WO2015113522A1 - 用于获取用电信息的装置和方法 - Google Patents

用于获取用电信息的装置和方法 Download PDF

Info

Publication number
WO2015113522A1
WO2015113522A1 PCT/CN2015/072908 CN2015072908W WO2015113522A1 WO 2015113522 A1 WO2015113522 A1 WO 2015113522A1 CN 2015072908 W CN2015072908 W CN 2015072908W WO 2015113522 A1 WO2015113522 A1 WO 2015113522A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
operating
power
control signal
information according
Prior art date
Application number
PCT/CN2015/072908
Other languages
English (en)
French (fr)
Inventor
刘兵
Original Assignee
刘兵
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 刘兵 filed Critical 刘兵
Priority to US15/115,107 priority Critical patent/US9961417B2/en
Priority to EP15743629.6A priority patent/EP3128334A4/en
Publication of WO2015113522A1 publication Critical patent/WO2015113522A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q9/00Arrangements in telecontrol or telemetry systems for selectively calling a substation from a main station, in which substation desired apparatus is selected for applying a control signal thereto or for obtaining measured values therefrom
    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C19/00Electric signal transmission systems
    • G08C19/12Electric signal transmission systems in which the signal transmitted is frequency or phase of ac
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/028Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor controlling wind motor output power
    • F03D7/0284Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor controlling wind motor output power in relation to the state of the electric grid
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q2209/00Arrangements in telecontrol or telemetry systems
    • H04Q2209/10Arrangements in telecontrol or telemetry systems using a centralized architecture
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q2209/00Arrangements in telecontrol or telemetry systems
    • H04Q2209/30Arrangements in telecontrol or telemetry systems using a wired architecture
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q2209/00Arrangements in telecontrol or telemetry systems
    • H04Q2209/60Arrangements in telecontrol or telemetry systems for transmitting utility meters data, i.e. transmission of data from the reader of the utility meter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q2209/00Arrangements in telecontrol or telemetry systems
    • H04Q2209/80Arrangements in the sub-station, i.e. sensing device
    • H04Q2209/82Arrangements in the sub-station, i.e. sensing device where the sensing device takes the initiative of sending data
    • H04Q2209/823Arrangements in the sub-station, i.e. sensing device where the sensing device takes the initiative of sending data where the data is sent when the measured values exceed a threshold, e.g. sending an alarm

Definitions

  • the present invention relates to the field of power electronics, and in particular, to an apparatus and method for acquiring power usage information.
  • an isolated power supply 110 is used to convert the input alternating current to direct current to provide a suitable voltage VDD to the data acquisition and processing circuit 120 and a suitable voltage VCC to the RS485 circuit 130, respectively.
  • Isolated DC/DC circuit 150 provides electrical isolation for VDD and VCC.
  • the value of voltage VDD will be determined based on the operating voltage of data acquisition and processing circuit 120; the value of voltage VCC will be determined based on the operating voltage of RS485 circuit 130.
  • the isolated power supply 110 generally includes an isolation transformer and a rectification filter circuit, wherein the isolation transformer provides electrical isolation.
  • the data acquisition and processing circuit 120 is configured to detect an operating parameter of the power supply circuit 900.
  • the operating parameters include the operating current and operating voltage of the power supply circuit 900, and the like.
  • the optocoupler component 140 is located between the data acquisition and processing circuit 120 and the RS485 circuit 130 for isolation of signal transmission.
  • the RS485 circuit 130 transmits the detected operating parameters to the remote server 190 via the RS485 bus.
  • isolated power supply 110, data acquisition and processing circuitry 120, optocoupler component 140, RS485 circuitry 130, and isolated DC/DC circuitry 150 are packaged in a measurement device 100 that is mounted in a distribution box Used to provide remote server 190 with operating parameters for a power supply loop 900.
  • a power supply loop that typically includes multiple supply circuits.
  • a power supply circuit may include multiple electronic circuits such as a lighting circuit, a socket circuit, and an air conditioning circuit.
  • an electric meter is provided for one power supply circuit (for example, a power supply circuit corresponding to the above measuring device 100) to measure the consumed electric energy.
  • a power supply circuit for example, a power supply circuit corresponding to the above measuring device 100
  • users especially those in civil buildings such as state offices and large public buildings, often use the power meter to provide the total power consumption information of the power supply circuit, which makes it impossible to "target" to identify possible energy savings. Link.
  • the measuring device 100 of Fig. 1 In order to carry out energy consumption analysis more accurately, it is desirable to be able to simultaneously perform energy consumption monitoring for each electronic supply circuit, that is, to realize power consumption metering. It is proposed to use the measuring device 100 of Fig. 1 to perform electrical energy metering for each of the electronic circuits. However, since the isolated power source 110 is bulky, and it is also necessary to provide the isolated DC/DC circuit 150 and the optocoupler unit 140 for the RS485 circuit 130, the detecting device 100 is bulky. If a plurality of measuring devices 100 are used to separately monitor a plurality of electronic circuits, a large space will be occupied. Therefore, such a proposed solution is difficult to be applied in practice.
  • the present invention provides a device for acquiring power consumption information, which not only enables metering by electricity, but also has the advantage of being small in size.
  • an apparatus for acquiring power consumption information includes: a data acquisition and processing circuit for detecting an operating parameter relating to a coupleable power supply loop; and a non-isolated power source for alternating current power Converting to direct current to provide a suitable operating voltage to the data acquisition and processing circuit; data communication module for modulating the detected operational parameter to a predetermined frequency, wherein the modulated operational parameter can be Transmitting, the predetermined frequency is higher than the predetermined data transmission rate such that the transmitted operating parameters will be demodulable; and an isolation component for providing isolation of electrical isolation and signal transmission to isolate the modulated operational parameters.
  • a method for acquiring power usage information includes: converting alternating current power into direct current power to provide a suitable operating voltage; and detecting operating parameters of a coupleable power supply loop at the operating voltage Modulating the detected operational parameter to a predetermined frequency, wherein the modulated operational parameter can be transmitted at a predetermined data transmission rate that is higher than the predetermined data transmission rate such that the transmitted operational parameter will be capable of being Demodulation; provides isolation of electrical isolation and signal transmission to isolate the operational parameters of the modulation.
  • a non-isolated power source is used to provide a working voltage for the data acquisition and processing circuit, and the data communication module modules the operating parameters detected by the data acquisition and processing circuit to a predetermined frequency.
  • isolation components that provide electrical isolation and signal transmission isolation are coupled to isolate the modulated operating parameters. Therefore, the device is not only capable of metering by electricity, but also has the advantage of being small in size.
  • the apparatus for acquiring power consumption information according to the present invention is easy to be widely used in practice.
  • Figure 1 shows a schematic diagram of a conventional apparatus for acquiring power usage information
  • FIG. 2 shows a schematic diagram of an apparatus for acquiring power usage information, in accordance with one embodiment of the present invention
  • 3A shows a schematic diagram of a non-isolated power supply in accordance with one embodiment of the present invention
  • 3B shows a schematic diagram of a non-isolated power supply in accordance with another embodiment of the present invention.
  • FIG. 4A shows a schematic diagram of an ASK (Amplitude Shift Keying) modulation mode in accordance with one embodiment of the present invention
  • FIG. 4B is a diagram showing an FSK (Frequency Shift Keying) modulation mode according to another embodiment of the present invention.
  • 4C is a diagram showing a PSK (Phase Shift Keying) modulation mode according to still another embodiment of the present invention.
  • FIG. 5 is a flowchart of a method for acquiring power usage information according to an embodiment of the present invention.
  • FIG. 6 shows a schematic diagram of an apparatus for acquiring power usage information according to another embodiment of the present invention.
  • FIG. 7 is a diagram showing modulation of operating parameters using an ASK modulation method according to an embodiment of the present invention.
  • FIG. 8 is a diagram showing an apparatus for acquiring power consumption information according to another embodiment of the present invention.
  • FIG. 9 is a flow chart of a method of generating a control signal, in accordance with one embodiment of the present invention.
  • FIG. 10 is a diagram showing an apparatus for acquiring power consumption information according to still another embodiment of the present invention.
  • Figure 11 is a diagram showing the operation of an analog leakage device in accordance with one embodiment of the present invention.
  • FIG. 12 is a diagram showing an apparatus for acquiring power consumption information according to still another embodiment of the present invention.
  • FIG. 13 is a diagram showing an apparatus for acquiring power consumption information according to still another embodiment of the present invention.
  • Figure 14 shows a system diagram for acquiring power usage information in accordance with one embodiment of the present invention.
  • FIG. 2 shows a schematic diagram of an apparatus for acquiring power usage information in accordance with one embodiment of the present invention.
  • a non-isolated power supply 210 is used to convert the input alternating current to direct current to provide a suitable operating voltage VDD to the data acquisition and processing circuit 220.
  • the value of voltage VDD will be determined based on the operating voltage of data acquisition and processing circuit 220.
  • the data acquisition and processing circuit 220 is configured to detect an operating parameter of a coupleable power supply circuit 900A.
  • the operating parameters include the operating current, operating voltage, residual current, power factor, and operating temperature of the power supply circuit 900A.
  • the power supply circuit 900A may be either the power supply circuit 900 for one measurement device 100 shown in FIG.
  • power supply loop 900A is a lighting loop.
  • the power supply circuit 900A is an air conditioning circuit.
  • a data communication module 230 configured to modulate the detected operating parameter to a predetermined frequency, wherein the modulated operating parameter can be transmitted at a predetermined data transmission rate, the predetermined frequency should be much higher than the predetermined data transmission rate such that the The transmitted operating parameters will be able to be demodulated.
  • the isolation component 240 is configured to couple the modulated operating parameters.
  • the isolation component 240 is a passive coupling isolation component.
  • isolation component 240 is a magnetically coupled isolation transformer having a primary to secondary turns ratio of 1:1. The isolation component 240 can also improve the anti-interference ability of the communication while providing electrical isolation and signal transmission isolation.
  • the non-isolated power supply 210A includes a step-down capacitor C1, a rectifying and filtering circuit composed of a diode D1 and a capacitor C2, and a voltage stabilizing circuit composed of a diode D2 and a voltage regulator S1.
  • the step-down capacitor C1 is configured to reduce the potential generated by the alternating current of at least one of the three-phase alternating currents.
  • the alternating current having a reduced potential is supplied to the diode D2 and the regulator S1 after being rectified via the diode D1 and filtered by the filter C2.
  • Diode D2 and voltage regulator S1 regulate the voltage output through filter C2.
  • the regulated power supply U1 can be used to provide the operating voltage VDD for the data acquisition and processing circuit 220 of FIG.
  • FIG. 3B shows a schematic diagram of a non-isolated power supply 210B in accordance with another embodiment of the present invention.
  • three parallel step-down capacitors C1, C3 and C4 are respectively connected to the three phases A, B and C of the three-phase AC power supply.
  • Diodes D1, D3, and D4 are connected to the step-down capacitors C1, C3, and C4, respectively, and form a rectifying and filtering circuit with the filter capacitor C2 to rectify and filter the stepped alternating current, respectively.
  • Diode D2 and regulator S1 control the stabilization of output voltage U1.
  • the non-isolated power supply shown in FIG. 3B can still output the stable voltage U1 when one or two phases of the three-phase AC power supply fail, thereby providing system reliability.
  • the data communication module 230 may adopt an ASK modulation mode to modulate operating parameters to a predetermined frequency; or may use an FSK modulation mode to modulate operating parameters to a predetermined schedule. Frequency; PSK modulation mode can also be used to modulate operating parameters to a predetermined frequency.
  • 4A, 4B, and 4C respectively show schematic diagrams of modulation of operating parameters using an ASK modulation mode, an FSK modulation mode, and a PSK modulation mode.
  • the data communication module 230 for modulating the operating parameters to a predetermined frequency may be implemented by computer software or by a hardware circuit.
  • the data communication module 230 can be either a module independent of the data acquisition and processing circuit 220 or integrated in the data acquisition and processing circuit 220.
  • a display section may be further provided to display the operational parameters detected by the data acquisition and processing circuit 220 in time.
  • the isolated power source 110 is not used, and the isolated DC/DC circuit 150 and the optocoupler unit 140 are not provided for the RS485 circuit 130, when the non-isolated power source 210,
  • the data acquisition and processing circuit 220, the data communication module 230, and the isolation member 240 are assembled in a casing as a means for acquiring power consumption information At 200 o'clock (as shown in Figure 2), the volume of the device 200 can be greatly reduced.
  • FIG. 5 is a flow chart of a method for acquiring power usage information in accordance with one embodiment of the present invention.
  • the non-isolated power supply 210 converts at least one of the three-phase AC power to DC power to provide a suitable operating voltage VDD to the data acquisition and processing circuit 220 (step S10).
  • the value of voltage VDD will be determined based on the operating voltage of data acquisition and processing circuit 220.
  • the data acquisition and processing circuit 220 detects the operating parameters of the power supply circuit 900A (step S20).
  • the operating parameters include the operating current, operating voltage, residual current, power factor, and operating temperature of the power supply circuit 900A.
  • the data communication module 230 modulates the detected operating parameters to a predetermined frequency (step S30), wherein the modulated operating parameters can be transmitted at a predetermined data transmission rate, the predetermined frequency should be much higher than the predetermined data transmission rate
  • the transmitted operating parameters will be demodulated.
  • the isolation unit 240 performs coupling isolation of the modulated operating parameters (step S40). This coupling isolation includes isolation of electrical isolation and signal transmission.
  • the isolation component 240 employs a passive coupling isolation component.
  • isolation component 240 is a magnetically coupled isolation transformer having a primary to secondary turns ratio of 1:1.
  • FIG. 6 shows a schematic diagram of an apparatus for acquiring power usage information according to another embodiment of the present invention.
  • the non-isolated power supply 310, the data acquisition and processing circuit 320, the data communication module 330, and the isolation component 340 are respectively associated with the non-isolated power supply 210, the data acquisition and processing circuit 220, and the data communication module of FIG. 230, the isolation member 240 has the same or similar structure and function, and will not be described again here. Since the isolated power supply is not employed, when the non-isolated power supply 310, the data acquisition and processing circuit 320, the data communication module 330, and the isolation member 340 are assembled in a casing as the device 300 for acquiring power consumption information, The earth reduces the volume of the device 300.
  • data communication module 330 modulates the operational parameters of power supply loop 900B detected by data acquisition and processing circuit 320 to a predetermined frequency.
  • the modulated operational parameters are output to bus 800 via isolation component 340 and transmitted to remote server 700 at a predetermined data transmission rate.
  • the bus 800 is capable of transmitting data in a bus-competitive communication mode (described in detail below in conjunction with FIG. 7).
  • the remote server 700 receives the operational parameters transmitted via the bus 800 and generates power usage information based on the operational parameters.
  • the power consumption information is provided to the user (for example, displayed to the user), and the user can perform energy consumption analysis and power management.
  • power supply loop 900B is an illumination loop.
  • the remote server 700 is able to calculate the electrical energy consumed by the lighting loop. If the energy consumption is too high, certain measures need to be taken to avoid wasting power. For example, you can control the lighting switch time or replace energy-saving lamps according to the needs of the lighting environment.
  • the bit “0" is defined as the mark mode (i.e., the bus is in an occupied state), and the bit “1" is defined as an empty mode (i.e., the bus is in an idle state).
  • Figure 7 shows a schematic diagram of modulation of data (i.e., operating parameters) using ASK modulation.
  • the priority of "0" is specified to be higher than the priority of "1.”
  • a set of binary numbers consisting of bits "0" and "1" is used as a control field to indicate the priority of the data to be transmitted.
  • the priority of data requiring urgent processing should be higher than the priority of data representing general information.
  • an alarm signal needs to be sent to the remote server 700 to prompt the user that the power supply circuit 900B has a power safety hazard.
  • the priority of the alert signal should be set higher relative to, for example, the priority of the signal indicative of the power consumed by the power supply loop 900B.
  • the corresponding priority can be preset for different types of data to be transmitted.
  • the control field representing the priority is set in the data frame as close as possible to the position of the frame header.
  • a communication device e.g., data communication module 330
  • a communication device needs to simultaneously listen to the bus while transmitting data to be transmitted to the bus. If it is found that other communication devices connected to the bus are transmitting higher priority data, the communication device must end transmitting data and exit the bus contention.
  • the bit value of the control field for indicating the priority of the data to be transmitted sent by the data communication module 330 via the isolation unit 340 is 1, and the other communication device received via the bus transmits the representation for If the bit value of the control field of the priority of the data to be transmitted is 0, it indicates that bus contention occurs and the data transmitted by the other communication device has a higher priority than the data to be transmitted by the communication device, and therefore, the communication device must end. Send data to give up the bus for the other communication device.
  • the signal modulated by the data communication module 330 is an alternating current signal. Since the AC signal is transmitted on the bus 800, even when a communication node (for example, the device 300 for acquiring power consumption information) fails, the communication node can still be on the bus 800. It is enough to present a certain AC impedance, and thus, does not cause a short circuit of the entire communication line transmitted via the bus 800, effectively improving the stability of the system. In addition, since the communication node cannot transmit data, the failed node can be quickly located.
  • a communication node for example, the device 300 for acquiring power consumption information
  • the apparatus for acquiring power consumption information provided by the present invention, it is possible to measure by electricity.
  • analyze and judge whether there are safety hazards in the detected power supply loop, such as leakage, overload and power line abnormal loss, etc., so as to further preventive measures (for example, disconnecting the power supply circuit or providing warning information) ) is another highlight of the present invention.
  • FIG 8 is a schematic illustration of an apparatus for acquiring power usage information in accordance with another embodiment of the present invention.
  • the apparatus includes a control unit 360.
  • Control unit 360 receives the operational parameters detected from data acquisition and processing circuitry 320. By comparing the operational parameter to a predetermined threshold, the control unit 360 can generate a control signal for disconnecting the power supply circuit 900B and/or an alarm signal for indicating that the power supply circuit 900B has a power safety hazard.
  • Figure 9 depicts a specific embodiment of generating the control signal and/or alarm signal.
  • the control unit 360 receives the operating voltage and operating current of the power supply circuit 900B detected by the data acquisition and processing circuit 320 at different sampling instants.
  • control unit 360 may obtain a set of operational power values for power supply loop 900B during the first predetermined time period (step S710).
  • an average of the operating power values during the first predetermined time period can be calculated to obtain a fast average power P F of the power supply loop 900B (step S720).
  • N sets of operating voltages and operating currents are collected during the first predetermined time period, then:
  • Whether the control signal or the alarm signal is generated is determined by comparing the fast average power P F with the first threshold (step S730). In one arrangement, if the fast average power P F is greater than the first threshold, the control unit 360 generates the control signal that can initiate operation of disconnecting the power supply circuit 900B. In one embodiment, the control signal can be provided to a relay (not shown). The operation of the power supply circuit 900B can be interrupted by the operation of the relay. If the fast average power P F approaches the first threshold but does not exceed the first threshold, the control unit 360 generates an alert signal. The alert signal is modulated to a predetermined frequency via data communication module 330 and output to bus 800 via isolation component 340. The remote server 700 receives the alert signal via the bus 800. The alarm signal will be provided to the user as a warning message indicating that the power supply circuit 900B has a potential safety hazard. For example, the warning message can be displayed on the display; a lighting device or sounding device can also be provided to remind the user.
  • control unit 360 receives the operating voltage and operating current of power supply loop 900B detected by data acquisition and processing circuit 320 at different sampling instants during a second predetermined time period. Based on the detected operating voltage and operating current, control unit 360 obtains a set of operating power values for the power supply loop for a second predetermined time period. The second predetermined time period is greater than the first predetermined time period. For example, the first predetermined time period is 20 milliseconds and the second predetermined time period is 10 seconds. Based on the set period of time within the second predetermined operating value for the power supply circuit, the control unit 360 calculates the average power of the slow loop power P S. In one embodiment, the M sets of operating voltages and operating currents are collected during the second predetermined time period (in the case of the same sampling rate, M>N), then:
  • the control unit 360 determines whether to generate the control signal or the alarm signal.
  • the control signal is generated if the fast average power P F is greater than the first threshold and the slow average power P S is also greater than the second threshold.
  • the alarm signal is generated if the fast average power P F approaches the first threshold but does not exceed the first threshold, and the slow average power P S also approaches the second threshold but does not exceed the second threshold.
  • the control unit 360 calculates the magnitude of the change in the operating voltage. Based on the magnitude of the change in the operating voltage, it is determined whether the control signal or the alarm signal is generated. For example, if the fast average power P F is greater than the first threshold and the operating voltage variation amplitude of the power supply loop 900B is also greater than a predetermined threshold, then the control signal is generated. The alarm signal is generated if the fast average power P F is close to the first threshold but does not exceed the first threshold, and the operating voltage variation amplitude of the power supply loop 900B does not exceed the predetermined threshold.
  • the operational parameters detected by the data acquisition and processing circuit 320 include the residual current of the power supply loop 900B.
  • the control unit 360 calculates the magnitude of the change in the residual current. Based on the magnitude of the change in the residual current, it is determined whether the control signal or the alarm signal is generated. For example, if the fast average power P F is greater than the first threshold and the residual current variation amplitude of the power supply loop 900B is also greater than a predetermined threshold, then the control signal is generated. The alarm signal is generated if the fast average power P F is close to the first threshold but does not exceed the first threshold, and the residual current variation amplitude of the power supply loop 900B does not exceed the predetermined threshold.
  • the inherent leakage and dangerous leakage of the system can be effectively distinguished by monitoring the residual current of the power supply circuit 900B.
  • the inherent leakage of the system may also change, resulting in a small change in the residual current detected.
  • the operational parameters detected by data acquisition and processing circuitry 320 include the power factor of power supply loop 900B. Based on the power factor, control unit 360 determines whether the alert signal is generated. For example, if the power factor of the power supply loop 900B is below a predetermined threshold, the alert signal is generated.
  • the operational parameters detected by data acquisition and processing circuit 320 include the operating temperature of power supply loop 900B. Based on the operating temperature, control unit 360 determines whether the control signal or alarm signal is generated. For example, the alarm signal is generated when the operating temperature of the power supply circuit 900B is greater than a first predetermined threshold and does not exceed a second predetermined threshold. The control signal is generated if the operating temperature of the power supply circuit 900B exceeds a second predetermined threshold.
  • control unit 360 may also independently determine whether to generate a control signal or an alarm signal according to any of the above auxiliary solutions.
  • the control unit 360 may further combine the technical solution described above with reference to FIG. 9 with any one or more of the foregoing auxiliary solutions, or combine two or more of the above auxiliary solutions to determine whether to generate Control signal or alarm signal.
  • the magnitude of the change in the operating voltage of the power supply circuit 900B is used as the basic information of the state of the power supply circuit, and the operation of the power supply circuit 900B is performed. Temperature is used as additional information for the status of the power supply loop. In conjunction with the basic information and the additional information, the control unit 360 determines whether the control signal or the alarm signal is generated.
  • the control signal is generated; and if the operating temperature of the power supply circuit 900B does not exceed another predetermined The threshold is generated by the threshold. Since the control signal can initiate the operation of disconnecting the power supply circuit 900B, the alarm signal can prompt the customer to pay attention to the safety of the power consumption, and therefore, the safety of the monitored power system can be further enhanced.
  • control unit 360 can be either a stand-alone module, integrated in the data acquisition and processing circuit 320, or integrated with the data communication module 330. Since the isolated power supply is not employed, the non-isolated power supply 310, the data acquisition and processing circuit 320, the control unit 360, the data communication module 330, and the isolation member 340 are assembled in a casing as the apparatus 400 for acquiring power consumption information. At the time, the volume of the device 400 can be greatly reduced.
  • FIG 10 is a schematic diagram of an apparatus for acquiring power usage information in accordance with another embodiment of the present invention.
  • the apparatus includes an analog leakage device 450.
  • the analog leakage device 450 is capable of entering an analog leakage state in response to the control signal.
  • the analog leakage device 450 simulates generating a leakage current.
  • the simulated leakage current causes the leakage protector 420 connected in the power supply circuit 900B to detect a leakage current in the power supply circuit 900B, and the leakage protector 420 will disconnect the power supply circuit 900B.
  • the analog leakage device 450 includes a switch 452 and a current shunt line L3.
  • Leakage protector 420 includes a zero sequence transformer (not shown). In the normal operating state, the switch 452 is in an open state. The load L in the power supply circuit 900B is powered via the L 1 -L 2 loop. If no leakage current occurs in the power supply circuit 900B, the input current I 1 of the power supply circuit 900B is substantially equal to the return current I 2 of the power supply circuit 900B. Therefore, the leakage protector does not perform the operation of disconnecting the power supply circuit 900B.
  • the switch 452 can employ a relay.
  • the switch 452 can employ a semiconductor device such as a transistor, an insulated gate bipolar transistor (IGBT), or a metal oxide semiconductor field effect transistor (MOSFET) to reduce the driving power of the switch SW.
  • a semiconductor device such as a transistor, an insulated gate bipolar transistor (IGBT), or a metal oxide semiconductor field effect transistor (MOSFET) to reduce the driving power of the switch SW.
  • IGBT insulated gate bipolar transistor
  • MOSFET metal oxide semiconductor field effect transistor
  • the analog leakage device 450 can be assembled in a case 500 together with the non-isolated power supply 310, the data acquisition and processing circuit 320, the data communication module 330, the isolation member 340, and the control unit 360. It can also be placed outside the casing 500. Similarly, the leakage protector 420 may be packaged in the case 500 or may be disposed outside the case 500.
  • the non-isolated power supply 310, the data acquisition and processing circuit 320, the data communication module 330, the isolation unit 340, the control unit 360, and the analog leakage device 450 are assembled in a casing for use as an acquisition.
  • the volume of the device 500 can be greatly reduced.
  • Figure 12 shows a schematic diagram of an apparatus for acquiring power usage information in accordance with yet another embodiment of the present invention.
  • a local data processing device 350 is configured as compared to the device shown in FIG.
  • data communication module 330 modulates the operational parameters of power supply loop 900B detected by data acquisition and processing circuit 320 to a predetermined frequency.
  • the modulated operational parameters are output to bus 800 via isolation component 340 and transmitted to local data processing device 350 via bus 800.
  • the local data processing device 350 reports the operational parameters to the remote server 700 via the transmission line 810.
  • Transmission line 810 employs a communication mode in which the bus competes.
  • the transmission line 810 can use either one of three alternating current lines; or a dedicated communication line such as an Ethernet line, a twisted pair or a telephone line.
  • the remote server 700 performs energy consumption analysis and power management according to the received operating parameters.
  • the local data processing device 350 may directly forward the working parameters to the remote server 700, or may perform preliminary processing on the working parameters to generate customized information of the power supply circuit 900B, and then The customized information is sent to the remote server 700.
  • local data processing device 350 calculates the electrical energy consumed by power supply loop 900B over a predetermined time (eg, 1 day) based on the operational parameters and transmits the consumed electrical energy to the remote server 700 as customized information.
  • the local data processing device 350 can not only receive and process but is provided by a box 300.
  • the operating parameters of the associated power supply circuit can also receive and process the operating parameters of the respective power supply loops transmitted by the plurality of cartridges 300 via the bus 800.
  • the local data processing device 350 transmits the operational parameters provided by the one or more cartridges 300 to the remote server 700 as power usage information.
  • the scheme for generating a control signal or an alarm signal by the control unit 360 described above in connection with FIG. 9 and the respective assistance schemes may also be implemented by the local data processing device 350.
  • local data processing device 350 may also compare the received operational parameters to a predetermined threshold to generate a control signal or an alarm signal for disconnecting power supply loop 900B.
  • local data processing device 350 provides the generated control signals to cartridge 300 via bus 800.
  • the isolation component 340 in the cartridge 300 receives the control signal transmitted via the bus 800 and provides the control signal to the data communication module 330.
  • the data communication module 330 receives the control signal transmitted via the isolation unit 340 and initiates an operation of disconnecting the power supply circuit according to the control signal.
  • the data communication module 330 can provide the control signal to a relay (not shown); by operation of the relay, triggering an operation of the leakage protector to disconnect the power supply circuit 900B.
  • the scheme for generating a control signal or an alarm signal by the control unit 360 described above in conjunction with FIG. 9 and the respective assistance schemes may also be implemented by the remote server 700. That is, the remote server 700 can compare the received operational parameters to a predetermined threshold to generate a control signal or an alarm signal for disconnecting the power supply loop 900B. In one embodiment (see FIG. 12), remote server 700 transmits the generated control signals via transmission line 810. The local data processing device 350 forwards the control signal transmitted via the transmission line 810. The isolation component 340 in the cartridge 300 provides the forwarded control signals transmitted via the bus 800 to the data communication module 330. The data communication module 330 starts an operation of disconnecting the power supply circuit according to the control signal. In another embodiment (see FIG.
  • remote server 700 transmits the generated control signals via bus 800.
  • the isolation component 340 in the cartridge 300 receives the control signal transmitted via the bus 800 and provides the control signal to the data communication module 330.
  • the data communication module 330 receives the control signal transmitted via the isolation unit 340 and initiates an operation of disconnecting the power supply circuit according to the control signal.
  • Figure 13 shows a schematic diagram of an apparatus for acquiring power usage information in accordance with yet another embodiment of the present invention.
  • the non-isolated power supply 310, the data acquisition and processing circuit 320, the data communication module 330, the isolation unit 340, the control unit 360, and the analog leakage device 450 are mounted. It is placed in a box 600.
  • the leakage protector 420 is disposed outside the casing 600.
  • the same reference numerals are given to the same or similar structures and functions as those of the above-mentioned FIGS. 3 to 11 and will not be described again.
  • the operation of generating a control signal or an alarm signal may be implemented by the control unit 360, by the local data processing apparatus 350, or by the remote server 700, as described in the above embodiments.
  • remote server 700 is also capable of generating an instruction.
  • the local data processing device 350 receives the command transmitted via the transmission line 810 and updates the predetermined threshold in accordance with the instruction.
  • remote server 700 transmits the generated instructions via bus 800 (which is modulated and transmitted via bus 800).
  • the isolation component 340 in the cartridge 400 receives the instructions transmitted via the bus 800 and provides the instructions to the data communication module 330.
  • Control unit 360 updates the predetermined threshold based on the instruction provided by data communication module 330 (i.e., demodulating the instruction).
  • remote server 700 transmits the generated instructions via transmission line 810 (which is modulated and transmitted via bus 810).
  • the local data processing device 350 forwards the command transmitted via the transmission line 810.
  • the isolation component 340 in the cartridge 600 provides the forwarded instructions transmitted via the bus 800 to the data communication module 330.
  • Control unit 360 updates the predetermined threshold based on the instruction provided by data communication module 330 (i.e., demodulating the instruction).
  • FIG 14 is a schematic illustration of a system for acquiring power usage information in accordance with one embodiment of the present invention.
  • the electric component metering device 1000 can employ any one of the cartridges 200, 300, 400, 500, 600 in the embodiment shown in Figs. 2 to 13.
  • the local data processing device 1100 can employ the local data processing device 350 of the embodiment shown in Figures 12 through 13.
  • the remote server 1200 can employ the remote server 700 of the embodiment shown in Figures 6 through 12.
  • the electric sub-metering device 1000 1M is placed in the box 1 together with the local data processing device 1100 1 for providing an electric unit
  • the Electricity consumption information of a power unit power consumption metering device 1000 21 , power metering device 1000 22 ... power metering device 1000 2P is placed in the cabinet 2 together with the local data processing device 1100 2
  • the local data processing device 1100 2 Used to provide power consumption information of the second power unit; ... power consumption metering device 1000 N1 , power item metering device 1000 N2 ... power item metering device 1000 NQ and local data processing device 1100 N
  • the box N it is used to provide power consumption information of the Nth power unit.
  • the cabinet 1 is used to detect operating parameters of four power supply circuits.
  • the electrical sub-metering device 1000 11 is used to provide operating parameters of the lighting circuit; the electrical sub-metering device 1000 12 is used to provide operating parameters of the outlet circuit; and the electrical sub-metering device 1000 13 is used to provide work for the kitchen electrical circuit
  • the parameter; the electrical sub-metering device 1000 14 is used to provide operating parameters of the air conditioning circuit.
  • the operating parameters of the lighting circuit, the operating parameters of the outlet circuit, the operating parameters of the kitchen appliance circuit, and the operating parameters of the air conditioning circuit are transmitted to the local data processing device 1100 1 via the bus 800, respectively.
  • the local data processing device 1100 1 may forward the operational parameters directly to the remote server 1200, and may also transmit the operational parameters according to a predetermined channel.
  • the local data processing device 1100 1 may transmit the operating parameters of the kitchen appliance circuit and the operating parameters of the air conditioning circuit as power usage information for the high power consumer to the remote server 1200 via the predetermined communication channel.
  • the number (M, P...Q) of the power metering devices in each of the cabinets can be determined according to the number of power supply circuits to be detected.
  • the box can be used to detect the power supply circuit of one power unit.
  • the box does not provide the power consumption information of the respective electronic circuits that constitute the power supply circuit of the power unit, the volume of the box is significantly reduced compared with the power distribution box of the prior art. Small and easy to install.
  • the remote server 1200 can also send the power consumption information of each power unit to a central data server 1300 by wire or wirelessly, so as to perform energy analysis and power management in a centralized manner. .
  • the data acquisition and processing circuit is used to detect the working parameters of a coupled power supply loop, indicating that the data acquisition and processing circuit and the power supply loop can be directly connected or connected via other electronic components, and the power supply loop does not include the data acquisition and processing circuit.
  • the device for example: electricity metering device 1000.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)

Abstract

一种用于获取用电信息的装置(200),包括:数据采集与处理电路(220),用于检测有关一个可耦合的供电回路(900A)的工作参数;非隔离式电源(210),用于将交流电转换为直流电以向该数据采集与处理电路(220)提供一合适的工作电压;数据通信模块(230),用于将该检测的工作参数调制到预定频率,其中,该调制的工作参数能够以预定的数据传输速率被发送,该预定频率高于该预定的数据传输速率以使得该发送的工作参数能够被解调;隔离部件(240),用于提供电气隔离和信号传输的隔离以将该调制的工作参数进行耦合隔离。该装置不仅能够实现用电分项计量,而且具有体积小的优点。

Description

用于获取用电信息的装置和方法 技术领域
本发明涉及电力电子技术领域,具体涉及一种用于获取用电信息的装置和方法。
背景技术
伴随着经济的高速发展,能源消耗与环境污染对人民生活的影响,受到了越来越多的关注。节能减排已经成为一项关乎国计民生的社会问题。以合理用电和节约用电为宗旨的科学用电是节能减排的重心之一。及时准确地获取用电信息,根据该用电信息进行能耗分析与用电管理,是科学用电的基础。
附图1是一种获取用电信息的技术方案。如附图1所示,隔离电源110,用于将输入的交流电转换为直流电以分别向数据采集与处理电路120提供合适的电压VDD和向RS485电路130提供合适的电压VCC。隔离型DC/DC电路150为VDD和VCC提供电气隔离。电压VDD的数值将根据数据采集与处理电路120的工作电压确定;电压VCC的数值将根据RS485电路130的工作电压确定。隔离电源110,一般包括隔离变压器和整流滤波电路,其中的隔离变压器提供电气隔离。数据采集与处理电路120,用于检测供电回路900的工作参数。该工作参数包括供电回路900的工作电流和工作电压等。光耦部件140,位于数据采集与处理电路120与RS485电路130之间,用于信号传输的隔离。RS485电路130将检测的工作参数经由RS485总线发送到远程服务器190。通常,隔离电源110、数据采集与处理电路120、光耦部件140、RS485电路130和隔离型DC/DC电路150被封装在一个测量装置100中,该测量装置100被安装在一个配电箱中,用于向远程服务器190提供针对一个供电回路900的工作参数。一个供电回路,通常包括多个供电子回路。例如:一个供电回路可以包括照明回路、插座回路、空调回路等多个供电子回路。
在实际应用中,针对一个供电回路(例如:对应上述测量装置100的供电回路)提供一个电表来计量消耗的电能。然而,用户,尤其是像国家机关办公建筑和大型公共建筑这类民用建筑中的能耗大户,常常由于使用一个电表提供该供电回路的总用电信息而导致无法“有的放矢”地找出可能节能的环节。
为了更为准确地进行能耗分析,期望能够针对各个供电子回路同时进行能耗监测,即:实现用电分项计量。有建议采用附图1中的测量装置100对每个供电子回路进行用电分项计量。但是,由于隔离电源110体积较大,并且还需要为RS485电路130提供隔离型DC/DC电路150和光耦部件140,使得检测装置100体积庞大。若采用多个测量装置100分别对多个供电子回路进行监测,将占用很大空间,因此,这种建议的方案很难在实际中得到应用。
发明内容
本发明提供了一种用于获取用电信息的装置,其不仅能够实现用电分项计量,而且具有体积小的优点。
按照本发明的一个方面提供了一种用于获取用电信息的装置,包括:数据采集与处理电路,用于检测有关一个可耦合的供电回路的工作参数;非隔离式电源,用于将交流电转换为直流电以向该数据采集与处理电路提供一合适的工作电压;数据通信模块,用于将该检测的工作参数调制到预定频率,其中,该调制的工作参数能够以预定的数据传输速率被发送,该预定频率高于该预定的数据传输速率以使得该发送的工作参数将能够被解调;隔离部件,用于提供电气隔离和信号传输的隔离以将该调制的工作参数隔离。
按照本发明的一个方面提供了一种用于获取用电信息的方法,包括:将交流电转换为直流电以提供一合适的工作电压;在该工作电压下,检测一个可耦合的供电回路的工作参数;将该检测的工作参数调制到预定频率,其中,该调制的工作参数能够以预定的数据传输速率被发送,该预定频率高于该预定的数据传输速率以使得该发送的工作参数将能够被解调;提供电气隔离和信号传输的隔离,以将该调制的工作参数隔离。
按照本发明的用于获取用电信息的装置,采用了非隔离式电源为数据采集与处理电路提供工作电压,并且由数据通信模块将该数据采集与处理电路检测的工作参数调制到预定频率,此外,又设置了能够提供电气隔离和信号传输隔离的隔离部件对调制的工作参数进行耦合隔离。因此,该装置不仅能够实现用电分项计量,而且具有体积小的优点。按照本发明的用于获取用电信息的装置,易于在实际中得到广泛应用。
附图说明
本发明的上述以及其它特点、特征、优点和益处通过以下结合附图的详细描述将变得更加显而易见,其中:
图1示出常规的用于获取用电信息的装置的示意图;
图2示出根据本发明一个实施例的用于获取用电信息的装置的示意图;
图3A示出根据本发明一个实施例的非隔离式电源的示意图;
图3B示出根据本发明另一个实施例的非隔离式电源的示意图;
图4A示出根据本发明一个实施例的ASK(幅移键控)调制模式的示意图;
图4B示出根据本发明另一个实施例的FSK(频移键控)调制模式的示意图;
图4C示出根据本发明又一个实施例的PSK(相移键控)调制模式的示意图;
图5是根据本发明一个实施例的用于获取用电信息的方法的流程图;
图6示出根据本发明另一个实施例的用于获取用电信息的装置的示意图;
图7示出了根据本发明的一个实施例的采用ASK调制方式对工作参数进行调制的示意图;
图8示出根据本发明另一个实施例的用于获取用电信息的装置的示意图;
图9是根据本发明一个实施例的生成控制信号的方法的流程图;
图10示出根据本发明又一个实施例的用于获取用电信息的装置的示意图;
图11示出根据本发明一个实施例的模拟漏电装置的工作示意图;
图12示出根据本发明又一个实施例的用于获取用电信息的装置的示意图;
图13示出了根据本发明又一个实施例的用于获取用电信息的装置的示意图;以及
图14示出根据本发明一个实施例的用于获取用电信息的系统示意图。
在所有附图中,相同的附图标记表示相似或相应的特征或功能。
具体实施方式
图2示出根据本发明一个实施例的用于获取用电信息的装置的示意图。如附图2所示,非隔离式电源210,用于将输入的交流电转换为直流电以向数据采集与处理电路220提供一个合适的工作电压VDD。电压VDD的数值将根据数据采集与处理电路220的工作电压来确定。数据采集与处理电路220,用于检测一个可耦合的供电回路900A的工作参数。该工作参数包括供电回路900A的工作电流、工作电压、剩余电流、功率因数和工作温度等。这里,供电回路900A既可以是附图1中所示的针对一个测量装置100的供电回路900,也可以是组成供电回路900的任意一个子回路。在一个实施例中,供电回路900A是照明回路。在另一个实施例中,供电回路900A是空调回路。数据通信模块230,用于将检测的工作参数调制到预定频率,其中,该调制的工作参数能够以预定的数据传输速率被发送,该预定频率应当比该预定的数据传输速率高很多以使得该发送的工作参数将能够被解调。在一个实施例中,当以比特率(或称波特率B)表示该数据传输速率(数据传输速率也可以用传送一个二进制比特位所需时间的“位时间(Td)表示”,Td=1/B)时,若数据传输速率为9600bps(即:波特率B=每秒9600比特),则该预定频率为120kHz或更高频率,以使得接收该调制的工作参数的接收端能够准确地解调该工作参数。隔离部件240,用于将调制的工作参数进行耦合隔离。隔离部件240是一个无源的耦合隔离部件。在一个实施例中,隔离部件240是一个初级和次级线匝比为1:1的磁耦合隔离变压器。隔离部件240在提供电气隔离和信号传输隔离的同时,还可以提高通信的抗干扰能力。
在附图3A中示出了附图2所示的非隔离式电源210的一个实施例。如附图3A所示,非隔离式电源210A包括:降压电容器C1、由二极管D1和电容C2组成的整流滤波电路、由二极管D2和稳压器S1组成的稳压电路。降压电容器C1被配置为将三相交流中的至少一相的交流电产生的电势降低。具有电势降低的交流电在经由二极管D1整流和经由滤波器C2滤波后提供给二极管D2和稳压器S1。二极管D2和稳压器S1对经滤波器C2输出的电压进行稳压。稳压电源U1可用于为附图2中的数据采集与处理电路220提供工作电压VDD。
附图3B示出根据本发明另一个实施例的非隔离式电源210B的示意图。在附图3B中,三个并联的降压电容器C1、C3和C4分别与三相交流电源的A、B、C三相连接。二极管D1、D3和D4分别与降压电容器C1、C3和C4相连接并和滤波电容C2组成整流滤波电路,以分别对降压的交流电进行整流和滤波。二极管D2和稳压器S1控制输出电压U1的稳定。附图3B所示的该非隔离式电源,在三相交流电源中的一相或两相发生故障时,仍然能够输出稳定电压U1,因而,提供了系统的可靠性。
在附图2所示的用于获取用电信息的装置200中,数据通信模块230,可以采用ASK调制模式,将工作参数调制到预定频率;也可以采用FSK调制模式,将工作参数调制到预定频率;还可以采用PSK调制模式,将工作参数调制到预定频率。附图4A、附图4B、附图4C分别示出了采用ASK调制模式、FSK调制模式和PSK调制模式,对工作参数进行调制的示意图。
在附图2所示的用于获取用电信息的装置200中,用于将工作参数调制到预定频率的数据通信模块230,既可以由计算机软件实现,亦可以由硬件电路实现。该数据通信模块230,既可以是一个独立于数据采集与处理电路220的模块,亦可以集成在数据采集与处理电路220中。此外,在附图2所示的用于获取用电信息的装置200中,还可以配置一个显示部件,以便及时地显示数据采集与处理电路220所检测的工作参数。
与附图1所示的测量装置100相比,由于没有采用隔离电源110,也没有针对RS485电路130提供的隔离型DC/DC电路150和光耦部件140,因此,当将非隔离式电源210、数据采集与处理电路220、数据通信模块230和隔离部件240装配在一个盒体中以作为用于获取用电信息的装置 200时(如附图2所示),能够极大地减小该装置200的体积。
附图5是根据本发明上述一个实施例的用于获取用电信息的方法的流程图。如附图5所示,首先,非隔离式电源210,将三相交流电源中的至少一相交流电转换为直流电以向数据采集与处理电路220提供一个合适的工作电压VDD(步骤S10)。电压VDD的数值将根据数据采集与处理电路220的工作电压来确定。数据采集与处理电路220,检测供电回路900A的工作参数(步骤S20)。该工作参数包括供电回路900A的工作电流、工作电压、剩余电流、功率因数和工作温度等。数据通信模块230,将检测的工作参数调制到预定频率(步骤S30),其中,该调制的工作参数能够以预定的数据传输速率被发送,该预定频率应当比该预定的数据传输速率高很多以使得该发送的工作参数将能够被解调。隔离部件240,将调制的工作参数进行耦合隔离(步骤S40)。该耦合隔离包括电气隔离和信号传输的隔离。隔离部件240采用一个无源的耦合隔离部件。在一个实施例中,隔离部件240是一个初级和次级线匝比为1:1的磁耦合隔离变压器。
图6示出根据本发明另一个实施例的用于获取用电信息的装置的示意图。在附图6中,非隔离式电源310、数据采集与处理电路320、数据通信模块330、隔离部件340分别与附图2中的非隔离式电源210、数据采集与处理电路220、数据通信模块230、隔离部件240具有相同或相似的结构和功能,这里不再赘述。由于没有采用隔离电源,当将非隔离式电源310、数据采集与处理电路320、数据通信模块330和隔离部件340装配在一个盒体中以作为用于获取用电信息的装置300时,能够极大地减小该装置300的体积。
在附图6所示实施例中,数据通信模块330将数据采集与处理电路320检测的有关供电回路900B的工作参数调制到预定频率。该调制的工作参数经由隔离部件340输出至总线800,并以预定的数据传输速率被传输到远程服务器700。该总线800能够采用总线竞争的通信模式传输数据(以下将结合附图7详细描述)。远程服务器700,接收经由所述总线800传输的该工作参数,并根据该工作参数生成用电信息。将该用电信息提供给用户(例如:显示给用户),可供用户进行能耗分析和用电管理。在一个实施例中,供电回路900B是照明回路。根据工作参数,例如有关供电回路900B的工 作电压和工作电流,远程服务器700能够计算该照明回路消耗的电能。若能耗过高,则需要采取一定措施以避免浪费电能。例如:可以根据照明环境的需要,控制照明开关时间或更换节能灯具等。
以下结合附图7详细描述总线800所采用的总线竞争的通信模式。在采用ASK调制模式的一个实施例中,将比特“0”定义为传号模式(即:总线处于被占用状态),将比特“1”定义为空号模式(即:总线处于空闲状态)。附图7示出了采用ASK调制方式对数据(即:工作参数)进行调制的示意图。在一个实施例中,规定“0”的优先级高于“1”的优先级。采用一组由比特“0”和“1”组成的二进制数作为控制字段来表示待传输数据的优先级。通常,需要紧急处理的数据的优先级应当高于表示普通信息的数据的优先级。例如:当供电回路900B的工作温度较高而容易引发火灾时,需要向远程服务器700发送一个告警信号以提示用户该供电回路900B存在用电安全隐患。相对于例如表示该供电回路900B所消耗电能的信号的优先级,该告警信号的优先级应当被设置得较高。可以为不同类型的待传数据预先设定相应的优先级。在一个较佳的实施例中,将表示优先级的控制字段设置在数据帧中尽量靠近帧头的位置。
按照总线竞争的通信模式,一个通信装置(例如:数据通信模块330)在将待传输数据发送到总线时,需要同时监听该总线。若发现有连接到该总线的其他通信装置正在发送优先级更高的数据,则该通信装置必须结束发送数据,退出总线竞争。在上述实施例中,若数据通信模块330经由隔离部件340发送的用于表示待传输的数据的优先级的控制字段的比特值为1,而经由该总线接收的其他通信装置发送的用于表示待传输的数据的优先级的控制字段的比特值为0,则表示发生总线竞争且该其他通信装置所传输的数据的优先级高于该通信装置所要传输的数据,因此,该通信装置必须结束发送数据,为该其他通信装置让出总线。
采用总线竞争的通信模式,需要紧急处理的数据能够被优先发送,这提高了系统的响应速度。
此外,如附图7所示,经过数据通信模块330调制的信号是交流信号。由于总线800上传输的是交流信号,因此,即使当一个通信节点(例如:用于获取用电信息的装置300)发生故障时,该通信节点在总线800上仍旧能 够呈现一定的交流阻抗,因而,不会造成经由总线800传输的整个通信线路短路,有效地提高了系统的稳定性。此外,由于该通信节点不能发送数据,因此,可以迅速定位该发生故障的节点。
按照本发明提供的用于获取用电信息的装置,能够实现用电分项计量。此外,根据调制的工作参数,分析和判断被检测的供电回路中是否存在安全隐患,诸如漏电、过载和电力线异常损耗等,进而做出进一步的防范措施(例如:断开供电回路或提供警示信息),是本发明的另一个亮点。
附图8是根据本发明另一个实施例的用于获取用电信息的装置的示意图。在附图8中,该装置包括一个控制单元360。控制单元360接收来自数据采集与处理电路320检测的工作参数。通过将该工作参数与预定阈值进行比较,控制单元360能够生成一个用于断开所述供电回路900B的控制信号和/或用于指示所述供电回路900B存在用电安全隐患的告警信号。
附图9描述了生成该控制信号和/或告警信号的一个具体实施例。如附图9所示,首先,在第一预定时段内,例如:20毫秒,控制单元360接收由数据采集与处理电路320在不同采样时刻检测的有关供电回路900B的工作电压和工作电流。其中,基于在采样时刻Ti检测的有关供电回路900B的工作电压Ui和工作电流Ii,可以得到该采样时刻Ti的运行功率值Pi,即:Pi=Ui*Ii。根据检测的工作参数,控制单元360可以得到在该第一预定时段内的有关供电回路900B的一组运行功率值(步骤S710)。基于该组运行功率值,能够计算在该第一预定时段内的运行功率值的平均值,从而得到该供电回路900B的快速平均功率PF(步骤S720)。在一个实施例中,在该第一预定时段内采集了N组工作电压和工作电流,则:
Figure PCTCN2015072908-appb-000001
通过将该快速平均功率PF与第一阈值进行比较,确定是否生成该控制信号或该告警信号(步骤S730)。在一种方案中,若快速平均功率PF大于第一阈值,则控制单元360生成该控制信号,该控制信号能够启动断开供电回路900B的操作。在一个实施例中,可以将该控制信号提供给一个继电器(未示出)。通过该继电器的操作,能够断开供电回路900B的操作。若快速平均功率PF接近第一阈值但是没有超过第一阈值,则控制单元360生成一 个告警信号。该告警信号,经由数据通信模块330调制到预定频率并经由隔离部件340输出到总线800。远程服务器700经由总线800接收该告警信号。该告警信号将会作为一个提示供电回路900B存在用电安全隐患的警示消息提供给用户。例如:可以在显示器上显示该警示消息;也可以设置一个发光装置或发声装置来提醒用户。
在实际应用中,有的用电设备(例如:空调)在启动瞬间电流较大,有可能使得快速平均功率PF超过第一阈值而产生控制信号或告警信号。为了避免误产生控制信号或告警信号,这里提供几种辅助方案。将这些辅助方案中的一种或几种与上述附图9所示的方法相结合,可以提高系统产生控制信号和/或告警信号的准确性。
在一种辅助方案中,在第二预定时段内,控制单元360接收由数据采集与处理电路320在不同采样时刻检测的有关供电回路900B的工作电压和工作电流。根据该检测的工作电压和工作电流,控制单元360获得在第二预定时段内的一组关于所述供电回路的运行功率值。该第二预定时段大于该第一预定时段。例如:第一预定时段是20毫秒,第二预定时段是10秒。基于该第二预定时段内的该组关于所述供电回路的运行功率值,控制单元360计算所述供电回路的慢速平均功率PS。在一个实施例中,在该第二预定时段内采集了M组工作电压和工作电流(在采样速率相同的情况下,M>N),则:
Figure PCTCN2015072908-appb-000002
通过将该慢速平均功率PS与第二阈值进行比较,控制单元360确定是否生成该控制信号或该告警信号。在一种方案中,若快速平均功率PF大于第一阈值,且慢速平均功率PS也大于第二阈值,则生成该控制信号。若快速平均功率PF接近第一阈值但是没有超过第一阈值,慢速平均功率PS也接近第二阈值但是没有超过第二阈值,则生成该告警信号。
在另一种辅助方案中,根据检测到的有关供电回路900B的工作电压,控制单元360计算该工作电压的变化幅度。基于该工作电压的变化幅度,确定是否生成该控制信号或告警信号。例如,若快速平均功率PF大于第一阈值,且供电回路900B的工作电压变化幅度也大于一个预定阈值,则生成 该控制信号。若快速平均功率PF接近第一阈值但是没有超过第一阈值,而供电回路900B的工作电压变化幅度未超过该预定阈值,则生成该告警信号。
在又一种辅助方案中,数据采集与处理电路320检测的工作参数包括供电回路900B的剩余电流。根据该剩余电流,控制单元360计算该剩余电流的变化幅度。基于该剩余电流的变化幅度,确定是否生成该控制信号或告警信号。例如,若快速平均功率PF大于第一阈值,且供电回路900B的剩余电流变化幅度也大于一个预定阈值,则生成该控制信号。若快速平均功率PF接近第一阈值但是没有超过第一阈值,而供电回路900B的剩余电流变化幅度未超过该预定阈值,则生成该告警信号。在这种辅助方案中,通过对供电回路900B的剩余电流的监测,可以有效地区分系统的固有漏电与危险性漏电。此外,当气候或环境发生变化时,系统的固有漏电也可能发生变化,从而导致检测的剩余电流具有小幅变化。通过合理地设定上述预定阈值,可以降低气候或环境的影响,进一步提高系统产生控制信号和/或告警信号的准确性。
在另一种辅助方案中,数据采集与处理电路320检测的工作参数包括供电回路900B的功率因数。根据该功率因数,控制单元360确定是否生成该告警信号。例如,供电回路900B的功率因数低于一个预定阈值,则生成该告警信号。
在又一种辅助方案中,数据采集与处理电路320检测的工作参数包括供电回路900B的工作温度。根据该工作温度,控制单元360确定是否生成该控制信号或告警信号。例如,供电回路900B的工作温度大于第一预定阈值而未超过第二预定阈值,则生成该告警信号。若供电回路900B的工作温度超过第二预定阈值,则生成该控制信号。
在本发明的另一个实施例中,控制单元360也可以独立地根据上述任意一种辅助方案,确定是否产生控制信号或告警信号。控制单元360,还可以将上述结合附图9描述的技术方案与上述辅助方案中的任意一种或多种进行组合,或将上述辅助方案中的两种或多种进行组合,以确定是否产生控制信号或告警信号。在一个实施例中,上述供电回路900B的工作电压的变化幅度作为该供电回路状态的基本信息,而上述供电回路900B的工作 温度作为该供电回路状态的附加信息。结合该基本信息和附加信息,控制单元360确定是否生成该控制信号或该告警信号。例如,若供电回路900B的工作电压的变化幅度超过一个预定阈值,供电回路900B的工作温度也超过了另一个预定阈值,则产生该控制信号;而若供电回路900B的工作温度未超过另一个预定阈值,则产生该告警信号。由于该控制信号能够启动断开供电回路900B的操作,该告警信号能够及时提醒客户关注用电安全,因此,被监测用电系统的安全性能够得到进一步加强。
在附图8所示实施例中,控制单元360既可以是一个独立的模块,也可以集成在数据采集与处理电路320中,还可以与数据通信模块330集成在一起。由于没有采用隔离电源,当将非隔离式电源310、数据采集与处理电路320、控制单元360、数据通信模块330和隔离部件340装配在一个盒体中以作为用于获取用电信息的装置400时,能够极大地减小该装置400的体积。
附图10示出了根据本发明另一个实施例的用于获取用电信息的装置的示意图。在附图10中,该装置包括一个模拟漏电装置450。模拟漏电装置450,能够响应于上述控制信号而进入模拟漏电状态。在模拟漏电装置450处于模拟漏电状态中时,模拟漏电装置450模拟产生一个漏电电流。该模拟漏电电流会使得连接在该供电回路900B中的漏电保护器420检测到供电回路900B中出现漏电电流,进而漏电保护器420将断开供电回路900B。
以下结合附图11详细描述该模拟漏电装置450的操作。如附图11所示,模拟漏电装置450包括:开关452和电流分流线路L3。漏电保护器420包括一个零序互感器(图中未示出)。在正常工作状态下,开关452是打开状态。经由L1-L2回路给供电回路900B中的负载L供电。若供电回路900B中未出现漏电电流,则供电回路900B的输入电流I1与供电回路900B的返回电流I2基本相等。因此,漏电保护器不会执行断开供电回路900B的操作。当模拟漏电装置450接收到该控制信号时,响应于该控制信号,开关452闭合。输入供电回路900B的电流I1被分流为沿着支路L2的电流I2和沿着电流分流线路L3的电流I3,I1=I2+I3。即:开关452闭合的操作,模拟地产生了一个漏电电流I3。由于I1不等于I2,因此,位于L1-L2回路的漏电保护器420将认为供电回路900B中出现漏电电流遂执行断开供电回路 900B的操作。
在一个实施例中,开关452可以采用继电器。在另一个实施例中,开关452可以采用半导体器件,例如:晶体管、绝缘栅双极型晶体管(IGBT)或金属氧化物半导体场效应晶体管(MOSFET),以降低开关SW的驱动功率。
在附图10所示实施例中,模拟漏电装置450既可以与非隔离式电源310、数据采集与处理电路320、数据通信模块330、隔离部件340和控制单元360一起装配在一个盒体500中,也可以被安置在盒体500之外。类似地,漏电保护器420,既可以封装在盒体500中,也可以被安置在盒体500之外。
由于没有采用隔离电源,当将非隔离式电源310、数据采集与处理电路320、数据通信模块330、隔离部件340、控制单元360和模拟漏电装置450装配在一个盒体中以作为用于获取用电信息的装置500时,能够极大地减小该装置500的体积。
附图12示出根据本发明又一个实施例的用于获取用电信息的装置的示意图。与附图6所示的装置相比,配置了一个本地数据处理装置350。在附图12所示实施例中,数据通信模块330将数据采集与处理电路320检测的有关供电回路900B的工作参数调制到预定频率。调制的工作参数经由隔离部件340输出到总线800上,并经由总线800传输到本地数据处理装置350。本地数据处理装置350将该工作参数经由传输线路810上报远程服务器700。传输线路810采用总线竞争的通信模式。传输线路810既可以采用三条交流电流线路中的任意一条;也可以采用专用通信线路,例如:以太网线路、双绞线或电话线等。远程服务器700,根据接收到的该工作参数,进行能耗分析和用电管理。
本地数据处理装置350在接收到经由总线800传输的工作参数后,可以将该工作参数直接转发给远程服务器700,也可以先对该工作参数进行初步处理生成供电回路900B的定制信息,再将该定制信息发送给远程服务器700。在一个实施例中,本地数据处理装置350根据该工作参数计算在预定时间(例如1天)内供电回路900B消耗的电能,并将该消耗的电能作为定制信息发送给远程服务器700。
此外,本地数据处理装置350不仅可以接收和处理由一个盒体300提 供的相关供电回路的工作参数,还可以接收和处理由多个盒体300经由总线800传输的相应供电回路的工作参数。本地数据处理装置350将一个或多个盒体300提供的工作参数作为用电信息发送给远程服务器700。
上述结合附图9描述的由控制单元360产生控制信号或告警信号的方案以及各辅助方案,也可以由本地数据处理装置350实施。换言之,本地数据处理装置350,也可以将接收的工作参数与预定阈值进行比较以生成用于断开供电回路900B的控制信号或告警信号。在一个实施例中,本地数据处理装置350将产生的控制信号经由总线800提供给盒体300。盒体300中的隔离部件340接收经由总线800传输的该控制信号,并将该控制信号提供给数据通信模块330。数据通信模块330,接收经由隔离部件340传输的该控制信号,并根据该控制信号启动断开所述供电回路的操作。在一个实施例中,数据通信模块330可以将该控制信号提供给一个继电器(未示出);通过该继电器的操作,触发一个漏电保护器断开供电回路900B的操作。
此外,上述结合附图9描述的由控制单元360产生控制信号或告警信号的方案以及各辅助方案,还可以由远程服务器700实施。即,远程服务器700,可以将接收的工作参数与预定阈值进行比较以生成用于断开供电回路900B的控制信号或告警信号。在一个实施例(参见附图12)中,远程服务器700将产生的控制信号经由传输线路810发送。本地数据处理装置350将经由传输线路810传输的该控制信号进行转发。盒体300中的隔离部件340将经由总线800传输的该转发的控制信号提供给数据通信模块330。数据通信模块330,根据该控制信号启动断开所述供电回路的操作。在另一个实施例(参见附图6)中,远程服务器700将产生的控制信号经由总线800发送。盒体300中的隔离部件340接收经由总线800传输的该控制信号,并将该控制信号提供给数据通信模块330。数据通信模块330,接收经由隔离部件340传输的该控制信号,并根据该控制信号启动断开所述供电回路的操作。
附图13示出根据本发明又一个实施例的用于获取用电信息的装置的示意图。如附图13所示,非隔离式电源310、数据采集与处理电路320、数据通信模块330、隔离部件340、控制单元360和模拟漏电装置450被装 配在一个盒体600中。漏电保护器420被安置在盒体600之外。在附图13中,标号相同的部件与上述附图3至附图11中标号相同的部件具有相同或相似的结构和功能,这里不再赘述。
在附图13所示装置中,如上述实施例所述,产生控制信号或告警信号的操作可以由控制单元360实施,亦可以由本地数据处理装置350实施,还可以由远程服务器700实施。
进一步地,远程服务器700还能够产生一个指令。在上述由本地数据处理装置350生成控制信号或告警信号的实施例(参见附图12)中,本地数据处理装置350接收经由传输线路810传输的该指令,并根据该指令更新该预定阈值。在上述由控制单元360生成控制信号或告警信号的另一个实施例(参见附图8)中,远程服务器700将产生的指令经由总线800发送(该指令经调制后经由总线800传输)。盒体400中的隔离部件340接收经由总线800传输的该指令,并将该指令提供给数据通信模块330。控制单元360根据通过数据通信模块330提供的该指令(即:对该指令进行解调)更新该预定阈值。在上述由控制单元360生成控制信号或告警信号的一个实施例(参见附图13)中,远程服务器700将产生的指令经由传输线路810发送(该指令经调制后经由总线810传输)。本地数据处理装置350将经由传输线路810传输的该指令进行转发。盒体600中的隔离部件340将经由总线800传输的该转发的指令提供给数据通信模块330。控制单元360根据通过数据通信模块330提供的该指令(即:对该指令进行解调)更新该预定阈值。
附图14是根据本发明一个实施例的用于获取用电信息的系统的示意图。在附图14中,用电分项计量装置1000可采用附图2至附图13所示实施例中的盒体200、300、400、500、600中的任意一种。本地数据处理装置1100可采用附图12至附图13所示实施例中的本地数据处理装置350。远程服务器1200可采用附图6至附图12所示实施例中的远程服务器700。用电分项计量装置100011、用电分项计量装置100012…用电分项计量装置10001M与本地数据处理装置11001一起安置在箱体1中,用于提供一个用电单元(第一用电单元)的用电信息;用电分项计量装置100021、用电分项计量装置100022…用电分项计量装置10002P与本地数据处理装置11002一起安置在箱体2中,用于提供第二用电单元的用电信息;…用电分 项计量装置1000N1、用电分项计量装置1000N2…用电分项计量装置1000NQ与本地数据处理装置1100N一起安置在箱体N中,用于提供第N个用电单元的用电信息。
在一个实施例中,箱体1用于检测4个供电回路的工作参数。用电分项计量装置100011用于提供照明回路的工作参数;用电分项计量装置100012用于提供插座回路的工作参数;用电分项计量装置100013用于提供厨房电器回路的工作参数;用电分项计量装置100014用于提供空调回路的工作参数。该照明回路的工作参数、插座回路的工作参数、厨房电器回路的工作参数和空调回路的工作参数分别经由总线800传输至本地数据处理装置11001。本地数据处理装置11001在接收到经由总线800传输的这些工作参数后,可以将这些工作参数直接转发给远程服务器1200,还可以按照预定的信道发送工作参数。在一个实施例中,本地数据处理装置11001可以将厨房电器回路的工作参数与空调回路的工作参数作为大功率用电设备的用电信息,经由预定通信信道发送至远程服务器1200。
在附图14所示实施例中,各个箱体中的用电分项计量装置的数目(M,P…Q)可以根据待检测的供电回路的数目确定。当箱体中仅包括一个用电分项计量装置1000时,该箱体可以用于对一个用电单元的供电回路进行检测。尽管在这种情况下该箱体并未提供构成该用电单元供电回路的各供电子回路的用电信息,但是,与现有技术中的配电箱相比,该箱体的体积显著减小,便于安装。
在附图14所示实施例中,远程服务器1200还可以通过有线或无线方式,将各个用电单元的用电信息发送给一个中央数据服务器1300,以便于集中地进行能耗分析和用电管理。
在上文中,结合附图,对本发明的一些实施例进行了详细描述。这些实施例可以任意组合,而不会超出本发明原始记载的范围。
此外,在说明书和权利要求书中,词语“可耦合的”表示可以直接连接也可以经由其他电子部件连接。例如:数据采集与处理电路用于检测一可耦合的供电回路的工作参数,表示数据采集与处理电路与供电回路可以直接连接也可以经由其他电子部件连接,且供电回路不在包括数据采集与处理电路的装置(例如:用电分项计量装置1000)内。
本发明并不限于这些已揭示的实施例,本领域技术人员从中推导出来的其它方案也在本发明的保护范围之内。因此,本发明的保护范围应当由所附的权利要求书来限定。
应当注意,在权利要求书中,词语“包括”并不排除存在权利要求或说明书中没有列举的元件,单元或装置。元件,单元或装置之前的词语“一”或“一个”并不排除存在多个这种元件,单元或装置。在列举了几个单元的设备权利要求中,这些单元中的几种可以由同一类软件和/或硬件来实施。

Claims (30)

  1. 一种用于获取用电信息的装置,包括:
    数据采集与处理电路,用于检测有关一个可耦合的供电回路的工作参数;
    非隔离式电源,用于将交流电转换为直流电以向该数据采集与处理电路提供一合适的工作电压;
    数据通信模块,用于将该检测的工作参数调制到预定频率,其中,该调制的工作参数能够以预定的数据传输速率被发送,该预定频率高于该预定的数据传输速率以使得该发送的工作参数将能够被解调;以及
    隔离部件,用于提供电气隔离和信号传输的隔离以将该调制的工作参数进行耦合隔离。
  2. 如权利要求1所述的用于获取用电信息的装置,其中,所述调制是幅移键控(ASK)调制、频移键控(FSK)调制和相移键控(PSK)调制中的一种。
  3. 如权利要求1所述的用于获取用电信息的装置,其中,所述隔离部件将所述调制的工作参数经由总线传输,该总线采用总线竞争的通信模式。
  4. 如权利要求1所述的用于获取用电信息的装置,还包括:
    控制单元,用于将所述工作参数与预定阈值进行比较以生成用于断开所述供电回路的控制信号或告警信号。
  5. 如权利要求3所述的用于获取用电信息的装置,还包括:
    本地数据处理装置,用于接收所述传输的工作参数,并经由传输线路转发所述工作参数,该传输线路采用总线竞争的通信模式。
  6. 如权利要求5所述的用于获取用电信息的装置,其中:
    所述本地数据处理装置,将所述工作参数与预定阈值进行比较以生成用于断开所述供电回路的控制信号或告警信号;
    所述隔离部件,将经由所述总线传输的由所述本地数据处理装置发送的该控制信号提供给所述数据通信模块;并且
    所述数据通信模块,根据该控制信号启动断开所述供电回路的操作。
  7. 如权利要求3所述的用于获取用电信息的装置,还包括:
    远程服务器,用于接收所述传输的工作参数,并将所述工作参数与预定阈值进行比较以生成用于断开所述供电回路的控制信号或告警信号;
    其中,
    所述隔离部件,将经由所述总线传输的由所述远程服务器发送的该控制信号提供给所述数据通信模块;并且
    所述数据通信模块,根据该控制信号启动断开所述供电回路的操作。
  8. 如权利要求5所述的用于获取用电信息的装置,还包括:
    远程服务器,用于接收所述转发的工作参数,并将所述工作参数与预定阈值进行比较以生成用于断开所述供电回路的控制信号或告警信号;
    其中,
    所述本地数据处理装置将经由所述传输线路传输的由所述远程服务器发送的该控制信号进行转发;
    所述隔离部件,将经由所述总线传输的该转发的控制信号提供给所述数据通信模块;并且
    所述数据通信模块,根据该控制信号启动断开所述供电回路的操作。
  9. 如权利要求4、6、7、8中任意一个权利要求所述的用于获取用电信息的装置,还包括:
    模拟漏电装置,用于响应于所述控制信号而进入模拟漏电状态,以使得一个可耦合的连接在该供电回路中的漏电保护器断开所述供电回路。
  10. 如权利要求9所述的用于获取用电信息的装置,其中,所述模拟漏电装置包括:
    开关,用于响应于所述控制信号而闭合;以及
    电流分流线路,
    当该开关闭合时,所述供电回路的输入电流的一部分流经该电流分流线路,使得所述模拟漏电装置进入模拟漏电状态。
  11. 如权利要求6所述的用于获取用电信息的装置,还包括:
    远程服务器,用于产生一个指令;
    其中,
    所述本地数据处理装置,接收经由所述传输线路传输的该指令,并根据该指令更新所述预定阈值。
  12. 如权利要求4所述的用于获取用电信息的装置,还包括:
    远程服务器,用于产生一个指令,并将该指令经由总线传输,该总线采用总线竞争的通信模式;
    其中,
    所述隔离部件,接收该指令,并将该指令经由所述数据通信模块提供给所述控制单元;并且
    所述控制单元,根据该指令更新所述预定阈值。
  13. 如权利要求5所述的用于获取用电信息的装置,其中,
    所述本地数据处理装置,基于所述工作参数,生成所述供电回路的定制信息,并经由所述传输线路发送该定制信息。
  14. 如权利要求5所述的用于获取用电信息的装置,其中,
    所述本地数据处理装置,经由所述传输线路,采用一个预定通信信道发送所述工作参数。
  15. 如权利要求1所述的用于获取用电信息的装置,还包括:
    显示部件,用于显示所述工作参数。
  16. 如权利要求1所述的用于获取用电信息的装置,其中所述非隔离 式电源包括:
    降压电容器,用于将所述交流电产生的电势降低;
    整流滤波电路,用于将该具有电势降低的交流电进行整流滤波;以及
    稳压器,用于对该整流滤波电路的输出进行稳压。
  17. 如权利要求1所述的用于获取用电信息的装置,其中,所述隔离部件是无源的耦合隔离部件。
  18. 如权利要求1所述的用于获取用电信息的装置,其中,所述隔离部件是初级和次级线圈比为1:1的磁耦合隔离变压器。
  19. 如权利要求1所述的用于获取用电信息的装置,其中,所述工作参数是所述供电回路的工作电流、工作电压、剩余电流、功率因数和工作温度中的至少任意一个。
  20. 如权利要求5所述的用于获取用电信息的装置,其中,所述传输线路采用交流线路中的一路、以太网线路、双绞线、电话线路中的任意一种。
  21. 一种用于获取用电信息的方法,包括:
    将交流电转换为直流电以提供一合适的工作电压;
    在该工作电压下,检测一个可耦合的供电回路的工作参数;
    将该检测的工作参数调制到预定频率,其中,该调制的工作参数能够以预定的数据传输速率被发送,该预定频率高于该预定的数据传输速率以使得该发送的工作参数将能够被解调;以及
    提供电气隔离和信号传输的隔离,以将该调制的工作参数进行耦合隔离。
  22. 如权利要求21所述的用于获取用电信息的方法,其中,所述调制是幅移键控(ASK)调制、频移键控(FSK)调制和相移键控(PSK)调制中的一种。
  23. 如权利要求21所述的用于获取用电信息的方法,还包括:
    将所述调制的工作参数输出至总线;以及
    以总线竞争的通信模式传输所述调制的工作参数。
  24. 如权利要求21所述的用于获取用电信息的方法,其中,所述工作参数包括所述供电回路的工作电流和工作电压,该方法还包括:
    获得在第一预定时段内的关于所述供电回路的一组运行功率值,其中,该运行功率值是基于该第一预定时段内的采样时刻检测的所述工作电流和工作电压得到的;
    基于该第一预定时段内的所述供电回路的该组运行功率值,计算该组运行功率值的平均值以得到所述供电回路的快速平均功率;以及
    将该快速平均功率与第一阈值进行比较以确定是否生成一个控制信号或一个告警信号,其中,该控制信号用于使得一个可耦合的连接在所述供电回路中的漏电保护器断开所述供电回路,该告警信号用于指示所述供电回路存在用电安全隐患。
  25. 如权利要求24所述的用于获取用电信息的方法,该方法还包括:
    获得在第二预定时段内的关于所述供电回路的一组运行功率值,其中,该运行功率值是基于该第二预定时段内的采样时刻检测的所述工作电流和工作电压得到的,该第二预定时段大于该第一预定时段;
    基于该第二预定时段内的所述供电回路的该组运行功率值,计算该组运行功率值的平均值以得到所述供电回路的慢速平均功率;以及
    将该慢速平均功率与第二阈值进行比较以确定是否生成所述控制信号或告警信号。
  26. 如权利要求21所述的用于获取用电信息的方法,其中,所述工作参数包括所述供电回路的工作电压,该方法还包括:
    根据所述供电回路的工作电压,计算该工作电压的变化幅度;以及
    基于该工作电压的变化幅度,确定是否生成所述控制信号或告警信号。
  27. 如权利要求21所述的用于获取用电信息的方法,其中,所述工作参数包括所述供电回路的剩余电流,该方法还包括:
    根据所述供电回路的剩余电流,计算该剩余电流的变化幅度;以及
    基于该剩余电流的变化幅度,确定是否生成所述控制信号或告警信号。
  28. 如权利要求21所述的用于获取用电信息的方法,其中,所述工作参数包括所述供电回路的功率因数或工作温度,该方法还包括:
    根据所述供电回路的功率因数或工作温度,确定是否生成所述控制信号或告警信号。
  29. 一种用于提高用电安全性的方法,包括:
    检测一个可耦合的供电回路的工作参数;
    根据该检测的工作参数,得到关于该供电回路状态的基本信息;
    根据该检测的工作参数,得到关于该供电回路状态的附加信息;以及
    结合该基本信息和附加信息,确定是否生成一个控制信号或一个告警信号,其中,该控制信号用于使得一个可耦合的连接在所述供电回路中的漏电保护器断开所述供电回路,该告警信号用于指示所述供电回路存在用电安全隐患。
  30. 如权利要求29所述的用于提高用电安全性的方法,其中,
    所述工作参数是所述供电回路的工作电流、工作电压、剩余电流、功率因数和工作温度中的至少任意一个;
    所述基本信息和附加信息分别是快速平均功率、慢速平均功率、该工作电压的变化幅度、该剩余电流的变化幅度、该功率因数和该温度中的至少任意一个,且基本信息不同于附加信息;
    该快速平均功率是在第一预定时段内的一组运行功率值的平均值,该运行功率值是基于在采用时刻得到的所述供电回路的工作电流和工作电压而得到的;并且
    该慢速平均功率是在第二预定时段内的一组运行功率值的平均值,该第二预定时段大于该第一预定时段。
PCT/CN2015/072908 2014-01-28 2015-02-12 用于获取用电信息的装置和方法 WO2015113522A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/115,107 US9961417B2 (en) 2014-01-28 2015-02-12 Device and method for acquiring electricity utilization information
EP15743629.6A EP3128334A4 (en) 2014-01-28 2015-02-12 Apparatus and method for obtaining power usage information

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410041259.0 2014-01-28
CN201410041259.0A CN103777100B (zh) 2014-01-28 2014-01-28 用于获取用电信息的装置和方法

Publications (1)

Publication Number Publication Date
WO2015113522A1 true WO2015113522A1 (zh) 2015-08-06

Family

ID=50569574

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/072908 WO2015113522A1 (zh) 2014-01-28 2015-02-12 用于获取用电信息的装置和方法

Country Status (4)

Country Link
US (1) US9961417B2 (zh)
EP (1) EP3128334A4 (zh)
CN (1) CN103777100B (zh)
WO (1) WO2015113522A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115037421A (zh) * 2022-05-31 2022-09-09 国网湖南省电力有限公司 用电信息采集设备的远程监控方法、装置及系统

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103777100B (zh) * 2014-01-28 2017-11-17 刘兵 用于获取用电信息的装置和方法
KR102335217B1 (ko) * 2014-03-05 2021-12-03 삼성전자 주식회사 전류 또는 전력 소모량을 이용한 애플리케이션 프로세서의 구동 방법 및 모바일 장치
US10135562B2 (en) 2015-05-28 2018-11-20 Huawei Technologies Co., Ltd. Apparatus and method for link adaptation in uplink grant-less random access
CN109538415B (zh) * 2018-09-03 2021-01-22 北京金风科创风电设备有限公司 虚拟风机和虚拟风电场
CN110134708A (zh) * 2019-03-03 2019-08-16 云南电网有限责任公司信息中心 电网台区线损异常原因诊断方法、装置、计算机设备和存储介质
CN110753001A (zh) * 2019-10-25 2020-02-04 珠海格力电器股份有限公司 数据的高效传输方法及装置、存储介质
CN111476681A (zh) * 2020-04-16 2020-07-31 广东卓维网络有限公司 一种电能管理方法
CN111784379B (zh) * 2020-05-19 2023-09-15 北京中电普华信息技术有限公司 追缴电费的估算方法、装置和异常案例的筛选方法、装置
CN111751648A (zh) * 2020-06-30 2020-10-09 深圳供电局有限公司 一种空调运行用电的安全监控系统及方法
CN113067413A (zh) * 2021-03-31 2021-07-02 杭州永谐科技有限公司东莞分公司 一种无额外供电的多输入程控电源系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101610005A (zh) * 2009-07-08 2009-12-23 浙江中控电子技术有限公司 一种电力控制方法和系统
JP2011089915A (ja) * 2009-10-23 2011-05-06 Mitsubishi Electric Corp 電力計測装置、及び、電力計測方法
JP2011137782A (ja) * 2010-01-04 2011-07-14 Mitsubishi Electric Corp 電力計測装置及び電力計測システム
CN102590610A (zh) * 2012-02-27 2012-07-18 华立仪表集团股份有限公司 智能一体式多功能电能表及其对负载的控制方法
CN103267893A (zh) * 2013-06-04 2013-08-28 长沙高升电子电器科技有限公司 均衡配电用智能电表
CN203310908U (zh) * 2013-05-24 2013-11-27 广东美的制冷设备有限公司 空调器的电能检测装置
CN103777100A (zh) * 2014-01-28 2014-05-07 刘兵 用于获取用电信息的装置和方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1060909A (zh) * 1991-09-09 1992-05-06 周美轩 多功能自控电度表
CN2137364Y (zh) * 1992-11-10 1993-06-30 刘伟强 载波智能电量表
CN1059526C (zh) * 1995-04-11 2000-12-13 潘之凯 利用电网低压线进行通信的方法
KR100484160B1 (ko) * 2002-09-06 2005-04-19 삼성전자주식회사 소비 전력 표시 장치
CN1403825A (zh) * 2002-10-16 2003-03-19 陈立珉 智能电能计量控制集成电表
CN2601480Y (zh) * 2003-01-02 2004-01-28 曾郑刚 分离负载串联供电电路
CN101673968A (zh) * 2009-10-19 2010-03-17 国网信息通信有限公司 一种用电设备控制装置及方法
US9267826B2 (en) * 2010-05-28 2016-02-23 Schneider Electric It Corporation System for self-powered, wireless monitoring of electrical current, power and energy
TWI429165B (zh) * 2011-02-01 2014-03-01 Fu Da Tong Technology Co Ltd Method of data transmission in high power induction power supply
CN201788232U (zh) * 2010-07-07 2011-04-06 广州市捷信通科技发展有限公司 一种低压电力用户电能量采集终端
JP6001563B2 (ja) * 2011-02-07 2016-10-05 アクセス ビジネス グループ インターナショナル リミテッド ライアビリティ カンパニー 無線電力伝送システムで通信を提供するシステム及び方法
TWI501585B (zh) * 2011-07-12 2015-09-21 Accton Technology Corp 網路供電控制系統及其網路供電設備與網路受電裝置
JP5892768B2 (ja) * 2011-10-31 2016-03-23 三菱電機株式会社 電力測定装置、電力測定システム、及び電力測定方法
CN102539858A (zh) * 2011-12-19 2012-07-04 深圳市思达仪表有限公司 应用非隔离开关电源方案的单相电能表电路
CN202351356U (zh) * 2011-12-22 2012-07-25 山东和远自控技术有限公司 智能电力测控仪表
CN203249946U (zh) * 2013-06-04 2013-10-23 威胜集团有限公司 三相键盘式电能表

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101610005A (zh) * 2009-07-08 2009-12-23 浙江中控电子技术有限公司 一种电力控制方法和系统
JP2011089915A (ja) * 2009-10-23 2011-05-06 Mitsubishi Electric Corp 電力計測装置、及び、電力計測方法
JP2011137782A (ja) * 2010-01-04 2011-07-14 Mitsubishi Electric Corp 電力計測装置及び電力計測システム
CN102590610A (zh) * 2012-02-27 2012-07-18 华立仪表集团股份有限公司 智能一体式多功能电能表及其对负载的控制方法
CN203310908U (zh) * 2013-05-24 2013-11-27 广东美的制冷设备有限公司 空调器的电能检测装置
CN103267893A (zh) * 2013-06-04 2013-08-28 长沙高升电子电器科技有限公司 均衡配电用智能电表
CN103777100A (zh) * 2014-01-28 2014-05-07 刘兵 用于获取用电信息的装置和方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115037421A (zh) * 2022-05-31 2022-09-09 国网湖南省电力有限公司 用电信息采集设备的远程监控方法、装置及系统
CN115037421B (zh) * 2022-05-31 2023-08-22 国网湖南省电力有限公司 用电信息采集设备的远程监控方法、装置及系统

Also Published As

Publication number Publication date
EP3128334A4 (en) 2017-12-20
CN103777100B (zh) 2017-11-17
US20170070793A1 (en) 2017-03-09
CN103777100A (zh) 2014-05-07
US9961417B2 (en) 2018-05-01
EP3128334A1 (en) 2017-02-08

Similar Documents

Publication Publication Date Title
WO2015113522A1 (zh) 用于获取用电信息的装置和方法
US8290635B2 (en) Reducing power consumption in a network by detecting electrical signatures of appliances
EP3217182B1 (en) Systems and methods to emulate high frequency electrical signatures
US8476895B2 (en) Power measuring system, measuring apparatus, load terminal, and device control system
US9638723B2 (en) Status estimation apparatus, status estimation method
CN107402324B (zh) 基于单电流互感器的供电采样电路、方法及其低压断路器
KR101251794B1 (ko) 전력 측정 시스템
WO2018064244A1 (en) Electrical transmission line sensing
TWI421510B (zh) 電源功率檢測方法及其裝置
CN204215017U (zh) 变压器有载分接开关动作特性交流测试装置
CN109186796A (zh) 一种应用于开关柜的ct式无源无线测温装置
KR101073809B1 (ko) 스마트 대기전력 자동차단 스위치
US10126336B2 (en) Energy usage device and energy information collecting device
JP2018021826A (ja) 計測装置、計測システム及びコンピュータシステム
US11955968B2 (en) Combined logic control circuit and sewage treatment system
CA2889455A1 (en) Device and method for acquiring electricity utilization information
KR101707745B1 (ko) 전력 모니터링 시스템 및 그의 전력 모니터링 방법
KR200432760Y1 (ko) 가정용 최대수요전력 감시 장치
US20120313432A1 (en) Power distribution system connecting apparatus
Muhammed et al. Design and implementation of an IoT based home energy monitoring system
CN208704908U (zh) 一种应用于开关柜的ct式无源无线测温装置
TWM385003U (en) Electrical power detector and its management device
KR200390706Y1 (ko) 통신용 정류기의 관리시스템
US9838678B2 (en) Ultralight switched-mode power supply device and method of use thereof
CN202633678U (zh) 计量智能控制器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15743629

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015743629

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015743629

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15115107

Country of ref document: US