosas, tulipanes, narcisos, petunias, claveles, flor de pascua, y crisantemos.  A further aspect of the present invention is transgenic plants comprising cells transformed with vectors of the present invention. Therefore, an aspect of the present invention is a transgenic plant comprising at least one host cell comprising at least one vector of the present invention. By plant, as already mentioned above, a complete plant or any part thereof can be understood, as well as the previous forms in its development that give rise to the completely developed plant, including seedlings and seeds. Because of its importance, a further aspect of the invention may be considered to be a seed comprising a nucleic acid molecule of the present invention, that is, an isolated nucleic acid molecule comprising a nucleotide sequence encoding a delta-endotoxin, characterized in that the nucleotide sequence encoding a delta-endotoxin is represented by SEQ ID NO: 1 or has at least 90% identity with it. Both in the case of plants and in the case of seeds, plants that suffer damage caused by aphids {Myzus persicae in particular) are preferred, or where it has been found that these insects facilitate virus transmission. Thus, among others, there is preference for plants, parts of plants or seeds of peach tree {Prunus pérsica), apricot tree {Prunus armeniaca), plum {Prunus domestica), almond tree {Prunus dulcís), other species of the genus Prunus, citrus, potato , tomato and other species of the Solanaceae family, tobacco, beet, sugar beet, sugar cane, sunflower, celery, mustard, pepper, squash, artichoke, asparagus, beans, broccoli, Brussels sprouts, cabbage, cauliflower, cabbage, cabbage curly, carrot, cucumber, turnip, eggplant, lettuce, parsley, parsnip, pea, alfalfa, pepper, radish, spinach, watercress, watermelon, melon, corn, sorghum, millet, wheat, barley, rye, oats, rice, soybeans, rapeseed, safflower, peanut, sweet potato, yucca, coffee, coconut, pineapple, cocoa, tea, banana, avocado, fig, guava, mango, papaya, olive, cotton, coniferous, azalea, hydrangea, hibiscus, roses, tulips, daffodils, Petunias, carnations, poinsettia, and chrysanthemums.
Es también un aspecto de la presente invención cualquier polipéptido que comprenda la secuencia de la nueva delta-endotoxina de la presente invención o secuencias con un alto grado de identidad con la misma que puedan considerarse delta-endotoxinas. Así, la presente invención se refiere también a un polipéptido que comprende una secuencia de aminoácidos caracterizada por que dicha secuencia de aminoácidos: a) es la representada por SEQ ID NO:2; It is also an aspect of the present invention any polypeptide comprising the sequence of the new delta-endotoxin of the present invention or sequences with a high degree of identity therewith that can be considered delta-endotoxins. Thus, the present invention also relates to a polypeptide comprising an amino acid sequence characterized in that said amino acid sequence: a) is represented by SEQ ID NO: 2;
b) es la secuencia de una delta-endotoxina que está codificada por la secuencia representada por SEQ ID NO:1 o por una secuencia que presenta al menos un 90% de identidad con la misma, o  b) is the sequence of a delta-endotoxin that is encoded by the sequence represented by SEQ ID NO: 1 or by a sequence that has at least 90% identity with it, or
c) es la secuencia de una delta-endotoxina que presenta al menos un 80% de identidad con la secuencia representada por SEQ ID NO:2.  c) is the sequence of a delta-endotoxin that has at least 80% identity with the sequence represented by SEQ ID NO: 2.
Cualquiera de las secuencias que responde a la definición de a), b) o c) se considera una proteína (delta-endotoxina) de la presente invención. Se prefiere especialmente que la proteína presente tres dominios estructurales que se correspondan con los dominios N, M y C de las proteínas Cry. Muy especialmente, se prefiere que la secuencia de aminoácidos de la delta-endotoxina comprenda un dominio similar a la ricina b. Any of the sequences that meet the definition of a), b) or c) is considered a protein (delta-endotoxin) of the present invention. It is especially preferred that the protein has three structural domains that correspond to the N, M and C domains of the Cry proteins. Very especially, it is preferred that the amino acid sequence of delta-endotoxin comprises a domain similar to ricin b.
En el caso de la alternativa c), el porcentaje de identidad puede ser, entre otros, siendo el 100% la opción a). Es una posible realización que el polipéptido se corresponda exactamente con el representado por SEQ ID NO:2. In the case of alternative c), the percentage of identity may be, among others, 100% being option a). It is a possible embodiment that the polypeptide corresponds exactly to that represented by SEQ ID NO: 2.
En cualquiera de las opciones, se prefiere muy especialmente que el polipéptido tenga actividad insecticida contra al menos un hemíptero, preferiblemente al menos una especie de áfido, teniendo especial preferencia por que tenga actividad insecticida contra el áfido Myzus persicae. In any of the options, it is very especially preferred that the polypeptide has insecticidal activity against at least one hemipter, preferably at least one species of aphid, having special preference for having insecticidal activity against the aphid Myzus persicae.
En una posible realización, compatible con las anteriores, la secuencia de la delta- endotoxina de la presente invención está ligada a un segundo polipéptido, formando una proteína de fusión. Entre los posibles ejemplos de interés como segundo polipéptido puede citarse la proteína de unión a la maltosa, como en el ejemplo 18 de la solicitud WO2010/099365. La delta-endotoxina de la presente invención también puede estar unida a otras secuencias de aminoácidos de posible interés, como puede ser una secuencia líder en 5' o, por ejemplo, una cola de histidinas que facilite su posterior aislamiento.  In a possible embodiment, compatible with the foregoing, the delta-endotoxin sequence of the present invention is linked to a second polypeptide, forming a fusion protein. Among the possible examples of interest as a second polypeptide can be mentioned the maltose binding protein, as in example 18 of the application WO2010 / 099365. The delta-endotoxin of the present invention may also be linked to other amino acid sequences of possible interest, such as a 5 'leader sequence or, for example, a histidine tail that facilitates its subsequent isolation.
Adicionalmente, es también un aspecto de la presente invención una composición que comprende un polipéptido de la presente invención según se ha definido en los párrafos previos, un vector de la presente invención o una célula hospedadora de la presente invención, composición que se considera una composición de la presente invención. Preferiblemente, la composición comprende también un excipiente y/o un vehículo agronómicamente aceptable. La composición puede estar en diversas formas, preferiblemente formas adecuadas para que la composición pueda ser administrada como composiciones plaguicida, tales como polvo, granulado, emulsión, coloide, suspensión o solución. La suspensión o solución puede ser acuosa o puede ser que el vehículo líquido sea, por ejemplo, un aceite o una emulsión. Se prefiere que la composición comprenda un polipéptido de la presente invención o una célula hospedadora de la presente invención. En este segundo caso, como se ha comentado previamente, se tiene preferencia por las células hospedadoras bacterianas o de levadura, particularmente de células de una especie que se selecciona entre Pseudomonas spp., Bacillus megateríum, Bacillus thuríngiensis Bt 4Q7 o Saccharomyces cerivisae. Additionally, an aspect of the present invention is also a composition comprising a polypeptide of the present invention as defined in the preceding paragraphs, a vector of the present invention or a host cell of the present invention, a composition that is considered a composition. of the present invention. Preferably, the composition also comprises an excipient and / or an agronomically acceptable carrier. The composition may be in various forms, preferably suitable forms so that the composition can be administered as pesticidal compositions, such as powder, granulate, emulsion, colloid, suspension or solution. The suspension or solution may be aqueous or it may be that the liquid vehicle is, for example, an oil or an emulsion. It is preferred that the composition comprises a polypeptide of the present invention or a host cell of the present invention. In this second case, as previously mentioned, preference is given to bacterial or yeast host cells, particularly cells of a species selected from Pseudomonas spp., Bacillus megateríum, Bacillus thuríngiensis Bt 4Q7 or Saccharomyces cerivisae.
En la posible realización en la que la composición comprende un polipéptido de la presente invención, el mismo puede estar formando parte de una composición sólida, líquida o preparada para ser administrada en forma de aerosol. El polipéptido puede estar en forma cristalina, de forma que formará una suspensión en el caso de que la composición se prepare en un vehículo acuoso, o puede estar solubilizado en un vehículo líquido, que puede ser acuoso.  In the possible embodiment in which the composition comprises a polypeptide of the present invention, it may be part of a solid, liquid or prepared composition to be administered as an aerosol. The polypeptide may be in crystalline form, so that it will form a suspension in the event that the composition is prepared in an aqueous vehicle, or it may be solubilized in a liquid vehicle, which may be aqueous.
Las composiciones de la presente invención, como se comentó previamente, pueden contener otros distintos componentes adicionales, entre ellos, otros diversos plaguicidas o compuestos que incrementen su acción, incluidas las esporas de Bacillus thuríngiensis, que pueden pertenecer a la cepa Bt 1 .5H, a la cepa Bt 4Q7, a cualquier otra cepa natural, o a cepas recombinantes, incluidas cepas recombinantes que comprendan los vectores de la presente invención.  The compositions of the present invention, as previously discussed, may contain other different additional components, including various other pesticides or compounds that increase their action, including Bacillus thuringiensis spores, which may belong to strain Bt 1.5H, to strain Bt 4Q7, to any other natural strain, or to recombinant strains, including recombinant strains comprising the vectors of the present invention.
Puesto que uno de los principales objetivos de la presente invención es combatir las plagas de pulgón Myzus persicae, un aspecto adicional de la presente invención es el uso de las composiciones de la presente invención para combatir plagas de hemípteros, especialmente áfidos, y muy especialmente plagas del pulgón Myzus persicae.  Since one of the main objectives of the present invention is to combat the Myzus persicae aphid pests, an additional aspect of the present invention is the use of the compositions of the present invention to combat hemiptera pests, especially aphids, and very especially pests. of the aphid Myzus persicae.
Preferiblemente, el uso de la presente invención es para combatir plagas que produzcan daños en plantas, cultivos de plantas, o a los productos de la cosecha de los mismos. Se prefiere especialmente que las plantas a tratar sean plantas que sufren daños por infestaciones de Myzus persicae o plantas en las que dicho pulgón puede actuar como transmisor de virus. Como ya se comentó, estas plantas son principalmente el melocotonero y otros frutales del genero Prunus, así como cítricos, cruciferas, solánaceas e, incluso, coniferas y plantas ornamentales. Entre las especies a tratar se pueden citar melocotonero, albaricoquero, ciruelo, almendro, otras especies del género Prunus, cítricos, patata, tomate y otras especies de la familia Solanaceae, tabaco, remolacha, remolacha azucarera, caña de azúcar, girasol, apio, mostaza, pimiento, calabaza, alcachofa, espárrago, judías, brécol, coles de Bruselas, repollo, coliflor, col, col rizada, zanahoria, pepino, nabo, berenjena, lechuga, perejil, chirivía, guisante, alfalfa, pimiento, rábano, espinaca, berro, sandía, melón, maíz, sorgo, mijo, trigo, cebada, centeno, avena, arroz, soja, colza, cártamo, maní, batata, yuca, café, coco, piña, cacao, té, plátano, aguacate, higo, guayaba, mango, papaya, olivo, algodón, coniferas, azalea, hortensia, hibisco, rosas, tulipanes, narcisos, petunias, claveles, flor de pascua, y crisantemos. Se tiene especial preferencia por los frutales del género Prunus, por una parte, y por el tabaco y la patata, por la especial importancia que tiene en esta última para la transmisión de virus. Preferably, the use of the present invention is to combat pests that cause damage to plants, plant crops, or to the products of their harvest. It is especially preferred that the plants to be treated are plants that are damaged by Myzus persicae infestations or plants in which said aphid can act as a virus transmitter. As already mentioned, these plants are mainly the peach tree and other fruit trees of the genus Prunus, as well as citrus, crucifixes, solnaceae and even conifers and ornamental plants. Among the species to be treated can be mentioned peach tree, apricot tree, plum, almond tree, other species of the genus Prunus, citrus, potato, tomato and other species of the Solanaceae family, tobacco, beet, sugar beet, sugar cane, sunflower, celery, mustard, pepper, pumpkin, artichoke, asparagus, beans, broccoli, Brussels sprouts, cabbage, cauliflower, cabbage, kale, carrot, cucumber, turnip, eggplant, lettuce, parsley, parsnip, pea, alfalfa, pepper, radish, spinach , watercress, watermelon, melon, corn, sorghum, millet, wheat, barley, rye, oats, rice, soybeans, rape, safflower, peanuts, sweet potatoes, cassava, coffee, coconut, pineapple, cocoa, Tea, banana, avocado, fig, guava, mango, papaya, olive, cotton, conifers, azalea, hydrangea, hibiscus, roses, tulips, daffodils, petunias, carnations, poinsettia, and chrysanthemums. Special preference is given for fruit trees of the genus Prunus, on the one hand, and for tobacco and potatoes, for the special importance it has in the latter for virus transmission.
El uso comprende la administración de las composiciones de la invención por cualquier método conocido, como ya se comentó previamente, apropiado según la formulación de la composición, tal como pulverización, administración en el agua de riego, depósito directo sobre órganos de la planta o junto a la base de la misma...  The use comprises the administration of the compositions of the invention by any known method, as previously mentioned, appropriate according to the formulation of the composition, such as spraying, administration in irrigation water, direct deposition on plant organs or together at the base of it ...
Otro aspecto más de la invención es un método para la producción de un polipéptido de la presente invención. El método comprende las etapas de: Another aspect of the invention is a method for the production of a polypeptide of the present invention. The method comprises the steps of:
a) obtener un organismo recombinante que exprese el polipéptido de la presente invención;  a) obtaining a recombinant organism that expresses the polypeptide of the present invention;
b) cultivar dicho organismo recombinante;  b) culturing said recombinant organism;
c) inducir, de ser necesario, la expresión del polipéptido en dicho organismo recombinante;  c) inducing, if necessary, the expression of the polypeptide in said recombinant organism;
d) purificar el polipéptido a partir del organismo recombinante.  d) purify the polypeptide from the recombinant organism.
El organismo recombinante puede ser, por ejemplo, una planta transgénica de la presente invención o una célula hospedadora de la presente invención u otro microorganismo recombinante, preferiblemente una célula bacteriana o de levadura que o bien comprenda un vector de expresión de la presente invención, o bien haya integrado en su genoma una molécula de ácido nucleico de la presente invención, especialmente si en dicha molécula de ácido nucleico la secuencia de nucleótidos que codifica una delta- endotoxina estaba ya operativamente unida a un promotor que permite su expresión en dicho microorganismo recombinante. Un ejemplo de purificación del polipéptido de la presente invención, en este caso la delta-endotoxina de SEQ ID NO:2, se presenta en el Ejemplo 2 de la presente invención, en el que se obtienen y cultivan células de Escherichia coli recombinante, transformadas con un plásmido que expresa dicha delta- endotoxina, induciendo la expresión de la delta-endotoxina con IPTG y procediendo a la purificación a partir del cultivo, purificación que puede llevarse a cabo por cualquier medio conocido, como puede ser cromatografía de afinidad como en el Ejemplo 2 citado. En el caso de que la producción y purificación se produjera a partir de plantas transgénicas, las formas del polipéptido de la presente invención que comprenden proteínas de fusión o secuencias auxiliares de aminoácidos como colas de histidinas pueden ser de especial utilidad para el aislamiento del polipéptido de la presente invención, pudiendo ser necesaria una etapa adicional en la que la secuencia auxiliar o el segundo polipéptido de la proteína de fusión se escinde, por ejemplo mediante el uso de una endoproteasa adecuada. The recombinant organism may be, for example, a transgenic plant of the present invention or a host cell of the present invention or another recombinant microorganism, preferably a bacterial or yeast cell that either comprises an expression vector of the present invention, or either it has integrated into its genome a nucleic acid molecule of the present invention, especially if in said nucleic acid molecule the nucleotide sequence encoding a delta-endotoxin was already operably linked to a promoter that allows its expression in said recombinant microorganism. An example of purification of the polypeptide of the present invention, in this case the delta-endotoxin of SEQ ID NO: 2, is presented in Example 2 of the present invention, in which recombinant Escherichia coli cells are obtained and cultured. with a plasmid expressing said delta-endotoxin, inducing the expression of delta-endotoxin with IPTG and proceeding to purification from the culture, purification that can be carried out by any known means, such as affinity chromatography as in the Example 2 cited. In the event that production and purification occurred from transgenic plants, the polypeptide forms of the present invention comprising fusion proteins or amino acid helper sequences such as histidine tails may be of particular utility for the isolation of the polypeptide from the present invention, an additional step may be necessary in which the auxiliary sequence or the second polypeptide of the fusion protein is cleaved, for example by the use of a suitable endoprotease.
Finalmente, un aspecto adicional de la presente invención es un anticuerpo que se une específicamente a un polipéptido de la presente invención. Preferiblemente, el anticuerpo se une específicamente al fragmento del polipéptido que constituye la delta-endotoxina de la presente invención, con especial preferencia por la realización en la que la secuencia de la delta-endotoxina es la representada por SEQ ID NO:2. En una realización preferida, el anticuerpo es un anticuerpo monoclonal.  Finally, a further aspect of the present invention is an antibody that specifically binds to a polypeptide of the present invention. Preferably, the antibody specifically binds to the fragment of the polypeptide constituting the delta-endotoxin of the present invention, with particular preference for the embodiment in which the delta-endotoxin sequence is that represented by SEQ ID NO: 2. In a preferred embodiment, the antibody is a monoclonal antibody.
La invención se explicará ahora con más detalle con ayuda de los Ejemplos y Figuras que aparecen a continuación.  The invention will now be explained in more detail with the help of the Examples and Figures below.
Ejemplos Examples
- Ejemplo 1 : identificación v aislamiento del nuevo gen cry  - Example 1: identification and isolation of the new cry gene
1 .1 . Identificación y aislamiento del nuevo gen eleven . Identification and isolation of the new gene
El nuevo gen cry se identificó en la cepa de Bacillus thuringiensis Bt H1 .5, una cepa perteneciente a la colección Bt de la Universidad Pública de Navarra, Laboratorio de Bioinsecticidas Microbianos (Iriarte et al., 1998; Iriarte et al., 2000: artículos que describen cómo se realizó la toma de muestras y se construyó la colección). La cepa Bt H1 .5 en concreto fue aislada en la isla de El Hierro, Islas Canarias, España. The new cry gene was identified in the strain of Bacillus thuringiensis Bt H1 .5, a strain belonging to the Bt collection of the Public University of Navarra, Laboratory of Microbial Bioinsecticides (Iriarte et al., 1998; Iriarte et al., 2000: articles that describe how the sampling was done and the collection was built). The strain Bt H1 .5 specifically was isolated on the island of El Hierro, Canary Islands, Spain.
Esta cepa se cultivó en medio LB (Luria-Bertani) a 28 eC durante 16 horas a 200 rpm y su DNA total (genómico más plasmídico) se purificó con el kit Wizard® DNA purification kit (Promega), siguiendo las instrucciones del fabricante para el aislamiento de DNA desde bacterias Gram positivas, lo cual implica el tratamiento previo de las células bacterinas con lisozima a una concentración final de 10 mg/ml y una incubación de 30 minutos a 37eC. This strain was grown in LB medium (Luria-Bertani) at 28 e C for 16 hours at 200 rpm and its total DNA (genomic plus plasmid) was purified with the Wizard® DNA purification kit (Promega), following the manufacturer's instructions for the isolation of DNA from Gram positive bacteria, which implies the pretreatment of bacterial cells with lysozyme at a final concentration of 10 mg / ml and a 30 minute incubation at 37 e C.
El DNA total fue utilizado para generar una librería combinada {"pooled') según las instrucciones de lllumina, Inc. para la preparación de muestras con el sistema TruSeq™ lepreps truseq/truseqsampleprep/truseq sample prep poolinq quide 15042173 a.pdf). que fue secuenciado utilizando la tecnología HiSeq™ 2000 Sequencing System (lllumina® Sequencing) en modo de lectura simple, con un tamaño de lectura de 50 nucleótidos (GATC Biotech, Alemania).  The total DNA was used to generate a combined "pooled" library according to the instructions of lllumina, Inc. for the preparation of samples with the TruSeq ™ lepreps truseq / truseqsampleprep / truseq sample prep poolinq quide 15042173 a.pdf) system. It was sequenced using HiSeq ™ 2000 Sequencing System technology (lllumina® Sequencing) in single reading mode, with a reading size of 50 nucleotides (GATC Biotech, Germany).
Las secuencias obtenidas se analizaron utilizando Blast (Altschul et al., 1990) con bases de datos construidas con secuencias de toxinas Bt tales como Cry (cristalinas), Cyt (citolíticas), Vip1 , Vip2 y Vip3 (proteínas insecticidas vegetativas), Sip (proteína insecticida secretables) ya descritas como así también aquellas producidas por la bacteria Bacillus sphaerícus tales como Mtx 1 , Mtx2 y Mtx3 (toxinas mosquitocidas) y binarias Bina BinB (Berry, 2012), que fueron obtenidas de bases de datos públicas tales como Genbank (Benson et al., 2005). Alternativamente, también se utilizó el servidor de anotación automatizada RAST (Rapid Annotation using Subsystem Technology) (Aziz et al., 2008) el cual es un sistema totalmente automatizado para anotar genomas de bacterias y arcaeas completos o casi completos, proporcionando anotaciones del genoma de alta calidad de todo el árbol filogenético (http://rast.nmpdr.org). Además de identificar las regiones codificantes o CDSs, identifica los genes de ARNr (ARN ribosomal) y ARNt (ARN de transferencia), asigna funciones a los genes y utiliza esta información para reconstruir la red metabólica. Este servidor permite además la descarga de los resultados en distintos formatos (GenBank, Fasta, GFF, etc) y la navegación en el genoma anotado facilitando de esta manera el análisis comparativo con otros genomas anotados. The sequences obtained were analyzed using Blast (Altschul et al., 1990) with databases constructed with sequences of Bt toxins such as Cry (crystalline), Cyt (cytolytic), Vip1, Vip2 and Vip3 (vegetative insecticidal proteins), Sip ( protein secretable insecticides) already described as well as those produced by the bacterium Bacillus sphaericus such as Mtx 1, Mtx2 and Mtx3 (mosquito toxins) and Bina BinB binaries (Berry, 2012), which were obtained from public databases such as Genbank (Benson et al., 2005). Alternatively, the RAST (Rapid Annotation using Subsystem Technology) automated annotation server (Aziz et al., 2008) was also used, which is a fully automated system to annotate complete or almost complete bacterial and archaea genomes, providing genome annotations. high quality of the entire phylogenetic tree (http://rast.nmpdr.org). In addition to identifying the coding regions or CDSs, it identifies the rRNA (ribosomal RNA) and tRNA (transfer RNA) genes, assigns functions to the genes and uses this information to reconstruct the metabolic network. This server also allows the download of the results in different formats (GenBank, Fasta, GFF, etc.) and navigation in the annotated genome thus facilitating comparative analysis with other annotated genomes.
El nuevo gen cry fue identificado mediante la utilización de Blast (Blastx) y el ORF (Open Reading Frame: marco abierto de lectura) o secuencia codificante delimitado manualmente desde el codón de inicio (ATG) hasta el codón de stop (TAA) y con respecto a la secuencia homologa de referencia con mayor cobertura y porcentaje de identidad. También se tuvo en cuenta la secuencia típica de unión a ribosoma o secuencia de Shine-Dalgarno, la cual está constituida por los siguientes nucleótidos 5'- AAGGAGG -3', previa al codon de inicio ATG y separada por 7 nucleótidos en la secuencia 5'-TTTATGC-3'. Esta secuencia de unión a ribosoma o secuencia de Shine- Dalgarno ya ha sido identificada en Bacillus anthracis, especie que está estrechamente relacionada a Bacillus thuríngiensis (Steichen et al., 2003). La predicción de codones de inicio, ATG en nuestro caso, en base a la presencia de secuencias Shine-Dalgarno ya conocidas; minimiza significativamente la probabilidad de cometer error en la predicción de dicho codón (Starmer et al., 2006), especialmente, en genes como el de la presente invención, donde existen dos codones ATG próximos y separados por el nucleótido C (TTTATG CATG) . The new cry gene was identified by using Blast (Blastx) and the ORF (Open Reading Frame) or manually defined coding sequence from the start codon (ATG) to the stop codon (TAA) and with regarding the homologous sequence of reference with greater coverage and percentage of identity. The typical ribosome binding sequence or Shine-Dalgarno sequence was also taken into account, which consists of the following 5'- AAGGAGG-3 'nucleotides, prior to the ATG start codon and separated by 7 nucleotides in sequence 5 '-TTTATGC-3'. This ribosome binding sequence or Shine-Dalgarno sequence has already been identified in Bacillus anthracis, a species that is closely related to Bacillus thuríngiensis (Steichen et al., 2003). The prediction of start codons, ATG in our case, based on the presence of already known Shine-Dalgarno sequences; significantly minimizes the probability of making a mistake in predicting said codon (Starmer et al., 2006), especially in genes such as the present invention, where there are two ATG codons close and separated by nucleotide C (TTTATG CATG).
Este ORF, cuya secuencia está representada por SEQ ID NO:1 , presentaba una longitud total de 2.397 bp (pares de bases), codifica una proteína de 799 aminoácidos, con un peso molecular aproximado de 89 kDa, secuencia de aminoácidos que está representada por SEQ ID NO:2.  This ORF, whose sequence is represented by SEQ ID NO: 1, had a total length of 2,397 bp (base pairs), encodes a protein of 799 amino acids, with an approximate molecular weight of 89 kDa, amino acid sequence that is represented by SEQ ID NO: 2.
1 .2. Análisis bioinformático y comparativo de la secuencia de la proteína y de su secuencia codificante  1 .2. Bioinformatic and comparative analysis of the protein sequence and its coding sequence
La secuencia de aminoácidos de la nueva proteína presentó una identidad en Blast (BlastP) máxima del 76,56% y el 76,20% al compararlas contra otras proteínas previamente descritas en las bases de datos públicas, tanto comparando con secuencias "nr" (secuencias de proteínas no redundantes), como comparando con secuencias "pat" (secuencias de proteínas patentadas), respectivamente. Puesto que las proteínas con las que presentaba mayor porcentaje de identidad eran todas ellas proteínas Cry o delta- endotoxinas, la proteína de la presente invención es una proteína Cry nueva. The amino acid sequence of the new protein had a maximum Blast (BlastP) identity of 76.56% and 76.20% when compared against other proteins previously described in public databases, both comparing with "nr" sequences (non-redundant protein sequences), and comparing with "pat" sequences (proprietary protein sequences), respectively. Since the proteins with the highest percentage of identity were all Cry proteins or delta-endotoxins, the protein of the present invention is a new Cry protein.
Las Tablas 2 y 3 muestran los resultados obtenidos al realizar el BlastP mediante los recursos de uso público accesibles para tal fin en la página web del National Center for Biotechnology Information (NCBI) de EE.UU. Tables 2 and 3 show the results obtained when performing the BlastP through public use resources accessible for this purpose on the website of the National Center for Biotechnology Information (NCBI) in the USA.
(http:/ blast.ncbi.nlm.nih.gov/Blast.ca¡?PROGRAM=blastp&PAGE TYPE=BlastSearch&LI NK LOC^blasthome), tanto seleccionando la base de datos de proteínas no redundantes (nr) (Tabla2), como seleccionando la base de datos de proteínas patentadas (pat) (Tabla 3). La Tabla 4, por su parte, muestra los resultados obtenidos con las herramientas análogas disponibles en la página web del EBI (European Bioinformatics Institute: Instituto Europeo de Bioinformática) para la consulta del ENA (European Nucleotide Archive: Archivo Europeo de Nucleótidos) ( http ://www. eb i . ac . u k/en a') , realizando la consulta sobre la secuencia de nucleótidos de SEQ ID NO:1 . (http: / blast.ncbi.nlm.nih.gov/Blast.ca¡?PROGRAM=blastp&PAGE TYPE = BlastSearch & LI NK LOC ^ blasthome), both by selecting the non-redundant protein database (nr) (Table2), and by selecting the patented protein database (pat) (Table 3). Table 4, for its part, shows the results obtained with the analogous tools available on the website of the EBI (European Bioinformatics Institute: European Bioinformatics Institute) for the ENA (European Nucleotide Archive) consultation (http : // www. eb i. ac. uk / en a '), by querying the nucleotide sequence of SEQ ID NO: 1.
Tabla 2 Table 2
Lista de proteínas no redundantes con mayor porcentaje de identidad con respecto a la delta-endotoxina de la presente invención List of non-redundant proteins with a higher percentage of identity with respect to the delta-endotoxin of the present invention
Figure imgf000035_0001
Figure imgf000035_0001
a Punto de inicio de la comparación en la secuencia de búsqueda (delta-endotoxina de la invención)  a Start point of the comparison in the search sequence (delta-endotoxin of the invention)
b Punto final de la comparación en la secuencia de búsqueda (delta-endotoxina de la invención)  b End point of the comparison in the search sequence (delta-endotoxin of the invention)
c Punto de inicio de la comparación en la secuencia localizada  c Start point of the comparison in the localized sequence
d Punto final de la comparación en la secuencia localizada d End point of the comparison in the localized sequence
Tabla 3 Table 3
Lista de proteínas de documentos de patente con mayor porcentaje de identidad con respecto a la delta-endotoxina de la presente invención Protein list of patent documents with a higher percentage of identity with respect to the delta-endotoxin of the present invention
Figure imgf000036_0001
Figure imgf000036_0001
a Punto de inicio de la comparación en la secuencia de búsqueda (delta-endotoxina de la invención)  a Start point of the comparison in the search sequence (delta-endotoxin of the invention)
b Punto final de la comparación en la secuencia de búsqueda (delta-endotoxina de la invención)  b End point of the comparison in the search sequence (delta-endotoxin of the invention)
c Punto de inicio de la comparación en la secuencia localizada  c Start point of the comparison in the localized sequence
d Punto final de la comparación en la secuencia localizada d End point of the comparison in the localized sequence
Tabla 4 Table 4
Lista de secuencias de nucleótidos con mayor porcentaje de identidad con respecto a la secuencia codificante de la delta-endotoxina de la presente invención List of nucleotide sequences with the highest percentage of identity with respect to the delta-endotoxin coding sequence of the present invention
Figure imgf000037_0001
Figure imgf000037_0001
Figure imgf000038_0001
Figure imgf000038_0001
a Punto de inicio de la comparación en la secuencia de búsqueda (gen de la delta-endotoxina de la invención) b Punto final de la comparación en la secuencia de búsqueda (gen de la delta-endotoxina de la invención) 0 Punto de inicio de la comparación en la secuencia localizada  a Start point of the comparison in the search sequence (delta-endotoxin gene of the invention) b End point of the comparison in the search sequence (delta-endotoxin gene of the invention) 0 Start point of comparison in the localized sequence
d Punto final de la comparación en la secuencia localizada d End point of the comparison in the localized sequence
E software Geneious Pro v6.1 .7 (Drummond et al., 2014) y su herramienta Geneious Alignment se utilizó para realizar el alineamiento múltiple de la secuencia de la proteína CryBMI contra otras proteínas Cry conocidas, para las cuales se ha descrito que presentan actividad contra áfidos, incluida la proteína representada por la secuencia con número de identificación 205 en la patente US8318900B2 y en la solicitud internacional WO2010099365 (a la que se aludirá de forma abreviada en lo sucesivo como Seq205- US8318900). Los resultados de dicho alineamiento se muestran en la Fig. 1 . Este alineamiento se utilizó posteriormente para generar el dendrograma representativo de la relación filogenética entre las diversas proteínas Cry activas contra áfidos que se representa en la Fig. 2 con la herramienta Geneious Tree Builder y obtener una matriz de % de identidad de cada una de ellas (Tabla 5). The Geneious Pro v6.1 .7 software (Drummond et al., 2014) and its Geneious Alignment tool were used to perform multiple alignment of the CryBMI protein sequence against other known Cry proteins, for which it has been described that they present activity against aphids, including the protein represented by the sequence with identification number 205 in US8318900B2 and in international application WO2010099365 (referred to hereinafter as Seq205- US8318900). The results of said alignment are shown in Fig. 1. This alignment was subsequently used to generate the representative dendrogram of the phylogenetic relationship between the various Cry active proteins against aphids that is represented in Fig. 2 with the Geneious Tree Builder tool and obtain a matrix of% identity of each of them ( Table 5).
Tabla 5  Table 5
Porcentaje de similitud entre proteínas Cry activas contra áfidos, incluida la proteína Cry de la invención (CryBMI )  Similarity percentage between active Cry proteins against aphids, including the Cry protein of the invention (CryBMI)
Figure imgf000039_0001
Figure imgf000039_0001
Como puede verse en la Fig. 1 , la nueva proteína Cry, al igual que las demás (excepto Cry2Aa, Cry1 1Aa y Seq205-US8318900), resultó ser una proteína Cry con tres dominios N, M y C, los dominios que se consideran responsable de la actividad insecticida contra distintas especies de insectos. As can be seen in Fig. 1, the new Cry protein, like the others (except Cry2Aa, Cry1 1Aa and Seq205-US8318900), turned out to be a Cry protein with three domains N, M and C, the domains that are considered responsible for insecticidal activity against different insect species.
La nueva proteína Cry de la presente invención (CryBMI ), posee, sin embargo, una característica singular representada por un fragmento de secuencia homólogo a un dominio conservado de ricina (numero acceso InterPro IPR000772) constituido por 148 aminoácidos localizado en el extremo carboxilo terminal entre las posiciones 652 a 799 y representada por la secuencia TPTPEPVVDGIYQIVTALNNSSVAENGGPTTRGGPDQVKLSPFYNSTDQKWEFIYDSNE DVYTIRNLAGGFLTYFMLNPGYPVLAIRPQWATENQKWIVEPAGNGYYYLRSKSVPTEAA FAPNAADGSVVRMSAVDFSTNQKFKLNKL; más concretamente, un dominio similar al de la cadena B de la ricina natural, que es la cadena que tiene actividad como lectina (es decir, una proteína que se une a hidratos de carbono), pues se une a residuos terminales de galactosa presente en las superficies de las células. La ricina natural que se produce en las semillas de las plantas de ricino (Ricinus communis) es una proteína heterodimérica, compuesta por una cadena A y una cadena B, que resulta ser una lectina altamente tóxica para una amplia variedad de organismos (Chougule and Bonning, 2012). Sin querer limitarse a ninguna teoría específica, se propone que ese dominio de ricina podría ser el responsable de la elevada toxicidad de la proteína Cry de la presente invención contra M. persicae que se demuestra en ejemplos posteriores de la presente invención. - Ejemplo 2: Clonación del gen v producción de la proteína recombinante The new Cry protein of the present invention (CryBMI), however, has a unique feature represented by a sequence fragment homologous to a conserved domain of ricin (InterPro access number IPR000772) consisting of 148 amino acids located at the carboxyl end between positions 652 to 799 and represented by the sequence TPTPEPVVDGIYQIVTALNNSSVAENGGPTTRGGPDQVKLSPFYNSTDQKWEFIYDSNE DVYTIRNLAGGFLTYFMLNPGYPVLAIRPQWATENQKWIVEPAGNGYYYLRSKSVPTEAA FAPNAADGSVVRSTMSAGSVVRNMSKGDV more specifically, a domain similar to that of the B chain of natural ricin, which is the chain that has activity as lectin (i.e., a protein that binds carbohydrates), as it binds to terminal galactose residues present in cell surfaces The natural ricin that is produced in the seeds of castor plants (Ricinus communis) is a heterodimeric protein, composed of a chain A and a chain B, which turns out to be a highly toxic lectin for a wide variety of organisms (Chougule and Bonning , 2012). Without wishing to limit itself to any specific theory, it is proposed that this ricin domain could be responsible for the high toxicity of the Cry protein of the present invention against M. persicae which is demonstrated in later examples of the present invention. - Example 2: Cloning of the gene and production of the recombinant protein
Una vez identificado el nuevo gen cry , fue amplificado mediante PCR {Polymerase Chain Reactiorí) utilizando una Taq polimerasa a prueba de errores (PrimeSTAR HS DNA polymerase, Takara) con un cebador directo que permitía añadir una diana de restricción Λ/col (5'-CC/47GGATGAACCAAAATTATAACAACAATG~3 } (SEQ ID NO:5) inmediatamente antes del codón de inicio (ATG) y un cebador reverso que permitía añadir una diana de restricción Saft (5'- Once the new cry gene was identified, it was amplified by PCR {Polymerase Chain Reactiorí) using an error-proof Taq polymerase (PrimeSTAR HS DNA polymerase, Takara) with a direct primer that allowed to add a restriction target Λ / col (5 ' -CC / 47GGATGAACCAAAATTATAACAACAATG ~ 3} (SEQ ID NO: 5) immediately before the start codon (ATG) and a reverse primer that allowed to add a Saft restriction target (5'-
G7UG IGTAACTTATTCAGTTTGAATTTTTGATTTG -3') (SEQ ID NO:6), detallados en cursiva en la secuencia. El cebador reverso además carecía el codón de parada (TAA) permitiendo la fusión de la proteína recombinante a la cola de 6 histidinas codificada en el vector. Las reacciones se llevaron a cabo en un volumen final de 25 μΙ con 5 μΙ de buffer de reacción 5X, 10 mM de dNTPs, 6,3 pmol de cada cebador, 0,5 U de la DNA polimerasa a prueba de errores PrimeSTAR HS DNA polymerase (Takara) y 100 ng de DNA total. Cada reacción de llevó a cabo en las siguientes condiciones: 4 min. de desnaturalización incial a 94eC, 35 ciclos de amplificación (desnaturalización de 1 min. desnaturalización a 94eC, 1 min. de annealing (apareamiento) a 52eC y 2,5 min. de extensión a 72eC) y con un paso de extensión final a 72eC durante 10 min. G7UG IGTAACTTATTCAGTTTGAATTTTTGATTTG -3 ') (SEQ ID NO: 6), detailed in italics in the sequence. The reverse primer also lacked the stop codon (TAA) allowing the fusion of the recombinant protein to the 6 histidine tail encoded in the vector. The reactions were carried out in a final volume of 25 μΙ with 5 μΙ of 5X reaction buffer, 10 mM dNTPs, 6.3 pmol of each primer, 0.5 U of the PrimeSTAR HS DNA error-proof DNA polymerase polymerase (Takara) and 100 ng of total DNA. Each reaction was carried out under the following conditions: 4 min. of initial denaturation at 94 e C, 35 cycles of amplification (denaturation of 1 min. denaturation at 94 e C, 1 min. of annealing (mating) at 52 e C and 2.5 min. of extension at 72 e C) and with a final extension step at 72 e C for 10 min.
El fragmento amplificado fue ligado al vector pJET (Thermo Scientific) siguiendo las instrucciones provistas por el fabricante, separado del vector de clonado mediante digestión con las enzimas de restricción A/col y Sa/I y purificado del gel de agarosa con el kit Nucleospin Gel and PCR Cleanup (Macherey-Nagel). El fragmento purificado se subclonó en el vector de expresión pET-28b(+) (Novagen) (ver Fig. 3) predigerido con las enzimas de restricción restricción Λ/col y Sa/I y siguiendo técnicas rutinarias de biología molecular descritas por Sambrook y Russell (Sambrook and Russell, 2001 ). Este vector, posee un promotor fuerte para la RNA polimerasa viral del Fago T7 y un gen de resistencia a al antibiótico Kanamicina para facilitar su selección The amplified fragment was ligated to the pJET vector (Thermo Scientific) following the instructions provided by the manufacturer, separated from the cloning vector by digestion with the restriction enzymes A / col and Sa / I and purified from the agarose gel with the Nucleospin Gel kit and PCR Cleanup (Macherey-Nagel). The purified fragment was subcloned into the expression vector pET-28b (+) (Novagen) (see Fig. 3) predigested with the Restriction restriction enzymes col / col and Sa / I and following routine molecular biology techniques described by Sambrook and Russell (Sambrook and Russell, 2001). This vector has a strong promoter for viral RNA polymerase of Phage T7 and an antibiotic resistance gene Kanamycin to facilitate its selection.
Una vez obtenido el vector recombinante de expresión, representado en el Fig. 3, el mismo se utilizó para transformar células de Escheríchia coli BL21 (DE3) (Life Technologies), siguiendo técnicas rutinarias de biología molecular descritas por Sambrook y Russell (Sambrook and Russell, 2001 ). Estas células portan en su genoma el gen codificante de la RNA polimerasa viral del fago T7 inducible por IPTG (isopropil^-D- 1 -tiogalactopiranósido), la cual reconoce el promotor codificado en el vector de expresión pET-28b(+) (Novagen) y transcribe el gen clonado llevando a la producción de la proteína codificada por tal gen. Once the recombinant expression vector, represented in Fig. 3, was obtained, it was used to transform Escheríchia coli BL21 (DE3) cells (Life Technologies), following routine molecular biology techniques described by Sambrook and Russell (Sambrook and Russell , 2001). These cells carry in their genome the gene encoding the viral polymerase RNA of phage T7 inducible by IPTG (isopropyl ^ -D-1-thiogalactopyranoside), which recognizes the promoter encoded in the expression vector pET-28b (+) (Novagen ) and transcribes the cloned gene leading to the production of the protein encoded by such a gene.
La producción de la proteína recombinante CryBMI se llevó a cabo en las células de Escheríchia coli obtenidas, induciendo su expresión con 1 mM (concentración final) de IPTG a 37 eC y una 200 rpm de agitación durante 16 hs. The production of the CryBMI recombinant protein was carried out in the obtained Escheríchia coli cells, inducing its expression with 1 mM (final concentration) of IPTG at 37 e C and a 200 rpm of agitation for 16 hours.
La purificación de la proteína recombinante portadora de una cola de 6 histidinas se llevó a cabo mediante cromatografía de afinidad en columnas de níquel con TED (tris- carboximetil-etilen-diamina) como ligando quelante, con el kit Protino Ni-Ted 1000 (Macherey-Nagel), siguiendo las instrucciones del fabricante. La concentración de la proteína soluble purificada fue determinada por el método de Bradford (Bradford, 1976). La nueva proteína Cry producida en E. coli se obtuvo en fase soluble a una concentración aproximada de 1 mg/ml a partir de un litro de medio de cultivo. Al someter a electroforesis en gel SDS-PAGE una alícuota de la muestra purificada obtenida, se observó una banda a una altura correspondiente a un tamaño de 89 kDa, equiparable al peso molecular teórico de la secuencia de la proteína recombinante y que se muestra en la Fig. 4.  The purification of the recombinant carrier protein of a 6 histidine tail was carried out by means of affinity chromatography on nickel columns with TED (triscarboxymethyl-ethylene diamine) as chelating ligand, with the Protino Ni-Ted 1000 kit (Macherey -Nagel), following the manufacturer's instructions. The concentration of the purified soluble protein was determined by the Bradford method (Bradford, 1976). The new Cry protein produced in E. coli was obtained in the soluble phase at an approximate concentration of 1 mg / ml from one liter of culture medium. Upon electrophoresis in SDS-PAGE gel an aliquot of the purified sample obtained, a band at a height corresponding to a size of 89 kDa was observed, comparable to the theoretical molecular weight of the recombinant protein sequence and shown in the Fig. 4.
- Ejemplo 3: Análisis de la actividad insecticida - Example 3: Analysis of insecticidal activity
El análisis de la actividad insecticida se llevó a cabo mediante una simplificación de la metodología de bioensayos descrita por Sadeghi et al. (Sadeghi et al., 2009) utilizando ninfas de M. persicae de primer estadio (N1 ) suministradas por el insectario del centro de investigación de los presentes inventores. Brevemente, la proteína soluble fue diluida en dieta artificial para áfidos la cual estaba constituida por sacarosa al 20% P/V en agua destilada estéril. Cada dilución se incorporó entre dos láminas de Parafilm® "M" (Bemis Flexible Packaging, Nena, Wiscosin, EE.UU.) y cubriendo cajas circulares pequeñas de 3 cm de diámetro (1 ,5 cm de alto) sin tapa. Cada caja contenía 15 ninfas N1 . De esta manera, las ninfas eran capaces de alimentarse a través de la primer membrana de Parafilm® "M" y directamente sobre la mezcla de dieta artificial+toxina en los tratamientos o simplemente de la dieta artificial en el caso del control negativo. La Fig. 5 muestra fotografías de las cajas empleadas, cubiertas con Parafilm® "M" y con la gota de dieta artificial entre dos capas de dicho material. The analysis of the insecticidal activity was carried out by means of a simplification of the bioassay methodology described by Sadeghi et al. (Sadeghi et al., 2009) using nymphs of M. persicae of first stage (N1) supplied by the insectarium of the research center of the present inventors. Briefly, the soluble protein was diluted in an artificial aphid diet which consisted of 20% P / V sucrose in sterile distilled water. Each dilution was incorporated between two sheets of Parafilm® "M" (Bemis Flexible Packaging, Nena, Wiscosin, USA) and covering small circular boxes 3 cm in diameter (1.5 cm high) without lid. Each box contained 15 nymphs N1. In this way, the nymphs were able to feed through the first membrane of Parafilm® "M" and directly on the mixture of artificial diet + toxin in the treatments or simply of the artificial diet in the case of negative control. Fig. 5 shows photographs of the boxes used, covered with Parafilm® "M" and with the artificial diet drop between two layers of said material.
Los bioensayos se llevaron a cabo en cámara bajo las siguientes condiciones controladas: 25°C de temperatura, 70% de humedad rdativa y bajo fotoperíodo de 16:8 horas de luz/oscuridad, respectivamente. La mortalidad producida se registró a las 72 horas. The bioassays were carried out in a chamber under the following controlled conditions: temperature 25 ° C, 70% rdative humidity and under a 16: 8 hour light / dark photoperiod, respectively. The mortality produced was recorded at 72 hours.
En un principio, se realizaron ensayos preliminares en dos repeticiones y dos concentraciones de 100 y 1000 μg/ml de la proteína Cry de la presente invención, CryBMI . Estos ensayos permitieron determinar las concentraciones aproximadas que producirían una mortalidad de entre el 5 al 95%. La concentración letal media (CL50) se determinó entonces a cuatro concentraciones de 20, 25, 32 y 40 μg/ml y a tres repeticiones por cada concentración y el control negativo. Initially, preliminary tests were performed in two repetitions and two concentrations of 100 and 1000 μg / ml of the Cry protein of the present invention, CryBMI. These trials allowed to determine the approximate concentrations that would produce a mortality of between 5 and 95%. The mean lethal concentration (LC 50 ) was then determined at four concentrations of 20, 25, 32 and 40 μg / ml and at three repetitions for each concentration and the negative control.
Los resultados obtenidos se muestran a continuación en la Tabla 6: The results obtained are shown below in Table 6:
Tabla 6  Table 6
Porcentajes de mortalidad producidos por distintas concentraciones de CryBMI al ser ingeridas por ninfas neonatas de Myzus persicae  Mortality percentages produced by different concentrations of CryBMI when ingested by neonatal nymphs of Myzus persicae
Concentración (μςΛτιΙ) Insectos tratados Insectos muertos % de mortalidad  Concentration (μςΛτιΙ) Insects treated Dead insects% mortality
0 120 15 12,50 120 15 12.5
20 126 20 15,9 20 126 20 15.9
25 125 29 23,2  25 125 29 23.2
32 1 19 65 54,6  32 1 19 65 54.6
40 120 100 83,3 La CL50 fue estimada a partir de los datos anteriores, utilizando el programa estadístico Polo PC (LeOra-Software, 1987) basado en el análisis probit de Finney (1971 ). El valor obtenido y los detalles del análisis probit en los que se basa se muestran a continuación en la Tabla 7. Tabla 7 40 120 100 83.3 The CL 50 was estimated from the previous data, using the statistical program Polo PC (LeOra-Software, 1987) based on Finney's probit analysis (1971). The value obtained and the details of the probit analysis on which it is based are shown below in Table 7. Table 7
Concentración letal media (CL50) estimada para la nueva proteína CryBMI contra ninfas neonatas de Myzus persicae Average lethal concentration (LC 50 ) estimated for the new CryBMI protein against neonatal nymphs of Myzus persicae
LC50 Regresión lineal Bondad de ajuste LC 50 Linear regression Goodness of fit
Tratamiento (Mfl/ml) Pendiente±EE* a*±EE* χ2 g-i.* Treatment (Mfl / ml) Pending ± EE * to * ± EE * χ 2 gi. *
Proteína Cry 32,7 10,3+1 ,4 -10,6+2,1 0,55 2 Cry protein 32.7 10.3 + 1, 4 -10.6 + 2.1 0.55 2
*a: intersección con la recta de regresión * a: intersection with the regression line
EE: error estándar  EE: standard error
g.l.: grados de libertad  g.l .: degrees of freedom
La CL50 determinada fue de tan solo 32,7 μg/ml. Este valor puede considerarse la CL50 más baja descrita hasta la fecha para una proteína Cry de Bt aplicada a una especie de hemíptero plaga. The LC 50 determined was only 32.7 μg / ml. This value can be considered the lowest LC 50 described to date for a Cry protein of Bt applied to a species of hemiptera plague.
BIBLIOGRAFÍA BIBLIOGRAPHY
Ayres, N.M., Park W.D, 1994. Geneíic transformation of rice. Gritical Reviews in Plant Science 13:219-239.  Ayres, N.M., Park W.D, 1994. Geneíic transformation of rice. Gritical Reviews in Plant Science 13: 219-239.
Altschul, S.F., et al., 1990. Basic local alignment search tool. J Mol Biol 215, 403-410. Altschul, S.F., Madden T.L., Scháffer A.A., Zhang J., Zhang Z., Miller W., Lipman D.J., Altschul, S.F., et al., 1990. Basic local alignment search tool. J Mol Biol 215, 403-410. Altschul, S.F., Madden T.L., Scháffer A.A., Zhang J., Zhang Z., Miller W., Lipman D.J.,
1997. Gapped BLAST and PSI-BLAST: a new generation of protein datábase search programs. Nucleic Acid Res. 25:3389. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein dated search programs. Nucleic Acid Res. 25: 3389.
Aziz, R.K., Bartels, D., Best, A.A., DeJongh, M., Disz, T., Edwards, R.A., Formsma, K.,Aziz, R.K., Bartels, D., Best, A.A., DeJongh, M., Disz, T., Edwards, R.A., Formsma, K.,
Gerdes, S., Glass, E.M., Kubal, M., Meyer, F., Olsen, G.J., Olson, R., Osterman, A.L., Overbeek, R.A., McNeil, L.K., Paarmann, D., Paczian, T., Parrello, B., Pusch,Gerdes, S., Glass, EM, Kubal, M., Meyer, F., Olsen, GJ, Olson, R., Osterman, AL, Overbeek, RA, McNeil, LK, Paarmann, D., Paczian, T., Parrello, B., Pusch,
G.D., Reich, C, Stevens, R., Vassieva, O., Vonstein, V., Wilke, A., Zagnitko, O.,G.D., Reich, C, Stevens, R., Vassieva, O., Vonstein, V., Wilke, A., Zagnitko, O.,
2008. The RAST server: rapid annotations using subsystems technology. BMC2008. The RAST server: rapid annotations using subsystems technology. BMC
Genomics 9, 75. Genomics 9, 75.
Benson, D.A., Karsch-Mizrachi, I., Lipman, D.J., Ostell, J., Wheeler, D.L., 2005. GenBank.  Benson, D.A., Karsch-Mizrachi, I., Lipman, D.J., Ostell, J., Wheeler, D.L., 2005. GenBank.
Nucleic Acids Research 33, D34-D38.  Nucleic Acids Research 33, D34-D38.
Bommineni, V.M., Jauhar P.P, 1997, "an evaluation of target-cells and tissues used in genetic-transformation of cereals", Maydica, 42(2), 107-120.  Bommineni, V.M., Jauhar P.P, 1997, "an evaluation of target-cells and tissues used in genetic-transformation of cereals", Maydica, 42 (2), 107-120.
Bradford, M.M., 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principie of protein-dye binding. Analytical Biochemistry 72, 248-254. Bradford, M.M., 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principie of protein-dye binding. Analytical Biochemistry 72, 248-254.
Chougule, N.P., Bonning, B.C., 2012. Toxins for transgenic resistance to hemipteran pests. Toxins (Basel) 4, 405-429.  Chougule, N.P., Bonning, B.C., 2012. Toxins for transgenic resistance to hemipteran pests. Toxins (Basel) 4, 405-429.
Diaz, B.M., Biurrun, R., Moreno, A., Nebreda, M., Fereres, A., 2006. Impact of ultraviolet- blocking plástic films on insect vectors of virus diseases infesting crisp lettuce. Hortscience 41 , 71 1 -716. Diaz, B.M., Biurrun, R., Moreno, A., Nebreda, M., Fereres, A., 2006. Impact of ultraviolet-blocking plastic films on insect vectors of virus diseases infesting crisp lettuce. Hortscience 41, 71 1-716.
Drummond, A. J., et al., 2014. Geneious Pro v6.1 .7. [Online.], http://www.qeneious.com/.  Drummond, A. J., et al., 2014. Geneious Pro v6.1 .7. [Online.], Http://www.qeneious.com/.
2014.  2014.
Dulmage, H.T., 1970. Insecticidal Activity of Hd-1 , a New Isolate of Bacillus turingiensis Dulmage, H.T., 1970. Insecticidal Activity of Hd-1, a New Isolate of Bacillus turingiensis
Var. Alesti. Journal of Invertebrate Pathology 15, 232-&. Var. Alesti Journal of Invertebrate Pathology 15, 232- &.
Estévez J, Leiro J, Santamarina MT, Domínguez J, Ubeira FM. Monoclonal antibodies to turbot (Scophthalmus maximus) immunoglobulins: characterization and applicability in immunoassays. Vet Immunol Immunopathol 1994; 41 : 353-366. Estruch, J.J., Warren, G.W., Mullins, M.A., Nye, G.J., Craig, J.A., Koziel, M.G., 1996. Estévez J, Leiro J, Santamarina MT, Domínguez J, Ubeira FM. Monoclonal antibodies to turbot (Scophthalmus maximus) immunoglobulins: characterization and applicability in immunoassays. Vet Immunol Immunopathol 1994; 41: 353-366. Estruch, J.J., Warren, G.W., Mullins, M.A., Nye, G.J., Craig, J.A., Koziel, M.G., 1996.
Vip3A, a novel Bacillus thuríngiensis vegetative insecticidal protein with a wide spectrum of activities against lepidopteran insects. Proceedings of the National Vip3A, a novel Bacillus thuríngiensis vegetative insecticidal protein with a wide spectrum of activities against lepidopteran insects. Proceedings of the National
Academy of Sciences of the United States of America 93, 5389-5394. Academy of Sciences of the United States of America 93, 5389-5394.
Estruch, J.J., Yu, C.G., 1998. Plant pest control. Patent WO 9844137. Estruch, J.J., Yu, C.G., 1998. Plant pest control. Patent WO 9844137.
Federici, B.A., Park, H.W., Bideshi, D.K., Wirth, M.C., Johnson, J.J., 2003. Recombinant bacteria for mosquito control. J Exp Biol 206, 3877-3885. Goldberg, L.J.a.J.M., 1977. A bacterial spore demonstrating rapid larvicidal activity against Anopheles sergentii, Uranotaenia unguiculata, Culex univittatus, Aedes aegypti and Culex pipiens. Mosquito News. 37. Federici, BA, Park, HW, Bideshi, DK, Wirth, MC, Johnson, JJ, 2003. Recombinant bacteria for mosquito control. J Exp Biol 206, 3877-3885. Goldberg, LJaJM, 1977. A bacterial spore demonstrating rapid larvicidal activity against Anopheles sergentii, Uranotaenia unguiculata, Culex univittatus, Aedes aegypti and Culex pipiens. Mosquito News 37.
Harrington, H.F.v.E.a.R., 2007. Aphids as crop pests. CAB International 2007. Harrington, H.F.v.E.a.R., 2007. Aphids as crop pests. CAB International 2007.
Hellens R, Muliineaux P., Klee H, 2000. Technical Focus: a guide to Agrobacterium binaty Ti vectors. Trends in Piant Science 5:446-451 . Hellens R, Muliineaux P., Klee H, 2000. Technical Focus: a guide to Agrobacterium binaty Ti vectors. Trends in Piant Science 5: 446-451.
Iglesias R, Leiro J, Santamarina MT, Sanmartín ML, Ubeira FM. Monoclonal antibodies against diagnostic Anisakis simplex antigens. Parasitol Res. 1997; 83:755-761 . Iriarte, J., Bel, Y., Ferrandis, M.D., Andrew, R., Murillo, J., Ferré, J., Caballero, P., 1998. Iglesias R, Leiro J, Santamarina MT, Sanmartín ML, Ubeira FM. Monoclonal antibodies against diagnostic Anisakis simplex antigens. Parasitol Res. 1997; 83: 755-761. Iriarte, J., Bel, Y., Ferrandis, M.D., Andrew, R., Murillo, J., Ferré, J., Caballero, P., 1998.
Environmental distribution and diversity of Bacillus thuringiensis in Spain. Environmental distribution and diversity of Bacillus thuringiensis in Spain.
Systematic and Applied Microbiology 21 , 97-106. Systematic and Applied Microbiology 21, 97-106.
Iriarte, J., Porcar, M., Lecadet, M.M., Caballero, P., 2000. Isolation and characterization of Bacillus thuringiensis strains from aquatic environments in Spain. Current microbiology 40, 402-408. Iriarte, J., Porcar, M., Lecadet, M.M., Caballero, P., 2000. Isolation and characterization of Bacillus thuringiensis strains from aquatic environments in Spain. Current microbiology 40, 402-408.
Krieg, A., Huger, A.M., Langenbruch, G.A., Schnetter, W., 1983. Bacillus thuringiensis var. Krieg, A., Huger, A.M., Langenbruch, G.A., Schnetter, W., 1983. Bacillus thuringiensis var.
Tenebrionis, a New Pathotype Effective against Larvae of Coleóptera. Zeitschrift Fur Angewandte Entomologie-Journal of Applied Entomology 96, 500-508.  Tenebrionis, a New Pathotype Effective against Larvae of Coleoptera. Zeitschrift Fur Angewandte Entomologie-Journal of Applied Entomology 96, 500-508.
LeOra-Software, 1987. POLO-PC: a user's guide to Probit or Logit analysis. LeOra Software, Berkeley, Calif. LeOra-Software, 1987. POLO-PC: a user's guide to Probit or Logit analysis. LeOra Software, Berkeley, Calif.
Nebreda, M., Moreno, A., Pérez, N., Palacios, I., Seco-Fernandez, V., Fereres, A., 2004. Nebreda, M., Moreno, A., Pérez, N., Palacios, I., Seco-Fernandez, V., Fereres, A., 2004.
Activity of aphids associated with lettuce and broccoli in Spain and their efficiency as vectors of Lettuce mosaic virus. Virus Res 100, 83-88.  Activity of aphids associated with lettuce and broccoli in Spain and their efficiency as vectors of Lettuce mosaic virus. Virus Res 100, 83-88.
Ohba, M., Mizuki, E., Uemori, A., 2009. Parasporin, a new anticancer protein group from Bacillus thuringiensis. Anticancer Research 29, 427-433. Ohba, M., Mizuki, E., Uemori, A., 2009. Parasporin, a new anticancer protein group from Bacillus thuringiensis. Anticancer Research 29, 427-433.
Porcar, M., Grenier, A.M., Federici, B., Rahbe, Y., 2009. Effects of Bacillus thuringiensis delta-endotoxins on the pea aphid {Acyrthosiphon pisum). Applied and Environmental Microbiology 75, 4897-4900. Porcar, M., Grenier, A.M., Federici, B., Rahbe, Y., 2009. Effects of Bacillus thuringiensis delta-endotoxins on the pea aphid {Acyrthosiphon pisum). Applied and Environmental Microbiology 75, 4897-4900.
Sadeghi, A., Van Damme, E.J., Smagghe, G., 2009. Evaluation of the susceptibility of the pea aphid, Acyrthosiphon pisum, to a selection of novel biorational insecticides using an artificial diet. Journal of Insect Science (Ludhiana) 9, 1 -8. Sadeghi, A., Van Damme, E.J., Smagghe, G., 2009. Evaluation of the susceptibility of the pea aphid, Acyrthosiphon pisum, to a selection of novel biorational insecticides using an artificial diet. Journal of Insect Science (Ludhiana) 9, 1-8.
Sambrook, J., Russell, D., 2001 . Molecular cloning: a laboratory manual. 3rd ed. Cold Sambrook, J., Russell, D., 2001. Molecular cloning: a laboratory manual. 3rd ed. Cold
Spring Harbor laboratory Press, Cold Spring Harbor, N.Y. Spring Harbor laboratory Press, Cold Spring Harbor, N.Y.
Sattar, S., Maiti, M.K., 201 1 . Molecular characterization of a novel vegetative insecticidal protein from Bacillus thuringiensis effective against sap-sucking insect pest. Journal of Microbiology Biotechnology 21 , 937-946. Sattar, S., Maiti, M.K., 201 1. Molecular characterization of a novel vegetative insecticidal protein from Bacillus thuringiensis effective against sap-sucking insect pest. Journal of Microbiology Biotechnology 21, 937-946.
Slater, R., Paul, V.L., Andrews, M., Garbay, M., Camblin, P., 2012. Identifying the presence of neonicotinoidresistant peach-potato aphid (Myzus persicae) in the peach-growing regions of southern France and northern Spain. Pest Manag Sci 68, 634-638.  Slater, R., Paul, VL, Andrews, M., Garbay, M., Camblin, P., 2012. Identifying the presence of neonicotinoidresistant peach-potato aphid (Myzus persicae) in the peach-growing regions of southern France and northern Spain. Pest Manag Sci 68, 634-638.
Sulzer, J.H., Linne, C.v., Rómer, J.J., Schellenberg, J.R. 1776. Abgekürtze Geshichte der Insecten nach dem Linaeischen System. Winterthur, bey H. Steiner u. Comp. Buchh., Schweiz. Sulzer, J.H., Linne, C.v., Rómer, J.J., Schellenberg, J.R. 1776. Abgekürtze Geshichte der Insecten nach dem Linaeischen System. Winterthur, bey H. Steiner u. Comp. Buchh., Schweiz.

Claims

REIVINDICACIONES
1 . Una molécula de ácido nucleico aislada que comprende una secuencia de nucleótidos que codifica una delta-endotoxina, caracterizada por que la secuencia de nucleótidos que codifica una delta-endotoxina está representada por SEQ ID NO:1 o presenta al menos un 90% de identidad con la misma. one . An isolated nucleic acid molecule comprising a nucleotide sequence encoding a delta-endotoxin, characterized in that the nucleotide sequence encoding a delta-endotoxin is represented by SEQ ID NO: 1 or has at least 90% identity with the same.
2. Molécula de ácido nucleico según la reivindicación 1 , en la que la secuencia de nucleótidos que codifica una delta-endotoxina presenta al menos un porcentaje de identidad con la secuencia representada por SEQ ID NO:1 que se selecciona del grupo de 90%, 91 %, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99,5%, 99,6%, 99,7%, 99,8%, 99,9%. 2. The nucleic acid molecule according to claim 1, wherein the nucleotide sequence encoding a delta-endotoxin has at least a percentage of identity with the sequence represented by SEQ ID NO: 1 selected from the group of 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5%, 99.6%, 99.7%, 99.8%, 99.9 %.
3. Molécula de ácido nucleico según la reivindicación 1 ó 2, en la que la secuencia de nucleótidos que codifica una delta-endotoxina que comprende un fragmento de secuencia que codifica un dominio similar a la ricina b. 3. The nucleic acid molecule according to claim 1 or 2, wherein the nucleotide sequence encoding a delta-endotoxin comprising a sequence fragment encoding a domain similar to ricin b.
4. Molécula de ácido nucleico según una cualquiera de las reivindicaciones anteriores, que comprende una secuencia de nucleótidos que codifica una delta- endotoxina que tiene actividad contra al menos un insecto hemíptero. 4. Nucleic acid molecule according to any one of the preceding claims, comprising a nucleotide sequence encoding a delta-endotoxin that has activity against at least one hemiptera insect.
5. Molécula de ácido nucleico según la reivindicación 4, que comprende una secuencia de nucleótidos que codifica una delta-endotoxina que tiene actividad contra al menos una especie de áfido. 5. Nucleic acid molecule according to claim 4, comprising a nucleotide sequence encoding a delta-endotoxin having activity against at least one species of aphid.
6. Molécula de ácido nucleico según la reivindicación 5, que comprende una secuencia de nucleótidos que codifica una delta-endotoxina que tiene actividad contra el áfido Myzus persicae. 6. Nucleic acid molecule according to claim 5, comprising a nucleotide sequence encoding a delta-endotoxin having activity against the aphid Myzus persicae.
7. Molécula de ácido nucleico según la reivindicación 1 , cuya secuencia de nucleótidos está representada por SEQ ID NO:1. 7. Nucleic acid molecule according to claim 1, whose nucleotide sequence is represented by SEQ ID NO: 1.
8. Molécula de ácido nucleico según una cualquiera de las reivindicaciones 1 a 6, en la que la secuencia de nucleótidos que codifica una delta-endotoxina está operativamente unida a un promotor. 8. The nucleic acid molecule according to any one of claims 1 to 6, wherein the nucleotide sequence encoding a delta-endotoxin is operably linked to a promoter.
9. Molécula de ácido nucleico según la reivindicación 8, en la que el promotor se selecciona del grupo de un promotor capaz de dirigir la expresión de dicha secuencia de nucleótidos en una célula de planta, en una bacteria que se selecciona del grupo de Escherichia coli, Bacillus thuringiensis, Pseudomonas spp., o en una célula de Saccharomyces cerevisiae. 9. The nucleic acid molecule according to claim 8, wherein the promoter is selected from the group of a promoter capable of directing the expression of said nucleotide sequence in a plant cell, in a bacterium that is selected from the Escherichia coli group , Bacillus thuringiensis, Pseudomonas spp., Or in a cell of Saccharomyces cerevisiae.
10. Molécula de ácido nucleico según la reivindicación 8 ó 9, que adicionalmente está operativamente unido a una secuencia de control adicional al promotor. 10. Nucleic acid molecule according to claim 8 or 9, which is additionally operably linked to an additional control sequence to the promoter.
1 1. Un vector en el que está inserta una molécula de ácido nucleico de una cualquiera de las reivindicaciones 1 a 10. 1 1. A vector in which a nucleic acid molecule of any one of claims 1 to 10 is inserted.
12. Vector según la reivindicación 1 1 , que es un plásmido. 12. Vector according to claim 1, which is a plasmid.
13. Vector según la reivindicación 12, que es un vector de expresión que permite la expresión en una bacteria de la secuencia de nucleótidos que codifica una delta- endotoxina representada por SEQ ID NO:1 o de una secuencia codificante que presenta al menos un 90% de identidad con la misma. 13. Vector according to claim 12, which is an expression vector that allows expression in a bacterium of the nucleotide sequence encoding a delta-endotoxin represented by SEQ ID NO: 1 or of a coding sequence having at least 90 % identity with it.
14. Vector según la reivindicación 12, en el que la bacteria se selecciona del grupo de Escherichia coli, Pseudomonas spp., Bacillus megaterium o Bacillus thuringiensis. 14. Vector according to claim 12, wherein the bacterium is selected from the group of Escherichia coli, Pseudomonas spp., Bacillus megaterium or Bacillus thuringiensis.
15. Vector según la reivindicación 1 1 ó 12, que es un vector de transformación de plantas. 15. Vector according to claim 1 1 or 12, which is a plant transformation vector.
16. Vector según la reivindicación 15, en el que la secuencia de nucleótidos que codifica la delta-endotoxina representada por SEQ ID NO:1 o la secuencia codificante que presenta al menos un 90% de identidad con la misma está operativamente unida a un promotor capaz de dirigir la expresión de dicha secuencia de nucleótidos en una célula de planta. 16. Vector according to claim 15, wherein the nucleotide sequence encoding the delta-endotoxin represented by SEQ ID NO: 1 or the coding sequence having at least 90% identity thereto is operably linked to a promoter capable of directing the expression of said nucleotide sequence in a plant cell.
17. Vector según una cualquiera de las reivindicaciones anteriores, en que la secuencia codificante de la delta-endotoxina representada por SEQ ID NO:1 o la secuencia codificante que presenta al menos un 90% de identidad con la misma está unida en fase de lectura a la secuencia codificante de un segundo polipéptido. 17. Vector according to any one of the preceding claims, wherein the delta-endotoxin coding sequence represented by SEQ ID NO: 1 or the coding sequence that has at least 90% identity with it is linked in reading phase to the coding sequence of a second polypeptide.
18. Una célula hospedadora que comprende un vector según una cualquiera de las reivindicaciones 1 1 a 17. 18. A host cell comprising a vector according to any one of claims 1 to 17.
19. Célula hospedadora según la reivindicación 18, que es una célula de levadura. 19. Host cell according to claim 18, which is a yeast cell.
20. Célula hospedadora según la reivindicación 18, que es una célula de bacteria. 20. Host cell according to claim 18, which is a bacterial cell.
21. Célula hospedadora según la reivindicación 20, que es una célula de una bacteria que se elige del grupo de Escherichia coli, Pseudomonas spp., Bacillus megaterium o Bacillus thuringiensis. 21. Host cell according to claim 20, which is a cell of a bacterium that is selected from the group Escherichia coli, Pseudomonas spp., Bacillus megaterium or Bacillus thuringiensis.
22. Célula hospedadora según la reivindicación 18, que es una célula de planta. 22. Host cell according to claim 18, which is a plant cell.
23. Una planta transgénica que comprende la célula hospedadora de la reivindicación 22. 23. A transgenic plant comprising the host cell of claim 22.
24. Una semilla transgénica que comprende una molécula de ácido nucleico de una cualquiera de las reivindicaciones 1 a 9. 24. A transgenic seed comprising a nucleic acid molecule of any one of claims 1 to 9.
25. Planta transgénica según la reivindicación 23 o semilla transgénica según la reivindicación 24, que se selecciona del grupo de melocotonero, albaricoquero, ciruelo, almendro, otras especies del género Prunus, cítricos, patata, tomate y otras especies de la familia Solanaceae, tabaco, remolacha, remolacha azucarera, caña de azúcar, girasol, apio, mostaza, pimiento, calabaza, alcachofa, espárrago, judías, brécol, coles de Bruselas, repollo, coliflor, col, col rizada, zanahoria, pepino, nabo, berenjena, lechuga, perejil, chirivía, guisante, alfalfa, pimiento, rábano, espinaca, berro, sandía, melón, maíz, sorgo, mijo, trigo, cebada, centeno, avena, arroz, soja, colza, cártamo, maní, batata, yuca, café, coco, pina, cacao, té, plátano, aguacate, higo, guayaba, mango, papaya, olivo, algodón, coniferas, azalea, hortensia, hibisco, rosas, tulipanes, narcisos, petunias, claveles, flor de pascua, y crisantemos. 25. Transgenic plant according to claim 23 or transgenic seed according to claim 24, which is selected from the group of peach, apricot, plum, almond tree, other species of the genus Prunus, citrus, potato, tomato and other species of the Solanaceae family, tobacco , beet, sugar beet, sugar cane, sunflower, celery, mustard, pepper, squash, artichoke, asparagus, beans, broccoli, Brussels sprouts, cabbage, cauliflower, cabbage, kale, carrot, cucumber, turnip, eggplant, lettuce , parsley, parsnip, pea, alfalfa, pepper, radish, spinach, watercress, watermelon, melon, corn, sorghum, millet, wheat, barley, rye, oatmeal, rice, soybeans, rape, safflower, peanut, sweet potato, cassava, coffee , coconut, pineapple, cocoa, tea, banana, avocado, fig, guava, mango, papaya, olive, cotton, conifers, azalea, hydrangea, hibiscus, roses, tulips, daffodils, petunias, carnations, poinsettia, and chrysanthemums.
26. Un polipéptido que comprende una secuencia de aminoácidos caracterizada por que dicha secuencia de aminoácidos: 26. A polypeptide comprising an amino acid sequence characterized in that said amino acid sequence:
a) es la representada por SEQ ID NO:2;  a) is represented by SEQ ID NO: 2;
b) es la secuencia de una delta-endotoxina que está codificada por la secuencia representada por SEQ ID NO:1 o por una secuencia que presenta al menos un 90% de identidad con la misma, o b) is the sequence of a delta-endotoxin that is encoded by the sequence represented by SEQ ID NO: 1 or by a sequence that has at least one 90% identity with it, or
c) es la secuencia de una delta-endotoxina que presenta al menos un 80% de identidad con la secuencia representada por SEQ ID NO:2.  c) is the sequence of a delta-endotoxin that has at least 80% identity with the sequence represented by SEQ ID NO: 2.
27. Polipéptido según la reivindicación 26, en el que la secuencia de aminoácidos representada por SEQ ID NO:2 o la delta-endotoxina definida en los apartados b) ó c) de la reivindicación 26 presenta tres dominios estructurales que se corresponden con los dominios N, M y C de las proteínas Cry. 27. Polypeptide according to claim 26, wherein the amino acid sequence represented by SEQ ID NO: 2 or the delta-endotoxin defined in sections b) or c) of claim 26 has three structural domains that correspond to the domains N, M and C of Cry proteins.
28. Polipéptido según la reivindicación 26 ó 27, que comprende una secuencia de aminoácidos que es la secuencia de una delta-endotoxina que presenta al menos un 80% de identidad con la secuencia representada por SEQ ID NO:2, en el que el porcentaje de identidad se selecciona del grupo de 85%, 90%, 91 %, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99,5%, 99,6%, 99,7%, 99,8%, 99,9%. 28. Polypeptide according to claim 26 or 27, comprising an amino acid sequence that is the sequence of a delta-endotoxin that has at least 80% identity with the sequence represented by SEQ ID NO: 2, wherein the percentage Identity is selected from the group of 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5%, 99.6%, 99.7%, 99.8%, 99.9%.
29. Polipéptido según la reivindicación 26, cuya secuencia está representada por SEQ ID NO:2. 29. Polypeptide according to claim 26, the sequence of which is represented by SEQ ID NO: 2.
30. Polipéptido según una cualquiera de las reivindicaciones 26 a 29, que presenta actividad insecticida contra al menos un hemíptero. 30. Polypeptide according to any one of claims 26 to 29, which exhibits insecticidal activity against at least one hemiptera.
31. Polipéptido según la reivindicación 30, que presenta actividad insecticida contra al menos un áfido. 31. Polypeptide according to claim 30, which exhibits insecticidal activity against at least one aphid.
32. Polipéptido según la reivindicación 31 , que presenta actividad insecticida contra Myzus persicae. 32. Polypeptide according to claim 31, which exhibits insecticidal activity against Myzus persicae.
33. Polipéptido según una cualquiera de las reivindicaciones 26 a 32, en el que la secuencia de aminoácidos representada por SEQ ID NO:2 o que corresponde a una delta-endotoxina codificada por una secuencia que presenta al menos un 90% de identidad con SEQ ID NO:1 o que corresponde a una delta-endotoxina que presenta al menos un 80% de identidad con la secuencia representada por SEQ ID NO:2, está ligada a un segundo polipéptido, formando una proteína de fusión. 33. Polypeptide according to any one of claims 26 to 32, wherein the amino acid sequence represented by SEQ ID NO: 2 or corresponding to a delta-endotoxin encoded by a sequence that has at least 90% identity with SEQ ID NO: 1 or corresponding to a delta-endotoxin that has at least 80% identity with the sequence represented by SEQ ID NO: 2, is linked to a second polypeptide, forming a fusion protein.
34. Una composición que comprende un polipéptido de una cualquiera de las reivindicaciones 26 a 33, un vector de una cualquiera de las reivindicaciones 1 1 a 17 y/o una célula hospedadora de una cualquiera de las reivindicaciones 18 a 22. 34. A composition comprising a polypeptide of any one of claims 26 to 33, a vector of any one of claims 1 to 17 and / or a host cell of any one of claims 18 to 22.
35. Composición según la reivindicación 34, que adicionalmente comprende un excipiente agronómicamente aceptable y/o un vehículo agronómicamente aceptable. 35. Composition according to claim 34, further comprising an agronomically acceptable excipient and / or an agronomically acceptable carrier.
36. Composición según la reivindicación 34 ó 35, que comprende una célula hospedadora de una cualquiera de las reivindicaciones 19 a 21. 36. Composition according to claim 34 or 35, comprising a host cell of any one of claims 19 to 21.
37. Composición según la reivindicación 36, en la que las células hospedadoras se seleccionan entre las células de las especies Pseudomonas spp., Bacillus megaterium, Bacillus thuringiensis Bt 4Q7 o Saccharomyces cerivisae. 37. Composition according to claim 36, wherein the host cells are selected from the cells of the species Pseudomonas spp., Bacillus megaterium, Bacillus thuringiensis Bt 4Q7 or Saccharomyces cerivisae.
38. Composición según la reivindicación 34 ó 35, que comprende un polipéptido de una cualquiera de las reivindicaciones 26 a 33, en forma cristalina o solubilizada en un vehículo líquido. 38. Composition according to claim 34 or 35, comprising a polypeptide of any one of claims 26 to 33, in crystalline form or solubilized in a liquid carrier.
39. Composición según una cualquiera de las reivindicaciones 34 a 38, que está en forma de polvo, granulado, emulsión, coloide, suspensión o solución. 39. Composition according to any one of claims 34 to 38, which is in the form of powder, granulate, emulsion, colloid, suspension or solution.
40. Composición según una cualquiera de las reivindicaciones 34 a 39, que comprende un compuesto plaguicida adicional, un compuesto que incremente la acción plaguicida o esporas de Bacillus thuringiensis. Composition according to any one of claims 34 to 39, which comprises an additional pesticidal compound, a compound that increases the pesticidal action or spores of Bacillus thuringiensis.
41. Uso de una composición de una cualquiera de las reivindicaciones 34 a 40 para combatir plagas de al menos un hemíptero. 41. Use of a composition of any one of claims 34 to 40 to combat pests of at least one hemiptera.
42. Uso según la reivindicación 41 , en el que el hemíptero es un áfido. 42. Use according to claim 41, wherein the hemiptera is an aphid.
43. Uso según la reivindicación 42, en el que el áfido es Myzus persicae. 43. Use according to claim 42, wherein the aphid is Myzus persicae.
44. Uso según una cualquiera de las reivindicaciones 41 a 43, en el que la plaga a combatir afecta a una planta, un cultivo de plantas, o a los productos de la cosecha de los mismos. 44. Use according to any one of claims 41 to 43, wherein the pest to be affected affects a plant, a crop of plants, or the products of their harvest.
45. Uso según la reivindicación 44, en el que la planta se selecciona del grupo de melocotonero, albaricoquero, ciruelo, almendro, otras especies del género Prunus, cítricos, patata, tomate y otras especies de la familia Solanaceae, tabaco, remolacha, remolacha azucarera, caña de azúcar, girasol, apio, mostaza, pimiento, calabaza, alcachofa, espárrago, judías, brécol, coles de Bruselas, repollo, coliflor, col, col rizada, zanahoria, pepino, nabo, berenjena, lechuga, perejil, chirivía, guisante, alfalfa, pimiento, rábano, espinaca, berro, sandía, melón, maíz, sorgo, mijo, trigo, cebada, centeno, avena, arroz, soja, colza, cártamo, maní, batata, yuca, café, coco, pina, cacao, té, plátano, aguacate, higo, guayaba, mango, papaya, olivo, algodón, coniferas, azalea, hortensia, hibisco, rosas, tulipanes, narcisos, petunias, claveles, flor de pascua, y crisantemos. 45. Use according to claim 44, wherein the plant is selected from the group of peach, apricot tree, plum, almond, other species of the genus Prunus, citrus, potato, tomato and other species of the Solanaceae family, tobacco, beet, beet sugar bowl, sugar cane, sunflower, celery, mustard, pepper, squash, artichoke, asparagus, beans, broccoli, Brussels sprouts, cabbage, cauliflower, cabbage, kale, carrot, cucumber, turnip, eggplant, lettuce, parsley, parsnip , pea, alfalfa, pepper, radish, spinach, watercress, watermelon, melon, corn, sorghum, millet, wheat, barley, rye, oats, rice, soybeans, rapeseed, safflower, peanut, sweet potato, yucca, coffee, coconut, pineapple , cocoa, tea, banana, avocado, fig, guava, mango, papaya, olive, cotton, coniferous, azalea, hydrangea, hibiscus, roses, tulips, daffodils, petunias, carnations, poinsettia, and chrysanthemums.
46. Un método para la producción de un polipéptido de una cualquiera de las reivindicaciones 26 a 33, que comprende: 46. A method for the production of a polypeptide of any one of claims 26 to 33, comprising:
a) obtener un organismo recombinante que exprese el polipéptido de la presente invención;  a) obtaining a recombinant organism that expresses the polypeptide of the present invention;
b) cultivar dicho organismo recombinante;  b) culturing said recombinant organism;
c) inducir, de ser necesario, la expresión del polipéptido en dicho organismo recombinante;  c) inducing, if necessary, the expression of the polypeptide in said recombinant organism;
d) purificar el polipéptido a partir del organismo recombinante.  d) purify the polypeptide from the recombinant organism.
47. Método según la reivindicación 46, en el que el organismo recombinante es una planta transgénica. 47. Method according to claim 46, wherein the recombinant organism is a transgenic plant.
48. Método según la reivindicación 46, en el que el organismo recombinante es una célula hospedadora de la presente invención, una bacteria recombinante o una levadura recombinante 48. The method of claim 46, wherein the recombinant organism is a host cell of the present invention, a recombinant bacterium or a recombinant yeast
49. Un anticuerpo que se une específicamente a un polipéptido de una cualquiera de las reivindicaciones 26 a 33. 49. An antibody that specifically binds to a polypeptide of any one of claims 26 to 33.
50. Anticuerpo según la reivindicación 49, que se une específicamente al fragmento del polipéptido cuya secuencia: 50. Antibody according to claim 49, which specifically binds to the polypeptide fragment whose sequence:
a) es la representada por SEQ ID NO:2;  a) is represented by SEQ ID NO: 2;
b) es la secuencia de una delta-endotoxina que está codificada por la secuencia representada por SEQ ID NO:1 o por una secuencia que presenta al menos un 90% de identidad con la misma, o b) is the sequence of a delta-endotoxin that is encoded by the sequence represented by SEQ ID NO: 1 or by a sequence that has at least one 90% identity with it, or
c) es la secuencia de una delta-endotoxina que presenta al menos un 80% de identidad con la secuencia representada por SEQ ID NO:2.  c) is the sequence of a delta-endotoxin that has at least 80% identity with the sequence represented by SEQ ID NO: 2.
51. Anticuerpo según la reivindicación 50, que se une específicamente a la secuencia representada por SEQ ID NO:2. 51. Antibody according to claim 50, which specifically binds to the sequence represented by SEQ ID NO: 2.
52. Anticuerpo según una cualquiera de las reivindicaciones 49 a 51 , que es un anticuerpo monoclonal. 52. Antibody according to any one of claims 49 to 51, which is a monoclonal antibody.
PCT/ES2015/070083 2014-02-10 2015-02-10 New cry protein of bacillus thuringiensis with insecticide activity for controlling hemipterans WO2015118207A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP201430173 2014-02-10
ES201430173A ES2545683B1 (en) 2014-02-10 2014-02-10 New Cry protein from Bacillus thuringiensis with insecticidal activity to fight a hemiptera.

Publications (1)

Publication Number Publication Date
WO2015118207A1 true WO2015118207A1 (en) 2015-08-13

Family

ID=53777360

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2015/070083 WO2015118207A1 (en) 2014-02-10 2015-02-10 New cry protein of bacillus thuringiensis with insecticide activity for controlling hemipterans

Country Status (2)

Country Link
ES (1) ES2545683B1 (en)
WO (1) WO2015118207A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110066322A (en) * 2019-04-04 2019-07-30 四川农业大学 A kind of Bt PROTEIN C yt2-like and its gene and application
CN110283833A (en) * 2019-06-27 2019-09-27 华侨大学 Cry2Ab12 gene is in the purposes for preparing aphids resistance genetically modified plants
CN113180046A (en) * 2021-03-31 2021-07-30 中国农业科学院植物保护研究所 Application of insecticidal protein in preventing and treating aphids
CN113186339A (en) * 2021-06-18 2021-07-30 中国农业科学院郑州果树研究所 InDel markers for identifying peach hybrid population resistance/sense of green peach aphid and application thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106719839A (en) * 2016-12-03 2017-05-31 青岛漾花湖农业科技有限公司 It is prepared by a kind of probiotics microbial inoculum for preventing greenhouse watermelon seedling continuous cropping root rot
CN107828817B (en) * 2017-09-29 2021-02-19 杭州瑞丰生物科技有限公司 Method for preventing and treating hemiptera pests of crops by using Bt protein

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995016778A1 (en) * 1993-12-13 1995-06-22 Ecogen Inc. Control of aphids with bacillus thuringiensis toxin proteins
WO1998035046A1 (en) * 1997-02-11 1998-08-13 Calgene, Inc. Novel bacillus thuringiensis isolates active against sucking insects
WO2010099365A2 (en) * 2009-02-27 2010-09-02 Athenix Corporation Pesticidal proteins and methods for their use

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995016778A1 (en) * 1993-12-13 1995-06-22 Ecogen Inc. Control of aphids with bacillus thuringiensis toxin proteins
WO1998035046A1 (en) * 1997-02-11 1998-08-13 Calgene, Inc. Novel bacillus thuringiensis isolates active against sucking insects
WO2010099365A2 (en) * 2009-02-27 2010-09-02 Athenix Corporation Pesticidal proteins and methods for their use

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
DATABASE ENA 2 September 2010 (2010-09-02), Database accession no. HH806253 *
DATABASE ENA; 31 October 2014 (2014-10-31), Database accession no. KJ427833 *
DATABASE UniProtKB/TrEMBL; 22 January 2014 (2014-01-22), Database accession no. U5KRN5 *
DATABASE UniProtKB/TrEMBL; 22 January 2014 (2014-01-22), Database accession no. U5KRS1 *
PALMA LEOPOLDO ET AL.: "Molecular and insecticidal characterization of a novel Cry-related protein from Bacillus thuringiensis toxic against Myzus persicae..", TOXINS SWITZERLAND, vol. 6, no. 11, November 2014 (2014-11-01), pages 3144 - 3156, XP055219191, ISSN: 2072-6651 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110066322A (en) * 2019-04-04 2019-07-30 四川农业大学 A kind of Bt PROTEIN C yt2-like and its gene and application
CN110066322B (en) * 2019-04-04 2020-09-29 四川农业大学 Bt protein Cyt2-like and gene and application thereof
CN110283833A (en) * 2019-06-27 2019-09-27 华侨大学 Cry2Ab12 gene is in the purposes for preparing aphids resistance genetically modified plants
CN113180046A (en) * 2021-03-31 2021-07-30 中国农业科学院植物保护研究所 Application of insecticidal protein in preventing and treating aphids
CN113180046B (en) * 2021-03-31 2022-04-12 中国农业科学院植物保护研究所 Application of insecticidal protein in preventing and treating aphids
CN113186339A (en) * 2021-06-18 2021-07-30 中国农业科学院郑州果树研究所 InDel markers for identifying peach hybrid population resistance/sense of green peach aphid and application thereof

Also Published As

Publication number Publication date
ES2545683A1 (en) 2015-09-14
ES2545683B1 (en) 2016-09-06

Similar Documents

Publication Publication Date Title
EP1920060B1 (en) Insecticidal compositions and methods for making insect-resistant transgenic plants
ES2663283T3 (en) Combined use of CRY1Ca and CRY1Fa proteins for the control of resistant insects
US7230167B2 (en) Modified Cry3A toxins and nucleic acid sequences coding therefor
US9109039B2 (en) Plant defense signal peptides
CN103596436B (en) Insect inhibitory toxin family having activity against hemipteran and/or lepidopteran insects
ES2353603T3 (en) SECRET INSECTICIDE PROTEIN AND GENES COMPOSITIONS OF BACILLUS THURINGIENSIS AND ITS USES.
ES2545683B1 (en) New Cry protein from Bacillus thuringiensis with insecticidal activity to fight a hemiptera.
CN106133142B (en) Insecticidal toxin proteins having activity against coleopteran insects
EA020327B1 (en) Toxin genes and methods for their use
BRPI0810672A2 (en) polynucleotide encoding a tic807 insect inhibitory protein, methods for expressing it in a plant, detecting, identifying or isolating it as well as a kit for this, transformed host cell, methods for controlling and protecting a plant insect pest, isolated protein, detection kit, recombinant DNA expressing vector, consumer product and antibody
CN112175093A (en) Novel chimeric insecticidal proteins toxic or inhibitory to lepidopteran pests
JP2001524817A (en) Plant pathogen control
BRPI0713646A2 (en) isolated nucleic acid molecule, transgenic host cell, plant and seed, isolated polypeptide with pesticidal activity and method for its production, antibody, composition and methods for pest population control, to exterminate a lepidopteran or coleopteran pest to protect a plant a plague and a nematode plague
RU2613778C2 (en) Insecticidal proteins
RU2740313C2 (en) Novel proteins having inhibitory activity on insects
EA019574B1 (en) Axmi-150 delta-endotoxin gene and methods for its use
UA122046C2 (en) Toxin genes and methods for their use
ES2743322T3 (en) AXMI115 variant insecticide gene and use procedures
US20120159674A1 (en) Combined Use of Vip3Ab and Cry1Ab for Management of Resistant Insects
ES2435079T3 (en) New bacterial proteins with pesticide activity
US20170298381A1 (en) Combination of four vip and cry protein toxins for management of insect pests in plants
BR112019012768A2 (en) insect inhibitor proteins
BR112016022260B1 (en) EXPRESSION CASSETTE COMPRISING A HETEROLOGOUS PROMOTER OPERATIONALLY LINKED TO A POLYNUCLEOTIDE SEGMENT THAT SHOWS INSECT AND BACTERIAL HOST CELL INHIBITORY ACTIVITY
BR112012000030B1 (en) RECOMBINANT NUCLEIC ACID MOLECULE, BACTERIAL HOST CELL, AND METHOD FOR PROTECTING A PLANT AGAINST WESTERN CORN ROOT CATERPILLAR PEST

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15745795

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15745795

Country of ref document: EP

Kind code of ref document: A1