WO2015117466A1 - 一种抗干扰特高压线路参数集成测试装置 - Google Patents

一种抗干扰特高压线路参数集成测试装置 Download PDF

Info

Publication number
WO2015117466A1
WO2015117466A1 PCT/CN2014/091964 CN2014091964W WO2015117466A1 WO 2015117466 A1 WO2015117466 A1 WO 2015117466A1 CN 2014091964 W CN2014091964 W CN 2014091964W WO 2015117466 A1 WO2015117466 A1 WO 2015117466A1
Authority
WO
WIPO (PCT)
Prior art keywords
line
measured
frequency
measurement
interference
Prior art date
Application number
PCT/CN2014/091964
Other languages
English (en)
French (fr)
Inventor
周行星
郭森
范毅
黄华
肖嵘
Original Assignee
国网上海市电力公司
华东电力试验研究院有限公司
武汉义天科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国网上海市电力公司, 华东电力试验研究院有限公司, 武汉义天科技有限公司 filed Critical 国网上海市电力公司
Publication of WO2015117466A1 publication Critical patent/WO2015117466A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/25Arrangements for measuring currents or voltages or for indicating presence or sign thereof using digital measurement techniques
    • G01R19/2513Arrangements for monitoring electric power systems, e.g. power lines or loads; Logging

Definitions

  • the invention relates to a line parameter testing device, in particular to an anti-interference UHV line parameter integration testing device.
  • the power grid density has increased significantly, the electromagnetic environment of the line parameter test site has deteriorated, the power frequency static induction voltage of the test site has reached tens of kilovolts, and the electromagnetic induction current has reached tens or even hundreds of amps.
  • the amplitude and phase change with the change of the grid load so the accuracy of the traditional method of testing the line parameters of the power frequency power supply is not guaranteed, the wiring and operation are cumbersome, there are still hidden dangers, and the work of the transmission line Frequency parameter measurements cause great difficulties.
  • the object of the present invention is to provide an anti-interference UHV line parameter integration test apparatus which is easy to operate and can perform all tests by taking a single line in order to overcome the defects of the prior art described above.
  • An anti-interference UHV line parameter integration test device for integrated measurement of power frequency parameters of a measured UHV line, the device comprising:
  • the inter-frequency measurement module performs digital separation of the power frequency interference signal and the inter-frequency signal on the measured signal and calculation of the power frequency parameter;
  • the measuring wiring automatic conversion module is connected with the inter-frequency measuring module, and automatically switches the internal wiring mode according to the required power frequency parameter;
  • the series-parallel suppression impedance module is respectively connected to the measurement wiring automatic conversion module and the measured UHV line, for reducing the influence of the electrostatic induction voltage and the induced current on the measurement;
  • the opposite-end GPS synchronous measurement module is connected with the measured UHV line, and uses GPS synchronization as a means to simultaneously measure the physical quantity of the line at the other end of the measured UHV line, and obtain the line frequency parameter of the line according to the measured physical quantity of the line.
  • the inter-frequency measurement module includes a narrowband digital filter, and the narrowband digital filter pairs the measured signal Filtering is performed to obtain a frequency domain separated signal, and the inter-frequency signal and the power frequency interference signal are separated.
  • the acquisition time length of the inter-frequency measurement module is a positive integer multiple of the power frequency period.
  • the positive integer is a positive integer from 1 to 10.
  • the power frequency parameters include a positive sequence impedance, a zero sequence impedance, a positive sequence capacitance, a zero sequence capacitance, a mutual inductance between the lines, and a mutual inductance between the lines erected on the same pole.
  • the series-parallel suppression impedance module comprises a high-impedance network and a low-impedance network, one end of which is connected to the measured UHV line, and the other end is connected to the measurement wiring automatic conversion module, and the low-impedance network end Connected to the UHV line being measured and grounded at the other end.
  • the physical quantities of the line include current and voltage.
  • the opposite GPS synchronization measurement module includes a connected GPS circuit and a measurement circuit.
  • the invention is equipped with an interference suppression module, which satisfies the anti-interference requirement under the condition of a length of 150km and 1000kV on the same tower double-circuit line (one operation, one time to be measured), has modular design, simple wiring, and connection One line, complete all the tests and other advantages.
  • Figure 1 is a schematic view showing the structure connection of the present invention
  • Figure 2 is a schematic diagram of the working frequency interference suppression operation.
  • the figures in the figure indicate: 1. the inter-frequency measurement module; 2. the measurement wiring automatic conversion module; 3. the series and parallel suppression impedance; 4. the measured UHV line; 5. the opposite-end GPS synchronous measurement module; Z1, high-impedance network ; Z2, low impedance network.
  • an anti-interference UHV line parameter integration test device is used for integrated measurement of the power frequency parameter of the measured UHV line 4, and the device includes an inter-frequency measurement module and a measurement wiring automatic conversion module.
  • the series-parallel suppression impedance module 3 and the opposite-end GPS synchronous measurement module 5, the inter-frequency measurement module 1, the measurement wiring automatic conversion module 2, the series-parallel suppression impedance module 3, are measured
  • the UHV line 4 and the opposite-end GPS synchronization measurement module 5 are sequentially connected, and the inter-frequency measurement module 1, the series-parallel suppression impedance module 3, and the opposite-end GPS synchronization measurement module 5 are all grounded.
  • the inter-frequency measurement module 1 adopts an inter-frequency test method deviating from 50 Hz to perform digital separation of power frequency interference signals and inter-frequency signals and calculation of power frequency parameters for the measured signals.
  • the power frequency parameters include positive sequence impedance, zero sequence impedance, and positive The order capacitance, the zero sequence capacitance, the mutual inductance between the lines, and the mutual inductance between the lines on the same pole.
  • the measurement wiring automatic conversion module 2 automatically switches the internal wiring mode according to the required power frequency parameters. Since the electrical circuit wiring needs to be changed when measuring various parameters, the integrated measuring device has an automatic function of changing the wiring mode. The measurement is done on one instrument and the integrated measuring device makes the measurement work much simpler.
  • the series-parallel suppression impedance module 3 is used to reduce the influence of the electrostatic induction voltage and the induced current on the measurement.
  • the series-parallel suppression impedance module 3 includes a high-impedance network Z1 connected to the measured UHV line and a low-impedance network Z2 connected to the measured connection automatic conversion module, and Z1 is a series suppression impedance.
  • the low impedance network Z2 is connected to the measured UHV line at one end, and the other end is grounded, and Z2 is a parallel suppression impedance.
  • parallel suppression of impedance can greatly reduce the impact of static induced voltage on the measurement.
  • Series suppression of impedance can greatly reduce the effect of induced current on the measurement. Choosing the right impedance can not affect the accuracy of the line power frequency parameter measurement.
  • the peer GPS synchronous measurement module 4 includes a connected GPS circuit and a measurement circuit, and uses GPS synchronization as a means to simultaneously measure the physical quantity of the line at the other end of the long line of the measured UHV line, and according to the measured current, voltage, etc.
  • the physical quantity of the line obtains the power frequency parameter of the line, so that the influence of the line distribution parameter on the measurement result can be eliminated.
  • Z2 is responsible for discharging the static induction induced voltage from the line. According to the induced voltage, the network structure of Z2 is controlled. When the induced voltage is discharged to the earth, the test power supply ES can be reliably output to the circuit under test, thereby suppressing static induction. Voltage.
  • Z1 is responsible for suppressing the electromagnetic coupling interference current from the line under test, and controlling the network structure of Z1 according to the interference current, ensuring that the test power supply ES can be reliably output to the line under test while ensuring that the interference current is suppressed to a safe level. Suppress electromagnetic induction current.
  • the existing method uses discrete Fourier transform to acquire one or two power frequency cycle measured signals, and performs harmonic analysis on the signal. Since the frequency of the test signal in the inter-frequency test is close to the power frequency (50 Hz) frequency, it is inevitable The signal data sequence causes non-periodic sampling of the inter-frequency test signal. Although the zero-padding method can be used to complement the whole period, the spectrum leakage in the frequency domain is also caused, thereby causing systematic errors.
  • the inter-frequency measurement module 1 of the device adopts an acquisition time length of a positive integer multiple of the power frequency period (a positive integer from 1 to 10), and compensates the aliased inter-frequency test signal for a whole period, so that the spectrum leakage is theoretically zero.
  • the inter-frequency measurement module 1 includes a narrow-band digital filter, and uses a narrow-band digital filter to filter the measured signal to obtain a frequency-domain separated signal, and accurately separate the inter-frequency signal and the power-frequency interference signal.
  • the signal separation capability is improved, and the signal frequency domain separation can be performed under the condition that the ratio of the inter-frequency test signal and the power-frequency interference signal is 1:10.
  • the double-ended measurement using GPS synchronization means that the physical quantity and voltage are measured simultaneously at both ends of the UHV long line, and the data is comprehensively analyzed to calculate the line power frequency parameter, so that the line distribution parameter can be excluded from the measurement result. influences.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Abstract

一种抗干扰特高压线路参数集成测试装置,用于对被测量特高压线路(4)的工频参数进行集成式测量,该装置包括:异频测量模块(1),对被测信号进行工频干扰信号和异频信号的数字化分离及工频参数计算;测量接线自动转换模块(2),与异频测量模块(1)连接,根据所需测量的工频参数,自动切换内部接线方式;串并联抑制阻抗模块(3),分别连接测量接线自动转换模块(2)和被测量特高压线路(4),用于降低静电感应电压和感应电流对测量的影响;对端GPS同步测量模块(5),与被测量特高压线路(4)连接,以GPS同步为手段,在被测量特高压线路(4)另一端同时进行线路物理量的测量。与现有技术相比,该装置具有装置模块化设计,接线简单,接一次线,完成所有测试等优点。

Description

一种抗干扰特高压线路参数集成测试装置 技术领域
本发明涉及一种线路参数测试装置,特别涉及一种抗干扰特高压线路参数集成测试装置。
背景技术
随着特高压电网建设规模的与日俱增,电网密集程度的显著增加,线路参数测试现场电磁环境恶化,测试现场的工频静电感应电压达到了数十千伏,电磁感应电流达到了数十甚至上百安培,其幅值和相位随着电网负荷的变化而变化,使得传统的采用工频电源测试线路参数的方法的准确度得不到保证,接线和操作繁琐,还存在安全隐患,对输电线路的工频参数测量造成了很大的困难。
发明内容
本发明的目的就是为了克服上述现有技术存在的缺陷而提供一种操作方便、接一次线可完成所有测试的抗干扰特高压线路参数集成测试装置。
本发明的目的可以通过以下技术方案来实现:
一种抗干扰特高压线路参数集成测试装置,用于对被测量特高压线路的工频参数进行集成式测量,该装置包括:
异频测量模块,对被测信号进行工频干扰信号和异频信号的数字化分离及工频参数计算;
测量接线自动转换模块,与异频测量模块连接,根据所需测量的工频参数,自动切换内部接线方式;
串并联抑制阻抗模块,分别连接测量接线自动转换模块和被测量特高压线路,用于降低静电感应电压和感应电流对测量的影响;
对端GPS同步测量模块,与被测量特高压线路连接,以GPS同步为手段,在被测量特高压线路另一端同时进行线路物理量的测量,并根据测得的线路物理量获得线路的工频参数。
所述的异频测量模块包括窄带数字滤波器,该窄带数字滤波器对被测信号 进行滤波处理,获取频域分离信号,分离异频信号和工频干扰信号。
所述的异频测量模块的采集时间长度为工频周期正整数倍。
所述的正整数为1到10的正整数。
所述的工频参数包括正序阻抗、零序阻抗、正序电容、零序电容、线路相间互感以及同杆架设线路之间的互感。
所述的串并联抑制阻抗模块包括高阻抗网络和低阻抗网络,所述的高阻抗网络的一端与被测量特高压线路连接,另一端与测量接线自动转换模块连接,所述的低阻抗网络一端与被测量特高压线路连接,另一端接地。
所述的线路物理量包括电流和电压。
所述的对端GPS同步测量模块包括相连接的GPS电路和测量电路。
与现有技术相比,本发明配备干扰抑制模块,满足长度150km、1000kV同塔双回线路(一回运行,一回待测量)条件下抗干扰要求,具有装置模块化设计,接线简单,接一次线,完成所有测试等优点。
附图说明
图1为本发明的结构连接示意图;
图2为工频干扰抑制工作原理图。
图中标号说明:1、异频测量模块;2、测量接线自动转换模块;3、串联和并列抑制阻抗;4、被测量特高压线路;5、对端GPS同步测量模块;Z1、高阻抗网络;Z2、低阻抗网络。
具体实施方式
下面结合附图和具体实施例对本发明进行详细说明。本实施例以本发明技术方案为前提进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。
如图1所示,一种抗干扰特高压线路参数集成测试装置,用于对被测量特高压线路4的工频参数进行集成式测量,该装置包括异频测量模块1、测量接线自动转换模块2、串并联抑制阻抗模块3和对端GPS同步测量模块5,所述的异频测量模块1、测量接线自动转换模块2、串并联抑制阻抗模块3、被测量 特高压线路4和对端GPS同步测量模块5依次连接,所述的异频测量模块1、串并联抑制阻抗模块3和对端GPS同步测量模块5均接地。
异频测量模块1,采用偏离50Hz的异频测试方法,对被测信号进行工频干扰信号和异频信号的数字化分离及工频参数计算,工频参数包括正序阻抗、零序阻抗、正序电容、零序电容、线路相间互感以及同杆架设线路之间的互感。
测量接线自动转换模块2,根据所需测量的工频参数,自动切换内部接线方式,由于各个参数测量时,电气回路接线是需要改动的,因此集成测量装置内部具有自动的改变接线方式的功能,实现在一台仪器上完成测量,集成测量装置可以使测量工作大大简化。
串并联抑制阻抗模块3,用于降低静电感应电压和感应电流对测量的影响。串并联抑制阻抗模块3包括高阻抗网络Z1和低阻抗网络Z2,所述的高阻抗网络Z1的一端与被测量特高压线路连接,另一端与测量接线自动转换模块连接,Z1为串联抑制阻抗,所述的低阻抗网络Z2一端与被测量特高压线路连接,另一端接地,Z2为并联抑制阻抗。在线路工频参数测量时,并联抑制阻抗可以大幅度降低静电感应电压对测量的影响。串联抑制阻抗可以大幅度降低感应电流对测量的影响。选择合适的阻抗,可以不影响线路工频参数测量准确度。
对端GPS同步测量模块4,包括相连接的GPS电路和测量电路,以GPS同步为手段,在被测量特高压线路长线路另一端同时进行线路物理量的测量,并根据测得的电流、电压等线路物理量获得线路的工频参数,这样可以排除掉线路分布参数对测量结果的影响。
1)工频干扰抑制工作原理
设计动态抑制网络,按图2所示方式接入。Z2负责泄放来自线路的静电感应感应电压,根据感应电压的不同,控制Z2的网络结构,在保证将感应电压泄放到大地的同时,保证测试电源ES能可靠输出到被测线路,从而抑制静电感应电压。
Z1负责抑制来自被测线路的电磁耦合干扰电流,根据干扰电流的不同,控制Z1的网络结构,在保证将干扰电流抑制到安全水平的同时,保证测试电源ES能可靠输出到被测线路,从而抑制电磁感应电流。
2)工频干扰信号和测量信号的数字化分离技术工作原理。
现有方法采用离散傅里叶变换,采集一个或者两个工频周期被测信号,对信号进行谐波分析,由于异频测试中测试信号频点距离工频(50Hz)频点很近,必然导致信号数据序列对异频测试信号非整周期采样,虽然可以采用补零方法补足整周期,也会导致频域的频谱泄漏,从而导致系统误差。本装置异频测量模块1采用采集时间长度为工频周期正整数倍(从1到10的正整数),补偿混叠的异频测试信号为整周期,使频谱泄漏理论上为零。所述的异频测量模块1包括窄带数字滤波器,利用窄带数字滤波器对被测信号进行滤波处理,获取频域分离信号,准确分离异频信号和工频干扰信号。信号分离能力得到提高,能在异频测试信号和工频干扰信号比值为1:10的条件下进行信号频域分离。
3)GPS同步双端测量工作原理
以GPS同步为手段的双端测量,指在特高压长线路两端同时进行电流、电压等物理量的测量,数据进行综合分析计算出线路工频参数,这样可以排除掉线路分布参数对测量结果的影响。

Claims (8)

  1. 一种抗干扰特高压线路参数集成测试装置,用于对被测量特高压线路的工频参数进行集成式测量,其特征在于,该装置包括:
    异频测量模块,对被测信号进行工频干扰信号和异频信号的数字化分离及工频参数计算;
    测量接线自动转换模块,与异频测量模块连接,根据所需测量的工频参数,自动切换内部接线方式;
    串并联抑制阻抗模块,分别连接测量接线自动转换模块和被测量特高压线路,用于降低静电感应电压和感应电流对测量的影响;
    对端GPS同步测量模块,与被测量特高压线路连接,以GPS同步为手段,在被测量特高压线路另一端同时进行线路物理量的测量,并根据测得的线路物理量获得线路的工频参数。
  2. 根据权利要求1所述的一种抗干扰特高压线路参数集成测试装置,其特征在于,所述的异频测量模块包括窄带数字滤波器,该窄带数字滤波器对被测信号进行滤波处理,获取频域分离信号,分离异频信号和工频干扰信号。
  3. 根据权利要求1所述的一种抗干扰特高压线路参数集成测试装置,其特征在于,所述的异频测量模块的采集时间长度为工频周期正整数倍。
  4. 根据权利要求3所述的一种抗干扰特高压线路参数集成测试装置,其特征在于,所述的正整数为1到10的正整数。
  5. 根据权利要求1所述的一种抗干扰特高压线路参数集成测试装置,其特征在于,所述的工频参数包括正序阻抗、零序阻抗、正序电容、零序电容、线路相间互感以及同杆架设线路之间的互感。
  6. 根据权利要求1所述的一种抗干扰特高压线路参数集成测试装置,其特征在于,所述的串并联抑制阻抗模块包括高阻抗网络和低阻抗网络,所述的高阻抗网络的一端与被测量特高压线路连接,另一端与测量接线自动转换模块连接,所述的低阻抗网络一端与被测量特高压线路连接,另一端接地。
  7. 根据权利要求1所述的一种抗干扰特高压线路参数集成测试装置,其特征在于,所述的线路物理量包括电流和电压。
  8. 根据权利要求1所述的一种抗干扰特高压线路参数集成测试装置,其特征在于,所述的对端GPS同步测量模块包括相连接的GPS电路和测量电路。
PCT/CN2014/091964 2014-02-07 2014-11-22 一种抗干扰特高压线路参数集成测试装置 WO2015117466A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410045224.4 2014-02-07
CN201410045224.4A CN103777079A (zh) 2014-02-07 2014-02-07 一种抗干扰特高压线路参数集成测试装置

Publications (1)

Publication Number Publication Date
WO2015117466A1 true WO2015117466A1 (zh) 2015-08-13

Family

ID=50569557

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/091964 WO2015117466A1 (zh) 2014-02-07 2014-11-22 一种抗干扰特高压线路参数集成测试装置

Country Status (2)

Country Link
CN (1) CN103777079A (zh)
WO (1) WO2015117466A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106053957A (zh) * 2016-07-28 2016-10-26 上海斐讯数据通信技术有限公司 测试夹具线损的测试方法和系统
CN107102209A (zh) * 2017-04-28 2017-08-29 国网河南省电力公司电力科学研究院 一种变电站接地装置参数免放线测试系统
CN111597697A (zh) * 2020-05-08 2020-08-28 国网山东省电力公司电力科学研究院 特高压同塔双回线路避雷器布置优化方法
CN112130046A (zh) * 2020-09-24 2020-12-25 中国南方电网有限责任公司超高压输电公司贵阳局 高压试验中用于抑制高压工频感应电压的方法及装置
CN116930851A (zh) * 2023-06-26 2023-10-24 南京国电南自电网自动化有限公司 继电保护装置的工频磁场抗扰度能力检测系统和方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103777079A (zh) * 2014-02-07 2014-05-07 国网上海市电力公司 一种抗干扰特高压线路参数集成测试装置
CN104777366A (zh) * 2015-04-14 2015-07-15 国网辽宁省电力有限公司抚顺供电公司 抗干扰输电线路高压绝缘电阻测试装置
CN106546836A (zh) * 2015-09-18 2017-03-29 山东天庆电力设备有限公司 一种用于电力线路参数测试的综合控制台
CN105301410A (zh) * 2015-11-20 2016-02-03 国家电网公司 变电站智能组件电磁兼容性能在线检测方法及装置
CN106896272A (zh) * 2017-02-07 2017-06-27 中国南方电网有限责任公司超高压输电公司检修试验中心 输电线路参数测量时抑制工频感应电压的电路和测量方法
CN107167663A (zh) * 2017-03-30 2017-09-15 中国南方电网有限责任公司超高压输电公司检修试验中心 一种用于抑制工频感应电压的组合测量电路及测量方法
CN108548945B (zh) * 2018-03-29 2020-08-14 江苏瑞恩电气股份有限公司 一种用于高压线可抗干扰的测试装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3961246A (en) * 1974-11-07 1976-06-01 Allis-Chalmers Corporation Capacitance method of monitoring insulation dryness of an electrical induction apparatus
CN101419254A (zh) * 2008-12-17 2009-04-29 河南电力试验研究院 一种特高压输电线路参数测量系统及方法
CN103487665A (zh) * 2013-09-23 2014-01-01 国家电网公司 测量高压断路器均压电容试验方法
CN103777079A (zh) * 2014-02-07 2014-05-07 国网上海市电力公司 一种抗干扰特高压线路参数集成测试装置
CN203720268U (zh) * 2014-02-07 2014-07-16 国网上海市电力公司 抗干扰线路参数集成测试装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2720450Y (zh) * 2004-08-27 2005-08-24 江苏省电力公司南京供电公司 高压输电线路参数测试仪
CN101938125A (zh) * 2009-07-03 2011-01-05 武汉义天科技有限公司 输电线路工频干扰动态抑制网络

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3961246A (en) * 1974-11-07 1976-06-01 Allis-Chalmers Corporation Capacitance method of monitoring insulation dryness of an electrical induction apparatus
CN101419254A (zh) * 2008-12-17 2009-04-29 河南电力试验研究院 一种特高压输电线路参数测量系统及方法
CN103487665A (zh) * 2013-09-23 2014-01-01 国家电网公司 测量高压断路器均压电容试验方法
CN103777079A (zh) * 2014-02-07 2014-05-07 国网上海市电力公司 一种抗干扰特高压线路参数集成测试装置
CN203720268U (zh) * 2014-02-07 2014-07-16 国网上海市电力公司 抗干扰线路参数集成测试装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHOU, HANGXING ET AL.: "Study of Zhebei-Huxi 1000 kV AC Transmission Line Frequency Parameter Anti-interference Test", EAST CHINA ELECTRIC POWER, vol. 42, no. 1, 31 January 2014 (2014-01-31), ISSN: 1001-9529 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106053957A (zh) * 2016-07-28 2016-10-26 上海斐讯数据通信技术有限公司 测试夹具线损的测试方法和系统
CN107102209A (zh) * 2017-04-28 2017-08-29 国网河南省电力公司电力科学研究院 一种变电站接地装置参数免放线测试系统
CN107102209B (zh) * 2017-04-28 2023-04-18 国网河南省电力公司电力科学研究院 一种变电站接地装置参数免放线测试系统
CN111597697A (zh) * 2020-05-08 2020-08-28 国网山东省电力公司电力科学研究院 特高压同塔双回线路避雷器布置优化方法
CN111597697B (zh) * 2020-05-08 2024-02-02 国网山东省电力公司电力科学研究院 特高压同塔双回线路避雷器布置优化方法
CN112130046A (zh) * 2020-09-24 2020-12-25 中国南方电网有限责任公司超高压输电公司贵阳局 高压试验中用于抑制高压工频感应电压的方法及装置
CN112130046B (zh) * 2020-09-24 2023-11-21 中国南方电网有限责任公司超高压输电公司贵阳局 高压试验中用于抑制高压工频感应电压的方法及装置
CN116930851A (zh) * 2023-06-26 2023-10-24 南京国电南自电网自动化有限公司 继电保护装置的工频磁场抗扰度能力检测系统和方法

Also Published As

Publication number Publication date
CN103777079A (zh) 2014-05-07

Similar Documents

Publication Publication Date Title
WO2015117466A1 (zh) 一种抗干扰特高压线路参数集成测试装置
CN101699301B (zh) 感应电测量线路参数的方法
CN106443307B (zh) 变电设备绝缘在线监测系统
EP2745121B1 (en) An adaptive voltage divider with corrected frequency characteristic for measuring high voltages
CN204142943U (zh) 暂态地电压传感器灵敏度校验装置
CN201666935U (zh) 频响法分析绕组变形测试仪
CN102288872A (zh) 基于信号注入法的小电流接地系统单相接地故障测距方法
CN202631642U (zh) 电容、电感、电阻介损综合测试仪
CN103487665B (zh) 测量高压断路器均压电容试验方法
Berdin et al. Estimating the instantaneous values of the state parameters during electromechanical transients
CN106124882A (zh) 一种可调工频陷波网络及电网干扰信号测试装置
CN104034977A (zh) 电容式电压互感器带电检测仪
CN204679621U (zh) 三相互感器校验仪
CN103454561B (zh) 一种配电网单相接地故障定位方法
CN106199285B (zh) 任意交流载波下的电容特性测量设备及其测量方法
CN205920176U (zh) 任意交流载波下的电容特性测量设备
CN104898083A (zh) 三相互感器校验仪
CN208350896U (zh) 一种谐波的测量装置
CN203949980U (zh) 电容式电压互感器带电检测仪
CN102621389B (zh) 平行输电线路的耦合电容的测试方法
CN203720268U (zh) 抗干扰线路参数集成测试装置
Davis et al. Measurement of Grid Impedance at Harmonic Frequencies
Shi et al. A new method of locating the single wire fault
Nabielec et al. A voltage divider with autocalibration–a review of structures
Frey et al. Harmonics propagation in industrial networks in the range of 2 to 150kHz

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14881687

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14881687

Country of ref document: EP

Kind code of ref document: A1