WO2015114267A1 - Alimentation en air d'un circuit de conditionnement d'air d'une cabine d'un aeronef a partir de son turbopropulseur - Google Patents

Alimentation en air d'un circuit de conditionnement d'air d'une cabine d'un aeronef a partir de son turbopropulseur Download PDF

Info

Publication number
WO2015114267A1
WO2015114267A1 PCT/FR2015/050215 FR2015050215W WO2015114267A1 WO 2015114267 A1 WO2015114267 A1 WO 2015114267A1 FR 2015050215 W FR2015050215 W FR 2015050215W WO 2015114267 A1 WO2015114267 A1 WO 2015114267A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
turboprop
compressor
pressure body
gearbox
Prior art date
Application number
PCT/FR2015/050215
Other languages
English (en)
Inventor
Nicolas Claude PARMENTIER
Pierre FROMENT
Jean-François RIDEAU
Bruno Thoraval
Original Assignee
Snecma
Safran
Microturbo
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Snecma, Safran, Microturbo filed Critical Snecma
Priority to GB1612980.1A priority Critical patent/GB2536847B/en
Priority to US15/115,116 priority patent/US10703487B2/en
Publication of WO2015114267A1 publication Critical patent/WO2015114267A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
    • F02C6/04Gas-turbine plants providing heated or pressurised working fluid for other apparatus, e.g. without mechanical power output
    • F02C6/06Gas-turbine plants providing heated or pressurised working fluid for other apparatus, e.g. without mechanical power output providing compressed gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D13/00Arrangements or adaptations of air-treatment apparatus for aircraft crew or passengers, or freight space, or structural parts of the aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D13/00Arrangements or adaptations of air-treatment apparatus for aircraft crew or passengers, or freight space, or structural parts of the aircraft
    • B64D13/02Arrangements or adaptations of air-treatment apparatus for aircraft crew or passengers, or freight space, or structural parts of the aircraft the air being pressurised
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D13/00Arrangements or adaptations of air-treatment apparatus for aircraft crew or passengers, or freight space, or structural parts of the aircraft
    • B64D13/06Arrangements or adaptations of air-treatment apparatus for aircraft crew or passengers, or freight space, or structural parts of the aircraft the air being conditioned
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D13/00Arrangements or adaptations of air-treatment apparatus for aircraft crew or passengers, or freight space, or structural parts of the aircraft
    • B64D13/06Arrangements or adaptations of air-treatment apparatus for aircraft crew or passengers, or freight space, or structural parts of the aircraft the air being conditioned
    • B64D13/08Arrangements or adaptations of air-treatment apparatus for aircraft crew or passengers, or freight space, or structural parts of the aircraft the air being conditioned the air being heated or cooled
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D27/00Arrangement or mounting of power plants in aircraft; Aircraft characterised by the type or position of power plants
    • B64D27/02Aircraft characterised by the type or position of power plants
    • B64D27/10Aircraft characterised by the type or position of power plants of gas-turbine type 
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
    • F02C6/20Adaptations of gas-turbine plants for driving vehicles
    • F02C6/206Adaptations of gas-turbine plants for driving vehicles the vehicles being airscrew driven
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/26Starting; Ignition
    • F02C7/268Starting drives for the rotor, acting directly on the rotor of the gas turbine to be started
    • F02C7/27Fluid drives
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • F02C9/16Control of working fluid flow
    • F02C9/18Control of working fluid flow by bleeding, bypassing or acting on variable working fluid interconnections between turbines or compressors or their stages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/321Rotors specially for elastic fluids for axial flow pumps for axial flow compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/52Casings; Connections of working fluid for axial pumps
    • F04D29/522Casings; Connections of working fluid for axial pumps especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/52Casings; Connections of working fluid for axial pumps
    • F04D29/54Fluid-guiding means, e.g. diffusers
    • F04D29/56Fluid-guiding means, e.g. diffusers adjustable
    • F04D29/563Fluid-guiding means, e.g. diffusers adjustable specially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/582Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps
    • F04D29/5826Cooling at least part of the working fluid in a heat exchanger
    • F04D29/5833Cooling at least part of the working fluid in a heat exchanger flow schemes and regulation thereto
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D13/00Arrangements or adaptations of air-treatment apparatus for aircraft crew or passengers, or freight space, or structural parts of the aircraft
    • B64D13/06Arrangements or adaptations of air-treatment apparatus for aircraft crew or passengers, or freight space, or structural parts of the aircraft the air being conditioned
    • B64D2013/0603Environmental Control Systems
    • B64D2013/0618Environmental Control Systems with arrangements for reducing or managing bleed air, using another air source, e.g. ram air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D13/00Arrangements or adaptations of air-treatment apparatus for aircraft crew or passengers, or freight space, or structural parts of the aircraft
    • B64D13/06Arrangements or adaptations of air-treatment apparatus for aircraft crew or passengers, or freight space, or structural parts of the aircraft the air being conditioned
    • B64D2013/0603Environmental Control Systems
    • B64D2013/0696Environmental Control Systems with provisions for starting power plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/20Heat transfer, e.g. cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/32Application in turbines in gas turbines
    • F05D2220/323Application in turbines in gas turbines for aircraft propulsion, e.g. jet engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/32Application in turbines in gas turbines
    • F05D2220/324Application in turbines in gas turbines to drive unshrouded, low solidity propeller
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/32Application in turbines in gas turbines
    • F05D2220/325Application in turbines in gas turbines to drive unshrouded, high solidity propeller
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/60Shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/40Transmission of power
    • F05D2260/403Transmission of power through the shape of the drive components
    • F05D2260/4031Transmission of power through the shape of the drive components as in toothed gearing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/50On board measures aiming to increase energy efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Definitions

  • the present invention relates to the air supply of an air conditioning circuit of a cabin of an aircraft which is equipped with at least one turboprop engine.
  • a turboprop comprises at least one low pressure body and a high pressure body, the low pressure body driving a propulsion propeller through a gear box or reduction box, commonly called PGB (for Power Gear Box).
  • the low pressure body comprises a turbine rotor connected by a shaft to the propeller and possibly to a compressor.
  • Each other body comprises a compressor rotor connected by a shaft to a turbine rotor.
  • the air conditioning circuit is powered by air taken from one of the turboprop compressors.
  • the pressure of the air supplied to the aircraft greatly exceeds the need, in particular during the climb phase of the aircraft, which requires protection devices in the event of overpressure and dimensioning of the air ducts accordingly ,
  • the temperature of the air taken at the compressor greatly exceeds the regulatory constraint (maximum temperature when passing through the fuel zones), which requires a cooling device that is difficult to integrate into the nacelle (generally called pre-cooler - from English precooler) before sending air into the aircraft circuit, - a significant amount of energy is lost which penalizes the consumption and the efficiency of the turboprop,
  • AGB Accessory Gear Box
  • the present invention provides a simple, effective and economical solution to at least some of the problems of prior art.
  • the invention proposes an aircraft turboprop, comprising at least one low pressure body and a high pressure body, the low pressure body driving a propulsion propeller via a gearbox, preferably a single, turboprop engine. further comprising means for supplying air to an air conditioning circuit of a cabin of the aircraft, characterized in that said supply means comprise at least one compressor carried by said gearbox and whose rotor is coupled to the low pressure body through said gearbox.
  • the compressor, said charge, is thus disposed as close as possible to the gearbox.
  • the rotor of the charge compressor and the gearbox are interconnected by a gear chain.
  • this gear chain will only accelerate the movement to mechanically feed the rotor of the charge compressor at a sufficient speed.
  • This gear chain includes by example of the pinions intermeshed with each other, and is advantageously devoid of radial shaft (relative to the longitudinal axis of the turboprop).
  • the turboprop engine advantageously comprises a single gearbox for driving the propeller, which in particular makes it possible to simplify the turboprop engine and to limit the number of lubricating oil chambers.
  • the present invention thus proposes a new technology for supplying air to an air conditioning circuit of an aircraft cabin.
  • This air is supplied by a compressor, preferably dedicated to the air supply of the cabin, and no longer taken from a turboprop compressor, which penalizes performance less.
  • the rotor of this dedicated compressor is rotated by the low pressure body, through the gearbox which connects the low pressure body to the propulsion propeller.
  • This is particularly advantageous, especially when the turboprop is configured so that the speed of rotation of its low pressure body obeys a law of discrete regimes, that is to say that each regime is constant stepwise.
  • the speed of the propeller can be included in a rather restricted range because it can no longer be functional if it slows down too much.
  • the speed of rotation of the low pressure body is particularly constant during the same flight phase.
  • Phase of flight is a phase during which the aircraft operates a single type of maneuver.
  • the rotational speed of the rotor of the dedicated compressor will not depend on the operating conditions, and the dedicated compressor will be able to provide a flow of air at the minimum required pressure to the conditioning circuit, even at idle.
  • the dedicated compressor may be one or more stages, each of any type, for example an axial or centrifugal stage.
  • the compressor comprises an air inlet connected to means for withdrawing air from an air inlet shaft of the turboprop.
  • the compressor comprises an air inlet connected to means for withdrawing air from a turboprop compressor.
  • the compressor comprises an air inlet connected to means for withdrawing air between an air intake sleeve and a turboprop compressor.
  • the compressor comprises an air inlet connected to means for withdrawing air outside the turboprop.
  • a heat exchanger for example of the pre-cooler type, can be mounted either between the air inlet of the dedicated compressor and the sampling means, or between two compressors or two compressor stages (if the latter comprises at least two), said two compressors or two compressor stages composing the dedicated compressor including the air supply of the cabin.
  • the advantage of placing a heat exchanger in this way is that it is more efficient than at the outlet of the dedicated compressor (at the same amount of heat evacuated by the exchanger, the reduction in temperature of the air sent to the aircraft is stronger). This allows for example to use a smaller heat exchanger than in the prior art.
  • the compressor may comprise an air outlet connected to a pipe intended to be connected to said circuit.
  • This pipe may be equipped with at least one flow control system, for example a valve. It can be equipped with a heat exchanger, for example of the pre-cooler type.
  • This pre-cooler can be simplified and be less cumbersome than in the prior art because the supply air of the dedicated compressor can have a relatively low temperature compared to the prior art. It is also conceivable that the air pressure exiting the dedicated compressor is close to the air pressure in the conditioning circuit, and therefore relatively low, which simplifies the pipe and in particular to use a thin-walled pipe to obtain a weight gain over the prior art.
  • the turboprop engine may comprise a pneumatic starter of which an air inlet is connected to said pipe.
  • the rotor of the pneumatic starter is coupled to the high pressure body by an accessory box and supplied with air by the aircraft via said pipe.
  • Valves allow the exclusive powering of the starter.
  • the present invention also makes it possible to feed the pneumatic starter via the pipes of the air conditioning circuit.
  • the present invention also relates to a method of supplying air to an air conditioning circuit of a cabin of an aircraft which is equipped with at least one turboprop engine comprising at least one low pressure body and a high pressure body , the low pressure body driving a propulsion propeller through a single gearbox, characterized in that the circuit is supplied with air by at least one dedicated compressor which is carried by said gearbox and of which the rotor is coupled to the low pressure body via said gearbox.
  • This coupling can be achieved by means of the first gearbox or a second gearbox.
  • FIG. 1 is a very diagrammatic view of an aircraft turboprop engine and represents means for supplying air to an air conditioning circuit of a cabin of the aircraft, according to the prior art
  • FIG. 2 is a very schematic view of an aircraft turboprop engine and represents means for supplying air to an air conditioning circuit of a cabin of the aircraft, according to an embodiment of the invention. 'invention,
  • FIG. 3 is a very schematic view of a gearbox for driving the dedicated compressor of the air supply means according to the invention
  • FIGS. 4 and 5 are views similar to that of FIG. 2 and show alternative embodiments of the air sampling means of the invention
  • FIGS. 6a, 6b and 6c are very schematic views of alternative embodiments of the air supply means of the aircraft according to the invention.
  • FIGS. 7a and 7b are schematic views in axial section of load compressors, respectively centrifugal and axial.
  • FIG. 1 represents a turboprop 10 according to the prior art, for an aircraft.
  • the turboprop 10 here is of the double-body type and comprises a low-pressure body 12 and a high-pressure body 14, the low-pressure body 12 driving a propulsion propeller through a gearbox 16 or reduction gearbox. commonly called PGB (for Power Gear Box). Only the shaft 18 of the propulsion propeller is shown in FIG.
  • the low pressure body 12 here comprises only a turbine rotor connected by a shaft to the gearbox 16.
  • the high pressure body 14 comprises a compressor rotor connected by a shaft to a turbine rotor.
  • the shaft of the low pressure high body 14, called HP shaft 20 is tubular and coaxially traversed by the shaft of the low pressure body 12, called BP 22 or power shaft.
  • BP shaft 22 comprises at one end a pinion (not shown) coupled via a series of gears of the gearbox 16 to the shaft 18 of the propulsion propeller.
  • the turboprop engine 10 comprises an accessory equipment drive case 24 (called accessory gearbox or AGB for Accessory Gear Box) which is coupled to the high pressure body of the turbomachine 14, and in particular to the HP shaft, by the
  • accessory housing 24 is mounted in the nacelle 28 of the turboprop 10, which is schematically represented by a rectangle in dashed lines.
  • Accessory case 24 carries and drives several equipment including a pneumatic starter 30 which, as the name suggests, is intended to start the turboprop 10 by rotating its high pressure body, through the housing of accessories 24 and radial shaft 26.
  • a pneumatic starter 30 which, as the name suggests, is intended to start the turboprop 10 by rotating its high pressure body, through the housing of accessories 24 and radial shaft 26.
  • the turboprop 10 further comprises an air inlet 32 for supplying air to the engine, and a exhaust nozzle 34 for exhausting the combustion gases.
  • the turboprop engine 10 further comprises a combustion chamber 35, between the compressors BP and HP, on the one hand, and the turbines HP and BP, on the other hand.
  • the turboprop 10 is furthermore equipped with means for supplying air to an air conditioning circuit 36 of a cabin of the aircraft, these means comprising, according to the prior art, means for withdrawing air from the engine of the turboprop engine 10.
  • the engine of the turboprop 10 is equipped with two ports 38 or compressed air sampling port, each of these ports 38 being connected by a valve 40, 42 to a pipe 44 for supplying air to the circuit 36.
  • the first port 38 or upstream port (with reference to the direction of flow of gas in the engine) allows to take air at an intermediate pressure.
  • the valve 40 connected to this pipe 44 is of the non-return valve type.
  • the second port 38 or downstream port allows to take air at high pressure.
  • the valve 42 connected to this pipe 44 is open when the pressure of the air drawn by the valve 40 is not sufficient, the air taken by the valve 42 being prevented from being reinjected upstream by the anti-return function of the valve of the valve 40.
  • the pipe 44 is equipped with a valve 46 which regulates the supply pressure of the circuit 36, and a heat exchanger 47 of the pre-cooler type, which is intended to lower the temperature of the air before its introduction into the the circuit 36.
  • the pipe 44 is further connected by a pipe 48 equipped with a valve 50 to an air inlet of the pneumatic starter 30.
  • the pipe 44 passes through an anti-fire wall 52 before being connected to the circuit 36 .
  • the present invention overcomes these disadvantages by equipping the turboprop engine with a dedicated compressor, called a charge compressor, whose rotor is coupled to the low-pressure body of the engine via the gearbox.
  • FIGS. 2, 4 and 5 show various embodiments of this invention, in which the elements already described in the foregoing are designated by the same references.
  • the turboprop engines of FIGS. 2, 4 and 5 may be of the same type as that represented in FIG. 1 or of a different type. They can for example include more than two bodies.
  • the low pressure body of each turboprop engine according to the invention may comprise a compressor BP.
  • the turboprop 1 10 of Figure 2 differs from that of Figure 1 essentially by the air supply means of the circuit 36.
  • These supply means here comprise a dedicated compressor 60 whose rotor 61 is coupled by the gearbox 16 to the low-pressure body 12 and in particular to the LP shaft 22.
  • rotor shaft 61 of the compressor 60 may carry a pinion 61 meshing with a pinion 18a of the shaft 18 of the propeller of the turboprop 1 10, this shaft 18 carrying another pinion 18b meshing with a pinion 22a of the BP shaft 22.
  • the pinions 18a , 18b, 22a, 61a are housed in the gearbox 16.
  • the compressor 60 includes an inlet 62 and an air outlet 64.
  • the air inlet 62 is connected by a pipe 66 to the air intake sleeve 32 of the turboprop 1 10, that is to say to the section of the turboprop 1 10 s' extending between the air inlet 32 and the inlet of the turbomachine 14. Fresh air is thus drawn through the pipe 66 to supply the compressor 60.
  • the air outlet 64 of the compressor 60 is connected to the air supply pipe 44 of the circuit 36.
  • this pipe 44 comprises a valve 46 which regulates the supply pressure of the circuit 36, and a heat exchanger. heat 47 pre-cooler type, which is intended to lower the air temperature before its introduction into the circuit 36.
  • the pipe 44 is further connected by a pipe 48 equipped with a valve 50 to an air inlet of the pneumatic starter 30.
  • the turboprop 210 of FIG. 4 differs from that of FIG. 2 essentially in that the air inlet 62 of the compressor 60 is connected by a pipe 68 to an air sampling scoop 70 which is situated on the outer wall. of the nacelle 28 and which is intended to take air flowing around the turboprop 210 in operation.
  • the turboprop 310 of FIG. 4 differs from that of FIG. 2 essentially in that the air inlet 62 of the compressor 60 is connected by a line 72 to an air intake port 74 in a compressor of the engine.
  • air is drawn from the engine, the engine is equipped with only one sampling port against two in the prior art. Due to the compression of the air taken from the compressor 60, the air drawn does not need to have a significant pressure. It is therefore it is possible to take air as far upstream as possible from the compressor.
  • the compressor 60 used in the context of the invention can be of any type and is for example an axial compressor with one or more stages or a centrifugal compressor with one or more stages or else a mixed compressor comprising one or more axial stages and one or more centrifugal stages.
  • FIGS. 6a to 6c show alternative embodiments of the invention concerning in particular the position of the heat exchanger 47.
  • the heat exchanger 47 can be mounted downstream of the compressor 60, FIG. that is to say on the pipe 44, as is the case in FIG. 2.
  • the heat exchanger 47 is mounted between two compressors 60a, 60b. Each compressor may comprise one or more stages to cover the two aforementioned cases. Each stage may be an axial or centrifugal stage.
  • the heat exchanger 47 is mounted upstream of the compressor 60, that is to say on the pipe 66, 68, 72 described with reference to FIGS. 2, 4 and 5.
  • the air supply of the circuit 36 may be carried out as follows, with any of the embodiments of the invention described in the foregoing.
  • the low pressure body 12 and its shaft 22 After starting the turboprop 1 10, 210, 310, the low pressure body 12 and its shaft 22 generally rotate at a substantially constant speed.
  • the rotor of the compressor 60 is rotated at a substantially constant speed, which depends in particular on the reduction coefficient of the gearbox 16.
  • the rotation of the rotor shaft 61 of the compressor 60 causes the suction and the removal of This air is then compressed by the compressor 60 which supplies the line 44 with compressed air at a predetermined pressure.
  • the valve 46 regulates the supply pressure of the circuit 36.
  • the heat exchanger 47 makes it possible to lower the temperature of the air before it is introduced into the circuit 36 (FIG. 6a), before entering the compressor (FIG. 6c) or between two phases compression ( Figure 6b).
  • the rotor shaft 61 of the compressor 60 rotates at a constant speed in the case where the rotational speed of the low-pressure body 12 is also constant.
  • a charge compressor typically rotates at 60,000 rpm and the LP shaft drives it at about 15,000 rpm. It is therefore necessary to multiply the training speed by four.
  • the integration of the load compressor with the gearbox makes it possible to directly increase the ratio four (and not to use a radial shaft, as represented in FIG. 3). This limits the number of gears. Moreover it is no longer necessary to have a dedicated lubrication system of the gearbox. We will only have multiplying ratios between the LP shaft and the load compressor shaft.
  • a casing common to the gearbox 16 and the compressor 60 would also allow a saving in weight (less wall) and the lack of lubrication dedicated to additional gearboxes.
  • FIGS. 7a and 7b it is possible to introduce variable geometries (moving stator vanes 80) on the air inlet of the charge compressor 60 in order to modulate its operation, the charge compressor 60 being a compressor centrifugal ( Figure 7a) or axial ( Figure 7b).
  • the charge compressor 60 being a compressor centrifugal ( Figure 7a) or axial ( Figure 7b).

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Pulmonology (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Thermal Sciences (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Supercharger (AREA)

Abstract

Alimentation en air d'un circuit de conditionnement d'air d'une cabine d'un aéronef à partir de son turbopropulseur Turbopropulseur (110) d'aéronef, comportant au moins un corps basse pression (12) et un corps haute pression (14), le corps basse pression entraînant une hélice de propulsion par l'intermédiaire d'une boîte d'engrenages (16), le turbopropulseur comportant en outre des moyens d'alimentation en air d'un circuit (36) de conditionnement d'air d'une cabine de l'aéronef, caractérisé en ce que lesdits moyens d'alimentation comprennent au moins un compresseur (60) porté par ladite boîte d'engrenage (16) et dont le rotor (61) est accouplé au corps basse pression par l'intermédiaire de ladite boîte d'engrenage (16).

Description

Alimentation en air d'un circuit de conditionnement d'air d'une cabine d'un aéronef à partir de son turbopropulseur
DOMAINE TECHNIQUE
La présente invention concerne l'alimentation en air d'un circuit de conditionnement d'air d'une cabine d'un aéronef qui est équipé d'au moins un turbopropulseur.
ETAT DE L'ART
A bord d'un aéronef, il est nécessaire d'avoir à disposition de l'air afin de pouvoir réaliser certaines fonctions, telles que le conditionnement d'air de la cabine de pilotage et de la cabine des passagers ou le dégivrage de certains organes de l'aéronef. A hautes altitudes, l'oxygène se raréfie et la pression de l'air baisse. Ceci implique, pour assurer le confort et la survie des passagers lors d'un vol, de pressuriser les cabines de l'aéronef. Pour cela, de l'air avec un niveau minimum de pression (en général entre 0,8 et 1 bar) et une température maîtrisée (exigence réglementaire) doit être fourni au circuit de conditionnement d'air. Un aéronef est ainsi équipé d'un circuit de conditionnement d'air qui est alimenté par le ou les moteurs de l'aéronef, qui sont des turbopropulseurs dans le cadre de l'invention.
Typiquement, un turbopropulseur comprend au moins un corps basse pression et un corps haute pression, le corps basse pression entraînant une hélice de propulsion par l'intermédiaire d'une boîte d'engrenages ou boîte de réduction, appelée couramment PGB (pour Power Gear Box). Le corps basse pression comprend un rotor de turbine relié par un arbre à l'hélice et éventuellement à un compresseur. Chaque autre corps comprend un rotor de compresseur relié par un arbre à un rotor de turbine.
Dans la technique actuelle, le circuit de conditionnement d'air est alimenté par de l'air prélevé sur un des compresseurs du turbopropulseur. Ceci présente toutefois des inconvénients parmi lesquels les plus importants sont : - la pression de l'air fourni à l'aéronef dépasse largement le besoin, notamment lors de la phase de montée de l'aéronef, ce qui nécessite des dispositifs de protection en cas de surpression et un dimensionnement des canalisations d'air en conséquence,
- la température de l'air prélevé, au niveau du compresseur, dépasse largement la contrainte réglementaire (température maximale au passage dans les zones carburant), ce qui nécessite un dispositif de refroidissement difficile à intégrer dans la nacelle (généralement appelé pré-refroidisseur - de l'anglais precooler) avant envoi de l'air dans le circuit de l'aéronef, - une énergie importante est perdue ce qui pénalise la consommation et le rendement du turbopropulseur,
- la pression dans le compresseur baisse au ralenti ce qui nécessite soit de relever le niveau de ralenti du turbopropulseur pour avoir suffisamment de pression dans le circuit, soit de prélever l'air à deux endroits sur le compresseur, ce qui nécessite deux ports de prélèvement et autant de vannes pour basculer le prélèvement d'air d'un port à l'autre, ce qui est relativement complexe. Dans les deux cas cela entraîne une surconsommation de carburant au ralenti.
On a déjà proposé des solutions à ce problème. On a notamment proposé d'alimenter un circuit de conditionnement avec de l'air prélevé sur un moteur thermique auxiliaire du type APU (acronyme de Auxiliary Power Unit) monté dans l'aéronef. Cependant, le fonctionnement de ce moteur est optimisé au sol et n'est donc pas performant en altitude. Son utilisation, hors cas de panne moteur, implique une consommation supplémentaire de carburant par rapport à la technique précédente. Par ailleurs, tous les aéronefs ne sont pas équipés d'un moteur du type APU.
On a également proposé d'équiper l'aéronef d'un compresseur dédié (à l'alimentation en air de la cabine) entraîné par un moteur électrique. Cependant, cette solution n'est pas satisfaisante car elle entraîne une augmentation de masse significative, du fait notamment de l'ajout du moteur électrique et d'un générateur électrique plus gros pour alimenter ce moteur.
Une solution à ce problème pourrait consister à entraîner le compresseur dédié par le boîtier d'entraînement des équipements accessoires du moteur, appelé généralement boîtier d'accessoires ou AGB (acronyme de Accessory Gear Box). Ce boîtier d'accessoires est accouplé au corps haute pression de la turbomachine. Cependant, cette solution ne serait pas non plus satisfaisante car la vitesse de rotation du corps haute pression varie trop en fonction des conditions de fonctionnement si bien que la vitesse de rotation du rotor du compresseur dédié serait trop faible au ralenti pour que ce compresseur soit capable de fournir un débit d'air à la pression minimum requise au circuit de conditionnement.
La présente invention propose une solution simple, efficace et économique à au moins une partie des problèmes des techniques antérieures.
EXPOSE DE L'INVENTION
L'invention propose un turbopropulseur d'aéronef, comportant au moins un corps basse pression et un corps haute pression, le corps basse pression entraînant une hélice de propulsion par l'intermédiaire d'une boîte d'engrenages, de préférence unique, le turbopropulseur comportant en outre des moyens d'alimentation en air d'un circuit de conditionnement d'air d'une cabine de l'aéronef, caractérisé en ce que lesdits moyens d'alimentation comprennent au moins un compresseur porté par ladite boîte d'engrenages et dont le rotor est accouplé au corps basse pression par l'intermédiaire de ladite boîte d'engrenages.
Le compresseur, dit de charge, est ainsi disposé le plus près possible de la boîte d'engrenages. Le rotor du compresseur de charge et la boîte d'engrenages sont reliés entre eux par une chaîne d'engrenages. De préférence, cette chaîne d'engrenages va uniquement accélérer le mouvement pour alimenter mécaniquement à une vitesse suffisante le rotor du compresseur de charge. Cette chaîne d'engrenages comprend par exemple des pignons engrenés les uns avec les autres, et est avantageusement dépourvue d'arbre radial (par rapport à l'axe longitudinal du turbopropulseur).
Le turbopropulseur comprend avantageusement une seule boîte d'engrenages pour l'entraînement de l'hélice, ce qui permet notamment de simplifier le turbopropulseur et de limiter le nombre d'enceinte d'huile de lubrification.
La présente invention propose ainsi une nouvelle technologie pour l'alimentation en air d'un circuit de conditionnement d'air d'une cabine d'aéronef. Cet air est fourni par un compresseur, de préférence dédié à l'alimentation en air de la cabine, et non plus prélevé sur un compresseur du turbopropulseur, ce qui pénalise moins les performances. Selon l'invention, le rotor de ce compresseur dédié est entraîné en rotation par le corps basse pression, par l'intermédiaire de la boîte d'engrenages qui relie le corps basse pression à l'hélice de propulsion. Ceci est particulièrement avantageux, notamment lorsque le turbopropulseur est configuré pour que la vitesse de rotation de son corps basse pression obéisse à une loi de régimes discrets, c'est-à-dire que chaque régime est constant par palier. Le régime de l'hélice peut être compris dans une plage assez restreinte car elle peut ne plus être fonctionnelle si elle ralentit trop. La vitesse de rotation du corps basse pression est notamment constante au cours d'une même phase de vol. On entend par phase de vol une phase durant laquelle l'aéronef opère un seul type de manœuvre. Ainsi, la vitesse de rotation du rotor du compresseur dédié ne dépendra pas des conditions de fonctionnement, et le compresseur dédié pourra fournir un débit d'air à la pression minimum requise au circuit de conditionnement, même au ralenti. Par ailleurs, il n'est plus nécessaire de prévoir au moins deux ports de prélèvement d'air sur le compresseur, ainsi que les vannes associées, ce qui est plus simple.
Le compresseur dédié peut être à un ou plusieurs étages, chacun de n'importe quel type, par exemple un étage axial ou centrifuge. Selon une autre caractéristique de l'invention, le compresseur comprend une entrée d'air reliée à des moyens de prélèvement d'air dans une manche d'entrée d'air du turbopropulseur.
En variante, le compresseur comprend une entrée d'air reliée à des moyens de prélèvement d'air dans un compresseur du turbopropulseur.
En variante, le compresseur comprend une entrée d'air reliée à des moyens de prélèvement d'air entre une manche d'entrée d'air et un compresseur du turbopropulseur.
En variante, le compresseur comprend une entrée d'air reliée à des moyens de prélèvement d'air à l'extérieur du turbopropulseur.
Un échangeur de chaleur, par exemple du type pré-refroidisseur, peut être monté soit entre l'entrée d'air du compresseur dédié et les moyens de prélèvement, soit entre deux compresseurs ou deux étages de compresseur (si ce dernier en comporte au moins deux), lesdits deux compresseurs ou deux étages de compresseur composant le compresseur dédié notamment à l'alimentation en air de la cabine. L'avantage de placer ainsi un échangeur de chaleur est qu'il est plus efficace qu'en sortie du compresseur dédié (à même quantité de chaleur évacuée par l'échangeur, la réduction de température de l'air envoyé à l'aéronef est plus forte). Ceci permet par exemple d'utiliser un échangeur de chaleur plus petit que dans la technique antérieure.
Le compresseur peut comprendre une sortie d'air reliée à une canalisation destinée à être raccordée audit circuit. Cette canalisation peut être équipée d'au moins un système de régulation du débit, par exemple une vanne. Elle peut être équipée d'un échangeur de chaleur, par exemple du type pré-refroidisseur. Ce pré-refroidisseur peut être simplifié et être moins encombrant que dans la technique antérieure du fait que l'air d'alimentation du compresseur dédié peut avoir une température relativement faible par rapport à la technique antérieure. Il est par ailleurs envisageable que la pression de l'air sortant du compresseur dédié soit proche de la pression de l'air dans le circuit de conditionnement, et donc relativement basse, ce qui permet de simplifier la canalisation et notamment d'utiliser une canalisation à paroi mince afin d'obtenir un gain de masse par rapport à la technique antérieure.
Avantageusement, le turbopropulseur peut comprendre un démarreur pneumatique dont une entrée d'air est reliée à ladite canalisation. En phase de démarrage le rotor du démarreur pneumatique est accouplé au corps haute pression par un boîtier d'accessoires et alimenté en air par l'aéronef via ladite canalisation. Des vannes permettent l'alimentation exclusive du démarreur. La présente invention permet aussi d'alimenter le démarreur pneumatique via les tuyaux du circuit de conditionnement d'air.
La présente invention concerne encore un procédé d'alimentation en air d'un circuit de conditionnement d'air d'une cabine d'un aéronef qui est équipé d'au moins un turbopropulseur comportant au moins un corps basse pression et un corps haute pression, le corps basse pression entraînant une hélice de propulsion par l'intermédiaire d'une unique boîte d'engrenages, caractérisé en ce que le circuit est alimenté en air par au moins un compresseur dédié qui est porté par ladite boîte d'engrenages et dont le rotor est accouplé au corps basse pression par l'intermédiaire de ladite boîte d'engrenages. Cet accouplement peut être réalisé par l'intermédiaire de la première boîte d'engrenages ou d'une deuxième boîte d'engrenages.
DESCRIPTION DES FIGURES
L'invention sera mieux comprise et d'autres détails, caractéristiques et avantages de l'invention apparaîtront à la lecture de la description suivante faite à titre d'exemple non limitatif et en référence aux dessins annexés dans lesquels :
- la figure 1 est une vue très schématique d'un turbopropulseur d'aéronef et représente des moyens d'alimentation en air d'un circuit de conditionnement d'air d'une cabine de l'aéronef, selon la technique antérieure, - la figure 2 est une vue très schématique d'un turbopropulseur d'aéronef et représente des moyens d'alimentation en air d'un circuit de conditionnement d'air d'une cabine de l'aéronef, selon un mode de réalisation de l'invention,
- la figure 3 est une vue très schématique d'une boîte d'engrenages pour l'entraînement du compresseur dédié des moyens d'alimentation en air selon l'invention,
- les figures 4 et 5 sont des vues similaires à celle de la figure 2 et représentent des variantes de réalisation du moyen de prélèvement d'air de l'invention,
- les figures 6a, 6b et 6c sont des vues très schématiques de variantes de réalisation des moyens d'alimentation en air de l'aéronef selon l'invention, et
- les figures 7a et 7b sont des vues schématiques en coupe axiale de compresseurs de charge, respectivement centrifuge et axial.
DESCRIPTION DETAILLEE
On se réfère d'abord à la figure 1 qui représente un turbopropulseur 10 selon la technique antérieure, pour un aéronef.
Le turbopropulseur 10 est ici du type double corps et comprend un corps basse pression 12 et un corps haute pression 14, le corps basse pression 12 entraînant une hélice de propulsion par l'intermédiaire d'une boîte d'engrenages 16 ou boîte de réduction, appelée couramment PGB (pour Power Gear Box). Seul l'arbre 18 de l'hélice de propulsion est représenté en figure 1 .
Le corps basse pression 12 comprend ici seulement un rotor de turbine relié par un arbre à la boîte d'engrenages 16. Le corps haute pression 14 comprend un rotor de compresseur relié par un arbre à un rotor de turbine. L'arbre du corps basse haute pression 14, appelé arbre HP 20, est tubulaire et traversé coaxialement par l'arbre du corps basse pression 12, appelé arbre BP 22 ou de puissance. L'arbre BP 22 comprend à une extrémité un pignon (non représenté) accouplé par l'intermédiaire d'une série de pignons de la boîte d'engrenages 16 à l'arbre 18 de l'hélice de propulsion.
Le turbopropulseur 10 comprend un boîtier 24 d'entraînement d'équipements accessoires (appelé boîtier d'accessoires ou AGB pour Accessory Gear Box) qui est accouplé au corps haute pression de la turbomachine 14, et en particulier à l'arbre HP, par l'intermédiaire d'un arbre radial 26. Le boîtier d'accessoires 24 est monté dans la nacelle 28 du turbopropulseur 10, qui est schématiquement représentée par un rectangle en traits pointillés.
Le boîtier d'accessoires 24 porte et entraine plusieurs équipements parmi lesquels un démarreur pneumatique 30 qui, comme son nom l'indique, est destiné à démarrer le turbopropulseur 10 en entraînant en rotation son corps haute pression, par l'intermédiaire du boîtier d'accessoires 24 et de l'arbre radial 26.
Le turbopropulseur 10 comprend en outre une entrée d'air 32 pour l'alimentation en air du moteur, et une tuyère 34 d'échappement des gaz de combustion. Le turbopropulseur 10 comprend en outre une chambre de combustion 35, entre les compresseurs BP et HP, d'une part, et les turbines HP et BP, d'autre part.
Le turbopropulseur 10 est en outre équipé de moyens d'alimentation en air d'un circuit 36 de conditionnement d'air d'une cabine de l'aéronef, ces moyens comprenant, selon la technique antérieure, des moyens de prélèvement d'air dans le moteur du turbopropulseur 10. Le moteur du turbopropulseur 10 est équipé de deux ports 38 ou bouche de prélèvement d'air comprimé, chacun de ces ports 38 étant relié par une vanne 40, 42 à une canalisation 44 d'alimentation en air du circuit 36.
Le premier port 38 ou port amont (par référence au sens d'écoulement des gaz dans le moteur) permet de prélever de l'air à une pression intermédiaire. La vanne 40 reliée à cette canalisation 44 est du type à clapet anti-retour. Le second port 38 ou port aval permet de prélever de l'air à haute pression. La vanne 42 reliée à cette canalisation 44 est ouverte lorsque la pression de l'air prélevé par la vanne 40 n'est pas suffisante, l'air prélevé par la vanne 42 étant empêché d'être réinjecté en amont par la fonction anti-retour du clapet de la vanne 40.
La canalisation 44 est équipée d'une vanne 46 qui régule la pression d'alimentation du circuit 36, et d'un échangeur de chaleur 47 du type pré- refroidisseur, qui est destiné à abaisser la température de l'air avant son introduction dans le circuit 36. La canalisation 44 est en outre reliée par une conduite 48 équipée d'une vanne 50 à une entrée d'air du démarreur pneumatique 30. La canalisation 44 traverse une cloison anti-feu 52 avant d'être raccordée au circuit 36.
La technologie représentée en figure 1 présente de nombreux inconvénients décrits plus haut.
La présente invention permet de remédier à ces inconvénients en équipant le turbopropulseur d'un compresseur dédié, appelé compresseur de charge, dont le rotor est accouplé au corps basse pression du moteur par l'intermédiaire de la boîte d'engrenages.
Les figures 2, 4 et 5 représentent différents modes de réalisation de cette invention, dans lesquels les éléments déjà décrits dans ce qui précède sont désignés par les mêmes références. Les turbopropulseurs des figures 2, 4 et 5 peuvent être du même type que celui représenté en figure 1 ou d'un type différent. Ils peuvent par exemple comprendre plus de deux corps. Par ailleurs, le corps basse pression de chaque turbopropulseur selon l'invention peut comprendre un compresseur BP.
Le turbopropulseur 1 10 de la figure 2 diffère de celui de la figure 1 essentiellement par les moyens d'alimentation en air du circuit 36.
Ces moyens d'alimentation comprennent ici un compresseur 60 dédié dont le rotor 61 est accouplé par la boîte d'engrenages 16 au corps basse pression 12 et en particulier à l'arbre BP 22. Comme cela est schématiquement représenté à la figure 3, l'arbre de rotor 61 du compresseur 60 peut porter un pignon 61 a engrené avec un pignon 18a de l'arbre 18 de l'hélice du turbopropulseur 1 10, cet arbre 18 portant un autre pignon 18b engrené avec un pignon 22a de l'arbre BP 22. Les pignons 18a, 18b, 22a, 61 a sont logés dans la boîte d'engrenages 16.
Le compresseur 60 comprend une entrée 62 et une sortie d'air 64.
Dans l'exemple représenté, l'entrée d'air 62 est reliée par une conduite 66 à la manche d'entrée d'air 32 du turbopropulseur 1 10, c'est-à-dire à la section du turbopropulseur 1 10 s'étendant entre l'entrée d'air 32 et l'entrée de la turbomachine 14. De l'air relativement frais est ainsi prélevé par la conduite 66 pour alimenter le compresseur 60.
La sortie d'air 64 du compresseur 60 est raccordée à la canalisation 44 d'alimentation en air du circuit 36. Comme décrit précédemment, cette canalisation 44 comprend une vanne 46 qui régule la pression d'alimentation du circuit 36, et un échangeur de chaleur 47 du type pré- refroidisseur, qui est destiné à abaisser la température de l'air avant son introduction dans le circuit 36. La canalisation 44 est en outre reliée par une conduite 48 équipée d'une vanne 50 à une entrée d'air du démarreur pneumatique 30.
Le turbopropulseur 210 de la figure 4 diffère de celui de la figure 2 essentiellement en ce que l'entrée d'air 62 du compresseur 60 est reliée par une conduite 68 à une écope 70 de prélèvement d'air qui est située sur la paroi externe de la nacelle 28 et qui est destinée à prélever de l'air s'écoulant autour du turbopropulseur 210 en fonctionnement.
Le turbopropulseur 310 de la figure 4 diffère de celui de la figure 2 essentiellement en ce que l'entrée d'air 62 du compresseur 60 est reliée par une conduite 72 à un port 74 de prélèvement d'air dans un compresseur du moteur. Bien que de l'air soit prélevé du moteur, le moteur est équipé d'un seul port de prélèvement contre deux dans la technique antérieure. Du fait de la compression de l'air prélevé dans le compresseur 60, l'air prélevé n'a pas besoin d'avoir une pression importante. Il est donc envisageable de prélever de l'air le plus en amont possible sur le compresseur.
Le compresseur 60 utilisé dans le cadre de l'invention (figures 2, 4 et 5) peut être de n'importe quel type et est par exemple un compresseur axial à un ou plusieurs étages ou un compresseur centrifuge à un ou plusieurs étages ou encore un compresseur mixte comportant un ou plusieurs étages axiaux et un ou plusieurs étages centrifuges.
Il est en outre envisageable d'utiliser plus d'un compresseur de charge et par exemple deux compresseurs de charge montés en série.
Les figures 6a à 6c représentent des variantes de réalisation de l'invention concernant notamment la position de l'échangeur de chaleur 47. Comme cela est visible en figure 6a, l'échangeur de chaleur 47 peut être monté en aval du compresseur 60, c'est-à-dire sur la canalisation 44, comme c'est le cas en figure 2. Dans la figure 6b, l'échangeur de chaleur 47 est monté entre deux compresseurs 60a, 60b. Chaque compresseur peut comporter un ou plusieurs étages afin de couvrir les deux cas précités. Chaque étage peut être un étage axial ou centrifuge. Dans la figure 6c, l'échangeur 47 est monté en amont du compresseur 60, c'est-à-dire sur la conduite 66, 68, 72 décrite en référence aux figures 2, 4 et 5.
L'alimentation en air du circuit 36 peut être réalisée de la façon suivante, avec l'un quelconque des modes de réalisation de l'invention décrits dans ce qui précède.
Après démarrage du turbopropulseur 1 10, 210, 310, le corps basse pression 12 et son arbre 22 tournent en général à une vitesse sensiblement constante. Le rotor du compresseur 60 est entraîné en rotation à une vitesse sensiblement constante, qui dépend notamment du coefficient de réduction de la boîte d'engrenages 16. La rotation de l'arbre de rotor 61 du compresseur 60 provoque l'aspiration et le prélèvement d'air par la conduite 66, 68, 72, jusqu'à l'entrée d'air 62 du compresseur 60. Cet air est alors comprimé par le compresseur 60 qui fournit à la canalisation 44 de l'air comprimé à une pression prédéterminée. La vanne 46 régule la pression d'alimentation du circuit 36. L'échangeur de chaleur 47 permet d'abaisser la température de l'air avant son introduction dans le circuit 36 (figure 6a), avant son entrée dans le compresseur (figure 6c) ou entre deux phases de compression (figure 6b). Quelles que soient les conditions de fonctionnement du turbopropulseur 1 10, 210, 310, l'arbre de rotor 61 du compresseur 60 tourne à vitesse constante dans le cas où la vitesse de rotation du corps basse pression 12 est également constante.
Un compresseur de charge tourne typiquement à 60.000tr/min et l'arbre BP qui l'entraîne à environ 15.000 tr/min. Il faut donc multiplier la vitesse d'entraînement par quatre. L'intégration du compresseur de charge à la boîte d'engrenages permet de faire directement la multiplication de rapport quatre (et de ne pas utiliser d'arbre radial, comme représenté en figure 3). On limite ainsi le nombre d'engrenages. De plus il n'est plus nécessaire d'avoir un système de lubrification dédié de la boîte d'engrenages. On ne va avoir que des rapports multiplicateurs entre l'arbre BP et l'arbre du compresseur de charge.
Un carter commun à la boîte d'engrenages 16 et au compresseur 60 permettrait également un gain de masse (moins de paroi) et l'absence de lubrification dédiée à des boites d'engrenages supplémentaires. Par ailleurs, comme représenté aux figures 7a et 7b, on peut introduire des géométries variables (aubes de redresseur 80 mobiles) sur l'entrée d'air du compresseur de charge 60 afin de moduler son fonctionnement, le compresseur de charge 60 étant un compresseur centrifuge (figure 7a) ou axial (figure 7b). Ainsi, on peut se passer de système d'embrayage ou de vanne de modulation.

Claims

REVENDICATIONS
1 . Turbopropulseur (1 10, 210, 310) d'aéronef, comportant au moins un corps basse pression (12) et un corps haute pression (14), le corps basse pression entraînant une hélice de propulsion par l'intermédiaire d'une boîte d'engrenages (16), de préférence unique, le turbopropulseur comportant en outre des moyens d'alimentation en air d'un circuit (36) de conditionnement d'air d'une cabine de l'aéronef, caractérisé en ce que lesdits moyens d'alimentation comprennent au moins un compresseur (60) porté par ladite boîte d'engrenages (16) et dont le rotor (61 ) est accouplé au corps basse pression par l'intermédiaire de ladite boîte d'engrenages (16).
2. Turbopropulseur (1 10, 210, 310) selon la revendication 1 , caractérisé en ce que le compresseur (60) comprend une entrée d'air (62) reliée à des moyens (66) de prélèvement d'air dans une manche d'entrée d'air (32) du turbopropulseur.
3. Turbopropulseur (1 10, 210, 310) selon la revendication 1 , caractérisé en ce que le compresseur (60) comprend une entrée d'air (62) reliée à des moyens (72, 74) de prélèvement d'air dans un compresseur du turbopropulseur.
4. Turbopropulseur (1 10, 210, 310) selon la revendication 1 , caractérisé en ce que le compresseur (60) comprend une entrée d'air (62) reliée à des moyens (68, 70) de prélèvement d'air à l'extérieur du turbopropulseur.
5. Turbopropulseur (1 10, 210, 310) selon l'une des revendications 2 à 4, caractérisé en ce qu'un échangeur de chaleur (47) est soit monté entre l'entrée d'air (62) du compresseur (60) et les moyens de prélèvement (66- 74), soit entre deux compresseurs (60a, 60b) ou entre deux étages de compresseur.
6. Turbopropulseur (1 10, 210, 310) selon l'une des revendications précédentes, caractérisé en ce que le compresseur (60) comprend une sortie d'air (64) reliée à une canalisation (44) destinée à être raccordée audit circuit (36), ladite canalisation étant équipée d'au moins un moyen de régulation, tel qu'une vanne (46).
7. Turbopropulseur (1 10, 210, 310) selon la revendication 6, caractérisé en ce qu'il comprend un démarreur (30) pneumatique dont une entrée d'air est reliée à ladite canalisation (44).
8. Turbopropulseur (1 10, 210, 310) selon la revendication 6 ou 7, caractérisé en ce que la canalisation (44) est équipée d'un échangeur de chaleur (47).
9. Turbopropulseur (1 10, 210, 310) selon l'une des revendications précédentes, caractérisé en ce qu'il est configuré pour que la vitesse de rotation du corps basse pression (12) soit sensiblement constante quelles que soient les conditions de fonctionnement.
10. Turbopropulseur (1 10, 210, 310) selon l'une des revendications précédentes, caractérisé en ce que le rotor (61 ) dudit compresseur (60) est relié à la boîte d'engrenages (16) par une chaîne d'engrenages comportant des pignons (61 a, 18b), et de préférence dépourvue d'arbre radial.
1 1 . Procédé d'alimentation en air d'un circuit (36) de conditionnement d'air d'une cabine d'un aéronef qui est équipé d'au moins un turbopropulseur (1 10, 210, 310) comportant au moins un corps basse pression (12) et un corps haute pression (14), le corps basse pression entraînant une hélice de propulsion par l'intermédiaire d'une unique boîte d'engrenages (16), caractérisé en ce que le circuit est alimenté en air par au moins un compresseur (60) dédié qui est porté par ladite boîte d'engrenages (16) et dont le rotor est accouplé au corps basse pression par l'intermédiaire de ladite boîte d'engrenages (16).
PCT/FR2015/050215 2014-01-31 2015-01-29 Alimentation en air d'un circuit de conditionnement d'air d'une cabine d'un aeronef a partir de son turbopropulseur WO2015114267A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
GB1612980.1A GB2536847B (en) 2014-01-31 2015-01-29 Supply of air to an air-conditioning circuit of an aircraft cabin from its turboprop engine
US15/115,116 US10703487B2 (en) 2014-01-31 2015-01-29 Supply of air to an air-conditioning circuit of an aircraft cabin from its turboprop engine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1400264 2014-01-31
FR1400264A FR3017159B1 (fr) 2014-01-31 2014-01-31 Alimentation en air d'un circuit de conditionnement d'air d'une cabine d'un aeronef a partir de son turbopropulseur

Publications (1)

Publication Number Publication Date
WO2015114267A1 true WO2015114267A1 (fr) 2015-08-06

Family

ID=50780611

Family Applications (3)

Application Number Title Priority Date Filing Date
PCT/FR2015/050214 WO2015114266A1 (fr) 2014-01-31 2015-01-29 Alimentation en air d'un circuit de conditionnement d'air d'une cabine d'un aéronef a partir de son turbopropulseur
PCT/FR2015/050215 WO2015114267A1 (fr) 2014-01-31 2015-01-29 Alimentation en air d'un circuit de conditionnement d'air d'une cabine d'un aeronef a partir de son turbopropulseur
PCT/FR2015/050213 WO2015114265A1 (fr) 2014-01-31 2015-01-29 Alimentation en air d'un circuit de conditionnement d'air d'une cabine d'un aeronef a partir de son turbopropulseur

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/FR2015/050214 WO2015114266A1 (fr) 2014-01-31 2015-01-29 Alimentation en air d'un circuit de conditionnement d'air d'une cabine d'un aéronef a partir de son turbopropulseur

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/FR2015/050213 WO2015114265A1 (fr) 2014-01-31 2015-01-29 Alimentation en air d'un circuit de conditionnement d'air d'une cabine d'un aeronef a partir de son turbopropulseur

Country Status (4)

Country Link
US (3) US10858112B2 (fr)
FR (1) FR3017159B1 (fr)
GB (3) GB2538018B (fr)
WO (3) WO2015114266A1 (fr)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3017159B1 (fr) * 2014-01-31 2016-03-04 Snecma Alimentation en air d'un circuit de conditionnement d'air d'une cabine d'un aeronef a partir de son turbopropulseur
US10710738B2 (en) * 2015-06-25 2020-07-14 Pratt & Whitney Canada Corp. Auxiliary power unit with intercooler
FR3048675B1 (fr) * 2016-03-14 2022-02-18 Snecma Alimentation en air d'un circuit de conditionnement d'air d'une cabine d'un aeronef
US10731501B2 (en) * 2016-04-22 2020-08-04 Hamilton Sundstrand Corporation Environmental control system utilizing a motor assist and an enhanced compressor
EP3273006B1 (fr) 2016-07-21 2019-07-03 United Technologies Corporation Démarrage en alternance d'un groupe bi-moteur
US10618666B2 (en) 2016-07-21 2020-04-14 United Technologies Corporation Pre-start motoring synchronization for multiple engines
US10384791B2 (en) 2016-07-21 2019-08-20 United Technologies Corporation Cross engine coordination during gas turbine engine motoring
EP3273016B1 (fr) 2016-07-21 2020-04-01 United Technologies Corporation Coordination multimoteur pendant la motorisation de moteur à turbine à gaz
US10221774B2 (en) 2016-07-21 2019-03-05 United Technologies Corporation Speed control during motoring of a gas turbine engine
US10787968B2 (en) 2016-09-30 2020-09-29 Raytheon Technologies Corporation Gas turbine engine motoring with starter air valve manual override
FR3058470B1 (fr) * 2016-11-10 2019-05-10 Safran Aircraft Engines Turbopropulseur comprenant un generateur de gaz et une boite d'accessoires accouplee a une extremite arriere d'un arbre haute pression du generateur de gaz
US10823079B2 (en) * 2016-11-29 2020-11-03 Raytheon Technologies Corporation Metered orifice for motoring of a gas turbine engine
EP3412574B1 (fr) * 2017-06-06 2022-08-03 Airbus Operations, S.L. Aéronef comportant une unité de puissance pour générer une énergie électrique, pneumatique et/ou hydraulique
US10713487B2 (en) * 2018-06-29 2020-07-14 Pixart Imaging Inc. Object determining system and electronic apparatus applying the object determining system
US11072435B2 (en) 2018-10-25 2021-07-27 Honeywell International Inc. Inlet flow structure for turboprop engine
US11041501B2 (en) * 2019-03-20 2021-06-22 The Boeing Company Compressed air system
ES2947461T3 (es) 2019-07-01 2023-08-09 Airbus Operations Slu Instalación de aeronave para suministro de aire presurizado
US20210122487A1 (en) * 2019-10-24 2021-04-29 Pratt & Whitney Canada Corp. Aircraft power supply arrangements
US20240026827A1 (en) * 2022-07-22 2024-01-25 Raytheon Technologies Corporation Aircraft system with gas turbine engine powered compressor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1208140A (fr) * 1957-12-12 1960-02-22 Napier & Son Ltd Turbo-propulseur pour avion
US4503666A (en) * 1983-05-16 1985-03-12 Rockwell International Corporation Aircraft environmental control system with auxiliary power output
GB2247510A (en) * 1990-08-27 1992-03-04 Gen Electric Aircraft electrically powered boundary layer bleed system

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2961939A (en) * 1955-08-12 1960-11-29 Crane Co Vehicle air conditioning and accessory drive system
US3054660A (en) * 1956-06-29 1962-09-18 Cooper Bessemer Corp Manufacture of ammonia
US3842720A (en) * 1973-03-29 1974-10-22 Piper Aircraft Corp Jet pump for aircraft cabin pressurization system
US4684081A (en) * 1986-06-11 1987-08-04 Lockheed Corporation Multifunction power system for an aircraft
US5125597A (en) * 1990-06-01 1992-06-30 General Electric Company Gas turbine engine powered aircraft environmental control system and boundary layer bleed with energy recovery system
US5143329A (en) * 1990-06-01 1992-09-01 General Electric Company Gas turbine engine powered aircraft environmental control system and boundary layer bleed
GB9415436D0 (en) * 1994-07-30 1994-09-21 Provost Michael J Auxiliary gas turbine engines
US6128896A (en) * 1998-01-14 2000-10-10 Saiz; Manuel Munoz Aircraft air conditioner energy recovery device
US6631384B1 (en) * 2000-09-05 2003-10-07 Algoplus Consulting Limited Information system and method using analysis based on object-centric longitudinal data
DE102004017879B4 (de) * 2004-04-13 2006-11-09 Liebherr-Aerospace Lindenberg Gmbh System zur Luftaufbereitung
US7757502B2 (en) * 2004-09-22 2010-07-20 Hamilton Sundstrand Corporation RAM fan system for an aircraft environmental control system
DE102005037285A1 (de) * 2005-08-08 2007-02-15 Liebherr-Aerospace Lindenberg Gmbh Verfahren zum Betreiben einer Flugzeugklimaanlage
GB2447677B (en) * 2007-03-21 2011-11-16 Honeywell Normalair Garrett Jet pump apparatus
DE102008026117A1 (de) * 2008-05-30 2009-12-10 Airbus Deutschland Gmbh Frischlufteinlass für ein Flugzeug
US9512784B2 (en) * 2010-01-29 2016-12-06 Pratt & Whitney Canada Corp. Free gas turbine with constant temperature-corrected gas generator speed
US8938973B2 (en) * 2010-02-11 2015-01-27 Pratt & Whitney Canada Corp. Air contamination detection in an aircraft air system
FR2964087B1 (fr) * 2010-08-25 2013-06-14 Turbomeca Procede d'optimisation de l'operabilite de motorisation d'un aeronef et groupe de puissance autonome de mise en oeuvre
US9702254B2 (en) * 2010-09-14 2017-07-11 Manuel M. Saiz Lift propulsion and stabilizing system and procedure for vertical take-off and landing aircraft
US8955335B2 (en) * 2010-12-30 2015-02-17 Rolls-Royce Corporation System, propulsion system and vehicle
FR2976024B1 (fr) * 2011-05-31 2015-10-30 Snecma Moteur a turbine a gaz comportant trois corps rotatifs
US8943796B2 (en) * 2011-06-28 2015-02-03 United Technologies Corporation Variable cycle turbine engine
US20130040545A1 (en) * 2011-08-11 2013-02-14 Hamilton Sundstrand Corporation Low pressure compressor bleed exit for an aircraft pressurization system
US8967528B2 (en) * 2012-01-24 2015-03-03 The Boeing Company Bleed air systems for use with aircrafts and related methods
US9394803B2 (en) * 2012-03-14 2016-07-19 United Technologies Corporation Bypass air-pump system within the core engine to provide air for an environmental control system in a gas turbine engine
US9457908B2 (en) * 2012-09-20 2016-10-04 Hamilton Sundstrand Corporation Self-cooled motor driven compressor
US9316159B2 (en) * 2013-01-30 2016-04-19 Pratt & Whitney Canada Corp. Gas turbine engine with transmission
US10094295B2 (en) * 2013-01-30 2018-10-09 Pratt & Whitney Canada Corp. Gas turbine engine with transmission
US9752500B2 (en) * 2013-03-14 2017-09-05 Pratt & Whitney Canada Corp. Gas turbine engine with transmission and method of adjusting rotational speed
US9347373B2 (en) * 2013-12-19 2016-05-24 Pratt & Whitney Canada Corp. Gas turbine engine with transmission
FR3017159B1 (fr) * 2014-01-31 2016-03-04 Snecma Alimentation en air d'un circuit de conditionnement d'air d'une cabine d'un aeronef a partir de son turbopropulseur
US20160178464A1 (en) * 2014-12-19 2016-06-23 Rolls-Royce Corporation Torque sensor monitoring for gas turbine engine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1208140A (fr) * 1957-12-12 1960-02-22 Napier & Son Ltd Turbo-propulseur pour avion
US4503666A (en) * 1983-05-16 1985-03-12 Rockwell International Corporation Aircraft environmental control system with auxiliary power output
GB2247510A (en) * 1990-08-27 1992-03-04 Gen Electric Aircraft electrically powered boundary layer bleed system

Also Published As

Publication number Publication date
FR3017159B1 (fr) 2016-03-04
GB2536847B (en) 2020-03-18
GB2536848B (en) 2020-03-18
GB2538018B (en) 2020-03-18
US10703487B2 (en) 2020-07-07
US20170008633A1 (en) 2017-01-12
US20160347457A1 (en) 2016-12-01
FR3017159A1 (fr) 2015-08-07
US10858112B2 (en) 2020-12-08
GB201612995D0 (en) 2016-09-07
GB2536847A (en) 2016-09-28
GB2536848A (en) 2016-09-28
GB201612980D0 (en) 2016-09-07
WO2015114266A1 (fr) 2015-08-06
US20160332736A1 (en) 2016-11-17
WO2015114265A1 (fr) 2015-08-06
GB2538018A (en) 2016-11-02
US10329023B2 (en) 2019-06-25

Similar Documents

Publication Publication Date Title
WO2015114267A1 (fr) Alimentation en air d'un circuit de conditionnement d'air d'une cabine d'un aeronef a partir de son turbopropulseur
EP2801707B1 (fr) Circuit de lubrification de turbomachine avec vanne anti-siphon pour windmilling
FR3048675A1 (fr) Alimentation en air d'un circuit de conditionnement d'air d'une cabine d'un aeronef
CA2942012C (fr) Procede d'assistance d'un turbomoteur en veille d'un helicoptere multi-moteur et architecture d'un systeme propulsif d'un helicoptere comprenant au moins un turbomoteur pouvant etre en veille
EP2609012B1 (fr) Procédé d'optimisation du rendement énergétique global d'un aéronef et groupe de puissance principal de mise en oeuvre
CA2629795C (fr) Dispositif de production d'energie electrique dans un moteur a turbine a gaz a double corps
CA2807909C (fr) Procede d'optimisation de l'operabilite de motorisation d'un aeronef et groupe de puissance principal de mise en oeuvre
EP3224462B1 (fr) Dispositif de refroidissement pour une turbomachine alimente par un circuit de decharge
EP2619419B1 (fr) Systeme de pressurisation des enceintes de paliers des turbomachines par de l'air preleve dans la manche d'entree
FR2659389A1 (fr) Systeme d'evacuation de couche limite integre au demarreur d'un moteur d'avion.
CA2894226C (fr) Dispositif et procede d'augmentation temporaire de puissance
EP1553276A1 (fr) Turbomachine a turbine semi - liée entraínant un récepteur
FR2666064A1 (fr) Systeme d'evacuation de couche limite de moteur d'avion commande electriquement.
EP3870827A1 (fr) Turbomachine à double hélices non carénées
FR3075875B1 (fr) Circuit d'huile pour turbomachine a boucle d'huile auxiliaire
EP3063067B1 (fr) Procédé et système de génération de puissance auxiliaire dans un aéronef
EP4127417B1 (fr) Ensemble pour turbomachine d'aéronef comportant un système amelioré de lubrification d'un réducteur d'entrainement de soufflante
FR3139863A1 (fr) Turbomachine à turbine auxiliaire alimentée en air par le compresseur
FR3033831A1 (fr) Moteur pour aeronefs
WO2023247846A1 (fr) Reservoir d'huile pour turbomachine avec compartiment inférieur avec conduit de sortie d'huile compatible g négatif
FR3041379A1 (fr) Turbopropulseur d'aeronef
FR3033830A1 (fr) Groupe de puissance pour aeronefs

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15705347

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 201612980

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20150129

WWE Wipo information: entry into national phase

Ref document number: 1612980.1

Country of ref document: GB

WWE Wipo information: entry into national phase

Ref document number: 15115116

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15705347

Country of ref document: EP

Kind code of ref document: A1