WO2015114702A1 - Transmission device and method for controlling same - Google Patents

Transmission device and method for controlling same Download PDF

Info

Publication number
WO2015114702A1
WO2015114702A1 PCT/JP2014/005478 JP2014005478W WO2015114702A1 WO 2015114702 A1 WO2015114702 A1 WO 2015114702A1 JP 2014005478 W JP2014005478 W JP 2014005478W WO 2015114702 A1 WO2015114702 A1 WO 2015114702A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
pulse
modulation
intermediate frequency
signals
Prior art date
Application number
PCT/JP2014/005478
Other languages
French (fr)
Japanese (ja)
Inventor
憲明 田和
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2015559624A priority Critical patent/JP6229738B2/en
Publication of WO2015114702A1 publication Critical patent/WO2015114702A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/21Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
    • H03F3/217Class D power amplifiers; Switching amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0294Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers using vector summing of two or more constant amplitude phase-modulated signals
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/24Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/36Modulator circuits; Transmitter circuits
    • H04L27/362Modulation using more than one carrier, e.g. with quadrature carriers, separately amplitude modulated
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/331Sigma delta modulation being used in an amplifying circuit

Definitions

  • the present invention relates to a transmission device and a control method thereof.
  • OFDM Orthogonal Frequency
  • PAPR peak power-to-average power ratio
  • class AB amplifiers are generally used as signal amplifiers.
  • a sufficient back-off is required to maintain the linearity of the output signal.
  • the power efficiency of the class AB amplifier is highest when the output is saturated, and decreases as the back-off increases. Therefore, there is a problem that it is difficult to amplify a modulation signal having a large PAPR with high power efficiency.
  • the transmission device converts a multi-bit baseband signal into a 1-bit pulse waveform ⁇ modulation signal using a ⁇ modulator. Then, by multiplying the ⁇ modulation signal and the carrier wave by a multiplier, an RF pulse modulation signal up-converted to the RF band is generated.
  • the switching amplifier can amplify the RF pulse modulation signal without generating distortion due to nonlinear characteristics. Furthermore, since the amplitude of the RF pulse modulation signal does not change even if the PAPR is large and is represented by only a binary value, the switching amplifier can amplify the RF pulse modulation signal with high power efficiency.
  • Non-Patent Document 1 in order to obtain a necessary signal-to-noise ratio in the OFDM modulation scheme of IEEE 802.11a standard, a ⁇ modulator is used at a clock frequency 32 times or 64 times the sampling frequency of the baseband signal. Need to work. Specifically, when the sampling frequency is 20 MHz, the ⁇ modulator needs to be operated at a clock frequency of 640 MHz or 1.28 GHz. Since such a ⁇ modulator that operates at a high-speed clock frequency in the order of GHz is difficult to realize with an FPGA, it is constructed by a digital RF circuit.
  • Patent Documents 1 to 4 disclose a transmission apparatus having a configuration in which a ⁇ modulator and a switching amplifier are combined.
  • the clock signal supplied to the ⁇ modulator and the carrier wave are asynchronous.
  • the reference signal source for the clock signal and the carrier wave is common, the clock signal and the carrier wave become asynchronous due to the difference in transmission path and the difference in duty ratio due to sine wave or rectangular wave.
  • the signal transition refers to a transition of the amplitude from “H” to “L” or from “L” to “H”.
  • the carrier frequency is sufficiently larger than the clock frequency, the signal transition frequency of the carrier is sufficiently higher than that of the ⁇ modulation signal, and the shift of the signal transition timing can be ignored.
  • the carrier frequency and the clock frequency are approximately the same, this influence cannot be ignored, resulting in a decrease in modulation accuracy and a decrease in power efficiency of the switching amplifier.
  • the radio frequency in UTRA Universal Terrestrial Radio Access
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • the radio frequency in UTRA (Universal Terrestrial Radio Access) and E-UTRA is 700 MHz to 3.5 GHz, which is similar to the clock frequency of the ⁇ modulator. Therefore, it is necessary to prevent the above problem by synchronizing the carrier wave and the clock signal.
  • Patent Document 5 A solution to such a problem is disclosed in Patent Document 5.
  • This transmission apparatus first converts a baseband signal represented by an in-phase component and a quadrature phase component into an amplitude signal and a phase signal having a constant amplitude.
  • the amplitude signal is converted into a ⁇ modulation signal using a ⁇ modulator
  • the phase signal is converted into an RF signal using a conventional analog quadrature modulator or the like.
  • the RF signal is converted into a pulse signal using a pulse phase signal generator, and an RF pulse modulation signal is generated by multiplying the pulse signal and the ⁇ modulation signal.
  • the pulse signal generated by the pulse phase signal generator is supplied to the ⁇ modulator and used as a clock signal.
  • an analog quadrature modulator or the like is required to convert the phase signal into an RF signal in addition to the ⁇ modulator.
  • the analog quadrature modulator is a modulator that is generally used in a transmission apparatus including a conventional class AB amplifier. That is, in order to create such a transmission device, in addition to the components necessary for the conventional transmission device, components related to ⁇ modulation are required, which complicates the device (in other words, the circuit scale). Increased).
  • the analog quadrature modulator is required to have a performance with a wider signal generation bandwidth than that for generating a normal phase amplitude modulated transmission signal. This, combined with the complexity of the device described above, increases the overall power consumption of the device.
  • the amplitude signal of the baseband signal input to the ⁇ modulator and the pulse signal cannot be synchronized. Therefore, there is a problem that invalid data during the transition time of the amplitude signal is sampled and transmission signal distortion increases.
  • the present invention has been made to solve such a problem, and an object of the present invention is to provide a transmission apparatus and a control method thereof that can suppress an increase in circuit scale.
  • a transmitting apparatus includes a baseband signal generation unit that generates an in-phase component signal and a quadrature phase component signal of a baseband signal, a second carrier and a second carrier that is 90 degrees out of phase with the first carrier.
  • First and second pulse signal generators for converting a carrier wave into first and second pulse signals having pulse waveforms, respectively, and outputting the in-phase component signal and the quadrature-phase component signal to the first and second pulses, respectively.
  • a first and second ⁇ modulators that perform ⁇ modulation in synchronization with the signal and output as first and second ⁇ modulation signals, and multiply the first ⁇ modulation signal and the first pulse signal to obtain a first RF pulse modulation signal.
  • a switching amplifier for amplifying is input to the switching amplifying unit, or the output from the switching amplifier section, and a combiner for combining said first and said second 2RF pulse modulated signal.
  • the transmitting apparatus includes a baseband signal generation unit that generates an in-phase component signal and a quadrature phase component signal of a baseband signal, and a first based on the in-phase component signal and the quadrature phase component signal.
  • An IF signal generation unit that generates an intermediate frequency signal
  • a first pulse signal generation unit that converts the first carrier wave into a first pulse signal having a pulse waveform, and outputs the first carrier signal, and the first intermediate frequency signal is converted into the first pulse signal.
  • a first ⁇ modulator that performs ⁇ modulation in synchronization and outputs a first ⁇ modulation signal; a first multiplier that multiplies the first ⁇ modulation signal and the first pulse signal to generate a first RF pulse modulation signal; A first switching amplifier for amplifying the first RF pulse modulation signal.
  • a control method of a transmission apparatus generates an in-phase component signal and a quadrature phase component signal of a baseband signal, and each of a first carrier and a second carrier that is 90 degrees out of phase with the first carrier.
  • the first and second pulse signals having a pulse waveform are converted and output, and the in-phase component signal and the quadrature component signal are ⁇ -modulated in synchronization with the first and second pulse signals, respectively.
  • Output as a 2 ⁇ modulation signal multiply the first ⁇ modulation signal and the first pulse signal to generate a first RF pulse modulation signal, and multiply the second ⁇ modulation signal and the second pulse signal to generate a second RF signal.
  • Generate a pulse modulation signal amplify the first and second RF pulse modulation signals using a switching amplifier, and input to the switching amplifier, or the switching amplifier
  • the first and the second RF pulse modulation signals output from are synthesized.
  • a control method of a transmission device generates an in-phase component signal and a quadrature component signal of a baseband signal, and a first intermediate frequency signal based on the in-phase component signal and the quadrature component signal
  • the first carrier wave is converted into a first pulse signal having a pulse waveform and output, and the first intermediate frequency signal is ⁇ -modulated in synchronization with the first pulse signal and output as a first ⁇ -modulated signal
  • a first RF pulse modulation signal is generated by multiplying the first ⁇ modulation signal and the first pulse signal, and the first RF pulse modulation signal is amplified using a first switching amplifier.
  • FIG. 3 is a block diagram illustrating a configuration example of a transmission apparatus according to Embodiment 1.
  • FIG. 3 is a block diagram illustrating a specific configuration example of a transmission apparatus according to Embodiment 1.
  • FIG. 6 is a timing chart illustrating a part of the operation of the transmission apparatus according to the first embodiment.
  • 6 is a block diagram illustrating a first modification of the transmission apparatus according to Embodiment 1.
  • FIG. 6 is a block diagram illustrating a second modification of the transmission apparatus according to Embodiment 1.
  • FIG. 6 is a block diagram illustrating a configuration example of a transmission apparatus according to Embodiment 2.
  • FIG. 10 is a block diagram showing a modification of the transmission apparatus according to Embodiment 2.
  • the constituent elements are not necessarily essential unless otherwise specified or apparently essential in principle.
  • the shapes when referring to the shapes, positional relationships, etc. of the components, etc., the shapes are substantially the same unless otherwise specified, or otherwise apparent in principle. And the like are included. The same applies to the above numbers and the like (including the number, numerical value, quantity, range, etc.).
  • FIG. 1 is a block diagram illustrating a configuration example of a transmission apparatus according to Embodiment 1.
  • FIG. 2 is a block diagram illustrating a more specific configuration example of the transmission apparatus illustrated in FIG.
  • FIG. 3 is a timing chart showing the operation of a part of the transmission apparatus shown in FIG.
  • the transmission apparatus according to the present embodiment performs ⁇ modulation on the in-phase component signal I and the quadrature component signal Q of the baseband signal in synchronization with the pulse signals P1 and P2 that are different in phase by 90 degrees, respectively, Multiplying by P2, RF pulse modulation signals R1 and R2 are generated.
  • the RF pulse modulation signals R1 and R2 are amplified by the switching amplifier and synthesized by the synthesizer to obtain a transmission signal.
  • the transmission apparatus uses the in-phase component signal I and the quadrature component signal Q of the baseband signal as the RF signal in order to obtain the pulse signals P1 and P2 input to the ⁇ modulator and the multiplier. Therefore, it is not necessary to provide a modulator (IQ modulator) that modulates the signal to the circuit, so that an increase in circuit scale can be suppressed and power consumption can be reduced.
  • IQ modulator IQ modulator
  • a transmission device 1 shown in FIG. 2 is a transmission device in a communication device such as a mobile phone or a wireless LAN, for example, and includes an RF pulse modulation signal generation unit 10, a switching amplification unit 20, bandpass filters 13 and 14, And a synthesizer 15.
  • the RF pulse modulation signal generation unit 10 includes a digital baseband signal generation unit (baseband signal generation unit) 101, a pulse signal generator (first pulse signal generation unit) 102, and a pulse signal generator (second pulse).
  • an oscillator 108 and a phase shifter 109 is a digital baseband signal generation unit (baseband signal generation unit) 101, a pulse signal generator (first pulse signal generation unit) 102, and a pulse signal generator (second pulse).
  • Digital baseband signal generator 101 generates an in-phase component signal I and the quadrature component signal Q of the baseband signal S BB. Note that the in-phase component signal I and the quadrature component signal Q of the baseband signal are digital signals that take a multilevel state.
  • the oscillator 108 generates an oscillation signal having a frequency fc.
  • the phase shifter 109 outputs a carrier wave CW1 that is in phase with the oscillation signal of the oscillator 108, and outputs a carrier wave CW2 that is 90 degrees out of phase with the carrier wave CW1.
  • the pulse signal generator 102 converts the carrier wave (first carrier wave) CW1 having the frequency fc into a pulse signal (first pulse signal) P1 having a pulse waveform and outputs the pulse signal.
  • the pulse signal generator 103 converts a carrier wave (second carrier wave) CW2 having a phase difference of 90 degrees from the carrier wave CW1 into a pulse signal (second pulse signal) P2 having a pulse waveform and outputs the pulse signal.
  • the pulse signal generator 102 includes, for example, a comparator that indicates an H level (value “1”) when the carrier wave CW1 is greater than 0 and an L level (value “ ⁇ 1”) when the carrier wave CW1 is less than 0. Prepare. Similarly, the pulse signal generator 103 indicates, for example, an H level (value “1”) when the carrier wave CW2 is greater than 0, and an L level (value “ ⁇ 1”) when the carrier wave CW2 is less than 0. A comparator is provided.
  • the ⁇ modulator 104 ⁇ modulates the in-phase component signal I of the baseband signal in synchronization with the pulse signal P1, and outputs it as a ⁇ modulation signal (first ⁇ modulation signal) M1.
  • the ⁇ modulator 105 performs ⁇ modulation on the quadrature component signal Q of the baseband signal in synchronization with the pulse signal P2, and outputs it as a ⁇ modulation signal (second ⁇ modulation signal) M2.
  • the ⁇ modulator 104 samples the multi-level in-phase component signal I in synchronization with the rising edge of the pulse signal P1, and generates a binary ⁇ modulation signal M1 of 1 and ⁇ 1. Convert and output.
  • the ⁇ modulator 105 samples the multi-level quadrature phase component signal Q in synchronization with the rising edge of the pulse signal P2, converts it into a binary ⁇ modulation signal M2 of 1, -1, and outputs it.
  • Multiplier 106 multiplies ⁇ modulation signal M1 output from ⁇ modulator 104 and pulse signal P1, and outputs an RF pulse modulation signal (first RF pulse modulation signal) R1 upconverted to the RF band.
  • Multiplier 107 multiplies ⁇ modulation signal M2 output from ⁇ modulator 105 and pulse signal P2, and outputs an RF pulse modulation signal (second RF pulse modulation signal) R2 upconverted to the RF band.
  • the multiplier 106 sets “1” when the value of the pulse signal P1 is “1” and the pulse signal P1.
  • “ ⁇ 1” is output.
  • the multiplier 106 sets “ ⁇ 1” when the value of the pulse signal P1 is “1”, and sets the value of the pulse signal P1 to “ ⁇ 1”. In this case, “1” is output.
  • the relationship between the ⁇ modulation signal M2 and the pulse signal P2 and the RF pulse modulation signal R2 in the multiplier 107 is the same as the relationship between the ⁇ modulation signal M1 and the pulse signal P1 and the RF pulse modulation signal R1 in the multiplier 106.
  • the pulse signals P1 and P2 are used as carrier signals for the multipliers 106 and 107 and also as clock signals for the ⁇ modulators 104 and 105. As described above, by using the carrier signal and the clock signal in common, it is possible to prevent the synchronization deviation between the ⁇ modulation signals M1 and M2 and the carrier signal.
  • the switching amplifier 20 includes a switching amplifier (first switching amplifier) 11 and a switching amplifier (second switching amplifier) 12.
  • the switching amplifiers 11 and 12 are, for example, class D amplifiers or class E amplifiers, and are power amplifiers having high power efficiency.
  • the switching amplifiers 11 and 12 amplify the power of the RF pulse modulation signals R1 and R2, respectively, while maintaining their pulse waveforms.
  • the band pass filter 13 passes a desired frequency band in the output of the switching amplifier 11.
  • the band pass filter 14 passes a desired frequency band in the output of the switching amplifier 12.
  • the main purpose of the bandpass filters 13 and 14 is to reflect the quantization noise noise-shaved by the ⁇ modulators 104 and 105 included in the RF pulse modulation signals R1 and R2 amplified by the switching amplifiers 11 and 12. It is to improve the power efficiency of signal amplification. Since noise-shaped quantization noise is small in the vicinity of the signal, it is not necessary to remove the quantization noise to the vicinity of the signal band using the bandpass filters 13 and 14. When it is necessary to remove a noise component in the vicinity of the transmission signal due to a wireless communication standard or the like, it can be removed by a duplexer (not shown) provided at the subsequent stage of the synthesizer 15.
  • the synthesizer 15 synthesizes the outputs of the switching amplifiers 11 and 12 that have passed through the bandpass filters 13 and 14 and outputs the synthesized signal as a transmission signal Dout.
  • the transmission apparatus 1 amplifies and synthesizes the transmission signals (RF pulse modulation signals R1, R2) of the RF pulse modulation signal generation unit 10, and then outputs them as a transmission signal Dout.
  • This transmission signal Dout is wirelessly transmitted to the outside via an antenna (not shown).
  • the baseband signal SBB is expressed as the following equation (1), where x is an in-phase component signal I, y is a quadrature component signal Q, and i is an imaginary unit.
  • the carrier waves CW1 and CW2 are expressed by the following equations (2) and (3).
  • represents angular velocity
  • t represents time
  • the amplitude is 1.
  • the RF pulse modulation signal R1 is expressed as the following Equation (4), omitting binarization by ⁇ modulation.
  • the RF pulse modulation signal R2 is expressed as the following equation (5), omitting binarization by ⁇ modulation.
  • the transmission signal Dout is expressed as the following equation (6).
  • the transmission apparatus 1 generates a desired transmission signal.
  • the transmitting apparatus performs ⁇ modulation on the in-phase component signal I and the quadrature component signal Q of the baseband signal in synchronization with the pulse signals P1 and P2 that are different in phase by 90 degrees, respectively.
  • RF pulse modulation signals R1 and R2 are generated by multiplying the pulse signals P1 and P2.
  • the RF pulse modulation signals R1 and R2 are amplified by the switching amplifier and synthesized by the synthesizer to obtain a transmission signal.
  • the transmission apparatus modulates the in-phase component signal I and the quadrature component signal Q of the baseband signal into an RF signal in order to obtain a pulse phase signal input to the ⁇ modulator and the mixer. Since there is no need to provide a modulator (IQ modulator) to increase, an increase in circuit scale can be suppressed. In addition, power consumption can be reduced.
  • IQ modulator IQ modulator
  • the transmission apparatus may input pulse signals (P1, P2) having the same frequency as the carrier wave to the ⁇ modulator and multiplier as the sampling clock and the carrier pulse signal, respectively. Even when the frequency is relatively high, it can operate normally with the sampling rate kept low. Since the sampling rate can be kept low, the power efficiency of the switching amplifier can be improved. In addition, since the common pulse signals (P1, P2) are input to the ⁇ modulator and the multiplier, synchronization can be established between the ⁇ modulator and the multiplier.
  • the quality of the transmission signal may be deteriorated due to the synchronization shift between the amplitude signal and the phase signal. On the other hand, such a problem does not occur in principle in the transmission apparatus according to the present embodiment.
  • FIG. 4 is a block diagram illustrating a first modification of the transmission device 1 illustrated in FIG. 2 as a transmission device 1a.
  • the transmitting apparatus 1a illustrated in FIG. 4 includes a bandpass filter 16 at the subsequent stage of the combiner 15 instead of including the bandpass filters 13 and 14 at the previous stage of the combiner 15.
  • the other configuration of the transmission device 1a shown in FIG. 4 is the same as that of the transmission device 1 shown in FIG.
  • FIG. 5 is a block diagram showing a second modification of the transmission apparatus 1 shown in FIG. 2 as a transmission apparatus 1b.
  • the transmission apparatus 1b illustrated in FIG. 5 includes a switching amplification unit 20 at the subsequent stage of the combiner 15 instead of including the switching amplification unit 20 at the previous stage of the combiner 15.
  • 5 includes a bandpass filter 16 at the subsequent stage of the switching amplifier 20, instead of including the bandpass filters 13 and 14 at the previous stage of the synthesizer 15.
  • the switching amplifier 20 includes a switching amplifier 17 that amplifies the RF pulse modulation signals R1 and R2 synthesized by the synthesizer 15.
  • the other configuration of the transmission device 1b shown in FIG. 5 is the same as that of the transmission device 1 shown in FIG.
  • FIG. 6 is a block diagram illustrating a configuration example of a transmission apparatus according to Embodiment 2.
  • a transmission device 1c illustrated in FIG. 6 includes an RF pulse modulation signal generation unit 10c, a switching amplifier (first switching amplifier) 11, and a bandpass filter 13.
  • the RF pulse modulation signal generation unit 10c includes a digital baseband signal generation unit (baseband signal generation unit) 101, an IF signal generation unit 110, a pulse signal generator (first pulse signal generation unit) 102, and a ⁇ modulator. 104, a multiplier (first multiplier) 106, and an oscillator 108.
  • the IF signal generation unit 110 generates the intermediate frequency signal IF1 based on the in-phase component signal I and the quadrature component signal Q of the baseband signal generated by the digital baseband signal generation unit 101.
  • the intermediate frequency signal IF1 one of the in-phase component and the quadrature component of the intermediate frequency signal obtained from the baseband signal is used.
  • the in-phase component is used as the intermediate frequency signal IF1.
  • the intermediate frequency signal IF1 can be expressed as the following Expression (7).
  • ⁇ IF is an angular velocity corresponding to the center frequency of the intermediate frequency signal IF1
  • t is time
  • x is an in-phase component signal I
  • y is a quadrature component signal Q.
  • the pulse signal generator 102 converts the carrier wave CW1 generated by the oscillator 108 into a pulse signal (first pulse signal) P1 having a pulse waveform and outputs the pulse signal.
  • the ⁇ modulator 104 ⁇ modulates the intermediate frequency signal IF1 in synchronization with the pulse signal P1, and outputs it as a ⁇ modulation signal (first ⁇ modulation signal) M3.
  • Multiplier 106 multiplies ⁇ modulation signal M3 output from ⁇ modulator 104 and pulse signal P1, and outputs an RF pulse modulation signal (first RF pulse modulation signal) R3 upconverted to the RF band.
  • the switching amplifier 11 amplifies the power of the RF pulse modulation signal R3 while maintaining the pulse waveform.
  • the band-pass filter 13 passes a desired frequency band in the output of the switching amplifier 11 and outputs it as a transmission signal Dout.
  • the output of the switching amplifier 11 includes an image signal having the same level of power at a frequency opposite to that of the target signal and the carrier frequency. Therefore, the band pass filter 13 needs to remove the frequency band of the image signal.
  • the transmission device 1c amplifies the transmission signal (RF pulse modulation signal R3) of the RF pulse modulation signal generation unit 10c, and then outputs it as the transmission signal Dout through the narrow band pass filter 13.
  • This transmission signal Dout is wirelessly transmitted to the outside via an antenna (not shown).
  • the transmission apparatus uses the baseband signal of the baseband signal to obtain the pulse phase signal input to the ⁇ modulator and the mixer. Since it is not necessary to provide a modulator (IQ modulator) that modulates the in-phase component signal I and the quadrature component signal Q into an RF signal, an increase in circuit scale can be suppressed. In addition, power consumption can be reduced. That is, the transmitting apparatus according to the present embodiment can achieve the same effect as that of the first embodiment.
  • IQ modulator IQ modulator
  • FIG. 7 is a block diagram illustrating a modified example of the transmission device 1c illustrated in FIG. 6 as a transmission device 1d.
  • 7 includes an RF pulse modulation signal generation unit 10d, a switching amplifier 11, a switching amplifier (second switching amplifier) 12, bandpass filters 13 and 14, and a combiner 15.
  • the RF pulse modulation signal generation unit 10d includes a digital baseband signal generation unit (baseband signal generation unit) 101, an IF signal generation unit 111, a pulse signal generator 102, and a pulse signal generator (second pulse signal generation unit). ) 103, ⁇ modulator 104, ⁇ modulator 105, multiplier 106, multiplier (second multiplier) 107, oscillator 108, and phase shifter 109.
  • the IF signal generation unit 111 generates the intermediate frequency signal IF1 and the intermediate frequency signal IF2 based on the in-phase component signal I and the quadrature component signal Q of the baseband signal generated by the digital baseband signal generation unit 101.
  • the in-phase component is used as the intermediate frequency signal IF1
  • the quadrature component is used as the intermediate frequency signal IF2.
  • the intermediate frequency signal IF2 can be expressed as the following Expression (8).
  • the quadrature component is used as the intermediate frequency signal IF1
  • the in-phase component is used as the intermediate frequency signal IF2.
  • the pulse signal generator 103 converts the carrier wave CW2 having a phase difference of 90 degrees from the carrier wave CW1 into a pulse signal (second pulse signal) P2 having a pulse waveform and outputs the pulse signal.
  • the ⁇ modulator 105 ⁇ modulates the intermediate frequency signal IF2 in synchronization with the pulse signal P2, and outputs it as a ⁇ modulation signal (second ⁇ modulation signal) M4.
  • Multiplier 107 multiplies ⁇ modulation signal M4 output from ⁇ modulator 105 and pulse signal P2, and outputs an RF pulse modulation signal (second RF pulse modulation signal) R4 upconverted to the RF band.
  • the switching amplifier 12 amplifies the power of the RF pulse modulation signal R4 while maintaining the pulse waveform.
  • the band pass filter 14 passes a desired frequency band in the output of the switching amplifier 12.
  • the synthesizer 15 synthesizes the outputs of the switching amplifiers 11 and 12 that have passed through the band-pass filters 13 and 14 and outputs the result as a transmission signal Dout. At this time, the above-described image signal is canceled. Therefore, it is not necessary to narrow the bandpass filters 13 and 14 for image signal removal.
  • the transmission apparatus includes the in-phase component signal I and the quadrature component signal Q of the baseband signal. Since it is not necessary to provide a modulator (IQ modulator) that modulates the signal to an RF signal, an increase in circuit scale can be suppressed. In addition, power consumption can be reduced.
  • IQ modulator IQ modulator
  • the transmitting apparatuses according to the first and second embodiments may input pulse signals (P1, P2) having the same frequency as the carrier wave to the ⁇ modulator and multiplier as the sampling clock and the carrier pulse signal, respectively. Even when the frequency of the carrier wave is relatively high, it can operate normally with the sampling rate kept low. Moreover, since the sampling rate can be kept low, the power efficiency of the switching amplifier can be improved. In addition, since the common pulse signals (P1, P2) are input to the ⁇ modulator and the multiplier, synchronization can be established between the ⁇ modulator and the multiplier.

Abstract

A transmission device (1) in one embodiment contains the following: pulse-signal generators (102, 103) that convert a carrier wave (CW1) and another carrier wave (CW2) that is 90° out of phase with said carrier wave (CW1) to pulse signals (P1, P2), respectively, and output said pulse signals; delta-sigma modulators (104, 105) that output delta-sigma modulated signals (M1, M2) obtained by subjecting an in-phase component signal (I) and a quadrature component signal (Q) from a baseband signal to delta-sigma modulation synchronized on the respective pulse signals (P1, P2); a multiplier (106) that generates an RF pulse-modulated signal (R1) by multiplying one delta-sigma modulated signal (M1) by the first pulse signal (P1); a multiplier (107) that generates another RF pulse-modulated signal (R2) by multiplying the other delta-sigma modulated signal (M2) by the other pulse signal (P2); a switching-amplifier unit (20) that amplifies the RF pulse-modulated signals (R1, R2); and a combiner (15) that combines the RF pulse-modulated signals (R1, R2) amplified by said switching-amplifier unit (20).

Description

送信装置及びその制御方法Transmitting apparatus and control method thereof
 本発明は、送信装置及びその制御方法に関する。 The present invention relates to a transmission device and a control method thereof.
 近年、携帯電話や無線LAN(Local Area Network)等の無線通信では、周波数利用効率が高く、かつ、ピーク電力対平均電力比(Peak to Average Ratio;以下、PAPRと称す)の大きいOFDM(Orthogonal Frequency-Division Multiplexing)などの変調方式が採用されている。 In recent years, in wireless communications such as cellular phones and wireless LANs (Local Area Networks), OFDM (Orthogonal Frequency) with high frequency utilization efficiency and a large peak power-to-average power ratio (hereinafter referred to as PAPR). -Division (Multiplexing) is used.
 従来の無線送信装置には、信号増幅器として、一般的にAB級増幅器が使用されている。前述のようにPAPRの大きな変調信号をAB級増幅器で増幅するためには、出力信号の線形性を維持するために、十分なバックオフが必要になる。しかしながら、AB級増幅器の電力効率は、出力飽和時に最も高くなり、バックオフが大きくなるほど低下する。そのため、PAPRの大きな変調信号を高い電力効率で増幅することが難しいという課題がある。 In conventional wireless transmission devices, class AB amplifiers are generally used as signal amplifiers. As described above, in order to amplify a modulation signal having a large PAPR with the class AB amplifier, a sufficient back-off is required to maintain the linearity of the output signal. However, the power efficiency of the class AB amplifier is highest when the output is saturated, and decreases as the back-off increases. Therefore, there is a problem that it is difficult to amplify a modulation signal having a large PAPR with high power efficiency.
 そこで、高い電力効率が得られる送信装置として、ΔΣ変調器とスイッチング増幅器とを組み合わせた構成を持つ送信装置が注目されている。この送信装置は、例えば、多ビットのベースバンド信号を、ΔΣ変調器を用いて1ビットのパルス波形のΔΣ変調信号に変換する。そして、このΔΣ変調信号と搬送波とを乗算器にて乗ずることにより、RF帯域にアップコンバートされたRFパルス変調信号を生成する。 Therefore, a transmitter having a configuration in which a ΔΣ modulator and a switching amplifier are combined is attracting attention as a transmitter capable of obtaining high power efficiency. For example, the transmission device converts a multi-bit baseband signal into a 1-bit pulse waveform ΔΣ modulation signal using a ΔΣ modulator. Then, by multiplying the ΔΣ modulation signal and the carrier wave by a multiplier, an RF pulse modulation signal up-converted to the RF band is generated.
 1ビットのRFパルス変調信号の振幅は理想的には2値のみで表されるため、スイッチング増幅器は、非線形特性により歪みを発生させることなく、RFパルス変調信号を増幅することができる。さらに、RFパルス変調信号の振幅はPAPRが大きくても変わらず2値のみで表されるため、スイッチング増幅器は、高い電力効率でRFパルス変調信号を増幅することができる。 Since the amplitude of a 1-bit RF pulse modulation signal is ideally represented by only binary values, the switching amplifier can amplify the RF pulse modulation signal without generating distortion due to nonlinear characteristics. Furthermore, since the amplitude of the RF pulse modulation signal does not change even if the PAPR is large and is represented by only a binary value, the switching amplifier can amplify the RF pulse modulation signal with high power efficiency.
 ΔΣ変調器を用いて多ビットのベースバンド信号を1ビットのΔΣ変調信号に変換した場合、ΔΣ変調信号には1ビット化に伴う量子化雑音が付与される。一般的な信号の量子化では、周波数領域において一様に分布した雑音が付与される。しかし、ΔΣ変調器を用いた場合、その伝達特性に基づくノイズシェーピング効果によって、低周波数側の量子化雑音が高周波側に移動させられるため、送信信号帯域においては一般的な量子化に比べ高い信号対雑音比を実現できる。信号帯域外の雑音成分は、例えば、後段にフィルタを設けることによって除去する。このノイズシェーピング特性は、ΔΣ変調器の次数とオーバーサンプリング比(Over Sampling Ratio;以下、OSRと称す)によって決まる。OSRが低い場合、ノイズシェーピング特性が十分でなくなるため、送信装置に要求される無線特性が満たされない場合がある。 When a multi-bit baseband signal is converted into a 1-bit ΔΣ modulation signal using a ΔΣ modulator, quantization noise accompanying 1-bit conversion is added to the ΔΣ modulation signal. In general signal quantization, noise uniformly distributed in the frequency domain is given. However, when a delta-sigma modulator is used, the noise shaping effect based on its transfer characteristics moves the low-frequency side quantization noise to the high-frequency side, so a higher signal in the transmission signal band than general quantization. A noise-to-noise ratio can be realized. Noise components outside the signal band are removed, for example, by providing a filter in the subsequent stage. This noise shaping characteristic is determined by the order of the ΔΣ modulator and an oversampling ratio (hereinafter referred to as OSR). When the OSR is low, the noise shaping characteristics are not sufficient, and the radio characteristics required for the transmission apparatus may not be satisfied.
 例えば、非特許文献1によれば、IEEE 802.11a規格のOFDM変調方式において、必要な信号対雑音比を得るには、ベースバンド信号のサンプリング周波数の32倍や64倍のクロック周波数でΔΣ変調器を動作させる必要がある。具体的には、サンプリング周波数が20MHzの場合、640MHzや1.28GHzのクロック周波数でΔΣ変調器を動作させる必要がある。このようなGHzオーダーの高速なクロック周波数で動作するΔΣ変調器は、FPGAで実現することは困難であるため、デジタルRF回路によって構築される。 For example, according to Non-Patent Document 1, in order to obtain a necessary signal-to-noise ratio in the OFDM modulation scheme of IEEE 802.11a standard, a ΔΣ modulator is used at a clock frequency 32 times or 64 times the sampling frequency of the baseband signal. Need to work. Specifically, when the sampling frequency is 20 MHz, the ΔΣ modulator needs to be operated at a clock frequency of 640 MHz or 1.28 GHz. Since such a ΔΣ modulator that operates at a high-speed clock frequency in the order of GHz is difficult to realize with an FPGA, it is constructed by a digital RF circuit.
 ΔΣ変調器とスイッチング増幅器とを組み合わせた構成を持つ送信装置が、関連技術として特許文献1乃至4に開示されている。しかし、これら関連技術では、ΔΣ変調器に供給されるクロック信号と搬送波とが非同期である。仮にクロック信号と搬送波との基準信号源が共通であっても、伝達経路の差異や、正弦波か矩形波かなどによるデューティ比の差、により、クロック信号と搬送波とは非同期になる。 Patent Documents 1 to 4 disclose a transmission apparatus having a configuration in which a ΔΣ modulator and a switching amplifier are combined. However, in these related technologies, the clock signal supplied to the ΔΣ modulator and the carrier wave are asynchronous. Even if the reference signal source for the clock signal and the carrier wave is common, the clock signal and the carrier wave become asynchronous due to the difference in transmission path and the difference in duty ratio due to sine wave or rectangular wave.
 クロック信号と搬送波とが非同期の場合、ΔΣ変調器の出力(ΔΣ変調信号)と搬送波との信号遷移タイミングのずれにより、所望のパルス幅の信号が得られない問題が発生する。ここでの信号遷移とは、振幅の“H”から“L”への遷移や、“L”から“H”への遷移を言う。搬送波周波数がクロック周波数よりも十分に大きい場合は、搬送波の信号遷移頻度が、ΔΣ変調信号のそれよりも十分に高く、信号遷移タイミングのずれは無視できる。しかし、搬送波周波数とクロック周波数とが同程度の場合、この影響は無視できず、変調精度の低下やスイッチング増幅器の電力効率の低下などを招く。 When the clock signal and the carrier wave are asynchronous, there arises a problem that a signal having a desired pulse width cannot be obtained due to a shift in signal transition timing between the output of the ΔΣ modulator (ΔΣ modulation signal) and the carrier wave. Here, the signal transition refers to a transition of the amplitude from “H” to “L” or from “L” to “H”. When the carrier frequency is sufficiently larger than the clock frequency, the signal transition frequency of the carrier is sufficiently higher than that of the ΔΣ modulation signal, and the shift of the signal transition timing can be ignored. However, when the carrier frequency and the clock frequency are approximately the same, this influence cannot be ignored, resulting in a decrease in modulation accuracy and a decrease in power efficiency of the switching amplifier.
 UTRA(Universal Terrestrial Radio Access)や、E-UTRA(Evolved Universal Terrestrial Radio Access)における無線周波数は、700MHz~3.5GHzであり、ΔΣ変調器のクロック周波数と同程度である。そのため、搬送波とクロック信号とを同期させて上記問題を防ぐ必要があった。 The radio frequency in UTRA (Universal Terrestrial Radio Access) and E-UTRA (Evolved Universal Terrestrial Radio Access) is 700 MHz to 3.5 GHz, which is similar to the clock frequency of the ΔΣ modulator. Therefore, it is necessary to prevent the above problem by synchronizing the carrier wave and the clock signal.
 このような問題に対する解決策が、特許文献5に開示されている。この送信装置は、まず、同相成分と直交位相成分とで表されるベースバンド信号を、振幅信号と、振幅が一定の位相信号と、に変換する。次に、振幅信号をΔΣ変調器を用いてΔΣ変調信号に変換するとともに、位相信号を従来のアナログ直交変調器等を用いてRF信号に変換する。次に、RF信号をパルス位相信号生成器を用いてパルス信号に変換し、当該パルス信号とΔΣ変調信号とを乗ずることによってRFパルス変調信号を生成する。このとき、パルス位相信号生成器にて生成されたパルス信号は、ΔΣ変調器に供給されてクロック信号としても使用される。それにより、当該パルス信号とΔΣ変調信号とを同期させることができるため、同期ずれによる信号品質の劣化を防ぐことができる。 A solution to such a problem is disclosed in Patent Document 5. This transmission apparatus first converts a baseband signal represented by an in-phase component and a quadrature phase component into an amplitude signal and a phase signal having a constant amplitude. Next, the amplitude signal is converted into a ΔΣ modulation signal using a ΔΣ modulator, and the phase signal is converted into an RF signal using a conventional analog quadrature modulator or the like. Next, the RF signal is converted into a pulse signal using a pulse phase signal generator, and an RF pulse modulation signal is generated by multiplying the pulse signal and the ΔΣ modulation signal. At this time, the pulse signal generated by the pulse phase signal generator is supplied to the ΔΣ modulator and used as a clock signal. Thereby, since the pulse signal and the ΔΣ modulation signal can be synchronized, it is possible to prevent the signal quality from being deteriorated due to the synchronization shift.
 しかしながら、このような送信装置を作成するためには、ΔΣ変調器に加え、位相信号をRF信号に変換するため、アナログ直交変調器等が必要となる。アナログ直交変調器は、従来のAB級増幅器を備えた送信装置に一般的に用いられる変調器である。つまり、このような送信装置を作成するためには、従来の送信装置に必要な構成要素に加えて、ΔΣ変調に係る構成要素が必要となるため、装置が複雑化する(換言すると、回路規模が増大する)という問題があった。 However, in order to create such a transmission apparatus, an analog quadrature modulator or the like is required to convert the phase signal into an RF signal in addition to the ΔΣ modulator. The analog quadrature modulator is a modulator that is generally used in a transmission apparatus including a conventional class AB amplifier. That is, in order to create such a transmission device, in addition to the components necessary for the conventional transmission device, components related to ΔΣ modulation are required, which complicates the device (in other words, the circuit scale). Increased).
 さらに、位相信号は振幅が一定であるため、FIRフィルタなどによって、送信信号帯域外の信号を抑圧することができない。そのため、アナログ直交変調器には、通常の位相振幅変調された送信信号を生成するよりも広い信号生成帯域幅を持った性能が要求される。これは、上記の装置の複雑さと合わせて、装置全体の消費電力を増加させる。 Furthermore, since the amplitude of the phase signal is constant, signals outside the transmission signal band cannot be suppressed by an FIR filter or the like. Therefore, the analog quadrature modulator is required to have a performance with a wider signal generation bandwidth than that for generating a normal phase amplitude modulated transmission signal. This, combined with the complexity of the device described above, increases the overall power consumption of the device.
 また、ΔΣ変調信号と上記パルス信号とは同期できているが、ΔΣ変調器に入力されるベースバンド信号の振幅信号と上記パルス信号とは同期できていない。そのため、振幅信号の遷移時間中の無効データをサンプリングしてしまい、送信信号歪みが増大するという課題もある。 Further, although the ΔΣ modulation signal and the pulse signal can be synchronized, the amplitude signal of the baseband signal input to the ΔΣ modulator and the pulse signal cannot be synchronized. Therefore, there is a problem that invalid data during the transition time of the amplitude signal is sampled and transmission signal distortion increases.
特開2011-086983号公報JP 2011-069883 A 特開2011-077741号公報JP 2011-077741 A 特開2011-018994号公報JP 2011-018994 A 特開2002-057732号公報JP 2002-057332 A 国際公開第2011/078120号International Publication No. 2011/078120
 上述のように、特許文献5に開示された構成では、ΔΣ変調器及び混合器に入力されるパルス信号を得るために、振幅一定のベースバンド信号の同相成分信号I及び直交位相成分信号QをRF信号に変調する変調器(IQモジュレータ)が必要である。そのため、特許文献5に開示された構成では、回路規模が増大してしまうという問題があった。その他の課題と新規な特徴は、本明細書の記述および添付図面から明らかにする。 As described above, in the configuration disclosed in Patent Document 5, in order to obtain the pulse signal input to the ΔΣ modulator and the mixer, the in-phase component signal I and the quadrature component signal Q of the baseband signal having a constant amplitude are obtained. A modulator (IQ modulator) that modulates the RF signal is required. For this reason, the configuration disclosed in Patent Document 5 has a problem that the circuit scale increases. Other problems and novel features will become apparent from the description of the present specification and the accompanying drawings.
 本発明は、このような問題点を解決するためになされたものであり、回路規模の増大を抑制することが可能な送信装置及びその制御方法を提供することを目的とする。 The present invention has been made to solve such a problem, and an object of the present invention is to provide a transmission apparatus and a control method thereof that can suppress an increase in circuit scale.
 一実施の形態によれば、送信装置は、ベースバンド信号の同相成分信号及び直交位相成分信号を生成するベースバンド信号生成部と、第1搬送波及び当該第1搬送波と90度位相の異なる第2搬送波をそれぞれパルス波形の第1及び第2パルス信号に変換して出力する第1及び第2パルス信号生成部と、前記同相成分信号及び前記直交位相成分信号をそれぞれ前記第1及び前記第2パルス信号に同期してΔΣ変調し、第1及び第2ΔΣ変調信号として出力する第1及び第2ΔΣ変調器と、前記第1ΔΣ変調信号と前記第1パルス信号とを乗算して第1RFパルス変調信号を生成する第1乗算器と、前記第2ΔΣ変調信号と前記第2パルス信号とを乗算して第2RFパルス変調信号を生成する第2乗算器と、前記第1及び前記第2RFパルス変調信号を増幅するスイッチング増幅部と、前記スイッチング増幅部に入力される、又は、前記スイッチング増幅部から出力された、前記第1及び前記第2RFパルス変調信号を合成する合成器と、を備える。 According to one embodiment, a transmitting apparatus includes a baseband signal generation unit that generates an in-phase component signal and a quadrature phase component signal of a baseband signal, a second carrier and a second carrier that is 90 degrees out of phase with the first carrier. First and second pulse signal generators for converting a carrier wave into first and second pulse signals having pulse waveforms, respectively, and outputting the in-phase component signal and the quadrature-phase component signal to the first and second pulses, respectively. A first and second ΔΣ modulators that perform ΔΣ modulation in synchronization with the signal and output as first and second ΔΣ modulation signals, and multiply the first ΔΣ modulation signal and the first pulse signal to obtain a first RF pulse modulation signal. A first multiplier to be generated; a second multiplier for multiplying the second ΔΣ modulation signal and the second pulse signal to generate a second RF pulse modulation signal; and the first and second RF pulse modulation signals. A switching amplifier for amplifying, is input to the switching amplifying unit, or the output from the switching amplifier section, and a combiner for combining said first and said second 2RF pulse modulated signal.
 他の実施の形態によれば、送信装置は、ベースバンド信号の同相成分信号及び直交位相成分信号を生成するベースバンド信号生成部と、前記同相成分信号及び前記直交位相成分信号に基づいて第1中間周波信号を生成するIF信号生成部と、第1搬送波をパルス波形の第1パルス信号に変換して出力する第1パルス信号生成部と、前記第1中間周波信号を前記第1パルス信号に同期してΔΣ変調し、第1ΔΣ変調信号として出力する第1ΔΣ変調器と、前記第1ΔΣ変調信号と前記第1パルス信号とを乗算して第1RFパルス変調信号を生成する第1乗算器と、前記第1RFパルス変調信号を増幅する第1スイッチング増幅器と、を備える。 According to another embodiment, the transmitting apparatus includes a baseband signal generation unit that generates an in-phase component signal and a quadrature phase component signal of a baseband signal, and a first based on the in-phase component signal and the quadrature phase component signal. An IF signal generation unit that generates an intermediate frequency signal, a first pulse signal generation unit that converts the first carrier wave into a first pulse signal having a pulse waveform, and outputs the first carrier signal, and the first intermediate frequency signal is converted into the first pulse signal. A first ΔΣ modulator that performs ΔΣ modulation in synchronization and outputs a first ΔΣ modulation signal; a first multiplier that multiplies the first ΔΣ modulation signal and the first pulse signal to generate a first RF pulse modulation signal; A first switching amplifier for amplifying the first RF pulse modulation signal.
 一実施の形態によれば、送信装置の制御方法は、ベースバンド信号の同相成分信号及び直交位相成分信号を生成し、第1搬送波及び当該第1搬送波と90度位相の異なる第2搬送波をそれぞれパルス波形の第1及び第2パルス信号に変換して出力し、前記同相成分信号及び前記直交位相成分信号をそれぞれ前記第1及び前記第2パルス信号に同期してΔΣ変調し、第1及び第2ΔΣ変調信号として出力し、前記第1ΔΣ変調信号と前記第1パルス信号とを乗算して第1RFパルス変調信号を生成し、前記第2ΔΣ変調信号と前記第2パルス信号とを乗算して第2RFパルス変調信号を生成し、スイッチング増幅部を用いて前記第1及び前記第2RFパルス変調信号を増幅し、前記スイッチング増幅部に入力される、又は、前記スイッチング増幅部から出力された、前記第1及び前記第2RFパルス変調信号を合成する。 According to one embodiment, a control method of a transmission apparatus generates an in-phase component signal and a quadrature phase component signal of a baseband signal, and each of a first carrier and a second carrier that is 90 degrees out of phase with the first carrier. The first and second pulse signals having a pulse waveform are converted and output, and the in-phase component signal and the quadrature component signal are ΔΣ-modulated in synchronization with the first and second pulse signals, respectively. Output as a 2ΔΣ modulation signal, multiply the first ΔΣ modulation signal and the first pulse signal to generate a first RF pulse modulation signal, and multiply the second ΔΣ modulation signal and the second pulse signal to generate a second RF signal. Generate a pulse modulation signal, amplify the first and second RF pulse modulation signals using a switching amplifier, and input to the switching amplifier, or the switching amplifier The first and the second RF pulse modulation signals output from are synthesized.
 他の実施の形態によれば、送信装置の制御方法は、ベースバンド信号の同相成分信号及び直交位相成分信号を生成し、前記同相成分信号及び前記直交位相成分信号に基づいて第1中間周波信号を生成し、第1搬送波をパルス波形の第1パルス信号に変換して出力し、前記第1中間周波信号を前記第1パルス信号に同期してΔΣ変調し、第1ΔΣ変調信号として出力し、前記第1ΔΣ変調信号と前記第1パルス信号とを乗算して第1RFパルス変調信号を生成し、第1スイッチング増幅器を用いて前記第1RFパルス変調信号を増幅する。 According to another embodiment, a control method of a transmission device generates an in-phase component signal and a quadrature component signal of a baseband signal, and a first intermediate frequency signal based on the in-phase component signal and the quadrature component signal The first carrier wave is converted into a first pulse signal having a pulse waveform and output, and the first intermediate frequency signal is ΔΣ-modulated in synchronization with the first pulse signal and output as a first ΔΣ-modulated signal, A first RF pulse modulation signal is generated by multiplying the first ΔΣ modulation signal and the first pulse signal, and the first RF pulse modulation signal is amplified using a first switching amplifier.
 前記一実施の形態によれば、回路規模の増大を抑制することが可能な送信装置及びその制御方法を提供することができる。 According to the embodiment, it is possible to provide a transmission apparatus and a control method thereof that can suppress an increase in circuit scale.
実施の形態1に係る送信装置の構成例を示すブロック図である。3 is a block diagram illustrating a configuration example of a transmission apparatus according to Embodiment 1. FIG. 実施の形態1に係る送信装置の具体的構成例を示すブロック図である。3 is a block diagram illustrating a specific configuration example of a transmission apparatus according to Embodiment 1. FIG. 実施の形態1に係る送信装置の一部の動作を示すタイミングチャートである。6 is a timing chart illustrating a part of the operation of the transmission apparatus according to the first embodiment. 実施の形態1に係る送信装置の第1変形例を示すブロック図である。6 is a block diagram illustrating a first modification of the transmission apparatus according to Embodiment 1. FIG. 実施の形態1に係る送信装置の第2変形例を示すブロック図である。6 is a block diagram illustrating a second modification of the transmission apparatus according to Embodiment 1. FIG. 実施の形態2に係る送信装置の構成例を示すブロック図である。6 is a block diagram illustrating a configuration example of a transmission apparatus according to Embodiment 2. FIG. 実施の形態2に係る送信装置の変形例を示すブロック図である。FIG. 10 is a block diagram showing a modification of the transmission apparatus according to Embodiment 2.
 以下、図面を参照しつつ、実施の形態について説明する。なお、図面は簡略的なものであるから、この図面の記載を根拠として実施の形態の技術的範囲を狭く解釈してはならない。また、同一の要素には、同一の符号を付し、重複する説明は省略する。 Hereinafter, embodiments will be described with reference to the drawings. Since the drawings are simple, the technical scope of the embodiments should not be narrowly interpreted based on the description of the drawings. Moreover, the same code | symbol is attached | subjected to the same element and the overlapping description is abbreviate | omitted.
 以下の実施の形態においては便宜上その必要があるときは、複数のセクションまたは実施の形態に分割して説明するが、特に明示した場合を除き、それらはお互いに無関係なものではなく、一方は他方の一部または全部の変形例、応用例、詳細説明、補足説明等の関係にある。また、以下の実施の形態において、要素の数等(個数、数値、量、範囲等を含む)に言及する場合、特に明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されるものではなく、特定の数以上でも以下でもよい。 In the following embodiments, when it is necessary for the sake of convenience, the description will be divided into a plurality of sections or embodiments. However, unless otherwise specified, they are not irrelevant to each other. Are partly or entirely modified, application examples, detailed explanations, supplementary explanations, and the like. Further, in the following embodiments, when referring to the number of elements (including the number, numerical value, quantity, range, etc.), especially when clearly indicated and when clearly limited to a specific number in principle, etc. Except, it is not limited to the specific number, and may be more or less than the specific number.
 さらに、以下の実施の形態において、その構成要素(動作ステップ等も含む)は、特に明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではない。同様に、以下の実施の形態において、構成要素等の形状、位置関係等に言及するときは、特に明示した場合および原理的に明らかにそうでないと考えられる場合等を除き、実質的にその形状等に近似または類似するもの等を含むものとする。このことは、上記数等(個数、数値、量、範囲等を含む)についても同様である。 Furthermore, in the following embodiments, the constituent elements (including operation steps and the like) are not necessarily essential unless otherwise specified or apparently essential in principle. Similarly, in the following embodiments, when referring to the shapes, positional relationships, etc. of the components, etc., the shapes are substantially the same unless otherwise specified, or otherwise apparent in principle. And the like are included. The same applies to the above numbers and the like (including the number, numerical value, quantity, range, etc.).
<実施の形態1>
 図1は、実施の形態1に係る送信装置の構成例を示すブロック図である。図2は、図1に示す送信装置のより具体的な構成例を示すブロック図である。また、図3は、図2に示す送信装置の一部の動作を示すタイミングチャートである。本実施の形態に係る送信装置は、ベースバンド信号の同相成分信号I及び直交位相成分信号Qをそれぞれ90度位相の異なるパルス信号P1,P2に同期してΔΣ変調した後、それぞれパルス信号P1,P2と乗算してRFパルス変調信号R1,R2を生成する。その後、RFパルス変調信号R1,R2を、スイッチング増幅部により増幅し、かつ、合成器により合成することで送信信号を得る。それにより、本実施の形態に係る送信装置は、ΔΣ変調器及び乗算器に入力されるパルス信号P1,P2を得るために、ベースバンド信号の同相成分信号I及び直交位相成分信号QをRF信号に変調する変調器(IQモジュレータ)を備える必要がないため、回路規模の増大を抑制するとともに、消費電力を低減することができる。以下、図2及び図3を参照しつつ、具体的に説明する。
<Embodiment 1>
FIG. 1 is a block diagram illustrating a configuration example of a transmission apparatus according to Embodiment 1. FIG. 2 is a block diagram illustrating a more specific configuration example of the transmission apparatus illustrated in FIG. FIG. 3 is a timing chart showing the operation of a part of the transmission apparatus shown in FIG. The transmission apparatus according to the present embodiment performs ΔΣ modulation on the in-phase component signal I and the quadrature component signal Q of the baseband signal in synchronization with the pulse signals P1 and P2 that are different in phase by 90 degrees, respectively, Multiplying by P2, RF pulse modulation signals R1 and R2 are generated. Thereafter, the RF pulse modulation signals R1 and R2 are amplified by the switching amplifier and synthesized by the synthesizer to obtain a transmission signal. Thereby, the transmission apparatus according to the present embodiment uses the in-phase component signal I and the quadrature component signal Q of the baseband signal as the RF signal in order to obtain the pulse signals P1 and P2 input to the ΔΣ modulator and the multiplier. Therefore, it is not necessary to provide a modulator (IQ modulator) that modulates the signal to the circuit, so that an increase in circuit scale can be suppressed and power consumption can be reduced. Hereinafter, a specific description will be given with reference to FIGS. 2 and 3.
 図2に示す送信装置1は、例えば、携帯電話や無線LAN等の通信機器における送信装置であって、RFパルス変調信号生成部10と、スイッチング増幅部20と、バンドパスフィルタ13,14と、合成器15と、を備える。また、RFパルス変調信号生成部10は、デジタルベースバンド信号生成部(ベースバンド信号生成部)101と、パルス信号生成器(第1パルス信号生成部)102と、パルス信号生成器(第2パルス信号生成部)103、ΔΣ変調器(第1ΔΣ変調器)104と、ΔΣ変調器(第2ΔΣ変調器)105と、乗算器(第1乗算器)106と、乗算器(第2乗算器)107と、発振器108及び移相器109と、を少なくとも備える。 A transmission device 1 shown in FIG. 2 is a transmission device in a communication device such as a mobile phone or a wireless LAN, for example, and includes an RF pulse modulation signal generation unit 10, a switching amplification unit 20, bandpass filters 13 and 14, And a synthesizer 15. The RF pulse modulation signal generation unit 10 includes a digital baseband signal generation unit (baseband signal generation unit) 101, a pulse signal generator (first pulse signal generation unit) 102, and a pulse signal generator (second pulse). Signal generator 103, ΔΣ modulator (first ΔΣ modulator) 104, ΔΣ modulator (second ΔΣ modulator) 105, multiplier (first multiplier) 106, and multiplier (second multiplier) 107. And an oscillator 108 and a phase shifter 109.
(デジタルベースバンド信号生成部101)
 デジタルベースバンド信号生成部101は、ベースバンド信号SBBの同相成分信号I及び直交位相成分信号Qを生成する。なお、ベースバンド信号の同相成分信号I及び直交位相成分信号Qは、多値の状態を取るデジタル信号である。
(Digital baseband signal generation unit 101)
Digital baseband signal generator 101 generates an in-phase component signal I and the quadrature component signal Q of the baseband signal S BB. Note that the in-phase component signal I and the quadrature component signal Q of the baseband signal are digital signals that take a multilevel state.
(発振器108及び移相器109)
 発振器108は、周波数fcの発振信号を生成する。移相器109は、発振器108の発振信号と同相の搬送波CW1を出力するとともに、搬送波CW1と90度位相の異なる搬送波CW2を出力する。
(Oscillator 108 and phase shifter 109)
The oscillator 108 generates an oscillation signal having a frequency fc. The phase shifter 109 outputs a carrier wave CW1 that is in phase with the oscillation signal of the oscillator 108, and outputs a carrier wave CW2 that is 90 degrees out of phase with the carrier wave CW1.
(パルス信号生成器102,103)
 パルス信号生成器102は、図3にも示すように、周波数fcの搬送波(第1搬送波)CW1をパルス波形のパルス信号(第1パルス信号)P1に変換して出力する。パルス信号生成器103は、搬送波CW1と90度位相の異なる搬送波(第2搬送波)CW2をパルス波形のパルス信号(第2パルス信号)P2に変換して出力する。
(Pulse signal generators 102 and 103)
As shown in FIG. 3, the pulse signal generator 102 converts the carrier wave (first carrier wave) CW1 having the frequency fc into a pulse signal (first pulse signal) P1 having a pulse waveform and outputs the pulse signal. The pulse signal generator 103 converts a carrier wave (second carrier wave) CW2 having a phase difference of 90 degrees from the carrier wave CW1 into a pulse signal (second pulse signal) P2 having a pulse waveform and outputs the pulse signal.
 パルス信号生成器102は、例えば、搬送波CW1が0より大きい場合にHレベル(値“1”)を示し、搬送波CW1が0未満の場合にLレベル(値“-1”)を示す、コンパレータを備える。同じく、パルス信号生成器103は、例えば、搬送波CW2が0より大きい場合にHレベル(値“1”)を示し、搬送波CW2が0未満の場合にLレベル(値“-1”)を示す、コンパレータを備える。 The pulse signal generator 102 includes, for example, a comparator that indicates an H level (value “1”) when the carrier wave CW1 is greater than 0 and an L level (value “−1”) when the carrier wave CW1 is less than 0. Prepare. Similarly, the pulse signal generator 103 indicates, for example, an H level (value “1”) when the carrier wave CW2 is greater than 0, and an L level (value “−1”) when the carrier wave CW2 is less than 0. A comparator is provided.
(ΔΣ変調器104,105)
 ΔΣ変調器104は、ベースバンド信号の同相成分信号Iをパルス信号P1に同期してΔΣ変調し、ΔΣ変調信号(第1ΔΣ変調信号)M1として出力する。ΔΣ変調器105は、ベースバンド信号の直交位相成分信号Qをパルス信号P2に同期してΔΣ変調し、ΔΣ変調信号(第2ΔΣ変調信号)M2として出力する。
(ΔΣ modulator 104, 105)
The ΔΣ modulator 104 ΔΣ modulates the in-phase component signal I of the baseband signal in synchronization with the pulse signal P1, and outputs it as a ΔΣ modulation signal (first ΔΣ modulation signal) M1. The ΔΣ modulator 105 performs ΔΣ modulation on the quadrature component signal Q of the baseband signal in synchronization with the pulse signal P2, and outputs it as a ΔΣ modulation signal (second ΔΣ modulation signal) M2.
 図3を参照しても分かるように、ΔΣ変調器104は、パルス信号P1の立ち上がりに同期して多値の同相成分信号Iをサンプリングし、1,-1の2値のΔΣ変調信号M1に変換して出力する。同様にして、ΔΣ変調器105は、パルス信号P2の立ち上がりに同期して多値の直交位相成分信号Qをサンプリングし、1,-1の2値のΔΣ変調信号M2に変換して出力する。 As can be seen with reference to FIG. 3, the ΔΣ modulator 104 samples the multi-level in-phase component signal I in synchronization with the rising edge of the pulse signal P1, and generates a binary ΔΣ modulation signal M1 of 1 and −1. Convert and output. Similarly, the ΔΣ modulator 105 samples the multi-level quadrature phase component signal Q in synchronization with the rising edge of the pulse signal P2, converts it into a binary ΔΣ modulation signal M2 of 1, -1, and outputs it.
(乗算器106,107)
 乗算器106は、ΔΣ変調器104から出力されたΔΣ変調信号M1とパルス信号P1とを乗算してRF帯にアップコンバートされたRFパルス変調信号(第1RFパルス変調信号)R1を出力する。乗算器107は、ΔΣ変調器105から出力されたΔΣ変調信号M2とパルス信号P2とを乗算してRF帯にアップコンバートされたRFパルス変調信号(第2RFパルス変調信号)R2を出力する。
(Multipliers 106, 107)
Multiplier 106 multiplies ΔΣ modulation signal M1 output from ΔΣ modulator 104 and pulse signal P1, and outputs an RF pulse modulation signal (first RF pulse modulation signal) R1 upconverted to the RF band. Multiplier 107 multiplies ΔΣ modulation signal M2 output from ΔΣ modulator 105 and pulse signal P2, and outputs an RF pulse modulation signal (second RF pulse modulation signal) R2 upconverted to the RF band.
 図3を参照しても分かるように、乗算器106は、ΔΣ変調信号M1の値が“1”の場合において、パルス信号P1の値が“1”のときに“1”を、パルス信号P1の値が“-1”のときに“-1”を出力する。また、乗算器106は、ΔΣ変調信号M1の値が“-1”の場合において、パルス信号P1の値が“1”のときに“-1”を、パルス信号P1の値が“-1”の場合に“1”を出力する。乗算器107におけるΔΣ変調信号M2及びパルス信号P2とRFパルス変調信号R2との関係についても、乗算器106におけるΔΣ変調信号M1及びパルス信号P1とRFパルス変調信号R1との関係と同様である。 As can be seen from FIG. 3, when the value of the ΔΣ modulation signal M1 is “1”, the multiplier 106 sets “1” when the value of the pulse signal P1 is “1” and the pulse signal P1. When the value of “−1” is “−1”, “−1” is output. Further, when the value of the ΔΣ modulation signal M1 is “−1”, the multiplier 106 sets “−1” when the value of the pulse signal P1 is “1”, and sets the value of the pulse signal P1 to “−1”. In this case, “1” is output. The relationship between the ΔΣ modulation signal M2 and the pulse signal P2 and the RF pulse modulation signal R2 in the multiplier 107 is the same as the relationship between the ΔΣ modulation signal M1 and the pulse signal P1 and the RF pulse modulation signal R1 in the multiplier 106.
 パルス信号P1及びP2は、上記のように、乗算器106,107の搬送波信号として使われるとともに、ΔΣ変調器104,105のクロック信号としても使用される。このように、搬送波信号とクロック信号とを共通にすることで、ΔΣ変調信号M1,M2と搬送波信号との間の同期ずれを防ぐことができる。 As described above, the pulse signals P1 and P2 are used as carrier signals for the multipliers 106 and 107 and also as clock signals for the ΔΣ modulators 104 and 105. As described above, by using the carrier signal and the clock signal in common, it is possible to prevent the synchronization deviation between the ΔΣ modulation signals M1 and M2 and the carrier signal.
(スイッチング増幅部20)
 スイッチング増幅部20は、スイッチング増幅器(第1スイッチング増幅器)11と、スイッチング増幅器(第2スイッチング増幅器)12と、を有する。
(Switching amplifier 20)
The switching amplifier 20 includes a switching amplifier (first switching amplifier) 11 and a switching amplifier (second switching amplifier) 12.
 スイッチング増幅器11,12は、例えばD級増幅器やE級増幅器等であって、高い電力効率を有する電力増幅器である。スイッチング増幅器11,12は、それぞれRFパルス変調信号R1,R2を、そのパルス波形を維持しつつ電力増幅する。 The switching amplifiers 11 and 12 are, for example, class D amplifiers or class E amplifiers, and are power amplifiers having high power efficiency. The switching amplifiers 11 and 12 amplify the power of the RF pulse modulation signals R1 and R2, respectively, while maintaining their pulse waveforms.
(バンドパスフィルタ13,14)
 バンドパスフィルタ13は、スイッチング増幅器11の出力のうち所望の周波数帯域を通過させる。バンドパスフィルタ14は、スイッチング増幅器12の出力のうち所望の周波数帯域を通過させる。
(Bandpass filters 13, 14)
The band pass filter 13 passes a desired frequency band in the output of the switching amplifier 11. The band pass filter 14 passes a desired frequency band in the output of the switching amplifier 12.
 バンドパスフィルタ13,14の主な目的は、スイッチング増幅器11,12で増幅されたRFパルス変調信号R1,R2に含まれる、ΔΣ変調器104,105によりノイズシェービングされた量子化雑音、を反射し、信号増幅の電力効率を向上させることである。ノイズシェーピングされた量子化雑音は信号近傍には少ないことから、バンドパスフィルタ13,14を用いて信号帯域近傍まで量子化雑音を除去しなくても良い。無線通信規格などにより、送信信号近傍の雑音成分を除去する必要がある場合は、合成器15の後段に設けたデュプレクサ(不図示)などにより除去することもできる。 The main purpose of the bandpass filters 13 and 14 is to reflect the quantization noise noise-shaved by the ΔΣ modulators 104 and 105 included in the RF pulse modulation signals R1 and R2 amplified by the switching amplifiers 11 and 12. It is to improve the power efficiency of signal amplification. Since noise-shaped quantization noise is small in the vicinity of the signal, it is not necessary to remove the quantization noise to the vicinity of the signal band using the bandpass filters 13 and 14. When it is necessary to remove a noise component in the vicinity of the transmission signal due to a wireless communication standard or the like, it can be removed by a duplexer (not shown) provided at the subsequent stage of the synthesizer 15.
(合成器15)
 合成器15は、バンドパスフィルタ13,14を通過した、スイッチング増幅器11,12のそれぞれの出力を合成して送信信号Doutとして出力する。
(Synthesizer 15)
The synthesizer 15 synthesizes the outputs of the switching amplifiers 11 and 12 that have passed through the bandpass filters 13 and 14 and outputs the synthesized signal as a transmission signal Dout.
 即ち、送信装置1は、RFパルス変調信号生成部10の送信信号(RFパルス変調信号R1,R2)を増幅し合成した後、送信信号Doutとして出力する。この送信信号Doutは、アンテナ(不図示)を介して外部に無線送信される。 That is, the transmission apparatus 1 amplifies and synthesizes the transmission signals (RF pulse modulation signals R1, R2) of the RF pulse modulation signal generation unit 10, and then outputs them as a transmission signal Dout. This transmission signal Dout is wirelessly transmitted to the outside via an antenna (not shown).
(計算式)
 続いて、図2に示す送信装置1の送信信号Doutを計算式を用いて説明する。
(a formula)
Next, the transmission signal Dout of the transmission device 1 illustrated in FIG. 2 will be described using a calculation formula.
 まず、ベースバンド信号SBBは、xを同相成分信号I、yを直交位相成分信号Q、iを虚数単位とすると、以下の式(1)のように表される。 First, the baseband signal SBB is expressed as the following equation (1), where x is an in-phase component signal I, y is a quadrature component signal Q, and i is an imaginary unit.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 次に、搬送波CW1,CW2は以下の式(2)及び式(3)のように表される。なお、ωは角速度、tは時間を表し、振幅は1とする。 Next, the carrier waves CW1 and CW2 are expressed by the following equations (2) and (3). Ω represents angular velocity, t represents time, and the amplitude is 1.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 式(1)及び式(2)より、RFパルス変調信号R1はΔΣ変調による2値化を略して以下の式(4)のように表される。また、式(1)及び式(3)より、RFパルス変調信号R2はΔΣ変調による2値化を略して以下の式(5)のように表される。 From Equation (1) and Equation (2), the RF pulse modulation signal R1 is expressed as the following Equation (4), omitting binarization by ΔΣ modulation. Further, from the equations (1) and (3), the RF pulse modulation signal R2 is expressed as the following equation (5), omitting binarization by ΔΣ modulation.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 したがって、送信信号Doutは、以下の式(6)のように表される。 Therefore, the transmission signal Dout is expressed as the following equation (6).
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 計算式を見ても、送信装置1が所望の送信信号を生成していることがわかる。 Referring to the calculation formula, it can be seen that the transmission apparatus 1 generates a desired transmission signal.
 このように、本実施の形態に係る送信装置は、ベースバンド信号の同相成分信号I及び直交位相成分信号Qをそれぞれ90度位相の異なるパルス信号P1,P2に同期してΔΣ変調した後、それぞれパルス信号P1,P2と乗算してRFパルス変調信号R1,R2を生成している。その後、RFパルス変調信号R1,R2を、スイッチング増幅部により増幅し、かつ、合成器により合成することで送信信号を得る。それにより、本実施の形態に係る送信装置は、ΔΣ変調器及び混合器に入力されるパルス位相信号を得るために、ベースバンド信号の同相成分信号I及び直交位相成分信号QをRF信号に変調する変調器(IQモジュレータ)を備える必要がないため、回路規模の増大を抑制することができる。また、消費電力を低減することができる。 As described above, the transmitting apparatus according to the present embodiment performs ΔΣ modulation on the in-phase component signal I and the quadrature component signal Q of the baseband signal in synchronization with the pulse signals P1 and P2 that are different in phase by 90 degrees, respectively. RF pulse modulation signals R1 and R2 are generated by multiplying the pulse signals P1 and P2. Thereafter, the RF pulse modulation signals R1 and R2 are amplified by the switching amplifier and synthesized by the synthesizer to obtain a transmission signal. As a result, the transmission apparatus according to the present embodiment modulates the in-phase component signal I and the quadrature component signal Q of the baseband signal into an RF signal in order to obtain a pulse phase signal input to the ΔΣ modulator and the mixer. Since there is no need to provide a modulator (IQ modulator) to increase, an increase in circuit scale can be suppressed. In addition, power consumption can be reduced.
 また、本実施の形態に係る送信装置は、ΔΣ変調器及び乗算器に対して搬送波と同じ周波数のパルス信号(P1,P2)をそれぞれサンプリングクロック及び搬送波パルス信号として入力すればよいため、搬送波の周波数が比較的高い場合でもサンプリングレートを低く保って正常に動作することができる。サンプリングレートを低く保つことができるため、スイッチング増幅器の電力効率を向上させることができる。また、ΔΣ変調器及び乗算器に対して共通のパルス信号(P1,P2)が入力されるため、ΔΣ変調器と乗算器との間で同期をとることができる。 In addition, the transmission apparatus according to the present embodiment may input pulse signals (P1, P2) having the same frequency as the carrier wave to the ΔΣ modulator and multiplier as the sampling clock and the carrier pulse signal, respectively. Even when the frequency is relatively high, it can operate normally with the sampling rate kept low. Since the sampling rate can be kept low, the power efficiency of the switching amplifier can be improved. In addition, since the common pulse signals (P1, P2) are input to the ΔΣ modulator and the multiplier, synchronization can be established between the ΔΣ modulator and the multiplier.
 なお、特許文献5に開示された構成では、振幅信号と位相信号との同期ズレにより、送信信号の品質が劣化してしまう可能性がある。それに対し、本実施の形態に係る送信装置では、このような問題は、原理的に発生しない。 In the configuration disclosed in Patent Document 5, the quality of the transmission signal may be deteriorated due to the synchronization shift between the amplitude signal and the phase signal. On the other hand, such a problem does not occur in principle in the transmission apparatus according to the present embodiment.
(送信装置1の第1変形例)
 図4は、図2に示す送信装置1の第1変形例を送信装置1aとして示すブロック図である。図4に示す送信装置1aは、合成器15の前段にバンドパスフィルタ13,14を備える代わりに、合成器15の後段にバンドパスフィルタ16を備える。図4に示す送信装置1aのその他の構成については、図2に示す送信装置1と同様であるため、その説明を省略する。
(First Modification of Transmitter 1)
FIG. 4 is a block diagram illustrating a first modification of the transmission device 1 illustrated in FIG. 2 as a transmission device 1a. The transmitting apparatus 1a illustrated in FIG. 4 includes a bandpass filter 16 at the subsequent stage of the combiner 15 instead of including the bandpass filters 13 and 14 at the previous stage of the combiner 15. The other configuration of the transmission device 1a shown in FIG. 4 is the same as that of the transmission device 1 shown in FIG.
 本構成おいても、図2に示す送信装置1と同等の効果を奏することができる。本構成では、図2に示す送信装置1に比べ、バンドパスフィルタが1つになることから、回路の簡略化や費用の低減が可能である。 Even in this configuration, the same effect as that of the transmission device 1 shown in FIG. 2 can be obtained. In this configuration, since the number of band-pass filters is one as compared with the transmission device 1 shown in FIG. 2, the circuit can be simplified and the cost can be reduced.
(送信装置1の第2変形例)
 図5は、図2に示す送信装置1の第2変形例を送信装置1bとして示すブロック図である。図5に示す送信装置1bは、合成器15の前段にスイッチング増幅部20を備える代わりに、合成器15の後段にスイッチング増幅部20を備える。また、図5に示す送信装置1bは、合成器15の前段にバンドパスフィルタ13,14を備える代わりに、スイッチング増幅部20の後段にバンドパスフィルタ16を備える。スイッチング増幅部20は、合成器15によって合成されたRFパルス変調信号R1,R2を増幅するスイッチング増幅器17を有する。図5に示す送信装置1bのその他の構成については、図2に示す送信装置1と同様であるため、その説明を省略する。
(Second Modification of Transmitting Device 1)
FIG. 5 is a block diagram showing a second modification of the transmission apparatus 1 shown in FIG. 2 as a transmission apparatus 1b. The transmission apparatus 1b illustrated in FIG. 5 includes a switching amplification unit 20 at the subsequent stage of the combiner 15 instead of including the switching amplification unit 20 at the previous stage of the combiner 15. 5 includes a bandpass filter 16 at the subsequent stage of the switching amplifier 20, instead of including the bandpass filters 13 and 14 at the previous stage of the synthesizer 15. The transmission apparatus 1b illustrated in FIG. The switching amplifier 20 includes a switching amplifier 17 that amplifies the RF pulse modulation signals R1 and R2 synthesized by the synthesizer 15. The other configuration of the transmission device 1b shown in FIG. 5 is the same as that of the transmission device 1 shown in FIG.
 本構成おいても、図2に示す送信装置1と同等の効果を奏することができる。本構成では、図2に示す送信装置1に比べ、スイッチング増幅器及びバンドパスフィルタがそれぞれ1つになることから、回路の簡略化や費用の低減が可能である。 Even in this configuration, the same effect as that of the transmission device 1 shown in FIG. 2 can be obtained. In this configuration, since there is one switching amplifier and one band-pass filter as compared with the transmission apparatus 1 shown in FIG. 2, the circuit can be simplified and the cost can be reduced.
 <実施の形態2>
 図6は、実施の形態2に係る送信装置の構成例を示すブロック図である。図6に示す送信装置1cは、RFパルス変調信号生成部10cと、スイッチング増幅器(第1スイッチング増幅器)11と、バンドパスフィルタ13と、を備える。RFパルス変調信号生成部10cは、デジタルベースバンド信号生成部(ベースバンド信号生成部)101と、IF信号生成部110と、パルス信号生成器(第1パルス信号生成部)102と、ΔΣ変調器104と、乗算器(第1乗算器)106と、発振器108と、を少なくとも備える。
<Embodiment 2>
FIG. 6 is a block diagram illustrating a configuration example of a transmission apparatus according to Embodiment 2. In FIG. A transmission device 1c illustrated in FIG. 6 includes an RF pulse modulation signal generation unit 10c, a switching amplifier (first switching amplifier) 11, and a bandpass filter 13. The RF pulse modulation signal generation unit 10c includes a digital baseband signal generation unit (baseband signal generation unit) 101, an IF signal generation unit 110, a pulse signal generator (first pulse signal generation unit) 102, and a ΔΣ modulator. 104, a multiplier (first multiplier) 106, and an oscillator 108.
 IF信号生成部110は、デジタルベースバンド信号生成部101により生成されたベースバンド信号の同相成分信号I及び直交位相成分信号Qに基づいて、中間周波信号IF1を生成する。中間周波信号IF1としては、ベースバンド信号から求まる中間周波信号の同相成分及び直交位相成分のうち何れか一方が用いられる。ここでは、同相成分が中間周波信号IF1として用いられることとする。このとき、中間周波信号IF1は、以下の式(7)のように表すことができる。 The IF signal generation unit 110 generates the intermediate frequency signal IF1 based on the in-phase component signal I and the quadrature component signal Q of the baseband signal generated by the digital baseband signal generation unit 101. As the intermediate frequency signal IF1, one of the in-phase component and the quadrature component of the intermediate frequency signal obtained from the baseband signal is used. Here, the in-phase component is used as the intermediate frequency signal IF1. At this time, the intermediate frequency signal IF1 can be expressed as the following Expression (7).
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 ただし、ωIFを中間周波信号IF1の中心周波数に相当する角速度、tを時間、xを同相成分信号I、yを直交位相成分信号Qとする。 Here, ω IF is an angular velocity corresponding to the center frequency of the intermediate frequency signal IF1, t is time, x is an in-phase component signal I, and y is a quadrature component signal Q.
 パルス信号生成器102は、発振器108により生成された搬送波CW1を、パルス波形のパルス信号(第1パルス信号)P1に変換して出力する。 The pulse signal generator 102 converts the carrier wave CW1 generated by the oscillator 108 into a pulse signal (first pulse signal) P1 having a pulse waveform and outputs the pulse signal.
 ΔΣ変調器104は、中間周波信号IF1をパルス信号P1に同期してΔΣ変調し、ΔΣ変調信号(第1ΔΣ変調信号)M3として出力する。 The ΔΣ modulator 104 ΔΣ modulates the intermediate frequency signal IF1 in synchronization with the pulse signal P1, and outputs it as a ΔΣ modulation signal (first ΔΣ modulation signal) M3.
 乗算器106は、ΔΣ変調器104から出力されたΔΣ変調信号M3とパルス信号P1とを乗算して、RF帯にアップコンバートされたRFパルス変調信号(第1RFパルス変調信号)R3を出力する。 Multiplier 106 multiplies ΔΣ modulation signal M3 output from ΔΣ modulator 104 and pulse signal P1, and outputs an RF pulse modulation signal (first RF pulse modulation signal) R3 upconverted to the RF band.
 スイッチング増幅器11は、RFパルス変調信号R3を、そのパルス波形を維持しつつ電力増幅する。 The switching amplifier 11 amplifies the power of the RF pulse modulation signal R3 while maintaining the pulse waveform.
 バンドパスフィルタ13は、スイッチング増幅器11の出力のうち所望の周波数帯を通過させて、送信信号Doutとして出力する。ここで、スイッチング増幅器11の出力には、目的の信号と搬送波周波数を挟んで反対の周波数に、同程度の電力を持つイメージ信号が存在する。そのため、バンドパスフィルタ13は、当該イメージ信号の周波数帯を除去する必要がある。 The band-pass filter 13 passes a desired frequency band in the output of the switching amplifier 11 and outputs it as a transmission signal Dout. Here, the output of the switching amplifier 11 includes an image signal having the same level of power at a frequency opposite to that of the target signal and the carrier frequency. Therefore, the band pass filter 13 needs to remove the frequency band of the image signal.
 即ち、送信装置1cは、RFパルス変調信号生成部10cの送信信号(RFパルス変調信号R3)を増幅した後、狭帯域のバンドパスフィルタ13を介して、送信信号Doutとして出力する。この送信信号Doutは、アンテナ(不図示)を介して外部に無線送信される。 That is, the transmission device 1c amplifies the transmission signal (RF pulse modulation signal R3) of the RF pulse modulation signal generation unit 10c, and then outputs it as the transmission signal Dout through the narrow band pass filter 13. This transmission signal Dout is wirelessly transmitted to the outside via an antenna (not shown).
 このように、本実施の形態に係る送信装置は、実施の形態1に係る送信装置の場合と同様に、ΔΣ変調器及び混合器に入力されるパルス位相信号を得るために、ベースバンド信号の同相成分信号I及び直交位相成分信号QをRF信号に変調する変調器(IQモジュレータ)を備える必要がないため、回路規模の増大を抑制することができる。また、消費電力を低減すること等ができる。つまり、本実施の形態に係る送信装置は、実施の形態1の場合と同等の効果を奏することができる。 Thus, as in the case of the transmission apparatus according to the first embodiment, the transmission apparatus according to the present embodiment uses the baseband signal of the baseband signal to obtain the pulse phase signal input to the ΔΣ modulator and the mixer. Since it is not necessary to provide a modulator (IQ modulator) that modulates the in-phase component signal I and the quadrature component signal Q into an RF signal, an increase in circuit scale can be suppressed. In addition, power consumption can be reduced. That is, the transmitting apparatus according to the present embodiment can achieve the same effect as that of the first embodiment.
(送信装置1cの変形例)
 図7は、図6に示す送信装置1cの変形例を送信装置1dとして示すブロック図である。図7に示す送信装置1dは、RFパルス変調信号生成部10dと、スイッチング増幅器11と、スイッチング増幅器(第2スイッチング増幅器)12と、バンドパスフィルタ13,14と、合成器15と、を備える。RFパルス変調信号生成部10dは、デジタルベースバンド信号生成部(ベースバンド信号生成部)101と、IF信号生成部111と、パルス信号生成器102と、パルス信号生成器(第2パルス信号生成部)103と、ΔΣ変調器104と、ΔΣ変調器105と、乗算器106と、乗算器(第2乗算器)107と、発振器108と、移相器109と、を少なくとも備える。
(Modification of transmitter 1c)
FIG. 7 is a block diagram illustrating a modified example of the transmission device 1c illustrated in FIG. 6 as a transmission device 1d. 7 includes an RF pulse modulation signal generation unit 10d, a switching amplifier 11, a switching amplifier (second switching amplifier) 12, bandpass filters 13 and 14, and a combiner 15. The RF pulse modulation signal generation unit 10d includes a digital baseband signal generation unit (baseband signal generation unit) 101, an IF signal generation unit 111, a pulse signal generator 102, and a pulse signal generator (second pulse signal generation unit). ) 103, ΔΣ modulator 104, ΔΣ modulator 105, multiplier 106, multiplier (second multiplier) 107, oscillator 108, and phase shifter 109.
 IF信号生成部111は、デジタルベースバンド信号生成部101により生成されたベースバンド信号の同相成分信号I及び直交位相成分信号Qに基づいて、中間周波信号IF1及び中間周波信号IF2を生成する。ここでは、ベースバンド信号から求まる中間周波信号の同相成分及び直交位相成分のうち、同相成分が中間周波信号IF1として用いられ、直交位相成分が中間周波信号IF2として用いられることとする。このとき、中間周波信号IF2は、以下の式(8)のように表すことができる。 The IF signal generation unit 111 generates the intermediate frequency signal IF1 and the intermediate frequency signal IF2 based on the in-phase component signal I and the quadrature component signal Q of the baseband signal generated by the digital baseband signal generation unit 101. Here, out of the in-phase component and the quadrature component of the intermediate frequency signal obtained from the baseband signal, the in-phase component is used as the intermediate frequency signal IF1, and the quadrature component is used as the intermediate frequency signal IF2. At this time, the intermediate frequency signal IF2 can be expressed as the following Expression (8).
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 なお、ベースバンド信号から求まる中間周波信号の同相成分及び直交位相成分のうち、直交位相成分が中間周波信号IF1として用いられる場合、同相成分が中間周波信号IF2として用いられることとなる。 Of the in-phase and quadrature components of the intermediate frequency signal obtained from the baseband signal, when the quadrature component is used as the intermediate frequency signal IF1, the in-phase component is used as the intermediate frequency signal IF2.
 パルス信号生成器103は、搬送波CW1と90度位相の異なる搬送波CW2を、パルス波形のパルス信号(第2パルス信号)P2に変換して出力する。 The pulse signal generator 103 converts the carrier wave CW2 having a phase difference of 90 degrees from the carrier wave CW1 into a pulse signal (second pulse signal) P2 having a pulse waveform and outputs the pulse signal.
 ΔΣ変調器105は、中間周波信号IF2をパルス信号P2に同期してΔΣ変調し、ΔΣ変調信号(第2ΔΣ変調信号)M4として出力する。 The ΔΣ modulator 105 ΔΣ modulates the intermediate frequency signal IF2 in synchronization with the pulse signal P2, and outputs it as a ΔΣ modulation signal (second ΔΣ modulation signal) M4.
 乗算器107は、ΔΣ変調器105から出力されたΔΣ変調信号M4とパルス信号P2とを乗算して、RF帯にアップコンバートされたRFパルス変調信号(第2RFパルス変調信号)R4を出力する。 Multiplier 107 multiplies ΔΣ modulation signal M4 output from ΔΣ modulator 105 and pulse signal P2, and outputs an RF pulse modulation signal (second RF pulse modulation signal) R4 upconverted to the RF band.
 スイッチング増幅器12は、RFパルス変調信号R4を、そのパルス波形を維持しつつ電力増幅する。 The switching amplifier 12 amplifies the power of the RF pulse modulation signal R4 while maintaining the pulse waveform.
 バンドパスフィルタ14は、スイッチング増幅器12の出力のうち所望の周波数帯を通過させる。 The band pass filter 14 passes a desired frequency band in the output of the switching amplifier 12.
 合成器15は、バンドパスフィルタ13,14を通過した、スイッチング増幅器11,12のそれぞれの出力を合成して送信信号Doutとして出力する。このとき、上記したイメージ信号は打ち消される。したがって、イメージ信号除去のためにバンドパスフィルタ13,14を狭帯域化する必要はない。 The synthesizer 15 synthesizes the outputs of the switching amplifiers 11 and 12 that have passed through the band- pass filters 13 and 14 and outputs the result as a transmission signal Dout. At this time, the above-described image signal is canceled. Therefore, it is not necessary to narrow the bandpass filters 13 and 14 for image signal removal.
 図7に示す送信装置1dのその他の構成及び動作については、図6に示す送信装置1cと同様であるため、その説明を省略する。 The other configuration and operation of the transmission device 1d shown in FIG. 7 are the same as those of the transmission device 1c shown in FIG.
 本構成においても、図6に示す送信装置1cと同等の効果を奏することができる。 Also in this configuration, the same effect as the transmission device 1c shown in FIG. 6 can be obtained.
 以上のように、上記実施の形態1,2に係る送信装置は、ΔΣ変調器及び混合器に入力されるパルス位相信号を得るために、ベースバンド信号の同相成分信号I及び直交位相成分信号QをRF信号に変調する変調器(IQモジュレータ)を備える必要がないため、回路規模の増大を抑制することができる。また、消費電力を低減することができる。 As described above, in order to obtain the pulse phase signal input to the ΔΣ modulator and the mixer, the transmission apparatus according to Embodiments 1 and 2 described above includes the in-phase component signal I and the quadrature component signal Q of the baseband signal. Since it is not necessary to provide a modulator (IQ modulator) that modulates the signal to an RF signal, an increase in circuit scale can be suppressed. In addition, power consumption can be reduced.
 また、上記実施の形態1,2に係る送信装置は、ΔΣ変調器及び乗算器に対して搬送波と同じ周波数のパルス信号(P1,P2)をそれぞれサンプリングクロック及び搬送波パルス信号として入力すればよいため、搬送波の周波数が比較的高い場合でもサンプリングレートを低く保って正常に動作することができる。また、サンプリングレートを低く保つことができるため、スイッチング増幅器の電力効率を向上させることができる。また、ΔΣ変調器及び乗算器に対して共通のパルス信号(P1,P2)が入力されるため、ΔΣ変調器と乗算器との間で同期をとることができる。 In addition, the transmitting apparatuses according to the first and second embodiments may input pulse signals (P1, P2) having the same frequency as the carrier wave to the ΔΣ modulator and multiplier as the sampling clock and the carrier pulse signal, respectively. Even when the frequency of the carrier wave is relatively high, it can operate normally with the sampling rate kept low. Moreover, since the sampling rate can be kept low, the power efficiency of the switching amplifier can be improved. In addition, since the common pulse signals (P1, P2) are input to the ΔΣ modulator and the multiplier, synchronization can be established between the ΔΣ modulator and the multiplier.
 以上、実施の形態を参照して本願発明を説明したが、本願発明は上記によって限定されるものではない。本願発明の構成や詳細には、発明のスコープ内で当業者が理解し得る様々な変更をすることができる。 The present invention has been described above with reference to the embodiment, but the present invention is not limited to the above. Various changes that can be understood by those skilled in the art can be made to the configuration and details of the present invention within the scope of the invention.
 この出願は、2014年1月30日に出願された日本出願特願2014-15816を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2014-15816 filed on January 30, 2014, the entire disclosure of which is incorporated herein.
 1,1a~1d 送信装置
 10,10c,10d RFパルス変調信号生成部
 11,12,17 スイッチング増幅器
 13,14,16 バンドパスフィルタ
 15 合成器
 20 スイッチング増幅部
 101 デジタルベースバンド信号生成部
 102,103 パルス信号生成器
 104 ΔΣ変調器
 105 ΔΣ変調器
 106,107乗算器
 108 発振器
 109 移相器
 110,111 IF信号生成部
1, 1a to 1d Transmitters 10, 10c, 10d RF pulse modulation signal generator 11, 12, 17 Switching amplifier 13, 14, 16 Bandpass filter 15 Synthesizer 20 Switching amplifier 101 Digital baseband signal generator 102, 103 Pulse signal generator 104 ΔΣ modulator 105 ΔΣ modulator 106, 107 multiplier 108 Oscillator 109 Phase shifter 110, 111 IF signal generator

Claims (16)

  1.  ベースバンド信号の同相成分信号及び直交位相成分信号を生成するベースバンド信号生成手段と、
     第1搬送波及び当該第1搬送波と90度位相の異なる第2搬送波をそれぞれパルス波形の第1及び第2パルス信号に変換して出力する第1及び第2パルス信号生成手段と、
     前記同相成分信号及び前記直交位相成分信号をそれぞれ前記第1及び前記第2パルス信号に同期してΔΣ変調し、第1及び第2ΔΣ変調信号として出力する第1及び第2ΔΣ変調手段と、
     前記第1ΔΣ変調信号と前記第1パルス信号とを乗算して第1RFパルス変調信号を生成する第1乗算手段と、
     前記第2ΔΣ変調信号と前記第2パルス信号とを乗算して第2RFパルス変調信号を生成する第2乗算手段と、
     前記第1及び前記第2RFパルス変調信号を増幅するスイッチング増幅手段と、
     前記スイッチング増幅手段に入力される、又は、前記スイッチング増幅手段から出力された、前記第1及び前記第2RFパルス変調信号を合成する合成手段と、を備えた、送信装置。
    Baseband signal generation means for generating an in-phase component signal and a quadrature phase component signal of the baseband signal;
    First and second pulse signal generating means for converting the first carrier wave and the second carrier wave having a phase difference of 90 degrees from the first carrier wave into first and second pulse signals each having a pulse waveform;
    First and second ΔΣ modulation means for performing ΔΣ modulation on the in-phase component signal and the quadrature phase component signal in synchronization with the first and second pulse signals, respectively, and outputting the first and second ΔΣ modulation signals;
    First multiplication means for multiplying the first ΔΣ modulation signal and the first pulse signal to generate a first RF pulse modulation signal;
    Second multiplication means for multiplying the second ΔΣ modulation signal and the second pulse signal to generate a second RF pulse modulation signal;
    Switching amplification means for amplifying the first and second RF pulse modulation signals;
    A transmission apparatus comprising: combining means for combining the first and second RF pulse modulation signals that are input to the switching amplification means or output from the switching amplification means.
  2.  前記スイッチング増幅手段は、
     前記第1及び前記第2RFパルス変調信号をそれぞれ増幅する第1及び第2スイッチング増幅手段を有し、
     前記合成手段は、前記第1及び前記第2スイッチング増幅手段のそれぞれの出力を合成する、請求項1に記載の送信装置。
    The switching amplification means includes
    First and second switching amplification means for amplifying the first and second RF pulse modulation signals, respectively;
    The transmitting apparatus according to claim 1, wherein the combining unit combines the outputs of the first and second switching amplification units.
  3.  前記合成手段は、前記スイッチング増幅手段に入力される前記第1及び前記第2RFパルス変調信号を合成し、
     前記スイッチング増幅手段は、
     前記合成手段により合成された前記第1及び前記第2RFパルス変調信号を増幅するスイッチング増幅手段を有する、請求項1に記載の送信装置。
    The synthesizing unit synthesizes the first and second RF pulse modulation signals input to the switching amplification unit,
    The switching amplification means includes
    The transmission apparatus according to claim 1, further comprising a switching amplification unit that amplifies the first and second RF pulse modulation signals synthesized by the synthesis unit.
  4.  ベースバンド信号の同相成分信号及び直交位相成分信号を生成するベースバンド信号生成手段と、
     前記同相成分信号及び前記直交位相成分信号に基づいて第1中間周波信号を生成するIF信号生成手段と、
     第1搬送波をパルス波形の第1パルス信号に変換して出力する第1パルス信号生成手段と、
     前記第1中間周波信号を前記第1パルス信号に同期してΔΣ変調し、第1ΔΣ変調信号として出力する第1ΔΣ変調手段と、
     前記第1ΔΣ変調信号と前記第1パルス信号とを乗算して第1RFパルス変調信号を生成する第1乗算手段と、
     前記第1RFパルス変調信号を増幅する第1スイッチング増幅手段と、を備えた送信装置。
    Baseband signal generation means for generating an in-phase component signal and a quadrature phase component signal of the baseband signal;
    IF signal generating means for generating a first intermediate frequency signal based on the in-phase component signal and the quadrature component signal;
    First pulse signal generating means for converting the first carrier wave into a first pulse signal having a pulse waveform and outputting the first pulse signal;
    First ΔΣ modulation means for performing ΔΣ modulation on the first intermediate frequency signal in synchronization with the first pulse signal and outputting the first intermediate frequency signal as a first ΔΣ modulation signal;
    First multiplication means for multiplying the first ΔΣ modulation signal and the first pulse signal to generate a first RF pulse modulation signal;
    And a first switching amplification means for amplifying the first RF pulse modulation signal.
  5.  前記第1スイッチング増幅手段の出力のうち所望の帯域を通過させるバンドパスフィルタをさらに備えた請求項4に記載の送信装置。 The transmission device according to claim 4, further comprising a bandpass filter that allows a desired band to pass among outputs of the first switching amplification means.
  6.  前記IF信号生成手段は、前記同相成分信号及び前記直交位相成分信号に基づいて生成された中間周波信号の同相成分及び直交位相成分の一方を、前記第1中間周波信号として生成する、請求項4又は5に記載の送信装置。 5. The IF signal generation unit generates one of an in-phase component and a quadrature component of an intermediate frequency signal generated based on the in-phase component signal and the quadrature component signal as the first intermediate frequency signal. Or the transmitting apparatus of 5.
  7.  前記IF信号生成手段は、前記同相成分信号及び前記直交位相成分信号に基づいて第2中間周波信号をさらに生成し、
     前記送信装置は、
     前記第1搬送波と90度位相の異なる第2搬送波をパルス波形の第2パルス信号に変換して出力する第2パルス信号生成手段と、
     前記第2中間周波信号を前記第2パルス信号に同期してΔΣ変調し、第2ΔΣ変調信号として出力する第2ΔΣ変調手段と、
     前記第2ΔΣ変調信号と前記第2パルス信号とを乗算して第2RFパルス変調信号を生成する第2乗算手段と、
     前記第2RFパルス変調信号を増幅する第2スイッチング増幅手段と、
     前記第1及び前記第2スイッチング増幅手段のそれぞれの出力を合成する合成手段と、を備えた、請求項4に記載の送信装置。
    The IF signal generation means further generates a second intermediate frequency signal based on the in-phase component signal and the quadrature component signal,
    The transmitter is
    A second pulse signal generating means for converting and outputting a second carrier wave having a phase difference of 90 degrees from the first carrier wave to a second pulse signal having a pulse waveform;
    Second ΔΣ modulation means for performing ΔΣ modulation on the second intermediate frequency signal in synchronization with the second pulse signal and outputting the second intermediate frequency signal as a second ΔΣ modulation signal;
    Second multiplication means for multiplying the second ΔΣ modulation signal and the second pulse signal to generate a second RF pulse modulation signal;
    Second switching amplification means for amplifying the second RF pulse modulation signal;
    The transmission apparatus according to claim 4, further comprising a combining unit that combines the outputs of the first and second switching amplification units.
  8.  前記IF信号生成手段は、前記同相成分信号及び前記直交位相成分信号に基づいて生成された中間周波信号の同相成分及び直交位相成分の一方を、前記第1中間周波信号として生成し、かつ、前記中間周波信号の同相成分及び直交位相成分の他方を、前記第2中間周波信号として生成する、請求項7に記載の送信装置。 The IF signal generating means generates one of the in-phase component and the quadrature component of the intermediate frequency signal generated based on the in-phase component signal and the quadrature component signal as the first intermediate frequency signal, and The transmission device according to claim 7, wherein the other of the in-phase component and the quadrature component of the intermediate frequency signal is generated as the second intermediate frequency signal.
  9.  ベースバンド信号の同相成分信号及び直交位相成分信号を生成し、
     第1搬送波及び当該第1搬送波と90度位相の異なる第2搬送波をそれぞれパルス波形の第1及び第2パルス信号に変換して出力し、
     前記同相成分信号及び前記直交位相成分信号をそれぞれ前記第1及び前記第2パルス信号に同期してΔΣ変調し、第1及び第2ΔΣ変調信号として出力し、
     前記第1ΔΣ変調信号と前記第1パルス信号とを乗算して第1RFパルス変調信号を生成し、
     前記第2ΔΣ変調信号と前記第2パルス信号とを乗算して第2RFパルス変調信号を生成し、
     スイッチング増幅手段を用いて前記第1及び前記第2RFパルス変調信号を増幅し、
     前記スイッチング増幅手段に入力される、又は、前記スイッチング増幅手段から出力された、前記第1及び前記第2RFパルス変調信号を合成する、送信装置の制御方法。
    Generate in-phase and quadrature component signals of the baseband signal,
    The first carrier wave and the second carrier wave that is 90 degrees out of phase with the first carrier wave are respectively converted into first and second pulse signals having a pulse waveform and output,
    The in-phase component signal and the quadrature phase component signal are ΔΣ-modulated in synchronization with the first and second pulse signals, respectively, and output as first and second ΔΣ-modulated signals,
    Multiplying the first ΔΣ modulation signal and the first pulse signal to generate a first RF pulse modulation signal,
    Multiplying the second ΔΣ modulation signal and the second pulse signal to generate a second RF pulse modulation signal;
    Amplifying the first and second RF pulse modulated signals using switching amplification means;
    A method for controlling a transmitting apparatus, comprising: combining the first and second RF pulse modulation signals that are input to the switching amplification unit or output from the switching amplification unit.
  10.  前記スイッチング増幅手段に設けられた第1及び第2スイッチング増幅手段を用いて、前記第1及び前記第2RFパルス変調信号をそれぞれ増幅し、
     前記第1及び前記第2スイッチング増幅手段のそれぞれの出力を合成する、請求項9に記載の送信装置の制御方法。
    Amplifying the first and second RF pulse modulation signals using first and second switching amplification means provided in the switching amplification means;
    The method of controlling a transmitting apparatus according to claim 9, wherein the outputs of the first and second switching amplifiers are combined.
  11.  前記スイッチング増幅手段に入力される前記第1及び前記第2RFパルス変調信号を合成し、
     合成された前記第1及び前記第2RFパルス変調信号を前記スイッチング増幅手段を用いて増幅する、請求項9に記載の送信装置の制御方法。
    Combining the first and second RF pulse modulation signals input to the switching amplification means;
    The method for controlling the transmission apparatus according to claim 9, wherein the synthesized first and second RF pulse modulated signals are amplified using the switching amplification means.
  12.  ベースバンド信号の同相成分信号及び直交位相成分信号を生成し、
     前記同相成分信号及び前記直交位相成分信号に基づいて第1中間周波信号を生成し、
     第1搬送波をパルス波形の第1パルス信号に変換して出力し、
     前記第1中間周波信号を前記第1パルス信号に同期してΔΣ変調し、第1ΔΣ変調信号として出力し、
     前記第1ΔΣ変調信号と前記第1パルス信号とを乗算して第1RFパルス変調信号を生成し、
     第1スイッチング増幅手段を用いて前記第1RFパルス変調信号を増幅する、送信装置の制御方法。
    Generate in-phase and quadrature component signals of the baseband signal,
    Generating a first intermediate frequency signal based on the in-phase component signal and the quadrature component signal;
    The first carrier wave is converted into a first pulse signal having a pulse waveform and output,
    The first intermediate frequency signal is ΔΣ-modulated in synchronization with the first pulse signal, and output as a first ΔΣ-modulated signal,
    Multiplying the first ΔΣ modulation signal and the first pulse signal to generate a first RF pulse modulation signal,
    A control method of a transmitting apparatus, wherein the first RF pulse modulation signal is amplified using first switching amplification means.
  13.  前記第1スイッチング増幅手段の出力のうち所望の帯域をバンドパスフィルタを用いて通過させる、請求項12に記載の送信装置の制御方法。 The method for controlling a transmitting apparatus according to claim 12, wherein a desired band of the output of the first switching amplification means is passed using a band-pass filter.
  14.  前記同相成分信号及び前記直交位相成分信号に基づいて生成された中間周波信号の同相成分及び直交位相成分の一方を、前記第1中間周波信号として生成する、請求項12又は13に記載の送信装置の制御方法。 The transmission device according to claim 12 or 13, wherein one of an in-phase component and a quadrature component of an intermediate frequency signal generated based on the in-phase component signal and the quadrature component signal is generated as the first intermediate frequency signal. Control method.
  15. 前記同相成分信号及び前記直交位相成分信号に基づいて第2中間周波信号を生成し、
     前記第1搬送波と90度位相の異なる第2搬送波をパルス波形の第2パルス信号に変換して出力し、
     前記第2中間周波信号を前記第2パルス信号に同期してΔΣ変調し、第2ΔΣ変調信号として出力し、
     前記第2ΔΣ変調信号と前記第2パルス信号とを乗算して第2RFパルス変調信号を生成し、
     第2スイッチング増幅手段を用いて前記第2RFパルス変調信号を増幅し、
     前記第1及び前記第2スイッチング増幅手段のそれぞれの出力を合成する、請求項12に記載の送信装置の制御方法。
    Generating a second intermediate frequency signal based on the in-phase component signal and the quadrature component signal;
    A second carrier wave having a phase difference of 90 degrees from the first carrier wave is converted into a second pulse signal having a pulse waveform and output;
    The second intermediate frequency signal is ΔΣ-modulated in synchronization with the second pulse signal and output as a second ΔΣ-modulated signal,
    Multiplying the second ΔΣ modulation signal and the second pulse signal to generate a second RF pulse modulation signal;
    Amplifying the second RF pulse modulation signal using second switching amplification means;
    The transmission apparatus control method according to claim 12, wherein the outputs of the first and second switching amplification units are combined.
  16.  前記同相成分信号及び前記直交位相成分信号に基づいて生成された中間周波信号の同相成分及び直交位相成分の一方を、前記第1中間周波信号として生成し、かつ、前記中間周波信号の同相成分及び直交位相成分の他方を、前記第2中間周波信号として生成する、請求項15に記載の送信装置の制御方法。 One of the in-phase component and the quadrature component of the intermediate frequency signal generated based on the in-phase component signal and the quadrature component signal is generated as the first intermediate frequency signal, and the in-phase component of the intermediate frequency signal and The method for controlling the transmission device according to claim 15, wherein the other of the quadrature components is generated as the second intermediate frequency signal.
PCT/JP2014/005478 2014-01-30 2014-10-29 Transmission device and method for controlling same WO2015114702A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015559624A JP6229738B2 (en) 2014-01-30 2014-10-29 Transmitting apparatus and control method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014015816 2014-01-30
JP2014-015816 2014-01-30

Publications (1)

Publication Number Publication Date
WO2015114702A1 true WO2015114702A1 (en) 2015-08-06

Family

ID=53756327

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/005478 WO2015114702A1 (en) 2014-01-30 2014-10-29 Transmission device and method for controlling same

Country Status (2)

Country Link
JP (1) JP6229738B2 (en)
WO (1) WO2015114702A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017057164A1 (en) * 2015-10-01 2017-04-06 日本電気株式会社 Digital transmitter
WO2017082243A1 (en) * 2015-11-11 2017-05-18 日本電気株式会社 Transmitter and transmission method, and plurality of antenna devices

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011077741A (en) * 2009-09-30 2011-04-14 Kddi Corp TRANSMITTER FOR CONTROLLING POWER AMPLIFIER BASED ON CONTROL VALUE OF DeltaSigma CONVERTER, PROGRAM, AND METHOD

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3419484B2 (en) * 1992-03-30 2003-06-23 株式会社東芝 Modulator, transmitter
US6693571B2 (en) * 2000-05-10 2004-02-17 Cirrus Logic, Inc. Modulation of a digital input signal using a digital signal modulator and signal splitting
US7236112B2 (en) * 2005-01-21 2007-06-26 Technoconcepts, Inc. Self-tuning output digital filter for direct conversion delta-sigma transmitter
JP5510564B2 (en) * 2012-05-25 2014-06-04 日本電気株式会社 Switching amplifier and transmitter using the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011077741A (en) * 2009-09-30 2011-04-14 Kddi Corp TRANSMITTER FOR CONTROLLING POWER AMPLIFIER BASED ON CONTROL VALUE OF DeltaSigma CONVERTER, PROGRAM, AND METHOD

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
FRAPPE, A.; ET AL.: "A digital DELTA? RF signal generator for mobile communication transmitters in 90nm CMOS", RADIO FREQUENCY INTEGRATED CIRCUITS SYMPOSIUM, 2008. RFIC 2008., 2008, pages 13 - 16, XP031284274 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017057164A1 (en) * 2015-10-01 2017-04-06 日本電気株式会社 Digital transmitter
JPWO2017057164A1 (en) * 2015-10-01 2018-05-17 日本電気株式会社 Digital transmitter
US10187092B2 (en) 2015-10-01 2019-01-22 Nec Corporation Digital transmitter
WO2017082243A1 (en) * 2015-11-11 2017-05-18 日本電気株式会社 Transmitter and transmission method, and plurality of antenna devices
JPWO2017082243A1 (en) * 2015-11-11 2018-09-27 日本電気株式会社 Amplifier, transmitter, amplification method, and multiple antenna apparatus
US10574199B2 (en) 2015-11-11 2020-02-25 Nec Corporation Amplifier and transmitter, and transmission method

Also Published As

Publication number Publication date
JP6229738B2 (en) 2017-11-15
JPWO2015114702A1 (en) 2017-03-23

Similar Documents

Publication Publication Date Title
US8666325B2 (en) Polar feedback receiver for modulator
US7715493B2 (en) Digital transmitter and methods of generating radio-frequency signals using time-domain outphasing
JP5608939B2 (en) Receiver, transmitter, feedback device, transceiver, and signal processing method
JP2008028509A (en) Transmission power amplifier, its control method and wireless communication apparatus
US20190068133A1 (en) Method and apparatus for digital pre-distortion with reduced oversampling output ratio
CN108702351B (en) Signal processing architecture for transmitters
US20110254636A1 (en) Multi-phase pulse modulation polar transmitter and method of generating a pulse modulated envelope signal carrying modulated rf signal
JP2009171460A (en) Communication device, oscillator and frequency synthesizer
US9077391B2 (en) Transmitter front-end device for generating output signals on basis of polyphase modulation
JP6090441B2 (en) Transmitter circuit
JP6229738B2 (en) Transmitting apparatus and control method thereof
JP5347892B2 (en) Transmitter
GB2455495A (en) Sample Rate Conversion in Delta - Sigma Modulators
JP7272055B2 (en) Transmitter and method
KR100795559B1 (en) Apparatus and method for compensation of high frequency distortion by digital to analog converter for orthogonal frequency division multiplexing system
JP5870739B2 (en) Predistortion device
US20120002755A1 (en) Multi-level pulse modulated polar transmitter and method of generating multi-level modulated envelope signals carrying modulated rf signal
KR102057744B1 (en) Non-contiguous spectral-band modulator and method for non-contiguous spectral-band modulation
JP5731325B2 (en) Modulator and amplifier using the same
US7020221B2 (en) System and method for an IF-sampling transceiver
US9166577B2 (en) Modulation through differentially delayed clocks
Robert et al. Architecture and filtering requirements for fully digital multi-radio transmitters
JP2018133716A (en) Transmitting device and pulse width modulation method
KR20100087835A (en) Envelope elimination and restoration transmitter using modulated envelope signal and method using thereof
US8233850B1 (en) Broadband power amplifier with partial-envelope transference

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14880842

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015559624

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14880842

Country of ref document: EP

Kind code of ref document: A1