WO2015115680A1 - 다종의 어레이가 형성된 트랜스듀서 및 그 제조방법, 다종의 어레이가 형성된 트랜스듀서를 포함하는 초음파 프로브 - Google Patents

다종의 어레이가 형성된 트랜스듀서 및 그 제조방법, 다종의 어레이가 형성된 트랜스듀서를 포함하는 초음파 프로브 Download PDF

Info

Publication number
WO2015115680A1
WO2015115680A1 PCT/KR2014/000833 KR2014000833W WO2015115680A1 WO 2015115680 A1 WO2015115680 A1 WO 2015115680A1 KR 2014000833 W KR2014000833 W KR 2014000833W WO 2015115680 A1 WO2015115680 A1 WO 2015115680A1
Authority
WO
WIPO (PCT)
Prior art keywords
array
transducer
arrays
backing material
layer
Prior art date
Application number
PCT/KR2014/000833
Other languages
English (en)
French (fr)
Inventor
배병국
이형근
손건호
Original Assignee
알피니언메디칼시스템 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 알피니언메디칼시스템 주식회사 filed Critical 알피니언메디칼시스템 주식회사
Priority to PCT/KR2014/000833 priority Critical patent/WO2015115680A1/ko
Priority to KR1020167019084A priority patent/KR20160102219A/ko
Publication of WO2015115680A1 publication Critical patent/WO2015115680A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/06Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
    • B06B1/0607Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4444Constructional features of the ultrasonic, sonic or infrasonic diagnostic device related to the probe
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4444Constructional features of the ultrasonic, sonic or infrasonic diagnostic device related to the probe
    • A61B8/4461Features of the scanning mechanism, e.g. for moving the transducer within the housing of the probe
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4483Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer
    • A61B8/4488Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer the transducer being a phased array
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4483Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer
    • A61B8/4494Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer characterised by the arrangement of the transducer elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/26Arrangements for orientation or scanning by relative movement of the head and the sensor
    • G01N29/262Arrangements for orientation or scanning by relative movement of the head and the sensor by electronic orientation or focusing, e.g. with phased arrays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/10Number of transducers
    • G01N2291/106Number of transducers one or more transducer arrays

Definitions

  • the present invention relates to a transducer having multiple arrays capable of integrating multiple arrays into one transducer, a method for manufacturing the same, and an ultrasonic probe including a transducer having such multiple arrays formed thereon.
  • the ultrasound diagnosis apparatus transmits an ultrasound signal to a diagnosis site of a subject by a probe, and then receives an ultrasound signal reflected from a tissue boundary in the subject having a different acoustic impedance by the probe.
  • Image information of the diagnosis site is obtained.
  • the image information is output to the monitor of the ultrasound diagnosis apparatus, and the diagnoser may perform diagnosis on the subject through the image information output to the monitor.
  • the probe is provided with a transducer for transmitting an ultrasonic signal to the inspected object and receiving an ultrasonic signal reflected from the inspected object.
  • the transducer has a configuration in which an array in which a piezoelectric layer and a matching layer are stacked on a backing material is bonded.
  • the piezoelectric layer is formed of a piezoelectric element made of only a piezoelectric material, or is formed of a piezoelectric composite in which a polymer material is composited in the piezoelectric element in order to increase ultrasonic transmission and reception performance.
  • the present invention for solving the conventional problems as described above provides a transducer and a method of manufacturing the array formed with a plurality of arrays that can be driven by integrating a plurality of arrays into a single transducer.
  • ultrasonic probes comprising transducers having multiple arrays formed thereon.
  • Transducers formed with a plurality of arrays according to the present invention for achieving the above object includes an array of electrode layers, piezoelectric layers, ground layer and matching layer in turn and a backing material formed on one surface of the electrode layer,
  • the array includes a first array formed on an upper surface of the backing material and a second array formed on one side of the backing material.
  • a method of manufacturing a transducer having a plurality of arrays includes forming a plurality of arrays in which an electrode layer, a piezoelectric layer, a ground layer, and a matching layer are sequentially stacked, and dicing the arrays. dicing), filling and curing the sound absorbing material in the diced space of the array, and at least one of the top, bottom, or both sides of the backing material such that each of the arrays filled with the sound absorbing material is positioned at the top of the mating layer. Bonding each of two or more surfaces, and forming a lens on one surface of a matching layer formed on the top of each array.
  • An ultrasonic probe including a transducer having a plurality of arrays has a structure in which a backing material, an electrode layer, a piezoelectric layer, a ground layer, and a matching layer are sequentially stacked, and the top or bottom surface of the backing material or
  • the transducer includes a transducer including a plurality of arrays joined to at least two or more surfaces of both sides, and a receiving recess is formed inwardly at a distal end thereof so that the transducer is rotatably mounted.
  • FIG. 1 is a perspective view of a transducer having multiple arrays according to an embodiment of the present invention
  • FIG. 1 is an exploded perspective view of FIG. 1;
  • FIG. 3 to 4 is a perspective view showing a state in which the shape of the array is modified in Figure 1,
  • FIG. 5 is a flowchart illustrating a method of manufacturing a transducer having multiple arrays according to an embodiment of the present invention
  • FIG. 6 is a view schematically showing a manufacturing process according to a method of manufacturing a transducer having a plurality of arrays according to an embodiment of the present invention
  • FIG. 7 is a perspective view of an ultrasonic probe including a transducer having multiple arrays according to an embodiment of the present invention
  • FIG. 8 is a cross-sectional view taken along line AA ′ of FIG. 7;
  • 9 to 10 are cross-sectional views taken along line BB ′ of FIG. 7.
  • Transducers having a plurality of arrays according to the present invention are bonded to a plurality of arrays in one backing material, an embodiment thereof is shown in FIGS.
  • FIG. 1 is a perspective view of a transducer having multiple arrays according to an embodiment of the present invention
  • FIG. 2 is an exploded perspective view of FIG. 1.
  • Transducer 10 is formed of a plurality of arrays according to an embodiment of the present invention is a backing material 100 and the first array 210 bonded to the upper surface of the backing material 100 and the backing material 100 It may include a second array 220 bonded to one side of the.
  • the transducer 10 further includes a third array 230 bonded to the other side of the backing material 100 or a fourth array (not shown) bonded to the bottom surface of the backing material 100. It may further include, the array (210, 220, 230) may be formed in both the upper and lower surfaces of the backing material 100, as well as both sides.
  • the arrays 220 and 230 may be formed only on one side and the other side of the backing material 100, and the array 210 may be formed only on the top and bottom surfaces of the backing material 100.
  • Each of the arrays 210, 220, and 230 may have a structure in which an electrode layer 201, a piezoelectric layer 202, a ground layer 203, and a matching layer 204 are sequentially stacked.
  • the arrays 210, 220, and 230 which are the subjects of the present invention, refer to an ultrasonic sensor portion in which an active element and a passive element are coupled and a channel is separated, and the transducer 10 is acoustic in the arrays 210, 220, and 230 as described above. It means a semi-finished product formed with a lens and a housing (case).
  • the piezoelectric layer 202 generates an ultrasonic signal by resonating when a voltage is applied, and generates an electrical signal by vibrating when receiving the ultrasonic signal.
  • the piezoelectric layer 202 may be formed of a piezoelectric ceramic such as lead zirconate titanate (PZT), piezoelectric single crystal, or the like.
  • the electrode layer 201 is formed on one surface of the piezoelectric layer 202 by a deposition method or the like.
  • the electrode layer 201 may be formed of a flexible printed circuit board (FPCB) on which first electrodes are formed.
  • the flexible printed circuit board FPCB may be bonded to the piezoelectric layer 202 by using an adhesive or the like.
  • the first electrodes may be made of a conductive metal material such as copper, gold, silver, or the like.
  • the backing material 100 may be configured to have sound absorption.
  • the backing material 100 suppresses the free vibration of the piezoelectric layer 202 stacked on the upper side to reduce the pulse width of the ultrasonic wave, and prevents the ultrasonic wave from propagating unnecessarily to the lower side of the piezoelectric layer 202 to prevent image distortion. You can prevent it.
  • the backing material 100 may be configured to have a flat top surface.
  • the backing material 100 may be formed of a material filled with a powder material having a high density such as tungsten (W), lead (Pb), zinc oxide (ZnO), and the like.
  • the ground layer 203 is disposed to form a voltage difference with the electrode layer 201.
  • the ground layer 203 may be formed of a flexible printed circuit board (FPCB) having second electrodes formed on one surface thereof.
  • the second electrodes may be each made of a conductive metal material such as copper, gold, silver, or the like, and may be formed in the same pattern as the first electrodes.
  • the first electrodes function as signal electrodes for transmitting and receiving an electrical signal
  • the second electrodes may function as ground electrodes.
  • the second electrodes can function as signal electrodes, in which case the first electrodes can function as ground electrodes.
  • the matching layer 204 makes it possible to reduce the acoustic impedance difference between the piezoelectric layer 202 and the object under test.
  • the matching layer 204 may be formed of an epoxy resin, or the like, and may include a plurality of layers.
  • each of the arrays 210, 220, and 230 may be diced for channel separation, and there may be filled with a sound absorbing material in the separated space, and a lens may be formed on one surface of the matching layer 204.
  • each of the arrays 210, 220, and 230 may be formed in different forms to operate in different channels.
  • the scan can be performed while driving the plurality of arrays 210, 220, and 230 while only changing the direction of one probe without replacing the probe.
  • 3 to 4 are perspective views showing a state in which the shape of the array is modified in FIG.
  • the first array 210 or the second array 220 or the third array 230 or the fourth array may be a curved type or a phased array type. It may be formed of any one type selected from (phased array type) or linear (linear type). Accordingly, the scanning may be performed by selecting the arrays 210, 220, and 230 of a desired type.
  • the first array 210 is formed in a convex type, and the second array 220 and the third array 230 are formed in a phased array type.
  • 4 illustrates another example in which the first array 210, the second array 220, and the third array 230 are all formed in a linear type.
  • FIG. 5 is a flowchart illustrating a method of manufacturing a transducer having multiple arrays according to an embodiment of the present invention
  • FIG. 6 is a method of manufacturing a transducer having multiple arrays according to an embodiment of the present invention.
  • Figure is a schematic view showing the manufacturing process.
  • a plurality of arrays 210, 220, and 230 in which an electrode layer 201, a piezoelectric layer 202, a ground layer 203, and a matching layer 204 are sequentially stacked are formed ( S101, dicing the respective arrays 210, 220, and 230 (S102), filling and curing the sound absorbing material 205 in the diced space of the arrays 210, 220, and 230 (S103), Bonding each of the arrays 210, 220, and 230 filled with the sound absorbing material 205 to at least two or more of the top, bottom, or both sides of the backing material 100 such that the matching layer 204 is positioned at the top ( And forming a lens 206 on one surface of the matching layer 204 formed at the top of each of the arrays 210, 220, and 230 (S105).
  • a plurality of arrays 210, 220, and 230 are formed by sequentially stacking the electrode layer 201, the piezoelectric layer 202, the ground layer 203, and the matching layer 204.
  • the piezoelectric layer 202 resonates when a voltage is applied to generate an ultrasonic signal, and when receiving the ultrasonic signal, vibrates to generate an electrical signal.
  • the electrode layer 201 is formed on one surface of the piezoelectric layer 202 by a deposition method.
  • the electrode layer 201 may be formed of a flexible printed circuit board (FPCB) on which first electrodes are formed.
  • the backing material 100 may be configured to have sound absorption. The backing material 100 suppresses the free vibration of the piezoelectric layer 202 stacked on the upper side to reduce the pulse width of the ultrasonic wave, and prevents the ultrasonic wave from propagating unnecessarily to the lower side of the piezoelectric layer 202 to prevent image distortion. You can prevent it.
  • the ground layer 203 is disposed to form a voltage difference with the electrode layer 201.
  • the ground layer 203 may be formed of a flexible printed circuit board (FPCB) having second electrodes formed on one surface thereof.
  • the matching layer 204 makes it possible to reduce the acoustic impedance difference between the piezoelectric layer 202 and the object under test.
  • each of the arrays 210, 220, and 230 is diced to form a plurality of slits 207.
  • Channel dividing of the arrays 210, 220, and 230 may be performed through the dicing process.
  • step S103 the sound absorbing material 205 is filled and cured in the slits 207 of the arrays 210, 220, and 230 in which the dicing is completed.
  • the sound absorbing material may be formed of any one selected from epoxy, a material in which powder is mixed with epoxy, and polyurethane.
  • the array 10 divided into a plurality of regions through the dicing process may be maintained while being separated from each other by being supported by the sound absorbing material 205.
  • the respective arrays 210, 220, and 230 filled with the sound absorbing material 205 are bonded to at least two or more surfaces of the top or bottom surface or both sides of the backing material 100 such that the matching layer 204 is positioned at the top thereof. do.
  • the arrays 210, 220, and 230 are formed on the top and both sides of the backing material 100 is described, but the scope of the present invention is not limited thereto.
  • the lens 206 is formed on one surface of the matching layer 204 formed at the top of each of the arrays 210, 220, and 230.
  • the lens 206 may be formed of the same material as the sound absorbing material 205, and may be formed on the surface of the matching layer 204 to protect the matching layer 204 from abrasion while being in contact with the subject. do.
  • the lens 206 may serve to focus the ultrasonic waves generated from the piezoelectric layer 202.
  • FIG. 7 is a perspective view of an ultrasonic probe including a transducer having multiple arrays according to an embodiment of the present invention
  • FIG. 8 is a cross-sectional view taken along line AA ′ of FIG. 7,
  • FIGS. 9 to 10 are views of FIG. 7.
  • An ultrasonic probe including a transducer having a multi-array array may be rotatable in a body 20 having an accommodating groove 21 at a distal end thereof, and an accommodating groove 21 of the body 20.
  • the probe which is the object of the present invention, means a finished product to which the aforementioned transducer 10 and a cable are connected.
  • the front end means the direction in which the transducer is exposed to the outside of the body 20 when the diagnosis is made
  • the rear end means the direction in which the probe and the cable is connected to the opposite side of the front end. Therefore, the front and rear ends described above or below will be understood according to the above definition.
  • the transducer 10 has a structure in which a backing material 100, an electrode layer 201, a piezoelectric layer 202, a ground layer 203, and a matching layer 204 are sequentially stacked, and the backing material 100 is formed. It includes a plurality of arrays (210, 220, 230) bonded to at least two or more of the top or bottom or both sides of the.
  • the arrays 210, 220, and 230 may include a first array 210 formed on an upper surface of the backing material 100, a second array 220 formed on one side of the backing material 100, and the backing. It may include a third array 230 formed on the other side of the ash 100, the following description of the array (210, 220, 230) described above, for example, but the scope of the present invention is not limited thereto.
  • the piezoelectric layer 202 resonates when a voltage is applied to generate an ultrasonic signal, and when receiving the ultrasonic signal, vibrates to generate an electrical signal.
  • the electrode layer 201 is formed on one surface of the piezoelectric layer 202 by a deposition method.
  • the electrode layer 201 may be formed of a flexible printed circuit board (FPCB) on which first electrodes are formed.
  • the backing material 100 may be configured to have sound absorption.
  • the backing material 100 suppresses the free vibration of the piezoelectric layer 202 stacked on the upper side to reduce the pulse width of the ultrasonic wave, and prevents the ultrasonic wave from propagating unnecessarily to the lower side of the piezoelectric layer 202 to prevent image distortion. You can prevent it.
  • the ground layer 203 is disposed to form a voltage difference with the electrode layer 201.
  • the ground layer 203 may be formed of a flexible printed circuit board (FPCB) having second electrodes formed on one surface thereof.
  • the matching layer 204 makes it possible to reduce the acoustic impedance difference between the piezoelectric layer 202 and the object under test.
  • the matching layer 204 may be formed of an epoxy resin, or the like, and may include a plurality of layers.
  • each of the arrays 210, 220, and 230 may be diced for channel separation, and there may be filled with a sound absorbing material in the separated space, and a lens may be formed on one surface of the matching layer 204.
  • each of the arrays 210, 220, and 230 may be formed in different forms to operate in different channels.
  • the body 20 forms a receiving groove 21 recessed rearward at the front end, the rear end is formed with a connector connected to the transducer 10 is rotatably accommodated in the receiving groove (21).
  • the transducer 10 may be rotated without replacing the transducers 10.
  • the transducer 10 may be operated in a channel and the transducer 10 may receive the body 20 such that the array of desired channels may rotate the transducer 10 to be exposed to the outside through the opening of the receiving groove 21.
  • the groove 21 may be mounted to be rotatable 360 °, or may be mounted to allow 90 ° rotation in both directions.
  • the transducer 10 is formed with a rotating shaft 300 penetrating the center of the front and rear, both ends of the rotating shaft 300 are receiving grooves formed in the body 20
  • the transducer 10 rotates to the left and right by being fitted at the front and the rear of the 21.
  • a bearing may be inserted between the through hole and the rotating shaft 300 to rotatably connect the rotating shaft 300 and the transducer 10.
  • the inner surface of the receiving groove 210 of the body 20 may be formed with a fixing groove 23 is fitted with both ends of the rotating shaft 300, both ends of the rotating shaft 300 and the fixing groove ( Between 23) bearings may be fitted to reduce the frictional force while supporting the rotating shaft 300.
  • the recessed groove 22 is formed on the inner surface of the receiving groove 21 formed in the body 20, the recessed groove 22 on the outer surface of the transducer 10
  • the ball plunger 400 which is extended and compressed in the inner surface 21 of the receiving groove 20 is formed.
  • the ball plunger 400 is indented while the ball member 410 is supported by the spring 420 and is compressed in the inner surface 21 of the receiving groove 20 and then elongated in the recessed groove 22 to be predetermined. Can exert a fixed force.
  • the recessed grooves 22 may be formed on the inner surface of the accommodation groove 21, respectively, and the ball plungers 400 may be formed on the outer surface of the transducer 10 on the upper, lower, left, and right sides, respectively.
  • the ball plunger 400 is formed on both the front and the rear of the transducer 10, and both sides of the front and rear surfaces of the transducer 10 face the inner side of the receiving groove 21. Mouth groove 22 may be formed.
  • the transducer 10 is formed on the opposite side of the first, second, third array (210, 220, 230) of the rotary contact (611, 612, 613, receiving groove formed in the body 20 ( The inside of the 21 is provided with a connector having a fixed contact 620 is connected to each of the rotary contacts (611, 612, 613).
  • the transducer 10 rotates and one of the rotary contacts 611, 612, 613 is physically contacted with the fixed contact 620 and interconnected, the ultrasonic wave is applied to the array 210, 220, 230 corresponding to the connected rotary contacts 611, 612, 613. Diagnosis can be performed.
  • a handle may be formed at the rear end of the body 20.
  • the handle has a board that functions as a multiplex or switching function so that the cable for system interconnection is not excessively thickened.
  • the transducer 10 may include a transmitter configured to transmit a signal including unique information of arrays 210, 220, and 230 corresponding to opposite sides of the first, second, and third arrays 210, 220, and 230, respectively. 511, 512, 513, and a receiving unit 520, which receives the signals transmitted from the transmitters 511, 512, 513, and recognizes the information of the arrays 210, 220, 230, inside the receiving groove 21 formed in the body 20. Interface is formed.
  • the transmitters 511, 512, 513 and the receiver 520 perform wireless communication, and the receiver 520 detects adjacent transmitters 511, 512, 513 and performs ultrasound diagnosis using the arrays 210, 220, 230 corresponding to the detected transmitters 511, 512, 513. have.
  • the transmitters 511, 512, 513 and the receiver 520 may include an optical sensor or a photosensor.
  • the transmitters 511, 512, and 513 may be configured as a light emitting device LD for outputting an optical signal
  • the receiver 520 may be configured as a light receiving device PD for receiving an optical signal.
  • various known non-contact sensing means may be applied to the transmitters 511, 512, 513 and the receiver 520.

Abstract

본 발명에서는 다종의 어레이를 하나의 트랜스듀서로 통합할 수 있는 다종의 어레이가 형성된 트랜스듀서 및 그 제조방법, 이와 같은 다종의 어레이가 형성되어하나의 프로브를 통해 여러 개의 어레이를 구동시켜 스캔 가능한 다종의 어레이가 형성된 트랜스듀서를 포함하는 초음파 프로브가 개시된다.

Description

다종의 어레이가 형성된 트랜스듀서 및 그 제조방법, 다종의 어레이가 형성된 트랜스듀서를 포함하는 초음파 프로브
본 발명은 다종의 어레이를 하나의 트랜스듀서로 통합할 수 있는 다종의 어레이가 형성된 트랜스듀서 및 그 제조방법, 이와 같은 다종의 어레이가 형성된 트랜스듀서를 포함하는 초음파 프로브에 관한 것이다.
주지된 바와 같이 초음파 진단장치는 프로브(probe)에 의해 피검사체의 진단 부위에 초음파 신호를 송신한 후, 프로브에 의해 음향 임피던스(acoustic impedance)가 다른 피검사체 내의 조직 경계로부터 반사된 초음파 신호를 수신하여, 진단 부위의 영상 정보를 획득한다. 이러한 영상 정보는 초음파 진단장치의 모니터로 출력되고, 진단자는 모니터로 출력되는 영상 정보를 통해 피검사체에 대한 진단을 실시할 수 있다. 프로브에는 초음파 신호를 피검사체로 송신하고 피검사체로부터 반사된 초음파 신호를 수신하기 위한 트랜스듀서가 구비된다.
일반적으로, 트랜스듀서는 흡음층(backing material) 상에 압전층과 정합층 등이 적층된 어레이가 합착된 구성으로 이루어진다. 압전층은 압전 재료만으로 이루어진 압전소자로 형성되거나, 초음파 송수신 성능을 높이기 위해 압전소자에 폴리머 재료가 복합된 압전 복합체로 형성된다.
그러나 종래의 경우, 하나의 흡음층에 한 종류의 어레이만 형성되어 하나의 트랜스듀서로는 지정된 채널 내에서만 스캔이 이루어지는 한계가 있었다. 또한, 휴대용 진단기의 경우, 진단하고자 하는 장기에 따라 복수의 프로브를 지참해야 하는 불편함이 있었다.
상기와 같은 종래 문제점을 해결하기 위한 본 발명은 다종의 어레이를 하나의 트랜스듀서로 통합시켜 구동할 수 있는 다종의 어레이가 형성된 트랜스듀서 및 그 제조방법을 제공한다.
또한, 하나의 프로브를 통해 여러 개의 어레이를 회전시켜가며 스캔할 수 있어 장비의 최소화를 구현하여 휴대가 용이하고, 프로브 교체에 따른 커넥터의 분리 및 결합이 불필요하며, 결과적으로 사용자 편의성을 도모할 수 있는 다종의 어레이가 형성된 트랜스듀서를 포함하는 초음파 프로브를 제공한다.
상기와 같은 목적을 달성하기 위한 본 발명에 따른 다종의 어레이가 형성된 트랜스듀서는 전극층과 압전층과 접지층과 정합층이 차례대로 적층된 어레이 및 상기 전극층의 일면에 형성되는 배킹재를 포함하고, 상기 어레이는, 상기 배킹재의 상면에 형성되는 제1 어레이와, 상기 배킹재의 일측면에 형성되는 제2 어레이를 포함한다.
본 발명의 일 실시 예에 따른 다종의 어레이가 형성된 트랜스듀서의 제조방법은 전극층과 압전층과 접지층과 정합층을 차례대로 적층시킨 어레이를 복수개 형성하는 단계와, 상기 각각의 어레이를 다이싱(dicing)하는 단계와, 상기 어레이의 다이싱된 공간에 흡음성 물질을 채우고 경화시키는 단계와, 상기 흡음성 물질이 충진된 각각의 어레이를 상기 정합층이 최상단에 위치하도록 배킹재의 상면 또는 하면 또는 양측면 중 적어도 2개 이상의 면에 각각 합착하는 단계와, 상기 각각의 어레이의 최상단에 형성된 정합층의 일면에 렌즈를 형성하는 단계를 포함한다.
본 발명의 일 실시 예에 따른 다종의 어레이가 형성된 트랜스듀서를 포함하는 초음파 프로브는 배킹재와, 전극층과 압전층과 접지층과 정합층이 차례대로 적층된 구조를 취하고 상기 배킹재의 상면 또는 하면 또는 양측면 중 적어도 2개 이상의 면에 합착되는 복수의 어레이를 포함하는 트랜스듀서 및 선단에 내측으로 오목하게 수용홈이 형성되어, 상기 트랜스듀서가 회전 가능하게 장착되는 몸체를 포함한다.
상기와 같은 본 발명에 따르면, 다종의 어레이를 하나의 트랜스듀서로 통합시켜 구동할 수 있고, 하나의 프로브를 통해 여러 개의 어레이를 구동시켜 스캔 가능하기 때문에 커넥터 변경 불필요하고 사용자 편의성을 도모할 수 있다.
도 1은 본 발명의 일 실시 예에 따른 다종의 어레이가 형성된 트랜스듀서의 사시도,
도 2는 도 1의 분리 사시도,
도 3 내지 도 4는 도 1에 있어서, 어레이의 형태를 변형시킨 모습을 보인 사시도,
도 5는 본 발명의 일 실시 예에 따른 다종의 어레이가 형성된 트랜스듀서의 제조방법을 도시한 순서도,
도 6은 본 발명의 일 실시 예에 따른 다종의 어레이가 형성된 트랜스듀서의 제조방법에 따른 제작과정을 개략적으로 보인 도시한 도면,
도 7은 본 발명의 일 실시 예에 따른 다종의 어레이가 형성된 트랜스듀서를 포함하는 초음파 프로브의 사시도,
도 8은 도 7의 A-A'선 단면도,
도 9 내지 도 10은 도 7의 B-B'선 단면도이다.
본 발명에 따른 다종의 어레이가 형성된 트랜스듀서는 하나의 배킹재에 복수의 어레이를 합착시킨 것으로, 그 일 실시예를 도 1 내지 도 2에 나타내 보였다.
도 1은 본 발명의 일 실시 예에 따른 다종의 어레이가 형성된 트랜스듀서의 사시도이고, 도 2는 도 1의 분리 사시도이다.
본 발명의 일 실시 예에 따른 다종의 어레이가 형성된 트랜스듀서(10)는 배킹재(100)와 상기 배킹재(100)의 상면에 합착되는 제1 어레이(210)와, 상기 배킹재(100)의 일측면에 합착되는 제2 어레이(220)를 포함할 수 있다.
변형 예로, 상기 트랜스듀서(10)는 상기 배킹재(100)의 타측면에 합착되는 제3 어레이(230) 또는 상기 배킹재(100)의 하면에 합착되는 제4 어레이(미도시)를 추가로 더 포함할 수 있으며, 상기 배킹재(100)의 상면과 하면은 물론 양측면까지 모두 어레이(210,220,230)가 형성될 수 있다.
또한, 경우에 따라 상기 배킹재(100)의 일측면과 타측면에만 어레이(220,230)가 형성될 수 있고, 상기 배킹재(100)의 상면과 하면에만 어레이(210)가 형성될 수 있다. 상기 각각의 어레이(210,220,230)는 전극층(201)과 압전층(202)과 접지층(203)과 정합층(204)이 차례대로 적층된 구조를 취할 수 있다.
참고로, 본 발명의 대상이 되는 상기 어레이(210,220,230)는 능동소자와 수동소자가 결합되고 채널이 분리된 초음파 센서 부분을 의미하고, 상기 트랜스듀서(10)는 상기와 같은 어레이(210,220,230)에 음향 렌즈 및 하우징(케이스)이 형성된 반제품을 의미한다.
먼저, 상기 압전층(202)은 전압이 인가되면 공진하여 초음파 신호를 발생시키고, 초음파 신호를 수신하게 되면 진동하여 전기적 신호를 발생시킨다. 압전층(202)은 티탄산 지르콘산 납(PZT, lead zirconate titanate)계 등의 압전 세라믹, 압전 단결정 등으로 구성될 수 있다. 그리고, 압전층(202)의 일면에는 증착 등의 방법으로 전극층(201)이 형성된다.
상기 전극층(201)은 제1 전극들이 형성된 플렉시블 인쇄회로기판(FPCB)으로 구성될 수 있다. 이러한 플렉시블 인쇄회로기판(FPCB)을 접착제 등을 이용하여 상기 압전층(202)과 접합할 수 있다. 상기 제1 전극들은 구리, 금, 은 등과 같은 도전성 금속 물질로 각각 구성될 수 있다.
상기 배킹재(100)는 흡음성을 갖도록 구성될 수 있다. 이러한 배킹재(100)는 상측에 적층되는 압전층(202)의 자유 진동을 억제하여 초음파의 펄스 폭을 감소시키며, 압전층(202)의 하측으로 초음파가 불필요하게 전파되는 것을 차단하여 영상 왜곡을 방지할 수 있다. 예컨대, 트랜스듀서를 리니어 어레이 타입(linear array type)으로 구성할 경우, 배킹재(100)는 상면이 편평한 형태를 갖도록 구성될 수 있다. 배킹재(100)는 에폭시 수지에 텅스텐(W), 납(Pb), 산화 아연(ZnO) 등과 같이 밀도가 높은 분말재료를 충전한 재질로 구성될 수 있다.
상기 접지층(203)은 상기 전극층(201)과의 전압차를 형성하기 위해 배치된다.
상기 접지층(203)은 일면에 제2 전극들이 형성된 플렉시블 인쇄회로기판(FPCB)으로 구성될 수 있다. 제2 전극들은 구리, 금, 은 등과 같은 도전성 금속 물질로 각각 구성될 수 있으며, 전술한 제1 전극들과 동일한 패턴으로 형성될 수 있다. 일례로, 제1 전극들이 전기적 신호의 송수신을 위한 신호 전극들로 기능하는 경우, 제2 전극들은 그라운드 전극들로 기능할 수 있다. 물론, 제2 전극들이 신호 전극들로 기능할 수 있으며, 이 경우 제1 전극들이 그라운드 전극들로 기능할 수 있다.
정합층(204)은 압전층(202)과 피검사체 사이의 음향 임피던스 차이를 감소시킬 수 있게 한다. 예컨대, 정합층(204)은 에폭시 수지 등을 포함하여 형성될 수 있으며, 복수의 층들로 구성될 수 있다.
한편, 상기 각각의 어레이(210,220,230)는 채널 분리를 위해 다이싱(dicing)된 후, 분리된 공간에 흡음성 물질이 충진될 수 있고, 정합층(204)의 일면에는 렌즈가 형성될 수 있다. 변형 예로, 상기 각각의 어레이(210,220,230)는 서로 다른 형태로 이루어져 서로 다른 채널에서 동작할 수 있다.
상기의 경우, 프로브를 교체하지 않고 하나의 프로브의 방향만 바꿔가면서 복수의 어레이(210,220,230)를 구동시켜가면서 스캔이 가능한 장점이 있다.
도 3 내지 도 4는 도 1에 있어서, 어레이의 형태를 변형시킨 모습을 보인 사시도이다.
본 발명의 일 실시 예에 따르면, 상기 제1 어레이(210) 또는 제2 어레이(220) 또는 제3 어레이(230) 또는 제4 어레이(미도시)는, 곡면형(convex type) 또는 위상 배열형(phased array type) 또는 선형(linear type) 중 선택된 어느 하나의 타입으로 형성될 수 있다. 따라서, 원하는 타입의 어레이(210,220,230)를 선택해서 스캔을 진행할 수 있다.
도 3의 경우, 제1 어레이(210)는 곡면형(convex type)으로 형성되고, 제2 어레이(220) 및 제3 어레이(230)는 위상 배열형(phased array type)으로 형성된 일례를 도시하였고, 도 4의 경우 제1 어레이(210), 제2 어레이(220), 제3 어레이(230) 모두 선형(linear type)으로 형성된 다른 예를 도시하였다.
도 5는 본 발명의 일 실시 예에 따른 다종의 어레이가 형성된 트랜스듀서의 제조방법을 도시한 순서도이고, 도 6은 본 발명의 일 실시 예에 따른 다종의 어레이가 형성된 트랜스듀서의 제조방법에 따른 제작과정을 개략적으로 보인 도시한 도면이다.
본 발명에 따른 다종 어레이가 형성된 트랜스듀서 제조방법은 전극층(201)과 압전층(202)과 접지층(203)과 정합층(204)을 차례대로 적층시킨 어레이(210,220,230)를 복수개 형성하는 단계(S101)와, 상기 각각의 어레이(210,220,230)를 다이싱(dicing)하는 단계(S102)와, 상기 어레이(210,220,230)의 다이싱된 공간에 흡음성 물질(205)을 채우고 경화시키는 단계(S103)와, 상기 흡음성 물질(205)이 충진된 각각의 어레이(210,220,230)를 상기 정합층(204)이 최상단에 위치하도록 배킹재(100)의 상면 또는 하면 또는 양측면 중 적어도 2개 이상의 면에 각각 합착하는 단계(S104)와, 상기 각각의 어레이(210,220,230)의 최상단에 형성된 정합층(204)의 일면에 렌즈(206)를 형성하는 단계(S105)를 포함한다.
S101 단계에서는 전극층(201)과 압전층(202)과 접지층(203)과 정합층(204)을 차례대로 적층시킨 어레이(210,220,230)를 복수개 형성한다.
상기 압전층(202)은 전압이 인가되면 공진하여 초음파 신호를 발생시키고, 초음파 신호를 수신하게 되면 진동하여 전기적 신호를 발생시킨다. 압전층(202)의 일면에는 증착 등의 방법으로 전극층(201)이 형성된다. 상기 전극층(201)은 제1 전극들이 형성된 플렉시블 인쇄회로기판(FPCB)으로 구성될 수 있다. 상기 배킹재(100)는 흡음성을 갖도록 구성될 수 있다. 이러한 배킹재(100)는 상측에 적층되는 압전층(202)의 자유 진동을 억제하여 초음파의 펄스 폭을 감소시키며, 압전층(202)의 하측으로 초음파가 불필요하게 전파되는 것을 차단하여 영상 왜곡을 방지할 수 있다. 상기 접지층(203)은 상기 전극층(201)과의 전압차를 형성하기 위해 배치된다. 상기 접지층(203)은 일면에 제2 전극들이 형성된 플렉시블 인쇄회로기판(FPCB)으로 구성될 수 있다. 정합층(204)은 압전층(202)과 피검사체 사이의 음향 임피던스 차이를 감소시킬 수 있게 한다.
S102 단계에서는 상기 각각의 어레이(210,220,230)를 다이싱(dicing)하여 복수의 슬릿(207)을 형성한다. 상기 다이싱(dicing) 가공을 통해 어레이(210,220,230)의 채널 분리가 이루어질 수 있다.
S103 단계에서는 상기 다이싱이 완료된 각각의 어레이(210,220,230)의 슬릿(207)에 흡음성 물질(205)을 채우고 경화시킨다.
상기 흡음성 물질은 에폭시(epoxy), 에폭시(epoxy)에 파우더(powder)를 혼합한 물질 및 폴리우레탄(polyurethane) 중 선택된 어느 하나로 형성될 수 있다. 상기 다이싱(dicing) 가공을 통해 복수의 영역으로 분리된 어레이(10)는 흡음성 물질(205)에 의해 상호 지지되면서 분리된 간격을 유지할 수 있다.
S104 단계에서는 상기 흡음성 물질(205)이 충진된 각각의 어레이(210,220,230)를 상기 정합층(204)이 최상단에 위치하도록 배킹재(100)의 상면 또는 하면 또는 양측면 중 적어도 2개 이상의 면에 각각 합착한다. 도면에서는 배킹재(100)의 상면과 양측면에 어레이(210,220,230)가 형성된 예를 들어 설명하지만 본 발명의 범위가 이에 한정되는 것은 아니다.
S105 단계에서는 상기 각각의 어레이(210,220,230)의 최상단에 형성된 정합층(204)의 일면에 렌즈(206)를 형성한다. 상기 렌즈(206)는 상기 흡음성 물질(205)과 동일한 소재로 구비될 수 있으며, 상기 정합층(204)의 표면에 형성되어 피검사체와 접촉하면서 상기 정합층(204)을 마모로부터 보호하는 기능을 한다. 또한 상기 렌즈(206)는 압전층(202)으로부터 발생된 초음파를 집속시키는 역할을 겸할 수 있다.
도 7은 본 발명의 일 실시 예에 따른 다종의 어레이가 형성된 트랜스듀서를 포함하는 초음파 프로브의 사시도이고, 도 8은 도 7의 A-A'선 단면도이며, 도 9 내지 도 10은 도 7의 B-B'선 단면도이다.
본 발명의 일 실시 예에 따른 다종 어레이가 형성된 트랜스듀서를 포함하는 초음파 프로브는 선단에 수용홈(21)이 형성된 몸체(20)와, 상기 몸체(20)의 수용홈(21)에 회전 가능하게 장착된 트랜스듀서(10)를 포함한다.
참고로, 본 발명의 대상이 되는 상기 프로브는 전술한 트랜스듀서(10)와 케이블이 연결된 완제품을 의미한다.
또한, 상기 선단이라 함은 진단이 이루어질 때 트랜스듀서가 몸체(20)의 외부로 노출되는 방향을 치징하고, 후단은 상기 선단의 반대편으로 프로브와 케이블이 연결되는 방향을 의미한다. 따라서, 전술 또는 후술되는 선단과 후단은 상기한 정의에 따라 이해되어야 할 것이다.
상기 트랜스듀서(10)는 배킹재(100)와, 전극층(201)과 압전층(202)과 접지층(203)과 정합층(204)이 차례대로 적층된 구조를 취하고 상기 배킹재(100)의 상면 또는 하면 또는 양측면 중 적어도 2개 이상의 면에 합착되는 복수의 어레이(210,220,230)를 포함한다.
일례로, 상기 어레이(210,220,230)는 상기 배킹재(100)의 상면에 형성되는 제1 어레이(210)와, 상기 배킹재(100)의 일측면에 형성되는 제2 어레이(220)와, 상기 배킹재(100)의 타측면에 형성되는 제3 어레이(230)를 포함할 수 있으며, 이하 전상기한 예를 들어 어레이(210,220,230)를 설명하지만, 본 발명의 범위가 이에 한정되는 것을 아니다.
상기 압전층(202)은 전압이 인가되면 공진하여 초음파 신호를 발생시키고, 초음파 신호를 수신하게 되면 진동하여 전기적 신호를 발생시킨다. 압전층(202)의 일면에는 증착 등의 방법으로 전극층(201)이 형성된다.
상기 전극층(201)은 제1 전극들이 형성된 플렉시블 인쇄회로기판(FPCB)으로 구성될 수 있다. 상기 배킹재(100)는 흡음성을 갖도록 구성될 수 있다. 이러한 배킹재(100)는 상측에 적층되는 압전층(202)의 자유 진동을 억제하여 초음파의 펄스 폭을 감소시키며, 압전층(202)의 하측으로 초음파가 불필요하게 전파되는 것을 차단하여 영상 왜곡을 방지할 수 있다. 상기 접지층(203)은 상기 전극층(201)과의 전압차를 형성하기 위해 배치된다. 상기 접지층(203)은 일면에 제2 전극들이 형성된 플렉시블 인쇄회로기판(FPCB)으로 구성될 수 있다.
정합층(204)은 압전층(202)과 피검사체 사이의 음향 임피던스 차이를 감소시킬 수 있게 한다. 예컨대, 정합층(204)은 에폭시 수지 등을 포함하여 형성될 수 있으며, 복수의 층들로 구성될 수 있다.
한편, 상기 각각의 어레이(210,220,230)는 채널 분리를 위해 다이싱(dicing)된 후, 분리된 공간에 흡음성 물질이 충진될 수 있고, 정합층(204)의 일면에는 렌즈가 형성될 수 있다. 변형 예로, 상기 각각의 어레이(210,220,230)는 서로 다른 형태로 이루어져 서로 다른 채널에서 동작할 수 있다.
한편, 상기 몸체(20)는 선단에 후방으로 요입된 수용홈(21)을 형성하고, 후단에는 상기 수용홈(21)에 회동 가능하게 수용된 트랜스듀서(10)와 연결되는 커넥터가 형성된다.
전술한 바와 같이, 상기 트랜스듀서(10)는 배킹재(100)의 삼면에 각각 어레이(210,220,230)를 형성하기 때문에 상기 트랜스듀서(10)를 교체하지 않고 트랜스듀서(10)를 회전하는 것만으로 다양한 채널에서 작동될 수 있으며, 원하는 채널의 어레이가 상기 수용홈(21)의 개구를 통해 외부로 노출되게 트랜스듀서(10)를 회전시킬 수 있도록 상기 트랜스듀서(10)는 상기 몸체(20)의 수용홈(21)에 360°회전 가능하도록 장착되거나, 양방향 모두 90°회전이 가능하도록 장착될 수 있다.
본 발명의 일 실시 예에 따르면, 상기 트랜스듀서(10)에는 전면과 후면의 중심을 관통하는 회전축(300)이 형성되고, 상기 회전축(300)의 양측 단부는 상기 몸체(20)에 형성된 수용홈(21)의 전방과 후방에 끼워져 상기 트랜스듀서(10)가 좌우로 회동한다.
상기 트랜스듀서(10)의 중심에 배킹재(100)가 위치할 경우, 상기 배킹재(100)에 회전축(300)이 통과되는 관통홀을 형성하고, 관통홀에 회전축(300)을 끼우거나, 상기 관통홀과 회전축(300) 사이에 베어링을 끼워 회전축(300)과 트랜스듀서(10)를 회전가능 하게 연결할 수 있다.
상기 몸체(20)의 수용홈(210)의 내측면에는 상기 회전축(300)의 양측 단부가 끼워지는 고정홈(23)이 형성될 수 있으며, 상기 회전축(300)의 양측 단부와 상기 고정홈(23) 사이에는 회전축(300)을 지지하면서 마찰력을 감소시키기 위해 베어링이 끼워질 수 있다.
본 발명의 일 실시 예에 따르면, 상기 몸체(20)에 형성된 수용홈(21)의 내측면에는 요입홈(22)이 형성되고, 상기 트랜스듀서(10)의 외측면에는 상기 요입홈(22)에서는 신장되었다가 상기 수용홈(20)의 내측면(21)에서는 압축되는 볼플런저(400)가 형성된다. 상기 볼플런저(400)는 볼부재(410)가 스프링(420)에 의해 지지되면서 출몰하며 상기 수용홈(20)의 내측면(21)에서는 압축되었다가 상기 요입홈(22)에서는 신장되어 소정의 고정력을 발휘할 수 있다.
일례로, 상기 수용홈(21)의 내측면에는 상하좌우에 각각 요입홈(22)이 형성되고, 상기 트랜스듀서(10)의 외측면에도 상하좌우에 각각 볼플런저(400)가 형성될 수 있다. 또한, 상기 트랜스듀서(10)의 전면과 후면 모두에 볼플런저(400)가 형성되고, 상기 수용홈(21)의 내측면에도 상기 트랜스듀서(10)의 전면과 후면이 마주하는 측면에 모두 요입홈(22)이 형성될 수 있다.
본 발명의 일 실시 예에 따르면, 상기 트랜스듀서(10)는 제1,2,3 어레이(210,220,230)의 맞은편에 각각 회전접점(611,612,613)을 형성하고, 상기 몸체(20)에 형성된 수용홈(21)의 내측에는 상기 각각의 회전접점(611,612,613)과 접속되는 고정접점(620)이 형성된 커넥터가 구비된다.
따라서, 트랜스듀서(10)가 회전하면서 회전접점(611,612,613) 중 하나가 고정접점(620)과 물리적으로 접촉하면서 상호 접속되면, 접속된 회전접점(611,612,613)에 해당하는 어레이(210,220,230)응 이용해서 초음파 진단을 시행할 수 있다.
이때, 상기 몸체(20)의 후단에는 손잡이가 형성될 수 있다. 상기 손잡이의 내부에는 멀티플렉스(multiflex) 또는 스위칭(switching) 기능을 하는 기판(board)를 내장하여 시스템인터커넥션(system interconnection)을 위한 케이블(cable)이 과도하게 굵어지지 않도록 한다.
본 발명의 일 실시 예에 따르면, 상기 트랜스듀서(10)는, 상기 제1,2,3 어레이(210,220,230)의 맞은편에 각각 대응되는 어레이(210,220,230)의 고유정보가 담긴 신호를 송출하는 송신부(511,512,513)를 형성하고, 상기 몸체(20)에 형성된 수용홈(21)의 내측에는 상기 각각의 송신부(511,512,513)에서 송출된 신호를 수신하여 어레이(210,220,230)의 정보를 인식하는 수신부(520)가 내장된 인터페이스가 형성된다.
상기 송신부(511,512,513)와 수신부(520)는 무선 통신이 이루어져 수신부(520)는 근접한 송신부(511,512,513)를 감지하여 감지된 송신부(511,512,513)에 해당하는 어레이(210,220,230)를 이용해서 초음파 진단을 시행할 수 있다.
본 발명의 일 실시 예에 따르면, 상기 송신부(511,512,513) 및 수신부(520)는 광센서 또는 포토센서를 포함할 수 있다. 일례로, 상기 송신부(511,512,513)는 광신호를 출력하는 발광소자(LD)로 구성되고, 수신부(520)는 광신호를 수신하는 수광소자(PD)로 구성될 수 있다. 이 밖에도 공지의 다양한 비접촉식 감지 수단이 송신부(511,512,513) 및 수신부(520)에 적용될 수 있다.
본 발명은 도면에 도시된 일 실시 예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 당해 기술 분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 실시 예가 가능하다는 점을 이해할 것이다.
따라서 본 발명의 진정한 보호 범위는 첨부된 청구범위에 의해서만 정해져야 할 것이다.

Claims (11)

  1. 전극층과 압전층과 접지층과 정합층이 차례대로 적층된 어레이 및 상기 전극층의 일면에 형성되는 배킹재를 포함하는 트랜스듀서에 있어서,
    상기 어레이는:
    상기 배킹재의 상면에 형성되는 제1 어레이와;
    상기 배킹재의 일측면에 형성되는 제2 어레이를 포함하는 것을 특징으로 하는 다종의 어레이가 형성된 트랜스듀서.
  2. 제 1항에 있어서,
    상기 어레이는 상기 배킹재의 타측면에 형성되는 제3 어레이를 더 포함하는 것을 특징으로 하는 다종의 어레이가 형성된 트랜스듀서.
  3. 제 1항에 있어서,
    상기 어레이는 상기 배킹재의 하면에 형성되는 제4 어레이를 더 포함하는 것을 특징으로 하는 다종의 어레이가 형성된 트랜스듀서.
  4. 제 1항 내지 제 3항 중 어느 한 항에 있어서,
    상기 각각의 어레이는,
    곡면형(convex type) 또는 위상 배열형(phased array type) 또는 선형(linear type) 중 선택된 어느 하나인 것을 특징으로 하는 다종의 어레이가 형성된 트랜스듀서.
  5. 전극층과 압전층과 접지층과 정합층을 차례대로 적층시킨 어레이를 복수개 형성하는 단계;
    상기 각각의 어레이를 다이싱(dicing)하는 단계;
    상기 어레이의 다이싱된 공간에 흡음성 물질을 채우고 경화시키는 단계;
    상기 흡음성 물질이 충진된 각각의 어레이를 상기 정합층이 최상단에 위치하도록 배킹재의 상면 또는 하면 또는 양측면 중 적어도 2개 이상의 면에 합착하는 단계;
    상기 각각의 어레이의 최상단에 형성된 정합층의 일면에 렌즈를 형성하는 단계;를 포함하는 것을 특징으로 하는 다종의 어레이가 형성된 트랜스듀서의 제조방법.
  6. 배킹재와, 전극층과 압전층과 접지층과 정합층이 차례대로 적층된 구조를 취하고 상기 배킹재의 상면 또는 하면 또는 양측면 중 적어도 2개 이상의 면에 합착되는 복수의 어레이를 포함하는 트랜스듀서;
    선단에 내측으로 오목하게 수용홈이 형성되어, 상기 트랜스듀서가 회전 가능하게 장착되는 몸체;를 포함하는 것을 특징으로 하는 다종의 어레이가 형성된 트랜스듀서를 포함하는 초음파 프로브.
  7. 제 6항에 있어서,
    상기 트랜스듀서에는 전면과 후면의 중심을 관통하는 회전축이 형성되고, 상기 회전축의 양측 단부는 상기 몸체에 형성된 수용홈의 전방과 후방에 끼워져 상기 트랜스듀서가 좌우로 회동하는 것을 특징으로 하는 다종의 어레이가 형성된 트랜스듀서를 포함하는 초음파 프로브.
  8. 제 6항에 있어서,
    상기 몸체에 형성된 수용홈의 내측면에는 요입홈이 형성되고, 상기 트랜스듀서의 외측면에는 상기 요입홈에서는 신장되었다가 상기 수용홈의 내측면에서는 압축되는 볼플런저가 형성된 것을 특징으로 하는 다종의 어레이가 형성된 트랜스듀서를 포함하는 초음파 프로브.
  9. 제 6항에 있어서,
    상기 트랜스듀서는, 상기 어레이의 맞은편에 각각 대응되는 어레이의 고유정보가 담긴 신호를 송출하는 송신부를 형성하고, 상기 몸체에 형성된 수용홈의 내측에는 상기 각각의 송신부에서 송출된 신호를 수신하여 어레이를 인식하는 수신부가 내장된 인터페이스가 형성된 것을 특징으로 하는 다종의 어레이가 형성된 트랜스듀서를 포함하는 초음파 프로브.
  10. 제 6항에 있어서,
    상기 송신부 및 수신부는 광센서 또는 포토센서를 포함하는 것을 특징으로 하는 다종의 어레이가 형성된 트랜스듀서를 포함하는 초음파 프로브.
  11. 제 6항에 있어서,
    상기 트랜스듀서는 상기 어레이의 맞은편에 각각 회전접점을 형성하고, 상기 몸체에 형성된 수용홈의 내측에는 상기 각각의 회전접점과 접속되는 고정접점이 형성된 커넥터가 구비된 것을 특징으로 하는 다종의 어레이가 형성된 트랜스듀서를 포함하는 초음파 프로브.
PCT/KR2014/000833 2014-01-29 2014-01-29 다종의 어레이가 형성된 트랜스듀서 및 그 제조방법, 다종의 어레이가 형성된 트랜스듀서를 포함하는 초음파 프로브 WO2015115680A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/KR2014/000833 WO2015115680A1 (ko) 2014-01-29 2014-01-29 다종의 어레이가 형성된 트랜스듀서 및 그 제조방법, 다종의 어레이가 형성된 트랜스듀서를 포함하는 초음파 프로브
KR1020167019084A KR20160102219A (ko) 2014-01-29 2014-01-29 다종의 어레이가 형성된 트랜스듀서 및 그 제조방법, 다종의 어레이가 형성된 트랜스듀서를 포함하는 초음파 프로브

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2014/000833 WO2015115680A1 (ko) 2014-01-29 2014-01-29 다종의 어레이가 형성된 트랜스듀서 및 그 제조방법, 다종의 어레이가 형성된 트랜스듀서를 포함하는 초음파 프로브

Publications (1)

Publication Number Publication Date
WO2015115680A1 true WO2015115680A1 (ko) 2015-08-06

Family

ID=53757242

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/000833 WO2015115680A1 (ko) 2014-01-29 2014-01-29 다종의 어레이가 형성된 트랜스듀서 및 그 제조방법, 다종의 어레이가 형성된 트랜스듀서를 포함하는 초음파 프로브

Country Status (2)

Country Link
KR (1) KR20160102219A (ko)
WO (1) WO2015115680A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102096342B1 (ko) * 2018-04-11 2020-04-02 문지환 위상 배열 구조를 갖는 초음파 프로브
KR102324390B1 (ko) * 2019-08-27 2021-11-11 주식회사 힐세리온 휴대용 하이브리드 초음파 진단장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002186619A (ja) * 2000-12-21 2002-07-02 Aloka Co Ltd 超音波探触子用バッキング及びその製造方法
JP2009291269A (ja) * 2008-06-03 2009-12-17 Panasonic Corp 超音波探触子及び超音波診断装置
KR20110137829A (ko) * 2009-04-14 2011-12-23 마우이 이미징, 인코포레이티드 범용 복수 개구 의료용 초음파 프로브
KR20120082642A (ko) * 2011-01-14 2012-07-24 경북대학교 산학협력단 2차원 배열 초음파 트랜스듀서
JP2013504241A (ja) * 2009-09-03 2013-02-04 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 大きな視野を持つ超音波プローブ及びこのような超音波プローブを製造する方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101105768B1 (ko) * 2005-06-18 2012-01-17 엘지전자 주식회사 이동통신 단말기의 회전 힌지 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002186619A (ja) * 2000-12-21 2002-07-02 Aloka Co Ltd 超音波探触子用バッキング及びその製造方法
JP2009291269A (ja) * 2008-06-03 2009-12-17 Panasonic Corp 超音波探触子及び超音波診断装置
KR20110137829A (ko) * 2009-04-14 2011-12-23 마우이 이미징, 인코포레이티드 범용 복수 개구 의료용 초음파 프로브
JP2013504241A (ja) * 2009-09-03 2013-02-04 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 大きな視野を持つ超音波プローブ及びこのような超音波プローブを製造する方法
KR20120082642A (ko) * 2011-01-14 2012-07-24 경북대학교 산학협력단 2차원 배열 초음파 트랜스듀서

Also Published As

Publication number Publication date
KR20160102219A (ko) 2016-08-29

Similar Documents

Publication Publication Date Title
CN103417247B (zh) 超声换能器和用于制造超声换能器的方法
EP2110186B1 (en) Ultrasound transducer and electronic device
EP2153777A1 (en) Ultrasonic probe and ultrasonic diagnosis device
KR101175537B1 (ko) 스캔헤드가 분리가능한 프로브
CN105310718B (zh) 超声波器件、探测器以及电子设备
JP4547045B2 (ja) 超音波トランスデューサ、電子機器及び超音波内視鏡
JP2013208149A5 (ko)
CN103356232A (zh) 超声波探测器、电子设备及超声波诊断装置
US20060241473A1 (en) Ultrasonic probe and producing method therefor
US20120123272A1 (en) Rotary ultrasound imaging system
WO2013162153A1 (en) Ultrasonic transducer, ultrasonic probe, and ultrasound image diagnosis apparatus
WO2016137023A1 (ko) 복합 구조의 정합층을 가진 초음파 트랜스듀서 및 그 제조방법
US7898154B2 (en) Ultrasound probe and method for manufacturing the same
WO2015056823A1 (ko) 진동 발생 기능을 갖는 초음파 프로브 및 이를 포함하는 초음파 진단장치
WO2014181961A1 (ko) 분리 결합형 초음파 프로브 장치
JPWO2015053044A1 (ja) 超音波内視鏡先端部
WO2013100242A1 (ko) 신호경로가 일체로 된 하우징을 사용하는 초음파 트랜스듀서
WO2015115680A1 (ko) 다종의 어레이가 형성된 트랜스듀서 및 그 제조방법, 다종의 어레이가 형성된 트랜스듀서를 포함하는 초음파 프로브
CN103153194B (zh) 超声诊断设备
WO2016009689A1 (ja) 超音波観察装置
US7249513B1 (en) Ultrasound probe
JP2013144063A (ja) 超音波ユニット、超音波内視鏡、および超音波ユニットの製造方法
CN112600958B (zh) 一种电子设备
WO2014185557A1 (ko) 초음파 트랜스듀서 및 그 제조방법
CN211534501U (zh) 一种通用型超声换能器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14880679

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167019084

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14880679

Country of ref document: EP

Kind code of ref document: A1