WO2015117229A1 - Trifunctional t cell-antigen coupler and methods and uses thereof - Google Patents
Trifunctional t cell-antigen coupler and methods and uses thereof Download PDFInfo
- Publication number
- WO2015117229A1 WO2015117229A1 PCT/CA2015/000068 CA2015000068W WO2015117229A1 WO 2015117229 A1 WO2015117229 A1 WO 2015117229A1 CA 2015000068 W CA2015000068 W CA 2015000068W WO 2015117229 A1 WO2015117229 A1 WO 2015117229A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cell
- polynucleotide
- tac
- cells
- domain
- Prior art date
Links
- 239000000427 antigen Substances 0.000 title claims abstract description 120
- 238000000034 method Methods 0.000 title description 19
- 210000001744 T-lymphocyte Anatomy 0.000 claims abstract description 166
- 108091008874 T cell receptors Proteins 0.000 claims abstract description 109
- 102000016266 T-Cell Antigen Receptors Human genes 0.000 claims abstract description 109
- 108091007433 antigens Proteins 0.000 claims abstract description 108
- 102000036639 antigens Human genes 0.000 claims abstract description 108
- 239000003446 ligand Substances 0.000 claims abstract description 62
- 108090000765 processed proteins & peptides Proteins 0.000 claims abstract description 60
- 102000004196 processed proteins & peptides Human genes 0.000 claims abstract description 56
- 229920001184 polypeptide Polymers 0.000 claims abstract description 54
- 102000004169 proteins and genes Human genes 0.000 claims abstract description 53
- 108090000623 proteins and genes Proteins 0.000 claims abstract description 53
- 230000011664 signaling Effects 0.000 claims abstract description 47
- 210000004027 cell Anatomy 0.000 claims description 85
- 102000040430 polynucleotide Human genes 0.000 claims description 78
- 108091033319 polynucleotide Proteins 0.000 claims description 78
- 239000002157 polynucleotide Substances 0.000 claims description 78
- 150000007523 nucleic acids Chemical class 0.000 claims description 69
- 102100036011 T-cell surface glycoprotein CD4 Human genes 0.000 claims description 68
- 101000716102 Homo sapiens T-cell surface glycoprotein CD4 Proteins 0.000 claims description 67
- 102000039446 nucleic acids Human genes 0.000 claims description 61
- 108020004707 nucleic acids Proteins 0.000 claims description 61
- 239000013598 vector Substances 0.000 claims description 52
- 206010028980 Neoplasm Diseases 0.000 claims description 42
- 230000001086 cytosolic effect Effects 0.000 claims description 39
- 229940127174 UCHT1 Drugs 0.000 claims description 33
- 201000011510 cancer Diseases 0.000 claims description 16
- 230000004927 fusion Effects 0.000 claims description 13
- 239000008194 pharmaceutical composition Substances 0.000 claims description 13
- 108010049777 Ankyrins Proteins 0.000 claims description 8
- 102000008102 Ankyrins Human genes 0.000 claims description 8
- 108091026890 Coding region Proteins 0.000 claims description 6
- 210000004962 mammalian cell Anatomy 0.000 claims description 6
- 108700022150 Designed Ankyrin Repeat Proteins Proteins 0.000 claims description 4
- 239000013604 expression vector Substances 0.000 claims description 3
- 230000004913 activation Effects 0.000 abstract description 24
- 102000005962 receptors Human genes 0.000 abstract description 21
- 108020003175 receptors Proteins 0.000 abstract description 21
- 230000016396 cytokine production Effects 0.000 abstract description 16
- 206010057248 Cell death Diseases 0.000 abstract description 2
- 230000009089 cytolysis Effects 0.000 abstract description 2
- 230000003915 cell function Effects 0.000 abstract 1
- 108010019670 Chimeric Antigen Receptors Proteins 0.000 description 65
- 150000001413 amino acids Chemical class 0.000 description 33
- 238000001994 activation Methods 0.000 description 26
- 239000002773 nucleotide Substances 0.000 description 25
- 125000003729 nucleotide group Chemical group 0.000 description 25
- 101150029707 ERBB2 gene Proteins 0.000 description 24
- 230000006044 T cell activation Effects 0.000 description 21
- 230000000694 effects Effects 0.000 description 20
- 101000946843 Homo sapiens T-cell surface glycoprotein CD8 alpha chain Proteins 0.000 description 19
- 102100034922 T-cell surface glycoprotein CD8 alpha chain Human genes 0.000 description 19
- 102200097047 rs199473494 Human genes 0.000 description 19
- 230000003013 cytotoxicity Effects 0.000 description 18
- 231100000135 cytotoxicity Toxicity 0.000 description 18
- 208000004605 Persistent Truncus Arteriosus Diseases 0.000 description 17
- 208000037258 Truncus arteriosus Diseases 0.000 description 17
- 230000027455 binding Effects 0.000 description 17
- 239000012634 fragment Substances 0.000 description 15
- 108700018351 Major Histocompatibility Complex Proteins 0.000 description 13
- 230000006870 function Effects 0.000 description 13
- 230000012010 growth Effects 0.000 description 13
- 230000020382 suppression by virus of host antigen processing and presentation of peptide antigen via MHC class I Effects 0.000 description 13
- 108700010039 chimeric receptor Proteins 0.000 description 12
- 150000002632 lipids Chemical class 0.000 description 12
- 239000000203 mixture Substances 0.000 description 11
- -1 MN-CA IX Proteins 0.000 description 10
- 201000010099 disease Diseases 0.000 description 10
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 10
- 230000001965 increasing effect Effects 0.000 description 10
- 210000004881 tumor cell Anatomy 0.000 description 10
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 9
- 101000914514 Homo sapiens T-cell-specific surface glycoprotein CD28 Proteins 0.000 description 9
- 102100027213 T-cell-specific surface glycoprotein CD28 Human genes 0.000 description 9
- 230000003993 interaction Effects 0.000 description 9
- 239000000126 substance Substances 0.000 description 9
- 108091028043 Nucleic acid sequence Proteins 0.000 description 8
- 230000002829 reductive effect Effects 0.000 description 8
- 230000008685 targeting Effects 0.000 description 8
- 238000005516 engineering process Methods 0.000 description 7
- 230000002147 killing effect Effects 0.000 description 7
- 108020004414 DNA Proteins 0.000 description 6
- 108010032605 Nerve Growth Factor Receptors Proteins 0.000 description 6
- 102100033725 Tumor necrosis factor receptor superfamily member 16 Human genes 0.000 description 6
- 238000012217 deletion Methods 0.000 description 6
- 230000037430 deletion Effects 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- 238000011282 treatment Methods 0.000 description 6
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 5
- 101001023379 Homo sapiens Lysosome-associated membrane glycoprotein 1 Proteins 0.000 description 5
- 101001012157 Homo sapiens Receptor tyrosine-protein kinase erbB-2 Proteins 0.000 description 5
- 102100035133 Lysosome-associated membrane glycoprotein 1 Human genes 0.000 description 5
- 102100030086 Receptor tyrosine-protein kinase erbB-2 Human genes 0.000 description 5
- 241000700605 Viruses Species 0.000 description 5
- 238000009169 immunotherapy Methods 0.000 description 5
- 210000004698 lymphocyte Anatomy 0.000 description 5
- 239000012528 membrane Substances 0.000 description 5
- 230000004048 modification Effects 0.000 description 5
- 238000012986 modification Methods 0.000 description 5
- IQFYYKKMVGJFEH-XLPZGREQSA-N Thymidine Chemical compound O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](CO)[C@@H](O)C1 IQFYYKKMVGJFEH-XLPZGREQSA-N 0.000 description 4
- 108060008682 Tumor Necrosis Factor Proteins 0.000 description 4
- 102100040247 Tumor necrosis factor Human genes 0.000 description 4
- ISAKRJDGNUQOIC-UHFFFAOYSA-N Uracil Chemical compound O=C1C=CNC(=O)N1 ISAKRJDGNUQOIC-UHFFFAOYSA-N 0.000 description 4
- 230000003213 activating effect Effects 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 4
- 230000001413 cellular effect Effects 0.000 description 4
- OPTASPLRGRRNAP-UHFFFAOYSA-N cytosine Chemical compound NC=1C=CNC(=O)N=1 OPTASPLRGRRNAP-UHFFFAOYSA-N 0.000 description 4
- 239000003937 drug carrier Substances 0.000 description 4
- UYTPUPDQBNUYGX-UHFFFAOYSA-N guanine Chemical compound O=C1NC(N)=NC2=C1N=CN2 UYTPUPDQBNUYGX-UHFFFAOYSA-N 0.000 description 4
- 230000009437 off-target effect Effects 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 230000001988 toxicity Effects 0.000 description 4
- 231100000419 toxicity Toxicity 0.000 description 4
- 208000024893 Acute lymphoblastic leukemia Diseases 0.000 description 3
- 108090000695 Cytokines Proteins 0.000 description 3
- 102000004127 Cytokines Human genes 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- 102000008394 Immunoglobulin Fragments Human genes 0.000 description 3
- 108010021625 Immunoglobulin Fragments Proteins 0.000 description 3
- 102100037850 Interferon gamma Human genes 0.000 description 3
- 108010074328 Interferon-gamma Proteins 0.000 description 3
- 241000124008 Mammalia Species 0.000 description 3
- 241001465754 Metazoa Species 0.000 description 3
- 108700012920 TNF Proteins 0.000 description 3
- 238000013459 approach Methods 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 230000037396 body weight Effects 0.000 description 3
- 230000000295 complement effect Effects 0.000 description 3
- 230000003292 diminished effect Effects 0.000 description 3
- 238000009396 hybridization Methods 0.000 description 3
- 238000000338 in vitro Methods 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 230000003834 intracellular effect Effects 0.000 description 3
- 238000001990 intravenous administration Methods 0.000 description 3
- 230000002503 metabolic effect Effects 0.000 description 3
- 230000003278 mimic effect Effects 0.000 description 3
- 239000008188 pellet Substances 0.000 description 3
- 210000003819 peripheral blood mononuclear cell Anatomy 0.000 description 3
- 108020001580 protein domains Proteins 0.000 description 3
- 230000007115 recruitment Effects 0.000 description 3
- 230000004044 response Effects 0.000 description 3
- 230000028327 secretion Effects 0.000 description 3
- 238000006467 substitution reaction Methods 0.000 description 3
- 230000004083 survival effect Effects 0.000 description 3
- 239000000725 suspension Substances 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- 238000010361 transduction Methods 0.000 description 3
- 230000026683 transduction Effects 0.000 description 3
- 239000013603 viral vector Substances 0.000 description 3
- LRFVTYWOQMYALW-UHFFFAOYSA-N 9H-xanthine Chemical compound O=C1NC(=O)NC2=C1NC=N2 LRFVTYWOQMYALW-UHFFFAOYSA-N 0.000 description 2
- 229930024421 Adenine Natural products 0.000 description 2
- GFFGJBXGBJISGV-UHFFFAOYSA-N Adenine Chemical compound NC1=NC=NC2=C1N=CN2 GFFGJBXGBJISGV-UHFFFAOYSA-N 0.000 description 2
- 108010008014 B-Cell Maturation Antigen Proteins 0.000 description 2
- 102000006942 B-Cell Maturation Antigen Human genes 0.000 description 2
- 208000010839 B-cell chronic lymphocytic leukemia Diseases 0.000 description 2
- 102100038080 B-cell receptor CD22 Human genes 0.000 description 2
- DWRXFEITVBNRMK-UHFFFAOYSA-N Beta-D-1-Arabinofuranosylthymine Natural products O=C1NC(=O)C(C)=CN1C1C(O)C(O)C(CO)O1 DWRXFEITVBNRMK-UHFFFAOYSA-N 0.000 description 2
- 102000049320 CD36 Human genes 0.000 description 2
- 108010045374 CD36 Antigens Proteins 0.000 description 2
- 102100036008 CD48 antigen Human genes 0.000 description 2
- 108010022366 Carcinoembryonic Antigen Proteins 0.000 description 2
- 102100025475 Carcinoembryonic antigen-related cell adhesion molecule 5 Human genes 0.000 description 2
- 241000702421 Dependoparvovirus Species 0.000 description 2
- 102100039554 Galectin-8 Human genes 0.000 description 2
- 101000884305 Homo sapiens B-cell receptor CD22 Proteins 0.000 description 2
- 101000716130 Homo sapiens CD48 antigen Proteins 0.000 description 2
- 101000608769 Homo sapiens Galectin-8 Proteins 0.000 description 2
- 101000946860 Homo sapiens T-cell surface glycoprotein CD3 epsilon chain Proteins 0.000 description 2
- 241000598436 Human T-cell lymphotropic virus Species 0.000 description 2
- 101150106931 IFNG gene Proteins 0.000 description 2
- 241000713666 Lentivirus Species 0.000 description 2
- 108050008953 Melanoma-associated antigen Proteins 0.000 description 2
- 241001529936 Murinae Species 0.000 description 2
- 108010072866 Prostate-Specific Antigen Proteins 0.000 description 2
- 102100038358 Prostate-specific antigen Human genes 0.000 description 2
- 102000001253 Protein Kinase Human genes 0.000 description 2
- 108020004511 Recombinant DNA Proteins 0.000 description 2
- 108010008281 Recombinant Fusion Proteins Proteins 0.000 description 2
- 102000007056 Recombinant Fusion Proteins Human genes 0.000 description 2
- 241000700584 Simplexvirus Species 0.000 description 2
- 102100035794 T-cell surface glycoprotein CD3 epsilon chain Human genes 0.000 description 2
- 102100022153 Tumor necrosis factor receptor superfamily member 4 Human genes 0.000 description 2
- 102100026497 Zinc finger protein 654 Human genes 0.000 description 2
- 229960000643 adenine Drugs 0.000 description 2
- 102000013529 alpha-Fetoproteins Human genes 0.000 description 2
- 108010026331 alpha-Fetoproteins Proteins 0.000 description 2
- 238000004873 anchoring Methods 0.000 description 2
- 230000000890 antigenic effect Effects 0.000 description 2
- 238000003556 assay Methods 0.000 description 2
- 239000011324 bead Substances 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- IQFYYKKMVGJFEH-UHFFFAOYSA-N beta-L-thymidine Natural products O=C1NC(=O)C(C)=CN1C1OC(CO)C(O)C1 IQFYYKKMVGJFEH-UHFFFAOYSA-N 0.000 description 2
- 210000004369 blood Anatomy 0.000 description 2
- 239000008280 blood Substances 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 230000010261 cell growth Effects 0.000 description 2
- 238000012512 characterization method Methods 0.000 description 2
- 239000012707 chemical precursor Substances 0.000 description 2
- 238000011443 conventional therapy Methods 0.000 description 2
- 238000004132 cross linking Methods 0.000 description 2
- 229940104302 cytosine Drugs 0.000 description 2
- 230000001472 cytotoxic effect Effects 0.000 description 2
- 230000007402 cytotoxic response Effects 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 238000000326 densiometry Methods 0.000 description 2
- 238000010195 expression analysis Methods 0.000 description 2
- 235000011187 glycerol Nutrition 0.000 description 2
- 239000001963 growth medium Substances 0.000 description 2
- 230000002209 hydrophobic effect Effects 0.000 description 2
- FDGQSTZJBFJUBT-UHFFFAOYSA-N hypoxanthine Chemical compound O=C1NC=NC2=C1NC=N2 FDGQSTZJBFJUBT-UHFFFAOYSA-N 0.000 description 2
- 230000028993 immune response Effects 0.000 description 2
- 230000001976 improved effect Effects 0.000 description 2
- 208000015181 infectious disease Diseases 0.000 description 2
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 description 2
- 238000011005 laboratory method Methods 0.000 description 2
- 208000032839 leukemia Diseases 0.000 description 2
- 230000004807 localization Effects 0.000 description 2
- 210000001165 lymph node Anatomy 0.000 description 2
- 230000036210 malignancy Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 238000010369 molecular cloning Methods 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- 239000003471 mutagenic agent Substances 0.000 description 2
- 231100000707 mutagenic chemical Toxicity 0.000 description 2
- 230000003505 mutagenic effect Effects 0.000 description 2
- 230000035772 mutation Effects 0.000 description 2
- 239000013642 negative control Substances 0.000 description 2
- 230000026792 palmitoylation Effects 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 108060006633 protein kinase Proteins 0.000 description 2
- 230000006798 recombination Effects 0.000 description 2
- 230000001177 retroviral effect Effects 0.000 description 2
- 210000000130 stem cell Anatomy 0.000 description 2
- 230000000638 stimulation Effects 0.000 description 2
- 229940104230 thymidine Drugs 0.000 description 2
- 210000001541 thymus gland Anatomy 0.000 description 2
- 210000001519 tissue Anatomy 0.000 description 2
- 241000701161 unidentified adenovirus Species 0.000 description 2
- 241001430294 unidentified retrovirus Species 0.000 description 2
- 229940035893 uracil Drugs 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- LDGWQMRUWMSZIU-LQDDAWAPSA-M 2,3-bis[(z)-octadec-9-enoxy]propyl-trimethylazanium;chloride Chemical compound [Cl-].CCCCCCCC\C=C/CCCCCCCCOCC(C[N+](C)(C)C)OCCCCCCCC\C=C/CCCCCCCC LDGWQMRUWMSZIU-LQDDAWAPSA-M 0.000 description 1
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 description 1
- 208000014697 Acute lymphocytic leukaemia Diseases 0.000 description 1
- 241001664176 Alpharetrovirus Species 0.000 description 1
- 101710145634 Antigen 1 Proteins 0.000 description 1
- 108010031480 Artificial Receptors Proteins 0.000 description 1
- 102100021663 Baculoviral IAP repeat-containing protein 5 Human genes 0.000 description 1
- 206010006187 Breast cancer Diseases 0.000 description 1
- 208000026310 Breast neoplasm Diseases 0.000 description 1
- PPCPINAIXYIPGY-VOTSOKGWSA-N CC(C)N/C=C/C(C)(C)C Chemical compound CC(C)N/C=C/C(C)(C)C PPCPINAIXYIPGY-VOTSOKGWSA-N 0.000 description 1
- 102100027207 CD27 antigen Human genes 0.000 description 1
- 108010041397 CD4 Antigens Proteins 0.000 description 1
- 101150013553 CD40 gene Proteins 0.000 description 1
- 102100035793 CD83 antigen Human genes 0.000 description 1
- 102100037904 CD9 antigen Human genes 0.000 description 1
- 102100025570 Cancer/testis antigen 1 Human genes 0.000 description 1
- 102100039510 Cancer/testis antigen 2 Human genes 0.000 description 1
- 108010051152 Carboxylesterase Proteins 0.000 description 1
- 102000013392 Carboxylesterase Human genes 0.000 description 1
- 201000009030 Carcinoma Diseases 0.000 description 1
- 102100025064 Cellular tumor antigen p53 Human genes 0.000 description 1
- 102000011022 Chorionic Gonadotropin Human genes 0.000 description 1
- 108010062540 Chorionic Gonadotropin Proteins 0.000 description 1
- 208000035473 Communicable disease Diseases 0.000 description 1
- 102100030886 Complement receptor type 1 Human genes 0.000 description 1
- 102000053602 DNA Human genes 0.000 description 1
- 206010061818 Disease progression Diseases 0.000 description 1
- 238000002965 ELISA Methods 0.000 description 1
- 208000014061 Extranodal Extension Diseases 0.000 description 1
- 241001663880 Gammaretrovirus Species 0.000 description 1
- 208000032612 Glial tumor Diseases 0.000 description 1
- 206010018338 Glioma Diseases 0.000 description 1
- 102100041003 Glutamate carboxypeptidase 2 Human genes 0.000 description 1
- 102100026122 High affinity immunoglobulin gamma Fc receptor I Human genes 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 101000914511 Homo sapiens CD27 antigen Proteins 0.000 description 1
- 101000946856 Homo sapiens CD83 antigen Proteins 0.000 description 1
- 101000738354 Homo sapiens CD9 antigen Proteins 0.000 description 1
- 101000856237 Homo sapiens Cancer/testis antigen 1 Proteins 0.000 description 1
- 101000889345 Homo sapiens Cancer/testis antigen 2 Proteins 0.000 description 1
- 101000721661 Homo sapiens Cellular tumor antigen p53 Proteins 0.000 description 1
- 101000727061 Homo sapiens Complement receptor type 1 Proteins 0.000 description 1
- 101000892862 Homo sapiens Glutamate carboxypeptidase 2 Proteins 0.000 description 1
- 101000913074 Homo sapiens High affinity immunoglobulin gamma Fc receptor I Proteins 0.000 description 1
- 101000777628 Homo sapiens Leukocyte antigen CD37 Proteins 0.000 description 1
- 101000917858 Homo sapiens Low affinity immunoglobulin gamma Fc region receptor III-A Proteins 0.000 description 1
- 101000917839 Homo sapiens Low affinity immunoglobulin gamma Fc region receptor III-B Proteins 0.000 description 1
- 101001014223 Homo sapiens MAPK/MAK/MRK overlapping kinase Proteins 0.000 description 1
- 101000934338 Homo sapiens Myeloid cell surface antigen CD33 Proteins 0.000 description 1
- 101001109503 Homo sapiens NKG2-C type II integral membrane protein Proteins 0.000 description 1
- 101000738771 Homo sapiens Receptor-type tyrosine-protein phosphatase C Proteins 0.000 description 1
- 101000934341 Homo sapiens T-cell surface glycoprotein CD5 Proteins 0.000 description 1
- 101000914484 Homo sapiens T-lymphocyte activation antigen CD80 Proteins 0.000 description 1
- 101000655352 Homo sapiens Telomerase reverse transcriptase Proteins 0.000 description 1
- 101000851376 Homo sapiens Tumor necrosis factor receptor superfamily member 8 Proteins 0.000 description 1
- 241000713673 Human foamy virus Species 0.000 description 1
- 241000701806 Human papillomavirus Species 0.000 description 1
- 241001135958 Human type D retrovirus Species 0.000 description 1
- UGQMRVRMYYASKQ-UHFFFAOYSA-N Hypoxanthine nucleoside Natural products OC1C(O)C(CO)OC1N1C(NC=NC2=O)=C2N=C1 UGQMRVRMYYASKQ-UHFFFAOYSA-N 0.000 description 1
- 108010031794 IGF Type 1 Receptor Proteins 0.000 description 1
- 102100023915 Insulin Human genes 0.000 description 1
- 108090001061 Insulin Proteins 0.000 description 1
- 102000048143 Insulin-Like Growth Factor II Human genes 0.000 description 1
- 108090001117 Insulin-Like Growth Factor II Proteins 0.000 description 1
- 102100039688 Insulin-like growth factor 1 receptor Human genes 0.000 description 1
- 102100034872 Kallikrein-4 Human genes 0.000 description 1
- 108010028275 Leukocyte Elastase Proteins 0.000 description 1
- 102100031586 Leukocyte antigen CD37 Human genes 0.000 description 1
- 102100029185 Low affinity immunoglobulin gamma Fc region receptor III-B Human genes 0.000 description 1
- 206010058467 Lung neoplasm malignant Diseases 0.000 description 1
- 102100031520 MAPK/MAK/MRK overlapping kinase Human genes 0.000 description 1
- 108010046938 Macrophage Colony-Stimulating Factor Proteins 0.000 description 1
- 102100028123 Macrophage colony-stimulating factor 1 Human genes 0.000 description 1
- 108010052285 Membrane Proteins Proteins 0.000 description 1
- 102000018697 Membrane Proteins Human genes 0.000 description 1
- 102000003735 Mesothelin Human genes 0.000 description 1
- 108090000015 Mesothelin Proteins 0.000 description 1
- 102100034256 Mucin-1 Human genes 0.000 description 1
- 108010008707 Mucin-1 Proteins 0.000 description 1
- 108010085220 Multiprotein Complexes Proteins 0.000 description 1
- 102000007474 Multiprotein Complexes Human genes 0.000 description 1
- 102100025243 Myeloid cell surface antigen CD33 Human genes 0.000 description 1
- 102100022683 NKG2-C type II integral membrane protein Human genes 0.000 description 1
- 102100033174 Neutrophil elastase Human genes 0.000 description 1
- 238000000636 Northern blotting Methods 0.000 description 1
- 102100034937 Poly(A) RNA polymerase, mitochondrial Human genes 0.000 description 1
- 208000006664 Precursor Cell Lymphoblastic Leukemia-Lymphoma Diseases 0.000 description 1
- 108010076504 Protein Sorting Signals Proteins 0.000 description 1
- 102000052575 Proto-Oncogene Human genes 0.000 description 1
- 108700020978 Proto-Oncogene Proteins 0.000 description 1
- 102100037422 Receptor-type tyrosine-protein phosphatase C Human genes 0.000 description 1
- PLXBWHJQWKZRKG-UHFFFAOYSA-N Resazurin Chemical compound C1=CC(=O)C=C2OC3=CC(O)=CC=C3[N+]([O-])=C21 PLXBWHJQWKZRKG-UHFFFAOYSA-N 0.000 description 1
- 206010039491 Sarcoma Diseases 0.000 description 1
- 241000713311 Simian immunodeficiency virus Species 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- 102100037253 Solute carrier family 45 member 3 Human genes 0.000 description 1
- 238000002105 Southern blotting Methods 0.000 description 1
- 241000713675 Spumavirus Species 0.000 description 1
- 101000677856 Stenotrophomonas maltophilia (strain K279a) Actin-binding protein Smlt3054 Proteins 0.000 description 1
- 108010002687 Survivin Proteins 0.000 description 1
- 230000024932 T cell mediated immunity Effects 0.000 description 1
- 108010092262 T-Cell Antigen Receptors Proteins 0.000 description 1
- 102100025244 T-cell surface glycoprotein CD5 Human genes 0.000 description 1
- 102100027222 T-lymphocyte activation antigen CD80 Human genes 0.000 description 1
- 108010017842 Telomerase Proteins 0.000 description 1
- 102100033504 Thyroglobulin Human genes 0.000 description 1
- 108010034949 Thyroglobulin Proteins 0.000 description 1
- 108060008683 Tumor Necrosis Factor Receptor Proteins 0.000 description 1
- 101710165473 Tumor necrosis factor receptor superfamily member 4 Proteins 0.000 description 1
- 102100040245 Tumor necrosis factor receptor superfamily member 5 Human genes 0.000 description 1
- 102100036857 Tumor necrosis factor receptor superfamily member 8 Human genes 0.000 description 1
- 102100039094 Tyrosinase Human genes 0.000 description 1
- 108060008724 Tyrosinase Proteins 0.000 description 1
- 241000700618 Vaccinia virus Species 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 230000001464 adherent effect Effects 0.000 description 1
- 239000000443 aerosol Substances 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 230000000735 allogeneic effect Effects 0.000 description 1
- 230000000692 anti-sense effect Effects 0.000 description 1
- 210000000612 antigen-presenting cell Anatomy 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 210000003719 b-lymphocyte Anatomy 0.000 description 1
- 239000003124 biologic agent Substances 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 201000000053 blastoma Diseases 0.000 description 1
- 210000001185 bone marrow Anatomy 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 239000008366 buffered solution Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 238000002619 cancer immunotherapy Methods 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000020411 cell activation Effects 0.000 description 1
- 230000024245 cell differentiation Effects 0.000 description 1
- 239000013592 cell lysate Substances 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000002512 chemotherapy Methods 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 238000001553 co-assembly Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000006552 constitutive activation Effects 0.000 description 1
- 230000000139 costimulatory effect Effects 0.000 description 1
- 108091008034 costimulatory receptors Proteins 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000012258 culturing Methods 0.000 description 1
- 210000004292 cytoskeleton Anatomy 0.000 description 1
- 231100000433 cytotoxic Toxicity 0.000 description 1
- 210000001151 cytotoxic T lymphocyte Anatomy 0.000 description 1
- 230000003112 degranulating effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 239000000539 dimer Substances 0.000 description 1
- 230000005750 disease progression Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 125000002228 disulfide group Chemical group 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 239000012636 effector Substances 0.000 description 1
- 238000004520 electroporation Methods 0.000 description 1
- 201000008184 embryoma Diseases 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 210000004700 fetal blood Anatomy 0.000 description 1
- 238000000684 flow cytometry Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 230000037406 food intake Effects 0.000 description 1
- 238000010230 functional analysis Methods 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 239000003102 growth factor Substances 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 210000002443 helper t lymphocyte Anatomy 0.000 description 1
- 230000002489 hematologic effect Effects 0.000 description 1
- 239000000833 heterodimer Substances 0.000 description 1
- 229940084986 human chorionic gonadotropin Drugs 0.000 description 1
- 210000002865 immune cell Anatomy 0.000 description 1
- 108091008915 immune receptors Proteins 0.000 description 1
- 102000027596 immune receptors Human genes 0.000 description 1
- 210000000987 immune system Anatomy 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 229940125396 insulin Drugs 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000000968 intestinal effect Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 108010024383 kallikrein 4 Proteins 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 238000001638 lipofection Methods 0.000 description 1
- 239000002502 liposome Substances 0.000 description 1
- 201000005202 lung cancer Diseases 0.000 description 1
- 208000020816 lung neoplasm Diseases 0.000 description 1
- 239000008176 lyophilized powder Substances 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 201000001441 melanoma Diseases 0.000 description 1
- 210000002284 membrane microdomain Anatomy 0.000 description 1
- 210000003071 memory t lymphocyte Anatomy 0.000 description 1
- 238000000520 microinjection Methods 0.000 description 1
- 210000000581 natural killer T-cell Anatomy 0.000 description 1
- 210000000822 natural killer cell Anatomy 0.000 description 1
- 230000001613 neoplastic effect Effects 0.000 description 1
- 231100001083 no cytotoxicity Toxicity 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 239000002777 nucleoside Substances 0.000 description 1
- 150000003833 nucleoside derivatives Chemical class 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 229950002610 otelixizumab Drugs 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 244000052769 pathogen Species 0.000 description 1
- 230000001717 pathogenic effect Effects 0.000 description 1
- 239000013612 plasmid Substances 0.000 description 1
- 229920001481 poly(stearyl methacrylate) Polymers 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 108040000983 polyphosphate:AMP phosphotransferase activity proteins Proteins 0.000 description 1
- 229920000136 polysorbate Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 108010079891 prostein Proteins 0.000 description 1
- 230000002797 proteolythic effect Effects 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 210000003289 regulatory T cell Anatomy 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000003757 reverse transcription PCR Methods 0.000 description 1
- 229920002477 rna polymer Polymers 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 230000033237 signal complex assembly Effects 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 230000009870 specific binding Effects 0.000 description 1
- 235000013599 spices Nutrition 0.000 description 1
- 210000000952 spleen Anatomy 0.000 description 1
- 230000004936 stimulating effect Effects 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 230000008093 supporting effect Effects 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
- 238000010189 synthetic method Methods 0.000 description 1
- 239000003826 tablet Substances 0.000 description 1
- 229950010127 teplizumab Drugs 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 230000004797 therapeutic response Effects 0.000 description 1
- 229960002175 thyroglobulin Drugs 0.000 description 1
- 238000013518 transcription Methods 0.000 description 1
- 230000035897 transcription Effects 0.000 description 1
- 230000002463 transducing effect Effects 0.000 description 1
- 230000009261 transgenic effect Effects 0.000 description 1
- 238000002054 transplantation Methods 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- 102000003298 tumor necrosis factor receptor Human genes 0.000 description 1
- 235000015112 vegetable and seed oil Nutrition 0.000 description 1
- 239000008158 vegetable oil Substances 0.000 description 1
- 239000003981 vehicle Substances 0.000 description 1
- 229950004393 visilizumab Drugs 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 238000001262 western blot Methods 0.000 description 1
- 229940075420 xanthine Drugs 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/705—Receptors; Cell surface antigens; Cell surface determinants
- C07K14/70503—Immunoglobulin superfamily
- C07K14/70514—CD4
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K35/00—Medicinal preparations containing materials or reaction products thereof with undetermined constitution
- A61K35/12—Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
- A61K35/14—Blood; Artificial blood
- A61K35/17—Lymphocytes; B-cells; T-cells; Natural killer cells; Interferon-activated or cytokine-activated lymphocytes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/0005—Vertebrate antigens
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/46—Cellular immunotherapy
- A61K39/461—Cellular immunotherapy characterised by the cell type used
- A61K39/4611—T-cells, e.g. tumor infiltrating lymphocytes [TIL], lymphokine-activated killer cells [LAK] or regulatory T cells [Treg]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/46—Cellular immunotherapy
- A61K39/463—Cellular immunotherapy characterised by recombinant expression
- A61K39/4631—Chimeric Antigen Receptors [CAR]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/46—Cellular immunotherapy
- A61K39/463—Cellular immunotherapy characterised by recombinant expression
- A61K39/4632—T-cell receptors [TCR]; antibody T-cell receptor constructs
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/46—Cellular immunotherapy
- A61K39/464—Cellular immunotherapy characterised by the antigen targeted or presented
- A61K39/4643—Vertebrate antigens
- A61K39/4644—Cancer antigens
- A61K39/464402—Receptors, cell surface antigens or cell surface determinants
- A61K39/464403—Receptors for growth factors
- A61K39/464406—Her-2/neu/ErbB2, Her-3/ErbB3 or Her 4/ ErbB4
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
- A61P35/02—Antineoplastic agents specific for leukemia
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/705—Receptors; Cell surface antigens; Cell surface determinants
- C07K14/70503—Immunoglobulin superfamily
- C07K14/7051—T-cell receptor (TcR)-CD3 complex
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
- C07K16/2803—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
- C07K16/2809—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily against the T-cell receptor (TcR)-CD3 complex
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
- C07K16/2878—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the NGF-receptor/TNF-receptor superfamily, e.g. CD27, CD30, CD40, CD95
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/32—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against translation products of oncogenes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/06—Animal cells or tissues; Human cells or tissues
- C12N5/0602—Vertebrate cells
- C12N5/0634—Cells from the blood or the immune system
- C12N5/0636—T lymphocytes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/51—Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
- A61K2039/515—Animal cells
- A61K2039/5156—Animal cells expressing foreign proteins
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/30—Immunoglobulins specific features characterized by aspects of specificity or valency
- C07K2317/31—Immunoglobulins specific features characterized by aspects of specificity or valency multispecific
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/60—Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments
- C07K2317/62—Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments comprising only variable region components
- C07K2317/622—Single chain antibody (scFv)
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/70—Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
- C07K2317/73—Inducing cell death, e.g. apoptosis, necrosis or inhibition of cell proliferation
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2318/00—Antibody mimetics or scaffolds
- C07K2318/10—Immunoglobulin or domain(s) thereof as scaffolds for inserted non-Ig peptide sequences, e.g. for vaccination purposes
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2318/00—Antibody mimetics or scaffolds
- C07K2318/20—Antigen-binding scaffold molecules wherein the scaffold is not an immunoglobulin variable region or antibody mimetics
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
- C07K2319/01—Fusion polypeptide containing a localisation/targetting motif
- C07K2319/02—Fusion polypeptide containing a localisation/targetting motif containing a signal sequence
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
- C07K2319/01—Fusion polypeptide containing a localisation/targetting motif
- C07K2319/03—Fusion polypeptide containing a localisation/targetting motif containing a transmembrane segment
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
- C07K2319/33—Fusion polypeptide fusions for targeting to specific cell types, e.g. tissue specific targeting, targeting of a bacterial subspecies
Definitions
- the present disclosure relates to a method of treating cancer by engineering T-cells with high cytotoxicity against specific target cells and reduced off-target toxicity.
- the disclosure relates to engineering T- cells to express novel biological agents which mimic the natural T-cell activation process.
- Cancer is a major health challenge, with over 150,000 cases of cancer expected to be diagnosed in Canada in 2013 alone. While patients with early stage disease can be treated effectively by conventional therapies (surgery, radiation, chemotherapy), few options are available to patients with advanced disease and those options are typically palliative in nature. Active immunotherapy seeks to employ the patient's immune system to clear tumor deposits and offers an exciting option to patients who have failed conventional therapies (Humphries, 2013). Indeed, several clinical studies have demonstrated that immunotherapy with T cells can be curative in patients with advanced melanoma, confirming the utility of this approach (Humphries, 2013).
- T cell immunotherapy patients suffering from chronic lymphocytic leukemia (CLL) and acute lymphoblastic leukemia (ALL) have also been effectively treated and cured with T cell immunotherapy (Fry and Mackall, 2013)(Kochenderfer and Rosenberg, 2013).
- CLL chronic lymphocytic leukemia
- ALL acute lymphoblastic leukemia
- T cell immunotherapy Fry and Mackall, 2013
- MHC major histocompatibility complex
- the chimeric receptors used for engineering T cells consist of a targeting domain, usually a single-chain fragment variable (scFv); a transmembrane domain; and a cytosolic domain that contains signaling elements from the T cell receptor and associated proteins (Dotti et al. , 2009).
- Such chimeric receptors have been referred to as "T-body”, “Chimeric Antigen Receptor” (CAR) or “Chimeric Immune Receptor” (CIR) - currently, most researchers use the term “CAR” (Dotti et al. , 2009).
- CAR Chimeric Antigen Receptor
- CIR Chomeric Immune Receptor
- These CARs are considered in modular terms and scientists have spent considerable time investigating the influence of different cytoplasmic signaling domains on CAR function.
- the first-generation CARs employed a single signaling domain from either ⁇ 3 ⁇ or FcsRIy.
- Second-generations CARs combined the signaling domain of ⁇ 3 ⁇ with the cytoplasmic domain of costimulatory receptors from either the CD28 or TNFR family of receptors (Dotti et al., 2009).
- Third-generation CARs combined multiple costimulatory domains, but there is concern that third-generation CARs may lose antigen-specificity (Han et al., 2013).
- Most CAR-engineered T cells that are being tested in the clinic employ second-generation CARs where ⁇ 3 ⁇ is coupled to the cytoplasmic domain of either CD28 or CD137 (Han et al., 2013)(Finney et al., 2004)(Milone et al., 2009).
- TCR T cell receptor
- BiTEs Bispecific T-cell Engagers
- These proteins employ bispecific antibody fragments to crosslink T-cell TCR receptors with target antigens. This leads to efficient T-cell activation, triggering cytotoxicity.
- bi-specific antibodies have been generated that accomplish this goal and some scientists have simply linked anti-CD3 antibodies to tumor-specific antibodies employing chemical linkage (Chames and Baty, 2009).
- TCR T cell receptor
- nucleic acid comprising:
- Another aspect of the disclosure provides a polypeptide encoded by the nucleic acid described above. [0010] Another aspect of the disclosure provides an expression vector comprising the nucleic acid described above.
- Yet another aspect of the disclosure provides a T-cell expressing the nucleic acid described above.
- Another aspect of the disclosure provides a pharmaceutical composition comprising the T cell and a carrier.
- the disclosure also provides a use of a T cell for treating cancer in a subject in need thereof, wherein the T cell expresses a nucleic acid comprising:
- the target-specific ligand binds an antigen on a cancerous cell.
- the target-specific ligand is a designed ankyrin repeat (DARPin) polypeptide or scFv.
- DARPin ankyrin repeat
- the protein associated with the TCR complex is CD3.
- the ligand that binds a protein associated with the TCR complex is a single chain antibody.
- the ligand that binds a protein associated with the TCR complex is UCHT1 , or a variant thereof.
- the T cell receptor signaling domain polypeptide comprises a cytosolic domain and a transmembrane domain.
- the cytosolic domain is a CD4 cytosolic domain and the transmembrane domain is a CD4 transmembrane domain.
- first polynucleotide and third polynucleotide are fused to the second polynucleotide.
- the second polynucleotide and third polynucleotide are fused to the first polynucleotide.
- the disclosure also provides a vector construct comprising: a. a first polynucleotide encoding a target-specific ligand;
- a promoter functional in a mammalian cell d. a promoter functional in a mammalian cell.
- the first polynucleotide and third polynucleotide are fused to the second polynucleotide to provide a T cell antigen coupler fusion and the coding sequence of the T cell antigen coupler fusion is operably connected to the promoter.
- the second polynucleotide and third polynucleotide are fused to the first polynucleotide to provide a T cell antigen coupler fusion and the coding sequence of the T cell antigen coupler fusion is operably connected to the promoter.
- the disclosure also provides an isolated T cell transfected with the vector construct.
- FIG. 1 is a graphic summary of the trifunctional T cell-antigen coupler (Tri-TAC) in comparison with a conventional second-generation CAR. A schema of the constructs used in this work is included.
- Tri-TAC trifunctional T cell-antigen coupler
- Figure 2 shows a surface expression analysis of the Tri-TAC variants and the classical CAR.
- Figure 3 shows an analysis of cell activation looking at the different markers IFN- ⁇ , TNF-a and CD 107a.
- Figure 4 analyzes the killing of two different cell lines that either express (D2F2E2) or do not express (D2F2) the molecular target of the classical CAR and the Tri-TAC.
- Figure 5 depicts natural T-cell initiation (A), two currently used artificial methods for T-cell activation (B and C), and the TAC activation technology (D).
- Figure 6 depicts (A) configuration 1 of the TAC molecule and (B) configuration 2 of the TAC molecule.
- Figure 7 shows the functionality of scFv CD4 TAC.
- A is a histogram showing surface expression of the scFv CD4 TAC receptor relative to empty vector
- B shows antigen specific activation of T-cells expressing either the scFv CD4 TAC (top) or scFV CAR (bottom)
- C shows comparable killing of MCF-7 human tumour cell line (Her2 positive) by both scFv CD4 TAC and scFv CAR.
- Figure 8 characterizes the CD4-TAC configuration 2.
- A is a histogram showing surface expression of the DARPin CD4 TAC receptor relative to empty vector
- B shows cytokine production and degranulation of T cell engineered with DARPin TAC configuration 2 exposed to Her2 antigen
- C shows growth of CD4 TAC configuration 2 relative to empty vector control.
- Figure 9 shows the functionality of DARPin CD4 TAC configuration 1.
- A shows the surface expression of DARPin CD4 YAC compared to DARPin CAR and the NGFR only control
- B shows growth of CD4 TAC configuration 1 and
- C shows the percentage of cells positive for various activation and degradation markers.
- Figure 10 shows the cytotoxicity and overall activity of TAC and CAR.
- Cells engineered with TAC, CAR or empty vector control were incubated in various human tumor cell lines.
- Figure 1 1 shows receptor surface expression and activation of various TAC controls.
- A shows cell surface expression (left), degranulation (middle) and cytokine production (right) and
- Figure 12 shows properties of various transmembrane TAC variants.
- A is an overview of various transmembrane domain constructs
- B shows the surface of expression of various constructs engineered in CD8 purified T cells
- C shows testing of the various variants for degranulation and cytokine production.
- Figure 13 shows Lck interaction with TAC variants.
- A shows the ability of full length TAC and the cytosolic deletion to pull down Lck and
- B is a densitometry analysis of Lck detected in the pellets of (A).
- Figure 14 shows CD4 TAC surface expression and activity compared to a BiTE like variant.
- A depicts surface expression of an NGFR only control, CD4 TAC and BiTE like variant and
- B compares cytotoxicity in various cell lines.
- Figure 15 shows wild type CD4 TAC compared to a random mutagen library of UCHT1.
- A shows the schematic representation of the mutant
- B is a histogram showing surface expression of the library
- C shows the ability of the library to activate T cells and produce cytokines.
- Figure 16 shows enhanced surface expression of the A85V, T161 P mutant.
- A compares final CD/CD8 populations between CD4 TAC and A85V, T161 P mutant
- B shows enhanced surface expression of the A85V, T161 P mutant
- C shows that cytokine production is diminished in the A85V, T161 mutant.
- Figure 17 shows A85V, T161 P mutant cytotoxicity and growth.
- A shows cytotoxicity of the A85V, T161 P mutant in various cell lines and
- B shows cell growth in culture over 2 weeks.
- T cells There are several subsets of T cells with distinct functions, including but not limited to, T helper cells, cytotoxic T cells, memory T cells, regulatory T cells and natural killer T cells.
- T cell antigen coupler refers to an engineered nucleic acid construct or polypeptide, that when expressed on a T cell, targets the T cell to a particular antigen.
- nucleic acid sequence refers to a sequence of nucleoside or nucleotide monomers consisting of bases, sugars and intersugar (backbone) linkages.
- the term also includes modified or substituted sequences comprising non- naturally occurring monomers or portions thereof.
- the nucleic acid sequences of the present application may be deoxyribonucleic acid sequences (DNA) or ribonucleic acid sequences (RNA) and may include naturally occurring bases including adenine, guanine, cytosine, thymidine and uracil.
- the sequences may also contain modified bases.
- modified bases include aza and deaza adenine, guanine, cytosine, thymidine and uracil; and xanthine and hypoxanthine.
- the nucleic acids of the present disclosure may be isolated from biological organisms, formed by laboratory methods of genetic recombination or obtained by chemical synthesis or other known protocols for creating nucleic acids.
- An isolated nucleic acid is also substantially free of sequences which naturally flank the nucleic acid (i.e. sequences located at the 5' and 3' ends of the nucleic acid) from which the nucleic acid is derived.
- nucleic acid is intended to include DNA and RNA and can be either double stranded or single stranded, and represents the sense or antisense strand. Further, the term “nucleic acid” includes the complementary nucleic acid sequences.
- recombinant nucleic acid or “engineered nucleic acid” as used herein refers to a nucleic acid or polynucleotide that is not found in a biological organism.
- recombinant nucleic acids may be formed by laboratory methods of genetic recombination (such as molecular cloning) to create sequences that would not otherwise be found in nature.
- Recombinant nucleic acids may also be created by chemical synthesis or other known protocols for creating nucleic acids.
- polypeptide or "protein” as used herein describes a chain of amino acids that correspond to those encoded by a nucleic acid.
- a polypeptide or protein of this disclosure can be a peptide, which usually describes a chain of amino acids of from two to about 30 amino acids.
- protein as used herein also describes a chain of amino acids having more than 30 amino acids and can be a fragment or domain of a protein or a full length protein.
- protein can refer to a linear chain of amino acids or it can refer to a chain of amino acids that has been processed and folded into a functional protein.
- proteins of the present disclosure can be obtained by isolation and purification of the proteins from cells where they are produced naturally, by enzymatic (e.g., proteolytic) cleavage, and/or recombinantly by expression of nucleic acid encoding the proteins or fragments of this disclosure.
- the proteins and/or fragments of this disclosure can also be obtained by chemical synthesis or other known protocols for producing proteins and fragments.
- isolated polypeptide refers to a polypeptide substantially free of cellular material or culture medium when produced by recombinant DNA techniques, or chemical precursors or other chemicals when chemically synthesized.
- antibody as used herein is intended to include monoclonal antibodies, polyclonal antibodies, single chain antibodies, chimeric antibodies and antibody fusions. The antibody may be from recombinant sources and/or produced in transgenic animals.
- antibody fragment as used herein is intended to include without limitations Fab, Fab', F(ab') 2 , scFv, dsFv, ds-scFv, dimers, minibodies, diabodies, and multimers thereof, multispecific antibody fragments and Domain Antibodies.
- a vector refers to a polynucleotide that can be used to deliver a nucleic acid to the inside of a cell.
- a vector is an expression vector comprising expression control sequences (for example, a promoter) operatively linked to a nucleic acid to be expressed in a cell.
- Expression control sequences for example, a promoter
- Vectors known in the art include, but are not limited to, plasmids, phages, cosmids and viruses.
- Tri-TAC Trifunctional T cell- antigen coupler
- TCR T- cell receptor
- DARPin ankyrin repeat
- T cells were engineered to express either the prototype Tri-TAC or a conventional CAR with the same DARPin. It was determined that in all aspects, T cells engineered with the Tri-TAC demonstrated functionality equivalent to a conventional CAR. With regard to two parameters (TNF-a production and CD107a mobilization), it was observed that the Tri-TAC was more active than a conventional CAR. Further, the data shows that on a per molecule basis the Tri-TAC shows a significantly enhanced activity. Additionally the Tri-TAC offers enhanced safety compared to traditional CARs as no activation domains are part of the protein.
- nucleic acid comprising:
- a first polynucleotide encoding a target-specific ligand
- a second polynucleotide encoding a ligand that binds the TCR complex
- the nucleic acid is a recombinant, or engineered, nucleic acid.
- the first, second and/or third polynucleotides are recombinant, or engineered, polynucleotides.
- the disclosure also relates to a polypeptide encoded by the nucleic acid and a composition comprising the nucleic acid.
- a nucleic acid comprising each of the first, second and third polynucleotides, and the polypeptide encoded by the nucleic acid is also referred to herein as a Trifunctional T cell-antigen coupler or Tri-TAC.
- the target-specific ligand directs the T cell-antigen coupler to a target cell.
- a target-specific ligand refers to any substance that binds, directly or indirectly, to a target cell.
- a target cell may be any cell associated with a disease state, including, but not limited to cancer.
- the target specific ligand binds to an antigen (protein produced by a cell that can elicit an immune response) on the target cell.
- the target-specific ligand can also be referred to as an antigen binding domain.
- a target cell is a tumor cell.
- a target- specific ligand can bind to a tumor antigen or tumor associated antigen on a tumor cell.
- Tumor antigens are well known in the art.
- the term "tumor antigen” or “tumor associated antigen” as used herein means any antigenic substance produced in tumor cells that triggers an immune response in a host (e.g. which can be represented by MHC complexes).
- the tumor antigen when proteinaceous can for example be a sequence of 8 or more amino acids up to the full protein and any number of amino acids in between 8 and the full length protein which comprises at least one antigenic fragment of the full length protein that can be represented in a MHC complex.
- tumor antigens include, but are not limited to, HER2 (erbB-2), B-cell maturation antigen (BCMA), alphafetoprotein (AFP), carcinoembryonic antigen (CEA), CA- 125, MUC-1 , epithelial tumor antigen (ETA), tyrosinase, melanoma-associated antigen (MAGE), prostate-specific antigen (PSA), glioma-associated antigen, ⁇ - human chorionic gonadotropin, thyroglobulin, RAGE-1 , MN-CA IX, human telomerase reverse transcriptase, RU1 , RU2 (AS), intestinal carboxyl esterase, mut hsp70-2, M-CSF, prostase, PAP, NY-ESO-1 , LAGE-1 a, p53, prostein, PSMA, survivin and telomerase, prostate-carcinoma tumor antigen-1 (PCTA-1 ), ELF2M, neutrophil
- target-specific ligands include antibodies and fragments thereof, for example single chain antibodies such as scFVs, or small proteins that bind to the target cell and/or antigen.
- a target-specific ligand is a designed ankyrin repeat (DARPin) targeted to a specific cell and/or antigen.
- the target-specific ligand is a DARPin targeted to HER2 (erbB-2).
- a DARPin targeted to HER2 (erb-2) is provided herein as SEQ ID NO: 7 and 8.
- target-specific ligand is a scFV targeted to a specific cell and/or antigen.
- the target-specific ligand is a scFv that binds HER2 (erb-2).
- a scFv that binds HER2 (erb-2) is provided herein as SEQ ID NO: 22 and 23.
- the T cell-antigen coupler is designed to recruit the T-Cell Receptor (TCR) in combination with co-receptor stimulation. Accordingly, the T cell antigen coupler includes a ligand that binds a protein associated with the T- cell receptor complex.
- the TCR (T-Cell Receptor) is a complex of integral membrane proteins that participates in the activation of T cells in response to the binding of an antigen.
- the TCR is a disulfide-linked membrane-anchored heterodimer normally consisting of the highly variable alpha (a) and beta ( ⁇ ) chains expressed as part of a complex with the invariant CD3 (cluster of differentiation 3) chain molecules.
- T cells expressing this receptor are referred to as ⁇ : ⁇ (or ⁇ ) T cells, though a minority of T cells express an alternate receptor, formed by variable gamma ( ⁇ ) and delta ( ⁇ ) chains, referred as ⁇ T cells.
- CD3 is a protein complex composed of four distinct chains. In mammals, the complex contains a CD3y chain, a CD36 chain, and two CD3e chains.
- the term "ligand that binds a protein associated with the T-cell receptor complex” includes any substance that binds, directly or indirectly, to a protein of the TCR.
- Proteins associated with the TCR include, but are not limited to the TCR alpha (a) chain, TCR beta ( ⁇ ) chain, TCR gamma ( ⁇ ) chain, TCR delta ( ⁇ ) chain, CD3y chain, CD35 chain and CD3e chains.
- a ligand that binds a protein associated with the T- cell receptor complex is an antibody to the TCR alpha (a) chain, TCR beta ( ⁇ ) chain, TCR gamma ( ⁇ ) chain, TCR delta ( ⁇ ) chain, CD3Y chain, CD36 chain and/or CD3e chain.
- the ligand is an antibody or a fragment thereof that binds CD3.
- CD3 antibodies are known in the art (for muromonab, otelixizumab, teplizumab and visilizumab).
- the antibody that binds CD3 is a single chain antibody, for example a single- chain variable fragment (scFv).
- CD3 antibody Another example of a CD3 antibody is UCHT1 which targets CD3E.
- a sequence for UCHT1 is provided herein as SEQ ID NOs: 13 and 14.
- the T cell antigen coupler includes a T cell receptor signaling domain polypeptide.
- T cell receptor signaling domain refers to a polypeptide that (a) localizes to the lipid raft and/or (b) binds Lck.
- a T cell receptor signaling domain polypeptide can include one or more protein domains including, but not limited to, a cytoplasmic domain and/or a transmembrane domain.
- protein domain refers to a conserved part of a given protein sequence structure that can function and exist independently of the rest of the protein chain.
- the T cell receptor signaling domain polypeptide includes a cytoplasmic domain.
- the T cell receptor signaling domain polypeptide includes a transmembrane domain.
- the T cell receptor signaling domain polypeptide includes both a cytoplasmic and a transmembrane domain.
- T cell receptor signaling domain polypeptides include TCR co- receptors and co-stimulators and TCR co-receptor and co-stimulator protein domains.
- TCR co-receptor refers to a molecule that assists the T cell receptor (TCR) in communicating with an antigen-presenting cell.
- TCR co-receptors include, but are not limited to, CD4, CD8, CD28, CD45, CD4, CD5, CDS, CD9, CD16, CD22, CD33, CD37, CD64, CD80, CD86, CD134, CDt 37 and CD 154.
- a "TCR co-stimulator” refers to a molecule that is required for the response of a T cell to an antigen.
- TCR co-stimulators include, but are not limited to, PD-1 , ICOS, CD27, CD28, 4-1 BB (CD 137), OX40, CD30, CD40, lymphocyte fiction-associated antigen 1 (LFA-1), CD2, CD7, LIGHT, NKG2C, B7-H3, and a ligand that specifically binds CD83.
- the T cell receptor signaling domain polypeptide includes both a cytoplasmic domain and a transmembrane domain of a TCR co-receptor or co-stimulator protein.
- the cytoplasmic domain and transmembrane domain may be from the same co-receptor or co-stimulator or from different co-receptors or co-stimulators.
- the cytoplasmic domain and transmembrane domains are optionally joined by a linker.
- the T cell receptor signaling domain polypeptide comprises the transmembrane and cytoplasmic domains of the CD4 co-receptor (see for example SEQ ID NO: 17 and 18).
- the T cell receptor signaling domain polypeptide comprises the transmembrane and cytoplasmic domains of the CD8a co-receptor.
- the cytoplasmic and/or transmembrane domain of the T cell receptor signaling domain polypeptide is synthetic.
- the transmembrane domain is optionally a synthetic, highly hydrophobic membrane domain.
- the transmembrane domain is a glycophorine transmembrane domain.
- the T cell receptor signaling domain polypeptide includes a CD48 GPI signal sequence to attach the T-cell antigen coupler to the membrane using the GPI anchor.
- T cell antigen coupler In addition to the three components of the T cell antigen coupler described herein (target-specific ligand, ligand that binds the TCR complex and T cell receptor signaling domain polypeptide), it is contemplated that other polypeptides could also be included.
- the T cell antigen coupler optionally includes additional polypeptides that directly or indirectly act to target or activate the T cell.
- the various components of the T cell antigen coupler can be fused directly to each other, or they may be joined by at least one linker, optionally a peptide linker.
- the peptide linker can be of any size provided it does not interfere with the function of the individual linked components. In one embodiment, the peptide linker is from about 1 to about 15 amino acids in length, more specifically from about 1 to about 10 amino acids, and most specifically from about 1 to about 6 amino acids.
- Examples of linkers useful in the T cell antigen coupler include the G 4 S3 linker. Other examples of linkers are peptides corresponding to SEQ ID NOs: 1 1 , 12, 15, 16, 19, 20 and 21 and variants and fragments thereof:
- the T cell-antigen coupler may be present in various configurations as will be readily appreciated by a person of skill in the art.
- the target specific ligand and the T cell receptor signaling domain polypeptide are both fused to the ligand that binds the TCR complex.
- the N-DARPin TAC described here also referred to as configuration 1 ; SEQ ID NO: 1 and 2) includes, in order:
- N-Darpin Tri TAC leader sequence secretion signal (SEQ ID NO: 5 and 6)
- the DARPin is replaced with a scFV ScFv specific for a Her2 antigen (SEQ ID NO: 22 and 23).
- the ligand that binds the TCR complex and the T cell receptor signaling domain polypeptide are both fused to the target specific ligand (C-DARPin TAC as described here (also referred to as configuration 1 ; SEQ ID NO: 3 and 4)).
- C-DARPin TAC target specific ligand
- a variety of delivery vectors and expression vehicles can be employed to introduce nucleic acids described herein into a cell. Accordingly, the aforementioned polynucleotides are optionally comprised in a vector to provide a vector construct, also herein referred to as a vector.
- the present disclosure also relates to a vector comprising :
- Promoters regions of DNA that initiate transcription of a particular nucleic acid sequence, are well known in the art.
- a "promoter functional in a mammalian cell” refers to a promoter that drives expression of the associated nucleic acid sequence in a mammalian cell.
- a promoter that drives expression of a nucleic acid sequence may be referred to as being "operably connected" to the nucleic acid sequence.
- the first polynucleotide and third polynucleotide are fused to the second polynucleotide to provide a T cell antigen coupler fusion and the coding sequence of the T cell antigen coupler fusion is operably connected to the promoter.
- the second polynucleotide and third polynucleotide are fused to the first polynucleotide to provide a T cell antigen coupler fusion and the coding sequence of the T cell antigen coupler fusion is operably connected to the promoter.
- the vector is designed for expression in mammalian cells such as T cells.
- the vector is a viral vector, optionally a retroviral vector.
- Vectors that are useful comprise vectors derived from lentiviruses, Murine Stem Cell Viruses (MSCV), pox viruses, oncoretroviruses, adenoviruses, and adeno-associated viruses.
- Other delivery vectors that are useful comprise vectors derived from herpes simplex viruses, transposons, vaccinia viruses, human papilloma virus, Simian immunodeficiency viruses, HTLV, human foamy virus and variants thereof.
- vectors that are useful comprise vectors derived from spumaviruses, mammalian type B retroviruses, mammalian type C retroviruses, avian type C retroviruses, mammalian type D retroviruses and HTLV/BLV type retroviruses.
- a lentiviral vector useful in the disclosed compositions and methods is the pCCL vector.
- the polynucleotides described herein may be modified or mutated to optimize the function of the encoded polypeptide and/or the function, activity and/or expression of the T cell antigen coupler.
- the TAC comprises a modified or mutated ligand that binds the TCR complex, wherein the TAC comprising the modified or mutated antibody has increased surface expression and/or activity compared to a TAC comprising a wild type, or non-modified or mutated ligand that binds the TCR complex.
- a mutated or modified antibody that binds CD3 is the UCHT1 A85V, T161 P mutant described herein (SEQ ID NO: 24 and 25).
- the polynucleotides of the application also include nucleic acid molecules (or a fragment thereof) having at least about: 70% identity, at least 80% identity, at least 90% identity, at least 95% identity, at least 96% identity, at least 97% identity, at least 98% identity or, at least 99% or 99.5% identity to a nucleic acid molecule of the application.
- the polypeptides of the application also include polypeptides (or a fragment thereof) having at least about: 70% identity, at least 80% identity, at least 90% identity, at least 95% identity, at least 96% identity, at least 97% identity, at least 98% identity or, at least 99% or 99.5% identity to a polypeptide of the application.
- Identity refers to the similarity of two nucleotide or polypeptide sequences that are aligned so that the highest order match is obtained. Identity is calculated according to methods known in the art. For example, if a nucleotide sequence (called “Sequence A”) has 90% identity to a portion of SEQ ID NO: 1 , then Sequence A will be identical to the referenced portion of SEQ ID NO: 1 except that Sequence A may include up to 10 point mutations (such as substitutions with other nucleotides) per each 100 nucleotides of the referenced portion of SEQ ID NO: 1.
- Sequence identity is preferably set at least about: 70% identity, at least 80% identity, at least 90% identity, at least 95% identity, at least 96% identity, at least 97% identity, at least 98% identity or, most preferred, at least 99% or 99.5% identity to the nucleotide sequences provided herein and/or its complementary sequence. Sequence identity is also preferably set at least about: 70% identity, at least 80% identity, at least 90% identity, at least 95% identity, at least 96% identity, at least 97% identity, at least 98% identity or, most preferred, at least 99% or 99.5% identity to the polypeptide sequences provided herein. Sequence identity will preferably be calculated with the GCG program from Bioinformatics (University of Wisconsin). Other programs are also available to calculate sequence identity, such as the Clustal W program (preferably using default parameters; Thompson, J D et al., Nucleic Acid Res. 22:4673-4680).
- the application includes DNA that has a sequence with sufficient identity to a nucleic acid molecule described in this application to hybridize under stringent hybridization conditions (hybridization techniques are well known in the art).
- the present application also includes nucleic acid molecules that hybridize to one or more of the sequences described herein and/or its complementary sequence.
- Such nucleic acid molecules preferably hybridize under high stringency conditions (see Sambrook et al. Molecular Cloning: A Laboratory Manual, Most Recent Edition, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.).
- High stringency washes have preferably have low salt (preferably about 0.2% SSC) and a temperature of about 50-65° C. and are optionally conducted for about 15 minutes.
- the T cell antigen coupler is designed for expression in T cells. Accordingly, one aspect of the disclosure provides a T cell expressing a T cell antigen coupler. Another aspect of the disclosure relates to a T cell transduced or transfected with T cell antigen coupler or a vector comprising a T cell antigen coupler. Optionally, the T cell is an isolated T cell.
- T cells can be obtained from a number of sources, including, but not limited to blood (for example, peripheral blood mononuclear cells), bone marrow, thymus tissue, lymph node tissue, cord blood, thymus tissue, tissue from an infection site, spleen tissue, and tumors.
- the T cells are autologous T cells.
- the T cells are obtained from a cell line of T cells. Methods of culturing and maintaining T cells in vitro are well known in the art.
- the T cells are optionally enriched in vitro. As is well known in the art, a population of cells can be enriched by positive or negative selection. Further, the T cells can be optionally frozen or cryopreserved and then thawed at a later date.
- the T cells are optionally activated and/or expanded using methods well known in the art.
- the T cells can be expanded by contact with a surface having attached thereto an agent that stimulates a CD3/TCR complex associated signal and a ligand that stimulates a co-stimulator molecule on the surface of the T cells.
- Methods of transducing or transfecting T cells with nucleic acid sequences and expressing the transduced nucleic acids in the T cells are well known in the art.
- a nucleic acid can be introduced into a cell by physical, chemical or biological means. Physical means include, but are not limited to, (microinjection, electroporation, particle bombardment, lipofection and calcium phosphate precipitation).
- Biological means include the use of DNA and RNA vectors.
- viral vectors including retroviral vectors, are used to introduce and express a nucleic acid into a T cell.
- Viral vectors include vectors derived from lentivirus, Murine Stem Cell Viruses (MSCV), pox viruses, herpes simplex virus I adenovirus and adeno-associated viruses.
- the vector optionally includes a promoter that drives expression of the transduced nucleic acid molecule in a T cell.
- Various assays may be used to confirm the presence and/or expression of the transduced nucleic acid sequence and/or the polypeptide encoded by the nucleic acid in the T cell. Assays include, but are not limited to Southern and Northern blotting, RT-PCR and PCR, ELISAs and Western blotting.
- a T cell expressing a T cell antigen coupler has increased T cell activation in the presence of an antigen compared to a T cell not expressing a T cell antigen coupler and/or as compared to a T cell expressing a traditional CAR.
- Increased T cell activation can be ascertained by numerous methods, including but not limited to, increased tumor cell line killing, increased cytokine production, increased cytolysis, increased degranulation and/or increased expression of activation markers such as CD107a, IFNy, IL2 or TNFa. Increases may be measured in an individual cell or in a population of cells.
- the terms "increased” or “increasing” as used herein refer to at least a 2%, 5%, 10%, 25%, 50%, 100% or 200% increase in a T cell or population of T cells expressing a T cell antigen coupler compared to a T cell or population of T cells not expressing a T cell antigen coupler and/or as compared to a T cell or population of T cells expressing a traditional CAR.
- T cells optionally autologous T cells, expressing the T cell antigen coupler can be administered to a subject in need thereof.
- a T cell transduced with and/or expressing a T cell antigen coupler can be formulated in a pharmaceutical composition.
- the T cells are formulated for intravenous administration.
- a pharmaceutical composition can be prepared by per se known methods for the preparation of pharmaceutically acceptable compositions that can be administered to subjects, such that an effective quantity of the T cells are combined in a mixture with a pharmaceutically acceptable carrier.
- Suitable carriers are described, for example, in Remington's Pharmaceutical Sciences (Remington's Pharmaceutical Sciences, 20 th ed., Mack Publishing Company, Easton, Pa., USA, 2000).
- the compositions include, albeit not exclusively, solutions of the substances in association with one or more pharmaceutically acceptable carriers or diluents, and contained in buffered solutions with a suitable pH and iso-osmotic with the physiological fluids.
- Suitable pharmaceutically acceptable carriers include essentially chemically inert and nontoxic compositions that do not interfere with the effectiveness of the biological activity of the pharmaceutical composition.
- suitable pharmaceutical carriers include, but are not limited to, water, saline solutions, glycerol solutions, ethanol, N-(1(2,3- dioleyloxy)propyl)N,N,N-trimethylammonium chloride (DOTMA), diolesylphosphotidyl-ethanolamine (DOPE), and liposomes.
- DOTMA N-(1(2,3- dioleyloxy)propyl)N,N,N-trimethylammonium chloride
- DOPE diolesylphosphotidyl-ethanolamine
- liposomes Such compositions should contain a therapeutically effective amount of the compound, together with a suitable amount of carrier so as to provide the form for direct administration to the patient.
- compositions may also include, without limitation, lyophilized powders or aqueous or non-aqueous sterile injectable solutions or suspensions, which may further contain antioxidants, buffers, bacteriostats and solutes that render the compositions substantially compatible with the tissues or the blood of an intended recipient.
- Other components that may be present in such compositions include water, surfactants (such as Tween), alcohols, polyols, glycerin and vegetable oils, for example.
- Extemporaneous injection solutions and suspensions may be prepared from sterile powders, granules, tablets, or concentrated solutions or suspensions.
- One aspect of the present disclosure provides the use of a Trifunctional T-cell antigen coupler to direct a T cell to a specific antigen.
- the present disclosure also relates to the use of a modified T cell for treating cancer in a subject in need thereof, wherein the modified T cell expresses a nucleic acid comprising a first polynucleotide encoding a target-specific ligand, a second polynucleotide encoding an ligand that binds the TCR complex; and a third polynucleotide encoding a T cell receptor signaling domain polypeptide.
- the disclosure also relates to methods for treating cancer, comprising administering an effective amount of modified T cells to a subject in need thereof. Also disclosed is use of an effective amount of modified T cells for treating cancer in a subject in need thereof.
- a modified T cell in the preparation of a medicament treating cancer in a subject in need thereof. Even further disclosed is a modified T cell for use in treating cancer in a subject in need thereof.
- the target-specific ligand binds an antigen on a cancerous cell, thereby targeting the modified T cell to the cancerous cell.
- Cancers that may be treated include any form of neoplastic disease.
- cancers that may be treated include, but are not limited to breast cancer, lung cancer and leukemia, for example mixed lineage leukemia (MLL), chronic lymphocytic leukemia (CLL) or acute lymphoblastic leukemia (ALL).
- MLL mixed lineage leukemia
- CLL chronic lymphocytic leukemia
- ALL acute lymphoblastic leukemia
- Other cancers include carcinomas, blastomas, melonomas, sarcomas, hematological cancers, lymphoid malignancies, benign and malignant tumors, and malignancies.
- the cancer can comprise non-solid tumors or solid tumors.
- Cancers that may be treated include tumors that are not vascularized, or not yet substantially vascularized, as well as vascularized tumors.
- modified T cells and/or pharmaceutical compositions described herein may be administered to, or used in, living organisms including humans, and animals.
- subject refers to any member of the animal kingdom, preferably a mammal, more preferably a human being.
- T cells are isolated from a mammal (preferably a human), optionally expanded and/or activated as described herein and transduced or transfected with the nucleic acid molecules of the disclosure.
- the T cells can be autologous with respect to the subject.
- the cells can be allogeneic, syngeneic or xenogeneic with respect to the subject.
- the modified T cells can be administered either alone, or as a pharmaceutical composition, as described herein.
- Compositions of the present disclosure are preferably formulated for intravenous administration.
- an "effective amount" of the modified T cells and/or pharmaceutical compositions is defined as an amount effective, at dosages and' for periods of time necessary to achieve the desired result.
- an effective amount of a substance may vary according to factors such as the disease state, age, sex, and weight of the individual, and the ability of the recombinant protein to elicit a desired response in the individual. Dosage regime may be adjusted to provide the optimum therapeutic response. For example, several divided doses may be administered daily or the dose may be proportionally reduced as indicated by the exigencies of the therapeutic situation.
- the modified T cells and/or pharmaceutical compositions described herein may be administered at a dosage of 10 4 to 10 9 cells per kg body weight, optionally 10 5 to 10 8 cells per kg body weight or 10 6 to 10 7 cells per kg body weight.
- the dosage can be administered a single time or multiple times.
- the modified T cells and/or pharmaceutical compositions may be administered by any method known in the art, including but not limited to, aerosol inhalation, injection, ingestion, transfusion, implantation or transplantation.
- the modified T cells and/or pharmaceutical compositions may administered to a subject subcutaneously, intradennally, intratumorally, intranodally, intramedullary, intramuscularly, by intravenous (i.v.) injection, or intraperitoneal ⁇ .
- the modified T cells and/or pharmaceutical compositions thereof may be injected directly into a tumor, lymph node, or site of infection.
- to treat or “treatment” is an approach for obtaining beneficial or desired results, including clinical results.
- beneficial or desired clinical results can include, but are not limited to, alleviation or amelioration of one or more symptoms or conditions, diminishment of extent of disease, stabilized (i.e. not worsening) state of disease, preventing spread of disease, delay or slowing of disease progression, amelioration or palliation of the disease state, and remission (whether partial or total), whether detectable or undetectable.
- Treatment can also mean prolonging survival as compared to expected survival if not receiving treatment.
- treatment includes preventing a disease or condition.
- T-TAC trifunctional T cell-antigen coupler
- these co-receptors In addition to ensuring the correct microdomain localization of the TCR activation complex, these co-receptors also bind directly to Lck (Kim et al., 2003), a protein kinase that is crucial for T-cell activation (Methi et al., 2005)(Acuto and Cantrell, 2000). As stated previously, none of the existing chimeric receptors or bi-functional proteins engage the co-receptor molecules or Lck.
- a molecule was created where the transmembrane and intracellular regions of the CD4 co-receptor, which localize to the lipid raft and bind Lck, respectively, were fused to single-chain antibody that binds CD3 (UCHT1 ; SEQ ID NO: 13 and 14; sequence is also in the public domain).
- This construct is designed to draw the CD3 molecule and the TCR into regions of lipid rafts and bring Lck into the proximity of the TCR, similar to natural MHC binding.
- DARPin ankyrin repeat
- Tri- TAC tri-functional T cell-antigen coupler
- the DARPin was specific for the proto-oncogene, erbB-2.
- Tri-TAC Human T cells were engineered to express either the prototype Tri-TAC or a conventional CAR with the same DARPin. It was determined that in all aspects, T cells engineered with the Tri-TAC demonstrated functionality equivalent to a conventional CAR. Interestingly, with regard to 2 parameters (TNF-a production and CD 107a mobilization), it was observed that the Tri-TAC was more active than a conventional CAR. Further, the data shows that on a per molecule basis the Tri-TAC shows a significantly enhanced activity. Additionally the Tri-TAC offers enhanced safety compared to traditional CARs as no activation domains are part of the protein.
- T cells engineered to express the Tri-TAC, the Tri-TAC variants or the DARPin CAR were stimulated with plate-bound antigen.
- the T cells engineered to express the Tri-TAC and DARPin CAR could elaborate all measured functions (TNF-ot production, IFN- ⁇ production and CD107a mobilization) (Figure 3A and 3B). Binding of the Tri-TAC to both CD3 and the target antigen was found to be critical for the T cells to elaborate their functions. In Figure 3, it is demonstrated that removal of UCHT1 , which abolishes binding to CD3, abrogates the function of the Tri-TAC. In other data, it was determined that removal of the DARPin from the Tri-TAC also abrogates function.
- Tri-TAC - UCHT1 -Darpin showed no ability to kill antigen expressing cells (Figure 4).
- N-Darpin Tri-TAC showed a high level of selective cytotoxicity that was very similar to the classical DARPin-CAR.
- the T cells expressing the DARPin-CAR appear to display off-target killing at high T-cell: target cell ratios (see killing on D2F2 in Figure 4) whereas the T cells expressing the Tri-TAC did not display these effects.
- FIG. 1 is a schematic overview.
- A Depicts N-Darpin Tri-TAC.
- the ankyrin repeat domain targeted against Her2 is fused to the single chain fragment variable (scFv) UCHT1 using a (G 4 S) 3 linker.
- the scFv is then linked to the CD4 molecule.
- the CD4 contains the linker region and transmembrane region as well as the cytoplasmic anchoring region. Potential interactions are shown in faded gray.
- B Depicts the C-Darpin Tri-TAC. In this construct, the scFv UCHT1 is switched with the Darpin domain. Potential interactions are again depicted in faded gray.
- C Model of a classical second generation CAR.
- the Darpin targeting domain is linked via a CD8a linker to the CD28 transmembrane domain.
- the CD3 zeta domain with its 3 activating ITAM motifs is then connected to the cytosolic portion of CD28.
- FIG. 2 shows the phenotypic surface expression analysis of transduced T-cells with histograms of respective Tri-TAC variants.
- T-cells had been incubated with Her2Fc, which later was detected via flow cytometry.
- the presented data was gated on CD8+ lymphocytes. The shown gates were chosen based on the untransduced control.
- FIG. 3 is a functional analysis of engineered T-cells.
- A cells were stimulated for 4 hours with plate bound Her2Fc in media containing GolgiPlugTM. Cells were first stained for CD8+, then permeabilized and analyzed for TNF-a and IFN- ⁇ production. Initial gates were set for singlet CD8+ lymphocytes. The shown gates were set based on the untransduced control.
- B as before, cells were stimulated with plate bound Her2Fc. Media included GolgiPlugTM as well as an anti-CD107a antibody. Actively degranulating cells were expected to have a higher rate of CD107a recycling, and subsequently show a higher signal for anti-CD107a.
- FIG. 4 shows engineered T-cell cytotoxicity.
- Two different adherent mouse tumor lines were plated 24 hours prior to T-cell addition.
- D2F2/E2 have been engineered to express human Her2, whereas the D2F2 do not.
- Indicated ratios of T-cells were added to tumor containing wells. Tumor cells were incubated for 6h with T-cells. T-cells were subsequently removed via washing. 10% Alamar blue containing media was added to each well for 3 hours. The metabolic activity, as an indicator of cell survival, was determined via endpoint analysis.
- Wells without T-cells were defined as maximum survivability/ metabolic activity and set to 100%, whereas media incubated without cells was set as 0% metabolic activity. Data presented is the average of 3 replicates.
- chimeric receptors to redirect T-cells towards specific targets in an MHC-independent manner is an attractive method to treat cancer and may be applicable to infectious diseases where antigens from the pathogen are found on the plasma membrane.
- the chimeric receptor would result in: (1 ) specific cytotoxicity against the target cells and (2) minimal off target toxicity.
- Conventional CARs are limited in this regard because they rely upon a synthetic structure where signaling domains are located in unnatural positions where they may not receive proper regulation and, thus, there is reduced cellular control of specific activity.
- the Tri-TAC was designed to re-direct the signaling components of the natural TCR without employing ectopic localization of signaling domains.
- the Tri-TAC was designed with the following principles: (1 ) the chimeric receptor should interact and facilitate ordered assembly of key activating protein complexes, (2) the chimeric receptor should take advantage of preexisting cellular adaptations, such as micro-domain environments and (3) the chimeric receptor should not possess any activating domains.
- the Tri-TAC is able to achieve this efficiently and, as the data demonstrates, at rates of activation that are equal to, if not better than, that of a 2nd generation CAR.
- Tri-TAC is thus ideally suited for further integration with additional designed co-receptors to further fine tune T-cell activation. Ultimately this should lead to much reduced off target effects without compromising on targeted cytotoxicity. Tri-TAC appears to exhibit lower toxicity than existing CARs. Darpin CARs show mild off target killing at high cell to target ratios, which may become problematic when used in therapies. However, Tri-TAC, which is as functional as the traditional CAR, did not display off-target effects. Since DARPins bind targets with high affinity, off-target effects may be more common on cells that express high levels of a chimeric receptor that employs a DARPin. Therefore, without being bound by theory, the low surface expression of the Tri-TAC may be advantageous as it reduces the likelihood of such off- target effects.
- the modular nature of the Tri-TAC technology allows much more sophisticated fine tuning of the T-cell activation process.
- the recruitment of the TCR complex could be modulated by engineering Tri-TAC molecules with a lower CD3 affinity. This could be used to mimic the natural low TCR affinity (Chervin et al., 2009) while retaining a high affinity targeting domain to detect cancer targets.
- the Tri-TAC technology can be engineered to more closely resemble this.
- Tri-TAC technology is a highly efficient molecular tool that is able to (1 ) efficiently trigger T-cell activation and cytotoxicity, (2) is able to do this by mimicking natural T-cell activation and (3) does not require activation domains of its own.
- FIG. 5A shows an example of CD8 T-cell activation based on the co-assembly of different receptors and their associated protein partners.
- the major histocompatibility complex I is presenting an antigen (helix). This is recognized by a T cell receptor (TCR) complex capable of binding the antigen.
- TCR T cell receptor
- the TCR complex contains several individual subunits. The ⁇ / ⁇ domains are able to interact directly with the antigen presented on MHC-I. The ⁇ / ⁇ domains then interact with several other domains ( ⁇ , ⁇ , 5,and ⁇ ), all of which participate in T-cell activation via various intracellular activation domains.
- the TCR complex interacts with MHC-I concurrently with the CD8 co-receptor.
- the CD8 co-receptor binds to the MHC-I in an antigen independent manner.
- CD8 directly interacts with Lck, a protein kinase important for activating the TCR receptor complex.
- Lck a protein kinase important for activating the TCR receptor complex.
- the CD8 and Lck interaction also ensures their association with lipid rafts (membrane portion) microdomains, which are hypothesised to organize and encapsulate other relevant signalling moieties (dark spheres). Later stages of activation then lead to CD28 recruitment. If this interaction cascade occurs several times in parallel, T-cells become activated and are able to exert their cytotoxic effects.
- FIG. 5B provides an overview of Chimeric Antigen Receptors (CAR).
- CARs seek to reproduce the complex mechanism of T-cell activation by combining several key activation domains, such as ⁇ and CD28, in a single synthetically engineered molecule. The CAR then directly interacts with an antigen of choice using specific binding domains. Depicted here is an ankyrin repeat protein (DARPin). It is believed that several such interactions occurring in parallel lead to T-cell activation.
- DARPin ankyrin repeat protein
- FIG. 5C depicts bispecific T-cell engager (BiTE) like molecules which engage T-cells by directly cross linking the TCR complex to an antigen of choice.
- the BiTE like molecule depicted here contains two binding domains.
- the DARPin moiety is interacts with the target antigen.
- the single chain variable fragment domain (scFv) binds the TCR complex via its epsilon domain.
- FIG. 5D is an overview of the TAC technology mimicking the natural activation process.
- TAC T-cell Antigen Coupler
- DARPin is then linked to a scFv able to bind the epsilon domain of the TCR complex.
- the TAC then associates with the CD4 transmembrane and cytosolic domain.
- CD4 like CD8, interacts with Lck and is situated in lipid rafts.
- TACs combine TCR recruitment with co-receptor stimulation. Without being bound by theory, it is believed that several such interactions happening in parallel lead to T-cell activation.
- FIG. 6A shows a model of the TAC molecule in configuration 1.
- the CD4-tail, transmembrane, and linker domains are combined with the TCR-epsilon specific scFv (UCHT1 ).
- the scFv is then linked to the antigen binding domain. This domain is exchangeable.
- the antigen binding domains used are either a scFv or DARPin domain specific for the Her2 antigen.
- FIG 6B shows a TAC molecule in configuration 2.
- the CD4 domains first interact with the antigen binding domain. This domain is then linked to the TCR recruiting scFv (UCHT1 ) domain.
- Figure 7 shows the functionality of scFv CD4 TAC.
- Figure 7A is a histogram showing surface expression of the scFv CD4 TAC receptor relative to empty vector. Cells were stained using an FcHer2 antigen, which was in turn detected using fluorescently labelled antibodies.
- Figure 7B shows antigen specific activation of T-cells expressing either the scFv CD4 TAC (top) or scFV CAR (bottom). T-cells expressing either the scFv CD4 TAC (top) or scFv CAR (bottom) were incubated with plate bound Her2 antigen. Both modified cells showed antigen specific activation. The DMSO negative control showed no activity (Data not shown).
- Figure 7C shows comparable killing of MCF-7 human tumour cell line (Her2 positive) by both scFv CD4 TAC and scFv CAR. Both scFv CD4 TAC and scFv CAR were incubated with MCF-7 human tumour cell line (Her2 positive) and compared to an empty vector control.
- Figure 8 is a characterization of CD4-TAC configuration 2.
- Figure 8A is a histogram of DARPin CD4-TAC configuration 2 relative to vector control. Surface expression was probed with the FcHer2 modified antigen. Cells expressing CD4-TAC configuration 2 show a distinct increase in FcHer2 binding demonstrating high surface expression of the receptor. For clarity the model of CD4 TAC configuration 2 is shown.
- Figure 8B shows T-cells engineered with DARPin TAC configuration 2 exposed to plate bound Her2 antigen. Cytokine production and degranulation were measured. Data show that DARPin TAC configuration 2 is a functional receptor. Treatment without antigen showed no T-cell activation (data not shown).
- Figure 8C shows growth of CD4 TAC configuration 2 relative to empty vector control.
- Cells were grown in 100u/ml IL2 10ng/ml IL7. Starting with 100,000 cells, growth was monitored by counting culture samples at predetermined intervals. Configuration 2 has a marked reduced growth rate relative to control.
- Figure 9 shows the functionality of DARPin CD4 TAC configuration 1.
- Figure 9A shows surface expression of DARPin CD4 TAC (red) compared to DARPin CAR (green), and the NGFR only control (blue). Cells were probed with receptor specific antigen FcHer2. Histogram shows that DARPin CD4 TAC is expressed well on the surface. However, its maximal surface expression is lower compared to the CAR construct.
- Figure 9B shows growth of CD4 TAC configuration 1. For two weeks culture growth was monitored by sampling and manually counting cells. The empty vector shows similar growth as DARPin CAR. However TAC has reduced growth by comparison.
- Figures 9C and 9D show the percentage of cells positive for various activation and degradation markers.
- DARPin CD4 and DARPin CAR were incubated with either plate bound antigen Her2 or DMSO control.
- the results of three separate experiments are summarized using the statistical analysis software SPICE.
- the scatter graph shows the percentage of cells positive for a set of activation markers.
- CD4-TAC show a higher percentage of cells, positive for degranulation markers.
- DARPin CAR cells are positive for a variety of activation markers with no significantly enriched population of degranulation markers.
- the pie chart represents the same data. It demonstrates that CD4-TAC has a markedly higher population of cells focused on degranulation.
- CD4-TAC has a majority of activated cells degranulate with various levels of cytokine production. However, CARs show a more randomly distributed pattern of activation with degranulation constituting less than 50% of the total population. The pattern may be indicative of a less controlled T-cell activation by CARs.
- Figure 10 shows cytotoxicity and overall activity of TAC and CAR.
- Cells engineered with either TAC, CAR or empty vector control were incubated with various human tumour cell lines.
- MDA MB 231 , SK OV 3 and A549 all express the Her2 antigen.
- LOXIMVI is Her2 negative. It was observed that in all cases, TAC shows enhanced cytotoxicity.
- the antigen negative cell line LOCIMVI is not being targeted, supporting that cytotoxicity is antigen specific.
- Figure 1 1 shows receptor surface expression and activation of various TAC controls.
- Cell surface expression left
- degranulation middle
- cytokine production right
- Figure 1 1 A Constructs lacking specific domains were made to determine the significance of these domains. From top to bottom the following domains were removed: DARPin antigen binding domain and UCHT1 TCR binding domain, with the full length TAC being at the bottom.
- Surface expression of TAC without the UCHT1 domain resulted in enhanced surface expression relative to full length CD4 TAC.
- the DARPin negative mutant could not be detected using FcHer2 antigen.
- Degranulation (middle) was only observed in full length TAC.
- FIG. 1 1 B shows the mouse cell line D2F2 was engineered to express the human Her2 antigen (D2F2/E2). Both cell lines were incubated with T-cells engineered with full length CD4-TAC or its deletion variants. The data show the Effector to Target ratio 4:1 endpoint. Only full length CD4-TAC was able to elicit a cytotoxic response. This demonstrates that DARPin and UCHT1 domains are involved in receptor function.
- Figure 12 shows properties of various transmembrane TAC variants.
- Figure 12A is an overview of the various transmembrane constructs.
- the first set of variants is lacking the cytosolic domain.
- the CD4 TAC -cytosol has the entire cytosolic domain removed.
- the synthetic construct has the CD4 TM replaced by a designed, highly hydrophobic membrane domain.
- the glycophorine variant replaces the CD4 transmembrane domain with the glycophorine transmembrane domain.
- the GPI anchor variant uses the CD48 GPI signal sequenced to attach the TAC to the membrane using the GPI anchor.
- the CD8A TAC variant replaced the transmembrane and cytosolic CD4 domain with the CD8ot counterpart.
- Figure 12B shows CD8 purified T-cells were engineered with the various constructs. Surface expression of the various receptors relative to full length TAC is shown. All data is relative to the median fluorescent intensity of the control. All variants have a significantly lower receptor surface expression compared to the full length CD4-TAC. The GPI anchor TAC variant is not detectable above background.
- Figure 12C depicts testing of the different variants for degranulation and cytokine production. Cells were incubated with plate pound Her2 antigen. The activity is presented as percent of cells positive for either the degranulation maker CD107a (left bar graph) or the percent of all cytokine producing cells taken together (TNFa, IFNg and TNFa/IFNg, right bar graph).
- GPI anchored or CD8a variants show background levels of degranulation and cytokine production.
- Glycophorine, synthetic and -cytosol TAC variants show a moderate level of degranulation and a low level of cytokine production. In all cases the activity is well below full length CD4-TAC. Taken together this shows that anchoring TAC without its cytosolic domain leads to functional receptors with diminished activity.
- FIG 13 shows Lck interaction with TAC variants.
- Her2 antigen was covalently attached to magnetic beads.
- 293TM cells were engineered to express both the TAC and TAC cytosolic deletion variant as well as Lck. Beads were incubated with cell lysates over night and subsequently washed and western blotted. Lck was detected using an Lck antibody, TACs were detected via Myc antibody. B-Actin was used as control. b-Actin was not pulled down and only detected in the supernatant (S). However both full length TAC and cytosolic deletion were efficiently pulled down and detected in the pellet fraction (B). Vector control and TAC without cytosolic domain show comparable levels of background Lck signal.
- FIG 14 CD4 TAC surface expression and activity is compared to a BiTE like variant.
- Figure 14A shows NGFR only control (left), CD4 TAC (middle) and BiTE like variant (right). Surface expression was tested using the transduction marker NGFR and the Her2 antigen. TAC shows much lower surface expression compared to BiTEs. Most notably, BiTE seems to secrete enough coupling antibody to enable transduction negative cells (NGFR-) to show strong receptor expression. Both cytokine production and degranulation are higher in BiTE like cells compared to TAC engineered cells.
- Figure 14B compares cytotoxicity in various Her2 positive cell lines (MDA MB 231 , SK OV 3, A549). In contrast to cytokine production, TAC engineered cells show significantly enhanced cytotoxic activity.
- Figure 15 shows comparison of CD4 TAC WT to a random mutagen library of UCHT1.
- a random mutagen library of UCHT1 To test the ability to change TAC properties, 24 amino acids found on the binding surface of UCHT1 and TCR epsilon were individually mutated. This gives rise to a theoretical number of 480 unique clones, all of which should be represented in this random library.
- Figure 15A shows the schematic representation of the mutant. Markings indicate the mutations which are all in the scFv-epsilon interface.
- Figure F5B is a histogram of surface expression. Engineered cells were probed with FcHer2 antigen to detect surface expressed receptor. The library shows a much enhanced surface expression of the receptor.
- FIG. 15C shows WT and Library CD4 TAC cells incubated with plate bound antigen. Their ability to activate and produce cytokines is presented.
- the library has similar activity compared to the WT. Without being bound by theory, this supports the idea that expression properties of TAC can be improved while retaining the original functional profile by altering the scFv domain.
- Figure 16 shows enhanced surface expression of the A85V, T161 P mutant.
- the library was propagated for an extended period of time to select for mutants with a growth advantage over the WT.
- a selected mutant was analysed (A85V, T161 P; numbering is based on the UCHT1 domain fragment).
- Figure 16A shows peripheral blood mononuclear cells (PBMC) were engineered with either WT CD4-TAC or the A85V, T161 P mutant.
- the final CD4/CD8 populations between CD4 TAC (left) and A85V, T161 P mutant (right) are compared.
- WT CD4-TAC leads to a reduced population of CD4 positive cells. This effect is not observed in the mutant cells.
- Figure 16B shows surface expression, as determined by NGFR transduction maker and FcHer2 positivity, and indicates enhanced surface expression of the A85V, T161 P mutant.
- Figure 16C shows that A85V, T161 P mutant cytokine production is diminished (DMSO controls showed no activity, data not shown). Degranulation between WT TAC and A85V, T161 P mutant is comparable.
- FIG 17 shows A85V, T161 P mutant cytotoxicity and growth.
- T-cells engineered with WT CD4 TAC and A85V, T161 P mutant were incubated with the Her2 antigen positive cell lines SK OV 3, MDA MB 231 and A549. In all cases, the mutant displayed a reduced level of cytotoxicity; in the case of A549, no cytotoxicity was detected.
- Figure 17B cell growth in culture starting with 100 000 cells was monitored over 2 weeks. Periodically samples were taken and cells were counted manually. The A85V, T161 P mutant exhibits markedly improved growth compared to the WT variant. Taken together, this demonstrates that the library is likely to contain various mutants that enable the modification and optimization of several TAC functions. Thus, UCHT1 can be used as a functional modulator.
- Lipid raft distribution of CD4 depends on its palmitoylation and association with Lck, and evidence for CD4-induced lipid raft aggregation as an additional mechanism to enhance CD3 signaling. J. Immunol. 170, 913-921.
- T.J. and Mackall, C.L. (2013). T-cell adoptive immunotherapy for acute lymphoblastic leukemia. Hematology Am. Soc. Hematol. Educ. Program 2013, 348-353.
- T-cell antigen receptor triggering and lipid rafts a matter of space and time scales. Talking Point on the involvement of lipid rafts in T-cell activation. EMBO Rep. 9, 525-530.
- Chimeric receptors containing CD137 signal transduction domains mediate enhanced survival of T cells and increased antileukemic efficacy in vivo. Mol. Ther. 17, 1453-1464.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Immunology (AREA)
- Organic Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Genetics & Genomics (AREA)
- Cell Biology (AREA)
- Biochemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Engineering & Computer Science (AREA)
- Biophysics (AREA)
- Molecular Biology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Zoology (AREA)
- Microbiology (AREA)
- Biomedical Technology (AREA)
- Epidemiology (AREA)
- Mycology (AREA)
- Biotechnology (AREA)
- Oncology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Wood Science & Technology (AREA)
- Hematology (AREA)
- Gastroenterology & Hepatology (AREA)
- Toxicology (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Engineering & Computer Science (AREA)
- Virology (AREA)
- Developmental Biology & Embryology (AREA)
- Peptides Or Proteins (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
- Physics & Mathematics (AREA)
Abstract
Description
Claims
Priority Applications (18)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020227044548A KR20230004939A (en) | 2014-02-07 | 2015-02-06 | Trifunctional t cell-antigen coupler and methods and uses thereof |
MX2016010128A MX2016010128A (en) | 2014-02-07 | 2015-02-06 | Trifunctional t cell-antigen coupler and methods and uses thereof. |
AU2015213437A AU2015213437B2 (en) | 2014-02-07 | 2015-02-06 | Trifunctional T cell-antigen coupler and methods and uses thereof |
EP15746948.7A EP3102681B1 (en) | 2014-02-07 | 2015-02-06 | Trifunctional t cell-antigen coupler and methods and uses thereof |
BR112016018100A BR112016018100A2 (en) | 2014-02-07 | 2015-02-06 | trifunctional t-cell antigen coupler, methods and uses thereof |
ES15746948T ES2959480T3 (en) | 2014-02-07 | 2015-02-06 | T cell coupler - trifunctional antigen and methods and uses thereof |
JP2016549468A JP6752148B2 (en) | 2014-02-07 | 2015-02-06 | Trifunctional T cell-antigen couplers and methods and their use |
EP23199169.6A EP4317180A3 (en) | 2014-02-07 | 2015-02-06 | Trifunctional t cell-antigen coupler and methods and uses thereof |
CA2945486A CA2945486A1 (en) | 2014-02-07 | 2015-02-06 | Trifunctional t cell-antigen coupler and methods and uses thereof |
US15/117,173 US10435453B2 (en) | 2014-02-07 | 2015-02-06 | Trifunctional T cell-antigen coupler and methods and uses thereof |
CN201580007473.7A CN106459990B (en) | 2014-02-07 | 2015-02-06 | Trifunctional T cell antigen conjugate and preparation method and application thereof |
KR1020167024738A KR102480433B1 (en) | 2014-02-07 | 2015-02-06 | Trifunctional t cell-antigen coupler and methods and uses thereof |
AU2018202294A AU2018202294B2 (en) | 2014-02-07 | 2018-03-29 | Trifunctional T cell-antigen coupler and methods and uses thereof |
US16/547,421 US11421014B2 (en) | 2014-02-07 | 2019-08-21 | Trifunctional T cell-antigen coupler and methods and uses thereof |
US15/929,510 US11008376B2 (en) | 2014-02-07 | 2020-05-06 | Trifunctional T cell-antigen coupler and methods and uses thereof |
US17/248,174 US11001621B1 (en) | 2014-02-07 | 2021-01-12 | Trifunctional T cell-antigen coupler and methods and uses thereof |
US17/808,361 US20220332790A1 (en) | 2014-02-07 | 2022-06-23 | Trifunctional t cell-antigen coupler and methods and uses thereof |
US18/188,312 US20230212258A1 (en) | 2014-02-07 | 2023-03-22 | Trifunctional t cell-antigen coupler and methods and uses thereof |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201461936906P | 2014-02-07 | 2014-02-07 | |
US61/936,906 | 2014-02-07 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/117,173 A-371-Of-International US10435453B2 (en) | 2014-02-07 | 2015-02-06 | Trifunctional T cell-antigen coupler and methods and uses thereof |
US16/547,421 Continuation US11421014B2 (en) | 2014-02-07 | 2019-08-21 | Trifunctional T cell-antigen coupler and methods and uses thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015117229A1 true WO2015117229A1 (en) | 2015-08-13 |
Family
ID=53777090
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CA2015/000068 WO2015117229A1 (en) | 2014-02-07 | 2015-02-06 | Trifunctional t cell-antigen coupler and methods and uses thereof |
Country Status (11)
Country | Link |
---|---|
US (6) | US10435453B2 (en) |
EP (2) | EP4317180A3 (en) |
JP (2) | JP6752148B2 (en) |
KR (2) | KR20230004939A (en) |
CN (2) | CN113388629A (en) |
AU (2) | AU2015213437B2 (en) |
BR (1) | BR112016018100A2 (en) |
CA (1) | CA2945486A1 (en) |
ES (1) | ES2959480T3 (en) |
MX (2) | MX2016010128A (en) |
WO (1) | WO2015117229A1 (en) |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018058088A1 (en) * | 2016-09-26 | 2018-03-29 | SOLA Biosciences, LLC | Cell-associated secretion-enhancing fusion proteins |
WO2018112266A1 (en) | 2016-12-14 | 2018-06-21 | The Board Of Trustees Of The Leland Stanford Junior University | Il-13 superkine: immune cell targeting constructs and methods of use thereof |
US20180298098A1 (en) * | 2015-02-26 | 2018-10-18 | Var2 Pharmaceutical Aps | Immunotherapeutic targeting of placental-like chondroitin sulfate using chimeric antigen receptors (cars) and immunotherapeutic targeting of cancer using cars with split-protein binding systems |
WO2019071358A1 (en) * | 2017-10-12 | 2019-04-18 | Mcmaster University | T cell-antigen coupler with y182t mutation and methods and uses thereof |
US10435453B2 (en) | 2014-02-07 | 2019-10-08 | Mcmaster University | Trifunctional T cell-antigen coupler and methods and uses thereof |
WO2019232523A1 (en) | 2018-06-01 | 2019-12-05 | The Board Of Trustees Of The Leland Stanford Junior University | Il-13/il-4 superkines: immune cell targeting constructs and methods of use thereof |
WO2019241315A1 (en) | 2018-06-12 | 2019-12-19 | Obsidian Therapeutics, Inc. | Pde5 derived regulatory constructs and methods of use in immunotherapy |
US20200024345A1 (en) * | 2018-07-17 | 2020-01-23 | Mcmaster University | T cell-antigen coupler with various construct optimizations |
CN112280796A (en) * | 2016-10-07 | 2021-01-29 | T细胞受体治疗公司 | Compositions and methods for T cell receptor weight programming using fusion proteins |
US11110123B2 (en) | 2018-07-17 | 2021-09-07 | Triumvira Immunologics Usa, Inc. | T cell-antigen coupler with various construct optimizations |
EP3823984A4 (en) * | 2018-07-17 | 2022-04-06 | Triumvira Immunologics USA, Inc. | T cell-antigen coupler with various construct optimizations |
US11384131B2 (en) | 2014-04-24 | 2022-07-12 | The Board Of Trustees Of The Leland Stanford Junior University | Superagonists, partial agonists and antagonists of interleukin-2 |
US11453723B1 (en) | 2021-06-25 | 2022-09-27 | Mcmaster University | BCMA T cell-antigen couplers and uses thereof |
US11542312B2 (en) | 2017-06-19 | 2023-01-03 | Medicenna Therapeutics, Inc. | IL-2 superagonists in combination with anti-PD-1 antibodies |
US11680090B2 (en) | 2013-09-24 | 2023-06-20 | Medicenna Therapeutics, Inc. | Interleukin-2 fusion proteins and uses thereof |
US11993639B2 (en) | 2012-01-27 | 2024-05-28 | The Board Of Trustees Of The Leland Stanford Junior University | Therapeutic IL-13 polypeptides |
US12006347B2 (en) | 2010-12-22 | 2024-06-11 | The Board Of Trustees Of The Leland Stanford Junior University | Superagonists and antagonists of interleukin-2 |
US12016923B2 (en) | 2021-06-01 | 2024-06-25 | Triumvira Immunologics Usa, Inc. | Claudin 18.2 T cell-antigen couplers and uses thereof |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019126799A1 (en) * | 2017-12-22 | 2019-06-27 | Distributed Bio, Inc. | Major histocompatibility complex (mhc) compositions and methods of use thereof |
TW202020146A (en) * | 2018-07-26 | 2020-06-01 | 大陸商南京傳奇生物科技有限公司 | Nef-containing t cells and methods of producing thereof |
CA3121168A1 (en) * | 2018-11-30 | 2020-06-04 | Memorial Sloan Kettering Cancer Center | Heterodimeric tetravalency and specificity antibody compositions and uses thereof |
JP2022546932A (en) * | 2019-09-16 | 2022-11-10 | マックマスター、ユニバーシティー | Chimeric co-stimulatory receptors and methods and uses thereof |
CN116744948A (en) * | 2020-11-06 | 2023-09-12 | 麦克马斯特大学 | Cells comprising T cell antigen conjugates and uses thereof |
EP4352091A1 (en) * | 2021-05-27 | 2024-04-17 | Innovative Cellular Therapeutics Holdings, Ltd. | Modified chimeric antigen receptor and use thereof |
WO2024047114A1 (en) * | 2022-08-31 | 2024-03-07 | Universität Zürich | Adenoviral-based in situ delivery of bispecific t cell engagers |
WO2024097797A1 (en) * | 2022-11-02 | 2024-05-10 | Medisix Therapeutics, Inc. | Blockade of cd3 expression and chimeric antigen receptors for immunotherapy |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999057268A1 (en) | 1998-05-06 | 1999-11-11 | Celltech Therapeutics Limited | Chimeric receptors |
WO2013092001A1 (en) * | 2011-12-19 | 2013-06-27 | Synimmune Gmbh | Bispecific antibody molecule |
WO2014011988A2 (en) | 2012-07-13 | 2014-01-16 | The Trustees Of The University Of Pennsylvania | Enhancing activity of car t cells by co-introducing a bispecific antibody |
Family Cites Families (48)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2724320B1 (en) | 1994-09-13 | 1996-12-20 | Transgene Sa | NEW IMPLANT FOR THE TREATMENT OF ACQUIRED DISEASES |
KR20000015893A (en) * | 1996-05-22 | 2000-03-15 | 댄 마이클 | Antigen binding fragments that specifically detect cancer cells, nucleotides encoding the fragments, and use thereof for the prophylaxis and detection of cancers |
US20030095967A1 (en) | 1999-01-25 | 2003-05-22 | Mackay Fabienne | BAFF, inhibitors thereof and their use in the modulation of B-cell response and treatment of autoimmune disorders |
BR0013391A (en) | 1999-08-17 | 2002-07-09 | Biogen Inc | Use of the baff receptor (bcma) as an immunoregulatory agent |
DE60128216T2 (en) | 2000-05-12 | 2008-01-10 | Amgen Inc., Thousand Oaks | Polypeptides for inhibiting the April-mediated proliferation of B and T cells |
CA2438682A1 (en) | 2001-02-20 | 2002-08-29 | Zymogenetics, Inc. | Antibodies that bind both bcma and taci |
JP2003111595A (en) * | 2001-06-25 | 2003-04-15 | Kyogo Ito | Tumor antigen |
WO2003072713A2 (en) | 2002-02-21 | 2003-09-04 | Biogen Idec Ma Inc. | Use of bcma as an immunoregulatory agent |
US7820166B2 (en) | 2002-10-11 | 2010-10-26 | Micromet Ag | Potent T cell modulating molecules |
EP1629011B1 (en) | 2003-05-31 | 2010-01-13 | Micromet AG | Human anti-human cd3 binding molecules |
CA2542239C (en) | 2003-10-16 | 2014-12-30 | Micromet Ag | Multispecific deimmunized cd3-binders |
CN1897966A (en) | 2003-10-20 | 2007-01-17 | 比奥根艾迪克Ma公司 | Therapeutic regimens for baff antagonists |
WO2006067210A1 (en) | 2004-12-23 | 2006-06-29 | Laboratoires Serono S.A. | Bcma polypeptides and uses thereof |
AU2006214121B9 (en) | 2005-02-15 | 2013-02-14 | Duke University | Anti-CD19 antibodies and uses in oncology |
RU2008129827A (en) | 2005-12-21 | 2010-01-27 | МЕДИММЬЮН, ЭлЭлСи (US) | EphA2-BiTE MOLECULES AND THEIR APPLICATION |
JP2009544761A (en) | 2006-06-14 | 2009-12-17 | マクロジェニクス,インコーポレーテッド | Method of treating autoimmune disease using low toxicity immunosuppressive monoclonal antibody |
US7994290B2 (en) * | 2007-01-24 | 2011-08-09 | Kyowa Hakko Kirin Co., Ltd | Effector function enhanced recombinant antibody composition |
ES2422479T3 (en) | 2007-03-27 | 2013-09-11 | Zymogenetics Inc | Combination of inhibition of BLyS and mycophenolate mofetil for the treatment of autoimmune diseases |
EP2144928A2 (en) * | 2007-04-20 | 2010-01-20 | Amgen Inc. | Jacquelinidentification and method for using the pre-ligand assembly domain of the il-17 receptor |
AU2009299791B2 (en) | 2008-10-01 | 2016-02-25 | Amgen Research (Munich) Gmbh | Cross-species-specific PSCAxCD3, CD19xCD3, C-METxCD3, EndosialinxCD3, EpCAMxC D3, IGF-1RxCD3 or FAPalpha xCD3 bispecific single chain antibody |
CN102482347B (en) | 2009-01-12 | 2017-04-26 | 希托马克斯医疗有限责任公司 | Modified antibody compositions, and methods of making and using thereof |
NZ594985A (en) | 2009-03-10 | 2013-07-26 | Biogen Idec Inc | Anti-bcma (b-cell maturation antigen, cd269, tnfrsf17) antibodies |
CA3188287A1 (en) * | 2010-03-26 | 2011-09-29 | Memorial Sloan-Kettering Cancer Center | Antibodies to muc16 and methods of use thereof |
US10150817B2 (en) | 2010-09-01 | 2018-12-11 | Biogen Ma Inc. | Rapid generation of anti-idiotypic antibodies |
JP2014500879A (en) | 2010-11-16 | 2014-01-16 | ベーリンガー インゲルハイム インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング | Factors and methods for treating diseases correlated with BCMA expression |
CN103649117B (en) * | 2011-02-04 | 2016-09-14 | 霍夫曼-拉罗奇有限公司 | Fc variant and the method for generation thereof |
WO2012118622A1 (en) | 2011-02-19 | 2012-09-07 | Baylor Research Institute | Diagnostic and therapeutic uses for b cell maturation antigen |
TWI838039B (en) * | 2011-03-28 | 2024-04-01 | 法商賽諾菲公司 | Dual variable region antibody-like binding proteins having cross-over binding region orientation |
US20130101599A1 (en) | 2011-04-21 | 2013-04-25 | Boehringer Ingelheim International Gmbh | Bcma-based stratification and therapy for multiple myeloma patients |
US20140105915A1 (en) | 2011-05-27 | 2014-04-17 | Glaxo Group Limited | Bcma (cd269/tnfrsf17) - binding proteins |
UA112434C2 (en) | 2011-05-27 | 2016-09-12 | Ґлаксо Ґруп Лімітед | ANTIGENCY BINDING SPECIFICALLY Binds to ALL |
SG11201401518TA (en) * | 2011-10-28 | 2014-05-29 | Teva Pharmaceuticals Australia Pty Ltd | Polypeptide constructs and uses thereof |
TWI679212B (en) | 2011-11-15 | 2019-12-11 | 美商安進股份有限公司 | Binding molecules for e3 of bcma and cd3 |
JP6850528B2 (en) * | 2012-02-13 | 2021-03-31 | シアトル チルドレンズ ホスピタル ドゥーイング ビジネス アズ シアトル チルドレンズ リサーチ インスティテュート | Bispecific chimeric antigen receptor and its therapeutic use |
EP2822597A1 (en) | 2012-03-09 | 2015-01-14 | UCL Business Plc. | Chemical modification of antibodies |
WO2014122143A1 (en) * | 2013-02-05 | 2014-08-14 | Engmab Ag | Method for the selection of antibodies against bcma |
US20160355588A1 (en) | 2013-07-12 | 2016-12-08 | Zymeworks Inc. | Bispecific CD3 and CD19 Antigen Binding Constructs |
BR112016018100A2 (en) | 2014-02-07 | 2018-02-20 | Univ Mcmaster | trifunctional t-cell antigen coupler, methods and uses thereof |
DK3280729T3 (en) | 2015-04-08 | 2022-07-25 | Novartis Ag | CD20 TREATMENTS, CD22 TREATMENTS AND COMBINATION TREATMENTS WITH A CD19 CHIMERIC ANTIGEN RECEPTOR (CAR) EXPRESSING CELL |
WO2016166139A1 (en) | 2015-04-14 | 2016-10-20 | Eberhard Karls Universität Tübingen | Bispecific fusion proteins for enhancing immune responses of lymphocytes against tumor cells |
TWI744247B (en) | 2015-08-28 | 2021-11-01 | 美商亞穆尼克斯製藥公司 | Chimeric polypeptide assembly and methods of making and using the same |
EP3377523A4 (en) | 2015-11-19 | 2019-06-19 | The Regents of The University of California | Conditionally repressible immune cell receptors and methods of use thereof |
WO2017106578A1 (en) | 2015-12-15 | 2017-06-22 | Amgen Inc. | Pacap antibodies and uses thereof |
CN108250302A (en) | 2016-12-29 | 2018-07-06 | 天津天锐生物科技有限公司 | A kind of multifunctional protein |
CN111479925B (en) | 2017-10-12 | 2024-03-08 | 麦克马斯特大学 | T cell-antigen conjugates with Y182T mutations and methods and uses thereof |
US11110123B2 (en) | 2018-07-17 | 2021-09-07 | Triumvira Immunologics Usa, Inc. | T cell-antigen coupler with various construct optimizations |
KR20210021593A (en) | 2018-07-17 | 2021-02-26 | 트리움비라 이뮤놀로직스 유에스에이, 인크. | T cell-antigen coupler with various structural optimizations |
US10640562B2 (en) | 2018-07-17 | 2020-05-05 | Mcmaster University | T cell-antigen coupler with various construct optimizations |
-
2015
- 2015-02-06 BR BR112016018100A patent/BR112016018100A2/en not_active Application Discontinuation
- 2015-02-06 CN CN202110622770.XA patent/CN113388629A/en active Pending
- 2015-02-06 AU AU2015213437A patent/AU2015213437B2/en not_active Ceased
- 2015-02-06 ES ES15746948T patent/ES2959480T3/en active Active
- 2015-02-06 EP EP23199169.6A patent/EP4317180A3/en active Pending
- 2015-02-06 KR KR1020227044548A patent/KR20230004939A/en not_active Application Discontinuation
- 2015-02-06 EP EP15746948.7A patent/EP3102681B1/en active Active
- 2015-02-06 WO PCT/CA2015/000068 patent/WO2015117229A1/en active Application Filing
- 2015-02-06 JP JP2016549468A patent/JP6752148B2/en active Active
- 2015-02-06 US US15/117,173 patent/US10435453B2/en active Active
- 2015-02-06 MX MX2016010128A patent/MX2016010128A/en unknown
- 2015-02-06 CA CA2945486A patent/CA2945486A1/en active Pending
- 2015-02-06 CN CN201580007473.7A patent/CN106459990B/en active Active
- 2015-02-06 KR KR1020167024738A patent/KR102480433B1/en active IP Right Grant
-
2016
- 2016-08-04 MX MX2020011788A patent/MX2020011788A/en unknown
-
2018
- 2018-03-29 AU AU2018202294A patent/AU2018202294B2/en active Active
-
2019
- 2019-08-21 US US16/547,421 patent/US11421014B2/en active Active
-
2020
- 2020-05-06 US US15/929,510 patent/US11008376B2/en active Active
- 2020-08-17 JP JP2020137529A patent/JP7179041B2/en active Active
-
2021
- 2021-01-12 US US17/248,174 patent/US11001621B1/en active Active
-
2022
- 2022-06-23 US US17/808,361 patent/US20220332790A1/en active Pending
-
2023
- 2023-03-22 US US18/188,312 patent/US20230212258A1/en not_active Abandoned
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999057268A1 (en) | 1998-05-06 | 1999-11-11 | Celltech Therapeutics Limited | Chimeric receptors |
WO2013092001A1 (en) * | 2011-12-19 | 2013-06-27 | Synimmune Gmbh | Bispecific antibody molecule |
WO2014011988A2 (en) | 2012-07-13 | 2014-01-16 | The Trustees Of The University Of Pennsylvania | Enhancing activity of car t cells by co-introducing a bispecific antibody |
Non-Patent Citations (21)
Title |
---|
ACUTO, 0.CANTRELL, D.: "T cell activation and the cytoskeleton", ANNU. REV. IMMUNOL., vol. 18, 2000, pages 165 - 184 |
ARCARO, AGREGOIRE, C.BOUCHERON, N.STOTZ, S.PALMER, E.MALISSEN, B.LUESCHER, I.F.: "Essential role of CD8 palmitoylation in CD8 coreceptor function", J. IMMUNOL., vol. 165, 2000, pages 2068 - 2076 |
CHAMES, P.BATY, D.: "Bispecific antibodies for cancer therapy: the light at the end of the tunnel?", MABS, vol. 1, 2009, pages 539 - 547, XP002688758, DOI: 10.4161/mabs.1.6.10015 |
CHERVIN, A.S.STONE, J.D.HOLLER, P.D.BAI, A.CHEN, J.EISEN, H.N.KRANZ, D.M.: "The impact of TCR-binding properties and antigen presentation format on T cell responsiveness", J. IMMUNOL., vol. 183, 2009, pages 1166 - 1178 |
DOTTI, G.SAVOLDO, B.BRENNER, M: "Fifteen years of gene therapy based on chimeric antigen receptors: ''are we nearly there yet?", HUM. GENE THER., vol. 20, 2009, pages 1229 - 1239, XP055122213 |
FINNEY, H.M.AKBAR, A.N.LAWSON, A.D.G.: "Activation of resting human primary T cells with chimeric receptors: costimulation from CD28, inducible costimulator, CD134, and CD137 in series with signals from the TCR zeta chain", J. IMMUNOL., vol. 172, 2004, pages 104 - 113, XP002605937 |
FRAGOSO, R.REN, D.ZHANG, X.SU, M.W.-C.BURAKOFF, S.J.JIN, Y.-J.: "Lipid raft distribution of CD4 depends on its palmitoylation and association with Lck, and evidence for CD4-induced lipid raft aggregation as an additional mechanism to enhance CD3 signaling", J. IMMUNOL., vol. 170, 2003, pages 913 - 921 |
FRY, T.J.MACKALL, C.L.: "T-cell adoptive immunotherapy for acute lymphoblastic leukemia", HEMATOLOGY AM. SOC. HEMATOL. EDUC. PROGRAM, 2013, pages 348 - 353, XP055247590, DOI: 10.1182/asheducation-2013.1.348 |
GEIGER, T.L. ET AL.: "Integrated src kinase and costimulatory activity enhances signal transduction through single-chain chimeric receptors in T lymphocytes.", BLOOD., vol. 98, no. 8, 15 October 2001 (2001-10-15), pages 2364 - 2371, XP002190591 * |
HAN, E.Q.LI, X.WANG, C.LI, T.HAN, S.: "Chimeric antigen receptor-engineered T cells for cancer immunotherapy: progress and challenges", J. HEMATOL. ONCOL., vol. 6, 2013, pages 47, XP021155859, DOI: 10.1186/1756-8722-6-47 |
HE, H.-T.MARGUET, D: "T-cell antigen receptor triggering and lipid rafts: a matter of space and time scales. Talking Point on the involvement of lipid rafts in T-cell activation", EMBO REP, vol. 9, 2008, pages 525 - 530 |
HELSEN ET AL.: "Tri-functional T cell receptor antigen coupler (Tri-TAC): a novel method to direct T cells against tumors", JOURNAL FOR IMMUNOTHERAPY OF CANCER, vol. 2, 2014, pages 7 |
HUMPHRIES, C: "Adoptive cell therapy: Honing that killer instinct", NATURE, vol. 504, 2013, pages 13 - 5 |
KIM, P.W.SUN, Z.J.BLACKLOW, S.C.WAGNER, G.ECK, M.J.: "A zinc clasp structure tethers Lck to T cell coreceptors CD4 and CD8", SCIENCE, vol. 301, 2003, pages 1725 - 1728 |
KOCHENDERFER, J.N.ROSENBERG, S.A.: "Treating B-cell cancer with T cells expressing anti-CD19 chimeric antigen receptors", NAT. REV. CLIN. ONCOL., vol. 10, 2013, pages 267 - 276, XP009170183, DOI: 10.1038/nrclinonc.2013.46 |
KUHNS, M.S.DAVIS, M.M.: "TCR Signaling Emerges from the Sum of Many Parts", FRONT. IMMUNOL., vol. 3, 2012, pages 159 |
METHI, T.NGAI, J.MAHIC, M.AMARZGUIOUI, M.VANG, T.TASKEN, K.: "Short-interfering RNA-mediated Lck knockdown results in augmented downstream T cell responses", J. IMMUNOL., vol. 175, 2005, pages 7398 - 7406, XP055327224, DOI: 10.4049/jimmunol.175.11.7398 |
MILONE, M.C.FISH, J.D.CARPENITO, C.CARROLL, R.G.BINDER, G.K.TEACHEY, D.SAMANTA, M.LAKHAL, M.GLOSS, B.DANET-DESNOYERS, G. ET AL.: "Chimeric receptors containing CD137 signal transduction domains mediate enhanced survival of T cells and increased antileukemic efficacy in vivo", MOL. THER., vol. 17, 2009, pages 1453 - 1464 |
PORTELL, C. AWENZELL, C.M.ADVANI, A.S.: "Clinical and pharmacologic aspects of blinatumomab in the treatment of B-cell acute lymphoblastic leukemia", CLIN. PHARMACOL., vol. 5, 2013, pages 5 - 11, XP055688487, DOI: 10.2147/CPAA.S42689 |
THOMPSON, J D ET AL., NUCLEIC ACID RES., vol. 22, pages 4673 - 4680 |
YIN, Y.WANG, X.X.MARIUZZA, R. A: "Crystal structure of a complete ternary complex of T-cell receptor, peptide-MHC, and CD4", PROC. NATL. ACAD. SCI. U. S. A., vol. 109, 2012, pages 5405 - 5410 |
Cited By (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12006347B2 (en) | 2010-12-22 | 2024-06-11 | The Board Of Trustees Of The Leland Stanford Junior University | Superagonists and antagonists of interleukin-2 |
US11993639B2 (en) | 2012-01-27 | 2024-05-28 | The Board Of Trustees Of The Leland Stanford Junior University | Therapeutic IL-13 polypeptides |
US11680090B2 (en) | 2013-09-24 | 2023-06-20 | Medicenna Therapeutics, Inc. | Interleukin-2 fusion proteins and uses thereof |
US11008376B2 (en) | 2014-02-07 | 2021-05-18 | Mcmaster University | Trifunctional T cell-antigen coupler and methods and uses thereof |
US11001621B1 (en) | 2014-02-07 | 2021-05-11 | Mcmaster University | Trifunctional T cell-antigen coupler and methods and uses thereof |
US10435453B2 (en) | 2014-02-07 | 2019-10-08 | Mcmaster University | Trifunctional T cell-antigen coupler and methods and uses thereof |
US11421014B2 (en) | 2014-02-07 | 2022-08-23 | Mcmaster University | Trifunctional T cell-antigen coupler and methods and uses thereof |
US11384131B2 (en) | 2014-04-24 | 2022-07-12 | The Board Of Trustees Of The Leland Stanford Junior University | Superagonists, partial agonists and antagonists of interleukin-2 |
US20180298098A1 (en) * | 2015-02-26 | 2018-10-18 | Var2 Pharmaceutical Aps | Immunotherapeutic targeting of placental-like chondroitin sulfate using chimeric antigen receptors (cars) and immunotherapeutic targeting of cancer using cars with split-protein binding systems |
US11390899B2 (en) | 2016-09-26 | 2022-07-19 | SOLA Biosciences, LLC | Cell-associated secretion-enhancing fusion proteins |
WO2018058088A1 (en) * | 2016-09-26 | 2018-03-29 | SOLA Biosciences, LLC | Cell-associated secretion-enhancing fusion proteins |
CN112280796A (en) * | 2016-10-07 | 2021-01-29 | T细胞受体治疗公司 | Compositions and methods for T cell receptor weight programming using fusion proteins |
WO2018112266A1 (en) | 2016-12-14 | 2018-06-21 | The Board Of Trustees Of The Leland Stanford Junior University | Il-13 superkine: immune cell targeting constructs and methods of use thereof |
US11542312B2 (en) | 2017-06-19 | 2023-01-03 | Medicenna Therapeutics, Inc. | IL-2 superagonists in combination with anti-PD-1 antibodies |
CN111479925B (en) * | 2017-10-12 | 2024-03-08 | 麦克马斯特大学 | T cell-antigen conjugates with Y182T mutations and methods and uses thereof |
EP3694997A4 (en) * | 2017-10-12 | 2021-06-30 | Mcmaster University | T cell-antigen coupler with y182t mutation and methods and uses thereof |
US11970545B2 (en) | 2017-10-12 | 2024-04-30 | Mcmaster University | T cell-antigen coupler with Y182T mutation and methods of uses thereof |
US11198737B2 (en) | 2017-10-12 | 2021-12-14 | Mcmaster University | T cell-antigen coupler with Y177 mutation and methods of uses thereof |
US11643472B2 (en) | 2017-10-12 | 2023-05-09 | Mcmaster University | T cell-antigen coupler with Y182T mutation and methods and uses thereof |
CN111479925A (en) * | 2017-10-12 | 2020-07-31 | 麦克马斯特大学 | T cell-antigen conjugates with the Y182T mutation and methods and uses thereof |
WO2019071358A1 (en) * | 2017-10-12 | 2019-04-18 | Mcmaster University | T cell-antigen coupler with y182t mutation and methods and uses thereof |
CN112533943A (en) * | 2018-06-01 | 2021-03-19 | 利兰斯坦福初级大学董事会 | IL-13/IL-4 super factor: immune cell targeting constructs and methods of use thereof |
CN112533943B (en) * | 2018-06-01 | 2024-03-05 | 利兰斯坦福初级大学董事会 | IL-13/IL-4 cofactor: immune cell targeting constructs and methods of use thereof |
WO2019232523A1 (en) | 2018-06-01 | 2019-12-05 | The Board Of Trustees Of The Leland Stanford Junior University | Il-13/il-4 superkines: immune cell targeting constructs and methods of use thereof |
WO2019241315A1 (en) | 2018-06-12 | 2019-12-19 | Obsidian Therapeutics, Inc. | Pde5 derived regulatory constructs and methods of use in immunotherapy |
US10640562B2 (en) | 2018-07-17 | 2020-05-05 | Mcmaster University | T cell-antigen coupler with various construct optimizations |
US11878035B2 (en) | 2018-07-17 | 2024-01-23 | Triumvira Immunologics Usa, Inc. | T cell-antigen coupler with various construct optimizations |
US11406667B2 (en) | 2018-07-17 | 2022-08-09 | Triumvira Immunologies USA, Inc. | T cell-antigen coupler with various construct optimizations |
EP3823984A4 (en) * | 2018-07-17 | 2022-04-06 | Triumvira Immunologics USA, Inc. | T cell-antigen coupler with various construct optimizations |
US11111298B2 (en) | 2018-07-17 | 2021-09-07 | Mcmaster University | T cell-antigen coupler with various construct optimizations |
US11976117B2 (en) | 2018-07-17 | 2024-05-07 | Mcmaster University | T cell-antigen coupler with various construct optimizations |
US11110123B2 (en) | 2018-07-17 | 2021-09-07 | Triumvira Immunologics Usa, Inc. | T cell-antigen coupler with various construct optimizations |
US20200024345A1 (en) * | 2018-07-17 | 2020-01-23 | Mcmaster University | T cell-antigen coupler with various construct optimizations |
US12016923B2 (en) | 2021-06-01 | 2024-06-25 | Triumvira Immunologics Usa, Inc. | Claudin 18.2 T cell-antigen couplers and uses thereof |
US11453723B1 (en) | 2021-06-25 | 2022-09-27 | Mcmaster University | BCMA T cell-antigen couplers and uses thereof |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11001621B1 (en) | Trifunctional T cell-antigen coupler and methods and uses thereof | |
US11976117B2 (en) | T cell-antigen coupler with various construct optimizations | |
US11878035B2 (en) | T cell-antigen coupler with various construct optimizations | |
JP7404279B2 (en) | T cell antigen couplers with various construct optimizations | |
US11970545B2 (en) | T cell-antigen coupler with Y182T mutation and methods of uses thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15746948 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2945486 Country of ref document: CA |
|
ENP | Entry into the national phase |
Ref document number: 2016549468 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: MX/A/2016/010128 Country of ref document: MX |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15117173 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112016018100 Country of ref document: BR |
|
REEP | Request for entry into the european phase |
Ref document number: 2015746948 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2015746948 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20167024738 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2015213437 Country of ref document: AU Date of ref document: 20150206 Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 112016018100 Country of ref document: BR Kind code of ref document: A2 Effective date: 20160803 |