WO2015115566A1 - Electrode connection set, method for manufacturing solar cell, solar cell and solar cell module - Google Patents

Electrode connection set, method for manufacturing solar cell, solar cell and solar cell module Download PDF

Info

Publication number
WO2015115566A1
WO2015115566A1 PCT/JP2015/052573 JP2015052573W WO2015115566A1 WO 2015115566 A1 WO2015115566 A1 WO 2015115566A1 JP 2015052573 W JP2015052573 W JP 2015052573W WO 2015115566 A1 WO2015115566 A1 WO 2015115566A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
solar cell
mass
phosphorus
particles
Prior art date
Application number
PCT/JP2015/052573
Other languages
French (fr)
Japanese (ja)
Inventor
修一郎 足立
吉田 誠人
野尻 剛
倉田 靖
祥晃 栗原
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2014017939A external-priority patent/JP2015146357A/en
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Publication of WO2015115566A1 publication Critical patent/WO2015115566A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/14Conductive material dispersed in non-conductive inorganic material
    • H01B1/16Conductive material dispersed in non-conductive inorganic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1876Particular processes or apparatus for batch treatment of the devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to an electrode connection set, a solar cell manufacturing method, a solar cell, and a solar cell module.
  • electrodes are formed on a light receiving surface and a back surface of a solar cell element provided with a semiconductor substrate such as a silicon substrate.
  • the electrode In order to efficiently extract the electric energy converted in the solar cell element by the incidence of light to the outside, the electrode has a sufficiently low volume resistivity (hereinafter also simply referred to as “resistivity”), and the electrode However, it is necessary to form a good ohmic contact with the semiconductor substrate.
  • the electrodes used in the solar cell element include a light receiving surface current collecting electrode, a light receiving surface output extraction electrode, a back surface current collecting electrode and a back surface output extraction electrode, and are usually formed as follows.
  • texture is formed on the light-receiving surface side of the p-type silicon substrate, and then phosphorus or the like is thermally heated at a high temperature.
  • An electrode composition (sometimes referred to as an electrode paste composition) is applied onto the n + -type diffusion layer formed by diffusing on the surface by screen printing or the like, and this is applied in the atmosphere at 800 ° C to An electrode is formed by baking at 900 ° C.
  • the electrode composition forming these electrodes contains conductive metal powder, glass particles, various additives and the like.
  • Silver particles are generally used as the conductive metal powder other than the back surface collecting electrode among the electrodes.
  • the silver particles have a low resistivity of 1.6 ⁇ 10 ⁇ 6 ⁇ ⁇ cm, the silver particles are self-reduced and sintered under the above firing conditions, and have good ohmic contact with the semiconductor substrate. There is an advantage that (electrical connection) can be formed.
  • an electrode formed from a composition for an electrode containing silver particles exhibits excellent characteristics as an electrode of a solar cell element.
  • silver is a precious metal and the bullion itself is expensive, and because of the problem of resources, a proposal for a material to replace silver is desired.
  • a promising material that can replace silver is copper that is applied to semiconductor wiring materials. Copper is abundant in terms of resources, and the cost of bullion is as low as about 1/100 of silver. However, copper is a material that is easily oxidized at a high temperature of 200 ° C. or higher in the atmosphere, and it is difficult to form an electrode in the above process.
  • JP-A-2005-314755 and JP-A-2004-217952 in order to solve the above-mentioned problems of copper, oxidation resistance is imparted to copper using various methods, and high-temperature firing is performed. Copper particles that are difficult to oxidize have been reported.
  • Japanese Patent Application Laid-Open No. 2011-171272 also reports a method of using an electrode paste composition (electrode composition) containing copper-containing particles and glass particles as a method of suppressing copper oxidation during firing. ing.
  • a general solar cell element has a size of, for example, 125 mm ⁇ 125 mm or 156 mm ⁇ 156 mm, and produces a small amount of power alone. Therefore, actually, a plurality of solar cell elements are collectively used as a solar cell and a solar cell module.
  • the solar cell and the solar cell module are connected in series and / or in parallel via a wiring member in which a plurality of solar cell elements are electrically connected to the output extraction electrodes on the light receiving surface and the back surface. Have a structure.
  • the solar cell module since the solar cell module is used in an outdoor environment, the solar cell module includes a plurality of solar cell elements connected via a wiring member as a sealing material in order to ensure resistance to temperature change, wind and rain, snow accumulation, and the like. And sealed. Usually, sealing is performed by a vacuum laminator after a sealing material including tempered glass, an ethylene vinyl acetate (EVA) sheet, a back sheet, and the like is laminated and sandwiched between solar cells having wiring members.
  • a solar cell element means here what has a semiconductor substrate which has a pn junction, and the electrode formed on the semiconductor substrate.
  • a solar cell means the thing of the state by which the wiring member was provided on the solar cell element and the several solar cell element was connected through the wiring member as needed.
  • a solar cell module means what sealed the solar cell provided with the wiring member with the sealing material.
  • solder is used for connection between the electrode of the solar cell element and the wiring member.
  • Solder is widely used because it is excellent in connection reliability such as conductivity and fixing strength, is inexpensive and versatile.
  • lead-free solder has become widespread as a solder used for connection between an electrode of a solar cell element and a wiring member in consideration of environmental considerations.
  • connection methods that do not use solder disclose connection methods that use conductive paste.
  • the present invention has been made in view of the above problems, and uses an electrode connection set and an electrode connection set capable of obtaining excellent adhesion between the electrode and the wiring member and excellent connection reliability. It aims at providing the manufacturing method of a solar cell, a solar cell, and a solar cell module.
  • An electrode connection set comprising an electrode composition comprising phosphorus-tin-containing copper alloy particles and glass particles, and a connection material containing an adhesive.
  • the nickel-containing particles are at least one selected from the group consisting of nickel particles and nickel alloy particles having a nickel content of 1% by mass or more.
  • ⁇ 5> The electrode connection set according to ⁇ 4>, wherein the phosphorus-tin-nickel-containing copper alloy particles have a phosphorus content of 2.0 mass% to 15.0 mass%.
  • ⁇ 6> The electrode connection set according to ⁇ 4> or ⁇ 5>, wherein the phosphorus-tin-nickel-containing copper alloy particles have a tin content of 3.0% by mass to 30.0% by mass.
  • ⁇ 7> The electrode connection set according to any one of ⁇ 4> to ⁇ 6>, wherein the phosphorus-tin-nickel-containing copper alloy particles have a nickel content of 3.0% by mass to 30.0% by mass. .
  • the particle diameter (D50%) when the volume integrated from the small diameter side is 50% is 0.4 ⁇ m to 10.0 ⁇ m ⁇ 1> to ⁇ 7 >
  • the electrode connection set according to any one of the above. ⁇ 9> The electrode connection set according to any one of ⁇ 1> to ⁇ 8>, wherein the glass particles have a softening point of 650 ° C. or lower and a crystallization start temperature exceeding 650 ° C. ⁇ 10>
  • ⁇ 11> The electrode connection set according to any one of ⁇ 1> to ⁇ 10>, wherein the glass particles contain lead (Pb).
  • ⁇ 12> The electrode connection set according to any one of ⁇ 1> to ⁇ 11>, wherein a content ratio of the glass particles is 0.1% by mass to 12% by mass.
  • ⁇ 13> The electrode connection set according to any one of ⁇ 1> to ⁇ 12>, wherein the connection material further includes a curing agent and a film forming material.
  • the connection material further includes conductive particles.
  • the electrode composition further contains a dispersion medium.
  • ⁇ 16> A step of applying the electrode composition onto a semiconductor substrate having a pn junction, a step of heat-treating the semiconductor substrate to which the electrode composition is applied, and forming a copper-containing electrode, and the copper Any one of ⁇ 1> to ⁇ 15>, including a step of laminating the connection material and the wiring member on the containing electrode in this order to obtain a laminate, and a step of heating and pressurizing the laminate.
  • the manufacturing method of the solar cell which manufactures a solar cell using the electrode connection set of claim
  • ⁇ 17> The method for producing a solar cell according to ⁇ 16>, wherein the heat treatment is performed at 450 ° C. to 900 ° C.
  • an electrode connection set capable of obtaining excellent adhesion between the electrode and the wiring member and excellent connection reliability, a solar cell manufacturing method using the electrode connection set, a solar cell, and A solar cell module can be provided.
  • the electrode connection set of the present invention includes an electrode composition including phosphorus-tin-containing copper alloy particles and glass particles, a connection material including an adhesive, and other elements as required. Since the electrode connection set includes the electrode composition and the connection material in combination, an electrode obtained from the electrode composition using the connection material by further preparing a wiring member; The wiring member can be connected. In the solar cell obtained by using this set in which the electrode obtained from the electrode composition and the wiring member are connected, the wiring connection portion between the electrode and the wiring member has high connection strength (adhesion). And high connection reliability.
  • the copper-containing electrode formed by heat treatment (firing) of the electrode composition of the electrode connection set according to the present invention includes a metal part showing an alloy phase containing copper and tin, such as a Cu—Sn alloy phase, and Sn—PO glass. And a glass part containing tin, phosphorus and oxygen.
  • the Cu—Sn alloy phase forms a dense bulk metal portion.
  • gap part in which the metal part and the glass part are not formed arises in an electrode. This is presumably because the reaction during the formation of the bulk metal part and the sintering of the alloy phase proceed dramatically.
  • the glass part is disposed between the semiconductor substrate and the metal part and is also present on the surface of the metal part.
  • At least a part of the void is an open pore when viewed from the surface of the copper-containing electrode, and reaches the inside of the copper-containing electrode or the Sn—PO glass phase formed on the semiconductor substrate side.
  • the performance for example, resistivity
  • connection strength between the copper-containing electrode and the wiring member is improved by a so-called anchor effect in which at least a part of the connection material enters the gap and the copper-containing electrode and the wiring member are dynamically bonded to each other. Conceivable. As a result, it is considered that the reliability of the solar cell is improved and further stable power generation performance is exhibited.
  • the portion where the copper-containing electrode and the wiring member are in contact may have a glass portion interposed between the copper-containing electrode and the wiring member, and the metal portion of the copper-containing electrode and the wiring member are in direct contact with each other. You may do it.
  • the adhesion between the electrode and the wiring member is inferior to the case where the connection material is used.
  • solder or conductive paste does not enter the gap formed in the copper-containing electrode as described above, and the anchor effect cannot be obtained.
  • the said composition for electrodes is not used, a space
  • the high adhesion between the electrode and the wiring member is first manifested by combining the electrode composition and the connection material included in the electrode connection set of the present invention.
  • connection material by combining the electrode composition and the connection material, a reduction in electrical contact resistance can be exhibited separately from the connection strength. This can be considered as follows, for example.
  • the copper-containing electrode obtained from the electrode composition according to the present invention includes a void portion therein, and the connection material enters the void portion when the wiring member is thermocompression bonded.
  • a conductive layer including a metal part, a glass part, and a connection material is formed between the semiconductor substrate and the wiring member.
  • the amount (volume) of the connection material entering the gap is increased as compared with an electrode having a small gap, for example, a conventional silver electrode, and as a result, a connection interposed between the electrode and the wiring member.
  • the material thickness is significantly reduced.
  • the connection material is flow-excluded during the thermocompression bonding of the wiring member, the electrode and the wiring member are in direct contact with part of the conductive layer.
  • the conductivity is improved and the electrical contact resistance between the electrode and the wiring member is reduced.
  • the glass portion may be interposed between the metal portion and the wiring member, or the metal portion and the wiring member may be in direct contact.
  • conductive components such as metal in the electrode and the wiring member are diffused from the contact part, so that the contact part is alloyed and the contact resistance is further reduced. This is also considered as one factor for improving the conductivity.
  • the term “process” is not limited to an independent process, and is included in the term if the intended purpose of the process is achieved even when it cannot be clearly distinguished from other processes. .
  • “ ⁇ ” indicates a range including the numerical values described before and after the minimum and maximum values, respectively.
  • the amount of each component in the composition is the sum of the plurality of substances present in the composition unless there is a specific indication, when there are a plurality of substances corresponding to each component in the composition. Means quantity.
  • the term “layer” includes a configuration formed in a part in addition to a configuration formed in the entire surface when observed as a plan view.
  • the term “lamination” indicates that layers are stacked, and two or more layers may be combined, or two or more layers may be detachable. The present invention will be described below.
  • the electrode connection set includes the electrode composition, the connection material, and other elements as necessary.
  • the electrode composition includes phosphorus-tin-containing copper alloy particles and glass particles.
  • a copper-containing electrode can be formed by applying this electrode composition to a semiconductor substrate having a pn junction and heat-treating (firing) it.
  • a silicon substrate is described as an example of a semiconductor substrate having a pn junction, but the semiconductor substrate in the present invention is not limited to a silicon substrate.
  • Semiconductor substrates other than silicon substrates include gallium phosphide substrates, gallium nitride substrates, diamond substrates, aluminum nitride substrates, indium nitride substrates, gallium arsenide substrates, germanium substrates, zinc selenide substrates, zinc telluride substrates, cadmium telluride substrates.
  • Examples include a substrate, a cadmium sulfide substrate, an indium phosphide substrate, a silicon carbide substrate, a germanium silicide substrate, and a copper indium selenium substrate.
  • the electrode composition By using the electrode composition, the oxidation of copper during heat treatment (firing) in the atmosphere is suppressed, and an electrode having a low resistivity can be formed. Furthermore, formation of a reactant phase between copper and the silicon substrate is suppressed, and a good ohmic contact can be formed between the formed electrode and the silicon substrate. This can be considered as follows, for example.
  • a Cu—Sn alloy phase and a Sn—PO glass phase are formed by the reaction between copper and tin in the phosphorus-tin-containing copper alloy particles. .
  • an electrode having a low resistivity can be formed.
  • the electrode can be heat-treated (fired) at a low temperature, and the effect of reducing the process cost can be expected.
  • Copper and tin in the phosphorus-tin-containing copper alloy particles react with each other in a heat treatment (firing) step to form a Cu—Sn alloy phase as a metal part and a Sn—PO glass phase as a glass part.
  • An electrode is formed.
  • the Cu—Sn alloy phase forms a dense bulk metal portion between the Cu—Sn alloy phases.
  • This bulk metal part is formed in the electrode and functions as a conductive layer, whereby an electrode having a low resistivity is formed.
  • the dense bulk metal portion here means a structure in which massive Cu—Sn alloy phases are in close contact with each other and are continuously formed in three dimensions.
  • the Sn—PO glass phase is formed between the Cu—Sn alloy phase and the silicon substrate.
  • the electrode composition further contains nickel-containing particles, or the phosphorus-tin-containing copper alloy particles further contain nickel.
  • the Cu—Sn alloy phase and nickel further react to form a Cu—Sn—Ni alloy phase. Since this Cu—Sn—Ni alloy phase is formed even at a relatively high temperature such as 800 ° C., an electrode having a low resistivity can be formed while maintaining oxidation resistance even in a heat treatment (firing) step at a higher temperature. Conceivable.
  • the electrode can be maintained while maintaining adhesion to the silicon substrate. A better ohmic contact between the silicon substrate and the silicon substrate can be achieved.
  • the Cu—Sn alloy phase the Cu—Sn—Ni alloy phase obtained by the electrode composition further containing nickel-containing particles or the phosphorus-tin-containing copper alloy particles further containing nickel is Cu— A dense bulk metal portion is formed between the Sn—Ni alloy phases or together with the Cu—Sn alloy phase. Note that even if the Cu—Sn alloy phase and the Cu—Sn—Ni alloy phase coexist in the electrode, it is considered that the function (for example, resistivity) of the electrode is not lowered.
  • the oxidation resistance is at most 300 ° C., and the copper particles are almost oxidized at a high temperature of 800 ° C. to 900 ° C. For this reason, it has not been put to practical use as an electrode for solar cell elements, and further, the additive applied to impart oxidation resistance inhibits the sintering of copper particles, and as a result when silver is used as a result. There is a problem that an electrode having a low resistivity cannot be obtained.
  • a method for suppressing copper oxidation there has been proposed a method through a special manufacturing process in which a conductive composition using copper as a conductive metal powder is heat-treated (fired) in an atmosphere such as nitrogen.
  • an electrode having a low resistivity can be formed without using a special method.
  • the Sn—PO glass phase functions as a barrier layer for preventing mutual diffusion between copper and silicon, a good ohmic contact between the electrode formed by heat treatment (firing) and the silicon substrate can be obtained. It can be considered that it can be achieved. That is, the formation of a reactant phase (Cu 3 Si) formed when a copper-containing electrode and a silicon substrate are directly contacted and heated is suppressed, and silicon performance (eg, pn junction characteristics) is not degraded. It is considered that good ohmic contact can be expressed while maintaining the adhesion between the substrate and the electrode. Conventionally, an ohmic contact property between a silicon substrate and an electrode has been cited as a problem for applying copper to an electrode of a solar cell element.
  • the formation of Cu 3 Si may extend to several ⁇ m from the interface of the silicon substrate, which may cause cracks on the silicon substrate side and cause performance deterioration of the solar cell element.
  • the formed Cu 3 Si lifts the copper-containing electrode, which may hinder the adhesion between the electrode and the silicon substrate, resulting in a decrease in the mechanical strength of the electrode. According to the present invention, since the formation of the reactant phase (Cu 3 Si) can be suppressed, good ohmic contact properties can be exhibited.
  • the electrode composition according to the present invention contains at least one phosphor-tin-containing copper alloy particle.
  • a brazing material called phosphorus copper brazing (phosphorus content: about 7% by mass or less) is known.
  • Phosphorus copper brazing is also used as a bonding agent between copper and copper, but by using copper alloy particles containing phosphorus in the electrode composition according to the present invention, the reducibility of phosphorus to copper oxide is improved. It is possible to form an electrode having excellent oxidation resistance and low resistivity. Furthermore, the electrode can be subjected to low-temperature heat treatment (firing), and the process cost can be reduced.
  • the phosphorus-tin-containing copper alloy particles in the present invention are particles composed of a copper alloy further containing tin in addition to phosphorus.
  • an electrode including a Cu—Sn alloy phase that is a metal part and a Sn—PO glass phase that is a glass part is formed in a heat treatment (firing) step.
  • an electrode having excellent oxidation resistance and low resistivity utilizing the reducibility of the phosphorus atom in the phosphorus-tin-containing copper alloy particles to the copper oxide. Is formed.
  • a Cu—Sn alloy phase and a Sn—PO glass phase are formed in the electrode while keeping the resistivity low.
  • the Sn—PO glass phase functions as a barrier layer for preventing mutual diffusion between copper and silicon, so that a reactant phase is formed between the copper-containing electrode and the silicon substrate. It can be considered that two characteristic mechanisms of suppressing and forming a good ohmic contact between the copper-containing electrode and the silicon substrate can be realized at once in a heat treatment (firing) step.
  • the phosphorus content contained in the phosphorus-tin-containing copper alloy is not particularly limited. From the viewpoint of oxidation resistance and electrode resistivity, the phosphorus content is preferably 2% by mass to 15% by mass, more preferably 3% by mass to 12% by mass, and more preferably 4% by mass to 10%. More preferably, it is at most mass%. When the phosphorus content in the phosphorus-tin-containing copper alloy is 15% by mass or less, a lower resistivity can be achieved, and the productivity of the phosphorus-tin-containing copper alloy particles tends to be excellent. Further, when the phosphorus content contained in the phosphorus-tin-containing copper alloy is 2% by mass or more, more excellent oxidation resistance tends to be achieved.
  • the tin content contained in the phosphorus-tin-containing copper alloy when using the phosphorus-tin-containing copper alloy particles in the present invention is not particularly limited. From the viewpoint of oxidation resistance and reactivity with copper and phosphorus during heat treatment (firing), it is preferably 5% by mass to 30% by mass, more preferably 6% by mass to 25% by mass, More preferably, it is 7 mass% or more and 20 mass% or less.
  • the tin content in the phosphorus-tin-containing copper alloy is 30% by mass or less, a sufficient volume of the Cu—Sn alloy phase can be formed, and the resistivity of the electrode tends to decrease. Moreover, it exists in the tendency which can produce reaction with copper and phosphorus more uniformly by making content rate of tin into 5 mass% or more.
  • the combination of phosphorus content and tin content contained in the phosphorus-tin-containing copper alloy includes oxidation resistance, electrode resistivity, and heat treatment (firing).
  • the phosphorus content is preferably 2% by mass or more and 15% by mass or less, and the tin content is preferably 5% by mass or more and 30% by mass or less. More preferably, the content is 3% by mass or more and 12% by mass or less, and the tin content is more preferably 6% by mass or more and 25% by mass or less, and the phosphorus content is 4% by mass or more and 10% by mass or less. Is more preferably 7% by mass or more and 20% by mass or less.
  • the phosphorus-tin-containing copper alloy in the present invention further contains at least one metal atom selected from the group consisting of silver, manganese and cobalt (hereinafter also referred to as “specific metal atom”) in addition to phosphorus and tin.
  • a copper alloy is also preferred.
  • the specific metal atom By further including the specific metal atom, a lower resistance electrode tends to be formed.
  • the content rate of the specific metal atom in the copper alloy containing phosphorus, tin, and the specific metal atom can be appropriately selected according to the type and purpose of the specific metal atom.
  • the content of the specific metal atom can be, for example, 0.05% by mass to 20% by mass, preferably 0.1% by mass to 15% by mass, and 1% by mass to 10% by mass. Is more preferable.
  • the content of the specific metal atom is 0.05% by mass or more, the melting point of the alloy particles can be further lowered, and the sintering reaction of the alloy particles in the heat treatment (firing) step tends to further progress. Further, when the content of the specific metal atom is 20% by mass or less, the oxidation resistance is improved and an electrode having a low resistivity tends to be formed.
  • the phosphorus-tin-containing copper alloy is a copper alloy containing phosphorus and tin, but may further contain other atoms inevitably mixed other than silver, manganese and cobalt.
  • Other atoms that are inevitably mixed include, for example, Sb, Si, K, Na, Li, Ba, Sr, Ca, Mg, Be, Zn, Pb, Cd, Tl, V, Al, Zr, W, and Mo.
  • Ti, Ni and Au can be mentioned.
  • the content of other atoms inevitably mixed in the phosphorus-tin-containing copper alloy particles can be, for example, 3% by mass or less in the phosphorus-tin-containing copper alloy particles, From the standpoint of the property and resistivity of the electrode, it is preferably 1% by mass or less.
  • the content of each element in the phosphorus-tin-containing copper alloy constituting the phosphorus-tin-containing copper alloy particles can be measured by quantitative analysis using an inductively coupled plasma mass spectrometry (ICP-MS) method.
  • ICP-MS inductively coupled plasma mass spectrometry
  • the content of each element in the phosphorus-tin-containing copper alloy constituting the phosphorus-tin-containing copper alloy particles can also be measured by a quantitative analysis by an energy dispersive X-ray spectroscopy (EDX) method.
  • EDX energy dispersive X-ray spectroscopy
  • phosphorus-tin-containing copper alloy particles are embedded in a resin, cured, and then cut with a diamond cutter or the like, and polished with water-resistant abrasive paper, polishing liquid, or the like as necessary. It is preferable to analyze the cross section of certain phosphorus-tin-containing copper alloy particles. The reason can be considered as follows, for example.
  • the phosphorus-tin-containing copper alloy particles of the present invention contain phosphorus, the phosphorus-tin-containing copper alloy particles may absorb moisture depending on the handling environment, and as a result, the surface of the particles may be oxidized. is there. The film formed by this oxidation is formed on the very surface and is thought to have little effect on the quality of the phosphorus-tin-containing copper alloy particles. However, due to the increase in the oxygen content on the particle surface, etc. May cause a difference in the content of each metal element. Therefore, when measuring the content of each element in the phosphorus-tin-containing copper alloy particles, it is considered preferable to measure the particle cross section instead of the particle surface.
  • the phosphorus-tin-containing copper alloy particles may be used singly or in combination of two or more.
  • “use in combination of two or more types of phosphorus-tin-containing copper alloy particles” means two or more types of phosphorus-tin having the same particle shape such as the particle size and particle size distribution described later, although the component ratio is different.
  • using a combination of copper alloy particles containing two or more types of phosphorus-tin containing copper alloy particles having the same component ratio but different particle shapes using two or more types of component ratios and particle shapes are different.
  • a combination of phosphorus-tin-containing copper alloy particles may be used.
  • the particle diameter of the phosphorus-tin-containing copper alloy particles is not particularly limited, but the particle diameter (D50%) when the volume integrated from the small diameter side is 50% in the particle size distribution is 0.4 ⁇ m to 10 ⁇ m. Is preferably 1 ⁇ m to 7 ⁇ m.
  • the D50% of the phosphorus-tin-containing copper alloy particles is 0.4 ⁇ m or more, the oxidation resistance tends to be more effectively improved.
  • the D50% of the phosphorus-tin-containing copper alloy particles is 10 ⁇ m or less, the contact area between the phosphorus-tin-containing copper alloy particles in the electrode is increased, and the resistivity tends to be more effectively reduced.
  • the particle size (D50%) of the phosphorus-tin-containing copper alloy particles is measured by a laser diffraction particle size distribution analyzer (for example, Beckman Coulter, Inc., LS 13 320 type laser scattering diffraction particle size distribution analyzer).
  • a laser diffraction particle size distribution analyzer for example, Beckman Coulter, Inc., LS 13 320 type laser scattering diffraction particle size distribution analyzer.
  • phosphorus-tin-containing copper alloy particles are added in a range of 0.01 mass% to 0.3 mass% to 125 g of a solvent (terpineol) to prepare a dispersion. About 100 ml of this dispersion is poured into a cell and measured at 25 ° C.
  • the particle size distribution is measured as a solvent refractive index of 1.48.
  • the shape of the phosphorus-tin-containing copper alloy particles is not particularly limited, and may be any of a substantially spherical shape, a flat shape, a block shape, a plate shape, a scale shape, and the like. From the viewpoint, it is preferably substantially spherical, flat or plate-like.
  • the phosphorus-tin-containing copper alloy can be produced by a commonly used method.
  • the phosphorus-tin-containing copper alloy particles should be prepared using a normal method of preparing metal powder using a phosphorus-tin-containing copper alloy prepared so as to have a desired phosphorus content and tin content. Can do. For example, it can be manufactured by a conventional method using a water atomizing method. For details of the water atomization method, the description of Metal Handbook (Maruzen Co., Ltd. Publishing Division) can be referred to.
  • a desired phosphorus-tin-containing copper alloy particle is manufactured by dissolving a phosphorus-tin-containing copper alloy and pulverizing this by nozzle spraying, and then drying and classifying the obtained powder. be able to.
  • phosphorus-tin-containing copper alloy particles having a desired particle diameter can be produced by appropriately selecting the classification conditions.
  • the phosphorus-tin-containing copper alloy particles may further contain nickel, so that the phosphorus-tin-containing copper alloy particles may be used as the phosphorus-tin-nickel-containing copper alloy particles.
  • the phosphorus-tin-nickel-containing copper alloy particles are copper alloy particles further containing tin and nickel in addition to phosphorus.
  • the electrode composition of the present invention contains phosphorus-tin-nickel-containing copper alloy particles as metal particles, so that first, a copper oxide of phosphorus atoms in the phosphorus-tin-nickel-containing copper alloy particles An electrode having excellent oxidation resistance and low resistivity is formed by utilizing the reducing property against the above. Further, since the alloy particles contain tin and nickel, the Cu—Sn alloy phase, or the Cu—Sn—Ni alloy phase and the Sn—PO glass phase are kept in the electrode while keeping the resistivity of the electrode low. It is formed.
  • the Sn—P—O glass phase is formed in a three-dimensional continuous structure of a Cu—Sn alloy phase or a Cu—Sn—Ni alloy phase, so that the electrode itself has a dense structure, and as a result, the electrode An improvement in strength is obtained.
  • the Sn—PO glass phase functions as a barrier layer for preventing mutual diffusion between copper and silicon, a good ohmic contact is formed between the copper-containing electrode and the silicon substrate. It can be considered that such a characteristic mechanism can be realized collectively in the heat treatment (firing) step.
  • the phosphorus content contained in the phosphorus-tin-nickel-containing copper alloy constituting the phosphorus-tin-nickel-containing copper alloy particles in the present invention is not particularly limited. From the viewpoint of improving oxidation resistance (reducing the resistivity of the electrode) and forming ability of the Sn—PO glass phase, the phosphorus content is preferably 2.0% by mass to 15.0% by mass. More preferably, the content is from 5% by mass to 12.0% by mass, and even more preferably from 3.0% by mass to 10.0% by mass. When the phosphorus content in the phosphorus-tin-nickel-containing copper alloy is 15.0% by mass or less, a lower resistivity can be achieved, and the productivity of the phosphorus-tin-nickel-containing copper alloy particles can be improved.
  • the phosphorus content in the phosphorus-tin-nickel-containing copper alloy is 2.0 mass% or more, the Sn—PO glass phase can be effectively formed, and the adhesion to the semiconductor substrate is improved. Therefore, an electrode excellent in ohmic contact tends to be formed.
  • the tin content contained in the phosphorus-tin-nickel-containing copper alloy constituting the phosphorus-tin-nickel-containing copper alloy particles is not particularly limited. From the viewpoints of oxidation resistance, reactivity with copper and nickel during heat treatment (firing) and ability to form a Sn—PO glass phase, the tin content is 3.0% by mass to 30.0% by mass. It is preferably 4.0% by mass to 25.0% by mass, more preferably 5.0% by mass to 20.0% by mass. When the tin content in the phosphorus-tin-nickel-containing copper alloy is 30.0% by mass or less, a Cu—Sn—Ni alloy phase having a lower resistivity tends to be formed.
  • the tin content in the phosphorus-tin-nickel-containing copper alloy is 3.0% by mass or more, the reactivity with copper and nickel during heat treatment (firing) and the reactivity with phosphorus are improved.
  • a Cu—Sn—Ni alloy phase and a Sn—P—O glass phase can be formed effectively.
  • the nickel content contained in the phosphorus-tin-nickel-containing copper alloy constituting the phosphorus-tin-nickel-containing copper alloy particles is not particularly limited.
  • the nickel content in the phosphorus-tin-nickel-containing copper alloy is preferably 3.0% by mass to 30.0% by mass, more preferably 3.5% by mass to 25.0% by mass. More preferably, the content is 4.0% by mass to 20.0% by mass.
  • the nickel content in the phosphorus-tin-nickel-containing copper alloy is 30.0% by mass or less, a Cu—Sn—Ni alloy phase having a low resistivity tends to be formed more effectively.
  • oxidation resistance particularly in a high temperature region of 500 ° C. or more tends to be improved.
  • the combination of phosphorus content, tin content, and nickel content contained in the phosphorus-tin-nickel-containing copper alloy constituting the phosphorus-tin-nickel-containing copper alloy particles includes oxidation resistance and electrode resistivity.
  • the phosphorus content is 2.0 mass.
  • % To 15.0% by mass, a tin content of 3.0% to 30.0% by mass, and a nickel content of 3.0% to 30.0% by mass
  • the phosphorus content is 2.5% by mass to 12.0% by mass
  • the tin content is 4.0% by mass to 25.0% by mass
  • the nickel content is 3.5% by mass. More preferably, the content is from 2% by mass to 25.0% by mass, and the phosphorus content is 3. Mass% to 10.0 mass%
  • tin content is 5.0 mass% to 20.0 mass%
  • nickel content is 4.0 mass% to 20.0 mass% More preferably.
  • the phosphorus-tin-nickel-containing copper alloy particles are copper alloy particles containing phosphorus, tin, and nickel, but may further contain other atoms inevitably mixed therein. Examples of other atoms inevitably mixed include Ag, Mn, Sb, Si, K, Na, Li, Ba, Sr, Ca, Mg, Be, Zn, Pb, Cd, Tl, V, Al, and Zr. , W, Mo, Ti, Co, Au and Bi.
  • the content of other atoms inevitably mixed in the phosphorus-tin-nickel-containing copper alloy particles can be, for example, 3% by mass or less in the phosphorus-tin-nickel-containing copper alloy particles, From the viewpoint of reducing the resistivity and the electrode resistivity, it is preferably 1% by mass or less.
  • Phosphorus-tin-nickel-containing copper alloy particles may be used singly or in combination of two or more.
  • “use in combination of two or more types of phosphorus-tin-nickel-containing copper alloy particles” means two or more types of phosphorus having the same particle shape such as the particle size and particle size distribution described later, although the component ratio is different.
  • the component ratio and particle shape are An example is a combination of two or more types of phosphorus-tin-nickel-containing copper alloy particles that are different from each other.
  • the particle diameter of the phosphorus-tin-nickel-containing copper alloy particles is not particularly limited.
  • the particle diameter (D50%) is preferably 0.4 ⁇ m to 10 ⁇ m, and more preferably 1 ⁇ m to 7 ⁇ m.
  • the oxidation resistance tends to be more effectively improved.
  • the particle diameter of the phosphorus-tin-nickel-containing copper alloy particles is the same as the method for measuring the particle diameter of the phosphorus-tin-containing copper alloy particles.
  • the shape of the phosphorus-tin-nickel-containing copper alloy particles is not particularly limited, and may be any of a substantially spherical shape, a flat shape, a block shape, a plate shape, a scale shape, and the like. From the viewpoint of oxidation resistance and low resistivity, the shape of the phosphorus-tin-nickel-containing copper alloy particles is preferably substantially spherical, flat or plate-like.
  • the phosphorus-tin-nickel-containing copper alloy can be produced by a commonly used method, and the phosphorus-tin-nickel-containing copper alloy particles have a desired phosphorus content, tin content, and nickel content.
  • the phosphor-tin-nickel-containing copper alloy prepared as described above can be used in the same manner as the phosphor-tin-containing copper alloy particles.
  • Nickel-containing particles When the electrode composition used in the present invention contains phosphorus-tin-containing copper alloy particles, it is preferable that nickel-containing particles are further included as metal particles. When the electrode composition used in the present invention contains nickel-containing particles in addition to the phosphorus-tin-containing copper alloy particles, oxidation resistance at higher temperatures can be expressed in the heat treatment (firing) step. It tends to be possible. That is, when the electrode composition used in the present invention contains nickel-containing particles, the electrode composition tends to be heat-treated (fired) at a higher temperature.
  • the electrode composition used in the present invention contains nickel-containing particles, it may be used in combination with phosphorus-tin-containing copper alloy particles or in combination with phosphorus-tin-nickel-containing copper alloy particles. . Further, when the electrode composition used in the present invention contains phosphorus-tin-nickel-containing copper alloy particles, it is not always necessary to use them together with the nickel-containing particles.
  • the nickel-containing particles are not particularly limited as long as the particles contain nickel. Among these, at least one selected from nickel particles and nickel alloy particles is preferable, and at least one selected from nickel particles and nickel alloy particles having a nickel content of 1% by mass or more is preferable.
  • the purity of nickel in the nickel particles is not particularly limited. For example, the purity of the nickel particles can be 95% by mass or more, preferably 97% by mass or more, and more preferably 99% by mass or more.
  • the type of alloy is not limited as long as the nickel alloy particles are alloy particles containing nickel.
  • the nickel alloy particles preferably have a nickel content of 1% by mass or more. Is more preferably nickel alloy particles having a nickel content of 5% by mass or more, more preferably nickel alloy particles having a nickel content of 10% by mass or more. Particularly preferred are alloy particles. There is no particular limitation on the upper limit of the nickel content.
  • nickel alloy constituting the nickel alloy particles examples include a Ni—Fe alloy, a Ni—Cu alloy, a Ni—Cu—Zn alloy, a Ni—Cr alloy, and a Ni—Cr—Ag alloy.
  • nickel alloy particles containing Ni-58Fe, Ni-75Cu, Ni-6Cu-20Zn, etc. react more uniformly with phosphorus-tin-containing copper alloy particles or phosphorus-tin-nickel-containing copper alloy particles during heat treatment (firing). It can be preferably used in that it can be used.
  • the nickel alloy contains A mass% of element X, B mass% of element Y, and C mass% of element Z in the nickel alloy. It shows that.
  • these nickel-containing particles may be used alone or in combination of two or more.
  • “use in combination of two or more kinds of nickel-containing particles” means that two or more kinds of nickel-containing particles having the same particle shape such as particle diameter and particle size distribution described later are used in combination although the component ratio is different. In this case, there are cases where two or more kinds of nickel-containing particles having the same component ratio but different particle shapes are used in combination, and two or more kinds of nickel-containing particles having different component ratios and particle shapes are used in combination. .
  • the nickel-containing particles may further contain other atoms inevitably mixed.
  • other atoms inevitably mixed include Ag, Mn, Sb, Si, K, Na, Li, Ba, Sr, Ca, Mg, Be, Zn, Pb, Cd, Tl, V, Al, and Zr. , W, Mo, Ti, Co, Sn, and Au.
  • the content of other atoms inevitably mixed in the nickel-containing particles can be, for example, 3% by mass or less in the nickel-containing particles, the melting point, and the phosphorus content during heat treatment (firing). From the viewpoint of reactivity with tin-containing copper alloy particles or phosphorus-tin-nickel-containing copper alloy particles, the content is preferably 1% by mass or less.
  • the particle diameter of the nickel-containing particles is not particularly limited, and the particle diameter (D50%) is preferably 0.5 ⁇ m to 20 ⁇ m, more preferably 1 ⁇ m to 15 ⁇ m, and more preferably 3 ⁇ m to 15 ⁇ m. Further preferred. When the particle diameter (D50%) of the nickel-containing particles is 0.5 ⁇ m or more, the oxidation resistance of the nickel-containing particles themselves tends to be improved.
  • the particle diameter (D50%) of the nickel-containing particles is 20 ⁇ m or less, the contact area between the nickel-containing particles and the phosphorus-tin-containing copper alloy particles or the phosphorus-tin-nickel-containing copper alloy particles is increased, The reaction during heat treatment (firing) with phosphorus-tin-containing copper alloy particles or phosphorus-tin-nickel-containing copper alloy particles tends to proceed effectively.
  • the method for measuring the particle diameter (D50%) of the nickel-containing particles is the same as the method for measuring the particle diameter of the phosphorus-tin-containing copper alloy particles.
  • the shape of the nickel-containing particles is not particularly limited, and may be any of a substantially spherical shape, a flat shape, a block shape, a plate shape, a scale shape, and the like. From the viewpoint of oxidation resistance and reduction in the resistivity of the electrode, it is preferably substantially spherical, flat or plate-like.
  • the content rate of the nickel containing particle in the case where the composition for electrodes contains nickel containing particle is not particularly limited.
  • the content of the nickel-containing particles is 10% by mass or more and 70% when the total content of the phosphorus-tin-containing copper alloy particles or the phosphorus-tin-nickel-containing copper alloy particles and the nickel-containing particles is 100% by mass. It is preferably at most mass%, more preferably at least 12 mass% and at most 55 mass%, further preferably at least 15 mass% and at most 50 mass%, and at least 15 mass% and at most 35 mass%. Is particularly preferred.
  • the content of the nickel-containing particles is 10% by mass or more, the Cu—Sn—Ni alloy phase tends to be formed more uniformly. Further, when the content of the nickel-containing particles is 70% by mass or less, a sufficient volume of the Cu—Sn—Ni alloy phase can be formed, and the resistivity of the electrode tends to be further reduced.
  • the total content of the phosphorus-tin-containing copper alloy particles (or phosphorus-tin-nickel-containing copper alloy particles) and the nickel-containing particles added as necessary in the composition for an electrode depends on oxidation resistance and electrode resistance. From the viewpoint of rate, it is preferably 60% by mass or more and 94% by mass or less, and more preferably 64% by mass or more and 88% by mass or less.
  • the composition for electrodes used in the present invention contains glass particles.
  • adhesion between the electrode and the silicon substrate is improved during heat treatment (firing).
  • the silicon nitride layer as the antireflection layer is removed by so-called fire-through during heat treatment (firing), and an ohmic contact between the electrode and the silicon substrate is formed.
  • the glass particles are preferably glass particles containing glass having a softening temperature of 650 ° C. or lower and a crystallization start temperature exceeding 650 ° C. from the viewpoint of adhesion to a silicon substrate and electrode resistivity.
  • the softening temperature and the crystallization start temperature are measured by a usual method using a differential thermal-thermogravimetric analyzer (TG-DTA).
  • the glass particles soften and melt at the electrode formation temperature, oxidize the contacted silicon nitride layer, and take in oxidized silicon dioxide.
  • glass particles usually used in the technical field can be used without particular limitation.
  • glass particles contained in the electrode composition preferably contain lead from the viewpoint that silicon dioxide can be efficiently incorporated.
  • the glass containing lead include those described in Japanese Patent No. 3050064.
  • the lead-free glass include the lead-free glass described in paragraphs 0024 to 0025 of JP-A-2006-313744 and the lead-free glass described in JP-A-2009-188281. It is also preferable to select an appropriate material from free glass and apply it to the electrode composition used in the present invention.
  • the electrode composition when used as an electrode other than the electrode on the light-receiving surface side of the solar cell, for example, a back surface output extraction electrode, it includes a glass having a softening temperature of 650 ° C. or lower and a crystallization start temperature exceeding 650 ° C. If it is a glass particle, the glass particle which does not contain the component required for fire through like the said lead can be used.
  • the softening point of the glass particles is more preferably 583 ° C. or lower.
  • glass component constituting the glass particles used in the electrode composition examples include silicon oxide (SiO or SiO 2 ), phosphorus oxide (P 2 O 5 ), aluminum oxide (Al 2 O 3 ), boron oxide ( B 2 O 3), vanadium oxide (V 2 O 5), potassium oxide (K 2 O), bismuth oxide (Bi 2 O 3), sodium oxide (Na 2 O), lithium oxide (Li 2 O), barium oxide (BaO), strontium oxide (SrO), calcium oxide (CaO), magnesium oxide (MgO), beryllium oxide (BeO), zinc oxide (ZnO), lead oxide (PbO), cadmium oxide (CdO), tin oxide (SnO) ), Zirconium oxide (ZrO 2 ), tungsten oxide (WO 3 ), molybdenum oxide (MoO 3 ), lanthanum oxide (La 2 O 3 ), niobium oxide (Nb 2 O 5 ), tantalum oxide (Ta 2 O 5 ), yttrium
  • glass particles containing at least one selected from the group consisting of SiO 2 , P 2 O 5 , Al 2 O 3 , B 2 O 3 , V 2 O 5 , Bi 2 O 3 , ZnO and PbO are used. It is more preferable to use glass particles containing at least one selected from the group consisting of SiO 2 , Al 2 O 3 , B 2 O 3 , Bi 2 O 3 and PbO. In the case of such glass particles, the softening temperature tends to decrease more effectively.
  • the wettability with the phosphorus-tin-containing copper alloy particles or the phosphorus-tin-nickel-containing copper alloy particles and the nickel-containing particles added as necessary is improved, the inter-particles in the heat treatment (firing) process are improved. Sintering progresses and it tends to be possible to form an electrode with a lower resistivity.
  • glass particles containing phosphorus oxide (phosphoric acid glass particles, P 2 O 5 glass particles, etc.) are preferable, and vanadium oxide is further included in addition to phosphorus oxide. More preferred are glass particles (P 2 O 5 —V 2 O 5 glass particles).
  • vanadium oxide By further containing vanadium oxide, the oxidation resistance is further improved, and the resistivity of the electrode tends to be further reduced. This can be attributed to, for example, that the softening temperature of the glass is lowered by further containing vanadium oxide.
  • the vanadium oxide content is preferably 1% by mass or more based on the total mass of the glass. % To 70% by mass is more preferable.
  • the particle diameter (D50%) in case an integrated volume is 50% is 0.5 micrometer or more and 10 micrometers or less. It is preferably 0.8 ⁇ m or more and 8 ⁇ m or less.
  • the particle diameter of the glass particles is 0.5 ⁇ m or more, the workability during the production of the electrode composition tends to be improved.
  • the particle diameter of the glass particles is 10 ⁇ m or less, the glass particles can be more uniformly dispersed in the electrode composition, and fire-through can be efficiently generated in the heat treatment (firing) step, and the adhesion to the silicon substrate is also improved. It tends to improve.
  • the method for measuring the particle size (D50%) of the glass particles is the same as the method for measuring the particle size of the phosphorus-tin-containing copper alloy particles. Moreover, there is no restriction
  • the content of the glass particles is preferably 0.1% by mass to 12% by mass, more preferably 0.5% by mass to 10% by mass, based on the total mass of the electrode composition. More preferably, it is from 9% to 9% by mass.
  • the ratio of the content of glass particles to the total content of metal particles is preferably 0.01 to 0.18, preferably 0.03 to 0. .15 is more preferable. Inclusion of glass particles in such a content ratio tends to more effectively achieve oxidation resistance, lower electrode resistivity and lower contact resistance, and promote the reaction between the metal particles. It is in.
  • the electrode composition used in the present invention may contain a dispersion medium.
  • the liquid physical properties (for example, viscosity and surface tension) of the electrode composition can be adjusted to the liquid physical properties required depending on the application method when applying to a semiconductor substrate or the like.
  • the dispersion medium include at least one selected from the group consisting of a solvent and a resin.
  • the solvent is not particularly limited, and is a hydrocarbon solvent such as hexane, cyclohexane or toluene, a halogenated hydrocarbon solvent such as dichloroethylene, dichloroethane or dichlorobenzene, tetrahydrofuran, furan, tetrahydropyran, pyran, dioxane, or 1,3-dioxolane.
  • a hydrocarbon solvent such as hexane, cyclohexane or toluene
  • a halogenated hydrocarbon solvent such as dichloroethylene, dichloroethane or dichlorobenzene, tetrahydrofuran, furan, tetrahydropyran, pyran, dioxane, or 1,3-dioxolane.
  • Cyclic ether solvents such as trioxane, amide solvents such as N, N-dimethylformamide and N, N-dimethylacetamide, sulfoxide solvents such as dimethyl sulfoxide and diethyl sulfoxide, ketone solvents such as acetone, methyl ethyl ketone, diethyl ketone and cyclohexanone, ethanol Alcohol solvents such as 2-propanol, 1-butanol, diacetone alcohol, 2,2,4-trimethyl-1,3-pentanediol monoacetate, 2,2,4- Limethyl-1,3-pentanediol monopropionate, 2,2,4-trimethyl-1,3-pentanediol monobutyrate, 2,2,4-trimethyl-1,3-pentanediol monoisobutyrate, Ester solvents of polyhydric alcohols such as 2,2,4-triethyl-1,3-pentanedi
  • the solvent is a group consisting of a polyhydric alcohol ester solvent, a terpene solvent, and a polyhydric alcohol ether solvent from the viewpoint of application characteristics (applicability or printability) when applying the electrode composition onto a semiconductor substrate. It is preferably at least one selected from the group consisting of polyhydric alcohol ester solvents and terpene solvents, and more preferably at least one selected from the group consisting of terpene solvents. In the electrode composition used in the present invention, the solvent may be used alone or in combination of two or more.
  • any resin that is usually used in the technical field can be used without particular limitation as long as it can be thermally decomposed by heat treatment (firing), and even a natural polymer compound can be a synthetic polymer compound. May be.
  • cellulose resins such as methyl cellulose, ethyl cellulose, carboxymethyl cellulose, nitrocellulose, polyvinyl alcohol resins, polyvinyl pyrrolidone resins, acrylic resins, vinyl acetate-acrylic acid ester copolymers, butyral resins such as polyvinyl butyral, phenol-modified alkyds, etc.
  • alkyd resins such as castor oil fatty acid-modified alkyd resins, epoxy resins, phenol resins, rosin ester resins and the like.
  • the resin when the resin is contained in the electrode composition, it is preferably at least one selected from the group consisting of a cellulose resin and an acrylic resin from the viewpoint of disappearance in heat treatment (firing).
  • the resins may be used alone or in combination of two or more.
  • the weight average molecular weight of the resin when the resin is contained in the electrode composition is not particularly limited.
  • the weight average molecular weight of the resin is preferably 5,000 or more and 500,000 or less, and more preferably 10,000 or more and 300,000 or less. It exists in the tendency which can suppress that the viscosity of the composition for electrodes increases that the weight average molecular weight of the said resin is 5000 or more. Further, if the weight average molecular weight of the resin is 5000 or more, it is considered that the particles can be made difficult to aggregate due to the steric repulsion when the resin is adsorbed to the metal particles in the electrode composition. .
  • the weight average molecular weight of the resin is 500,000 or less, aggregation of the resins in the solvent is suppressed and the viscosity of the electrode composition tends to be suppressed from increasing.
  • the weight average molecular weight of the resin is 500,000 or less, it is suppressed that the combustion temperature of the resin is increased, and when the electrode composition is heat-treated (fired), the resin is not combusted and remains as a foreign substance. Therefore, there is a tendency that a lower resistivity electrode can be formed.
  • the weight average molecular weight is obtained by conversion from a molecular weight distribution measured using GPC (gel permeation chromatography) using a standard polystyrene calibration curve.
  • the calibration curve is approximated in three dimensions using five standard polystyrene sample sets (PStQuick MP-H, PStQuick B, Tosoh Corporation).
  • PStQuick MP-H gel permeation chromatography
  • PStQuick B Tosoh Corporation
  • the content of the dispersion medium can be appropriately selected according to the desired liquid properties and the type of the dispersion medium to be used.
  • the content of the dispersion medium is preferably 3% by mass or more and 40% by mass or less, more preferably 5% by mass or more and 35% by mass or less, based on the total mass of the electrode composition, and 7% by mass. More preferably, it is 30 mass% or less.
  • the content of the dispersion medium is within the above range, the application characteristics when applying the electrode composition to the semiconductor substrate are improved, and an electrode having a desired width and height can be more easily formed. It tends to be possible.
  • the types of the solvent and the resin in the dispersion medium and the content ratio in the dispersion medium can be appropriately selected in consideration of the method for applying the electrode composition.
  • the electrode composition may contain a flux.
  • the oxide film formed on the surface of the phosphorus-tin-containing copper alloy particles or the phosphorus-tin-nickel-containing copper alloy particles is removed, and the phosphorus-tin during the heat treatment (firing)
  • the reduction reaction of the copper alloy particles containing phosphorus or the tin-nickel-containing copper alloy particles can be promoted.
  • the electrode composition contains a flux, the adhesion between the electrode and the silicon substrate tends to be improved.
  • the flux can remove the oxide film formed on the surface of the phosphorus-tin-containing copper alloy particles or the phosphorus-tin-nickel-containing copper alloy particles and promote the melting of the nickel-containing particles added as necessary If there is no restriction in particular. Specifically, fatty acids, boric acid compounds, fluorinated compounds, and borofluorinated compounds can be mentioned as preferred fluxes.
  • the flux includes lauric acid, myristic acid, palmitic acid, stearic acid, sorbic acid, stearic acid, propionic acid, boron oxide, potassium borate, sodium borate, lithium borate, potassium borofluoride, borofluoride.
  • Sodium fluoride, lithium borofluoride, acidic potassium fluoride, acidic sodium fluoride, acidic lithium fluoride, potassium fluoride, sodium fluoride, lithium fluoride and the like can be mentioned.
  • the heat resistance during heat treatment (firing) of the electrode composition (the property that the flux does not volatilize at low temperatures during heat treatment (firing)) and the oxidation resistance of the phosphorus-tin-containing copper alloy particles or phosphor-tin-nickel-containing copper alloy particles
  • potassium borate and potassium borofluoride are particularly preferable fluxes.
  • each of these fluxes may be used alone or in combination of two or more.
  • the flux content is such that the oxidation resistance of the phosphorus-tin-containing copper alloy particles or the phosphorus-tin-nickel-containing copper alloy particles is effectively expressed, and the electrode composition
  • the content is preferably 0.1% by mass to 5% by mass in the total mass of the electrode composition. It is more preferably 3% by mass to 4% by mass, further preferably 0.5% by mass to 3.5% by mass, particularly preferably 0.7% by mass to 3% by mass, and 1% by mass. % To 2.5% by mass is very particularly preferred.
  • the electrode composition used in the present invention can further contain other components that are usually used in the technical field, if necessary, in addition to the components described above.
  • other components include plasticizers, dispersants, surfactants, inorganic binders, metal oxides, ceramics, and organometallic compounds.
  • composition for electrodes used by this invention there is no restriction
  • the dispersion method and the mixing method are not particularly limited, and can be appropriately selected and applied from commonly used dispersion methods and mixing methods.
  • connection material in the present invention includes an adhesive.
  • the connection material includes an adhesive capable of connecting an electrode formed from the electrode composition and a wiring member to be described later in the manufacturing process of the solar cell, the shape, material, component, etc.
  • the state of the connecting material include a film form, a paste form, and a solution form.
  • the connecting material is preferably in the form of a film.
  • connection material preferably includes an adhesive, a curing agent, and a film-forming material.
  • a connection material for example, a conductive adhesive film described in JP-A-2007-214533 can be exemplified, and these can be suitably used in the present invention.
  • connection material it is possible to provide a solar cell and a solar cell module that exhibit stable power generation performance. This can be considered as follows, for example.
  • the electrode of the solar cell element and the wiring member are connected using the conductive adhesive film, it is possible to connect in a low temperature region around 200 ° C. Therefore, even when a thin solar cell element is used, the wiring Generation
  • the conductive adhesive film described in Japanese Patent Application Laid-Open No. 2007-214533 contains conductive particles, and can exhibit conductivity between the substrates through the conductive particles during thermocompression bonding.
  • the connection material used in the present invention is not limited to this composition, and may not contain the conductive particles. That is, when the connection material does not contain conductive particles, the copper-containing electrode and the wiring member can obtain conductivity by directly contacting the connection material at a portion where the connection material is flow-excluded by pressurization.
  • connection material has a viscosity of 40000 Pa ⁇ s or less under conditions of thermocompression bonding of the wiring member.
  • the viscosity of the connecting material is more preferably 20000 Pa ⁇ s or less, and further preferably 15000 Pa ⁇ s or less.
  • the viscosity of a connection material is 5000 Pa * s or more at the point of the handling in the manufacturing process of a solar cell.
  • the viscosity of the connecting material can be confirmed under the conditions of 25 ° C. and a frequency of 10 Hz using a TA Instruments Japan Co., Ltd. and a shear viscometer measuring device (ARES).
  • the adhesive preferably exhibits insulating properties.
  • the adhesive exhibiting insulating properties is not particularly limited, but it is preferable to use a thermosetting resin from the viewpoint of adhesion reliability.
  • a thermosetting resin For example, an epoxy resin, a phenol resin, a melamine resin, and an alkyd resin are mentioned. Among these, an epoxy resin is preferable from the viewpoint of obtaining sufficient connection reliability.
  • the content of the adhesive is not particularly limited. From the viewpoint of film formability before curing or adhesive strength after curing, the content of the adhesive is preferably 20% by mass or more and 70% by mass or less, and 30% by mass or more and 60% by mass or less in the connection material. It is more preferable that it is 40 mass% or more and 50 mass% or less.
  • anionic or cationic polymerizable catalyst-type curing agents include tertiary amine derivatives, imidazole derivatives, hydrazide compounds, boron trifluoride-amine complexes, onium salts (sulfonium salts, ammonium salts, etc.), amine imides, diamino maleos Nitriles, melamine and derivatives thereof, salts of polyamines, and dicyandiamide can be used, and modifications thereof can also be used.
  • the polyaddition type curing agent include polyamines, polymercaptans, polyphenols, and acid anhydrides.
  • anionic or cationic polymerizable catalyst-type curing agent it is preferable to use a tertiary amine derivative or an imidazole derivative, and it is more preferable to use an imidazole derivative in terms of adhesive strength.
  • a latent curing agent is preferred because the active point of reaction initiation by thermocompression bonding is relatively clear and suitable for a connection method involving a thermocompression bonding process.
  • the latent curing agent is a substance that exhibits a curing function under certain specific conditions (such as temperature).
  • specific conditions such as temperature
  • the latent curing agent include those obtained by protecting a normal curing agent with microcapsules and the like, and those having a structure in which a curing agent and various compounds form a salt. In such a latent curing agent, for example, when a specific temperature is exceeded, the curing agent is released from the microcapsule or salt into the system, and a curing function is exhibited.
  • latent curing agent examples include a reaction product of an amine compound and an epoxy compound (amine-epoxy adduct system), a reaction product of an amine compound and an isocyanate compound or a urea compound (urea type adduct system), and the like.
  • Commercial products of latent curing agents include Amicure (Ajinomoto Co., Inc., registered trademark), NovaCure (Asahi Kasei E-Materials Co., Ltd., registered trademark) in which microencapsulated amine is dispersed in phenolic resin, etc. It is done.
  • the content of the curing agent in the connection material is not particularly limited, but from the viewpoint of adhesive strength, the content of the curing agent is 10% when the total content of the adhesive and the curing agent is 100% by mass. % To 50% by mass, more preferably 20% to 40% by mass.
  • the film forming material examples include phenoxy resin, acrylic resin, polycarbonate resin, acrylic rubber, polyimide resin, polyamide resin, polyurethane resin, polyester resin, polyester urethane resin, and polyvinyl butyral resin, and are phenoxy resin or acrylic rubber. It is preferable.
  • the weight average molecular weight of the film forming material is preferably from 5,000 to 2,000,000, more preferably from 8,000 to 1,000,000, and even more preferably from 10,000 to 1,000,000.
  • the weight average molecular weight of the film forming material is measured according to a conventional method using a gel permeation chromatography method (GPC).
  • the content of the film-forming material is not particularly limited, but from the viewpoint of the hardness of the produced connection material, ease of peeling from the release film described later, the adhesive, the curing agent, and the film-forming material.
  • the content of the film-forming material is preferably 20% by mass or more and 80% by mass or less, and more preferably 30% by mass or more and 70% by mass or less when the total content is 100% by mass.
  • connection material can further contain conductive particles.
  • the conductive particles are not particularly limited, and examples thereof include gold particles, silver particles, copper particles, nickel particles, gold-plated nickel particles, gold / nickel-plated plastic particles, copper-plated particles, and nickel particles. It is done.
  • the particle size (D50%) of the conductive particles is preferably 1 ⁇ m to 50 ⁇ m, more preferably 1 ⁇ m to 30 ⁇ m, and even more preferably 1 ⁇ m to 25 ⁇ m. .
  • the method for measuring the particle size (D50%) of the conductive particles is the same as the method for measuring the particle size of the phosphorus-tin-containing copper alloy particles.
  • the content of the conductive particles in the connection material is preferably 1% by volume or more and 15% by volume or less, preferably 2% by volume or more and 12% by volume or less, with the total volume of the connection material being 100% by volume from the viewpoint of conductivity. More preferably, it is not more than volume%, more preferably not less than 3 volume% and not more than 10 volume%.
  • connection material can contain a modifying material such as a silane coupling agent, a titanate coupling agent, or an aluminate coupling agent in order to improve adhesion or wettability.
  • a chelating material etc. for suppressing dispersing agents such as calcium phosphate and a calcium carbonate, silver, or copper migration, etc. can be contained.
  • connection material can be produced, for example, by applying a coating solution obtained by dissolving or dispersing the above-described various materials in a solvent onto a release film such as a polyethylene terephthalate film and removing the solvent.
  • the electrode connection set may include a wiring member as one of the elements.
  • the wiring member is not particularly limited, but a solder-coated copper wire (tab wire) for a solar cell can be suitably used.
  • the solder composition include Sn—Pb, Sn—Pb—Ag, Sn—Ag—Cu, etc.
  • Sn—Ag—Cu based which does not substantially contain lead. It is preferable to use solder.
  • the thickness of the copper wire of the tab wire is not particularly limited, and 0.05 mm to 0 in view of the difference in thermal expansion coefficient or connection reliability with the solar cell element during the heating and pressing treatment and the resistivity of the tab wire itself.
  • the cross-sectional shape of the tab wire is not particularly limited, and any of a rectangular shape (flat tab) and an elliptical shape (round tab) can be applied, and the copper content of the connection material when the connection material is thermocompression bonded. From the viewpoint of penetration into the gap of the electrode, uniformity of pressure during thermocompression bonding, etc., it is preferable to use a rectangular (flat tab) cross-sectional shape.
  • the total thickness of the tab wire is not particularly limited, and is preferably 0.1 mm to 0.7 mm, and preferably 0.15 mm to 0.5 mm, from the viewpoint of the uniformity of pressure during thermocompression bonding. More preferred.
  • the manufacturing method of the solar cell of this invention forms an electrode using the said electrode connection set, and connects a wiring member to the obtained electrode. That is, the manufacturing method of the solar cell includes a step of applying the electrode composition onto a semiconductor substrate having the pn junction (referred to as an electrode composition applying step), and a semiconductor to which the electrode composition is applied. A step of heat-treating (firing) the substrate to form a copper-containing electrode (referred to as an electrode formation step), and a step of laminating the connection material and the wiring member in this order on the copper-containing electrode to obtain a laminate (lamination) And a step of subjecting the laminate to a heat and pressure treatment (referred to as a heat and pressure treatment step).
  • the solar cell manufacturing method can manufacture a solar cell in which the electrode and the wiring member have high connection strength (adhesion) and high connection reliability.
  • a solar cell element is obtained by the electrode composition applying step and the electrode forming step.
  • the electrode composition application step the electrode composition is applied to a region on the semiconductor substrate where the electrode is to be formed.
  • Examples of a method for applying the electrode composition include screen printing, an ink jet method, and a dispenser method. From the viewpoint of productivity, application by screen printing is preferable.
  • the electrode composition When applying the electrode composition by screen printing, the electrode composition preferably has a viscosity in the range of 20 Pa ⁇ s to 1000 Pa ⁇ s.
  • the viscosity of the electrode composition is measured using a Brookfield HBT viscometer at a temperature of 25 ° C. and a rotational speed of 5.0 rpm.
  • the application amount of the electrode composition can be appropriately selected according to the size of the copper-containing electrode to be formed.
  • the application amount of the electrode composition can be 2 g / m 2 to 10 g / m 2, and preferably 4 g / m 2 to 8 g / m 2 .
  • the semiconductor substrate after the application of the electrode composition is dried (heated) after drying.
  • the heat processing (baking) of the composition for electrodes is performed, a copper containing electrode is formed in the desired area
  • the electrode composition By using the electrode composition, an electrode with low resistivity can be formed even when heat treatment (baking) is performed in the presence of oxygen (for example, in the air).
  • a heat treatment (firing) condition for forming a copper-containing electrode on a semiconductor substrate using the electrode composition a commonly used heat treatment (firing) condition can be applied.
  • the heat treatment (firing) temperature is 800 ° C. to 900 ° C., but when the electrode composition is used, a wide range from a lower temperature heat treatment (firing) condition to a general heat treatment (firing) condition.
  • an electrode having good characteristics can be formed by heat treatment (firing) performed in a wide temperature range of 450 ° C. to 900 ° C.
  • the heat treatment (firing) time can be appropriately selected according to the heat treatment (firing) temperature and the like, and can be, for example, 1 second to 20 seconds.
  • any apparatus that can be heated to the above temperature can be used as appropriate, and examples thereof include an infrared heating furnace and a tunnel furnace.
  • the infrared heating furnace is highly efficient and can be rapidly heated in a short time because electric energy is directly input to the heating material in the form of electromagnetic waves and converted into heat energy. Furthermore, since there is no product due to combustion and non-contact heating, contamination of the formed electrode can be suppressed.
  • the tunnel furnace automatically and continuously conveys the sample from the entrance to the exit and performs heat treatment (firing), it can be more uniformly heat treated (firing) by controlling the division of the furnace body and the conveying speed. From the viewpoint of the power generation performance of the solar cell element, it is preferable to perform heat treatment (firing) with a tunnel furnace.
  • FIGS A sectional view showing an example of a typical solar cell element, and outlines of a light receiving surface and a back surface are shown in FIGS.
  • FIG. 1 A sectional view showing an example of a typical solar cell element, and outlines of a light receiving surface and a back surface are shown in FIGS.
  • FIG. 1 A sectional view showing an example of a typical solar cell element, and outlines of a light receiving surface and a back surface are shown in FIGS.
  • the schematic sectional view in FIG. 1 in the vicinity of the surface of the one surface of the semiconductor substrate 1, n + -type diffusion layer 2 is formed, the light-receiving surface output extraction electrode 4 and reflected on the n + -type diffusion layer 2
  • a prevention layer 3 is formed.
  • a p + type diffusion layer 7 is formed in the vicinity of the surface of the other surface, and a back surface output extraction electrode 6 and a back surface current collecting electrode 5 are formed on the p + type diffusion layer 7.
  • a semiconductor substrate 1 of the solar cell element contains boron or the like and constitutes a p-type semiconductor. Irregularities (also referred to as texture, not shown) are formed on the light receiving surface side by an etching solution containing NaOH and IPA (isopropyl alcohol) in order to suppress reflection of sunlight.
  • the n + -type diffusion layer 2 is provided with a thickness on the order of submicrons, and a pn junction is formed at the boundary with the p-type bulk portion.
  • an antireflection layer 3 such as silicon nitride is provided on the n + type diffusion layer 2 with a thickness of about 90 nm by PECVD (plasma enhanced chemical vapor deposition) or the like.
  • the light receiving surface output extraction electrode 4 and the light receiving surface current collecting electrode 8 provided on the light receiving surface side schematically shown in FIG. 2, and the back surface collecting electrode 5 and the back surface formed on the back surface schematically shown in FIG. A method for forming the output extraction electrode 6 will be described.
  • the light receiving surface output extraction electrode 4, the light receiving surface current collecting electrode 8, and the back surface output extraction electrode 6 are formed from the electrode composition.
  • the back current collecting electrode 5 is formed of an aluminum electrode composition containing glass powder.
  • the electrode composition and the aluminum electrode composition are screen printed. For example, it may be formed by applying a desired pattern, etc., and then drying and then heat-treating (baking) at a temperature of about 750 ° C. to 900 ° C. in the air.
  • the glass particles contained in the electrode composition forming the light receiving surface output extraction electrode 4 and the light receiving surface current collecting electrode 8 react with the antireflection layer 3 (fire-through). Then, the light receiving surface output extraction electrode 4 and the light receiving surface current collecting electrode 8 and the n + type diffusion layer 2 are electrically connected (ohmic contact).
  • the light receiving surface output extraction electrode 4 and the light receiving surface current collecting electrode 8 are formed by using the electrode composition, so that copper oxidation is suppressed while containing copper as the conductive metal. A copper-containing electrode with low resistivity is formed with good productivity.
  • the copper-containing electrode preferably includes a Cu—Sn alloy phase and / or a Cu—Sn—Ni alloy phase and a Sn—PO glass phase, and the Sn—PO glass phase is a Cu—Sn alloy phase or More preferably (not shown) between the Cu—Sn—Ni alloy phase and the semiconductor substrate.
  • aluminum in the aluminum electrode composition that forms the back current collecting electrode 5 during heat treatment (firing) diffuses to the back surface of the semiconductor substrate 1 to form the p + -type diffusion layer 7.
  • an ohmic contact can be obtained between the semiconductor substrate 1 and the back surface collecting electrode 5 and the back surface output extraction electrode 6.
  • the aluminum electrode composition for forming the back surface collecting electrode 5 is first printed and dried. After heat treatment (baking) in the atmosphere at about 750 ° C. to 900 ° C. to form the back current collecting electrode 5, the electrode composition is applied to the light receiving surface side and the back surface side, and after drying, 450 ° C.
  • a method of forming the light receiving surface output extraction electrode 4, the light receiving surface current collecting electrode 8 and the back surface output extraction electrode 6 by heat treatment (baking) at about 650 ° C. can be mentioned.
  • This method is effective in the following cases, for example. That is, when the aluminum electrode composition for forming the back surface collecting electrode 5 is heat-treated (fired), at a heat treatment (baking) temperature of 650 ° C. or less, the aluminum particles are fired depending on the composition of the aluminum electrode composition. As a result, the amount of aluminum diffused into the semiconductor substrate 1 may be insufficient, and the p + -type diffusion layer may not be sufficiently formed. In this state, an ohmic contact cannot be sufficiently formed between the semiconductor substrate 1 on the back surface, the back surface collecting electrode 5 and the back surface output extraction electrode 6, and the power generation performance as a solar cell element may be lowered.
  • the electrode composition is applied, and after drying, the temperature is relatively low (
  • the light receiving surface output extraction electrode 4, the light receiving surface current collecting electrode 8, and the back surface output extraction electrode 6 are preferably formed by heat treatment (baking) at 450 ° C. to 650 ° C., for example.
  • the thickness of the light receiving surface collecting electrode 8 and the back surface output extraction electrode 6 obtained after the heat treatment (firing) is, for example, 3 ⁇ m to 50 ⁇ m, preferably 5 ⁇ m to 30 ⁇ m. Can do.
  • the thickness of the layer or laminated body in this invention measures the thickness of five points of the layer or laminated body used as object, and makes it the value given as the arithmetic mean value.
  • the thickness of a layer or a laminated body shall be measured using the micrometer.
  • the solar cell element can take a form in which the light receiving surface output extraction electrode 4 is not formed.
  • the solar cell element shown in FIG. 3 can be manufactured in the same manner as the solar cell element having the structure shown in FIGS. This can be considered as follows, for example.
  • connection material since the connection material is used, the object to which the wiring member is connected does not need solder wettability as described above.
  • the connection material by using the connection material, the antireflection layer 3 formed on the semiconductor substrate 1 and the wiring member can be firmly adhered.
  • the electrical connection between the light receiving surface current collecting electrode 8 and the wiring member on the light receiving surface of the solar cell element is a portion where the light receiving surface current collecting electrode 8 and the wiring member are in direct contact with each other due to the flow exclusion of the connecting material.
  • the connection material contains conductive particles
  • the light receiving surface collecting electrode 8 and the wiring member are formed by forming a portion in contact with the conductive particles through thermocompression bonding. Is done.
  • the solar cell including the solar cell element can be obtained by further passing through the laminating step and the heat and pressure treatment step.
  • the solar cell of the present invention has a structure in which a conductive layer including a metal part including copper, a glass part, and a connection material is interposed between a semiconductor substrate and a wiring member.
  • the conductive layer has a structure in which the copper-containing electrode including the metal part and the glass part is in contact with the wiring member thereon, and a structure in which a part of the connection material enters the gap of the copper-containing electrode.
  • connection reliability can be improved, and by having a structure in which a part of the connection material enters the void portion of the copper-containing electrode, Adhesion between the containing electrode and the wiring member is improved.
  • the connection material 10 and the wiring member 9 are arranged in this order on the light receiving surface output extraction electrode 4 and the back surface output extraction electrode 6 to obtain a laminate (lamination process).
  • the connection material 10 and the wiring member 9 are arranged in this order on the light receiving surface output extraction electrode 4 and the back surface output extraction electrode 6 to obtain a laminate (lamination process).
  • the laminated body By subjecting the laminated body to heat pressure treatment (thermocompression treatment), the light receiving surface output extraction electrode 4 and the wiring member 9 are pressure bonded, and the back surface output extraction electrode 6 and the wiring member 9 are pressure bonded to form a solar cell. Is done.
  • the wiring member 9 When connecting a plurality of the solar cells, the wiring member 9 has a light receiving surface output extraction electrode 4 of one solar cell element at one end and a back surface output extraction electrode 6 of another solar cell element at the other end, respectively. 9 may be arranged so as to be connected via 9.
  • a solar cell element in which the light receiving surface output extraction electrode 4 is not formed can be used as shown in FIG.
  • the heat press treatment conditions normally used in the said technical field can be applied as conditions for carrying out the thermocompression bonding of the said electrode and wiring member.
  • the heating temperature is preferably 150 ° C. or higher and 200 ° C. or lower, and more preferably 150 ° C. or higher and 190 ° C. or lower.
  • the pressure during pressure bonding is preferably 0.1 MPa or more and 4.0 MPa or less, and more preferably 0.5 MPa or more and 3.5 MPa or less.
  • the heating and pressurizing time is preferably 3 seconds or more and 30 seconds or less, and more preferably 4 seconds or more and 20 seconds or less.
  • connection material By performing the heating and pressurizing treatment under the above conditions, the connection material can easily enter the gap of the copper-containing electrode, the adhesive force between the electrode and the wiring member is improved, and the connection material is efficiently eliminated. This facilitates direct contact between the electrode and the wiring member, and as a result, the electrical contact resistance between the electrode and the wiring member can be reduced.
  • the direction of pressurization may be any direction as long as pressure is applied at least in the stacking direction of the electrode and the wiring member to bond the electrode and the wiring member.
  • thermocompression bonding apparatus any apparatus that can apply the above temperature and pressure to the electrode and the wiring member can be appropriately employed.
  • a thermocompression bonding machine including a pressure bonding head having a heating mechanism can be suitably used.
  • the pressure of the pressure-bonding head ((target pressure) ⁇ (adhesion area)) can be appropriately set from the target pressure and the adhesion area.
  • a solar cell manufactured using the electrode connection set includes a semiconductor substrate, an electrode formed on the semiconductor substrate, and a wiring member disposed on the electrode.
  • the electrode includes a metal part and glass. And a portion corresponding to a void formed by heat treatment (firing) during electrode formation.
  • the solar cell has a partial structure in which a conductive layer including a metal part, a glass part, and a connection material that has penetrated into a part corresponding to the gap part, and a wiring member are laminated on a semiconductor substrate as a wiring connection part. Have.
  • connection material Due to the heat treatment (firing) at the time of electrode formation, voids in the copper-containing electrode are generated irregularly and in an arbitrary shape, and the contour of the metal part constituting the electrode becomes nonuniform due to the formation of the voids.
  • the connection material enters the gap from the connection material application surface, that is, the wiring member side.
  • a conductive layer including a metal part, a glass part, and a connection material that has entered a part corresponding to the gap is formed between the semiconductor substrate and the wiring member in the wiring connection part. In the conductive layer, the connection material penetrates into the gap.
  • FIG. 8 is an observation cross section 100 as an example of the cross section of the electrode of the solar cell of the present invention.
  • a gap portion 106 exists inside the electrode 104 formed on the semiconductor substrate 102, and a part of the gap portion 106 exists in the center portion in the thickness direction of the electrode 104. is doing.
  • the gap portion 106 may include a portion that does not form a resin portion without entering the connection material and exists in a void state.
  • the irregular uneven state of the boundary surface between the electrode and the resin part that provides good connection strength between the electrode and the wiring member may be specified by the surface roughness of the electrode.
  • the arithmetic average roughness Ra of the electrode surface is preferably 0.8 or more and 6.3 or less.
  • the arithmetic average roughness Ra can be obtained by measuring by the method described in JIS B 0601-2001. Specifically, using a surface shape measuring instrument (Mitutoyo Co., Ltd., trade name: Form Tracer SV-C3000) or the like, the surface of the electrode formed on the semiconductor substrate is laminated before or after the wiring member is laminated. After removing the wiring member and the resin portion, the arithmetic average roughness Ra can be directly measured.
  • the solar cell module of this invention has a solar cell obtained using the said electrode connection set, and the sealing material which has sealed the said solar cell.
  • the solar cell module for example, a plurality of the solar cells are connected in series and / or in parallel as necessary, and sandwiched with tempered glass or the like for environmental resistance, and the gap is filled with a transparent resin and sealed.
  • the wiring member located outside the sealing portion is provided as an external terminal.
  • a glass plate 11, a sealing material 12, a solar cell 14 provided with a wiring member 9, a sealing material 12, and a back sheet 13 are used.
  • a general method including a sealing step that is arranged in this order and is sealed with a vacuum laminator or the like can be suitably used.
  • Lamination conditions are determined depending on the type of sealing material, but are preferably maintained at 130 ° C. to 160 ° C. for 3 minutes or more, more preferably 135 ° C. to 150 ° C. for 3 minutes or more.
  • Examples of the glass plate 11 include white plate tempered glass with dimples for solar cells.
  • Examples of the sealing material 12 include an EVA sheet containing ethylene vinyl acetate (EVA).
  • Examples of the back sheet 13 include polyethylene terephthalate (PET), Tedlar-PET laminated material, metal foil-PET laminated material, and the like.
  • the manufacturing method of the semiconductor device includes a step of applying the electrode composition onto a semiconductor substrate (referred to as an electrode composition applying step), and a heat treatment (firing) of the semiconductor substrate to which the electrode composition is applied. ), Forming a copper-containing electrode (referred to as an electrode forming step), laminating the connection material and the wiring member in this order on the copper-containing electrode, and obtaining a laminate (referred to as a laminating step), A step of subjecting the laminate to a heat and pressure treatment (referred to as a heat and pressure treatment step).
  • a semiconductor device in which the electrode and the wiring member have high connection strength (adhesion) and high connection reliability can be manufactured.
  • a semiconductor device manufactured using the electrode connection set includes a semiconductor substrate, an electrode formed on the semiconductor substrate, and a wiring member disposed on the electrode.
  • the electrode includes a metal portion and glass. And a portion corresponding to a void formed by heat treatment (firing) during electrode formation.
  • the semiconductor device has a partial structure in which a conductive layer including a metal part, a glass part and a connection material and a wiring member are stacked on a semiconductor substrate as a wiring connection part.
  • the wiring member include a circuit member having a circuit or an electrode portion.
  • the manufacturing method of the electronic component of this invention forms an electrode using the said electrode connection set, and connects a wiring member to the obtained electrode. That is, the method of manufacturing the electronic component includes a step of applying the electrode composition onto a substrate (referred to as an electrode composition application step), and a heat treatment (firing) of the substrate to which the electrode composition is applied. Then, a step of forming a copper-containing electrode (referred to as an electrode forming step), a step of stacking the connection material and the wiring member on the copper-containing electrode in this order to obtain a laminated body (referred to as a stacking step), and the lamination And a step of subjecting the body to a heat and pressure treatment (referred to as a heat and pressure treatment step).
  • a heat and pressure treatment step By the method for manufacturing an electronic component, an electronic component in which the electrode and the wiring member have high connection strength (adhesion) and high connection reliability can be manufactured.
  • An electronic component manufactured using the electrode connection set includes a substrate, an electrode formed on the substrate, and a wiring member disposed on the electrode.
  • the electrode includes a metal part and a glass part. And a portion corresponding to a void formed by heat treatment (firing) during electrode formation.
  • the electronic component has a partial structure in which a conductive layer including a metal part, a glass part, and a connection material that has penetrated into a part corresponding to the gap part and a wiring member are laminated on a substrate as a wiring connection part. ing.
  • the wiring member include a circuit member having a circuit or an electrode portion.
  • the semiconductor device of the present invention can be used for various electronic devices.
  • the semiconductor device of the present invention has excellent adhesion between the electrode and the wiring member, and is excellent in reliability. Details and preferred aspects of the configuration, materials, etc. relating to the semiconductor device of the present invention are the same as details and preferred aspects of the configuration, materials, etc. relating to the solar cell of the present invention described above.
  • the electronic component of the present invention can be used for various electronic devices.
  • the electronic component of this invention is excellent in the adhesiveness between an electrode and a wiring member, and is excellent in reliability. Details and preferred aspects of the configuration, materials, and the like relating to the electronic component of the present invention are the same as details and preferred aspects of the configuration, materials, etc. relating to the solar cell of the present invention described above.
  • Example 1 Preparation of electrode composition
  • a phosphorus-tin-containing copper alloy containing 6% by mass of phosphorus and 15% by mass of tin was prepared by a conventional method, dissolved, powdered by a water atomization method, and then dried. And classified. For classification, a forced vortex classifier (turbo classifier; TC-15, Nisshin Engineering Co., Ltd.) was used. The classified powder was blended with an inert gas and subjected to deoxygenation and dehydration treatment to produce phosphorus-tin-containing copper alloy particles containing 6% by mass of phosphorus and 15% by mass of tin.
  • the particle diameter (D50%) of the phosphorus-tin-containing copper alloy particles was 5.0 ⁇ m, and the shape thereof was substantially spherical.
  • Silicon (SiO 2) 3 parts by weight dioxide, lead oxide (PbO) 60 parts by mass, 18 parts by weight of boron oxide (B 2 O 3), bismuth oxide (Bi 2 O 3) 5 parts by weight, aluminum oxide (Al 2 O 3 ) 5 parts by mass and 9 parts by mass of zinc oxide (ZnO) (hereinafter, sometimes abbreviated as “G01”) were prepared.
  • the obtained glass G01 had a softening temperature of 420 ° C. and a crystallization start temperature of over 650 ° C.
  • glass G01 particles having a particle diameter (D50%) of 2.5 ⁇ m were obtained.
  • the shape was substantially spherical.
  • the shapes of the phosphorus-tin-containing copper alloy particles and the glass particles were determined by observing them using a Hitachi High-Technologies Corporation TM-1000 scanning electron microscope.
  • the particle sizes of the phosphorus-tin-containing copper alloy particles and glass particles were calculated using a Beckman Coulter, Inc., LS 13, 320 type laser scattering diffraction particle size distribution analyzer (measurement wavelength: 630 nm).
  • the softening temperature and the crystallization start temperature of the glass were obtained from a differential heat (DTA) curve using a Shimadzu Corporation, DTG-60H type differential thermal-thermogravimetric simultaneous measuring device. Specifically, in the DTA curve, the softening point can be estimated from the endothermic part, and the crystallization start temperature can be estimated from the heat generating part.
  • DTA differential heat
  • the adhesive composition obtained above was applied onto a polyethylene terephthalate film using an applicator (YOSHIMITSU SEIKI, Irie Shokai Co., Ltd.), and dried on a hot plate at a temperature of 70 ° C. for 10 minutes.
  • a connection material 1 having a thickness of 25 ⁇ m was prepared.
  • the thickness of the connection material was measured using a micrometer (Mitutoyo Corporation, ID-C112).
  • the viscosity of the connecting material 1 was 9800 Pa ⁇ s when measured under the conditions of 25 ° C. and a frequency of 10 Hz using a TS Instrument Japan Co., Ltd. and a shear viscometer measuring device (ARES). .
  • (C) Production of Solar Cell Element The electrode composition 1 and the connection material 1 obtained in the above (a) and (b) were prepared as an electrode connection set. Further, in addition to the electrode connection set, as a wiring member, a solder-plated rectangular wire for a solar cell (product name: SSA-TPS L 0.2 ⁇ 1.5 (10), thickness 0.2 mm ⁇ width 1.5 mm) Hitachi Metals Co., Ltd., which has a specification in which Sn—Ag—Cu-based lead-free solder is plated on a single side to a thickness of 10 ⁇ m, was prepared on a copper wire. Using these, solar cell elements were produced as follows.
  • a p-type silicon substrate having a thickness of 190 ⁇ m in which an n + -type diffusion layer, a texture, and an antireflection layer (silicon nitride layer) were formed on the light receiving surface was prepared, and two pieces were cut into a size of 125 mm ⁇ 125 mm.
  • the electrode composition 1 was printed on the light receiving surface by screen printing so as to have an electrode pattern as shown in FIG.
  • the electrode pattern is composed of a light receiving surface collecting electrode having a width of 150 ⁇ m and a light receiving surface output extraction electrode having a width of 1.5 mm, and the thickness of each of the light receiving surface collecting electrode and the light receiving surface output extraction electrode after heat treatment (firing) is 20 ⁇ m.
  • the printing conditions (screen plate mesh, printing speed, printing pressure, etc.) were adjusted as appropriate. This was placed in an oven heated to 150 ° C. for 15 minutes, and the solvent was removed by evaporation.
  • an electrode composition 1 as an electrode composition and an aluminum electrode composition (PVG Solutions Inc., PVG-AD) on a surface opposite to the light-receiving surface (hereinafter also referred to as “back surface”).
  • ⁇ 02) was printed by screen printing in the same manner as described above so as to obtain an electrode pattern as shown in FIG.
  • the pattern of the back surface output extraction electrode formed by using the electrode composition 1 was composed of two lines, and was printed so that the size of one line was 123 mm ⁇ 5 mm.
  • the printing conditions (screen plate mesh, printing speed, printing pressure, etc.) were appropriately adjusted so that the back surface output extraction electrode had a thickness after heat treatment (firing) of 20 ⁇ m.
  • the composition for aluminum electrodes was printed on the whole surface except the back surface output extraction electrode, and the back surface current collection electrode pattern was formed. Further, the printing conditions (screen plate mesh, printing speed, printing pressure, etc.) of the aluminum electrode composition were appropriately adjusted so that the thickness of the back surface collecting electrode after heat treatment (firing) was 20 ⁇ m. This was placed in an oven heated to 150 ° C. for 15 minutes, and the solvent was removed by evaporation.
  • connection material 1 is cut into the width (1.5 mm) of the light receiving surface output extraction electrode of the solar cell element 1, and between the prepared wiring member and the light receiving surface output extraction electrode and the back surface output extraction electrode of the solar cell element 1. In each, the cut connection material 1 was disposed. Next, using a thermocompression bonding machine (device name: MB-200WH, Hitachi Chemical Co., Ltd.), thermocompression bonding was performed under the conditions of 180 ° C., 2 MPa, 10 seconds, and the electrode and the wiring member were connected via the connection material 1. Two solar cells 1 having a connected structure were produced.
  • (E) Cross-sectional shape of solar cell
  • a portion (wiring connecting portion) to which the wiring member of the obtained solar cell 1 is connected is a solar cell element using an RCO-961 type diamond cutter (Refinetech Co., Ltd.). 1 and the wiring member were cut in parallel to the stacking direction.
  • An SEM photograph of the obtained cross section was obtained using SEM (Hitachi High-Technologies Corporation, TM-1000 scanning electron microscope).
  • the observation cross section has a rectangular shape of 300 ⁇ m ⁇ 250 ⁇ m, where the length in the cutting direction is the height, the length in the direction parallel to the cutting direction is the width, and the area of the connection material is relative to the area of the conductive layer in the observation cross section.
  • the observation cross section was selected to be 2% or less, or 98% or less.
  • the total length of the boundary line between the connection material and the electrode was measured using Adobe illustrator CS6. Measurements were performed at an magnification of about 10,000 times the actual sectional view.
  • the line segment corresponding to the length of the boundary line was traced with the “pencil tool” and the length was measured by using the “object tool”.
  • the width of the observation cross section was measured by drawing a straight line having the same length as the width of the observation cross section with the “Line Tool” and using the “Object Tool”. The lengths of the line segment corresponding to the obtained boundary line length and the line segment corresponding to the width of the observation cross section were compared.
  • composition of the composition 1 for electrodes shows in Table 1 and the structure of the solar cell 1 and the solar cell module 1 in Table 2 and Table 3, respectively.
  • in the column of “Applied electrode” means that the target electrode is used, and “-” means that the target electrode is not used. Means that. “-” In the other columns means that there is no corresponding item.
  • Example 2 phosphorus content of copper alloy particles, tin content and nickel content, particle size (D50%) and content thereof, composition of nickel-containing particles, particle size (D50%) and content thereof, glass Composition 1 for electrodes except having changed the kind of particle
  • electrode compositions 2 to 5 were prepared.
  • Glass G02 is composed of 45 parts by mass of vanadium oxide (V 2 O 5 ), 24.2 parts by mass of phosphorus oxide (P 2 O 5 ), 20.8 parts by mass of barium oxide (BaO), and antimony oxide (Sb 2 O 3 ). 5 parts by weight, and was prepared as consisting of tungsten oxide (WO 3) 5 parts by weight.
  • the softening temperature of this glass G02 was 492 ° C., and the crystallization start temperature exceeded 650 ° C.
  • Example 6 a solar cell 6 and a solar cell module 6 were produced in the same manner as in Example 1 except that the connection material was changed from the connection material 1 to the connection material 2.
  • the connection material 2 was produced in the same manner as the connection material 1 except that it did not contain Ni particles as conductive particles.
  • the viscosity of the connecting material 2 was 9500 Pa ⁇ s as measured in the same manner as the connecting material 1.
  • Example 7 In Example 1, the electrode composition 1 was applied to form the light receiving surface current collecting electrode and the light receiving surface output extraction electrode, and the back surface output extraction electrode was formed as follows. Except having applied the electrode composition 6, it carried out similarly to Example 1, and produced the solar cell element 7, the solar cell 7, and the solar cell module 7, respectively.
  • the electrode composition 6 was prepared in the same manner as the electrode composition 5 except that the composition of the glass particles was changed from the glass G01 to the glass G03 shown below.
  • Glass G03 is composed of 10 parts by mass of silicon dioxide (SiO 2 ), 38 parts by mass of boron oxide (B 2 O 3 ), 28 parts by mass of zinc oxide (ZnO), 12 parts by mass of aluminum oxide (Al 2 O 3 ), and oxidation. It prepared so that it might consist of 12 mass parts of barium (BaO).
  • the obtained glass G03 had a softening temperature of 583 ° C. and a crystallization start temperature of over 650 ° C.
  • Example 8 a solar cell element 8, a solar cell 8, and a solar cell were formed in the same manner as in Example 7 except that the electrode composition 7 shown below was applied to form the back surface output extraction electrode. Modules 8 were produced respectively.
  • the electrode composition 7 was prepared in the same manner as the electrode composition 5 except that the composition of the glass particles was changed from the glass G01 to the glass G04 shown below.
  • Glass G04 was prepared so as to consist of 12.8 parts by mass of boron oxide, 8.7 parts by mass of silicon dioxide, and 78.5 parts by mass of bismuth oxide.
  • the softening temperature of this glass G04 was 451 ° C., and the crystallization start temperature exceeded 650 ° C.
  • Example 9 In Example 1, an electrode composition 8 was prepared in the same manner as in Example 1 except that the solvent and the resin of the electrode composition 1 were changed as shown in Table 1. Subsequently, using this, a solar cell element 9, a solar cell 9, and a solar cell module 9 were respectively produced in the same manner as in Example 1.
  • the solvent Ter in the table represents terpineol
  • the resin EC represents ethyl cellulose.
  • Example 10 A p-type silicon substrate having a thickness of 190 ⁇ m in which an n + -type diffusion layer, a texture, and an antireflection layer (silicon nitride layer) were formed on the light receiving surface was prepared, and two pieces were cut into a size of 125 mm ⁇ 125 mm. Thereafter, an aluminum electrode composition (PVG Solutions, PVG-AD-02) was printed on the back surface to form a back surface collecting electrode pattern. The back surface collecting electrode pattern was printed on the entire surface other than the back surface output extraction electrode as shown in FIG.
  • PVG Solutions, PVG-AD-02 aluminum electrode composition
  • the printing conditions (screen plate mesh, printing speed, printing pressure, etc.) of the aluminum electrode composition were appropriately adjusted so that the thickness of the back surface collecting electrode after heat treatment (firing) was 30 ⁇ m. This was placed in an oven heated to 150 ° C. for 15 minutes, and the solvent was removed by evaporation. Subsequently, using a tunnel furnace (Noritake Co., Ltd., single-row transport W / B tunnel furnace), heat treatment (firing) was performed at a maximum temperature of 800 ° C. and a holding time of 10 seconds (firing) in an air atmosphere. Then, a current collecting electrode on the back surface and a p + type diffusion layer were formed.
  • a tunnel furnace Neoritake Co., Ltd., single-row transport W / B tunnel furnace
  • the electrode composition 1 obtained as described above was printed in a pattern of the light receiving surface current collecting electrode, the light receiving surface output extraction electrode and the back surface output extraction electrode shown in FIGS.
  • the electrode pattern is composed of a light receiving surface collecting electrode having a width of 150 ⁇ m and a light receiving surface output extraction electrode having a width of 1.5 mm, and printing conditions (screen plate mesh, The printing speed, printing pressure, etc.) were adjusted as appropriate.
  • the pattern of the back surface output extraction electrode was 123 mm ⁇ 5 mm, and was printed in two places in total. Printing conditions (screen plate mesh, printing speed, printing pressure, etc.) were appropriately adjusted so that the thickness after heat treatment (firing) was 20 ⁇ m. This was placed in an oven heated to 150 ° C., and the solvent was removed by evaporation.
  • Example 10 is the same as Example 10 except that the electrode composition for forming the light receiving surface collecting electrode, the light receiving surface output extraction electrode, and the back surface output extraction electrode is changed to the electrode composition 5. Thus, two solar cell elements 11 were produced. Thereafter, in the same manner as in Example 10, a solar cell 11 and a solar cell module 11 were produced.
  • Example 12 In Example 5, the solar cell 12 and the solar cell module 12 were formed in the same manner as in Example 5 except that the light receiving surface output extraction electrode was not formed and a light receiving surface electrode pattern as shown in FIG. 3 was applied. Produced.
  • Example 1 In the production of the solar cell in Example 1, the solar cell C1 and the solar cell were obtained in the same manner as in Example 1 except that solder melting was used to connect the light receiving surface output extraction electrode and the back surface output extraction electrode to the wiring member. Battery module C1 was produced. Specifically, flux (product name: Deltalux, Senju Metal Industry Co., Ltd.) is applied to the electrode surface of the solar cell element 1, and then Sn—Ag—Cu based lead-free solder is melted at a temperature of 240 ° C. Then, wiring members were arranged and connected.
  • flux product name: Deltalux, Senju Metal Industry Co., Ltd.
  • Example 3 In the production of the solar cell in Example 1, the solar cell was formed in the same manner as in Example 1 except that the following conductive paste was used to connect the light receiving surface output extraction electrode and the back surface output extraction electrode to the wiring member. Battery C3 and solar cell module C3 were produced. Specifically, 78.0 parts by mass of silver particles (Ag; particle diameter (D50%) is 3.0 ⁇ m; purity 99.8% by mass), 3.5 parts by mass of polyethylenedioxythiophene, and 1 epoxy resin .2 parts by mass and 17.3 parts by mass of N-methyl-2-pyrrolidone (NMP) were mixed together and mixed using an automatic mortar kneader to form a paste, thereby preparing a conductive paste.
  • Ag particle diameter
  • NMP N-methyl-2-pyrrolidone
  • the conductive paste is applied to the electrode surface of the solar cell element, and a wiring member (SSA-TPS L 0.2 ⁇ 1.5 (10)) is disposed thereon, which is placed at a temperature of 150 ° C. for 15 minutes.
  • the conductive paste was cured by heating, and the solar cell element electrode and the wiring member were connected.
  • Example 4 In Example 1, without using glass particles, the phosphorus content and tin content of the copper alloy particles, the particle diameter (D50%) and the content thereof, the type and content of the solvent, and the type and content of the resin An electrode composition C1 was prepared in the same manner as in Example 1 except that the amount was changed as shown in Table 1.
  • Example 5 ⁇ Comparative Example 5>
  • the phosphorus content of the copper alloy particles, the particle size (D50%) and the content thereof, the composition of the nickel-containing particles, the particle size (D50%) and the content thereof, the type of glass particles, the particle size (D50) %) And the content thereof, the type and content of the solvent, and the type and content of the resin were changed as shown in Table 1, and the electrode composition C3 was prepared in the same manner as in Example 1. Prepared.
  • the peel strength of the wiring members in the solar cells produced in Examples 1 to 12 was higher than the measured value of Comparative Example 1. This is probably because the connecting material efficiently enters the void portion of the copper-containing electrode formed in the present invention, and the mechanical adhesive strength is improved by the anchor effect. On the other hand, for Comparative Example 2, it was found that the peel strength of the wiring member was lower than the measured value of Comparative Example 1. This is considered to be because the formed electrode contained almost no void portion and a sufficient anchor effect by the adhesive was not obtained.
  • Comparative Example 3 the peel strength of the wiring member was lower than the measured value of Comparative Example 1. This is probably because the electrode and the wiring member are connected with a conductive paste, and the conductive particles in the conductive paste are insufficiently sintered, so that the mechanical strength cannot be maintained. For the same reason, since a large amount of contact resistance component between the conductive particles is contained, the resistivity at the wiring connection portion also increases, and as a result, it is considered that the power generation performance is lowered.
  • the power generation performance of the solar cell modules produced in Examples 1 to 12 was almost the same as the measured value of Comparative Example 1.
  • the solar cell module 12 showed high power generation performance even though the light receiving surface output extraction electrode was not formed. From this, the connection material is eliminated by thermocompression bonding, and the wiring member has a portion that is in direct contact with not only the back surface output extraction electrode but also the light receiving surface current collecting electrode. It is thought that it is obtained.
  • the electrode having a nonuniform shape is irregularly arranged on the silicon substrate, and the connection material and the electrode
  • the boundary line was irregularly bent in the width direction of the observation cross section according to the contour of the electrode having an uneven shape.
  • the total length of this boundary line was longer than the width of the observation cross section. Examples 2 to 12 were the same.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Sustainable Development (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)
  • Conductive Materials (AREA)

Abstract

 Provided is an electrode connection set comprising: an electrode composition containing phosphorus- and tin- containing copper alloy particles and glass particles; and an adhesive-containing connection material. Also provided are a method for manufacturing a solar cell using said electrode connection set, a solar cell, and a solar cell module.

Description

電極接続セット、太陽電池の製造方法、太陽電池及び太陽電池モジュールElectrode connection set, solar cell manufacturing method, solar cell, and solar cell module
 本発明は、電極接続セット、太陽電池の製造方法、太陽電池及び太陽電池モジュールに関する。 The present invention relates to an electrode connection set, a solar cell manufacturing method, a solar cell, and a solar cell module.
 一般にシリコン基板等の半導体基板を備えた太陽電池素子の受光面及び裏面には電極が形成されている。光の入射により太陽電池素子内で変換された電気エネルギーを効率よく外部に取出すためには、前記電極の体積抵抗率(以下、単に「抵抗率」ともいう)が充分に低いことと、前記電極が半導体基板と良好なオーミックコンタクトを形成することが必要である。 Generally, electrodes are formed on a light receiving surface and a back surface of a solar cell element provided with a semiconductor substrate such as a silicon substrate. In order to efficiently extract the electric energy converted in the solar cell element by the incidence of light to the outside, the electrode has a sufficiently low volume resistivity (hereinafter also simply referred to as “resistivity”), and the electrode However, it is necessary to form a good ohmic contact with the semiconductor substrate.
 太陽電池素子に用いられる電極には、受光面集電用電極、受光面出力取出し電極、裏面集電用電極及び裏面出力取出し電極があり、通常次のように形成される。半導体基板の一種であるp型シリコン基板を用いて電極を形成する場合、p型シリコン基板の受光面側にテクスチャ(凹凸)形成を施し、次いでリン等を高温で熱的にp型シリコン基板の表面に拡散させることにより形成されたn型拡散層上に、電極用組成物(電極用ペースト組成物と称されることもある)をスクリーン印刷等により付与し、これを大気中800℃~900℃で焼成することで電極が形成される。これらの電極を形成する電極用組成物は、導電性金属粉末、ガラス粒子、種々の添加剤等を含む。 The electrodes used in the solar cell element include a light receiving surface current collecting electrode, a light receiving surface output extraction electrode, a back surface current collecting electrode and a back surface output extraction electrode, and are usually formed as follows. When an electrode is formed using a p-type silicon substrate which is a kind of semiconductor substrate, texture (unevenness) is formed on the light-receiving surface side of the p-type silicon substrate, and then phosphorus or the like is thermally heated at a high temperature. An electrode composition (sometimes referred to as an electrode paste composition) is applied onto the n + -type diffusion layer formed by diffusing on the surface by screen printing or the like, and this is applied in the atmosphere at 800 ° C to An electrode is formed by baking at 900 ° C. The electrode composition forming these electrodes contains conductive metal powder, glass particles, various additives and the like.
 前記電極のうち裏面集電用電極以外には、導電性金属粉末として、銀粒子が一般的に用いられている。銀粒子の使用には、銀粒子の抵抗率が1.6×10-6Ω・cmと低いこと、上記焼成条件において銀粒子が自己還元して焼結すること、半導体基板と良好なオーミックコンタクト(電気的な接続)を形成できること等の利点がある。 Silver particles are generally used as the conductive metal powder other than the back surface collecting electrode among the electrodes. The silver particles have a low resistivity of 1.6 × 10 −6 Ω · cm, the silver particles are self-reduced and sintered under the above firing conditions, and have good ohmic contact with the semiconductor substrate. There is an advantage that (electrical connection) can be formed.
 上記に示すように、銀粒子を含む電極用組成物から形成された電極は、太陽電池素子の電極として優れた特性を発現する。一方で銀が貴金属で地金自体が高価であるため、また資源の問題から、銀に代わる材料の提案が望まれている。
 銀に代わる有望な材料としては、半導体配線材料に適用されている銅が挙げられる。銅は資源的にも豊富で、地金コストも銀の約100分の1と安価である。しかしながら、銅は大気中200℃以上の高温で容易に酸化される材料であり、上記工程で電極を形成することは困難である。
As shown above, an electrode formed from a composition for an electrode containing silver particles exhibits excellent characteristics as an electrode of a solar cell element. On the other hand, since silver is a precious metal and the bullion itself is expensive, and because of the problem of resources, a proposal for a material to replace silver is desired.
A promising material that can replace silver is copper that is applied to semiconductor wiring materials. Copper is abundant in terms of resources, and the cost of bullion is as low as about 1/100 of silver. However, copper is a material that is easily oxidized at a high temperature of 200 ° C. or higher in the atmosphere, and it is difficult to form an electrode in the above process.
 特開2005-314755号公報及び特開2004-217952号公報では、銅が有する上記課題を解決するために、銅に種々の手法を用いて耐酸化性を付与し、高温焼成に付しても酸化され難い銅粒子が報告されている。また、特開2011-171272号公報では、焼成時の銅の酸化を抑制する方法として、銅含有粒子とガラス粒子とを含有する電極用ペースト組成物(電極用組成物)を用いる方法も報告されている。 In JP-A-2005-314755 and JP-A-2004-217952, in order to solve the above-mentioned problems of copper, oxidation resistance is imparted to copper using various methods, and high-temperature firing is performed. Copper particles that are difficult to oxidize have been reported. Japanese Patent Application Laid-Open No. 2011-171272 also reports a method of using an electrode paste composition (electrode composition) containing copper-containing particles and glass particles as a method of suppressing copper oxidation during firing. ing.
 ここで、一般の太陽電池及び太陽電池モジュールの構造を説明する。一般の太陽電池素子は、例えば125mm×125mm又は156mm×156mmの大きさで、単独では発電量が小さい。そのため、実際には複数の太陽電池素子をまとめて太陽電池及び太陽電池モジュールとして使用する。前記太陽電池及び太陽電池モジュールは、多くの場合、複数の太陽電池素子が、その受光面及び裏面の出力取出し電極上に電気的に接続された配線部材を介して直列及び/又は並列に接続された構造を有している。また太陽電池モジュールは屋外環境で使用されることから、気温変化、風雨、積雪等に対する耐性を確保するため、太陽電池モジュールは、配線部材を介して接続された複数の太陽電池素子を封止材で封止して形成される。通常は、強化ガラス、エチレンビニルアセテート(EVA)シート、バックシート等を含む封止材を、配線部材を有する太陽電池に積層して挟んだ後、真空ラミネータによって封止が行われる。なお、ここで太陽電池素子とは、pn接合を有する半導体基板と、半導体基板上に形成された電極とを有するものを意味する。太陽電池とは、太陽電池素子上に配線部材が設けられ、必要に応じて複数の太陽電池素子が配線部材を介して接続された状態のものを意味する。太陽電池モジュールとは、配線部材を備えた太陽電池を、封止材で封止したものを意味する。 Here, the structure of general solar cells and solar cell modules will be described. A general solar cell element has a size of, for example, 125 mm × 125 mm or 156 mm × 156 mm, and produces a small amount of power alone. Therefore, actually, a plurality of solar cell elements are collectively used as a solar cell and a solar cell module. In many cases, the solar cell and the solar cell module are connected in series and / or in parallel via a wiring member in which a plurality of solar cell elements are electrically connected to the output extraction electrodes on the light receiving surface and the back surface. Have a structure. In addition, since the solar cell module is used in an outdoor environment, the solar cell module includes a plurality of solar cell elements connected via a wiring member as a sealing material in order to ensure resistance to temperature change, wind and rain, snow accumulation, and the like. And sealed. Usually, sealing is performed by a vacuum laminator after a sealing material including tempered glass, an ethylene vinyl acetate (EVA) sheet, a back sheet, and the like is laminated and sandwiched between solar cells having wiring members. In addition, a solar cell element means here what has a semiconductor substrate which has a pn junction, and the electrode formed on the semiconductor substrate. A solar cell means the thing of the state by which the wiring member was provided on the solar cell element and the several solar cell element was connected through the wiring member as needed. A solar cell module means what sealed the solar cell provided with the wiring member with the sealing material.
 前記太陽電池素子の電極と配線部材とを接続する際は、太陽電池素子内で変換された電気エネルギーを効率よく外部に取出すために、電極と配線部材との電気的な接触抵抗を小さくする必要がある。更に、前記太陽電池モジュールを作製する際、複数の太陽電池素子を配線部材で接続した状態の太陽電池を運搬する工程で、太陽電池素子が配線部材から脱落することを防止するために、太陽電池素子の電極と配線部材との密着力を強固に保持する必要がある。 When connecting the electrode of the solar cell element and the wiring member, it is necessary to reduce the electrical contact resistance between the electrode and the wiring member in order to efficiently extract the electric energy converted in the solar cell element to the outside. There is. Further, when the solar cell module is manufactured, in order to prevent the solar cell element from dropping from the wiring member in the step of transporting the solar cell in a state where a plurality of solar cell elements are connected by the wiring member, It is necessary to firmly maintain the adhesion between the element electrode and the wiring member.
 特開2004-204256号公報及び特開2005-050780号公報に記載のように、一般に、太陽電池素子の電極と配線部材との接続には、はんだが使用される。はんだは、導電性、固着強度等の接続信頼性に優れ、安価で汎用性があることから広く用いられている。近年は、太陽電池素子の電極と配線部材との接続に用いるはんだとしては、環境面への配慮から鉛フリーはんだも普及してきている。 As described in JP-A-2004-204256 and JP-A-2005-050780, generally, solder is used for connection between the electrode of the solar cell element and the wiring member. Solder is widely used because it is excellent in connection reliability such as conductivity and fixing strength, is inexpensive and versatile. In recent years, lead-free solder has become widespread as a solder used for connection between an electrode of a solar cell element and a wiring member in consideration of environmental considerations.
 一方、はんだを使用しない接続方法として、特開2000-286436号公報、特開2001-357897号公報及び特許第3448924号公報には、導電性ペーストを使用する接続方法が開示されている。 On the other hand, as connection methods that do not use solder, Japanese Patent Application Laid-Open Nos. 2000-286436, 2001-357897, and Japanese Patent No. 3448924 disclose connection methods that use conductive paste.
 しかしながら、鉛フリーはんだを用いる場合は、はんだの溶融温度が通常230℃~260℃程度であることから、接続に伴う高温又ははんだの体積収縮が太陽電池素子の半導体構造に影響を与え、太陽電池素子の性能劣化を引き起こす場合がある。
 更に、特開2000-286436号公報、特開2001-357897号公報及び特許第3448924号公報に記載のように、導電性ペーストを用いて太陽電池素子の電極と配線部材との接続を行う方法は、高温高湿条件下で経時的に発電性能が大幅に劣化してしまうことがあり、必ずしも充分な接続信頼性が得られるものではなかった。
 一方、特開2011-171272号公報に記載のような銅含有電極と配線部材との接続を、はんだ又は導電性ペーストで行なう場合、太陽電池素子の銅含有電極と配線部材との密着力が不足する傾向があった。
However, when lead-free solder is used, since the melting temperature of the solder is usually about 230 ° C. to 260 ° C., the high temperature associated with the connection or the volumetric shrinkage of the solder affects the semiconductor structure of the solar cell element. It may cause deterioration of the performance of the element.
Further, as described in JP-A-2000-286436, JP-A-2001-357897 and JP-A-3448924, there is a method for connecting an electrode of a solar cell element and a wiring member using a conductive paste. The power generation performance may deteriorate significantly with time under high temperature and high humidity conditions, and sufficient connection reliability has not always been obtained.
On the other hand, when the connection between the copper-containing electrode and the wiring member as described in JP 2011-171272 A is performed with solder or a conductive paste, the adhesion between the copper-containing electrode of the solar cell element and the wiring member is insufficient. There was a tendency to.
 本発明は、上記課題に鑑みてなされたものであり、電極と配線部材との間の優れた密着性及び優れた接続信頼性を得ることが可能な電極接続セット並びに、電極接続セットを用いた太陽電池の製造方法、太陽電池及び太陽電池モジュールを提供することを目的とする。 The present invention has been made in view of the above problems, and uses an electrode connection set and an electrode connection set capable of obtaining excellent adhesion between the electrode and the wiring member and excellent connection reliability. It aims at providing the manufacturing method of a solar cell, a solar cell, and a solar cell module.
 前記課題を達成するための具体的手段は以下の通りである。
<1> リン-錫含有銅合金粒子及びガラス粒子を含む電極用組成物と、接着剤を含む接続材料と、を含む電極接続セット。
<2> 前記電極用組成物が、更にニッケル含有粒子を含む<1>に記載の電極接続セット。
<3> 前記ニッケル含有粒子は、ニッケル粒子及びニッケル含有率が1質量%以上であるニッケル合金粒子からなる群より選択される少なくとも1種である<2>に記載の電極接続セット。
<4> 前記リン-錫含有銅合金粒子が、更にニッケルを含むリン-錫-ニッケル含有銅合金粒子である<1>~<3>のいずれか1項に記載の電極接続セット。
<5> 前記リン-錫-ニッケル含有銅合金粒子は、リン含有率が2.0質量%~15.0質量%である<4>に記載の電極接続セット。
<6> 前記リン-錫-ニッケル含有銅合金粒子は、錫含有率が3.0質量%~30.0質量%である<4>又は<5>に記載の電極接続セット。
<7> 前記リン-錫-ニッケル含有銅合金粒子は、ニッケル含有率が3.0質量%~30.0質量%である<4>~<6>のいずれか1項に記載の電極接続セット。
<8> 前記リン-錫含有銅合金粒子の粒度分布において小径側から積算した体積が50%の場合における粒子径(D50%)が、0.4μm~10.0μmである<1>~<7>のいずれか1項に記載の電極接続セット。
<9> 前記ガラス粒子は、軟化点が650℃以下であり、結晶化開始温度が650℃を超える<1>~<8>のいずれか1項に記載の電極接続セット。
<10> 前記ガラス粒子の軟化点が、583℃以下である<9>に記載の電極接続セット。
<11> 前記ガラス粒子は、鉛(Pb)を含有する<1>~<10>のいずれか1項に記載の電極接続セット。
<12> 前記ガラス粒子の含有率が、0.1質量%~12質量%である<1>~<11>のいずれか1項に記載の電極接続セット。
<13> 前記接続材料が、更に硬化剤及びフィルム形成材を含む<1>~<12>のいずれか1項に記載の電極接続セット。
<14> 前記接続材料が、更に導電性粒子を含む<1>~<13>のいずれか1項に記載の電極接続セット。
<15> 前記電極用組成物が、更に分散媒を含む<1>~<14>のいずれか1項に記載の電極接続セット。
<16> 前記電極用組成物を、pn接合を有する半導体基板上に付与する工程と、前記電極用組成物が付与された半導体基板を熱処理して、銅含有電極を形成する工程と、前記銅含有電極上に、前記接続材料及び配線部材をこの順に積層し、積層体を得る工程と、前記積層体を、加熱加圧処理する工程と、を含む<1>~<15>のいずれか1項に記載の電極接続セットを用いて太陽電池を製造する太陽電池の製造方法。
<17> 前記熱処理を450℃~900℃で行う<16>に記載の太陽電池の製造方法。
<18> <16>又は<17>に記載の太陽電池の製造方法により得られる太陽電池。
<19> <16>又は<17>に記載の太陽電池の製造方法により得られる太陽電池と、前記太陽電池を封止している封止材と、を有する太陽電池モジュール。
Specific means for achieving the above object are as follows.
<1> An electrode connection set comprising an electrode composition comprising phosphorus-tin-containing copper alloy particles and glass particles, and a connection material containing an adhesive.
<2> The electrode connection set according to <1>, wherein the electrode composition further includes nickel-containing particles.
<3> The electrode connection set according to <2>, wherein the nickel-containing particles are at least one selected from the group consisting of nickel particles and nickel alloy particles having a nickel content of 1% by mass or more.
<4> The electrode connection set according to any one of <1> to <3>, wherein the phosphorus-tin-containing copper alloy particles are phosphorus-tin-nickel-containing copper alloy particles further containing nickel.
<5> The electrode connection set according to <4>, wherein the phosphorus-tin-nickel-containing copper alloy particles have a phosphorus content of 2.0 mass% to 15.0 mass%.
<6> The electrode connection set according to <4> or <5>, wherein the phosphorus-tin-nickel-containing copper alloy particles have a tin content of 3.0% by mass to 30.0% by mass.
<7> The electrode connection set according to any one of <4> to <6>, wherein the phosphorus-tin-nickel-containing copper alloy particles have a nickel content of 3.0% by mass to 30.0% by mass. .
<8> In the particle size distribution of the phosphorus-tin-containing copper alloy particles, the particle diameter (D50%) when the volume integrated from the small diameter side is 50% is 0.4 μm to 10.0 μm <1> to <7 > The electrode connection set according to any one of the above.
<9> The electrode connection set according to any one of <1> to <8>, wherein the glass particles have a softening point of 650 ° C. or lower and a crystallization start temperature exceeding 650 ° C.
<10> The electrode connection set according to <9>, wherein the softening point of the glass particles is 583 ° C. or lower.
<11> The electrode connection set according to any one of <1> to <10>, wherein the glass particles contain lead (Pb).
<12> The electrode connection set according to any one of <1> to <11>, wherein a content ratio of the glass particles is 0.1% by mass to 12% by mass.
<13> The electrode connection set according to any one of <1> to <12>, wherein the connection material further includes a curing agent and a film forming material.
<14> The electrode connection set according to any one of <1> to <13>, wherein the connection material further includes conductive particles.
<15> The electrode connection set according to any one of <1> to <14>, wherein the electrode composition further contains a dispersion medium.
<16> A step of applying the electrode composition onto a semiconductor substrate having a pn junction, a step of heat-treating the semiconductor substrate to which the electrode composition is applied, and forming a copper-containing electrode, and the copper Any one of <1> to <15>, including a step of laminating the connection material and the wiring member on the containing electrode in this order to obtain a laminate, and a step of heating and pressurizing the laminate. The manufacturing method of the solar cell which manufactures a solar cell using the electrode connection set of claim | item.
<17> The method for producing a solar cell according to <16>, wherein the heat treatment is performed at 450 ° C. to 900 ° C.
<18> A solar cell obtained by the method for manufacturing a solar cell according to <16> or <17>.
<19> A solar cell module having a solar cell obtained by the method for producing a solar cell according to <16> or <17>, and a sealing material that seals the solar cell.
 本発明によれば、電極と配線部材との間の優れた密着性及び優れた接続信頼性を得ることが可能な電極接続セット並びに、電極接続セットを用いた太陽電池の製造方法、太陽電池及び太陽電池モジュールを提供することができる。 According to the present invention, an electrode connection set capable of obtaining excellent adhesion between the electrode and the wiring member and excellent connection reliability, a solar cell manufacturing method using the electrode connection set, a solar cell, and A solar cell module can be provided.
本発明にかかる太陽電池素子の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the solar cell element concerning this invention. 本発明にかかる太陽電池素子の受光面側電極構造の一例を示す概略平面図である。It is a schematic plan view which shows an example of the light-receiving surface side electrode structure of the solar cell element concerning this invention. 本発明にかかる太陽電池素子の受光面側電極構造の一例を示す概略平面図である。It is a schematic plan view which shows an example of the light-receiving surface side electrode structure of the solar cell element concerning this invention. 本発明にかかる太陽電池素子の裏面側電極構造の一例を示す概略平面図である。It is a schematic plan view which shows an example of the back surface side electrode structure of the solar cell element concerning this invention. 本発明の太陽電池の受光面の一例を示す概略平面図である。It is a schematic plan view which shows an example of the light-receiving surface of the solar cell of this invention. 本発明の太陽電池の裏面の一例を示す概略平面図である。It is a schematic plan view which shows an example of the back surface of the solar cell of this invention. 本発明の太陽電池を2つ接続した構造の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the structure which connected the two solar cells of this invention. 本発明の太陽電池の配線接続部の断面の一例を示す図である。It is a figure which shows an example of the cross section of the wiring connection part of the solar cell of this invention. 本発明の太陽電池モジュールの製造方法の一例を説明するための図である。It is a figure for demonstrating an example of the manufacturing method of the solar cell module of this invention.
 以下、本発明を実施するための形態について詳細に説明する。但し、本発明は以下の実施形態に限定されるものではない。以下の実施形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合、原理的に明らかに必須であると考えられる場合等を除き、必須ではない。数値及びその範囲についても同様であり、本発明を制限するものではない。 Hereinafter, embodiments for carrying out the present invention will be described in detail. However, the present invention is not limited to the following embodiments. In the following embodiments, the constituent elements (including element steps and the like) are not essential unless explicitly specified, unless otherwise clearly considered essential in principle. The same applies to numerical values and ranges thereof, and the present invention is not limited thereto.
 本発明の電極接続セットは、リン-錫含有銅合金粒子及びガラス粒子を含む電極用組成物と、接着剤を含む接続材料と、必要に応じて他の要素を含む。
 前記電極接続セットは、前記電極用組成物と前記接続材料とを組み合わせて含んでいるので、配線部材を更に準備することにより、前記接続材料を用いて、前記電極用組成物から得られる電極と、配線部材とを接続することができる。前記電極用組成物から得られた電極と前記配線部材とが接続された、本セットを用いて得られる太陽電池においては、電極と配線部材との配線接続部が、高い接続強度(密着性)及び高い接続信頼性を示す。
The electrode connection set of the present invention includes an electrode composition including phosphorus-tin-containing copper alloy particles and glass particles, a connection material including an adhesive, and other elements as required.
Since the electrode connection set includes the electrode composition and the connection material in combination, an electrode obtained from the electrode composition using the connection material by further preparing a wiring member; The wiring member can be connected. In the solar cell obtained by using this set in which the electrode obtained from the electrode composition and the wiring member are connected, the wiring connection portion between the electrode and the wiring member has high connection strength (adhesion). And high connection reliability.
 これは例えば以下のように考えることができる。
 本発明の電極接続セットの電極用組成物の熱処理(焼成)によって形成された銅含有電極は、Cu-Sn合金相等の銅と錫を含む合金相を示す金属部と、Sn-P-Oガラス相等の錫とリンと酸素とを含むガラス部とを含む。このうちCu-Sn合金相は緻密なバルク状の金属部を形成する。また、電極に、金属部及びガラス部が形成されていない空隙部が生じる。これは前記バルク状の金属部の形成時における反応及び合金相の焼結が劇的に進むためと考えられる。ガラス部は半導体基板と金属部との間に配置され、また、金属部の表面にも存在することが好ましい。
This can be considered as follows, for example.
The copper-containing electrode formed by heat treatment (firing) of the electrode composition of the electrode connection set according to the present invention includes a metal part showing an alloy phase containing copper and tin, such as a Cu—Sn alloy phase, and Sn—PO glass. And a glass part containing tin, phosphorus and oxygen. Among these, the Cu—Sn alloy phase forms a dense bulk metal portion. Moreover, the space | gap part in which the metal part and the glass part are not formed arises in an electrode. This is presumably because the reaction during the formation of the bulk metal part and the sintering of the alloy phase proceed dramatically. It is preferable that the glass part is disposed between the semiconductor substrate and the metal part and is also present on the surface of the metal part.
 前記空隙部の少なくとも一部は、前記銅含有電極表面側から見て開気孔であり、前記銅含有電極内部又は、前記半導体基板側に形成されたSn-P-Oガラス相まで達していることもある。なお、前記銅含有電極が前記空隙部を含むことによって、電極としての性能(例えば、抵抗率)及び太陽電池素子の発電性能の低下が引き起こされるものではないと考えられる。銅含有電極、接続材料及び配線部材を積層して得られる積層体の加熱加圧処理時に、この構造をもつ銅含有電極と配線部材とが、接着剤を含む接続材料を挟んで加熱圧着されることで、接続材料の少なくとも一部が前記空隙部に入り込み、銅含有電極と配線部材とが力学的に接着するという、所謂アンカー効果によって、前記銅含有電極と配線部材との接続強度が向上すると考えられる。その結果、太陽電池の信頼性が向上し、更に安定した発電性能を示すと考えられる。銅含有電極と配線部材とが接触している部分は、銅含有電極と配線部材との間にガラス部が介在していてもよく、また、銅含有電極の金属部と配線部材とが直接接触していてもよい。 At least a part of the void is an open pore when viewed from the surface of the copper-containing electrode, and reaches the inside of the copper-containing electrode or the Sn—PO glass phase formed on the semiconductor substrate side. There is also. In addition, it is thought that the performance (for example, resistivity) as an electrode and the electric power generation performance of a solar cell element are not caused by the said copper containing electrode including the said space | gap part. At the time of heat and pressure treatment of the laminate obtained by laminating the copper-containing electrode, the connection material and the wiring member, the copper-containing electrode having this structure and the wiring member are thermocompression bonded with the connection material including the adhesive interposed therebetween. Thus, when the connection strength between the copper-containing electrode and the wiring member is improved by a so-called anchor effect in which at least a part of the connection material enters the gap and the copper-containing electrode and the wiring member are dynamically bonded to each other. Conceivable. As a result, it is considered that the reliability of the solar cell is improved and further stable power generation performance is exhibited. The portion where the copper-containing electrode and the wiring member are in contact may have a glass portion interposed between the copper-containing electrode and the wiring member, and the metal portion of the copper-containing electrode and the wiring member are in direct contact with each other. You may do it.
 一方、銅含有電極と配線部材との接続を、はんだ又は導電性ペーストで行なった場合は、前記接続材料を用いた場合よりも、電極と配線部材との密着性が劣る。これは、前述したように銅含有電極に形成される前記空隙部にはんだ又は導電性ペーストが入り込まず、アンカー効果が得られないためと考えられる。
 また、前記電極用組成物を用いなかった場合、熱処理(焼成)後に得られる電極に空隙部が形成されにくく、上記アンカー効果が小さくなり、電極と配線部材との密着性が劣る可能性がある。
 このように、電極と配線部材との高い密着性は、本発明の電極接続セットに含まれる前記電極用組成物と前記接続材料とを組み合わせることによって初めて発現される。
On the other hand, when the connection between the copper-containing electrode and the wiring member is performed with solder or a conductive paste, the adhesion between the electrode and the wiring member is inferior to the case where the connection material is used. This is presumably because solder or conductive paste does not enter the gap formed in the copper-containing electrode as described above, and the anchor effect cannot be obtained.
Moreover, when the said composition for electrodes is not used, a space | gap part is hard to be formed in the electrode obtained after heat processing (baking), the said anchor effect becomes small, and there exists a possibility that the adhesiveness of an electrode and a wiring member may be inferior. .
Thus, the high adhesion between the electrode and the wiring member is first manifested by combining the electrode composition and the connection material included in the electrode connection set of the present invention.
 また、本発明では前記電極用組成物と前記接続材料とを組み合わせることで、接続強度とは別に、電気的な接触抵抗の低減も発現できる。これは、例えば以下のように考えることができる。 Further, in the present invention, by combining the electrode composition and the connection material, a reduction in electrical contact resistance can be exhibited separately from the connection strength. This can be considered as follows, for example.
 前述したように本発明にかかる電極用組成物から得られる前記銅含有電極は、内部に空隙部を含み、前記配線部材の加熱圧着時に前記接続材料が前記空隙部に入り込む。ここで、半導体基板と配線部材との間に、金属部、ガラス部及び接続材料を含む導電層が形成される。このとき、空隙部が少ない電極、例えば、従来までの銀電極に比べて、前記空隙部に入り込む接続材料の量(体積)は増加し、その結果、電極と配線部材との間に介在する接続材料の厚みが著しく減少する。また前記配線部材の加熱圧着時には接続材料が流動排除されるため、導電層の一部では、電極と配線部材とが直接接触する。この結果、導電性が向上し、電極と配線部材との電気的な接触抵抗が減少する。電極と配線部材とが直接接触している部分は、金属部と配線部材との間にガラス部が介在していてもよく、また、金属部と配線部材とが直接接触していてもよい。更に金属部と配線部材とが直接接触する場合には、電極及び配線部材内の金属等の導電成分が、接触部から相互拡散することで、接触部が合金化し、接触抵抗が一層低下することも、導電性が向上する一因として考えられる。 As described above, the copper-containing electrode obtained from the electrode composition according to the present invention includes a void portion therein, and the connection material enters the void portion when the wiring member is thermocompression bonded. Here, a conductive layer including a metal part, a glass part, and a connection material is formed between the semiconductor substrate and the wiring member. At this time, the amount (volume) of the connection material entering the gap is increased as compared with an electrode having a small gap, for example, a conventional silver electrode, and as a result, a connection interposed between the electrode and the wiring member. The material thickness is significantly reduced. In addition, since the connection material is flow-excluded during the thermocompression bonding of the wiring member, the electrode and the wiring member are in direct contact with part of the conductive layer. As a result, the conductivity is improved and the electrical contact resistance between the electrode and the wiring member is reduced. In the portion where the electrode and the wiring member are in direct contact, the glass portion may be interposed between the metal portion and the wiring member, or the metal portion and the wiring member may be in direct contact. Furthermore, when the metal part and the wiring member are in direct contact, conductive components such as metal in the electrode and the wiring member are diffused from the contact part, so that the contact part is alloyed and the contact resistance is further reduced. This is also considered as one factor for improving the conductivity.
 本明細書において「工程」との語は、独立した工程だけではなく、他の工程と明確に区別できない場合であってもその工程の所期の目的が達成されれば、本用語に含まれる。
 また本明細書において「~」は、その前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。
 更に本明細書において組成物中の各成分の量は、組成物中に各成分に該当する物質が複数種存在する場合、特に断らない限り、組成物中に存在する当該複数種の物質の合計量を意味する。
 本明細書において「層」との語は、平面図として観察したときに、全面に形成されている形状の構成に加え、一部に形成されている形状の構成も包含される。
 本明細書において「積層」との語は、層を積み重ねることを示し、二以上の層が結合されていてもよく、二以上の層が着脱可能であってもよい。
 以下、本発明について説明する。
In this specification, the term “process” is not limited to an independent process, and is included in the term if the intended purpose of the process is achieved even when it cannot be clearly distinguished from other processes. .
In the present specification, “˜” indicates a range including the numerical values described before and after the minimum and maximum values, respectively.
Further, in this specification, the amount of each component in the composition is the sum of the plurality of substances present in the composition unless there is a specific indication, when there are a plurality of substances corresponding to each component in the composition. Means quantity.
In this specification, the term “layer” includes a configuration formed in a part in addition to a configuration formed in the entire surface when observed as a plan view.
In this specification, the term “lamination” indicates that layers are stacked, and two or more layers may be combined, or two or more layers may be detachable.
The present invention will be described below.
[電極接続セット]
 前記電極接続セットは、前記電極用組成物と、前記接続材料と、必要に応じて他の要素を含む。
<電極用組成物>
 前記電極用組成物は、リン-錫含有銅合金粒子及びガラス粒子を含む。この電極用組成物を、pn接合を有する半導体基板に付与し、熱処理(焼成)することで、銅含有電極を形成することができる。なお、pn接合を有する半導体基板として、本発明ではシリコン基板を例に説明するが、本発明における前記半導体基板はシリコン基板に限定されない。
 シリコン基板以外の半導体基板としては、リン化ガリウム基板、窒化ガリウム基板、ダイヤモンド基板、窒化アルミニウム基板、窒化インジウム基板、ヒ化ガリウム基板、ゲルマニウム基板、セレン化亜鉛基板、テルル化亜鉛基板、テルル化カドミウム基板、硫化カドミウム基板、リン化インジウム基板、炭化ケイ素基板、ケイ化ゲルマニウム基板、銅インジウムセレン基板等が挙げられる。
[Electrode connection set]
The electrode connection set includes the electrode composition, the connection material, and other elements as necessary.
<Electrode composition>
The electrode composition includes phosphorus-tin-containing copper alloy particles and glass particles. A copper-containing electrode can be formed by applying this electrode composition to a semiconductor substrate having a pn junction and heat-treating (firing) it. In the present invention, a silicon substrate is described as an example of a semiconductor substrate having a pn junction, but the semiconductor substrate in the present invention is not limited to a silicon substrate.
Semiconductor substrates other than silicon substrates include gallium phosphide substrates, gallium nitride substrates, diamond substrates, aluminum nitride substrates, indium nitride substrates, gallium arsenide substrates, germanium substrates, zinc selenide substrates, zinc telluride substrates, cadmium telluride substrates. Examples include a substrate, a cadmium sulfide substrate, an indium phosphide substrate, a silicon carbide substrate, a germanium silicide substrate, and a copper indium selenium substrate.
 前記電極用組成物を用いることで、大気中での熱処理(焼成)時における銅の酸化が抑制され、抵抗率の低い電極を形成できる。更に銅と前記シリコン基板との反応物相の形成が抑制され、形成される電極とシリコン基板とが良好なオーミックコンタクトを形成できる。これは例えば以下のように考えることができる。 By using the electrode composition, the oxidation of copper during heat treatment (firing) in the atmosphere is suppressed, and an electrode having a low resistivity can be formed. Furthermore, formation of a reactant phase between copper and the silicon substrate is suppressed, and a good ohmic contact can be formed between the formed electrode and the silicon substrate. This can be considered as follows, for example.
 まず本発明にかかる電極用組成物を熱処理(焼成)すると、リン-錫含有銅合金粒子内の銅と錫との反応により、Cu-Sn合金相及びSn-P-Oガラス相が形成される。Cu-Sn合金相の形成により、抵抗率の低い電極を形成することができる。ここでCu-Sn合金相は、500℃程度といった比較的低温でも生成されるため、電極の低温熱処理(焼成)が可能となり、プロセスコストを削減できるという効果が期待できる。 First, when the electrode composition according to the present invention is heat-treated (fired), a Cu—Sn alloy phase and a Sn—PO glass phase are formed by the reaction between copper and tin in the phosphorus-tin-containing copper alloy particles. . By forming the Cu—Sn alloy phase, an electrode having a low resistivity can be formed. Here, since the Cu—Sn alloy phase is generated even at a relatively low temperature of about 500 ° C., the electrode can be heat-treated (fired) at a low temperature, and the effect of reducing the process cost can be expected.
 これは例えば以下のように考えることができる。
 リン-錫含有銅合金粒子内の銅と錫とが、熱処理(焼成)工程で互いに反応して、金属部であるCu-Sn合金相と、ガラス部であるSn-P-Oガラス相とを含む電極を形成する。Cu-Sn合金相は、Cu-Sn合金相どうしで緻密なバルク状の金属部を形成する。このバルク状の金属部が電極内で形成され、導電層として機能することで抵抗率の低い電極が形成される。また、ここでいう緻密なバルク状の金属部とは、塊状のCu-Sn合金相が互いに密に接触し、三次元的に連続して形成された構造体を意味する。
 一方で、Sn-P-Oガラス相は、Cu-Sn合金相とシリコン基板との間に形成される。これによりCu-Sn合金相のシリコン基板に対する密着性が得られると考えることができる。
This can be considered as follows, for example.
Copper and tin in the phosphorus-tin-containing copper alloy particles react with each other in a heat treatment (firing) step to form a Cu—Sn alloy phase as a metal part and a Sn—PO glass phase as a glass part. An electrode is formed. The Cu—Sn alloy phase forms a dense bulk metal portion between the Cu—Sn alloy phases. This bulk metal part is formed in the electrode and functions as a conductive layer, whereby an electrode having a low resistivity is formed. In addition, the dense bulk metal portion here means a structure in which massive Cu—Sn alloy phases are in close contact with each other and are continuously formed in three dimensions.
On the other hand, the Sn—PO glass phase is formed between the Cu—Sn alloy phase and the silicon substrate. Thus, it can be considered that adhesion of the Cu—Sn alloy phase to the silicon substrate can be obtained.
 前記電極用組成物は、更にニッケル含有粒子を含んでいるか、前記リン-錫含有銅合金粒子が更にニッケルを含むことが好ましい。これによってCu-Sn合金相とニッケルとが更に反応し、Cu-Sn-Ni合金相を形成すると考えられる。このCu-Sn-Ni合金相は、800℃といった比較的高い温度でも形成されることから、より高温での熱処理(焼成)工程でも耐酸化性を保ったまま抵抗率の低い電極を形成できると考えられる。また前記ニッケル含有粒子を含む電極用組成物又はリン-錫-ニッケル含有銅合金粒子を含む電極用組成物から形成される銅含有電極を用いることで、シリコン基板に対する密着性を保ったまま、電極とシリコン基板とのより良好なオーミックコンタクトを達成することができる。前記電極用組成物がニッケル含有粒子を更に含むか、前記リン-錫含有銅合金粒子が更にニッケルを含むことにより得られるCu-Sn-Ni合金相も、Cu-Sn合金相と同様にCu-Sn-Ni合金相どうしで、又はCu-Sn合金相と共に緻密なバルク状の金属部を形成する。なお、Cu-Sn合金相とCu-Sn-Ni合金相は電極内に混在していても、電極の機能(例えば抵抗率)を低下させることはないと考えられる。 Preferably, the electrode composition further contains nickel-containing particles, or the phosphorus-tin-containing copper alloy particles further contain nickel. As a result, it is considered that the Cu—Sn alloy phase and nickel further react to form a Cu—Sn—Ni alloy phase. Since this Cu—Sn—Ni alloy phase is formed even at a relatively high temperature such as 800 ° C., an electrode having a low resistivity can be formed while maintaining oxidation resistance even in a heat treatment (firing) step at a higher temperature. Conceivable. Further, by using a copper-containing electrode formed from the electrode-containing composition containing the nickel-containing particles or the electrode-containing composition containing phosphorus-tin-nickel-containing copper alloy particles, the electrode can be maintained while maintaining adhesion to the silicon substrate. A better ohmic contact between the silicon substrate and the silicon substrate can be achieved. Similarly to the Cu—Sn alloy phase, the Cu—Sn—Ni alloy phase obtained by the electrode composition further containing nickel-containing particles or the phosphorus-tin-containing copper alloy particles further containing nickel is Cu— A dense bulk metal portion is formed between the Sn—Ni alloy phases or together with the Cu—Sn alloy phase. Note that even if the Cu—Sn alloy phase and the Cu—Sn—Ni alloy phase coexist in the electrode, it is considered that the function (for example, resistivity) of the electrode is not lowered.
 従来開発されていた、耐酸化性を付与した銅粒子を用いた場合、耐酸化性を有するのは高々300℃までで、800℃~900℃の高温では銅粒子はほとんど酸化されてしまう。このため、太陽電池素子用の電極として実用に至っておらず、更に、耐酸化性を付与するために適用した添加剤等が銅粒子の焼結を阻害し、結果として銀を用いた場合のような抵抗率の低い電極が得られないという課題がある。また銅の酸化を抑える別の手法として、導電性金属粉末に銅を用いた導電性組成物を、窒素等の雰囲気下で熱処理(焼成)するという特殊な製造工程を経る方法が提案されている。しかし、この方法では銅粒子の酸化を抑えるためには窒素等で充満させた雰囲気となるように密封した環境が必要となり、製造コストの面で太陽電池素子の量産には不向きである。
 本発明によれば、抵抗率の低い電極を、特殊な方法を用いずに形成することができる。
When using copper particles imparted with oxidation resistance, which has been developed in the past, the oxidation resistance is at most 300 ° C., and the copper particles are almost oxidized at a high temperature of 800 ° C. to 900 ° C. For this reason, it has not been put to practical use as an electrode for solar cell elements, and further, the additive applied to impart oxidation resistance inhibits the sintering of copper particles, and as a result when silver is used as a result. There is a problem that an electrode having a low resistivity cannot be obtained. As another technique for suppressing copper oxidation, there has been proposed a method through a special manufacturing process in which a conductive composition using copper as a conductive metal powder is heat-treated (fired) in an atmosphere such as nitrogen. . However, in this method, in order to suppress the oxidation of the copper particles, a sealed environment is required so as to have an atmosphere filled with nitrogen or the like, which is not suitable for mass production of solar cell elements in terms of manufacturing cost.
According to the present invention, an electrode having a low resistivity can be formed without using a special method.
 またSn-P-Oガラス相が、銅とシリコンとの相互拡散を防止するためのバリア層として機能することで、熱処理(焼成)して形成される電極とシリコン基板との良好なオーミックコンタクトが達成できると考えることができる。すなわち、銅含有電極とシリコン基板を直に接触して加熱したときに形成される反応物相(CuSi)の形成を抑制し、半導体性能(例えば、pn接合特性)を劣化することなくシリコン基板と電極との密着性を保ちながら、良好なオーミックコンタクトを発現することができると考えられる。
 従来、銅を太陽電池素子の電極に適用するための課題として、シリコン基板と電極との間のオーミックコンタクト性が挙げられていた。このCuSiの形成はシリコン基板の界面から数μmにまで及ぶことがあり、シリコン基板側に亀裂を生じ、太陽電池素子の性能劣化を引き起こす場合がある。また形成されたCuSiが銅含有電極を持ち上げる等して、電極とシリコン基板との密着性を阻害し、電極の機械的強度低下をもたらす恐れがある。
 本発明によれば、反応物相(CuSi)の形成を抑制することができるため、良好なオーミックコンタクト性を発現することができる。
In addition, since the Sn—PO glass phase functions as a barrier layer for preventing mutual diffusion between copper and silicon, a good ohmic contact between the electrode formed by heat treatment (firing) and the silicon substrate can be obtained. It can be considered that it can be achieved. That is, the formation of a reactant phase (Cu 3 Si) formed when a copper-containing electrode and a silicon substrate are directly contacted and heated is suppressed, and silicon performance (eg, pn junction characteristics) is not degraded. It is considered that good ohmic contact can be expressed while maintaining the adhesion between the substrate and the electrode.
Conventionally, an ohmic contact property between a silicon substrate and an electrode has been cited as a problem for applying copper to an electrode of a solar cell element. The formation of Cu 3 Si may extend to several μm from the interface of the silicon substrate, which may cause cracks on the silicon substrate side and cause performance deterioration of the solar cell element. In addition, the formed Cu 3 Si lifts the copper-containing electrode, which may hinder the adhesion between the electrode and the silicon substrate, resulting in a decrease in the mechanical strength of the electrode.
According to the present invention, since the formation of the reactant phase (Cu 3 Si) can be suppressed, good ohmic contact properties can be exhibited.
 以下に本発明で使用される電極用組成物に含有される各成分について詳細に説明する。
(リン-錫含有銅合金粒子)
 本発明にかかる電極用組成物は、リン-錫含有銅合金粒子の少なくとも1種を含む。一般にリンを含む銅合金としては、リン銅ろう(リン含有率:7質量%程度以下)と呼ばれるろう付け材料が知られている。リン銅ろうは、銅と銅との接合剤としても用いられるものであるが、本発明にかかる電極用組成物にリンを含む銅合金粒子を用いることで、リンの銅酸化物に対する還元性を利用し、耐酸化性に優れ、抵抗率の低い電極を形成することができる。さらに電極の低温熱処理(焼成)が可能となり、プロセスコストを削減できるという効果を得ることができる。
Hereinafter, each component contained in the composition for an electrode used in the present invention will be described in detail.
(Phosphorus particles containing phosphorus-tin)
The electrode composition according to the present invention contains at least one phosphor-tin-containing copper alloy particle. Generally, as a copper alloy containing phosphorus, a brazing material called phosphorus copper brazing (phosphorus content: about 7% by mass or less) is known. Phosphorus copper brazing is also used as a bonding agent between copper and copper, but by using copper alloy particles containing phosphorus in the electrode composition according to the present invention, the reducibility of phosphorus to copper oxide is improved. It is possible to form an electrode having excellent oxidation resistance and low resistivity. Furthermore, the electrode can be subjected to low-temperature heat treatment (firing), and the process cost can be reduced.
 本発明におけるリン-錫含有銅合金粒子は、リンに加えて錫を更に含む銅合金で構成される粒子である。リン-錫含有銅合金粒子を含むことによって、熱処理(焼成)工程で金属部であるCu-Sn合金相と、ガラス部であるSn-P-Oガラス相とを含む電極が形成される。 The phosphorus-tin-containing copper alloy particles in the present invention are particles composed of a copper alloy further containing tin in addition to phosphorus. By including the phosphorus-tin-containing copper alloy particles, an electrode including a Cu—Sn alloy phase that is a metal part and a Sn—PO glass phase that is a glass part is formed in a heat treatment (firing) step.
 具体的には、リン-錫含有銅合金粒子を含むことで、リン-錫含有銅合金粒子中のリン原子の銅酸化物に対する還元性を利用し、耐酸化性に優れ、抵抗率の低い電極が形成される。また、リン-錫含有銅合金粒子中の銅と錫との反応により、抵抗率を低く保ったままCu-Sn合金相とSn-P-Oガラス相とが電極中に形成される。そして例えば、Sn-P-Oガラス相が銅とシリコンとの相互拡散を防止するためのバリア層として機能することで、銅含有電極とシリコン基板との間に反応物相が形成されることを抑制し、銅含有電極とシリコン基板との間に良好なオーミックコンタクトが形成されるという2つの特徴的な機構を、熱処理(焼成)工程で一括して実現できると考えることができる。 Specifically, by including the phosphorus-tin-containing copper alloy particles, an electrode having excellent oxidation resistance and low resistivity utilizing the reducibility of the phosphorus atom in the phosphorus-tin-containing copper alloy particles to the copper oxide. Is formed. Further, due to the reaction between copper and tin in the phosphorus-tin-containing copper alloy particles, a Cu—Sn alloy phase and a Sn—PO glass phase are formed in the electrode while keeping the resistivity low. For example, the Sn—PO glass phase functions as a barrier layer for preventing mutual diffusion between copper and silicon, so that a reactant phase is formed between the copper-containing electrode and the silicon substrate. It can be considered that two characteristic mechanisms of suppressing and forming a good ohmic contact between the copper-containing electrode and the silicon substrate can be realized at once in a heat treatment (firing) step.
 本発明でリン-錫含有銅合金粒子を用いる場合は、リン-錫含有銅合金に含まれるリン含有率は特に制限されない。耐酸化性と電極の抵抗率の観点から、リン含有率が2質量%以上15質量%以下であることが好ましく、3質量%以上12質量%以下であることがより好ましく、4質量%以上10質量%以下であることが更に好ましい。リン-錫含有銅合金に含まれるリン含有率が15質量%以下であることで、より低い抵抗率を達成可能であり、また、リン-錫含有銅合金粒子の生産性に優れる傾向にある。また、リン-錫含有銅合金に含まれるリン含有率が2質量%以上であることで、より優れた耐酸化性を達成できる傾向にある。 When phosphorus-tin-containing copper alloy particles are used in the present invention, the phosphorus content contained in the phosphorus-tin-containing copper alloy is not particularly limited. From the viewpoint of oxidation resistance and electrode resistivity, the phosphorus content is preferably 2% by mass to 15% by mass, more preferably 3% by mass to 12% by mass, and more preferably 4% by mass to 10%. More preferably, it is at most mass%. When the phosphorus content in the phosphorus-tin-containing copper alloy is 15% by mass or less, a lower resistivity can be achieved, and the productivity of the phosphorus-tin-containing copper alloy particles tends to be excellent. Further, when the phosphorus content contained in the phosphorus-tin-containing copper alloy is 2% by mass or more, more excellent oxidation resistance tends to be achieved.
 また本発明でリン-錫含有銅合金粒子を用いる場合のリン-錫含有銅合金に含まれる錫含有率は特に制限されない。耐酸化性並びに熱処理(焼成)時の銅及びリンとの反応性の観点から、5質量%以上30質量%以下であることが好ましく、6質量%以上25質量%以下であることがより好ましく、7質量%以上20質量%以下であることが更に好ましい。リン-錫含有銅合金に含まれる錫含有率が30質量%以下であることで、充分な体積のCu-Sn合金相を形成することができ、電極の抵抗率が低下する傾向にある。また錫の含有率を5質量%以上とすることで、銅及びリンとの反応をより均一に生じさせることができる傾向にある。 Further, the tin content contained in the phosphorus-tin-containing copper alloy when using the phosphorus-tin-containing copper alloy particles in the present invention is not particularly limited. From the viewpoint of oxidation resistance and reactivity with copper and phosphorus during heat treatment (firing), it is preferably 5% by mass to 30% by mass, more preferably 6% by mass to 25% by mass, More preferably, it is 7 mass% or more and 20 mass% or less. When the tin content in the phosphorus-tin-containing copper alloy is 30% by mass or less, a sufficient volume of the Cu—Sn alloy phase can be formed, and the resistivity of the electrode tends to decrease. Moreover, it exists in the tendency which can produce reaction with copper and phosphorus more uniformly by making content rate of tin into 5 mass% or more.
 さらに本発明でリン-錫含有銅合金粒子を用いる場合のリン-錫含有銅合金に含まれるリン含有率及び錫含有率の組み合わせとしては、耐酸化性、電極の抵抗率並びに熱処理(焼成)時の銅及びリンとの反応性の観点から、リン含有率が2質量%以上15質量%以下であって且つ錫含有率が5質量%以上30質量%以下であることが好ましく、リン含有率が3質量%以上12質量%以下であって且つ錫含有率が6質量%以上25質量%以下であることがより好ましく、リン含有率が4質量%以上10質量%以下であって且つ錫含有率が7質量%以上20質量%以下であることが更に好ましい。 Further, when the phosphorus-tin-containing copper alloy particles are used in the present invention, the combination of phosphorus content and tin content contained in the phosphorus-tin-containing copper alloy includes oxidation resistance, electrode resistivity, and heat treatment (firing). From the viewpoint of reactivity with copper and phosphorus, the phosphorus content is preferably 2% by mass or more and 15% by mass or less, and the tin content is preferably 5% by mass or more and 30% by mass or less. More preferably, the content is 3% by mass or more and 12% by mass or less, and the tin content is more preferably 6% by mass or more and 25% by mass or less, and the phosphorus content is 4% by mass or more and 10% by mass or less. Is more preferably 7% by mass or more and 20% by mass or less.
 本発明におけるリン-錫含有銅合金は、リン及び錫に加えて、銀、マンガン及びコバルトからなる群より選ばれる少なくとも1種である金属原子(以下、「特定金属原子」ともいう)を更に含む銅合金であることもまた好ましい。特定金属原子を更に含むことで、より低抵抗な電極を形成することができる傾向にある。
 リン、錫及び特定金属原子を含む銅合金における特定金属原子の含有率は、特定金属原子の種類、目的等に応じて適宜選択できる。特定金属原子の含有率は、例えば、0.05質量%~20質量%とすることができ、0.1質量%~15質量%であることが好ましく、1質量%~10質量%であることがより好ましい。特定金属原子の含有率が0.05質量%以上であることで合金粒子の融点をさらに低下させることができ、熱処理(焼成)工程における合金粒子の焼結反応がより進む傾向にある。また特定金属原子の含有率が20質量%以下であることで、耐酸化性が向上し、低抵抗率の電極が形成される傾向にある。
The phosphorus-tin-containing copper alloy in the present invention further contains at least one metal atom selected from the group consisting of silver, manganese and cobalt (hereinafter also referred to as “specific metal atom”) in addition to phosphorus and tin. A copper alloy is also preferred. By further including the specific metal atom, a lower resistance electrode tends to be formed.
The content rate of the specific metal atom in the copper alloy containing phosphorus, tin, and the specific metal atom can be appropriately selected according to the type and purpose of the specific metal atom. The content of the specific metal atom can be, for example, 0.05% by mass to 20% by mass, preferably 0.1% by mass to 15% by mass, and 1% by mass to 10% by mass. Is more preferable. When the content of the specific metal atom is 0.05% by mass or more, the melting point of the alloy particles can be further lowered, and the sintering reaction of the alloy particles in the heat treatment (firing) step tends to further progress. Further, when the content of the specific metal atom is 20% by mass or less, the oxidation resistance is improved and an electrode having a low resistivity tends to be formed.
 前記リン-錫含有銅合金は、リンと錫とを含む銅合金であるが、銀、マンガン及びコバルト以外の不可避的に混入する他の原子を更に含んでいてもよい。不可避的に混入する他の原子としては、例えば、Sb、Si、K、Na、Li、Ba、Sr、Ca、Mg、Be、Zn、Pb、Cd、Tl、V、Al、Zr、W、Mo、Ti、Ni及びAuを挙げることができる。
 また、前記リン-錫含有銅合金粒子に含まれる不可避的に混入する他の原子の含有率は、例えば、前記リン-錫含有銅合金粒子中に3質量%以下とすることができ、耐酸化性と電極の抵抗率の観点から、1質量%以下であることが好ましい。
The phosphorus-tin-containing copper alloy is a copper alloy containing phosphorus and tin, but may further contain other atoms inevitably mixed other than silver, manganese and cobalt. Other atoms that are inevitably mixed include, for example, Sb, Si, K, Na, Li, Ba, Sr, Ca, Mg, Be, Zn, Pb, Cd, Tl, V, Al, Zr, W, and Mo. Ti, Ni and Au can be mentioned.
The content of other atoms inevitably mixed in the phosphorus-tin-containing copper alloy particles can be, for example, 3% by mass or less in the phosphorus-tin-containing copper alloy particles, From the standpoint of the property and resistivity of the electrode, it is preferably 1% by mass or less.
 尚、リン-錫含有銅合金粒子を構成するリン-錫含有銅合金における各元素の含有率は、誘導結合プラズマ質量分析(ICP-MS)法の定量分析によって測定することができる。 Note that the content of each element in the phosphorus-tin-containing copper alloy constituting the phosphorus-tin-containing copper alloy particles can be measured by quantitative analysis using an inductively coupled plasma mass spectrometry (ICP-MS) method.
 また、リン-錫含有銅合金粒子を構成するリン-錫含有銅合金における各元素の含有率は、エネルギー分散型X線分光(EDX)法の定量分析によって測定することもできる。具体的には、リン-錫含有銅合金粒子を樹脂に埋め込み、硬化させた後にダイヤモンドカッター等で切断し、必要に応じて耐水研磨紙、研磨液等を用いて研磨し、得られた断面にあるリン-錫含有銅合金粒子の断面を分析することが好ましい。この理由は、例えば以下のようにして考えることができる。 In addition, the content of each element in the phosphorus-tin-containing copper alloy constituting the phosphorus-tin-containing copper alloy particles can also be measured by a quantitative analysis by an energy dispersive X-ray spectroscopy (EDX) method. Specifically, phosphorus-tin-containing copper alloy particles are embedded in a resin, cured, and then cut with a diamond cutter or the like, and polished with water-resistant abrasive paper, polishing liquid, or the like as necessary. It is preferable to analyze the cross section of certain phosphorus-tin-containing copper alloy particles. The reason can be considered as follows, for example.
 本発明のリン-錫含有銅合金粒子はリンを含有しているため、取り扱う環境によっては、リン-錫含有銅合金粒子の吸湿が生じ、その結果として、粒子の表面が酸化される可能性がある。この酸化によって生じた皮膜はごく表面に形成され、リン-錫含有銅合金粒子の品質に影響をほとんど与えないと考えられるが、粒子表面における酸素の含有率の増加等によって、粒子表面と粒子内部とで各金属元素の含有率に差が生じてしまう可能性がある。従って、リン-錫含有銅合金粒子中の各元素の含有率を測定する際は、粒子表面ではなく、粒子断面を測定することが好ましいと考えられる。 Since the phosphorus-tin-containing copper alloy particles of the present invention contain phosphorus, the phosphorus-tin-containing copper alloy particles may absorb moisture depending on the handling environment, and as a result, the surface of the particles may be oxidized. is there. The film formed by this oxidation is formed on the very surface and is thought to have little effect on the quality of the phosphorus-tin-containing copper alloy particles. However, due to the increase in the oxygen content on the particle surface, etc. May cause a difference in the content of each metal element. Therefore, when measuring the content of each element in the phosphorus-tin-containing copper alloy particles, it is considered preferable to measure the particle cross section instead of the particle surface.
 また本発明において、前記リン-錫含有銅合金粒子は、1種単独でも又は2種以上を組み合わせて用いてもよい。
 本発明において「リン-錫含有銅合金粒子の2種以上を組み合わせて用いる」とは、成分比率が異なるものの後述の粒子径、粒度分布等の粒子形状が同じである2種以上のリン-錫含有銅合金粒子を組み合わせて用いる場合、成分比率は同じであるものの粒子形状の異なる2種以上のリン-錫含有銅合金粒子を組み合わせて用いる場合、成分比率及び粒子形状がともに異なる2種以上のリン-錫含有銅合金粒子を組み合わせて用いる場合などが挙げられる。
In the present invention, the phosphorus-tin-containing copper alloy particles may be used singly or in combination of two or more.
In the present invention, “use in combination of two or more types of phosphorus-tin-containing copper alloy particles” means two or more types of phosphorus-tin having the same particle shape such as the particle size and particle size distribution described later, although the component ratio is different. When using a combination of copper alloy particles containing two or more types of phosphorus-tin containing copper alloy particles having the same component ratio but different particle shapes, using two or more types of component ratios and particle shapes are different. For example, a combination of phosphorus-tin-containing copper alloy particles may be used.
 前記リン-錫含有銅合金粒子の粒子径としては特に制限はないが、粒度分布において小径側から積算した体積が50%の場合における粒子径(D50%)として、0.4μm~10μmであることが好ましく、1μm~7μmであることがより好ましい。リン-錫含有銅合金粒子のD50%を0.4μm以上とすることで耐酸化性がより効果的に向上する傾向にある。また、リン-錫含有銅合金粒子のD50%を10μm以下とすることで電極中におけるリン-錫含有銅合金粒子同士の接触面積が大きくなり、抵抗率がより効果的に低下する傾向にある。尚、リン-錫含有銅合金粒子の粒子径(D50%)は、レーザー回折式粒度分布計(例えば、ベックマン・コールター(株)、LS 13 320型レーザー散乱回折法粒度分布測定装置)によって測定される。具体的には、溶剤(テルピネオール)125gに、リン-錫含有銅合金粒子を0.01質量%~0.3質量%の範囲内で添加し、分散液を調製する。この分散液の約100mlをセルに注入して25℃で測定する。粒度分布は溶媒の屈折率1.48として測定する。
 また前記リン-錫含有銅合金粒子の形状としては特に制限はなく、略球状、扁平状、ブロック状、板状、鱗片状等のいずれであってもよく、耐酸化性と電極の抵抗率の観点から、略球状、扁平状又は板状であることが好ましい。
The particle diameter of the phosphorus-tin-containing copper alloy particles is not particularly limited, but the particle diameter (D50%) when the volume integrated from the small diameter side is 50% in the particle size distribution is 0.4 μm to 10 μm. Is preferably 1 μm to 7 μm. When the D50% of the phosphorus-tin-containing copper alloy particles is 0.4 μm or more, the oxidation resistance tends to be more effectively improved. Further, when the D50% of the phosphorus-tin-containing copper alloy particles is 10 μm or less, the contact area between the phosphorus-tin-containing copper alloy particles in the electrode is increased, and the resistivity tends to be more effectively reduced. The particle size (D50%) of the phosphorus-tin-containing copper alloy particles is measured by a laser diffraction particle size distribution analyzer (for example, Beckman Coulter, Inc., LS 13 320 type laser scattering diffraction particle size distribution analyzer). The Specifically, phosphorus-tin-containing copper alloy particles are added in a range of 0.01 mass% to 0.3 mass% to 125 g of a solvent (terpineol) to prepare a dispersion. About 100 ml of this dispersion is poured into a cell and measured at 25 ° C. The particle size distribution is measured as a solvent refractive index of 1.48.
The shape of the phosphorus-tin-containing copper alloy particles is not particularly limited, and may be any of a substantially spherical shape, a flat shape, a block shape, a plate shape, a scale shape, and the like. From the viewpoint, it is preferably substantially spherical, flat or plate-like.
 リン-錫含有銅合金は、通常用いられる方法で製造することができる。また、リン-錫含有銅合金粒子は、所望のリン含有率及び錫含有率となるように調製したリン-錫含有銅合金を用いて、金属粉末を調製する通常の方法を用いて調製することができる。例えば、水アトマイズ法を用いて定法により製造することができる。尚、水アトマイズ法の詳細については金属便覧(丸善(株)出版事業部)等の記載を参照することができる。
 具体的には、リン-錫含有銅合金を溶解し、これをノズル噴霧によって粉末化した後、得られた粉末を乾燥し、分級することで、所望のリン-錫含有銅合金粒子を製造することができる。また、分級条件を適宜選択することで所望の粒子径を有するリン-錫含有銅合金粒子を製造することができる。
The phosphorus-tin-containing copper alloy can be produced by a commonly used method. Also, the phosphorus-tin-containing copper alloy particles should be prepared using a normal method of preparing metal powder using a phosphorus-tin-containing copper alloy prepared so as to have a desired phosphorus content and tin content. Can do. For example, it can be manufactured by a conventional method using a water atomizing method. For details of the water atomization method, the description of Metal Handbook (Maruzen Co., Ltd. Publishing Division) can be referred to.
Specifically, a desired phosphorus-tin-containing copper alloy particle is manufactured by dissolving a phosphorus-tin-containing copper alloy and pulverizing this by nozzle spraying, and then drying and classifying the obtained powder. be able to. In addition, phosphorus-tin-containing copper alloy particles having a desired particle diameter can be produced by appropriately selecting the classification conditions.
(リン-錫-ニッケル含有銅合金粒子)
 本発明にかかる電極用組成物は、リン-錫含有銅合金粒子に更にニッケルを含有させることで、リン-錫含有銅合金粒子をリン-錫-ニッケル含有銅合金粒子として用いてもよい。リン-錫-ニッケル含有銅合金粒子は、リンに加えて錫とニッケルとを更に含む銅合金の粒子である。リン-錫-ニッケル含有銅合金粒子を用いることにより、熱処理(焼成)工程において、より高温での耐酸化性を発現させることができる。つまり、リン-錫-ニッケル含有銅合金粒子を用いることにより、電極用組成物をより高温で熱処理(焼成)することが可能となる。
(Phosphorus particles containing phosphorus-tin-nickel)
In the electrode composition according to the present invention, the phosphorus-tin-containing copper alloy particles may further contain nickel, so that the phosphorus-tin-containing copper alloy particles may be used as the phosphorus-tin-nickel-containing copper alloy particles. The phosphorus-tin-nickel-containing copper alloy particles are copper alloy particles further containing tin and nickel in addition to phosphorus. By using phosphorus-tin-nickel-containing copper alloy particles, oxidation resistance at higher temperatures can be expressed in the heat treatment (firing) step. That is, by using phosphorus-tin-nickel-containing copper alloy particles, the electrode composition can be heat-treated (fired) at a higher temperature.
 具体的には、本発明の電極用組成物が金属粒子としてリン-錫-ニッケル含有銅合金粒子を含有することで、まず、リン-錫-ニッケル含有銅合金粒子中のリン原子の銅酸化物に対する還元性を利用し、耐酸化性に優れ、抵抗率の低い電極が形成される。また、合金粒子が錫及びニッケルを含有することで、電極の抵抗率を低く保ったままCu-Sn合金相、又はCu-Sn-Ni合金相とSn-P-Oガラス相とが電極中に形成される。そして、例えば、Sn-P-Oガラス相がCu-Sn合金相、又はCu-Sn-Ni合金相の三次元連続構造中に形成されることで、電極自身を緻密な構造にし、結果として電極内の強度の向上が得られる。また、Sn-P-Oガラス相が銅とシリコンとの相互拡散を防止するためのバリア層として機能することで、銅含有電極とシリコン基板との間に良好なオーミックコンタクトが形成される。このような特徴的な機構を、熱処理(焼成)工程で一括して実現できると考えることができる。 Specifically, the electrode composition of the present invention contains phosphorus-tin-nickel-containing copper alloy particles as metal particles, so that first, a copper oxide of phosphorus atoms in the phosphorus-tin-nickel-containing copper alloy particles An electrode having excellent oxidation resistance and low resistivity is formed by utilizing the reducing property against the above. Further, since the alloy particles contain tin and nickel, the Cu—Sn alloy phase, or the Cu—Sn—Ni alloy phase and the Sn—PO glass phase are kept in the electrode while keeping the resistivity of the electrode low. It is formed. For example, the Sn—P—O glass phase is formed in a three-dimensional continuous structure of a Cu—Sn alloy phase or a Cu—Sn—Ni alloy phase, so that the electrode itself has a dense structure, and as a result, the electrode An improvement in strength is obtained. In addition, since the Sn—PO glass phase functions as a barrier layer for preventing mutual diffusion between copper and silicon, a good ohmic contact is formed between the copper-containing electrode and the silicon substrate. It can be considered that such a characteristic mechanism can be realized collectively in the heat treatment (firing) step.
 本発明におけるリン-錫-ニッケル含有銅合金粒子を構成するリン-錫-ニッケル含有銅合金に含まれるリン含有率は特に制限されない。耐酸化性の向上(電極の低抵抗率化)とSn-P-Oガラス相の形成能の観点から、リン含有率が2.0質量%~15.0質量%であることが好ましく、2.5質量%~12.0質量%であることがより好ましく、3.0質量%~10.0質量%であることが更に好ましい。リン-錫-ニッケル含有銅合金に含まれるリン含有率が15.0質量%以下であることで、より低い抵抗率を達成可能であり、またリン-錫-ニッケル含有銅合金粒子の生産性に優れる傾向にある。また、リン-錫-ニッケル含有銅合金に含まれるリン含有率を2.0質量%以上とすることで、Sn-P-Oガラス相を効果的に形成することができ、半導体基板に対する密着性とオーミックコンタクトに優れる電極を形成することができる傾向にある。 The phosphorus content contained in the phosphorus-tin-nickel-containing copper alloy constituting the phosphorus-tin-nickel-containing copper alloy particles in the present invention is not particularly limited. From the viewpoint of improving oxidation resistance (reducing the resistivity of the electrode) and forming ability of the Sn—PO glass phase, the phosphorus content is preferably 2.0% by mass to 15.0% by mass. More preferably, the content is from 5% by mass to 12.0% by mass, and even more preferably from 3.0% by mass to 10.0% by mass. When the phosphorus content in the phosphorus-tin-nickel-containing copper alloy is 15.0% by mass or less, a lower resistivity can be achieved, and the productivity of the phosphorus-tin-nickel-containing copper alloy particles can be improved. It tends to be excellent. In addition, when the phosphorus content in the phosphorus-tin-nickel-containing copper alloy is 2.0 mass% or more, the Sn—PO glass phase can be effectively formed, and the adhesion to the semiconductor substrate is improved. Therefore, an electrode excellent in ohmic contact tends to be formed.
 また、リン-錫-ニッケル含有銅合金粒子を構成するリン-錫-ニッケル含有銅合金に含まれる錫含有率は特に制限されない。耐酸化性、熱処理(焼成)時の銅及びニッケルとの反応性並びにSn-P-Oガラス相の形成能の観点から、錫含有率は3.0質量%~30.0質量%であることが好ましく、4.0質量%~25.0質量%であることがより好ましく、5.0質量%~20.0質量%であることが更に好ましい。リン-錫-ニッケル含有銅合金に含まれる錫含有率が30.0質量%以下であることで、より抵抗率の低いCu-Sn-Ni合金相を形成することができる傾向にある。また、リン-錫-ニッケル含有銅合金に含まれる錫含有率を3.0質量%以上とすることで、熱処理(焼成)時の銅及びニッケルとの反応性、並びにリンとの反応性が向上し、それぞれCu-Sn-Ni合金相及びSn-P-Oガラス相を効果的に形成することができる傾向にある。 Further, the tin content contained in the phosphorus-tin-nickel-containing copper alloy constituting the phosphorus-tin-nickel-containing copper alloy particles is not particularly limited. From the viewpoints of oxidation resistance, reactivity with copper and nickel during heat treatment (firing) and ability to form a Sn—PO glass phase, the tin content is 3.0% by mass to 30.0% by mass. It is preferably 4.0% by mass to 25.0% by mass, more preferably 5.0% by mass to 20.0% by mass. When the tin content in the phosphorus-tin-nickel-containing copper alloy is 30.0% by mass or less, a Cu—Sn—Ni alloy phase having a lower resistivity tends to be formed. Also, by setting the tin content in the phosphorus-tin-nickel-containing copper alloy to 3.0% by mass or more, the reactivity with copper and nickel during heat treatment (firing) and the reactivity with phosphorus are improved. However, there is a tendency that a Cu—Sn—Ni alloy phase and a Sn—P—O glass phase can be formed effectively.
 また、リン-錫-ニッケル含有銅合金粒子を構成するリン-錫-ニッケル含有銅合金に含まれるニッケル含有率は特に制限されない。耐酸化性の観点から、リン-錫-ニッケル含有銅合金に含まれるニッケル含有率は3.0質量%~30.0質量%であることが好ましく、3.5質量%~25.0質量%であることがより好ましく、4.0質量%~20.0質量%であることが更に好ましい。リン-錫-ニッケル含有銅合金に含まれるニッケル含有率が30.0質量%以下であることで、抵抗率の低いCu-Sn-Ni合金相をより効果的に形成することができる傾向にある。また、リン-錫-ニッケル含有銅合金に含まれるニッケル含有率を3.0質量%以上とすることで、特に500℃以上の高温領域での耐酸化性を向上させることができる傾向にある。 Further, the nickel content contained in the phosphorus-tin-nickel-containing copper alloy constituting the phosphorus-tin-nickel-containing copper alloy particles is not particularly limited. From the viewpoint of oxidation resistance, the nickel content in the phosphorus-tin-nickel-containing copper alloy is preferably 3.0% by mass to 30.0% by mass, more preferably 3.5% by mass to 25.0% by mass. More preferably, the content is 4.0% by mass to 20.0% by mass. When the nickel content in the phosphorus-tin-nickel-containing copper alloy is 30.0% by mass or less, a Cu—Sn—Ni alloy phase having a low resistivity tends to be formed more effectively. . In addition, by setting the nickel content in the phosphorus-tin-nickel-containing copper alloy to 3.0% by mass or more, oxidation resistance particularly in a high temperature region of 500 ° C. or more tends to be improved.
 更に、リン-錫-ニッケル含有銅合金粒子を構成するリン-錫-ニッケル含有銅合金に含まれるリン含有率、錫含有率、及びニッケル含有率の組み合わせとしては、耐酸化性、電極の抵抗率、熱処理(焼成)時の銅、リン、錫及びニッケルの反応性、Sn-P-Oガラス相の形成能、並びに電極とシリコン基板との密着性の観点から、リン含有率が2.0質量%~15.0質量%であって、且つ錫含有率が3.0質量%~30.0質量%であって、且つニッケル含有率が3.0質量%~30.0質量%であることが好ましく、リン含有率が2.5質量%~12.0質量%であって、且つ錫含有率が4.0質量%~25.0質量%であって、且つニッケル含有率が3.5質量%~25.0質量%であることがより好ましく、リン含有率が3.0質量%~10.0質量%であって、且つ錫含有率が5.0質量%~20.0質量%であって、且つニッケル含有率が4.0質量%~20.0質量%であることが更に好ましい。 Furthermore, the combination of phosphorus content, tin content, and nickel content contained in the phosphorus-tin-nickel-containing copper alloy constituting the phosphorus-tin-nickel-containing copper alloy particles includes oxidation resistance and electrode resistivity. From the viewpoint of the reactivity of copper, phosphorus, tin and nickel during heat treatment (firing), the ability to form a Sn—PO glass phase, and the adhesion between the electrode and the silicon substrate, the phosphorus content is 2.0 mass. % To 15.0% by mass, a tin content of 3.0% to 30.0% by mass, and a nickel content of 3.0% to 30.0% by mass The phosphorus content is 2.5% by mass to 12.0% by mass, the tin content is 4.0% by mass to 25.0% by mass, and the nickel content is 3.5% by mass. More preferably, the content is from 2% by mass to 25.0% by mass, and the phosphorus content is 3. Mass% to 10.0 mass%, tin content is 5.0 mass% to 20.0 mass%, and nickel content is 4.0 mass% to 20.0 mass% More preferably.
 前記リン-錫-ニッケル含有銅合金粒子は、リンと錫とニッケルとを含む銅合金粒子であるが、不可避的に混入する他の原子を更に含んでいてもよい。不可避的に混入する他の原子としては、例えば、Ag、Mn、Sb、Si、K、Na、Li、Ba、Sr、Ca、Mg、Be、Zn、Pb、Cd、Tl、V、Al、Zr、W、Mo、Ti、Co、Au及びBiを挙げることができる。
 リン-錫-ニッケル含有銅合金粒子に含まれる不可避的に混入する他の原子の含有率は、例えば、リン-錫-ニッケル含有銅合金粒子中に3質量%以下とすることができ、耐酸化性と電極の低抵抗率化の観点から、1質量%以下であることが好ましい。
The phosphorus-tin-nickel-containing copper alloy particles are copper alloy particles containing phosphorus, tin, and nickel, but may further contain other atoms inevitably mixed therein. Examples of other atoms inevitably mixed include Ag, Mn, Sb, Si, K, Na, Li, Ba, Sr, Ca, Mg, Be, Zn, Pb, Cd, Tl, V, Al, and Zr. , W, Mo, Ti, Co, Au and Bi.
The content of other atoms inevitably mixed in the phosphorus-tin-nickel-containing copper alloy particles can be, for example, 3% by mass or less in the phosphorus-tin-nickel-containing copper alloy particles, From the viewpoint of reducing the resistivity and the electrode resistivity, it is preferably 1% by mass or less.
 リン-錫-ニッケル含有銅合金粒子は、1種単独で用いても、又は2種以上を組み合わせて用いてもよい。本発明において「リン-錫-ニッケル含有銅合金粒子の2種以上を組み合わせて用いる」とは、成分比率が異なるものの後述の粒子径、粒度分布等の粒子形状が同じである2種以上のリン-錫-ニッケル含有銅合金粒子を組み合わせて用いる場合、成分比率は同じであるものの粒子形状の異なる2種以上のリン-錫-ニッケル含有銅合金粒子を組み合わせて用いる場合、成分比率及び粒子形状がともに異なる2種以上のリン-錫-ニッケル含有銅合金粒子を組み合わせて用いる場合などが挙げられる。 Phosphorus-tin-nickel-containing copper alloy particles may be used singly or in combination of two or more. In the present invention, “use in combination of two or more types of phosphorus-tin-nickel-containing copper alloy particles” means two or more types of phosphorus having the same particle shape such as the particle size and particle size distribution described later, although the component ratio is different. -When tin-nickel-containing copper alloy particles are used in combination, when the component ratio is the same, but two or more types of phosphorus-tin-nickel-containing copper alloy particles having different particle shapes are used in combination, the component ratio and particle shape are An example is a combination of two or more types of phosphorus-tin-nickel-containing copper alloy particles that are different from each other.
 リン-錫-ニッケル含有銅合金粒子の粒子径としては特に制限はない。粒度分布において小径側から積算した体積が50%の場合における粒子径(D50%)が、0.4μm~10μmであることが好ましく、1μm~7μmであることがより好ましい。リン-錫-ニッケル含有銅合金粒子のD50%を0.4μm以上とすることで、耐酸化性がより効果的に向上する傾向がある。リン-錫-ニッケル含有銅合金粒子のD50%を10μm以下とすることで、電極中におけるリン-錫-ニッケル含有銅合金粒子同士の接触面積が大きくなり、電極の抵抗率がより効果的に低下する傾向がある。 The particle diameter of the phosphorus-tin-nickel-containing copper alloy particles is not particularly limited. In the particle size distribution, when the volume integrated from the small diameter side is 50%, the particle diameter (D50%) is preferably 0.4 μm to 10 μm, and more preferably 1 μm to 7 μm. When the D50% of the phosphorus-tin-nickel-containing copper alloy particles is 0.4 μm or more, the oxidation resistance tends to be more effectively improved. By setting the D50% of the phosphorus-tin-nickel-containing copper alloy particles to 10 μm or less, the contact area between the phosphorus-tin-nickel-containing copper alloy particles in the electrode is increased, and the resistivity of the electrode is more effectively reduced. Tend to.
 尚、リン-錫-ニッケル含有銅合金粒子の粒子径は、リン-錫含有銅合金粒子の粒子径の測定方法と同様である。 The particle diameter of the phosphorus-tin-nickel-containing copper alloy particles is the same as the method for measuring the particle diameter of the phosphorus-tin-containing copper alloy particles.
 リン-錫-ニッケル含有銅合金粒子の形状としては特に制限はなく、略球状、扁平状、ブロック状、板状、鱗片状等のいずれであってもよい。耐酸化性及び低抵抗率化の観点から、リン-錫-ニッケル含有銅合金粒子の形状は、略球状、扁平状又は板状であることが好ましい。 The shape of the phosphorus-tin-nickel-containing copper alloy particles is not particularly limited, and may be any of a substantially spherical shape, a flat shape, a block shape, a plate shape, a scale shape, and the like. From the viewpoint of oxidation resistance and low resistivity, the shape of the phosphorus-tin-nickel-containing copper alloy particles is preferably substantially spherical, flat or plate-like.
 リン-錫-ニッケル含有銅合金は、通常用いられる方法で製造することができる、また、リン-錫-ニッケル含有銅合金粒子は、所望のリン含有率、錫含有率、及びニッケル含有率となるように調製したリン-錫-ニッケル含有銅合金を用いて、リン-錫含有銅合金粒子と同様に製造することができる。 The phosphorus-tin-nickel-containing copper alloy can be produced by a commonly used method, and the phosphorus-tin-nickel-containing copper alloy particles have a desired phosphorus content, tin content, and nickel content. The phosphor-tin-nickel-containing copper alloy prepared as described above can be used in the same manner as the phosphor-tin-containing copper alloy particles.
(ニッケル含有粒子)
 本発明で使用される電極用組成物がリン-錫含有銅合金粒子を含む場合には、更に金属粒子としてニッケル含有粒子を含むことが好ましい。本発明で使用される電極用組成物が前記リン-錫含有銅合金粒子に加えて、ニッケル含有粒子を含むことにより、熱処理(焼成)工程において、より高温での耐酸化性を発現させることができる傾向にある。つまり、本発明で使用される電極用組成物がニッケル含有粒子を含むことにより、電極用組成物をより高温で熱処理(焼成)することが可能となる傾向にある。なお、本発明で使用される電極用組成物がニッケル含有粒子を含む場合、リン-錫含有銅合金粒子と併用してもよいし、リン-錫-ニッケル含有銅合金粒子と併用してもよい。また、本発明で使用される電極用組成物がリン-錫-ニッケル含有銅合金粒子を含む場合には、必ずしもニッケル含有粒子と併用しなくともよい。
(Nickel-containing particles)
When the electrode composition used in the present invention contains phosphorus-tin-containing copper alloy particles, it is preferable that nickel-containing particles are further included as metal particles. When the electrode composition used in the present invention contains nickel-containing particles in addition to the phosphorus-tin-containing copper alloy particles, oxidation resistance at higher temperatures can be expressed in the heat treatment (firing) step. It tends to be possible. That is, when the electrode composition used in the present invention contains nickel-containing particles, the electrode composition tends to be heat-treated (fired) at a higher temperature. When the electrode composition used in the present invention contains nickel-containing particles, it may be used in combination with phosphorus-tin-containing copper alloy particles or in combination with phosphorus-tin-nickel-containing copper alloy particles. . Further, when the electrode composition used in the present invention contains phosphorus-tin-nickel-containing copper alloy particles, it is not always necessary to use them together with the nickel-containing particles.
 前記ニッケル含有粒子としては、ニッケルを含む粒子であれば特に制限はない。中でもニッケル粒子及びニッケル合金粒子から選ばれる少なくとも1種であることが好ましく、ニッケル粒子及びニッケル含有率が1質量%以上であるニッケル合金粒子から選ばれる少なくとも1種であることが好ましい。
 ニッケル粒子におけるニッケルの純度は特に制限されない。例えばニッケル粒子の純度は、95質量%以上とすることができ、97質量%以上であることが好ましく、99質量%以上であることがより好ましい。
The nickel-containing particles are not particularly limited as long as the particles contain nickel. Among these, at least one selected from nickel particles and nickel alloy particles is preferable, and at least one selected from nickel particles and nickel alloy particles having a nickel content of 1% by mass or more is preferable.
The purity of nickel in the nickel particles is not particularly limited. For example, the purity of the nickel particles can be 95% by mass or more, preferably 97% by mass or more, and more preferably 99% by mass or more.
 またニッケル合金粒子は、ニッケルを含む合金粒子であれば合金の種類は制限されない。中でもニッケル合金粒子の融点及び熱処理(焼成)時のCu-Sn合金相との反応性の観点から、ニッケルの含有率が1質量%以上であるニッケル合金粒子であることが好ましく、ニッケルの含有率が3質量%以上であるニッケル合金粒子であることがより好ましく、ニッケルの含有率が5質量%以上であるニッケル合金粒子であることが更に好ましく、ニッケルの含有率が10質量%以上であるニッケル合金粒子であることが特に好ましい。ニッケルの含有率の上限値については、特に制限はない。 Also, the type of alloy is not limited as long as the nickel alloy particles are alloy particles containing nickel. Among these, from the viewpoint of the melting point of the nickel alloy particles and the reactivity with the Cu—Sn alloy phase during heat treatment (firing), the nickel alloy particles preferably have a nickel content of 1% by mass or more. Is more preferably nickel alloy particles having a nickel content of 5% by mass or more, more preferably nickel alloy particles having a nickel content of 10% by mass or more. Particularly preferred are alloy particles. There is no particular limitation on the upper limit of the nickel content.
 ニッケル合金粒子を構成するニッケル合金としては、Ni-Fe合金、Ni-Cu合金、Ni-Cu-Zn合金、Ni-Cr合金、Ni-Cr-Ag合金等が挙げられる。特にNi-58Fe、Ni-75Cu、Ni-6Cu-20Zn等を含むニッケル合金粒子は、熱処理(焼成)時にリン-錫含有銅合金粒子又はリン-錫-ニッケル含有銅合金粒子とより均一に反応することができるという点で、好適に用いることができる。なお、ニッケル合金における表記は、例えばNi-AX-BY-CZの場合は、ニッケル合金の中に、元素XがA質量%、元素YがB質量%、元素ZがC質量%含まれていることを示す。
 前記電極用組成物において、これらのニッケル含有粒子は1種単独で使用してもよく、2種以上を組み合わせて使用することもできる。
 本発明において「ニッケル含有粒子の2種以上を組み合わせて用いる」とは、成分比率が異なるものの後述の粒子径、粒度分布等の粒子形状が同じである2種以上のニッケル含有粒子を組み合わせて用いる場合、成分比率は同じであるものの粒子形状の異なる2種以上のニッケル含有粒子を組み合わせて用いる場合、成分比率及び粒子形状がともに異なる2種以上のニッケル含有粒子を組み合わせて用いる場合などが挙げられる。
Examples of the nickel alloy constituting the nickel alloy particles include a Ni—Fe alloy, a Ni—Cu alloy, a Ni—Cu—Zn alloy, a Ni—Cr alloy, and a Ni—Cr—Ag alloy. In particular, nickel alloy particles containing Ni-58Fe, Ni-75Cu, Ni-6Cu-20Zn, etc., react more uniformly with phosphorus-tin-containing copper alloy particles or phosphorus-tin-nickel-containing copper alloy particles during heat treatment (firing). It can be preferably used in that it can be used. For example, in the case of Ni-AX-BY-CZ, the nickel alloy contains A mass% of element X, B mass% of element Y, and C mass% of element Z in the nickel alloy. It shows that.
In the electrode composition, these nickel-containing particles may be used alone or in combination of two or more.
In the present invention, “use in combination of two or more kinds of nickel-containing particles” means that two or more kinds of nickel-containing particles having the same particle shape such as particle diameter and particle size distribution described later are used in combination although the component ratio is different. In this case, there are cases where two or more kinds of nickel-containing particles having the same component ratio but different particle shapes are used in combination, and two or more kinds of nickel-containing particles having different component ratios and particle shapes are used in combination. .
 前記ニッケル含有粒子は、不可避的に混入する他の原子を更に含んでいてもよい。不可避的に混入する他の原子としては、例えば、Ag、Mn、Sb、Si、K、Na、Li、Ba、Sr、Ca、Mg、Be、Zn、Pb、Cd、Tl、V、Al、Zr、W、Mo、Ti、Co、Sn及びAuを挙げることができる。
 また前記ニッケル含有粒子に含まれる不可避的に混入する他の原子の含有率は、例えば前記ニッケル含有粒子中に3質量%以下とすることができ、融点、及び、熱処理(焼成)時のリン-錫含有銅合金粒子又はリン-錫-ニッケル含有銅合金粒子との反応性の観点から、1質量%以下であることが好ましい。
The nickel-containing particles may further contain other atoms inevitably mixed. Examples of other atoms inevitably mixed include Ag, Mn, Sb, Si, K, Na, Li, Ba, Sr, Ca, Mg, Be, Zn, Pb, Cd, Tl, V, Al, and Zr. , W, Mo, Ti, Co, Sn, and Au.
The content of other atoms inevitably mixed in the nickel-containing particles can be, for example, 3% by mass or less in the nickel-containing particles, the melting point, and the phosphorus content during heat treatment (firing). From the viewpoint of reactivity with tin-containing copper alloy particles or phosphorus-tin-nickel-containing copper alloy particles, the content is preferably 1% by mass or less.
 前記ニッケル含有粒子の粒子径としては特に制限はなく、粒子径(D50%)として、0.5μm~20μmであることが好ましく、1μm~15μmであることがより好ましく、3μm~15μmであることが更に好ましい。前記ニッケル含有粒子の粒子径(D50%)を0.5μm以上とすることでニッケル含有粒子自身の耐酸化性が向上する傾向にある。また、前記ニッケル含有粒子の粒子径(D50%)が20μm以下であることで、ニッケル含有粒子とリン-錫含有銅合金粒子又はリン-錫-ニッケル含有銅合金粒子との接触面積が大きくなり、リン-錫含有銅合金粒子又はリン-錫-ニッケル含有銅合金粒子との熱処理(焼成)時における反応が効果的に進む傾向にある。
 尚、ニッケル含有粒子の粒子径(D50%)の測定方法は、リン-錫含有銅合金粒子の粒子径の測定方法と同様である。
 また前記ニッケル含有粒子の形状としては特に制限はなく、略球状、扁平状、ブロック状、板状、鱗片状等のいずれであってもよい。耐酸化性と電極の低抵抗率化の観点から、略球状、扁平状又は板状であることが好ましい。
The particle diameter of the nickel-containing particles is not particularly limited, and the particle diameter (D50%) is preferably 0.5 μm to 20 μm, more preferably 1 μm to 15 μm, and more preferably 3 μm to 15 μm. Further preferred. When the particle diameter (D50%) of the nickel-containing particles is 0.5 μm or more, the oxidation resistance of the nickel-containing particles themselves tends to be improved. Further, when the particle diameter (D50%) of the nickel-containing particles is 20 μm or less, the contact area between the nickel-containing particles and the phosphorus-tin-containing copper alloy particles or the phosphorus-tin-nickel-containing copper alloy particles is increased, The reaction during heat treatment (firing) with phosphorus-tin-containing copper alloy particles or phosphorus-tin-nickel-containing copper alloy particles tends to proceed effectively.
The method for measuring the particle diameter (D50%) of the nickel-containing particles is the same as the method for measuring the particle diameter of the phosphorus-tin-containing copper alloy particles.
Further, the shape of the nickel-containing particles is not particularly limited, and may be any of a substantially spherical shape, a flat shape, a block shape, a plate shape, a scale shape, and the like. From the viewpoint of oxidation resistance and reduction in the resistivity of the electrode, it is preferably substantially spherical, flat or plate-like.
 また前記電極用組成物がニッケル含有粒子を含有する場合におけるニッケル含有粒子の含有率は特に制限されない。中でも、前記リン-錫含有銅合金粒子又はリン-錫-ニッケル含有銅合金粒子とニッケル含有粒子との総含有率を100質量%としたときのニッケル含有粒子の含有率が、10質量%以上70質量%以下であることが好ましく、12質量%以上55質量%以下であることがより好ましく、15質量%以上50質量%以下であることが更に好ましく、15質量%以上35質量%以下であることが特に好ましい。
 ニッケル含有粒子の含有率を10質量%以上とすることで、Cu-Sn-Ni合金相の形成をより均一に生じさせることができる傾向にある。またニッケル含有粒子の含有率を70質量%以下とすることで、充分な体積のCu-Sn-Ni合金相を形成することができ、電極の抵抗率がより低下する傾向にある。
Moreover, the content rate of the nickel containing particle in the case where the composition for electrodes contains nickel containing particle is not particularly limited. In particular, the content of the nickel-containing particles is 10% by mass or more and 70% when the total content of the phosphorus-tin-containing copper alloy particles or the phosphorus-tin-nickel-containing copper alloy particles and the nickel-containing particles is 100% by mass. It is preferably at most mass%, more preferably at least 12 mass% and at most 55 mass%, further preferably at least 15 mass% and at most 50 mass%, and at least 15 mass% and at most 35 mass%. Is particularly preferred.
By setting the content of the nickel-containing particles to 10% by mass or more, the Cu—Sn—Ni alloy phase tends to be formed more uniformly. Further, when the content of the nickel-containing particles is 70% by mass or less, a sufficient volume of the Cu—Sn—Ni alloy phase can be formed, and the resistivity of the electrode tends to be further reduced.
 前記電極用組成物における、リン-錫含有銅合金粒子(又はリン-錫-ニッケル含有銅合金粒子)及び必要に応じて添加されるニッケル含有粒子の総含有率は、耐酸化性と電極の抵抗率の観点から、60質量%以上94質量%以下であることが好ましく、64質量%以上88質量%以下であることがより好ましい。 The total content of the phosphorus-tin-containing copper alloy particles (or phosphorus-tin-nickel-containing copper alloy particles) and the nickel-containing particles added as necessary in the composition for an electrode depends on oxidation resistance and electrode resistance. From the viewpoint of rate, it is preferably 60% by mass or more and 94% by mass or less, and more preferably 64% by mass or more and 88% by mass or less.
(ガラス粒子)
 本発明で使用される電極用組成物は、ガラス粒子を含有する。電極用組成物がガラス粒子を含むことにより、熱処理(焼成)時に電極とシリコン基板との密着性が向上する。また、特に太陽電池受光面側の電極形成において、熱処理(焼成)時にいわゆるファイアースルーによって反射防止層である窒化ケイ素層が取り除かれ、電極とシリコン基板とのオーミックコンタクトが形成される。
(Glass particles)
The composition for electrodes used in the present invention contains glass particles. When the electrode composition contains glass particles, adhesion between the electrode and the silicon substrate is improved during heat treatment (firing). Further, particularly in the formation of the electrode on the light-receiving surface side of the solar cell, the silicon nitride layer as the antireflection layer is removed by so-called fire-through during heat treatment (firing), and an ohmic contact between the electrode and the silicon substrate is formed.
 前記ガラス粒子は、シリコン基板との密着性と電極の抵抗率の観点から、軟化温度が650℃以下であり、結晶化開始温度が650℃を超えるガラスを含むガラス粒子であることが好ましい。なお、前記軟化温度及び前記結晶化開始温度は、示差熱-熱重量分析装置(TG-DTA)を用いて通常の方法によって測定される。 The glass particles are preferably glass particles containing glass having a softening temperature of 650 ° C. or lower and a crystallization start temperature exceeding 650 ° C. from the viewpoint of adhesion to a silicon substrate and electrode resistivity. The softening temperature and the crystallization start temperature are measured by a usual method using a differential thermal-thermogravimetric analyzer (TG-DTA).
 前記電極用組成物を太陽電池受光面側の電極として使用する場合は、前記ガラス粒子は、電極形成温度で軟化及び溶融し、接触した窒化ケイ素層を酸化し、酸化された二酸化ケイ素を取り込むことで、反射防止層を除去可能なものであれば、当該技術分野において通常用いられるガラス粒子を特に制限なく用いることができる。 When the electrode composition is used as an electrode on the solar cell light-receiving surface side, the glass particles soften and melt at the electrode formation temperature, oxidize the contacted silicon nitride layer, and take in oxidized silicon dioxide. As long as the antireflection layer can be removed, glass particles usually used in the technical field can be used without particular limitation.
 一般に電極用組成物に含まれるガラス粒子は、二酸化ケイ素を効率よく取り込み可能であるという観点からは、鉛を含むことが好ましい。鉛を含むガラスとしては、例えば、特許第3050064号公報に記載のものを挙げることができる。
 また本発明においては、環境に対する影響を考慮すると、鉛を実質的に含まない鉛フリーガラスを用いることも好ましい。鉛フリーガラスとしては、例えば、特開2006-313744号公報の段落番号0024~0025に記載の鉛フリーガラス及び特開2009-188281号公報に記載の鉛フリーガラスを挙げることができ、これらの鉛フリーガラスから適宜選択して本発明で使用される電極用組成物に適用することもまた好ましい。
In general, glass particles contained in the electrode composition preferably contain lead from the viewpoint that silicon dioxide can be efficiently incorporated. Examples of the glass containing lead include those described in Japanese Patent No. 3050064.
In the present invention, it is also preferable to use lead-free glass that does not substantially contain lead in consideration of the influence on the environment. Examples of the lead-free glass include the lead-free glass described in paragraphs 0024 to 0025 of JP-A-2006-313744 and the lead-free glass described in JP-A-2009-188281. It is also preferable to select an appropriate material from free glass and apply it to the electrode composition used in the present invention.
 また前記電極用組成物を太陽電池受光面側の電極以外の電極、例えば裏面出力取出し電極として用いる場合には、軟化温度が650℃以下であり、結晶化開始温度が650℃を超えるガラスを含むガラス粒子であれば、上記鉛のようなファイアースルーに必要な成分を含まないガラス粒子を用いることができる。ガラス粒子の軟化点は、583℃以下がより好ましい。 Further, when the electrode composition is used as an electrode other than the electrode on the light-receiving surface side of the solar cell, for example, a back surface output extraction electrode, it includes a glass having a softening temperature of 650 ° C. or lower and a crystallization start temperature exceeding 650 ° C. If it is a glass particle, the glass particle which does not contain the component required for fire through like the said lead can be used. The softening point of the glass particles is more preferably 583 ° C. or lower.
 前記電極用組成物に用いられるガラス粒子を構成するガラス成分としては、例えば、酸化ケイ素(SiO又はSiO)、酸化リン(P)、酸化アルミニウム(Al)、酸化ホウ素(B)、酸化バナジウム(V)、酸化カリウム(KO)、酸化ビスマス(Bi)、酸化ナトリウム(NaO)、酸化リチウム(LiO)、酸化バリウム(BaO)、酸化ストロンチウム(SrO)、酸化カルシウム(CaO)、酸化マグネシウム(MgO)、酸化ベリリウム(BeO)、酸化亜鉛(ZnO)、酸化鉛(PbO)、酸化カドミウム(CdO)、酸化スズ(SnO)、酸化ジルコニウム(ZrO)、酸化タングステン(WO)、酸化モリブデン(MoO)、酸化ランタン(La)、酸化ニオブ(Nb)、酸化タンタル(Ta)、酸化イットリウム(Y)、酸化チタン(TiO)、酸化ゲルマニウム(GeO)、酸化テルル(TeO)、酸化ルテチウム(Lu)、酸化アンチモン(Sb)、酸化銅(CuO)、酸化鉄(FeO、Fe又はFe)、酸化銀(AgO又はAgO)及び酸化マンガン(MnO)が挙げられる。 Examples of the glass component constituting the glass particles used in the electrode composition include silicon oxide (SiO or SiO 2 ), phosphorus oxide (P 2 O 5 ), aluminum oxide (Al 2 O 3 ), boron oxide ( B 2 O 3), vanadium oxide (V 2 O 5), potassium oxide (K 2 O), bismuth oxide (Bi 2 O 3), sodium oxide (Na 2 O), lithium oxide (Li 2 O), barium oxide (BaO), strontium oxide (SrO), calcium oxide (CaO), magnesium oxide (MgO), beryllium oxide (BeO), zinc oxide (ZnO), lead oxide (PbO), cadmium oxide (CdO), tin oxide (SnO) ), Zirconium oxide (ZrO 2 ), tungsten oxide (WO 3 ), molybdenum oxide (MoO 3 ), lanthanum oxide (La 2 O 3 ), niobium oxide (Nb 2 O 5 ), tantalum oxide (Ta 2 O 5 ), yttrium oxide (Y 2 O 3 ), titanium oxide (TiO 2 ), germanium oxide (GeO 2 ), tellurium oxide (TeO) 2 ), lutetium oxide (Lu 2 O 3 ), antimony oxide (Sb 2 O 3 ), copper oxide (CuO), iron oxide (FeO, Fe 2 O 3 or Fe 3 O 4 ), silver oxide (AgO or Ag 2) O) and manganese oxide (MnO).
 中でも、SiO、P、Al、B、V、Bi、ZnO及びPbOからなる群より選択される少なくとも1種を含むガラス粒子を用いることが好ましく、SiO、Al、B、Bi及びPbOからなる群より選択される少なくとも1種を含むガラス粒子を用いることがより好ましい。このようなガラス粒子の場合には、軟化温度がより効果的に低下する傾向にある。更に、リン-錫含有銅合金粒子又はリン-錫-ニッケル含有銅合金粒子及び必要に応じて添加されるニッケル含有粒子との濡れ性が向上するため、熱処理(焼成)過程での前記粒子間の焼結が進み、より抵抗率の低い電極を形成することができる傾向にある。 Among them, glass particles containing at least one selected from the group consisting of SiO 2 , P 2 O 5 , Al 2 O 3 , B 2 O 3 , V 2 O 5 , Bi 2 O 3 , ZnO and PbO are used. It is more preferable to use glass particles containing at least one selected from the group consisting of SiO 2 , Al 2 O 3 , B 2 O 3 , Bi 2 O 3 and PbO. In the case of such glass particles, the softening temperature tends to decrease more effectively. Furthermore, since the wettability with the phosphorus-tin-containing copper alloy particles or the phosphorus-tin-nickel-containing copper alloy particles and the nickel-containing particles added as necessary is improved, the inter-particles in the heat treatment (firing) process are improved. Sintering progresses and it tends to be possible to form an electrode with a lower resistivity.
 他方、電極の接触抵抗率を低下させる観点からは、酸化リンを含むガラス粒子(リン酸ガラス粒子、Pガラス粒子等)であることが好ましく、酸化リンに加えて酸化バナジウムを更に含むガラス粒子(P-Vガラス粒子)であることがより好ましい。酸化バナジウムを更に含むことで、耐酸化性がより向上し、電極の抵抗率がより低下する傾向にある。これは、例えば、酸化バナジウムを更に含むことでガラスの軟化温度が低下することに起因すると考えることができる。酸化リン-酸化バナジウムガラス粒子(P-Vガラス粒子)を用いる場合、酸化バナジウムの含有率としては、ガラスの全質量中に1質量%以上であることが好ましく、1質量%~70質量%であることがより好ましい。 On the other hand, from the viewpoint of reducing the contact resistivity of the electrode, glass particles containing phosphorus oxide (phosphoric acid glass particles, P 2 O 5 glass particles, etc.) are preferable, and vanadium oxide is further included in addition to phosphorus oxide. More preferred are glass particles (P 2 O 5 —V 2 O 5 glass particles). By further containing vanadium oxide, the oxidation resistance is further improved, and the resistivity of the electrode tends to be further reduced. This can be attributed to, for example, that the softening temperature of the glass is lowered by further containing vanadium oxide. When phosphorus oxide-vanadium oxide glass particles (P 2 O 5 —V 2 O 5 glass particles) are used, the vanadium oxide content is preferably 1% by mass or more based on the total mass of the glass. % To 70% by mass is more preferable.
 本発明で使用される電極用組成物におけるガラス粒子の粒子径としては特に制限はないが、積算した体積が50%である場合における粒子径(D50%)が、0.5μm以上10μm以下であることが好ましく、0.8μm以上8μm以下であることがより好ましい。ガラス粒子の粒子径を0.5μm以上とすることで電極用組成物の作製時の作業性が向上する傾向にある。また、ガラス粒子の粒子径が10μm以下であることで、電極用組成物中により均一に分散し、熱処理(焼成)工程で効率よくファイアースルーを生じることができ、更にシリコン基板との密着性も向上する傾向にある。尚、ガラス粒子の粒子径(D50%)の測定方法は、リン-錫含有銅合金粒子の粒子径の測定方法と同様である。
 また前記ガラス粒子の形状としては特に制限はなく、略球状、扁平状、ブロック状、板状、鱗片状等のいずれであってもよい。耐酸化性と電極の抵抗率の観点から、略球状、扁平状又は板状であることが好ましい。
Although there is no restriction | limiting in particular as a particle diameter of the glass particle in the composition for electrodes used by this invention, The particle diameter (D50%) in case an integrated volume is 50% is 0.5 micrometer or more and 10 micrometers or less. It is preferably 0.8 μm or more and 8 μm or less. When the particle diameter of the glass particles is 0.5 μm or more, the workability during the production of the electrode composition tends to be improved. Moreover, since the particle diameter of the glass particles is 10 μm or less, the glass particles can be more uniformly dispersed in the electrode composition, and fire-through can be efficiently generated in the heat treatment (firing) step, and the adhesion to the silicon substrate is also improved. It tends to improve. The method for measuring the particle size (D50%) of the glass particles is the same as the method for measuring the particle size of the phosphorus-tin-containing copper alloy particles.
Moreover, there is no restriction | limiting in particular as a shape of the said glass particle, Any of substantially spherical shape, flat shape, block shape, plate shape, scale shape, etc. may be sufficient. From the viewpoint of oxidation resistance and electrode resistivity, it is preferably substantially spherical, flat or plate-like.
 前記ガラス粒子の含有率としては電極用組成物の全質量中に0.1質量%~12質量%であることが好ましく、0.5質量%~10質量%であることがより好ましく、1質量%~9質量%であることが更に好ましい。かかる範囲の含有率でガラス粒子を含むことで、より効果的に耐酸化性、電極の低抵抗率化、及び低接触抵抗化が達成され、また前記金属粒子間の反応を促進させることができる傾向にある。 The content of the glass particles is preferably 0.1% by mass to 12% by mass, more preferably 0.5% by mass to 10% by mass, based on the total mass of the electrode composition. More preferably, it is from 9% to 9% by mass. By including glass particles with a content in such a range, oxidation resistance, lower electrode resistivity, and lower contact resistance can be achieved more effectively, and the reaction between the metal particles can be promoted. There is a tendency.
 また電極用組成物は、金属粒子の総含有量に対するガラス粒子の含有量の比(質量比、ガラス粒子/金属粒子)が0.01~0.18であることが好ましく、0.03~0.15であることがより好ましい。かかる範囲の含有比でガラス粒子を含むことで、より効果的に耐酸化性、電極の低抵抗率化及び低接触抵抗化が達成され、また前記金属粒子間の反応を促進させることができる傾向にある。 In the electrode composition, the ratio of the content of glass particles to the total content of metal particles (mass ratio, glass particles / metal particles) is preferably 0.01 to 0.18, preferably 0.03 to 0. .15 is more preferable. Inclusion of glass particles in such a content ratio tends to more effectively achieve oxidation resistance, lower electrode resistivity and lower contact resistance, and promote the reaction between the metal particles. It is in.
(分散媒)
 本発明で使用される電極用組成物は、分散媒を含有してもよい。これにより前記電極用組成物の液物性(例えば、粘度及び表面張力)を、半導体基板等に付与する際の付与方法に応じて必要とされる液物性に調整することができる。
 前記分散媒としては、溶剤及び樹脂からなる群より選択される少なくとも1種が挙げられる。
(Dispersion medium)
The electrode composition used in the present invention may contain a dispersion medium. Thereby, the liquid physical properties (for example, viscosity and surface tension) of the electrode composition can be adjusted to the liquid physical properties required depending on the application method when applying to a semiconductor substrate or the like.
Examples of the dispersion medium include at least one selected from the group consisting of a solvent and a resin.
 前記溶剤としては特に制限はなく、ヘキサン、シクロヘキサン、トルエン等の炭化水素溶剤、ジクロロエチレン、ジクロロエタン、ジクロロベンゼン等のハロゲン化炭化水素溶剤、テトラヒドロフラン、フラン、テトラヒドロピラン、ピラン、ジオキサン、1,3-ジオキソラン、トリオキサン等の環状エーテル溶剤、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等のアミド溶剤、ジメチルスルホキシド、ジエチルスルホキシド等のスルホキシド溶剤、アセトン、メチルエチルケトン、ジエチルケトン、シクロヘキサノン等のケトン溶剤、エタノール、2-プロパノール、1-ブタノール、ジアセトンアルコール等のアルコール溶剤、2,2,4-トリメチル-1,3-ペンタンジオールモノアセテート、2,2,4-トリメチル-1,3-ペンタンジオールモノプロピオネート、2,2,4-トリメチル-1,3-ペンタンジオールモノブチレート、2,2,4-トリメチル-1,3-ペンタンジオールモノイソブチレート、2,2,4-トリエチル-1,3-ペンタンジオールモノアセテート、エチレングリコールモノブチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート等の多価アルコールのエステル溶剤、ブチルセロソルブ、ジエチレングリコールモノブチルエーテル、ジエチレングリコールジエチルエーテル等の多価アルコールのエーテル溶剤、テルピネン、テルピネオール、ピネン、ミルセン、アロオシメン、リモネン、ジペンテン、カルボン、オシメン、フェランドレン等のテルペン溶剤、これらの混合物などが挙げられる。 The solvent is not particularly limited, and is a hydrocarbon solvent such as hexane, cyclohexane or toluene, a halogenated hydrocarbon solvent such as dichloroethylene, dichloroethane or dichlorobenzene, tetrahydrofuran, furan, tetrahydropyran, pyran, dioxane, or 1,3-dioxolane. Cyclic ether solvents such as trioxane, amide solvents such as N, N-dimethylformamide and N, N-dimethylacetamide, sulfoxide solvents such as dimethyl sulfoxide and diethyl sulfoxide, ketone solvents such as acetone, methyl ethyl ketone, diethyl ketone and cyclohexanone, ethanol Alcohol solvents such as 2-propanol, 1-butanol, diacetone alcohol, 2,2,4-trimethyl-1,3-pentanediol monoacetate, 2,2,4- Limethyl-1,3-pentanediol monopropionate, 2,2,4-trimethyl-1,3-pentanediol monobutyrate, 2,2,4-trimethyl-1,3-pentanediol monoisobutyrate, Ester solvents of polyhydric alcohols such as 2,2,4-triethyl-1,3-pentanediol monoacetate, ethylene glycol monobutyl ether acetate, diethylene glycol monobutyl ether acetate, polyhydric alcohols such as butyl cellosolve, diethylene glycol monobutyl ether, diethylene glycol diethyl ether Ether solvents, terpinene, terpineol, pinene, myrcene, alloocimene, limonene, dipentene, carvone, oscene, ferrandylene, and other terpene solvents, and mixtures thereof. It is.
 前記溶剤としては、電極用組成物を半導体基板上に付与する際の付与特性(塗布性又は印刷性)の観点から、多価アルコールのエステル溶剤、テルペン溶剤及び多価アルコールのエーテル溶剤からなる群より選ばれる少なくとも1種であることが好ましく、多価アルコールのエステル溶剤及びテルペン溶剤からなる群より選ばれる少なくとも1種であることがより好ましい。
 また本発明で使用される電極用組成物において前記溶剤は1種単独でも、2種以上を組み合わせて用いてもよい。
The solvent is a group consisting of a polyhydric alcohol ester solvent, a terpene solvent, and a polyhydric alcohol ether solvent from the viewpoint of application characteristics (applicability or printability) when applying the electrode composition onto a semiconductor substrate. It is preferably at least one selected from the group consisting of polyhydric alcohol ester solvents and terpene solvents, and more preferably at least one selected from the group consisting of terpene solvents.
In the electrode composition used in the present invention, the solvent may be used alone or in combination of two or more.
 また前記樹脂としては熱処理(焼成)によって熱分解されうる樹脂であれば、当該技術分野において通常用いられる樹脂を特に制限なく用いることができ、天然高分子化合物であっても合成高分子化合物であってもよい。具体的には、メチルセルロース、エチルセルロース、カルボキシメチルセルロース、ニトロセルロース等のセルロース樹脂、ポリビニルアルコール樹脂、ポリビニルピロリドン樹脂、アクリル樹脂、酢酸ビニル-アクリル酸エステル共重合体、ポリビニルブチラール等のブチラール樹脂、フェノール変性アルキド樹脂、ひまし油脂肪酸変性アルキド樹脂等のアルキド樹脂、エポキシ樹脂、フェノール樹脂、ロジンエステル樹脂などを挙げることができる。 Further, as the resin, any resin that is usually used in the technical field can be used without particular limitation as long as it can be thermally decomposed by heat treatment (firing), and even a natural polymer compound can be a synthetic polymer compound. May be. Specifically, cellulose resins such as methyl cellulose, ethyl cellulose, carboxymethyl cellulose, nitrocellulose, polyvinyl alcohol resins, polyvinyl pyrrolidone resins, acrylic resins, vinyl acetate-acrylic acid ester copolymers, butyral resins such as polyvinyl butyral, phenol-modified alkyds, etc. Examples thereof include resins, alkyd resins such as castor oil fatty acid-modified alkyd resins, epoxy resins, phenol resins, rosin ester resins and the like.
 本発明において電極用組成物に樹脂を含む場合は、熱処理(焼成)における消失性の観点から、セルロース樹脂、及びアクリル樹脂からなる群より選ばれる少なくとも1種であることが好ましい。
 また本発明において前記樹脂は1種単独でも、2種以上を組み合わせて用いてもよい。
In the present invention, when the resin is contained in the electrode composition, it is preferably at least one selected from the group consisting of a cellulose resin and an acrylic resin from the viewpoint of disappearance in heat treatment (firing).
In the present invention, the resins may be used alone or in combination of two or more.
 また本発明において電極用組成物中に前記樹脂を含む場合の前記樹脂の重量平均分子量は特に制限されない。中でも前記樹脂の重量平均分子量は5000以上500000以下が好ましく、10000以上300000以下であることがより好ましい。前記樹脂の重量平均分子量が5000以上であると、電極用組成物の粘度が増加することを抑制できる傾向にある。また樹脂の重量平均分子量が5000以上であれば、電極用組成物中の金属粒子に前記樹脂を吸着させたときの立体的な反発作用により、粒子を互いに凝集しにくくすることができると考えられる。一方、樹脂の重量平均分子量が500000以下であると、樹脂どうしが溶剤中で凝集することが抑制され、電極用組成物の粘度が増加することを抑制できる傾向にある。また樹脂の重量平均分子量が500000以下であることで、樹脂の燃焼温度が高くなることが抑制され、電極用組成物を熱処理(焼成)する際に樹脂が燃焼されず異物として残存することが抑制され、より低い抵抗率の電極を形成することができる傾向にある。 In the present invention, the weight average molecular weight of the resin when the resin is contained in the electrode composition is not particularly limited. Among them, the weight average molecular weight of the resin is preferably 5,000 or more and 500,000 or less, and more preferably 10,000 or more and 300,000 or less. It exists in the tendency which can suppress that the viscosity of the composition for electrodes increases that the weight average molecular weight of the said resin is 5000 or more. Further, if the weight average molecular weight of the resin is 5000 or more, it is considered that the particles can be made difficult to aggregate due to the steric repulsion when the resin is adsorbed to the metal particles in the electrode composition. . On the other hand, when the weight average molecular weight of the resin is 500,000 or less, aggregation of the resins in the solvent is suppressed and the viscosity of the electrode composition tends to be suppressed from increasing. In addition, since the weight average molecular weight of the resin is 500,000 or less, it is suppressed that the combustion temperature of the resin is increased, and when the electrode composition is heat-treated (fired), the resin is not combusted and remains as a foreign substance. Therefore, there is a tendency that a lower resistivity electrode can be formed.
 重量平均分子量はGPC(ゲルパーミエーションクロマトグラフィー)を用いて測定される分子量分布から標準ポリスチレンの検量線を使用して換算して求められる。検量線は、標準ポリスチレンの5サンプルセット(PStQuick MP-H、PStQuick B、東ソー(株))を用いて3次元で近似する。GPCの測定条件は、以下の通りである。
・装置:(ポンプ:L-2130型[(株)日立ハイテクノロジーズ])、(検出器:L-2490型RI[(株)日立ハイテクノロジーズ])、(カラムオーブン:L-2350[(株)日立ハイテクノロジーズ])
・カラム:Gelpack GL-R440 + Gelpack GL-R450 + Gelpack GL-R400M(計3本)(日立化成(株))
・カラムサイズ:10.7mm×300mm(内径)
・溶離液:テトラヒドロフラン
・試料濃度:10mg/2mL
・注入量:200μL
・流量:2.05mL/分
・測定温度:25℃
The weight average molecular weight is obtained by conversion from a molecular weight distribution measured using GPC (gel permeation chromatography) using a standard polystyrene calibration curve. The calibration curve is approximated in three dimensions using five standard polystyrene sample sets (PStQuick MP-H, PStQuick B, Tosoh Corporation). The measurement conditions of GPC are as follows.
Equipment: (Pump: L-2130 type [Hitachi High-Technologies Corporation]), (Detector: L-2490 type RI [Hitachi High-Technologies Corporation]), (Column oven: L-2350 [Corporation] Hitachi High-Technologies])
Column: Gelpack GL-R440 + Gelpack GL-R450 + Gelpack GL-R400M (3 in total) (Hitachi Chemical Co., Ltd.)
-Column size: 10.7 mm x 300 mm (inner diameter)
・ Eluent: Tetrahydrofuran ・ Sample concentration: 10 mg / 2 mL
・ Injection volume: 200 μL
・ Flow rate: 2.05 mL / min ・ Measurement temperature: 25 ° C.
 本発明で電極用組成物中に前記分散媒を含む場合の前記分散媒の含有率は、所望の液物性と使用する分散媒の種類に応じて適宜選択することができる。例えば、分散媒の含有率が、電極用組成物の全質量中に3質量%以上40質量%以下であることが好ましく、5質量%以上35質量%以下であることがより好ましく、7質量%以上30質量%以下であることが更に好ましい。
 分散媒の含有率が前記範囲内であることにより、電極用組成物を半導体基板に付与する際の付与特性が良好になり、所望の幅及び高さを有する電極をより容易に形成することができる傾向にある。
 前記分散媒における溶剤と樹脂それぞれの種類及び分散媒中での含有比率は、電極用組成物の付与方法等を考慮して、適宜選択できる。
In the present invention, when the dispersion medium contains the dispersion medium, the content of the dispersion medium can be appropriately selected according to the desired liquid properties and the type of the dispersion medium to be used. For example, the content of the dispersion medium is preferably 3% by mass or more and 40% by mass or less, more preferably 5% by mass or more and 35% by mass or less, based on the total mass of the electrode composition, and 7% by mass. More preferably, it is 30 mass% or less.
When the content of the dispersion medium is within the above range, the application characteristics when applying the electrode composition to the semiconductor substrate are improved, and an electrode having a desired width and height can be more easily formed. It tends to be possible.
The types of the solvent and the resin in the dispersion medium and the content ratio in the dispersion medium can be appropriately selected in consideration of the method for applying the electrode composition.
(フラックス)
 前記電極用組成物は、フラックスを含有してもよい。前記電極用組成物がフラックスを含むことで、リン-錫含有銅合金粒子又はリン-錫-ニッケル含有銅合金粒子の表面に形成された酸化膜を除去し、熱処理(焼成)中のリン-錫含有銅合金粒子又はリン-錫-ニッケル含有銅合金粒子の還元反応を促進させることができる傾向にある。更に、前記電極用組成物がフラックスを含有することで、電極とシリコン基板の密着性が向上する傾向にある。
(flux)
The electrode composition may contain a flux. When the electrode composition contains a flux, the oxide film formed on the surface of the phosphorus-tin-containing copper alloy particles or the phosphorus-tin-nickel-containing copper alloy particles is removed, and the phosphorus-tin during the heat treatment (firing) There is a tendency that the reduction reaction of the copper alloy particles containing phosphorus or the tin-nickel-containing copper alloy particles can be promoted. Furthermore, since the electrode composition contains a flux, the adhesion between the electrode and the silicon substrate tends to be improved.
 フラックスとしては、リン-錫含有銅合金粒子又はリン-錫-ニッケル含有銅合金粒子の表面に形成された酸化膜を除去可能で、必要に応じて添加されるニッケル含有粒子の溶融を促進するものであれば特に制限はない。具体的には、脂肪酸、ホウ酸化合物、フッ化化合物、及びホウフッ化化合物を好ましいフラックスとして挙げることができる。 The flux can remove the oxide film formed on the surface of the phosphorus-tin-containing copper alloy particles or the phosphorus-tin-nickel-containing copper alloy particles and promote the melting of the nickel-containing particles added as necessary If there is no restriction in particular. Specifically, fatty acids, boric acid compounds, fluorinated compounds, and borofluorinated compounds can be mentioned as preferred fluxes.
 フラックスとしてより具体的には、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、ソルビン酸、ステアロール酸、プロピオン酸、酸化ホウ素、ホウ酸カリウム、ホウ酸ナトリウム、ホウ酸リチウム、ホウフッ化カリウム、ホウフッ化ナトリウム、ホウフッ化リチウム、酸性フッ化カリウム、酸性フッ化ナトリウム、酸性フッ化リチウム、フッ化カリウム、フッ化ナトリウム、フッ化リチウム等が挙げられる。
 中でも、電極用組成物の熱処理(焼成)時の耐熱性(フラックスが熱処理(焼成)の低温時に揮発しない特性)及びリン-錫含有銅合金粒子又はリン-錫-ニッケル含有銅合金粒子の耐酸化性を補完する観点から、ホウ酸カリウム及びホウフッ化カリウムが特に好ましいフラックスとして挙げられる。
 本発明で使用される電極用組成物においてこれらのフラックスは、それぞれ1種単独で使用してもよく、2種以上を組み合わせて使用することもできる。
More specifically, the flux includes lauric acid, myristic acid, palmitic acid, stearic acid, sorbic acid, stearic acid, propionic acid, boron oxide, potassium borate, sodium borate, lithium borate, potassium borofluoride, borofluoride. Sodium fluoride, lithium borofluoride, acidic potassium fluoride, acidic sodium fluoride, acidic lithium fluoride, potassium fluoride, sodium fluoride, lithium fluoride and the like can be mentioned.
Among them, the heat resistance during heat treatment (firing) of the electrode composition (the property that the flux does not volatilize at low temperatures during heat treatment (firing)) and the oxidation resistance of the phosphorus-tin-containing copper alloy particles or phosphor-tin-nickel-containing copper alloy particles From the viewpoint of complementing the properties, potassium borate and potassium borofluoride are particularly preferable fluxes.
In the electrode composition used in the present invention, each of these fluxes may be used alone or in combination of two or more.
 前記電極用組成物がフラックスを含有する場合のフラックスの含有率としては、リン-錫含有銅合金粒子又はリン-錫-ニッケル含有銅合金粒子の耐酸化性を効果的に発現させ、電極用組成物の熱処理(焼成)完了時にフラックスが除去された部分に生ずる空隙を低減する観点から、電極用組成物の全質量中に、0.1質量%~5質量%であることが好ましく、0.3質量%~4質量%であることがより好ましく、0.5質量%~3.5質量%であることが更に好ましく、0.7質量%~3質量%であることが特に好ましく、1質量%~2.5質量%であることが極めて好ましい。 When the electrode composition contains a flux, the flux content is such that the oxidation resistance of the phosphorus-tin-containing copper alloy particles or the phosphorus-tin-nickel-containing copper alloy particles is effectively expressed, and the electrode composition From the viewpoint of reducing voids generated in the portion where the flux is removed when the heat treatment (firing) of the product is completed, the content is preferably 0.1% by mass to 5% by mass in the total mass of the electrode composition. It is more preferably 3% by mass to 4% by mass, further preferably 0.5% by mass to 3.5% by mass, particularly preferably 0.7% by mass to 3% by mass, and 1% by mass. % To 2.5% by mass is very particularly preferred.
(その他の成分)
 本発明で使用される電極用組成物は、上述した成分に加え、必要に応じて、当該技術分野で通常用いられるその他の成分を更に含むことができる。その他の成分としては、例えば、可塑剤、分散剤、界面活性剤、無機結合剤、金属酸化物、セラミック及び有機金属化合物を挙げることができる。
(Other ingredients)
The electrode composition used in the present invention can further contain other components that are usually used in the technical field, if necessary, in addition to the components described above. Examples of other components include plasticizers, dispersants, surfactants, inorganic binders, metal oxides, ceramics, and organometallic compounds.
 本発明で使用される電極用組成物の製造方法としては特に制限はない。前記金属粒子、ガラス粒子及び必要に応じて添加される分散媒等のその他の成分を、通常用いられる分散方法又は混合方法を用いて、分散又は混合することで製造することができる。
 分散方法及び混合方法は特に制限されず、通常用いられる分散方法及び混合方法から適宜選択して適用することができる。
There is no restriction | limiting in particular as a manufacturing method of the composition for electrodes used by this invention. It can manufacture by disperse | distributing or mixing the said metal particle, glass particles, and other components, such as a dispersion medium added as needed, using the dispersion method or mixing method used normally.
The dispersion method and the mixing method are not particularly limited, and can be appropriately selected and applied from commonly used dispersion methods and mixing methods.
<接続材料>
 本発明における接続材料は、接着剤を含む。
 前記接続材料は、太陽電池の製造工程において、前記電極用組成物により形成される電極と、後述する配線部材とを接続可能な接着剤を含むものであれば、形状、材質、含有成分等について特に制限されない。前記接続材料の状態としては、フィルム状、ペースト状、溶液状等を挙げることができる。前記接続材料の状態については、接続材料に含まれる成分の種類及び含有率によって適宜調整可能である。太陽電池の製造効率、取扱性、発電性能の安定性等の観点から、前記接続材料はフィルム状であることが好ましい。
<Connection material>
The connection material in the present invention includes an adhesive.
As long as the connection material includes an adhesive capable of connecting an electrode formed from the electrode composition and a wiring member to be described later in the manufacturing process of the solar cell, the shape, material, component, etc. There is no particular limitation. Examples of the state of the connecting material include a film form, a paste form, and a solution form. About the state of the said connection material, it can adjust suitably with the kind and content rate of the component contained in a connection material. From the viewpoints of solar cell production efficiency, handleability, power generation performance stability, and the like, the connecting material is preferably in the form of a film.
 フィルム状の接続材料を形成する観点から、前記接続材料は、接着剤と、硬化剤と、フィルム形成材と、を含むことが好ましい。
 このような接続材料としては、例えば、特開2007-214533号公報に記載の導電性接着フィルムを挙げることができ、本発明においてもこれらを好適に使用することができる。このような接続材料を用いることで、安定した発電性能を示す太陽電池及び太陽電池モジュールを提供することができる。これは、例えば以下のように考えることができる。
From the viewpoint of forming a film-like connection material, the connection material preferably includes an adhesive, a curing agent, and a film-forming material.
As such a connection material, for example, a conductive adhesive film described in JP-A-2007-214533 can be exemplified, and these can be suitably used in the present invention. By using such a connection material, it is possible to provide a solar cell and a solar cell module that exhibit stable power generation performance. This can be considered as follows, for example.
 前記導電性接着フィルムを用いて太陽電池素子の電極と配線部材との接続を行う場合は、200℃付近の低温領域での接続が可能となるため、薄い太陽電池素子を用いた場合でも、配線部材との接続の際の反り又は割れが発生するのを抑えることができる。また、はんだ接続の際のようなはんだの染み出しが発生しないため、太陽電池素子の受光面積を広げることができ、結果として発電性能の向上も期待できる。
 前記接続材料を用いることにより、上記で述べたような発電性能の向上等の効果が期待できる。
When the electrode of the solar cell element and the wiring member are connected using the conductive adhesive film, it is possible to connect in a low temperature region around 200 ° C. Therefore, even when a thin solar cell element is used, the wiring Generation | occurrence | production of the curvature or crack in the case of a connection with a member can be suppressed. Moreover, since the solder seepage does not occur as in the case of solder connection, the light receiving area of the solar cell element can be expanded, and as a result, improvement in power generation performance can be expected.
By using the connection material, it is possible to expect effects such as improvement in power generation performance as described above.
 なお、特開2007-214533号公報等に記載の導電性接着フィルムは、導電性粒子を含んでおり、加熱圧着時に該導電性粒子を介して基板間の導電性を発現することができる。本発明で用いる接続材料はこの組成に限定されるものではなく、該導電性粒子を含んでいなくてもよい。すなわち、接続材料に導電性粒子を含んでいない場合は、該銅含有電極と配線部材は、加圧で接続材料が流動排除された部分にて直接接触することで導電性を得ることができる。 Note that the conductive adhesive film described in Japanese Patent Application Laid-Open No. 2007-214533 contains conductive particles, and can exhibit conductivity between the substrates through the conductive particles during thermocompression bonding. The connection material used in the present invention is not limited to this composition, and may not contain the conductive particles. That is, when the connection material does not contain conductive particles, the copper-containing electrode and the wiring member can obtain conductivity by directly contacting the connection material at a portion where the connection material is flow-excluded by pressurization.
 前記接続材料は、配線部材の加熱圧着の条件下で、40000Pa・s以下の粘度を有することが好ましい。40000Pa・s以下の粘度であれば、配線部材の加熱圧着時に電極に生じた空隙部へより容易に侵入可能となる傾向にある。接続材料の粘度は20000Pa・s以下であることがより好ましく、15000Pa・s以下であることが更に好ましい。なお、接続材料の粘度は、太陽電池の製造工程における取り扱いの点で、5000Pa・s以上であることが好ましい。
 接続材料の粘度は、ティー・エイ・インスツルメント・ジャパン(株)、ずり粘弾測定装置(ARES)を用いて、25℃で周波数10Hzの条件により確認することができる。
 以下に本発明で使用される接続材料に含有される各成分について詳細に説明する。
It is preferable that the connection material has a viscosity of 40000 Pa · s or less under conditions of thermocompression bonding of the wiring member. When the viscosity is 40000 Pa · s or less, the wiring member tends to easily penetrate into the void formed in the electrode during thermocompression bonding. The viscosity of the connecting material is more preferably 20000 Pa · s or less, and further preferably 15000 Pa · s or less. In addition, it is preferable that the viscosity of a connection material is 5000 Pa * s or more at the point of the handling in the manufacturing process of a solar cell.
The viscosity of the connecting material can be confirmed under the conditions of 25 ° C. and a frequency of 10 Hz using a TA Instruments Japan Co., Ltd. and a shear viscometer measuring device (ARES).
Hereinafter, each component contained in the connecting material used in the present invention will be described in detail.
(接着剤)
 前記接着剤としては、絶縁性を示すものであることが好ましい。絶縁性を示す接着剤としては、特に制限はないが、接着信頼性の観点から、熱硬化性樹脂を使用することが好ましい。
 熱硬化性樹脂としては公知のものを使用でき、例えば、エポキシ樹脂、フェノール樹脂、メラミン樹脂及びアルキド樹脂が挙げられる。中でもより充分な接続信頼性を得る観点から、エポキシ樹脂が好ましい。
(adhesive)
The adhesive preferably exhibits insulating properties. The adhesive exhibiting insulating properties is not particularly limited, but it is preferable to use a thermosetting resin from the viewpoint of adhesion reliability.
A well-known thing can be used as a thermosetting resin, For example, an epoxy resin, a phenol resin, a melamine resin, and an alkyd resin are mentioned. Among these, an epoxy resin is preferable from the viewpoint of obtaining sufficient connection reliability.
 前記接着剤の含有率は特に制限されない。硬化前のフィルム形成性又は硬化後の接着力の観点から、前記接着剤の含有率は、接続材料中に20質量%以上70質量%以下であることが好ましく、30質量%以上60質量%以下であることがより好ましく、40質量%以上50質量%以下であることが更に好ましい。 The content of the adhesive is not particularly limited. From the viewpoint of film formability before curing or adhesive strength after curing, the content of the adhesive is preferably 20% by mass or more and 70% by mass or less, and 30% by mass or more and 60% by mass or less in the connection material. It is more preferable that it is 40 mass% or more and 50 mass% or less.
(硬化剤)
 前記接続材料に含有可能な硬化剤としては、アニオン重合性の触媒型硬化剤、カチオン重合性の触媒型硬化剤、重付加型の硬化剤等が挙げられる。これらは1種単独で用いても2種以上を併用してもよい。これらのうち、速硬化性において優れ、化学当量的な考慮が不要である点から、アニオン又はカチオン重合性の触媒型硬化剤が好ましい。
(Curing agent)
Examples of the curing agent that can be contained in the connecting material include an anion polymerizable catalyst type curing agent, a cationic polymerizable catalyst type curing agent, and a polyaddition type curing agent. These may be used alone or in combination of two or more. Of these, anionic or cationic polymerizable catalyst-type curing agents are preferred because they are excellent in rapid curability and do not require chemical equivalent considerations.
 アニオン又はカチオン重合性の触媒型硬化剤としては、例えば、第3級アミン誘導体、イミダゾール誘導体、ヒドラジド化合物、三フッ化ホウ素-アミン錯体、オニウム塩(スルホニウム塩、アンモニウム塩等)、アミンイミド、ジアミノマレオニトリル、メラミン及びその誘導体、ポリアミンの塩、並びにジシアンジアミドが挙げられ、これらの変成物も用いることが可能である。重付加型の硬化剤としては、ポリアミン類、ポリメルカプタン、ポリフェノール、酸無水物等が挙げられる。
 アニオン又はカチオン重合性の触媒型硬化剤としては、接着力の点で第3級アミン誘導体又はイミダゾール誘導体を用いることが好ましく、イミダゾール誘導体を用いることがより好ましい。
Examples of anionic or cationic polymerizable catalyst-type curing agents include tertiary amine derivatives, imidazole derivatives, hydrazide compounds, boron trifluoride-amine complexes, onium salts (sulfonium salts, ammonium salts, etc.), amine imides, diamino maleos Nitriles, melamine and derivatives thereof, salts of polyamines, and dicyandiamide can be used, and modifications thereof can also be used. Examples of the polyaddition type curing agent include polyamines, polymercaptans, polyphenols, and acid anhydrides.
As the anionic or cationic polymerizable catalyst-type curing agent, it is preferable to use a tertiary amine derivative or an imidazole derivative, and it is more preferable to use an imidazole derivative in terms of adhesive strength.
 前記硬化剤としては、加熱圧着による反応開始の活性点が比較的明瞭であり、加熱圧着工程を伴う接続方法に好適であるとの理由から、潜在性硬化剤が好ましい。ここで潜在性硬化剤とは、ある特定の条件下(温度等)で硬化機能が発現されるものである。潜在性硬化剤としては、通常の硬化剤をマイクロカプセル等で保護したもの、硬化剤と各種化合物とが塩を形成した構造のものなどが挙げられる。
 このような潜在性硬化剤においては、例えば、特定の温度を超えるとマイクロカプセル又は塩から硬化剤が系中に放出され、硬化機能が発現される。
As the curing agent, a latent curing agent is preferred because the active point of reaction initiation by thermocompression bonding is relatively clear and suitable for a connection method involving a thermocompression bonding process. Here, the latent curing agent is a substance that exhibits a curing function under certain specific conditions (such as temperature). Examples of the latent curing agent include those obtained by protecting a normal curing agent with microcapsules and the like, and those having a structure in which a curing agent and various compounds form a salt.
In such a latent curing agent, for example, when a specific temperature is exceeded, the curing agent is released from the microcapsule or salt into the system, and a curing function is exhibited.
 潜在性硬化剤の例としては、アミン化合物とエポキシ化合物の反応生成物(アミンーエポキシアダクト系)、アミン化合物とイソシアネート化合物又は尿素化合物との反応生成物(尿素型アダクト系)等が挙げられる。潜在性硬化剤の市販品としては、アミキュア(味の素(株)、登録商標)、マイクロカプセル化されたアミンをフェノール樹脂に分散させたノバキュア(旭化成イーマテリアルズ(株)、登録商標)等が挙げられる。 Examples of the latent curing agent include a reaction product of an amine compound and an epoxy compound (amine-epoxy adduct system), a reaction product of an amine compound and an isocyanate compound or a urea compound (urea type adduct system), and the like. Commercial products of latent curing agents include Amicure (Ajinomoto Co., Inc., registered trademark), NovaCure (Asahi Kasei E-Materials Co., Ltd., registered trademark) in which microencapsulated amine is dispersed in phenolic resin, etc. It is done.
 前記接続材料における硬化剤の含有率は特に制限されないが、接着力の観点から、前記接着剤と前記硬化剤との総含有率を100質量%としたときの硬化剤の含有率が、10質量%以上50質量%以下であることが好ましく、20質量%以上40質量%以下であることがより好ましい。 The content of the curing agent in the connection material is not particularly limited, but from the viewpoint of adhesive strength, the content of the curing agent is 10% when the total content of the adhesive and the curing agent is 100% by mass. % To 50% by mass, more preferably 20% to 40% by mass.
(フィルム形成材)
 前記フィルム形成材としては、フェノキシ樹脂、アクリル樹脂、ポリカーボネート樹脂、アクリルゴム、ポリイミド樹脂、ポリアミド樹脂、ポリウレタン樹脂、ポリエステル樹脂、ポリエステルウレタン樹脂、ポリビニルブチラール樹脂等が挙げられ、フェノキシ樹脂又はアクリルゴムであることが好ましい。
 フィルム形成材の重量平均分子量としては、5000~2000000が好ましく、8000~1500000がより好ましく、10000~1000000が更に好ましい。
 フィルム形成材の重量平均分子量は、ゲルパーミエーションクロマトグラフィー法(GPC)を用いて定法に従い測定する。
(Film forming material)
Examples of the film forming material include phenoxy resin, acrylic resin, polycarbonate resin, acrylic rubber, polyimide resin, polyamide resin, polyurethane resin, polyester resin, polyester urethane resin, and polyvinyl butyral resin, and are phenoxy resin or acrylic rubber. It is preferable.
The weight average molecular weight of the film forming material is preferably from 5,000 to 2,000,000, more preferably from 8,000 to 1,000,000, and even more preferably from 10,000 to 1,000,000.
The weight average molecular weight of the film forming material is measured according to a conventional method using a gel permeation chromatography method (GPC).
 前記フィルム形成材の含有率は特に制限されないが、作製された接続材料の硬さ、後に述べる剥離フィルム上からの剥がし易さ等の観点から、前記接着剤と前記硬化剤と前記フィルム形成材との総含有率を100質量%としたときのフィルム形成材の含有率が、20質量%以上80質量%以下であることが好ましく、30質量%以上70質量%以下であることがより好ましい。 The content of the film-forming material is not particularly limited, but from the viewpoint of the hardness of the produced connection material, ease of peeling from the release film described later, the adhesive, the curing agent, and the film-forming material. The content of the film-forming material is preferably 20% by mass or more and 80% by mass or less, and more preferably 30% by mass or more and 70% by mass or less when the total content is 100% by mass.
(導電性粒子)
 前記接続材料は、導電性粒子を更に含有することができる。導電性粒子を含有することで、太陽電池モジュールの発電性能をより向上することができる。
 導電性粒子としては、特に限定されるものではないが、例えば、金粒子、銀粒子、銅粒子、ニッケル粒子、金めっきニッケル粒子、金/ニッケルめっきプラスチック粒子、銅めっき粒子、及びニッケル粒子が挙げられる。また導電性粒子を含有する場合は、導電性粒子の粒子径(D50%)は、1μm~50μmであることが好ましく、1μm~30μmであることがより好ましく、1μm~25μmであることが更に好ましい。尚、導電性粒子の粒子径(D50%)の測定方法は、リン-錫含有銅合金粒子の粒子径の測定方法と同様である。
 また、接続材料中の導電性粒子の含有率は、導電性の観点から、接続材料の全体積を100体積%として、1体積%以上15体積%以下であることが好ましく、2体積%以上12体積%以下であることがより好ましく、3体積%以上10体積%以下であることが更に好ましい。
(Conductive particles)
The connection material can further contain conductive particles. By containing the conductive particles, the power generation performance of the solar cell module can be further improved.
The conductive particles are not particularly limited, and examples thereof include gold particles, silver particles, copper particles, nickel particles, gold-plated nickel particles, gold / nickel-plated plastic particles, copper-plated particles, and nickel particles. It is done. When conductive particles are contained, the particle size (D50%) of the conductive particles is preferably 1 μm to 50 μm, more preferably 1 μm to 30 μm, and even more preferably 1 μm to 25 μm. . The method for measuring the particle size (D50%) of the conductive particles is the same as the method for measuring the particle size of the phosphorus-tin-containing copper alloy particles.
In addition, the content of the conductive particles in the connection material is preferably 1% by volume or more and 15% by volume or less, preferably 2% by volume or more and 12% by volume or less, with the total volume of the connection material being 100% by volume from the viewpoint of conductivity. More preferably, it is not more than volume%, more preferably not less than 3 volume% and not more than 10 volume%.
(その他の成分)
 前記接続材料は、上述した成分に加え、接着性又は濡れ性を改善するために、シランカップリング剤、チタネートカップリング剤、アルミネートカップリング剤等の改質材料を含有させることができる。また、導電性粒子を加える場合は、その分散性を向上させるために、リン酸カルシウム、炭酸カルシウム等の分散剤、銀又は銅マイグレーション等を抑制するためのキレート材料などを含有させることができる。
(Other ingredients)
In addition to the components described above, the connection material can contain a modifying material such as a silane coupling agent, a titanate coupling agent, or an aluminate coupling agent in order to improve adhesion or wettability. Moreover, when adding electroconductive particle, in order to improve the dispersibility, a chelating material etc. for suppressing dispersing agents, such as calcium phosphate and a calcium carbonate, silver, or copper migration, etc. can be contained.
 前記接続材料は、例えば、上述した各種材料を溶剤に溶解又は分散させてなる塗布液をポリエチレンテレフタレートフィルム等の剥離フィルム上に塗布し、溶剤を除去することにより作製することができる。 The connection material can be produced, for example, by applying a coating solution obtained by dissolving or dispersing the above-described various materials in a solvent onto a release film such as a polyethylene terephthalate film and removing the solvent.
<配線部材>
 前記電極接続セットは、配線部材を要素の一つとして含むことができる。
 前記配線部材は特に制限されないが、太陽電池用のはんだ被覆された銅線(タブ線)を好適に用いることができる。はんだの組成は、Sn-Pb系、Sn-Pb-Ag系、Sn-Ag-Cu系等を挙げることができ、環境に対する影響を考慮すると、実質的に鉛を含まないSn-Ag-Cu系はんだを用いることが好ましい。
<Wiring member>
The electrode connection set may include a wiring member as one of the elements.
The wiring member is not particularly limited, but a solder-coated copper wire (tab wire) for a solar cell can be suitably used. Examples of the solder composition include Sn—Pb, Sn—Pb—Ag, Sn—Ag—Cu, etc. In consideration of the influence on the environment, Sn—Ag—Cu based which does not substantially contain lead. It is preferable to use solder.
 前記タブ線の銅線の厚さについては特に制限されず、加熱加圧処理時の太陽電池素子との熱膨脹係数差又は接続信頼性及びタブ線自身の抵抗率の観点から、0.05mm~0.5mmとすることができ、0.1mm~0.5mmとすることが好ましい。 The thickness of the copper wire of the tab wire is not particularly limited, and 0.05 mm to 0 in view of the difference in thermal expansion coefficient or connection reliability with the solar cell element during the heating and pressing treatment and the resistivity of the tab wire itself. 0.5 mm, preferably 0.1 mm to 0.5 mm.
 また前記タブ線の断面形状は特に制限されず、断面形状が長方形(平タブ)及び楕円形(丸タブ)のいずれも適用でき、前記接続材料を加熱圧着する際の前記接続材料の前記銅含有電極の空隙部への入り込み性、加熱圧着時の圧力の均一性等の観点から、断面形状が長方形(平タブ)を用いることが好ましい。 Further, the cross-sectional shape of the tab wire is not particularly limited, and any of a rectangular shape (flat tab) and an elliptical shape (round tab) can be applied, and the copper content of the connection material when the connection material is thermocompression bonded. From the viewpoint of penetration into the gap of the electrode, uniformity of pressure during thermocompression bonding, etc., it is preferable to use a rectangular (flat tab) cross-sectional shape.
 また前記タブ線の総厚みは特に制限されず、加熱圧着時の圧力の均一性等の観点から、0.1mm~0.7mmとすることが好ましく、0.15mm~0.5mmとすることがより好ましい。 Further, the total thickness of the tab wire is not particularly limited, and is preferably 0.1 mm to 0.7 mm, and preferably 0.15 mm to 0.5 mm, from the viewpoint of the uniformity of pressure during thermocompression bonding. More preferred.
[太陽電池の製造方法]
 本発明の太陽電池の製造方法は、前記電極接続セットを用いて、電極を形成し、得られた電極に配線部材を接続するものである。
 即ち、前記太陽電池の製造方法は、前記電極用組成物を、前記pn接合を有する半導体基板上に付与する工程(電極用組成物付与工程という)と、前記電極用組成物が付与された半導体基板を熱処理(焼成)して、銅含有電極を形成する工程(電極形成工程という)と、前記銅含有電極上に、前記接続材料及び配線部材をこの順に積層し、積層体を得る工程(積層工程という)と、前記積層体を、加熱加圧処理する工程(加熱加圧処理工程という)と、を含む。
 前記太陽電池の製造方法によって、電極と配線部材とが、高い接続強度(密着性)及び高い接続信頼性を有する太陽電池を製造することができる。
[Method for manufacturing solar cell]
The manufacturing method of the solar cell of this invention forms an electrode using the said electrode connection set, and connects a wiring member to the obtained electrode.
That is, the manufacturing method of the solar cell includes a step of applying the electrode composition onto a semiconductor substrate having the pn junction (referred to as an electrode composition applying step), and a semiconductor to which the electrode composition is applied. A step of heat-treating (firing) the substrate to form a copper-containing electrode (referred to as an electrode formation step), and a step of laminating the connection material and the wiring member in this order on the copper-containing electrode to obtain a laminate (lamination) And a step of subjecting the laminate to a heat and pressure treatment (referred to as a heat and pressure treatment step).
The solar cell manufacturing method can manufacture a solar cell in which the electrode and the wiring member have high connection strength (adhesion) and high connection reliability.
(太陽電池素子の製造工程)
 前記電極用組成物付与工程と前記電極形成工程により、太陽電池素子が得られる。
(Solar cell element manufacturing process)
A solar cell element is obtained by the electrode composition applying step and the electrode forming step.
 前記電極用組成物付与工程では、前記半導体基板上の電極を形成する領域に、電極用組成物を付与する。電極用組成物を付与する方法としては、例えば、スクリーン印刷、インクジェット法、及びディスペンサー法を挙げることができるが、生産性の観点から、スクリーン印刷による付与であることが好ましい。 In the electrode composition application step, the electrode composition is applied to a region on the semiconductor substrate where the electrode is to be formed. Examples of a method for applying the electrode composition include screen printing, an ink jet method, and a dispenser method. From the viewpoint of productivity, application by screen printing is preferable.
 電極用組成物をスクリーン印刷によって付与する場合、電極用組成物は、20Pa・s~1000Pa・sの範囲の粘度を有することが好ましい。なお、電極用組成物の粘度は、ブルックフィールドHBT粘度計を用いて25℃の温度及び回転数5.0rpmの条件で測定される。 When applying the electrode composition by screen printing, the electrode composition preferably has a viscosity in the range of 20 Pa · s to 1000 Pa · s. The viscosity of the electrode composition is measured using a Brookfield HBT viscometer at a temperature of 25 ° C. and a rotational speed of 5.0 rpm.
 電極用組成物の付与量は、形成する銅含有電極の大きさ等に応じて適宜選択することができる。例えば、電極用組成物の付与量として2g/m~10g/mとすることができ、4g/m~8g/mであることが好ましい。 The application amount of the electrode composition can be appropriately selected according to the size of the copper-containing electrode to be formed. For example, the application amount of the electrode composition can be 2 g / m 2 to 10 g / m 2, and preferably 4 g / m 2 to 8 g / m 2 .
 電極形成工程では、電極用組成物を付与した後の前記半導体基板を、乾燥後に熱処理(焼成)する。これにより、電極用組成物の熱処理(焼成)が行われて、半導体基板上の所望の領域に銅含有電極が形成され、太陽電池素子を得ることができる。前記電極用組成物を用いることで、酸素の存在下(例えば、大気中)で熱処理(焼成)を行っても、抵抗率の低い電極を形成することができる。 In the electrode forming step, the semiconductor substrate after the application of the electrode composition is dried (heated) after drying. Thereby, the heat processing (baking) of the composition for electrodes is performed, a copper containing electrode is formed in the desired area | region on a semiconductor substrate, and a solar cell element can be obtained. By using the electrode composition, an electrode with low resistivity can be formed even when heat treatment (baking) is performed in the presence of oxygen (for example, in the air).
 前記電極用組成物を用いて半導体基板上に銅含有電極を形成する際の熱処理(焼成)条件としては、通常用いられる熱処理(焼成)条件を適用することができる。
 一般に、熱処理(焼成)温度は800℃~900℃であるが、前記電極用組成物を用いる場合には、より低温の熱処理(焼成)条件から一般的な熱処理(焼成)条件までの広範な範囲に適用することができる。例えば、450℃~900℃の広範な温度範囲で行われる熱処理(焼成)で良好な特性を有する電極を形成することができる。
 また熱処理(焼成)時間は、熱処理(焼成)温度等に応じて適宜選択することができ、例えば、1秒~20秒とすることができる。
As a heat treatment (firing) condition for forming a copper-containing electrode on a semiconductor substrate using the electrode composition, a commonly used heat treatment (firing) condition can be applied.
In general, the heat treatment (firing) temperature is 800 ° C. to 900 ° C., but when the electrode composition is used, a wide range from a lower temperature heat treatment (firing) condition to a general heat treatment (firing) condition. Can be applied to. For example, an electrode having good characteristics can be formed by heat treatment (firing) performed in a wide temperature range of 450 ° C. to 900 ° C.
The heat treatment (firing) time can be appropriately selected according to the heat treatment (firing) temperature and the like, and can be, for example, 1 second to 20 seconds.
 熱処理装置としては、上記温度に加熱できるものであれば適宜採用することができ、例えば、赤外線加熱炉、及びトンネル炉を挙げることができる。赤外線加熱炉は、電気エネルギーを電磁波の形で加熱材料に直接投入し、熱エネルギーに変換されるため高効率であり、且つ短時間での急速加熱が可能である。更に、燃焼による生成物がなく、且つ非接触加熱であるため、形成される電極の汚染を抑えることが可能である。トンネル炉は、試料を自動で連続的に入り口から出口へ搬送し、熱処理(焼成)するため、炉体の区分けと搬送スピードの制御により、より均一に熱処理(焼成)することが可能である。太陽電池素子の発電性能の観点からは、トンネル炉により熱処理(焼成)することが好適である。 As the heat treatment apparatus, any apparatus that can be heated to the above temperature can be used as appropriate, and examples thereof include an infrared heating furnace and a tunnel furnace. The infrared heating furnace is highly efficient and can be rapidly heated in a short time because electric energy is directly input to the heating material in the form of electromagnetic waves and converted into heat energy. Furthermore, since there is no product due to combustion and non-contact heating, contamination of the formed electrode can be suppressed. Since the tunnel furnace automatically and continuously conveys the sample from the entrance to the exit and performs heat treatment (firing), it can be more uniformly heat treated (firing) by controlling the division of the furnace body and the conveying speed. From the viewpoint of the power generation performance of the solar cell element, it is preferable to perform heat treatment (firing) with a tunnel furnace.
 以下、本発明の太陽電池素子の具体例及びその製造方法を、図面を参照しながら説明するが、本発明はこれに限定されるものではない。また、各図における部材の大きさは概念的なものであり、部材間の大きさの相対的な関係はこれに限定されない。
 代表的な太陽電池素子の一例を示す断面図、受光面及び裏面の概要を図1~図4に示す。
 図1に概略断面図を示すように、半導体基板1の一方の面の表面付近には、n型拡散層2が形成され、n型拡散層2上に受光面出力取出し電極4及び反射防止層3が形成されている。また他方の面の表面付近にはp型拡散層7が形成され、p型拡散層7上に裏面出力取出し電極6及び裏面集電用電極5が形成されている。通常、太陽電池素子の半導体基板1には、単結晶又は多結晶シリコンが使用される。この半導体基板1には、ホウ素等が含有され、p型半導体を構成している。受光面側には太陽光の反射を抑制するために、NaOHとIPA(イソプロピルアルコール)を含むエッチング溶液により凹凸(テクスチャともいう、図示せず)が形成されている。その受光面側にはリン等が拡散(ドーピング)され、n型拡散層2がサブミクロンオーダーの厚みで設けられているとともに、p型バルク部分との境界にpn接合部が形成されている。更に受光面側には、n型拡散層2上に窒化ケイ素等の反射防止層3が、PECVD(プラズマ励起化学気相成長)等によって厚み90nm前後で設けられている。
Hereinafter, although the specific example of the solar cell element of this invention and its manufacturing method are demonstrated, referring drawings, this invention is not limited to this. Moreover, the magnitude | size of the member in each figure is notional, The relative relationship of the magnitude | size between members is not limited to this.
A sectional view showing an example of a typical solar cell element, and outlines of a light receiving surface and a back surface are shown in FIGS.
As shown the schematic sectional view in FIG. 1, in the vicinity of the surface of the one surface of the semiconductor substrate 1, n + -type diffusion layer 2 is formed, the light-receiving surface output extraction electrode 4 and reflected on the n + -type diffusion layer 2 A prevention layer 3 is formed. A p + type diffusion layer 7 is formed in the vicinity of the surface of the other surface, and a back surface output extraction electrode 6 and a back surface current collecting electrode 5 are formed on the p + type diffusion layer 7. Usually, single crystal or polycrystalline silicon is used for the semiconductor substrate 1 of the solar cell element. This semiconductor substrate 1 contains boron or the like and constitutes a p-type semiconductor. Irregularities (also referred to as texture, not shown) are formed on the light receiving surface side by an etching solution containing NaOH and IPA (isopropyl alcohol) in order to suppress reflection of sunlight. Phosphorus or the like is diffused (doped) on the light receiving surface side, the n + -type diffusion layer 2 is provided with a thickness on the order of submicrons, and a pn junction is formed at the boundary with the p-type bulk portion. . Further, on the light receiving surface side, an antireflection layer 3 such as silicon nitride is provided on the n + type diffusion layer 2 with a thickness of about 90 nm by PECVD (plasma enhanced chemical vapor deposition) or the like.
 次に、図2に概略を示す受光面側に設けられた受光面出力取出し電極4及び受光面集電用電極8並びに図4に概略を示す裏面に形成される裏面集電用電極5及び裏面出力取出し電極6の形成方法について説明する。
 受光面出力取出し電極4、受光面集電用電極8及び裏面出力取出し電極6は、前記電極用組成物から形成される。また裏面集電用電極5はガラス粉末を含むアルミニウム電極用組成物から形成されている。受光面出力取出し電極4、受光面集電用電極8、裏面出力取出し電極6及び裏面集電用電極5を形成する第一の方法として、前記電極用組成物及びアルミニウム電極用組成物をスクリーン印刷等にて所望のパターンに付与した後、乾燥後に、大気中において750℃~900℃程度で一括して熱処理(焼成)して形成することが挙げられる。
Next, the light receiving surface output extraction electrode 4 and the light receiving surface current collecting electrode 8 provided on the light receiving surface side schematically shown in FIG. 2, and the back surface collecting electrode 5 and the back surface formed on the back surface schematically shown in FIG. A method for forming the output extraction electrode 6 will be described.
The light receiving surface output extraction electrode 4, the light receiving surface current collecting electrode 8, and the back surface output extraction electrode 6 are formed from the electrode composition. The back current collecting electrode 5 is formed of an aluminum electrode composition containing glass powder. As the first method for forming the light receiving surface output extraction electrode 4, the light receiving surface current collecting electrode 8, the back surface output extraction electrode 6 and the back surface current collecting electrode 5, the electrode composition and the aluminum electrode composition are screen printed. For example, it may be formed by applying a desired pattern, etc., and then drying and then heat-treating (baking) at a temperature of about 750 ° C. to 900 ° C. in the air.
 その際に、受光面側では、前記受光面出力取出し電極4と前記受光面集電用電極8を形成する前記電極用組成物に含まれるガラス粒子と、反射防止層3とが反応(ファイアースルー)して、受光面出力取出し電極4及び受光面集電用電極8とn型拡散層2とが電気的に接続(オーミックコンタクト)される。
 本発明においては、前記電極用組成物を用いて受光面出力取出し電極4と受光面集電用電極8が形成されることで、導電性金属として銅を含みながらも、銅の酸化が抑制され、抵抗率の低い銅含有電極が良好な生産性で形成される。
 更に前記銅含有電極がCu-Sn合金相及び/又はCu-Sn-Ni合金相とSn-P-Oガラス相とを含むことが好ましく、Sn-P-Oガラス相がCu-Sn合金相又はCu-Sn-Ni合金相と半導体基板との間に配置される(不図示)ことがより好ましい。これにより銅と半導体基板との反応が抑制され、抵抗率が低く密着性に優れる電極を形成することができる。
At that time, on the light receiving surface side, the glass particles contained in the electrode composition forming the light receiving surface output extraction electrode 4 and the light receiving surface current collecting electrode 8 react with the antireflection layer 3 (fire-through). Then, the light receiving surface output extraction electrode 4 and the light receiving surface current collecting electrode 8 and the n + type diffusion layer 2 are electrically connected (ohmic contact).
In the present invention, the light receiving surface output extraction electrode 4 and the light receiving surface current collecting electrode 8 are formed by using the electrode composition, so that copper oxidation is suppressed while containing copper as the conductive metal. A copper-containing electrode with low resistivity is formed with good productivity.
Further, the copper-containing electrode preferably includes a Cu—Sn alloy phase and / or a Cu—Sn—Ni alloy phase and a Sn—PO glass phase, and the Sn—PO glass phase is a Cu—Sn alloy phase or More preferably (not shown) between the Cu—Sn—Ni alloy phase and the semiconductor substrate. As a result, the reaction between copper and the semiconductor substrate is suppressed, and an electrode having low resistivity and excellent adhesion can be formed.
 また裏面側では、熱処理(焼成)の際に裏面集電用電極5を形成するアルミニウム電極用組成物中のアルミニウムが半導体基板1の裏面に拡散して、p型拡散層7を形成することによって、半導体基板1と裏面集電用電極5及び裏面出力取出し電極6との間にオーミックコンタクトを得ることができる。 On the back surface side, aluminum in the aluminum electrode composition that forms the back current collecting electrode 5 during heat treatment (firing) diffuses to the back surface of the semiconductor substrate 1 to form the p + -type diffusion layer 7. Thus, an ohmic contact can be obtained between the semiconductor substrate 1 and the back surface collecting electrode 5 and the back surface output extraction electrode 6.
 受光面出力取出し電極4、受光面集電用電極8及び裏面出力取出し電極6を形成する第二の方法として、裏面集電用電極5を形成するアルミニウム電極用組成物を先に印刷し、乾燥後に大気中750℃~900℃程度で熱処理(焼成)して裏面集電用電極5を形成した後に、前記電極用組成物を受光面側及び裏面側に付与し、乾燥後に大気中450℃~650℃程度で熱処理(焼成)して、受光面出力取出し電極4、受光面集電用電極8及び裏面出力取出し電極6を形成する方法が挙げられる。 As a second method for forming the light receiving surface output extraction electrode 4, the light receiving surface current collecting electrode 8 and the back surface output extracting electrode 6, the aluminum electrode composition for forming the back surface collecting electrode 5 is first printed and dried. After heat treatment (baking) in the atmosphere at about 750 ° C. to 900 ° C. to form the back current collecting electrode 5, the electrode composition is applied to the light receiving surface side and the back surface side, and after drying, 450 ° C. A method of forming the light receiving surface output extraction electrode 4, the light receiving surface current collecting electrode 8 and the back surface output extraction electrode 6 by heat treatment (baking) at about 650 ° C. can be mentioned.
 この方法は、例えば以下の場合に有効である。すなわち、裏面集電用電極5を形成するアルミニウム電極用組成物を熱処理(焼成)する際に、650℃以下の熱処理(焼成)温度では、アルミニウム電極用組成物の組成によっては、アルミニウム粒子の焼結及び半導体基板1へのアルミニウム拡散量が不足して、p型拡散層を充分に形成できない場合がある。この状態では裏面における半導体基板1と裏面集電用電極5及び裏面出力取出し電極6との間にオーミックコンタクトが充分に形成できなくなり、太陽電池素子としての発電性能が低下する場合がある。そこで、アルミニウム電極用組成物に最適な熱処理(焼成)温度(例えば750℃~900℃)で裏面集電用電極5を形成した後、前記電極用組成物を付与し、乾燥後に比較的低温(例えば450℃~650℃)で熱処理(焼成)して、受光面出力取出し電極4、受光面集電用電極8及び裏面出力取出し電極6を形成することが好ましい。
 いずれの方法を選択した場合であっても、熱処理(焼成)後に得られる受光面集電用電極8及び裏面出力取出し電極6の厚みは、例えば、3μm~50μm、好ましくは5μm~30μmとすることができる。なお、本発明における層又は積層体の厚みは、対象となる層又は積層体の5点の厚みを測定し、その算術平均値として与えられる値とする。層又は積層体の厚みは、マイクロメータを用いて測定したものとする。
This method is effective in the following cases, for example. That is, when the aluminum electrode composition for forming the back surface collecting electrode 5 is heat-treated (fired), at a heat treatment (baking) temperature of 650 ° C. or less, the aluminum particles are fired depending on the composition of the aluminum electrode composition. As a result, the amount of aluminum diffused into the semiconductor substrate 1 may be insufficient, and the p + -type diffusion layer may not be sufficiently formed. In this state, an ohmic contact cannot be sufficiently formed between the semiconductor substrate 1 on the back surface, the back surface collecting electrode 5 and the back surface output extraction electrode 6, and the power generation performance as a solar cell element may be lowered. Therefore, after forming the back current collecting electrode 5 at an optimum heat treatment (firing) temperature (for example, 750 ° C. to 900 ° C.) for the aluminum electrode composition, the electrode composition is applied, and after drying, the temperature is relatively low ( For example, the light receiving surface output extraction electrode 4, the light receiving surface current collecting electrode 8, and the back surface output extraction electrode 6 are preferably formed by heat treatment (baking) at 450 ° C. to 650 ° C., for example.
Regardless of which method is selected, the thickness of the light receiving surface collecting electrode 8 and the back surface output extraction electrode 6 obtained after the heat treatment (firing) is, for example, 3 μm to 50 μm, preferably 5 μm to 30 μm. Can do. In addition, the thickness of the layer or laminated body in this invention measures the thickness of five points of the layer or laminated body used as object, and makes it the value given as the arithmetic mean value. The thickness of a layer or a laminated body shall be measured using the micrometer.
 また前記太陽電池素子は、図3の平面図で示すように、受光面出力取出し電極4を形成しない形態をとることも可能である。図3に示された太陽電池素子は、図2及び図4に示す構造を有する太陽電池素子と同様にして製造することができる。これは、例えば以下のように考えることができる。 Further, as shown in the plan view of FIG. 3, the solar cell element can take a form in which the light receiving surface output extraction electrode 4 is not formed. The solar cell element shown in FIG. 3 can be manufactured in the same manner as the solar cell element having the structure shown in FIGS. This can be considered as follows, for example.
 本発明においては、前記接続材料を用いるため、前述したように配線部材を接続する対象は、はんだの濡れ性を必要としない。本発明では前記接続材料を用いることで、半導体基板1に形成された反射防止層3と、配線部材を強固に密着させることができる。また太陽電池素子の受光面における受光面集電用電極8と配線部材との電気的な接続は、接続材料の流動排除による受光面集電用電極8と配線部材とが直接接触している部分、及び、前記接続材料が導電性粒子を含んでいる場合には受光面集電用電極8と配線部材とが加熱圧着により該導電性粒子を介して接触している部分を形成することで達成される。 In the present invention, since the connection material is used, the object to which the wiring member is connected does not need solder wettability as described above. In the present invention, by using the connection material, the antireflection layer 3 formed on the semiconductor substrate 1 and the wiring member can be firmly adhered. The electrical connection between the light receiving surface current collecting electrode 8 and the wiring member on the light receiving surface of the solar cell element is a portion where the light receiving surface current collecting electrode 8 and the wiring member are in direct contact with each other due to the flow exclusion of the connecting material. When the connection material contains conductive particles, the light receiving surface collecting electrode 8 and the wiring member are formed by forming a portion in contact with the conductive particles through thermocompression bonding. Is done.
(太陽電池の製造工程)
 上述のようにして得られた太陽電池素子を用いて、更に前記積層工程と加熱加圧処理工程を経ることにより、太陽電池素子を含む太陽電池が得られる。
 より具体的には、本発明の太陽電池は、銅を含む金属部とガラス部と接続材料とを含む導電層が半導体基板と配線部材との間に介在している構造を有する。前記導電層では、前記金属部及び前記ガラス部を含む銅含有電極がその上の配線部材と接している構造と、銅含有電極の空隙部に接続材料の一部が入り込んだ構造とを有する。銅含有電極と配線部材とが直接接している構造を有することで、接続信頼性を向上させることができ、銅含有電極の空隙部に接続材料の一部が入り込んだ構造を有することで、銅含有電極と配線部材との密着性が向上する。
(Solar cell manufacturing process)
By using the solar cell element obtained as described above, the solar cell including the solar cell element can be obtained by further passing through the laminating step and the heat and pressure treatment step.
More specifically, the solar cell of the present invention has a structure in which a conductive layer including a metal part including copper, a glass part, and a connection material is interposed between a semiconductor substrate and a wiring member. The conductive layer has a structure in which the copper-containing electrode including the metal part and the glass part is in contact with the wiring member thereon, and a structure in which a part of the connection material enters the gap of the copper-containing electrode. By having a structure in which the copper-containing electrode and the wiring member are in direct contact with each other, the connection reliability can be improved, and by having a structure in which a part of the connection material enters the void portion of the copper-containing electrode, Adhesion between the containing electrode and the wiring member is improved.
 次に、本発明の太陽電池の具体例及びその製造方法を、図5~図7を参照しながら説明するが、本発明はこれに限定されるものではない。また、各図における部材の大きさは概念的なものであり、部材間の大きさの相対的な関係はこれに限定されない。
 図5~図7に示すように、受光面出力取出し電極4及び裏面出力取出し電極6に、接続材料10と配線部材9とをこの順に配して積層体を得て(積層工程)、得られた積層体を加熱加圧処理(加熱圧着処理)することで、受光面出力取出し電極4と配線部材9とが圧着され、裏面出力取出し電極6と配線部材9とが圧着されて太陽電池が形成される。前記太陽電池を複数接続する際は、配線部材9は、その一端が太陽電池素子の受光面出力取出し電極4と、他端が、別の太陽電池素子の裏面出力取出し電極6と、それぞれ配線部材9を介して接続されるように配列すればよい。なお、太陽電池を製造する場合においては、図3に示すように、受光面出力取出し電極4を形成しない太陽電池素子を用いることもできる。
Next, specific examples of the solar cell of the present invention and a method for manufacturing the solar cell will be described with reference to FIGS. 5 to 7, but the present invention is not limited thereto. Moreover, the magnitude | size of the member in each figure is notional, The relative relationship of the magnitude | size between members is not limited to this.
As shown in FIGS. 5 to 7, the connection material 10 and the wiring member 9 are arranged in this order on the light receiving surface output extraction electrode 4 and the back surface output extraction electrode 6 to obtain a laminate (lamination process). By subjecting the laminated body to heat pressure treatment (thermocompression treatment), the light receiving surface output extraction electrode 4 and the wiring member 9 are pressure bonded, and the back surface output extraction electrode 6 and the wiring member 9 are pressure bonded to form a solar cell. Is done. When connecting a plurality of the solar cells, the wiring member 9 has a light receiving surface output extraction electrode 4 of one solar cell element at one end and a back surface output extraction electrode 6 of another solar cell element at the other end, respectively. 9 may be arranged so as to be connected via 9. In the case of manufacturing a solar cell, a solar cell element in which the light receiving surface output extraction electrode 4 is not formed can be used as shown in FIG.
 また本発明の太陽電池を製造する際、前記電極と配線部材とを加熱圧着させる条件としては、当該技術分野で通常用いられる加熱加圧処理条件を適用することができる。
 一般に、加熱温度としては、150℃以上200℃以下であることが好ましく、150℃以上190℃以下であることがより好ましい。また圧着時の圧力は、0.1MPa以上4.0MPa以下であることが好ましく、0.5MPa以上3.5MPa以下であることがより好ましい。加熱及び加圧の時間は、3秒以上30秒以下であることが好ましく、4秒以上20秒以下であることがより好ましい。上記の条件で加熱加圧処理することによって、前記接続材料が前記銅含有電極の空隙に入り込み易くなり、電極と配線部材との接着力が向上し、また、接続材料が効率よく流動排除されることで、電極と配線部材とが直接接触し易くなり、結果として電極と配線部材の電気的な接触抵抗を減少させることができる。
 加圧の方向としては、少なくとも電極と配線部材との積層方向に加圧されて電極と配線部材とが接着されれば、いずれの方向であってもよい。
Moreover, when manufacturing the solar cell of this invention, the heat press treatment conditions normally used in the said technical field can be applied as conditions for carrying out the thermocompression bonding of the said electrode and wiring member.
In general, the heating temperature is preferably 150 ° C. or higher and 200 ° C. or lower, and more preferably 150 ° C. or higher and 190 ° C. or lower. The pressure during pressure bonding is preferably 0.1 MPa or more and 4.0 MPa or less, and more preferably 0.5 MPa or more and 3.5 MPa or less. The heating and pressurizing time is preferably 3 seconds or more and 30 seconds or less, and more preferably 4 seconds or more and 20 seconds or less. By performing the heating and pressurizing treatment under the above conditions, the connection material can easily enter the gap of the copper-containing electrode, the adhesive force between the electrode and the wiring member is improved, and the connection material is efficiently eliminated. This facilitates direct contact between the electrode and the wiring member, and as a result, the electrical contact resistance between the electrode and the wiring member can be reduced.
The direction of pressurization may be any direction as long as pressure is applied at least in the stacking direction of the electrode and the wiring member to bond the electrode and the wiring member.
 加熱圧着装置としては、上記温度と圧力を電極と配線部材に付与できるものであれば適宜採用することができ、例えば、加熱機構を有する圧着ヘッドを備える熱圧着機等を好適に用いることができる。この場合、目標圧力と接着面積から、圧着ヘッドの加圧力((目標圧力)×(接着面積))を適宜設定できるものが特に好ましい。 As the thermocompression bonding apparatus, any apparatus that can apply the above temperature and pressure to the electrode and the wiring member can be appropriately employed. For example, a thermocompression bonding machine including a pressure bonding head having a heating mechanism can be suitably used. . In this case, it is particularly preferable that the pressure of the pressure-bonding head ((target pressure) × (adhesion area)) can be appropriately set from the target pressure and the adhesion area.
[太陽電池の構造]
 前記電極接続セットを用いて製造される太陽電池は、半導体基板と、半導体基板上に形成された電極と、電極上に配置された配線部材とを備えており、前記電極は、金属部及びガラス部と、電極形成時の熱処理(焼成)により形成された空隙部に相当する部分とを有している。太陽電池は、配線接続部として、半導体基板上に、金属部とガラス部と前記空隙部に相当する部分に侵入した接続材料とを含む導電層と、配線部材と、が積層された部分構造を有している。
 電極形成時の熱処理(焼成)によって銅含有電極の空隙部が不規則且つ任意の形状で発生し、電極を構成する金属部の輪郭は、空隙部の形成によって不均一な形状となる。このような電極と配線部材との加熱圧着時に、前記接続材料が、接続材料の付与面、即ち配線部材側から該空隙部へ侵入する。その結果、前記配線接続部における半導体基板と配線部材との間には、金属部と、ガラス部と、前記空隙部に相当する部分に侵入した接続材料と、を含む導電層が形成される。導電層では、前記空隙部に接続材料が侵入している。
[Structure of solar cell]
A solar cell manufactured using the electrode connection set includes a semiconductor substrate, an electrode formed on the semiconductor substrate, and a wiring member disposed on the electrode. The electrode includes a metal part and glass. And a portion corresponding to a void formed by heat treatment (firing) during electrode formation. The solar cell has a partial structure in which a conductive layer including a metal part, a glass part, and a connection material that has penetrated into a part corresponding to the gap part, and a wiring member are laminated on a semiconductor substrate as a wiring connection part. Have.
Due to the heat treatment (firing) at the time of electrode formation, voids in the copper-containing electrode are generated irregularly and in an arbitrary shape, and the contour of the metal part constituting the electrode becomes nonuniform due to the formation of the voids. At the time of thermocompression bonding between the electrode and the wiring member, the connection material enters the gap from the connection material application surface, that is, the wiring member side. As a result, a conductive layer including a metal part, a glass part, and a connection material that has entered a part corresponding to the gap is formed between the semiconductor substrate and the wiring member in the wiring connection part. In the conductive layer, the connection material penetrates into the gap.
 本発明の太陽電池について、図8を用いて説明する。図8は、本発明の太陽電池の電極の断面の一例となる観察断面100である。観察断面100に示すように、半導体基板102の上に形成された電極104の内部には空隙部106が存在しており、空隙部106の一部は電極104の厚み方向にみて中心部に存在している。 The solar cell of the present invention will be described with reference to FIG. FIG. 8 is an observation cross section 100 as an example of the cross section of the electrode of the solar cell of the present invention. As shown in the observation cross section 100, a gap portion 106 exists inside the electrode 104 formed on the semiconductor substrate 102, and a part of the gap portion 106 exists in the center portion in the thickness direction of the electrode 104. is doing.
 電極104の内部に存在する空隙部106の一部は、開気孔を形成し、空隙部106が電極表面まで通じていると考えられる。このため、電極104の上に接続材料及び配線部材を配置して加圧した際に、接続材料が空隙部106の少なくとも一部に入り込んで樹脂部を形成する。この場合、電極104の内部に空隙部106が存在しない場合に比べ、電極104と樹脂部との界面の形状が複雑となって電極104と樹脂部との接触面積が増大し、かつ所謂アンカー効果の発現により電極104と配線部材との密着性が向上すると考えられる。その結果、太陽電池の信頼性が向上し、更に安定した発電性能を示すと考えられる。空隙部106は、接続材料が入り込まずに樹脂部を形成せず、空隙の状態で存在する部分を含んでいてもよい。 It is considered that a part of the gap 106 existing inside the electrode 104 forms an open pore, and the gap 106 communicates to the electrode surface. For this reason, when the connection material and the wiring member are arranged on the electrode 104 and pressed, the connection material enters at least a part of the gap 106 to form a resin portion. In this case, the shape of the interface between the electrode 104 and the resin portion is complicated and the contact area between the electrode 104 and the resin portion is increased as compared with the case where the gap portion 106 does not exist inside the electrode 104, and the so-called anchor effect It is considered that the adhesion between the electrode 104 and the wiring member is improved by the expression of the above. As a result, it is considered that the reliability of the solar cell is improved and further stable power generation performance is exhibited. The gap portion 106 may include a portion that does not form a resin portion without entering the connection material and exists in a void state.
 なお、本発明に係る太陽電池において電極と配線部材との良好な接続強度をもたらす電極と樹脂部との境界面の不規則な凹凸状態は、電極の表面粗さによって特定してもよい。
 この場合、電極の表面の算術平均粗さRaが0.8以上6.3以下であることが好ましい。なお前記算術平均粗さRaは、JIS B 0601-2001に記載の方法で測定することにより得ることができる。具体的には、表面形状測定器((株)ミツトヨ、商品名:フォームトレーサSV-C3000)等を用いて、半導体基板上に形成された電極の表面について、配線部材を積層する前又は積層された配線部材及び樹脂部を除去後に、算術平均粗さRaを直接測定することにより得ることができる。
In the solar cell according to the present invention, the irregular uneven state of the boundary surface between the electrode and the resin part that provides good connection strength between the electrode and the wiring member may be specified by the surface roughness of the electrode.
In this case, the arithmetic average roughness Ra of the electrode surface is preferably 0.8 or more and 6.3 or less. The arithmetic average roughness Ra can be obtained by measuring by the method described in JIS B 0601-2001. Specifically, using a surface shape measuring instrument (Mitutoyo Co., Ltd., trade name: Form Tracer SV-C3000) or the like, the surface of the electrode formed on the semiconductor substrate is laminated before or after the wiring member is laminated. After removing the wiring member and the resin portion, the arithmetic average roughness Ra can be directly measured.
[太陽電池モジュール]
 本発明の太陽電池モジュールは、前記電極接続セットを用いて得られた太陽電池と、前記太陽電池を封止している封止材と、を有するものである。
 前記太陽電池モジュールには、例えば、前記太陽電池を、必要に応じて複数直列及び/又は並列に接続し、環境耐性のために強化ガラス等で挟み込み、間隙を透明性のある樹脂によって埋めて封止し、封止部分の外側に位置する配線部材を外部端子として備えたものを包含する。
[Solar cell module]
The solar cell module of this invention has a solar cell obtained using the said electrode connection set, and the sealing material which has sealed the said solar cell.
In the solar cell module, for example, a plurality of the solar cells are connected in series and / or in parallel as necessary, and sandwiched with tempered glass or the like for environmental resistance, and the gap is filled with a transparent resin and sealed. The wiring member located outside the sealing portion is provided as an external terminal.
 太陽電池モジュールの製造方法としては、例えば図9に示すように、ガラス板11と、封止材12と、配線部材9を備えた太陽電池14と、封止材12と、バックシート13とをこの順に配し、真空ラミネータ等により封止する封止工程を備える、一般的な方法を好適に用いることができる。ラミネート条件としては、封止材の種類によって決定されるが、130℃~160℃で3分以上保持することが好ましく、135℃~150℃で3分以上保持することがより好ましい。 As a manufacturing method of a solar cell module, for example, as shown in FIG. 9, a glass plate 11, a sealing material 12, a solar cell 14 provided with a wiring member 9, a sealing material 12, and a back sheet 13 are used. A general method including a sealing step that is arranged in this order and is sealed with a vacuum laminator or the like can be suitably used. Lamination conditions are determined depending on the type of sealing material, but are preferably maintained at 130 ° C. to 160 ° C. for 3 minutes or more, more preferably 135 ° C. to 150 ° C. for 3 minutes or more.
 ガラス板11としては、太陽電池用ディンプル付き白板強化ガラス等が挙げられる。封止材12としては、エチレンビニルアセテート(EVA)を含むEVAシートが挙げられる。バックシート13としては、ポリエチレンテレフタレート(PET)、テドラー-PET積層材料、金属箔-PET積層材料等が挙げられる。 Examples of the glass plate 11 include white plate tempered glass with dimples for solar cells. Examples of the sealing material 12 include an EVA sheet containing ethylene vinyl acetate (EVA). Examples of the back sheet 13 include polyethylene terephthalate (PET), Tedlar-PET laminated material, metal foil-PET laminated material, and the like.
 [半導体装置の製造方法]
 本発明の半導体装置の製造方法は、前記電極接続セットを用いて、電極を形成し、得られた電極に配線部材を接続するものである。
 即ち、前記半導体装置の製造方法は、前記電極用組成物を、半導体基板上に付与する工程(電極用組成物付与工程という)と、前記電極用組成物が付与された半導体基板を熱処理(焼成)して、銅含有電極を形成する工程(電極形成工程という)と、前記銅含有電極上に、前記接続材料及び配線部材をこの順に積層し、積層体を得る工程(積層工程という)と、前記積層体を、加熱加圧処理する工程(加熱加圧処理工程という)と、を含む。
 前記半導体装置の製造方法によって、電極と配線部材とが、高い接続強度(密着性)及び高い接続信頼性を有する半導体装置を製造することができる。
[Method for Manufacturing Semiconductor Device]
In the method for manufacturing a semiconductor device of the present invention, an electrode is formed using the electrode connection set, and a wiring member is connected to the obtained electrode.
That is, the manufacturing method of the semiconductor device includes a step of applying the electrode composition onto a semiconductor substrate (referred to as an electrode composition applying step), and a heat treatment (firing) of the semiconductor substrate to which the electrode composition is applied. ), Forming a copper-containing electrode (referred to as an electrode forming step), laminating the connection material and the wiring member in this order on the copper-containing electrode, and obtaining a laminate (referred to as a laminating step), A step of subjecting the laminate to a heat and pressure treatment (referred to as a heat and pressure treatment step).
By the semiconductor device manufacturing method, a semiconductor device in which the electrode and the wiring member have high connection strength (adhesion) and high connection reliability can be manufactured.
 [半導体装置]
 前記電極接続セットを用いて製造される半導体装置は、半導体基板と、半導体基板上に形成された電極と、電極上に配置された配線部材とを備えており、前記電極は、金属部及びガラス部と、電極形成時の熱処理(焼成)により形成された空隙部に相当する部分とを有している。半導体装置は、配線接続部として、半導体基板上に、金属部、ガラス部及び接続材料を含む導電層と、配線部材とが積層された部分構造を有している。
 この場合、配線部材としては、回路又は電極部を有する回路部材等が挙げられる。
[Semiconductor device]
A semiconductor device manufactured using the electrode connection set includes a semiconductor substrate, an electrode formed on the semiconductor substrate, and a wiring member disposed on the electrode. The electrode includes a metal portion and glass. And a portion corresponding to a void formed by heat treatment (firing) during electrode formation. The semiconductor device has a partial structure in which a conductive layer including a metal part, a glass part and a connection material and a wiring member are stacked on a semiconductor substrate as a wiring connection part.
In this case, examples of the wiring member include a circuit member having a circuit or an electrode portion.
 [電子部品の製造方法]
 本発明の電子部品の製造方法は、前記電極接続セットを用いて、電極を形成し、得られた電極に配線部材を接続するものである。
 即ち、前記電子部品の製造方法は、前記電極用組成物を、基板上に付与する工程(電極用組成物付与工程という)と、前記電極用組成物が付与された基板を熱処理(焼成)して、銅含有電極を形成する工程(電極形成工程という)と、前記銅含有電極上に、前記接続材料及び配線部材をこの順に積層し、積層体を得る工程(積層工程という)と、前記積層体を、加熱加圧処理する工程(加熱加圧処理工程という)と、を含む。
 前記電子部品の製造方法によって、電極と配線部材とが、高い接続強度(密着性)及び高い接続信頼性を有する電子部品を製造することができる。
[Method of manufacturing electronic parts]
The manufacturing method of the electronic component of this invention forms an electrode using the said electrode connection set, and connects a wiring member to the obtained electrode.
That is, the method of manufacturing the electronic component includes a step of applying the electrode composition onto a substrate (referred to as an electrode composition application step), and a heat treatment (firing) of the substrate to which the electrode composition is applied. Then, a step of forming a copper-containing electrode (referred to as an electrode forming step), a step of stacking the connection material and the wiring member on the copper-containing electrode in this order to obtain a laminated body (referred to as a stacking step), and the lamination And a step of subjecting the body to a heat and pressure treatment (referred to as a heat and pressure treatment step).
By the method for manufacturing an electronic component, an electronic component in which the electrode and the wiring member have high connection strength (adhesion) and high connection reliability can be manufactured.
 [電子部品]
 前記電極接続セットを用いて製造される電子部品は、基板と、基板上に形成された電極と、電極上に配置された配線部材とを備えており、前記電極は、金属部及びガラス部と、電極形成時の熱処理(焼成)により形成された空隙部に相当する部分とを有している。電子部品は、配線接続部として、基板上に、金属部とガラス部と前記空隙部に相当する部分に侵入した接続材料とを含む導電層と、配線部材とが積層された部分構造を有している。
 この場合、配線部材としては、回路又は電極部を有する回路部材等が挙げられる。
[Electronic parts]
An electronic component manufactured using the electrode connection set includes a substrate, an electrode formed on the substrate, and a wiring member disposed on the electrode. The electrode includes a metal part and a glass part. And a portion corresponding to a void formed by heat treatment (firing) during electrode formation. The electronic component has a partial structure in which a conductive layer including a metal part, a glass part, and a connection material that has penetrated into a part corresponding to the gap part and a wiring member are laminated on a substrate as a wiring connection part. ing.
In this case, examples of the wiring member include a circuit member having a circuit or an electrode portion.
 本発明の半導体装置は、種々の電子機器類に使用することができる。本発明の半導体装置は、電極と配線部材との間の密着性に優れ、信頼性に優れる。本発明の半導体装置に関する構成、材料等の詳細及び好ましい態様は、上述した本発明の太陽電池に関する構成、材料等の詳細及び好ましい態様と同様である。
 また、本発明の電子部品は、種々の電子機器類に使用することができる。本発明の電子部品は、電極と配線部材との間の密着性に優れ、信頼性に優れる。本発明の電子部品に関する構成、材料等の詳細及び好ましい態様は、上述した本発明の太陽電池に関する構成、材料等の詳細及び好ましい態様と同様である。
The semiconductor device of the present invention can be used for various electronic devices. The semiconductor device of the present invention has excellent adhesion between the electrode and the wiring member, and is excellent in reliability. Details and preferred aspects of the configuration, materials, etc. relating to the semiconductor device of the present invention are the same as details and preferred aspects of the configuration, materials, etc. relating to the solar cell of the present invention described above.
Moreover, the electronic component of the present invention can be used for various electronic devices. The electronic component of this invention is excellent in the adhesiveness between an electrode and a wiring member, and is excellent in reliability. Details and preferred aspects of the configuration, materials, and the like relating to the electronic component of the present invention are the same as details and preferred aspects of the configuration, materials, etc. relating to the solar cell of the present invention described above.
 以下、本発明を実施例により具体的に説明するが、本発明はこれらの実施形態に限定されるものではない。 Hereinafter, the present invention will be specifically described by way of examples, but the present invention is not limited to these embodiments.
<実施例1>
(a)電極用組成物の調製
 6質量%のリン及び15質量%の錫を含むリン-錫含有銅合金を常法により調製し、これを溶解して水アトマイズ法により粉末化した後、乾燥し、分級した。尚、分級には、強制渦式分級機(ターボクラシファイア;TC-15、日清エンジニアリング(株))を用いた。分級した粉末を不活性ガスとブレンドして、脱酸素及び脱水処理を行い、6質量%のリン及び15質量%の錫を含むリン-錫含有銅合金粒子を作製した。なお、リン-錫含有銅合金粒子の粒子径(D50%)は5.0μmであり、その形状は略球状であった。
<Example 1>
(A) Preparation of electrode composition A phosphorus-tin-containing copper alloy containing 6% by mass of phosphorus and 15% by mass of tin was prepared by a conventional method, dissolved, powdered by a water atomization method, and then dried. And classified. For classification, a forced vortex classifier (turbo classifier; TC-15, Nisshin Engineering Co., Ltd.) was used. The classified powder was blended with an inert gas and subjected to deoxygenation and dehydration treatment to produce phosphorus-tin-containing copper alloy particles containing 6% by mass of phosphorus and 15% by mass of tin. The particle diameter (D50%) of the phosphorus-tin-containing copper alloy particles was 5.0 μm, and the shape thereof was substantially spherical.
 二酸化ケイ素(SiO)3質量部、酸化鉛(PbO)60質量部、酸化ホウ素(B)18質量部、酸化ビスマス(Bi)5質量部、酸化アルミニウム(Al)5質量部、及び酸化亜鉛(ZnO)9質量部からなるガラス(以下、「G01」と略記することがある)を調製した。得られたガラスG01の軟化温度は420℃であり、結晶化開始温度は650℃を超えていた。
 得られたガラスG01を用いて、粒子径(D50%)が2.5μmであるガラスG01粒子を得た。またその形状は略球状であった。
Silicon (SiO 2) 3 parts by weight dioxide, lead oxide (PbO) 60 parts by mass, 18 parts by weight of boron oxide (B 2 O 3), bismuth oxide (Bi 2 O 3) 5 parts by weight, aluminum oxide (Al 2 O 3 ) 5 parts by mass and 9 parts by mass of zinc oxide (ZnO) (hereinafter, sometimes abbreviated as “G01”) were prepared. The obtained glass G01 had a softening temperature of 420 ° C. and a crystallization start temperature of over 650 ° C.
By using the obtained glass G01, glass G01 particles having a particle diameter (D50%) of 2.5 μm were obtained. The shape was substantially spherical.
 なお、リン-錫含有銅合金粒子及びガラス粒子の形状は、(株)日立ハイテクノロジーズ、TM-1000型走査型電子顕微鏡を用いて観察して判定した。リン-錫含有銅合金粒子及びガラス粒子の粒子径はベックマン・コールター(株)、LS 13 320型レーザー散乱回折法粒度分布測定装置(測定波長:630nm)を用いて算出した。ガラスの軟化温度及び結晶化開始温度は(株)島津製作所、DTG-60H型示差熱-熱重量同時測定装置を用いて、示差熱(DTA)曲線により求めた。具体的には、DTA曲線において、吸熱部から軟化点を、発熱部から結晶化開始温度を見積もることができる。 The shapes of the phosphorus-tin-containing copper alloy particles and the glass particles were determined by observing them using a Hitachi High-Technologies Corporation TM-1000 scanning electron microscope. The particle sizes of the phosphorus-tin-containing copper alloy particles and glass particles were calculated using a Beckman Coulter, Inc., LS 13, 320 type laser scattering diffraction particle size distribution analyzer (measurement wavelength: 630 nm). The softening temperature and the crystallization start temperature of the glass were obtained from a differential heat (DTA) curve using a Shimadzu Corporation, DTG-60H type differential thermal-thermogravimetric simultaneous measuring device. Specifically, in the DTA curve, the softening point can be estimated from the endothermic part, and the crystallization start temperature can be estimated from the heat generating part.
 上記で得られたリン-錫含有銅合金粒子を72.0質量部、ガラスG01粒子を8.0質量部、ジエチレングリコールモノブチルエーテル(BC)を20.0質量部、及びポリアクリル酸エチル(EPA)を5.0質量部、混ぜ合わせ、自動乳鉢混練装置を用いて混合してペースト化し、電極用組成物1を調製した。得られた電極用組成物1の粘度を、ブルックフィールドHBT粘度計を用いて25℃の温度及び回転数5.0rpmの条件で測定したところ、31Pa・sであった。 72.0 parts by mass of the phosphorus-tin-containing copper alloy particles obtained above, 8.0 parts by mass of glass G01 particles, 20.0 parts by mass of diethylene glycol monobutyl ether (BC), and polyethyl acrylate (EPA) Was mixed using an automatic mortar kneader to make a paste, and an electrode composition 1 was prepared. When the viscosity of the obtained composition 1 for electrodes was measured on the conditions of the temperature of 25 degreeC, and rotation speed 5.0rpm using the Brookfield HBT viscometer, it was 31 Pa.s.
(b)接続材料の調製
 ブチルアクリレート40質量部と、エチルアクリレート30質量部と、アクリロニトリル30質量部と、グリシジルメタクリレート3質量部とを共重合してなるアクリルゴム(製品名:KS8200H、日立化成(株)、重量平均分子量:850,000)125gと、フェノキシ樹脂(製品名:PKHC、ユニオンカーバイド社、重量平均分子量45,000)50gとを、酢酸エチル400gに溶解し、30質量%溶液を得た。次いで、この溶液に、マイクロカプセル型潜在性硬化剤を含有する液状エポキシ樹脂(ノバキュアHX-3941HP、旭化成イーマテリアルズ(株)、エポキシ当量185)325gを加えて攪拌し、接着剤組成物を得た。更に、この接着剤組成物に、直径10μm程度のNi粒子を56g加え攪拌した。
(B) Preparation of connecting material Acrylic rubber (product name: KS8200H, Hitachi Chemical Co., Ltd.) obtained by copolymerizing 40 parts by mass of butyl acrylate, 30 parts by mass of ethyl acrylate, 30 parts by mass of acrylonitrile, and 3 parts by mass of glycidyl methacrylate. Co., Ltd.), 125 g of weight average molecular weight: 850,000) and 50 g of phenoxy resin (product name: PKHC, Union Carbide, weight average molecular weight 45,000) are dissolved in 400 g of ethyl acetate to obtain a 30% by mass solution. It was. Next, 325 g of a liquid epoxy resin (Novacure HX-3941HP, Asahi Kasei E-Materials Co., Ltd., epoxy equivalent 185) containing a microcapsule type latent curing agent was added to this solution and stirred to obtain an adhesive composition. It was. Further, 56 g of Ni particles having a diameter of about 10 μm were added to the adhesive composition and stirred.
 上記で得られた接着剤組成物を、ポリエチレンテレフタレートフィルム上にアプリケータ(YOSHIMITSU SEIKI、(株)入江商会)を用いて塗布し、ホットプレート上で70℃の温度で10分間乾燥し、接続材料としての厚みが25μmの接続材料1を作製した。なお、接続材料の厚みは、マイクロメータ((株)ミツトヨ、ID-C112)を用いて測定した。接続材料1の粘度は、ティー・エイ・インスツルメント・ジャパン(株)、ずり粘弾測定装置(ARES)を用いて、25℃、周波数10Hzの条件で測定したところ、9800Pa・sであった。 The adhesive composition obtained above was applied onto a polyethylene terephthalate film using an applicator (YOSHIMITSU SEIKI, Irie Shokai Co., Ltd.), and dried on a hot plate at a temperature of 70 ° C. for 10 minutes. A connection material 1 having a thickness of 25 μm was prepared. The thickness of the connection material was measured using a micrometer (Mitutoyo Corporation, ID-C112). The viscosity of the connecting material 1 was 9800 Pa · s when measured under the conditions of 25 ° C. and a frequency of 10 Hz using a TS Instrument Japan Co., Ltd. and a shear viscometer measuring device (ARES). .
(c)太陽電池素子の作製
 上記(a)及び(b)で得られた電極用組成物1及び接続材料1を電極接続セットとして用意した。
 また、前記電極接続セットに加えて、配線部材として太陽電池用はんだめっき平角線(製品名:SSA-TPS L 0.2×1.5(10)、厚さ0.2mm×幅1.5mmの銅線に、Sn-Ag-Cu系鉛フリーはんだを片面に10μmの厚さでめっきした仕様のもの、日立金属(株))を用意した。
 これらを用いて以下のように太陽電池素子を作製した。
(C) Production of Solar Cell Element The electrode composition 1 and the connection material 1 obtained in the above (a) and (b) were prepared as an electrode connection set.
Further, in addition to the electrode connection set, as a wiring member, a solder-plated rectangular wire for a solar cell (product name: SSA-TPS L 0.2 × 1.5 (10), thickness 0.2 mm × width 1.5 mm) Hitachi Metals Co., Ltd., which has a specification in which Sn—Ag—Cu-based lead-free solder is plated on a single side to a thickness of 10 μm, was prepared on a copper wire.
Using these, solar cell elements were produced as follows.
 まず、受光面にn型拡散層、テクスチャ及び反射防止層(窒化ケイ素層)が形成された厚み190μmのp型シリコン基板を用意し、125mm×125mmの大きさに2枚切り出した。その受光面上にスクリーン印刷法により電極用組成物1を図2に示すような電極パターンとなるように印刷した。電極パターンが150μm幅の受光面集電用電極と1.5mm幅の受光面出力取出し電極で構成され、熱処理(焼成)後の受光面集電用電極及び受光面出力取出し電極それぞれの厚みが20μmとなるよう、印刷条件(スクリーン版のメッシュ、印刷速度、印圧等)を適宜調整した。これを150℃に加熱したオーブンの中に15分間入れ、溶剤を蒸散により取り除いた。 First, a p-type silicon substrate having a thickness of 190 μm in which an n + -type diffusion layer, a texture, and an antireflection layer (silicon nitride layer) were formed on the light receiving surface was prepared, and two pieces were cut into a size of 125 mm × 125 mm. The electrode composition 1 was printed on the light receiving surface by screen printing so as to have an electrode pattern as shown in FIG. The electrode pattern is composed of a light receiving surface collecting electrode having a width of 150 μm and a light receiving surface output extraction electrode having a width of 1.5 mm, and the thickness of each of the light receiving surface collecting electrode and the light receiving surface output extraction electrode after heat treatment (firing) is 20 μm. The printing conditions (screen plate mesh, printing speed, printing pressure, etc.) were adjusted as appropriate. This was placed in an oven heated to 150 ° C. for 15 minutes, and the solvent was removed by evaporation.
 続いて、受光面とは反対側の面(以下、「裏面」ともいう)上に、電極用組成物としての電極用組成物1とアルミニウム電極用組成物(PVG Solutions(株)、PVG-AD-02)を、上記と同様にスクリーン印刷で、図4に示すような電極パターンとなるように印刷した。
 電極用組成物1を用いて形成された裏面出力取出し電極のパターンは、2本のラインで構成され、1本のラインの大きさが123mm×5mmとなるように印刷した。なお、裏面出力取出し電極は熱処理(焼成)後の厚みが20μmとなるよう、印刷条件(スクリーン版のメッシュ、印刷速度、印圧等)を適宜調整した。またアルミニウム電極用組成物を裏面出力取出し電極以外の全面に印刷して、裏面集電用電極パターンを形成した。また熱処理(焼成)後の裏面集電用電極の厚みが20μmとなるように、アルミニウム電極用組成物の印刷条件(スクリーン版のメッシュ、印刷速度、印圧等)を適宜調整した。これを150℃に加熱したオーブンの中に15分間入れ、溶剤を蒸散により取り除いた。
Subsequently, an electrode composition 1 as an electrode composition and an aluminum electrode composition (PVG Solutions Inc., PVG-AD) on a surface opposite to the light-receiving surface (hereinafter also referred to as “back surface”). −02) was printed by screen printing in the same manner as described above so as to obtain an electrode pattern as shown in FIG.
The pattern of the back surface output extraction electrode formed by using the electrode composition 1 was composed of two lines, and was printed so that the size of one line was 123 mm × 5 mm. The printing conditions (screen plate mesh, printing speed, printing pressure, etc.) were appropriately adjusted so that the back surface output extraction electrode had a thickness after heat treatment (firing) of 20 μm. Moreover, the composition for aluminum electrodes was printed on the whole surface except the back surface output extraction electrode, and the back surface current collection electrode pattern was formed. Further, the printing conditions (screen plate mesh, printing speed, printing pressure, etc.) of the aluminum electrode composition were appropriately adjusted so that the thickness of the back surface collecting electrode after heat treatment (firing) was 20 μm. This was placed in an oven heated to 150 ° C. for 15 minutes, and the solvent was removed by evaporation.
 続いて、トンネル炉((株)ノリタケカンパニーリミテド、1列搬送W/Bトンネル炉)を用いて大気雰囲気下、熱処理(焼成)最高温度800℃で保持時間10秒の加熱処理(焼成)を行って、所望の電極が形成された太陽電池素子1を2枚(ピール強度評価用の1枚と発電性能評価用の1枚)作製した。 Subsequently, using a tunnel furnace (Noritake Co., Ltd., single row W / B tunnel furnace), heat treatment (firing) was performed at a maximum temperature of 800 ° C. and a holding time of 10 seconds (firing) in an air atmosphere. Thus, two solar cell elements 1 on which desired electrodes were formed (one for peel strength evaluation and one for power generation performance evaluation) were produced.
 接続材料1を、太陽電池素子1の受光面出力取出し電極の幅(1.5mm)に裁断し、用意した配線部材と、太陽電池素子1の受光面出力取出し電極及び裏面出力取出し電極との間にそれぞれ、裁断後の接続材料1を配置した。次いで、熱圧着機(装置名:MB-200WH、日立化成(株))を用いて、180℃、2MPa、10秒の条件で加熱圧着し、前記電極と配線部材とが接続材料1を介して接続された構造を有する太陽電池1を、2枚作製した。 The connection material 1 is cut into the width (1.5 mm) of the light receiving surface output extraction electrode of the solar cell element 1, and between the prepared wiring member and the light receiving surface output extraction electrode and the back surface output extraction electrode of the solar cell element 1. In each, the cut connection material 1 was disposed. Next, using a thermocompression bonding machine (device name: MB-200WH, Hitachi Chemical Co., Ltd.), thermocompression bonding was performed under the conditions of 180 ° C., 2 MPa, 10 seconds, and the electrode and the wiring member were connected via the connection material 1. Two solar cells 1 having a connected structure were produced.
(d)太陽電池モジュールの作製
 得られた太陽電池1のうち1枚(発電性能評価用の1枚)については、強化ガラス(製品名:白板強化ガラス3KWE33、旭硝子(株))、エチレンビニルアセテート(EVA)、バックシートを用いて、図9に示すように、ガラス(ガラス板11)/EVA(封止材12)/太陽電池1(太陽電池14)/EVA(封止材12)/バックシート(バックシート13)の順に積層し、この積層体を真空ラミネータ(装置名:LM-50×50、(株)エヌピーシー)を用いて、配線部材の一部が封止部分の外側に位置するように、140℃の温度で5分間真空ラミネートし、太陽電池モジュール1を作製した。
(D) Production of solar cell module About one of the obtained solar cells 1 (one for power generation performance evaluation), tempered glass (product name: white plate tempered glass 3KWE33, Asahi Glass Co., Ltd.), ethylene vinyl acetate (EVA), using a back sheet, as shown in FIG. 9, glass (glass plate 11) / EVA (sealing material 12) / solar cell 1 (solar cell 14) / EVA (sealing material 12) / back Sheets (back sheet 13) are laminated in this order, and this laminate is placed on the outside of the sealed part using a vacuum laminator (device name: LM-50 × 50, NPC Corporation). As described above, vacuum lamination was performed at a temperature of 140 ° C. for 5 minutes to produce a solar cell module 1.
(e)太陽電池の断面形状
 得られた太陽電池1の配線部材が接続されている部分(配線接続部)を、RCO-961型ダイヤモンドカッター(リファインテック(株))を用いて、太陽電池素子1と配線部材との積層方向に対して平行に切断した。得られた断面のSEM写真を、SEM((株)日立ハイテクノロジーズ、TM-1000型走査型電子顕微鏡)を用いて得た。
 観察断面は、前記切断方向の長さを高さとし、切断方向に平行な方向の長さを幅として、300μm×250μmの矩形状とし、観察断面における導電層の面積に対して接続材料の面積が2%以下、又は98%以上でないものを観察断面として選択した。
 観察断面において、接続材料と電極との境界線の長さの合計をAdobe illustrator CS6を用いて、測定した。実際の断面図の約1万倍に拡大して測定を行った。上記の境界線の長さに該当する線分は、「鉛筆ツール」でなぞり、「オブジェクトツール」を用いることで長さを測定した。観察断面の幅の長さは、「直線ツール」で観察断面の幅と同じ長さの直線を描き、「オブジェクトツール」を用いることで測定した。それぞれ得られた境界線の長さに該当する線分と、観察断面の幅に該当する線分との長さを比較した。
(E) Cross-sectional shape of solar cell A portion (wiring connecting portion) to which the wiring member of the obtained solar cell 1 is connected is a solar cell element using an RCO-961 type diamond cutter (Refinetech Co., Ltd.). 1 and the wiring member were cut in parallel to the stacking direction. An SEM photograph of the obtained cross section was obtained using SEM (Hitachi High-Technologies Corporation, TM-1000 scanning electron microscope).
The observation cross section has a rectangular shape of 300 μm × 250 μm, where the length in the cutting direction is the height, the length in the direction parallel to the cutting direction is the width, and the area of the connection material is relative to the area of the conductive layer in the observation cross section. The observation cross section was selected to be 2% or less, or 98% or less.
In the observation cross section, the total length of the boundary line between the connection material and the electrode was measured using Adobe illustrator CS6. Measurements were performed at an magnification of about 10,000 times the actual sectional view. The line segment corresponding to the length of the boundary line was traced with the “pencil tool” and the length was measured by using the “object tool”. The width of the observation cross section was measured by drawing a straight line having the same length as the width of the observation cross section with the “Line Tool” and using the “Object Tool”. The lengths of the line segment corresponding to the obtained boundary line length and the line segment corresponding to the width of the observation cross section were compared.
 なお、電極用組成物1の組成については表1に、太陽電池1及び太陽電池モジュール1の構成については表2及び表3にそれぞれ示す。以下、同様である。
 表2及び表3において、「適用した電極」の欄に記載の「○」は、対象となる電極が用いられていることを意味し、「-」は、対象となる電極が用いられていないことを意味する。その他の欄における「-」は、該当項目がないことを意味する。
In addition, about the composition of the composition 1 for electrodes, it shows in Table 1 and the structure of the solar cell 1 and the solar cell module 1 in Table 2 and Table 3, respectively. The same applies hereinafter.
In Table 2 and Table 3, “◯” in the column of “Applied electrode” means that the target electrode is used, and “-” means that the target electrode is not used. Means that. “-” In the other columns means that there is no corresponding item.
<実施例2~5>
 実施例1において、銅合金粒子のリン含有率、錫含有率及びニッケル含有率、粒子径(D50%)並びにその含有量、ニッケル含有粒子の組成、粒子径(D50%)及びその含有量、ガラス粒子の種類、粒子径(D50%)及びその含有量、溶剤の種類及びその含有量、並びに樹脂の種類及びその含有量を表1に示したように変更したこと以外は、電極用組成物1と同様にして電極用組成物2~5をそれぞれ調製した。
 なおガラスG02は、酸化バナジウム(V)45質量部、酸化リン(P)24.2質量部、酸化バリウム(BaO)20.8質量部、酸化アンチモン(Sb)5質量部、及び酸化タングステン(WO)5質量部からなるように調製した。このガラスG02の軟化温度は492℃であり、結晶化開始温度は650℃を超えていた。
<Examples 2 to 5>
In Example 1, phosphorus content of copper alloy particles, tin content and nickel content, particle size (D50%) and content thereof, composition of nickel-containing particles, particle size (D50%) and content thereof, glass Composition 1 for electrodes except having changed the kind of particle | grain, particle diameter (D50%) and its content, the kind and content of a solvent, and the kind and content of resin as shown in Table 1. In the same manner, electrode compositions 2 to 5 were prepared.
Glass G02 is composed of 45 parts by mass of vanadium oxide (V 2 O 5 ), 24.2 parts by mass of phosphorus oxide (P 2 O 5 ), 20.8 parts by mass of barium oxide (BaO), and antimony oxide (Sb 2 O 3 ). 5 parts by weight, and was prepared as consisting of tungsten oxide (WO 3) 5 parts by weight. The softening temperature of this glass G02 was 492 ° C., and the crystallization start temperature exceeded 650 ° C.
 次いで、得られた電極用組成物2~5をそれぞれ用い、熱処理(焼成)条件(最高温度及び保持時間)等を表2及び表3に示す条件に変更したこと以外は、実施例1と同様にして太陽電池素子2~5、太陽電池2~5及び太陽電池モジュール2~5を、それぞれ作製した。 Then, using the obtained electrode compositions 2 to 5, respectively, except that the heat treatment (firing) conditions (maximum temperature and holding time) and the like were changed to the conditions shown in Tables 2 and 3, respectively. Thus, solar cell elements 2 to 5, solar cells 2 to 5 and solar cell modules 2 to 5 were produced, respectively.
<実施例6>
 実施例1において、接続材料を接続材料1から接続材料2に変更したこと以外は、実施例1と同様にして、太陽電池6及び太陽電池モジュール6を作製した。なお、接続材料2は、導電性粒子としてNi粒子を含まないこと以外は、接続材料1と同様にして作製した。接続材料2の粘度は、接続材料1と同様に測定したところ、9500Pa・sであった。
<Example 6>
In Example 1, a solar cell 6 and a solar cell module 6 were produced in the same manner as in Example 1 except that the connection material was changed from the connection material 1 to the connection material 2. The connection material 2 was produced in the same manner as the connection material 1 except that it did not contain Ni particles as conductive particles. The viscosity of the connecting material 2 was 9500 Pa · s as measured in the same manner as the connecting material 1.
<実施例7>
 実施例1において、受光面集電用電極及び受光面出力取出し用電極を形成するために、電極用組成物1を適用したこと、及び、裏面出力取出し用電極を形成するために、下記に示す電極用組成物6を適用したこと以外は、実施例1と同様にして、太陽電池素子7、太陽電池7及び太陽電池モジュール7を、それぞれ作製した。
<Example 7>
In Example 1, the electrode composition 1 was applied to form the light receiving surface current collecting electrode and the light receiving surface output extraction electrode, and the back surface output extraction electrode was formed as follows. Except having applied the electrode composition 6, it carried out similarly to Example 1, and produced the solar cell element 7, the solar cell 7, and the solar cell module 7, respectively.
 電極用組成物6は、ガラス粒子の組成をガラスG01から、以下に示すガラスG03に変更したこと以外は、電極用組成物5と同様にして調製した。
 なおガラスG03は、二酸化ケイ素(SiO)10質量部、酸化ホウ素(B)38質量部、酸化亜鉛(ZnO)28質量部、酸化アルミニウム(Al)12質量部、及び酸化バリウム(BaO)12質量部からなるように調製した。得られたガラスG03の軟化温度は583℃であり、結晶化開始温度は650℃を超えていた。
The electrode composition 6 was prepared in the same manner as the electrode composition 5 except that the composition of the glass particles was changed from the glass G01 to the glass G03 shown below.
Glass G03 is composed of 10 parts by mass of silicon dioxide (SiO 2 ), 38 parts by mass of boron oxide (B 2 O 3 ), 28 parts by mass of zinc oxide (ZnO), 12 parts by mass of aluminum oxide (Al 2 O 3 ), and oxidation. It prepared so that it might consist of 12 mass parts of barium (BaO). The obtained glass G03 had a softening temperature of 583 ° C. and a crystallization start temperature of over 650 ° C.
<実施例8>
 実施例7において、裏面出力取出し用電極を形成するために、下記に示す電極用組成物7を適用したこと以外は、実施例7と同様にして、太陽電池素子8、太陽電池8及び太陽電池モジュール8を、それぞれ作製した。
<Example 8>
In Example 7, a solar cell element 8, a solar cell 8, and a solar cell were formed in the same manner as in Example 7 except that the electrode composition 7 shown below was applied to form the back surface output extraction electrode. Modules 8 were produced respectively.
 電極用組成物7は、ガラス粒子の組成をガラスG01から、以下に示すガラスG04に変更したこと以外は、電極用組成物5と同様にして調製した。
 なおガラスG04は、酸化ホウ素を12.8質量部、二酸化ケイ素を8.7質量部、及び酸化ビスマスを78.5質量部からなるように調製した。このガラスG04の軟化温度は451℃であり、結晶化開始温度は650℃を超えていた。
The electrode composition 7 was prepared in the same manner as the electrode composition 5 except that the composition of the glass particles was changed from the glass G01 to the glass G04 shown below.
Glass G04 was prepared so as to consist of 12.8 parts by mass of boron oxide, 8.7 parts by mass of silicon dioxide, and 78.5 parts by mass of bismuth oxide. The softening temperature of this glass G04 was 451 ° C., and the crystallization start temperature exceeded 650 ° C.
<実施例9>
 実施例1において、電極用組成物1の溶剤及び樹脂を表1に示したように変更したこと以外は、実施例1と同様にして、電極用組成物8を調整した。次いで、これを用い、実施例1と同様にして太陽電池素子9、太陽電池9及び太陽電池モジュール9を、それぞれ作製した。
 また表中における溶剤Terはテルピネオールを、樹脂ECはエチルセルロースを、それぞれ示す。
<Example 9>
In Example 1, an electrode composition 8 was prepared in the same manner as in Example 1 except that the solvent and the resin of the electrode composition 1 were changed as shown in Table 1. Subsequently, using this, a solar cell element 9, a solar cell 9, and a solar cell module 9 were respectively produced in the same manner as in Example 1.
The solvent Ter in the table represents terpineol, and the resin EC represents ethyl cellulose.
<実施例10>
 受光面にn型拡散層、テクスチャ及び反射防止層(窒化ケイ素層)が形成された厚みが190μmのp型シリコン基板を用意し、125mm×125mmの大きさに2枚切り出した。その後、裏面にアルミニウム電極用組成物(PVG Solutions(株)、PVG-AD-02)を印刷して裏面集電用電極パターンを形成した。裏面集電用電極パターンは、図4に示すように裏面出力取出し電極以外の全面に印刷した。また熱処理(焼成)後の裏面集電用電極の厚みが30μmとなるように、アルミニウム電極用組成物の印刷条件(スクリーン版のメッシュ、印刷速度、印圧等)を適宜調整した。これを150℃に加熱したオーブンの中に15分間入れ、溶剤を蒸散により取り除いた。
 続いてトンネル炉((株)ノリタケカンパニーリミテド、1列搬送W/Bトンネル炉)を用いて大気雰囲気下、熱処理(焼成)最高温度800℃で保持時間10秒の加熱処理(焼成)を行って、裏面の集電用電極及びp型拡散層を形成した。
<Example 10>
A p-type silicon substrate having a thickness of 190 μm in which an n + -type diffusion layer, a texture, and an antireflection layer (silicon nitride layer) were formed on the light receiving surface was prepared, and two pieces were cut into a size of 125 mm × 125 mm. Thereafter, an aluminum electrode composition (PVG Solutions, PVG-AD-02) was printed on the back surface to form a back surface collecting electrode pattern. The back surface collecting electrode pattern was printed on the entire surface other than the back surface output extraction electrode as shown in FIG. Also, the printing conditions (screen plate mesh, printing speed, printing pressure, etc.) of the aluminum electrode composition were appropriately adjusted so that the thickness of the back surface collecting electrode after heat treatment (firing) was 30 μm. This was placed in an oven heated to 150 ° C. for 15 minutes, and the solvent was removed by evaporation.
Subsequently, using a tunnel furnace (Noritake Co., Ltd., single-row transport W / B tunnel furnace), heat treatment (firing) was performed at a maximum temperature of 800 ° C. and a holding time of 10 seconds (firing) in an air atmosphere. Then, a current collecting electrode on the back surface and a p + type diffusion layer were formed.
 その後、上記で得られた電極用組成物1を図2及び図4に示す、受光面集電用電極、受光面出力取出し電極及び裏面出力取出し電極のパターンとなるように印刷した。電極パターンは、150μm幅の受光面集電用電極と1.5mm幅の受光面出力取出し電極で構成され、熱処理(焼成)後の厚みがそれぞれ20μmとなるよう、印刷条件(スクリーン版のメッシュ、印刷速度、印圧等)を適宜調整した。裏面出力取出し電極のパターンは、123mm×5mmで構成され、計2ヶ所印刷した。熱処理(焼成)後の厚みが20μmとなるよう、印刷条件(スクリーン版のメッシュ、印刷速度、印圧等)を適宜調整した。これを150℃に加熱したオーブンの中に入れ、溶剤を蒸散により取り除いた。 Thereafter, the electrode composition 1 obtained as described above was printed in a pattern of the light receiving surface current collecting electrode, the light receiving surface output extraction electrode and the back surface output extraction electrode shown in FIGS. The electrode pattern is composed of a light receiving surface collecting electrode having a width of 150 μm and a light receiving surface output extraction electrode having a width of 1.5 mm, and printing conditions (screen plate mesh, The printing speed, printing pressure, etc.) were adjusted as appropriate. The pattern of the back surface output extraction electrode was 123 mm × 5 mm, and was printed in two places in total. Printing conditions (screen plate mesh, printing speed, printing pressure, etc.) were appropriately adjusted so that the thickness after heat treatment (firing) was 20 μm. This was placed in an oven heated to 150 ° C., and the solvent was removed by evaporation.
 次いで、トンネル炉((株)ノリタケカンパニーリミテド、1列搬送W/Bトンネル炉)を用いて大気雰囲気下、熱処理(焼成)最高温度650℃で保持時間10秒の加熱処理(焼成)を行って、所望の電極が形成された太陽電池素子10を2枚作製した。その後は実施例1と同様にして、太陽電池10及び太陽電池モジュール10を作製した。 Next, using a tunnel furnace (Noritake Co., Ltd., 1-row transport W / B tunnel furnace), heat treatment (firing) was performed in an air atmosphere at a maximum heat treatment (firing) temperature of 650 ° C. and a holding time of 10 seconds. Two solar cell elements 10 on which desired electrodes were formed were produced. Thereafter, in the same manner as in Example 1, a solar cell 10 and a solar cell module 10 were produced.
<実施例11>
 実施例10において、受光面集電用電極、受光面出力取出し電極及び裏面出力取出し電極を形成するための電極用組成物を電極用組成物5に変更したこと以外は、実施例10と同様にして、太陽電池素子11を2枚作製した。その後は実施例10と同様にして、太陽電池11及び太陽電池モジュール11を作製した。
<Example 11>
Example 10 is the same as Example 10 except that the electrode composition for forming the light receiving surface collecting electrode, the light receiving surface output extraction electrode, and the back surface output extraction electrode is changed to the electrode composition 5. Thus, two solar cell elements 11 were produced. Thereafter, in the same manner as in Example 10, a solar cell 11 and a solar cell module 11 were produced.
<実施例12>
 実施例5において、受光面出力取出し電極を形成せずに、図3に示すような受光面電極パターンを適用したこと以外は、実施例5と同様にして、太陽電池12及び太陽電池モジュール12を作製した。
<Example 12>
In Example 5, the solar cell 12 and the solar cell module 12 were formed in the same manner as in Example 5 except that the light receiving surface output extraction electrode was not formed and a light receiving surface electrode pattern as shown in FIG. 3 was applied. Produced.
<比較例1>
 実施例1における太陽電池の作製において、受光面出力取出し電極及び裏面出力取出し電極と、配線部材との接続にはんだ溶融を用いたこと以外は、実施例1と同様にして、太陽電池C1及び太陽電池モジュールC1を作製した。具体的には、太陽電池素子1の電極表面にフラックス(製品名:デルタラックス、千住金属工業(株))を付与し、その上でSn-Ag-Cu系鉛フリーはんだを温度240℃で溶融し、配線部材を配して接続させた。
<Comparative Example 1>
In the production of the solar cell in Example 1, the solar cell C1 and the solar cell were obtained in the same manner as in Example 1 except that solder melting was used to connect the light receiving surface output extraction electrode and the back surface output extraction electrode to the wiring member. Battery module C1 was produced. Specifically, flux (product name: Deltalux, Senju Metal Industry Co., Ltd.) is applied to the electrode surface of the solar cell element 1, and then Sn—Ag—Cu based lead-free solder is melted at a temperature of 240 ° C. Then, wiring members were arranged and connected.
<比較例2>
 実施例1における電極用組成物の調製において、銅合金粒子を用いずに、表1に示すように、銀粒子を用いた電極用組成物C2を調製した。電極用組成物C2を用いたこと以外は、実施例1と同様にして、太陽電池素子C2、太陽電池C2及び太陽電池モジュールC2を作製した。
<Comparative example 2>
In the preparation of the electrode composition in Example 1, as shown in Table 1, an electrode composition C2 using silver particles was prepared without using copper alloy particles. Except having used the composition C2 for electrodes, it carried out similarly to Example 1, and produced the solar cell element C2, the solar cell C2, and the solar cell module C2.
<比較例3>
 実施例1における太陽電池の作製において、受光面出力取出し電極及び裏面出力取出し電極と、配線部材との接続に、以下の導電性ペーストを用いたこと以外は、実施例1と同様にして、太陽電池C3及び太陽電池モジュールC3を作製した。
 具体的には、銀粒子(Ag;粒子径(D50%)は3.0μm;純度99.8質量%)を78.0質量部、ポリエチレンジオキシチオフェンを3.5質量部、エポキシ樹脂を1.2質量部、N-メチル-2-ピロリドン(NMP)を17.3質量部混ぜ合わせ、自動乳鉢混練装置を用いて混合してペースト化し、導電性ペーストを調製した。次いで前記導電性ペーストを太陽電池素子の電極表面に付与し、この上に配線部材(SSA-TPS L 0.2×1.5(10))を配し、これを150℃の温度で15分間加熱して導電性ペーストを硬化させ、太陽電池素子電極と配線部材とを接続した。
<Comparative Example 3>
In the production of the solar cell in Example 1, the solar cell was formed in the same manner as in Example 1 except that the following conductive paste was used to connect the light receiving surface output extraction electrode and the back surface output extraction electrode to the wiring member. Battery C3 and solar cell module C3 were produced.
Specifically, 78.0 parts by mass of silver particles (Ag; particle diameter (D50%) is 3.0 μm; purity 99.8% by mass), 3.5 parts by mass of polyethylenedioxythiophene, and 1 epoxy resin .2 parts by mass and 17.3 parts by mass of N-methyl-2-pyrrolidone (NMP) were mixed together and mixed using an automatic mortar kneader to form a paste, thereby preparing a conductive paste. Next, the conductive paste is applied to the electrode surface of the solar cell element, and a wiring member (SSA-TPS L 0.2 × 1.5 (10)) is disposed thereon, which is placed at a temperature of 150 ° C. for 15 minutes. The conductive paste was cured by heating, and the solar cell element electrode and the wiring member were connected.
<比較例4>
 実施例1において、ガラス粒子を用いずに、銅合金粒子のリン含有率及び錫含有率、粒子径(D50%)並びにその含有量、溶剤の種類及びその含有量、並びに樹脂の種類及びその含有量を表1に示したように変更したこと以外は、実施例1と同様にして電極用組成物C1を調製した。
<Comparative example 4>
In Example 1, without using glass particles, the phosphorus content and tin content of the copper alloy particles, the particle diameter (D50%) and the content thereof, the type and content of the solvent, and the type and content of the resin An electrode composition C1 was prepared in the same manner as in Example 1 except that the amount was changed as shown in Table 1.
 次いで、得られた電極用組成物C1を用い、実施例1と同様にして太陽電池素子C4、太陽電池C4及び太陽電池モジュールC4を、それぞれ作製した。 Then, using the obtained electrode composition C1, a solar cell element C4, a solar cell C4, and a solar cell module C4 were respectively produced in the same manner as in Example 1.
<比較例5>
 実施例1において、銅合金粒子のリン含有率、粒子径(D50%)及びその含有量、ニッケル含有粒子の組成、粒子径(D50%)及びその含有量、ガラス粒子の種類、粒子径(D50%)及びその含有量、溶剤の種類及びその含有量、並びに樹脂の種類及びその含有量を表1に示したように変更したこと以外は、実施例1と同様にして電極用組成物C3を調製した。
<Comparative Example 5>
In Example 1, the phosphorus content of the copper alloy particles, the particle size (D50%) and the content thereof, the composition of the nickel-containing particles, the particle size (D50%) and the content thereof, the type of glass particles, the particle size (D50) %) And the content thereof, the type and content of the solvent, and the type and content of the resin were changed as shown in Table 1, and the electrode composition C3 was prepared in the same manner as in Example 1. Prepared.
 次いで、得られた電極用組成物C3を用い、実施例1と同様にして太陽電池素子C5、太陽電池C5及び太陽電池モジュールC5を、それぞれ作製した。
 表1において、「部」は「質量部」を表す。
Next, using the obtained electrode composition C3, a solar cell element C5, a solar cell C5, and a solar cell module C5 were produced in the same manner as in Example 1.
In Table 1, “part” represents “part by mass”.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
<評価>
(ピール強度)
 作製した太陽電池のうち1枚については、受光面出力取出し電極及び裏面出力取出し電極に接続した配線部材のピール強度を測定した。なお、配線部材のピール強度は、卓上ピール試験機(装置名:EZ-S、(株)島津製作所)を用い、配線部材の90°はく離接着強さを測定した。また測定は、JIS K 6854-1:1999;接着剤-はく離接着強さ試験方法に準拠して行い、配線部材の引張り速度を50mm/min、配線部材の引張り距離を100mmとした。各試験について、配線部材引張り距離-試験力曲線をプロットし、引張り距離の10mm、20mm、30mm、40mm、及び50mmにおける試験力の平均値をはく離接着強さとした。得られた値を、比較例1(太陽電池C1)の測定値を100.0とした相対値に換算して表4に示した。
<Evaluation>
(Peel strength)
For one of the produced solar cells, the peel strength of the wiring member connected to the light receiving surface output extraction electrode and the back surface output extraction electrode was measured. The peel strength of the wiring member was measured by using a table-top peel tester (device name: EZ-S, Shimadzu Corporation) and measuring the 90 ° peel adhesion strength of the wiring member. The measurement was performed in accordance with JIS K 6854-1: 1999; Adhesive-peeling adhesion strength test method, and the tensile speed of the wiring member was 50 mm / min, and the tensile distance of the wiring member was 100 mm. For each test, a wiring member tensile distance-test force curve was plotted, and the average value of the test force at tensile distances of 10 mm, 20 mm, 30 mm, 40 mm, and 50 mm was taken as the peel adhesion strength. The obtained values are converted into relative values with the measured value of Comparative Example 1 (solar cell C1) as 100.0 and are shown in Table 4.
(発電性能)
 また作製した太陽電池のうちもう一枚については、上記に示すように太陽電池モジュールを作製し、その発電性能について評価を行った。評価は、擬似太陽光(装置名:WXS-155S-10、(株)ワコム電創)と、電圧-電流(I-V)評価測定器(装置名:I-V CURVE TRACER MP-160、英弘精機(株))の測定装置を組み合わせて行った。太陽電池としての発電性能を示すJsc(短絡電流)、Voc(開放電圧)、FF(フィルファクター)、Eff(変換効率)は、それぞれJIS-C-8913:2005及びJIS-C-8914:2005に準拠して測定を行い得られたものである。得られた各測定値を、比較例1(太陽電池モジュールC1)の測定値を100.0とした相対値に換算して表4に示した。
(Power generation performance)
Moreover, about another one of the produced solar cells, a solar cell module was produced as described above, and the power generation performance was evaluated. Evaluation was made using simulated sunlight (device name: WXS-155S-10, Wacom Denso Co., Ltd.) and voltage-current (IV) evaluation measuring device (device name: IV CURVE TRACER MP-160, Hidehiro) The measurement device of Seiki Co., Ltd.) was used in combination. Jsc (short-circuit current), Voc (open circuit voltage), FF (fill factor), and Eff (conversion efficiency), which indicate power generation performance as a solar cell, are JIS-C-8913: 2005 and JIS-C-8914: 2005, respectively. It was obtained by performing the measurement in conformity. The obtained measured values are shown in Table 4 in terms of relative values with the measured value of Comparative Example 1 (solar cell module C1) as 100.0.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 実施例1~12で作製した太陽電池における配線部材のピール強度は、比較例1の測定値と比べて、高い値を示した。これは、本発明で形成した銅含有電極の空隙部に、接続材料が効率よく入り込み、アンカー効果によって力学的な接着強度が向上したことが考えられる。一方比較例2については、配線部材のピール強度が比較例1の測定値より低いことが分かった。これについては、形成した電極が空隙部を殆ど含まず、接着剤による充分なアンカー効果が得られなかったことによるものと考えられる。 The peel strength of the wiring members in the solar cells produced in Examples 1 to 12 was higher than the measured value of Comparative Example 1. This is probably because the connecting material efficiently enters the void portion of the copper-containing electrode formed in the present invention, and the mechanical adhesive strength is improved by the anchor effect. On the other hand, for Comparative Example 2, it was found that the peel strength of the wiring member was lower than the measured value of Comparative Example 1. This is considered to be because the formed electrode contained almost no void portion and a sufficient anchor effect by the adhesive was not obtained.
 また比較例3についても、配線部材のピール強度が比較例1の測定値より低かった。これについては電極と配線部材間を導電性ペーストで接続しており、導電性ペースト中の導電性粒子の焼結が不充分であるため、機械的強度が保てなかったことによると考えられる。また同様の理由で、導電性粒子間の接触抵抗成分が多く含まれるために、配線接続部における抵抗率も増加してしまい、結果として発電性能の低下が引き起こされたものと考えられる。 Also in Comparative Example 3, the peel strength of the wiring member was lower than the measured value of Comparative Example 1. This is probably because the electrode and the wiring member are connected with a conductive paste, and the conductive particles in the conductive paste are insufficiently sintered, so that the mechanical strength cannot be maintained. For the same reason, since a large amount of contact resistance component between the conductive particles is contained, the resistivity at the wiring connection portion also increases, and as a result, it is considered that the power generation performance is lowered.
 また実施例1~12で作製した太陽電池モジュールの発電性能は、比較例1の測定値と比べて、ほぼ同等であった。特に太陽電池モジュール12は、受光面出力取出し電極を形成していないにもかかわらず、高い発電性能を示した。このことから、加熱圧着によって接続材料が流動排除され、配線部材が、裏面出力取出し電極のみならず、受光面集電用電極とも、直接接触している部分を有しており、高い導電性が得られているものと考えられる。 Further, the power generation performance of the solar cell modules produced in Examples 1 to 12 was almost the same as the measured value of Comparative Example 1. In particular, the solar cell module 12 showed high power generation performance even though the light receiving surface output extraction electrode was not formed. From this, the connection material is eliminated by thermocompression bonding, and the wiring member has a portion that is in direct contact with not only the back surface output extraction electrode but also the light receiving surface current collecting electrode. It is thought that it is obtained.
 また実施例1で作製した太陽電池の配線接続部の積層方向に平行な断面としての観察断面では、シリコン基板上に、不均一な形状の電極が不規則に配置されており、接続材料と電極との境界線は、不均一な形状となった電極の輪郭に応じて観察断面の幅方向に不規則に曲折していた。この境界線の合計の長さは、観察断面の幅の長さと比較して長かった。実施例2~実施例12も同様であった。 Moreover, in the observation cross section as a cross section parallel to the stacking direction of the wiring connection portion of the solar cell manufactured in Example 1, the electrode having a nonuniform shape is irregularly arranged on the silicon substrate, and the connection material and the electrode The boundary line was irregularly bent in the width direction of the observation cross section according to the contour of the electrode having an uneven shape. The total length of this boundary line was longer than the width of the observation cross section. Examples 2 to 12 were the same.
 なお、比較例4及び比較例5では、配線部材のピール強度及び太陽電池モジュールの発電性能が、共に実施例1の測定値よりも低かった。 In Comparative Example 4 and Comparative Example 5, the peel strength of the wiring member and the power generation performance of the solar cell module were both lower than the measured values of Example 1.
 尚、日本出願2014-017939及び2014-017940の開示はその全体が参照により本明細書に取り込まれる。また、本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。 Note that the entire disclosures of Japanese applications 2014-017939 and 2014-017940 are incorporated herein by reference. In addition, all the documents, patent applications, and technical standards described in this specification are the same as when individual documents, patent applications, and technical standards are specifically and individually described to be incorporated by reference. Which is incorporated herein by reference.

Claims (19)

  1.  リン-錫含有銅合金粒子及びガラス粒子を含む電極用組成物と、
     接着剤を含む接続材料と、
    を含む電極接続セット。
    An electrode composition comprising phosphorus-tin-containing copper alloy particles and glass particles;
    A connection material including an adhesive;
    Including electrode connection set.
  2.  前記電極用組成物が、更にニッケル含有粒子を含む請求項1に記載の電極接続セット。 The electrode connection set according to claim 1, wherein the electrode composition further contains nickel-containing particles.
  3.  前記ニッケル含有粒子は、ニッケル粒子及びニッケル含有率が1質量%以上であるニッケル合金粒子からなる群より選択される少なくとも1種である請求項2に記載の電極接続セット。 3. The electrode connection set according to claim 2, wherein the nickel-containing particles are at least one selected from the group consisting of nickel particles and nickel alloy particles having a nickel content of 1% by mass or more.
  4.  前記リン-錫含有銅合金粒子が、更にニッケルを含むリン-錫-ニッケル含有銅合金粒子である請求項1~請求項3のいずれか1項に記載の電極接続セット。 The electrode connection set according to any one of claims 1 to 3, wherein the phosphorus-tin-containing copper alloy particles are phosphorus-tin-nickel-containing copper alloy particles further containing nickel.
  5.  前記リン-錫-ニッケル含有銅合金粒子は、リン含有率が2.0質量%~15.0質量%である請求項4に記載の電極接続セット。 The electrode connection set according to claim 4, wherein the phosphorus-tin-nickel-containing copper alloy particles have a phosphorus content of 2.0 mass% to 15.0 mass%.
  6.  前記リン-錫-ニッケル含有銅合金粒子は、錫含有率が3.0質量%~30.0質量%である請求項4又は請求項5に記載の電極接続セット。 The electrode connection set according to claim 4 or 5, wherein the phosphorus-tin-nickel-containing copper alloy particles have a tin content of 3.0 mass% to 30.0 mass%.
  7.  前記リン-錫-ニッケル含有銅合金粒子は、ニッケル含有率が3.0質量%~30.0質量%である請求項4~請求項6のいずれか1項に記載の電極接続セット。 The electrode connection set according to any one of claims 4 to 6, wherein the phosphorus-tin-nickel-containing copper alloy particles have a nickel content of 3.0 mass% to 30.0 mass%.
  8.  前記リン-錫含有銅合金粒子の粒度分布において小径側から積算した体積が50%の場合における粒子径(D50%)が、0.4μm~10.0μmである請求項1~請求項7のいずれか1項に記載の電極接続セット。 The particle diameter (D50%) when the volume integrated from the small diameter side in the particle size distribution of the phosphorus-tin-containing copper alloy particles is 50% (D50%) is 0.4 μm to 10.0 μm. The electrode connection set according to claim 1.
  9.  前記ガラス粒子は、軟化点が650℃以下であり、結晶化開始温度が650℃を超える請求項1~請求項8のいずれか1項に記載の電極接続セット。 The electrode connection set according to any one of claims 1 to 8, wherein the glass particles have a softening point of 650 ° C or lower and a crystallization start temperature exceeding 650 ° C.
  10.  前記ガラス粒子の軟化点が、583℃以下である請求項9に記載の電極接続セット。 The electrode connection set according to claim 9, wherein a softening point of the glass particles is 583 ° C or lower.
  11.  前記ガラス粒子は、鉛(Pb)を含有する請求項1~請求項10のいずれか1項に記載の電極接続セット。 The electrode connection set according to any one of claims 1 to 10, wherein the glass particles contain lead (Pb).
  12.  前記ガラス粒子の含有率が、0.1質量%~12質量%である請求項1~請求項11のいずれか1項に記載の電極接続セット。 The electrode connection set according to any one of claims 1 to 11, wherein a content ratio of the glass particles is 0.1 mass% to 12 mass%.
  13.  前記接続材料が、更に硬化剤及びフィルム形成材を含む請求項1~請求項12のいずれか1項に記載の電極接続セット。 The electrode connection set according to any one of claims 1 to 12, wherein the connection material further includes a curing agent and a film forming material.
  14.  前記接続材料が、更に導電性粒子を含む請求項1~請求項13のいずれか1項に記載の電極接続セット。 The electrode connection set according to any one of claims 1 to 13, wherein the connection material further contains conductive particles.
  15.  前記電極用組成物が、更に分散媒を含む請求項1~請求項14のいずれか1項に記載の電極接続セット。 The electrode connection set according to any one of claims 1 to 14, wherein the electrode composition further contains a dispersion medium.
  16.  前記電極用組成物を、pn接合を有する半導体基板上に付与する工程と、
     前記電極用組成物が付与された半導体基板を熱処理して、銅含有電極を形成する工程と、
     前記銅含有電極上に、前記接続材料及び配線部材をこの順に積層し、積層体を得る工程と、
     前記積層体を、加熱加圧処理する工程と、
    を含む請求項1~請求項15のいずれか1項に記載の電極接続セットを用いて太陽電池を製造する太陽電池の製造方法。
    Applying the electrode composition onto a semiconductor substrate having a pn junction;
    Heat-treating the semiconductor substrate provided with the electrode composition to form a copper-containing electrode;
    Laminating the connection material and the wiring member in this order on the copper-containing electrode, and obtaining a laminate,
    A step of heating and pressurizing the laminate,
    A solar cell manufacturing method for manufacturing a solar cell using the electrode connection set according to any one of claims 1 to 15.
  17.  前記熱処理を450℃~900℃で行う請求項16に記載の太陽電池の製造方法。 The method for manufacturing a solar cell according to claim 16, wherein the heat treatment is performed at 450 ° C to 900 ° C.
  18.  請求項16又は請求項17に記載の太陽電池の製造方法により得られる太陽電池。 A solar cell obtained by the method for manufacturing a solar cell according to claim 16 or claim 17.
  19.  請求項16又は請求項17に記載の太陽電池の製造方法により得られる太陽電池と、
     前記太陽電池を封止している封止材と、
    を有する太陽電池モジュール。
    A solar cell obtained by the method for manufacturing a solar cell according to claim 16 or 17,
    A sealing material sealing the solar cell;
    A solar cell module.
PCT/JP2015/052573 2014-01-31 2015-01-29 Electrode connection set, method for manufacturing solar cell, solar cell and solar cell module WO2015115566A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014-017939 2014-01-31
JP2014017940 2014-01-31
JP2014-017940 2014-01-31
JP2014017939A JP2015146357A (en) 2014-01-31 2014-01-31 Electrode connection set, manufacturing method of solar cell, solar cell, and solar cell module

Publications (1)

Publication Number Publication Date
WO2015115566A1 true WO2015115566A1 (en) 2015-08-06

Family

ID=53757136

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/052573 WO2015115566A1 (en) 2014-01-31 2015-01-29 Electrode connection set, method for manufacturing solar cell, solar cell and solar cell module

Country Status (2)

Country Link
TW (1) TW201547043A (en)
WO (1) WO2015115566A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017033343A1 (en) * 2015-08-27 2017-03-02 日立化成株式会社 Composition for electrode formation, electrode, solar battery element, solar battery, and method for producing solar battery element

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017222010A1 (en) * 2016-06-22 2017-12-28 積水化学工業株式会社 Connection structure, metal atom-containing particles and bonding composition

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007214533A (en) * 2006-01-16 2007-08-23 Hitachi Chem Co Ltd Conductive bonding film and solar cell module
WO2009107804A1 (en) * 2008-02-28 2009-09-03 三洋電機株式会社 Solar cell module
JP2009295940A (en) * 2008-06-09 2009-12-17 Mitsubishi Electric Corp Solar battery cell and solar battery module
JP2012227183A (en) * 2011-04-14 2012-11-15 Hitachi Chem Co Ltd Paste composition for electrode, and solar cell element
WO2013005475A1 (en) * 2011-07-04 2013-01-10 三洋電機株式会社 Solar cell module and solar cell
JP2014103221A (en) * 2012-11-19 2014-06-05 Hitachi Chemical Co Ltd Electrode connection set, solar battery manufacturing method, solar battery, and solar battery module

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007214533A (en) * 2006-01-16 2007-08-23 Hitachi Chem Co Ltd Conductive bonding film and solar cell module
WO2009107804A1 (en) * 2008-02-28 2009-09-03 三洋電機株式会社 Solar cell module
JP2009295940A (en) * 2008-06-09 2009-12-17 Mitsubishi Electric Corp Solar battery cell and solar battery module
JP2012227183A (en) * 2011-04-14 2012-11-15 Hitachi Chem Co Ltd Paste composition for electrode, and solar cell element
WO2013005475A1 (en) * 2011-07-04 2013-01-10 三洋電機株式会社 Solar cell module and solar cell
JP2014103221A (en) * 2012-11-19 2014-06-05 Hitachi Chemical Co Ltd Electrode connection set, solar battery manufacturing method, solar battery, and solar battery module

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017033343A1 (en) * 2015-08-27 2017-03-02 日立化成株式会社 Composition for electrode formation, electrode, solar battery element, solar battery, and method for producing solar battery element

Also Published As

Publication number Publication date
TW201547043A (en) 2015-12-16

Similar Documents

Publication Publication Date Title
TWI645982B (en) Fired multilayer stacks for use in integrated circuits and solar cells
JP6206491B2 (en) Electrode forming composition, solar cell element and solar cell
WO2015115567A1 (en) Solar cell, solar cell module, electrode-provided component, semiconductor device, and electronic component
JP5879793B2 (en) Device manufacturing method and solar cell manufacturing method
WO2015115566A1 (en) Electrode connection set, method for manufacturing solar cell, solar cell and solar cell module
WO2015115565A1 (en) Electrode formation composition, electrode, solar cell element, method for producing same, and solar cell
JP2014103221A (en) Electrode connection set, solar battery manufacturing method, solar battery, and solar battery module
JP2016189443A (en) Composition for electrode formation, electrode, solar cell element, method of manufacturing the same, and solar cell
WO2017033343A1 (en) Composition for electrode formation, electrode, solar battery element, solar battery, and method for producing solar battery element
JP2015146357A (en) Electrode connection set, manufacturing method of solar cell, solar cell, and solar cell module
JP2014103220A (en) Solar battery and solar battery module
JP2016189446A (en) Solar cell and solar cell module
JP2022143534A (en) Electrode forming composition and solar cell element
JP2016189310A (en) Electrode-forming composition, electrode, solar cell element and method for producing the same, and solar cell
WO2015092901A1 (en) Electrode connection set, method for manufacturing solar cell, solar cell, and solar cell module
JP2017092394A (en) Solar battery element, solar battery and solar battery module
TWI634668B (en) Photovoltaic cell and photovoltaic cell module
WO2015092900A1 (en) Solar cell and solar cell module
WO2022176520A1 (en) Composition for forming electrode, solar cell element, and aluminum/silver stacked electrode
JP2017163161A (en) Solar cell and solar cell module
WO2022181731A1 (en) Solar cell element and solar cell
WO2022181730A1 (en) Solar cell element and solar cell
JP2014093491A (en) Solar cell element and process of manufacturing the same, and solar cell
JP2016054312A (en) Element and solar cell
JP2016189307A (en) Electrode-forming composition, electrode, solar cell element and method for producing the same, and solar cell

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15743533

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15743533

Country of ref document: EP

Kind code of ref document: A1