WO2015113355A1 - 无线通信方法、无线通信装置、基站和终端 - Google Patents

无线通信方法、无线通信装置、基站和终端 Download PDF

Info

Publication number
WO2015113355A1
WO2015113355A1 PCT/CN2014/079193 CN2014079193W WO2015113355A1 WO 2015113355 A1 WO2015113355 A1 WO 2015113355A1 CN 2014079193 W CN2014079193 W CN 2014079193W WO 2015113355 A1 WO2015113355 A1 WO 2015113355A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication
message frame
receiver
measurement
wireless communication
Prior art date
Application number
PCT/CN2014/079193
Other languages
English (en)
French (fr)
Inventor
张晨璐
张云飞
Original Assignee
宇龙计算机通信科技(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宇龙计算机通信科技(深圳)有限公司 filed Critical 宇龙计算机通信科技(深圳)有限公司
Publication of WO2015113355A1 publication Critical patent/WO2015113355A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/005Discovery of network devices, e.g. terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/14Direct-mode setup
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • Wireless communication method wireless communication device, base station and terminal
  • the present invention relates to the field of wireless communication technologies, and in particular, to a wireless communication method, a wireless communication device, a base station, and a terminal. Background technique
  • a communication mode that is, direct communication between a terminal and a terminal
  • the present invention provides a wireless communication method, including: generating a message frame, the message frame is used to enable a receiver of the message frame to measure its own D2D communication capability, or to cause the receiver to measure and determine The D2D communication capability of the user; transmitting the message frame to at least one of the two devices that need to perform D2D communication, and receiving the measurement result returned by the receiver and
  • the wireless communication device ie, the receiver device
  • the actual situation of the receiver device can be understood, and the selected device is avoided.
  • Communication mode and receiver device If the communication between the two parties is too far, if the D2D communication is too far away, if the D2D communication is used, the communication connection may not be established or the communication quality may be poor, which may affect the user experience.
  • the receiver device can transmit the message frame, and the receiver device can only measure the D2D communication capability of the device, and then return the measurement result to the network side (ie, the sender of the message frame) to perform the D2D communication capability judgment by the network side; or, receive The square device can also self-measure, and further judge its own D2D communication capability according to the measurement result, thereby notifying the network side of the measurement result and/or the judgment result, so that the network side determines which communication mode the receiver device finally uses.
  • the network side ie, the sender of the message frame
  • the message frame is physical layer signaling: if the physical layer signaling is the first value, it indicates that the receiving party needs to perform the measurement operation, or the measurement is Determining an operation; or if the physical layer signaling is a specific value, indicating that the receiver needs to perform the measurement operation on a preset frequency domain resource and/or a time domain resource indexed by the specific value, or The measurement and determination of the operation.
  • the physical layer signaling may only include a value of one bit, for example, when the value is 1, it indicates that the receiving device needs to perform a measurement operation, or measure and judge the operation.
  • the physical layer signaling can also indicate other meanings. For example, when the value of the physical layer signaling is 0, it means that the foregoing measurement operation does not need to be performed, or the operation is measured and judged.
  • the "one bit position" herein is only used as an example, and it is obvious that the values of other bits can be used to represent the above meaning.
  • the negotiation between the sending and receiving devices of the message frame may be performed in advance, that is, one or more frequency domain resources and/or time domain resources are predefined, and corresponding indexes are set for the same. Then, by transmitting physical layer signaling including a specific value, and making the specific value correspond to a corresponding index value of a certain one or more frequency domain resources and/or time domain resources, the corresponding device can utilize the corresponding Frequency domain resources and/or time domain resources perform measurement operations, or measure and judge operations.
  • the receiving device When the physical layer signaling only corresponds to the frequency domain resource or the time domain resource, it indicates that the receiving device can use the preset default time domain resource or the frequency domain resource to implement the foregoing measurement operation, or measure and judge the operation.
  • the message frame is RRC signaling or application layer signaling
  • the RRC signaling or application layer signaling includes: operation type information, if the operation class If the type information is the first value, the receiving party needs to perform the measuring operation, or the measuring and determining the operation; or the resource index information, if the resource index information is a specific value, it indicates that the receiving party needs Performing the measurement operation, or the measuring and determining the operation on the preset frequency domain resource and/or the time domain resource indexed by the specific value; or the frequency domain resource information and/or the time domain resource information, indicating the location
  • the receiver needs to perform the measurement operation, or the measurement and determine the operation, by using corresponding frequency domain resources and/or time domain resources.
  • the operation type information included in the message frame may be 1, to indicate the receiving device to perform the measurement operation, or to measure and
  • the operation type information may also indicate other meanings.
  • the value of the operation type identifier is 0, it means that the above measurement operation is not required to be performed, or the operation is measured and judged.
  • " or "0" herein is for example only, and it is obvious that the values of other bits can be used to represent the above meaning.
  • the negotiation between the sending and receiving devices of the message frame may be performed in advance, that is, one or more frequency domain resources and/or time domain resources are predefined, and corresponding indexes are set for the same. Then, by transmitting the resource index information including the specific value, and making the specific value correspond to the index value corresponding to the predefined one or more frequency domain resources and/or the time domain resource, the corresponding device can use the corresponding frequency. Domain resources and/or time domain resources perform measurement operations, or measure and determine operations.
  • the specific frequency domain resource and/or the time domain resource may be directly notified to the receiver device by using the frequency domain resource information and/or the time domain resource information, so that the measurement may be performed by the receiver device. Operate, or measure and judge the operation.
  • the message frame only informs the frequency domain resource or the time domain resource, it indicates that the receiving device can use the preset default time domain resource or the frequency domain resource to implement the above measurement operation, or measure and judge the operation.
  • the network side may instruct the receiver device to perform measurement in one or more time domain resources and/or frequency domain resources; when there are multiple time domain resources and/or frequency domain resources, the receiver device may separately perform measurement, Return all or most of the measurements to the network side.
  • the method further includes: according to the received measurement result, Estimating the D2D communication capability of the receiver; determining whether the two devices can perform D2D communication according to the estimation result, and specifically determining a D2D communication type when D2D communication is possible; and transmitting to the receiver A mode notification message frame, the mode communication message frame includes a communication mode that the receiver needs to use, and a frequency domain and/or a time domain resource for the communication process.
  • the network side can judge the D2D communication capability of the receiver device according to the measurement result returned by the receiver device to ensure that it obtains an optimal communication experience in the most suitable communication mode.
  • the receiver device when it does not have D2D communication capability, the receiver device should be enabled to use a non-D2D communication mode (such as the traditional 2G, 3G, 4G, etc. wireless mobile communication mode); For weaker D2D communication capabilities, the receiver device should be enabled to use the relay D2D communication mode; when it has strong D2D communication capability, the receiver device should be enabled to use the direct D2D communication mode.
  • a non-D2D communication mode such as the traditional 2G, 3G, 4G, etc. wireless mobile communication mode
  • the receiver device should be enabled to use the relay D2D communication mode
  • the receiver device when it has strong D2D communication capability, the receiver device should be enabled to use the direct D2D communication mode.
  • the measurement result includes: an actual distance between the two devices and/or a path fading value, and/or a channel condition between the two devices; and the receiving party
  • the estimation of the D2D communication capability specifically includes: when the actual distance and/or the path fading value is less than or equal to a corresponding first preset threshold, and/or the channel condition is better than the first preset channel condition Determining that the two devices can perform direct D2D communication; and when the actual distance and/or the path fading value is greater than the first preset threshold and less than or equal to a second preset threshold, and/or the channel Determining that the two devices are capable of relaying D2D communication when the condition is inferior to the first preset channel condition and better than the second preset channel condition; when the actual distance and/or the path fading value is greater than the The second preset threshold, and/or the channel condition is inferior to the second preset channel condition, determining that the two devices are unable to perform D2D communication.
  • the method further includes: generating a traffic off request, where the offload request includes the two devices The identifier of either or both parties indicates that the two devices need to perform the offloading to the D2D communication; the shunt request is sent to the core network, and when the returned acknowledgement message frame is received, sent to at least one of the two devices Use the D2D communication mode command.
  • the core network is informed of the corresponding D2D communication status by initiating the offloading request by the core network; especially when the receiving device needs to switch the existing service from the traditional communication mode to the D2D communication mode, the core network can be timely Release the corresponding resources to improve resource utilization and ease system burden.
  • the offloading request further includes: granularity information, indicating that the two devices need to implement offloading to the D2D communication based on the device, the access point name, the radio bearer, and/or the IP flow.
  • the offload request may further include a message type identifier, such as "LTEtoD2D” or “LTEtoD2Drelay”, to indicate that the type of the offload request is: switch from LTE communication mode to D2D communication mode; of course, "LTE” here only uses For example, it should be determined according to the communication mode in which the receiver device is actually located. For example, when the receiver device is originally in the "CDMA” communication mode, the message type identifier should be "CDMAtoD2D” or "CDMAtoD2Drelay” or the like.
  • the method before the generating the message frame, the method further includes: performing a location pre-decision and/or a capability pre-decision on the two devices, and if the pre-determination result is that the corresponding preset condition is met, The message frame is generated, and is not generated.
  • the location pre-decision includes: acquiring a neighbor terminal database that is maintained by the receiver or maintained by the network side and corresponding to the receiver, and/or acquiring the The area information of the two devices is determined to determine whether any one of the two devices is in the neighboring terminal database corresponding to the other party, and/or the two devices are in the same area; the capability pre-judgment includes: Acquiring the first state information of the receiver and/or the second state information of the network side corresponding to the receiver, to determine whether the first state information and/or the second state information meet a corresponding state condition .
  • the waiting time of the user may be too long, thereby affecting the user experience. Therefore, a relatively simple but quick pre-judgment can be achieved by a relatively simpler position pre-judgment and/or capability pre-judgment, thereby being able to effectively reduce The waiting time for fewer users, and because the position pre-judgment and/or the capability pre-judgment itself are very short, so even if it is still necessary to perform measurement operations or measurements and judge the operation, the user's waiting time will not be too long.
  • the neighboring terminal database may be separately maintained by the receiver and/or the network side, including the terminal around the receiver, and the receiver and/or the network side have previously acquired (can be triggered by periodicity or event)
  • the terminal data of the maintenance and update of the neighboring terminal database helps to shorten the time for position pre-judgment.
  • the two sides of the communication may be reported by the communication party or the network side to determine the rough location information of the two parties, for example, whether the two are in the same area to determine the two sides of the communication.
  • the coarse location information may be a connected base station ID, a cell ID, and/or a tracking area ID, etc., to determine whether the two are in the same cell, sector, tracking area, and the like.
  • the first state information of the receiver and/or the second state information of the corresponding network side may be used to implement a relatively coarse but fast communication state determination, so that when D2D communication cannot be realized between the communication parties, It can effectively reduce the waiting time of the user, and since the capability pre-judgment itself takes a short time, even if it is still necessary to perform the measurement operation or the measurement and judge the operation, the waiting time of the user is not too long.
  • the first state information includes at least one of the following or a combination thereof: a real-time power of the receiver; a real-time power consumption of the receiver; and a D2D communication function of the receiver
  • the second state information includes at least one of the following or a combination thereof: resource utilization of the wireless link; resource load state of the wireless link; resource utilization of the backhaul link; The resource load status of the road; the load of the core network data plane nodes (such as S-GW, Serving Gateway) and the signaling plane nodes (such as MME, Mobility Management Entity).
  • the present invention also provides a wireless communication apparatus, including: a message frame generating unit, configured to generate a message frame, where the message frame is used to enable a receiver of the message frame to measure its own D2D communication capability, or to enable the receiving The party measures and determines its own D2D communication capability; the data interaction unit is configured to send the message to at least one of the two devices that need to perform D2D communication. And receiving a measurement result and/or a determination result returned by the receiver.
  • a message frame generating unit configured to generate a message frame, where the message frame is used to enable a receiver of the message frame to measure its own D2D communication capability, or to enable the receiving The party measures and determines its own D2D communication capability
  • the data interaction unit is configured to send the message to at least one of the two devices that need to perform D2D communication. And receiving a measurement result and/or a determination result returned by the receiver.
  • the wireless communication device ie, the receiver device
  • the D2D communication capability of the wireless communication device ie, the receiver device
  • the communication mode does not match the actual situation of the receiver device. For example, when the communication parties requesting D2D communication are too far away, if the D2D communication is used, the communication connection may not be established or the communication quality may be poor, which may affect the user experience.
  • the receiver device can transmit the message frame, and the receiver device can only measure the D2D communication capability of the device, and then return the measurement result to the network side (ie, the sender of the message frame) to perform the D2D communication capability judgment by the network side; or, receive The square device can also self-measure, and further judge its own D2D communication capability according to the measurement result, thereby notifying the network side of the measurement result and/or the judgment result, so that the network side determines which communication mode the receiver device finally uses.
  • the network side ie, the sender of the message frame
  • the message frame is physical layer signaling: if the physical layer signaling is the first value, it indicates that the receiving party needs to perform the measurement operation, or the measurement is Determining an operation; or if the physical layer signaling is a specific value, indicating that the receiver needs to perform the measurement operation on a preset frequency domain resource and/or a time domain resource indexed by the specific value, or The measurement and determination of the operation.
  • the physical layer signaling may only include a value of one bit, for example, when the value is 1, it indicates that the receiving device needs to perform a measurement operation, or measure and judge the operation.
  • the physical layer signaling can also indicate other meanings. For example, when the value of the physical layer signaling is 0, it means that the foregoing measurement operation does not need to be performed, or the operation is measured and judged.
  • the "one bit position" herein is only used as an example, and it is obvious that the values of other bits can be used to represent the above meaning.
  • the negotiation between the sending and receiving devices of the message frame may be performed in advance, that is, one or more frequency domain resources and/or time domain resources are predefined, and corresponding indexes are set for the same. Then, by transmitting physical layer signaling including a specific value, and making the specific value correspond to a corresponding index value of a certain one or more frequency domain resources and/or time domain resources, the corresponding device can utilize the corresponding Frequency domain resources and/or time domain resources perform measurement operations, or measure and judge operations.
  • the physical layer signaling only corresponds to the frequency domain resource or the time domain resource, it indicates that the receiving device can use the preset default time domain resource or the frequency domain resource to implement the foregoing measurement operation, or measure and determine the operation.
  • the message frame is RRC signaling or application layer signaling
  • the RRC signaling or application layer signaling includes: operation type information, if the operation type information is the first value. And indicating that the receiving party needs to perform the measuring operation, or the measuring and determining the operation; or the resource index information, if the resource index information is a specific value, indicating that the receiving party needs to use the specific value Performing the measurement operation, or the measuring and determining the operation for the indexed preset frequency domain resource and/or the time domain resource; or the frequency domain resource information and/or the time domain resource information, indicating that the receiver needs to utilize the corresponding The frequency domain resource and/or the time domain resource, perform the measurement operation, or the measurement and determine the operation.
  • the operation type information included in the message frame may be 1, to indicate the receiving device to perform the measurement operation, or to measure and
  • the operation type information may also indicate other meanings.
  • the value of the operation type identifier is 0, it means that the above measurement operation is not required to be performed, or the operation is measured and judged.
  • " or "0" herein is for example only, and it is obvious that the values of other bits can be used to represent the above meaning.
  • the negotiation between the sending and receiving devices of the message frame may be performed in advance, that is, one or more frequency domain resources and/or time domain resources are predefined, and corresponding indexes are set for the same. Then, by transmitting the resource index information including the specific value, and making the specific value correspond to the index value corresponding to the predefined one or more frequency domain resources and/or the time domain resource, the corresponding device can use the corresponding frequency. Domain resources and/or time domain resources perform measurement operations, or measure and determine operations.
  • the specific frequency domain resource and/or the time domain resource may be directly notified to the receiver device by using the frequency domain resource information and/or the time domain resource information, so that the measurement may be performed by the receiver device. Operate, or measure and judge the operation.
  • the message frame only informs the frequency domain resource or the time domain resource, it indicates that the receiving device can use the preset default time domain resource or the frequency domain resource to implement the foregoing measurement operation, or measure and determine the operation.
  • the network side may instruct the receiver device to perform measurement in one or more time domain resources and/or frequency domain resources; when there are multiple time domain resources and/or frequency domain resources, the receiver device may separately perform measurement, Return all or most of the measurements to the network side.
  • the method further includes: a type determining unit, configured to estimate, according to the received measurement result, the D2D communication capability of the receiver, and determine, according to the estimation result, whether the two devices can Performing D2D communication, and specifically determining a D2D communication type when D2D communication is possible; the message frame generating unit is further configured to: generate a mode notification message frame, where the mode communication message frame includes the receiver needs And a communication mode, and a frequency domain and/or a time domain resource for the communication process; and the data interaction unit is further configured to: send the mode notification message frame to the receiver.
  • a type determining unit configured to estimate, according to the received measurement result, the D2D communication capability of the receiver, and determine, according to the estimation result, whether the two devices can Performing D2D communication, and specifically determining a D2D communication type when D2D communication is possible
  • the message frame generating unit is further configured to: generate a mode notification message frame, where the mode communication message frame includes the receiver needs And a communication mode, and a
  • the network side can judge the D2D communication capability of the receiver device according to the measurement result returned by the receiver device to ensure that it obtains an optimal communication experience in the most suitable communication mode.
  • the receiver device when it does not have D2D communication capability, the receiver device should be enabled to use a non-D2D communication mode (such as the traditional 2G, 3G, 4G, etc. wireless mobile communication mode); For weaker D2D communication capabilities, the receiver device should be enabled to use the relay D2D communication mode; when it has strong D2D communication capability, the receiver device should be enabled to use the direct D2D communication mode.
  • a non-D2D communication mode such as the traditional 2G, 3G, 4G, etc. wireless mobile communication mode
  • the receiver device should be enabled to use the relay D2D communication mode
  • the receiver device when it has strong D2D communication capability, the receiver device should be enabled to use the direct D2D communication mode.
  • the measurement result includes: an actual distance between the two devices and/or a path fading value, and/or a channel condition between the two devices, where the type determining unit is When the actual distance and/or the path fading value is less than or equal to the corresponding first preset threshold, and/or the channel condition is better than the first preset channel condition, determining that the two devices can Performing direct D2D communication; and when the actual distance and/or the path fading value is greater than the first predetermined threshold and less than or equal to a second predetermined threshold, and/or the channel condition is inferior to the first Determining that the two devices can perform relay D2D communication when a preset channel condition is superior to the second preset channel condition; when the actual distance and/or the path fading value is greater than the second preset threshold, And/or when the channel condition is inferior to the second preset channel condition, it is determined that the two devices are unable to perform D2D communication.
  • the type determining unit is When the actual distance and/or the path fading value is less than or equal
  • the method further includes: a request generating unit, configured to generate a offloading request if the two devices are capable of performing D2D communication, where the offloading request includes any one of the two devices The identifier of the one or both parties indicates that the two devices need to perform the offloading to the D2D communication; the data interaction unit is further configured to: send the offload request to the core network, and when receiving the returned acknowledgement message frame, At least one of the two devices transmits an instruction to use the D2D communication mode.
  • the core network is informed of the corresponding D2D communication status by initiating the offloading request by the core network; especially when the receiving device needs to switch the existing service from the traditional communication mode to the D2D communication mode, the core network can be timely Release the corresponding resources to improve resource utilization and ease system burden.
  • the offloading request further includes: granularity information, indicating that the two devices need to implement offloading to the D2D communication based on the device, the access point name, the radio bearer, and/or the IP flow.
  • the offload request may further include a message type identifier, such as "LTEtoD2D” or “LTEtoD2Drelay”, to indicate that the type of the offload request is: switch from LTE communication mode to D2D communication mode; of course, "LTE” here only uses For example, it should be determined according to the communication mode in which the receiver device is actually located. For example, when the receiver device is originally in the "CDMA” communication mode, the message type identifier should be "CDMAtoD2D” or "CDMAtoD2Drelay” or the like.
  • the method further includes: a pre-decision unit, configured to perform a location pre-decision and/or a capability pre-decision on the two devices before the message frame generating unit generates the message frame, If the pre-decision result is that the corresponding preset condition is met, the message frame is generated by the message frame generating unit, and is not generated; wherein the location pre-decision includes: acquiring the receiver-maintained or network-side maintenance Corresponding to the neighboring terminal database of the receiving party, and/or acquiring the area information of the two devices respectively, to determine whether any one of the two devices is in the neighboring terminal database corresponding to the other party, And/or the two devices are in the same area; the capability pre-judgment includes: acquiring the first status letter of the receiver And second state information of the network side corresponding to the receiving party to determine whether the first state information and/or the second state information meets a corresponding state condition.
  • a pre-decision unit configured to perform a location pre-decision and/or a capability pre-decision
  • the waiting time of the user may be too long, thereby affecting the user experience. Therefore, a coarser but faster pre-judgment can be achieved by a relatively simpler position pre-judgment and/or capability pre-judgment, thereby effectively reducing the user's waiting time, and also because the position pre-judgment and/or the capability pre-judgment itself is time consuming. It is very short, so even if it is still necessary to perform measurement operations or measurements and judge the operation, it will not make the user's waiting time too long.
  • the neighboring terminal database may be separately maintained by the receiver and/or the network side, including the terminal around the receiver, and the receiver and/or the network side have previously acquired (can be triggered by periodicity or event)
  • the terminal data of the maintenance and update of the neighboring terminal database helps to shorten the time for position pre-judgment.
  • the two sides of the communication may be reported by the communication party or the network side to determine the coarse location information of the two communication parties, for example, whether the two are in the same area to determine the D2D communication capability of the communication parties.
  • the coarse location information may be a connected base station ID, a cell ID, and/or a tracking area ID, etc., to determine whether the two are in the same cell, sector, tracking area, and the like.
  • the first state information of the receiver and/or the second state information of the corresponding network side may be used to implement a relatively coarse but fast communication state determination, so that when D2D communication cannot be realized between the communication parties, It can effectively reduce the waiting time of the user, and since the capability pre-judgment itself takes a short time, even if it is still necessary to perform the measurement operation or the measurement and judge the operation, the waiting time of the user is not too long.
  • the first state information includes at least one of the following or a combination thereof: a real-time power of the receiver; a real-time power consumption of the receiver; and a D2D communication function of the receiver
  • the second state information includes at least one of the following or a combination thereof: resource utilization of the wireless link; resource load state of the wireless link; resource utilization of the backhaul link; Resource load status of the road; core network data plane nodes (eg SGW) and the load situation of the signaling plane node (such as MME).
  • the present invention also provides a base station, comprising: the wireless communication device according to any one of the preceding claims.
  • the present invention also provides a wireless communication method, including: initiating a handover request to a D2D communication mode; receiving a message frame, the message frame being used to enable a receiver of the message frame to measure its own D2D communication capability, or The receiver measures and determines its own D2D communication capability; performs the measurement operation or the measurement and determines the operation, and returns a measurement result and/or a determination result to the sender of the message frame.
  • the actual situation of the receiver device can be understood, and the selection is avoided.
  • the communication mode does not match the actual situation of the receiver device. For example, when the communication parties requesting D2D communication are too far away, if D2D communication is used, the communication connection may not be established or the communication quality may be poor, which may affect the user experience.
  • the receiver device can transmit the message frame, and the receiver device can only measure the D2D communication capability of the device, and then return the measurement result to the network side (ie, the sender of the message frame) to perform the D2D communication capability judgment by the network side; or, receive The square device can also self-measure, and further judge its own D2D communication capability according to the measurement result, thereby notifying the network side of the measurement result and/or the judgment result, so that the network side determines which communication mode the receiver device finally uses.
  • the network side ie, the sender of the message frame
  • the message frame is physical layer signaling: if the physical layer signaling is the first value, it indicates that the receiving party needs to perform the measurement operation, or the measurement is Determining an operation; or if the physical layer signaling is a specific value, indicating that the receiver needs to perform the measurement operation on a preset frequency domain resource and/or a time domain resource indexed by the specific value, or The measurement and determination of the operation.
  • the physical layer signaling may only include a value of one bit, for example, when the value is 1, it indicates that the receiving device needs to perform a measurement operation, or measure and judge the operation.
  • the physical layer signaling can also indicate other meanings. For example, when the value of the physical layer signaling is 0, it means that the foregoing measurement operation does not need to be performed, or the operation is measured and judged.
  • “one ratio here" "Special” is used for example only, and it is obvious that the values of other bits can be used to indicate the above meaning.
  • negotiation between the transmitting and receiving devices of the message frame may be performed in advance, that is, a predefined one Or a plurality of frequency domain resources and/or time domain resources, and setting corresponding indexes for the same, by transmitting physical layer signaling including a specific value, and making the specific value correspond to a predefined one or more
  • the corresponding index value of the frequency domain resource and/or the time domain resource may be used by the receiving device to perform the measurement operation by using the corresponding frequency domain resource and/or the time domain resource, or measure and judge the operation.
  • the receiving device When the physical layer signaling only corresponds to the frequency domain resource or the time domain resource, it indicates that the receiving device can use the preset default time domain resource or the frequency domain resource to implement the foregoing measurement operation, or measure and judge the operation.
  • the message frame is RRC signaling or application layer signaling
  • the RRC signaling or application layer signaling includes: operation type information, if the operation type information is the first value. And indicating that the receiving party needs to perform the measuring operation, or the measuring and determining the operation; or the resource index information, if the resource index information is a specific value, indicating that the receiving party needs to use the specific value Performing the measurement operation, or the measuring and determining the operation for the indexed preset frequency domain resource and/or the time domain resource; or the frequency domain resource information and/or the time domain resource information, indicating that the receiver needs to utilize the corresponding The frequency domain resource and/or the time domain resource, perform the measurement operation, or the measurement and determine the operation.
  • the operation type information included in the message frame may be 1, to indicate the receiving device to perform the measurement operation, or to measure and
  • the operation type information may also indicate other meanings.
  • the value of the operation type identifier is 0, it means that the above measurement operation is not required to be performed, or the operation is measured and judged.
  • " or "0" herein is for example only, and it is obvious that the values of other bits can be used to represent the above meaning.
  • the negotiation between the sending and receiving devices of the message frame may be performed in advance, that is, one or more frequency domain resources and/or time domain resources are predefined, and corresponding indexes are set for the same. Then, by sending resource index information including a specific value, and corresponding to the index value corresponding to a predefined one or more frequency domain resources and/or time domain resources, The measurement operation can be performed by the receiver device using the corresponding frequency domain resources and/or time domain resources, or the operation can be measured and judged.
  • the specific frequency domain resource and/or the time domain resource may be directly notified to the receiver device by using the frequency domain resource information and/or the time domain resource information, so that the measurement may be performed by the receiver device. Operate, or measure and judge the operation.
  • the message frame only informs the frequency domain resource or the time domain resource, it indicates that the receiving device can use the preset default time domain resource or the frequency domain resource to implement the above measurement operation, or measure and judge the operation.
  • the network side may instruct the receiver device to perform measurement in one or more time domain resources and/or frequency domain resources; when there are multiple time domain resources and/or frequency domain resources, the receiver device may separately perform measurement, Return all or most of the measurements to the network side.
  • the method further includes: receiving a mode communication message frame from a sender of the message frame, where the mode communication message frame includes a communication mode that the receiver needs to use, and is used for communication Frequency domain and/or time domain resources of the process; and implementing a corresponding communication process based on the communication mode and the frequency domain and/or time domain resources.
  • the network side can judge the D2D communication capability of the receiver device according to the measurement result returned by the receiver device to ensure that it obtains an optimal communication experience in the most suitable communication mode.
  • the receiver device when it does not have D2D communication capability, the receiver device should be enabled to use a non-D2D communication mode (such as the traditional 2G, 3G, 4G, etc. wireless mobile communication mode); For weaker D2D communication capabilities, the receiver device should be enabled to use the relay D2D communication mode; when it has strong D2D communication capability, the receiver device should be enabled to use the direct D2D communication mode.
  • a non-D2D communication mode such as the traditional 2G, 3G, 4G, etc. wireless mobile communication mode
  • the receiver device should be enabled to use the relay D2D communication mode
  • the receiver device when it has strong D2D communication capability, the receiver device should be enabled to use the direct D2D communication mode.
  • the method further includes: receiving a pre-judgment instruction from a sender of the message frame; returning, according to the pre-decision instruction, a neighbor terminal database maintained by the receiver, and/or Receiver status information.
  • the pre-judgment process may include a location pre-judgment and a capability pre-judgment:
  • the neighboring terminal database may be separately maintained by the receiving party and/or the network side, including the terminal around the receiving party, and the receiving party and/or the network side have acquired in advance (can be triggered by periodicity or event) Terminal data for maintenance and update of neighboring terminal databases, because real-time measurement is not required, thus helping to shorten the time for position pre-judgment.
  • the two sides of the communication may be reported by the communication party or the network side to determine the rough location information of the two parties, for example, whether the two are in the same area to determine the two sides of the communication.
  • the coarse location information may be a connected base station ID, a cell ID, and/or a tracking area ID, etc., to determine whether the two are in the same cell, sector, tracking area, and the like.
  • the capability pre-judgment according to the state information of the receiver, a relatively rough but fast communication state judgment can be realized, so that when the communication between the two parties cannot realize D2D communication, the waiting time of the user can be effectively reduced, and the capability pre-judgment itself is It takes a very short time, so even if you still need to perform measurement operations or measurement and judge the operation, it will not make the user's waiting time too long.
  • the status information includes at least one of the following or a combination thereof: a real-time power of the receiver; a real-time power consumption of the receiver; and a D2D communication function of the receiver status.
  • the present invention also provides a wireless communication apparatus, including: a request initiation unit, configured to initiate a handover request to a D2D communication mode; a data interaction unit, configured to receive a message frame, wherein the message frame is used to enable the wireless communication
  • the device measures its own D2D communication capability, or causes the wireless communication device to measure and determine its own D2D communication capability; an operation execution unit, configured to perform the measurement operation or the measurement and determine an operation to be performed by the data interaction unit
  • the measurement result and/or the determination result are returned to the sender of the message frame.
  • the wireless communication device ie, the receiver device
  • the actual situation of the receiver device can be understood, and the selected device is avoided.
  • Communication mode and receiver device If the communication between the two parties is too far, if the D2D communication is too far away, if the D2D communication is used, the communication connection may not be established or the communication quality may be poor, which may affect the user experience.
  • the receiver device can transmit the message frame, and the receiver device can only measure the D2D communication capability of the device, and then return the measurement result to the network side (ie, the sender of the message frame) to perform the D2D communication capability judgment by the network side; or, receive The square device can also self-measure, and further judge its own D2D communication capability according to the measurement result, thereby notifying the network side of the measurement result and/or the judgment result, so that the network side determines which communication mode the receiver device finally uses.
  • the network side ie, the sender of the message frame
  • the message frame is physical layer signaling: if the physical layer signaling is the first value, it indicates that the wireless communication device needs to perform the measurement operation, or the measurement And determining the operation; or if the physical layer signaling is a specific value, indicating that the wireless communication device needs to perform the measurement operation on a preset frequency domain resource and/or a time domain resource indexed by the specific value. , or the measurement and judgment operation.
  • the physical layer signaling may only include a value of one bit, for example, when the value is 1, it indicates that the receiving device needs to perform a measurement operation, or measure and judge the operation.
  • the physical layer signaling can also indicate other meanings. For example, when the value of the physical layer signaling is 0, it means that the foregoing measurement operation does not need to be performed, or the operation is measured and judged.
  • the "one bit position" herein is only used as an example, and it is obvious that the values of other bits can be used to represent the above meaning.
  • the negotiation between the sending and receiving devices of the message frame may be performed in advance, that is, one or more frequency domain resources and/or time domain resources are predefined, and corresponding indexes are set for the same. Then, by transmitting physical layer signaling including a specific value, and making the specific value correspond to a corresponding index value of a certain one or more frequency domain resources and/or time domain resources, the corresponding device can utilize the corresponding Frequency domain resources and/or time domain resources perform measurement operations, or measure and judge operations.
  • the receiving device When the physical layer signaling only corresponds to the frequency domain resource or the time domain resource, it indicates that the receiving device can use the preset default time domain resource or the frequency domain resource to implement the foregoing measurement operation, or measure and judge the operation.
  • the message frame is RRC signaling or application layer signaling
  • the RRC signaling or application layer signaling includes: operation type information, if the operation class The type information is a first value, indicating that the wireless communication device needs to perform the measurement operation, or the measurement and determination operation; or resource index information, if the resource index information is a specific value, indicating the wireless communication
  • the apparatus needs to perform the measurement operation, or the measurement and judgment operation on the preset frequency domain resource and/or the time domain resource indexed by the specific value; or the frequency domain resource information and/or the time domain resource information, Representing that the wireless communication device needs to perform the measurement operation, or the measurement and determine the operation, by using corresponding frequency domain resources and/or time domain resources.
  • the operation type information included in the message frame may be 1, to indicate the receiving device to perform the measurement operation, or to measure and
  • the operation type information may also indicate other meanings.
  • the value of the operation type identifier is 0, it means that the above measurement operation is not required to be performed, or the operation is measured and judged.
  • " or "0" herein is for example only, and it is obvious that the values of other bits can be used to represent the above meaning.
  • the negotiation between the sending and receiving devices of the message frame may be performed in advance, that is, one or more frequency domain resources and/or time domain resources are predefined, and corresponding indexes are set for the same. Then, by transmitting the resource index information including the specific value, and making the specific value correspond to the index value corresponding to the predefined one or more frequency domain resources and/or the time domain resource, the corresponding device can use the corresponding frequency. Domain resources and/or time domain resources perform measurement operations, or measure and determine operations.
  • the specific frequency domain resource and/or the time domain resource may be directly notified to the receiver device by using the frequency domain resource information and/or the time domain resource information, so that the measurement may be performed by the receiver device. Operate, or measure and judge the operation.
  • the message frame only informs the frequency domain resource or the time domain resource, it indicates that the receiving device can use the preset default time domain resource or the frequency domain resource to implement the above measurement operation, or measure and judge the operation.
  • the network side may instruct the receiver device to perform measurement in one or more time domain resources and/or frequency domain resources; when there are multiple time domain resources and/or frequency domain resources, the receiver device may separately perform measurement, Return all or most of the measurements to the network side.
  • the data interaction unit is further configured to: receive the source a mode communication message frame of a sender of the message frame, the mode communication message frame including a communication mode that the wireless communication device needs to use, and frequency domain and/or time domain resources for the communication process;
  • the wireless communication device further includes: a communication implementation unit, configured to implement a corresponding communication process according to the communication mode and the frequency domain and/or time domain resources.
  • the network side can judge the D2D communication capability of the receiver device according to the measurement result returned by the receiver device to ensure that it obtains an optimal communication experience in the most suitable communication mode.
  • the receiver device when it does not have D2D communication capability, the receiver device should be enabled to use a non-D2D communication mode (such as the traditional 2G, 3G, 4G, etc. wireless mobile communication mode); For weaker D2D communication capabilities, the receiver device should be enabled to use the relay D2D communication mode; when it has strong D2D communication capability, the receiver device should be enabled to use the direct D2D communication mode.
  • a non-D2D communication mode such as the traditional 2G, 3G, 4G, etc. wireless mobile communication mode
  • the receiver device should be enabled to use the relay D2D communication mode
  • the receiver device when it has strong D2D communication capability, the receiver device should be enabled to use the direct D2D communication mode.
  • the data interaction unit is further configured to: receive a pre-judgment instruction from a sender of the message frame, where the data interaction unit returns the wireless according to the pre-decision instruction A neighboring terminal database maintained by the communication device, and/or status information of the wireless communication device.
  • the pre-judgment process may include a location pre-judgment and a capability pre-judgment:
  • the neighboring terminal database may be separately maintained by the receiving party and/or the network side, including the terminal around the receiving party, and the receiving party and/or the network side have acquired in advance (can be triggered by periodicity or event) Terminal data for maintenance and update of neighboring terminal databases, because real-time measurement is not required, thus helping to shorten the time for position pre-judgment.
  • the two sides of the communication may be reported, or the network side performs measurement, and the rough location information of the two parties is determined, for example, whether the two are in the same area to determine the two sides of the communication.
  • the coarse location information may be a connected base station ID, a cell ID, and/or a tracking area ID, etc., to determine whether the two are in the same cell, sector, tracking area, and the like.
  • the capability pre-judgment according to the state information of the receiver, a relatively rough but fast communication state judgment can be realized, so that when the communication between the two parties cannot realize D2D communication, the waiting time of the user can be effectively reduced, and the capability pre-judgment itself is It takes a very short time, so even if you still need to perform measurement operations or measurement and judge the operation, it will not make the user's waiting time too long.
  • the status information includes at least one of the following or a combination thereof: a real-time power of the wireless communication device; a real-time power consumption of the wireless communication device; and a D2D communication of the wireless communication device The open state of the function.
  • the present invention also provides a terminal, comprising: the wireless communication device according to any one of the above aspects.
  • FIG. 1A is a schematic diagram showing signaling interaction of mode selection according to an embodiment of the present invention
  • FIG. 1B is a schematic diagram showing signaling interaction of mode selection according to another embodiment of the present invention.
  • FIG. 2A shows a schematic flow chart of a network side based wireless communication method in accordance with one embodiment of the present invention
  • 2B is a schematic flow chart showing a terminal side-based wireless communication method according to an embodiment of the present invention.
  • 3A is a schematic flow chart showing a network side based wireless communication method according to another embodiment of the present invention.
  • FIG. 3B is a schematic flow chart showing a terminal side-based wireless communication method according to another embodiment of the present invention
  • FIG. 4 is a schematic flow chart showing selection of a communication mode of a terminal according to an embodiment of the present invention
  • FIG. 5A through 5C illustrate diagrams of switching communication modes in accordance with one embodiment of the present invention
  • 6A to 6B are diagrams showing a switching communication mode according to another embodiment of the present invention.
  • FIGS. 7A through 7B are diagrams showing a switching communication mode according to still another embodiment of the present invention.
  • Figure 8 shows a schematic block diagram of a wireless communication device as a network side, in accordance with one embodiment of the present invention.
  • Figure 9 shows a schematic block diagram of a base station in accordance with one embodiment of the present invention.
  • FIG. 10 is a schematic block diagram showing a wireless communication device as a terminal side according to an embodiment of the present invention.
  • Figure 11 shows a schematic block diagram of a terminal in accordance with one embodiment of the present invention. detailed description
  • FIG. 1A shows a schematic diagram of signaling interaction for mode selection in accordance with one embodiment of the present invention
  • FIG. 1B shows a schematic diagram of signaling interaction for mode selection in accordance with another embodiment of the present invention.
  • the signaling interaction process of mode selection includes: First, prejudgment
  • Step 102 Can UE1 and UE2 establish a pre-judgment of D2D communication, so as to quickly determine whether the two devices can use D2D communication in capability and/or state.
  • step 102 is not a necessary step.
  • Step 102A Perform a rough judgment on the location information of UE1 and UE2, and determine whether it is suitable for establishing D2D communication according to the distance between the two devices.
  • FIG. 1A specifically illustrates step 102A as follows:
  • the UE1 initiates a location request (including location information for UE1 itself and UE2) to the corresponding eNB, and the eNB returns corresponding location information, but those skilled in the art should understand Yes, obviously the above-mentioned location pre-judgment process can also be implemented in other ways:
  • the UE1 and/or the network side may each maintain a neighboring terminal database, that is, a terminal existing around the UE1, which may be acquired by the UE1 itself and/or the network side (the UE1 and/or the network side may periodically Or the event triggering method, measuring the terminal existing around the UE1 and updating to the neighboring terminal database maintained by the UE1, so that the real-time measurement is not required, so that whether the target terminal is in the D2D corresponding to the UE1 can be determined in a short time.
  • a neighboring terminal database that is, a terminal existing around the UE1, which may be acquired by the UE1 itself and/or the network side (the UE1 and/or the network side may periodically Or the event triggering method, measuring the terminal existing around the UE1 and updating to the neighboring terminal database maintained by the UE1, so that the real-time measurement is not required, so that whether the target terminal is in the D2D corresponding to the UE1 can be determined in a short time.
  • the rough location information of the UE1 and the target terminal is determined, for example, whether the two are in the same area, to determine whether the target terminal is in the D2D communication range corresponding to the UE1.
  • the coarse location information may be a connected base station ID, a cell ID, and/or a tracking area ID, etc., to determine whether the two are in the same cell, sector, tracking area, and the like.
  • Step 102B The eNB determines a communication state of the UE1 and/or the UE2. Specifically, the first state information of the UE1 and/or the second state information of the network side corresponding to the UE1 are obtained; wherein, when the first state information and/or the second state information meet the corresponding state condition, Exercising the precise decision step, otherwise determining that the communication state of the UE1 does not satisfy the preset condition.
  • the first status information includes at least one of the following or a combination thereof:
  • the D2D communication function of UE1 is turned on;
  • the second status information includes at least one of the following or a combination thereof:
  • the resource load status of the wireless link
  • the load of the core network data plane nodes (such as S-GW, Serving Gateway) and / or signaling plane nodes (such as MME, Mobility Management Entity).
  • core network data plane nodes such as S-GW, Serving Gateway
  • signaling plane nodes such as MME, Mobility Management Entity
  • the eNB sends a D2D communication capability judgment notification to UE1 and/or UE2 to measure and determine the operation by UE1 and/or UE2, determine whether it can implement D2D communication, and Which communication mode is used and informs the eNB of the final judgment result.
  • FIG. 2A shows a schematic flow chart of a network side based wireless communication method according to an embodiment of the present invention
  • FIG. 2B shows a schematic diagram of a terminal side based wireless communication method according to an embodiment of the present invention. flow chart.
  • Network side ie eNB
  • a network side based wireless communication party according to an embodiment of the present invention Law, including:
  • Step 202 Generate a message frame, where the message frame is used to enable its receiver to measure and determine its own D2D communication capability;
  • Step 204 Send the message frame to at least one of the two devices that need to perform D2D communication, and receive the measurement result and/or the determination result returned by the receiver.
  • Terminal J ie UE1 and / or UE2
  • a terminal-side wireless communication method includes:
  • Step 202 ′ after initiating a handover request to the D2D communication mode, receiving a message frame, where the message frame is used for the receiver to measure and determine its own D2D communication capability;
  • Step 204' performing the measurement and determining the operation, and returning the measurement result and/or the determination result to the sender of the message frame.
  • the receiver device (in this embodiment, UE1 and/or UE2) can be known.
  • the selected communication mode does not match the actual situation of the receiver device. For example, when the communication parties requesting D2D communication are too far away, if the D2D communication is used, the communication connection may not be established or the communication quality may be poor, affecting the user. The experience of using.
  • the eNB sends a D2D communication capability judgment notification to UE1 and/or UE2 to perform a measurement operation on itself by UE1 and/or UE2, and the eNB determines whether it can implement D2D accordingly. Communication, and what communication mode is used.
  • FIG. 3A shows a schematic flow chart of a network side based wireless communication method according to an embodiment of the present invention
  • FIG. 3B shows a schematic diagram of a terminal side based wireless communication method according to an embodiment of the present invention. flow chart.
  • Network side ie eNB
  • a network-side wireless communication method includes:
  • Step 302 Generate a message frame (ie, a D2D communication capability judgment notification), where the message frame is used Enabling the receiver of the message frame to measure its own D2D communication capability;
  • Step 304 Send the message frame to at least one of the two devices (ie, UE1 and UE2) that need to perform D2D communication, and receive the measurement result returned by the receiver.
  • the two devices ie, UE1 and UE2
  • Terminal J ie UE1 and / or UE2
  • a terminal-side wireless communication method includes:
  • Step 302 ′ after initiating a handover request to the D2D communication mode, receiving a message frame, where the message frame is used to enable a receiver of the message frame to measure its own D2D communication capability;
  • Step 304' performing the measurement operation or the measurement and determining the operation, and returning the measurement result to the sender of the message frame.
  • the communication mode that avoids selection does not match the actual situation of the receiver device. For example, when the communication parties requesting D2D communication are too far away, if the D2D communication is used, the communication connection may not be established or the communication quality may be caused. Poor, affecting the user experience.
  • the eNB further performs: estimating, according to the received measurement result, the D2D communication capability of the receiver according to the received measurement result; determining, according to the estimation result, whether the two devices can perform D2D communication, and a specific D2D communication type when determining that D2D communication is possible; and transmitting a mode notification message frame to the recipient, the mode communication message frame including a communication mode that the receiver needs to use, and The frequency domain and/or time domain resources of the communication process.
  • the network side can judge the D2D communication capability of the receiver device according to the measurement result returned by the receiver device to ensure that it obtains an optimal communication experience in the most suitable communication mode.
  • the receiver device when it does not have D2D communication capability, the receiver device should be enabled to use a non-D2D communication mode (such as the traditional 2G, 3G, 4G, etc. wireless mobile communication mode); For weaker D2D communication capabilities, the receiver device should be enabled to use the relay D2D communication mode; when it has strong D2D communication capability, the receiver device should be enabled to use the direct D2D communication mode.
  • a non-D2D communication mode such as the traditional 2G, 3G, 4G, etc. wireless mobile communication mode
  • the receiver device should be enabled to use the relay D2D communication mode
  • the receiver device when it has strong D2D communication capability, the receiver device should be enabled to use the direct D2D communication mode.
  • the measurement result includes: an actual distance between the two devices and/or a path fading value, and/or a channel condition between the two devices; and the receiving party
  • the estimation of the D2D communication capability specifically includes: when the actual distance and/or the path fading value is less than or equal to a corresponding first preset threshold, and/or the channel condition is better than the first preset channel condition Determining that the two devices can perform direct D2D communication; and when the actual distance and/or the path fading value is greater than the first preset threshold and less than or equal to a second preset threshold, and/or the channel Determining that the two devices are capable of relaying D2D communication when the condition is inferior to the first preset channel condition and better than the second preset channel condition; when the actual distance and/or the path fading value is greater than the The second preset threshold, and/or the channel condition is inferior to the second preset channel condition, determining that the two devices are unable to perform D2D communication.
  • the message frame is physical layer signaling: if the physical layer signaling is the first value, it indicates that the receiving party needs to perform the measurement operation, or the measurement and determine the operation; or if the physical layer The signaling is a specific value, which indicates that the receiver needs to perform the measurement operation, or the measurement and determine the operation on the preset frequency domain resource and/or the time domain resource indexed by the specific value.
  • the physical layer signaling may only include a value of one bit, for example, when the value is 1, it indicates that the receiving device needs to perform a measurement operation, or measure and judge the operation.
  • the physical layer signaling can also indicate other meanings. For example, when the value of the physical layer signaling is 0, it means that the foregoing measurement operation does not need to be performed, or the operation is measured and judged.
  • the "one bit position" herein is only used as an example, and it is obvious that the values of other bits can be used to represent the above meaning.
  • the device can be pre-sent in both the transmitting and receiving devices of the message frame.
  • Negotiating that is, pre-defining one or more frequency domain resources and/or time domain resources, and setting corresponding indexes for them, by transmitting physical layer signaling including a specific value, and making the specific value correspond to the pre-
  • the index value corresponding to one or more of the frequency domain resources and/or the time domain resources may be measured by the receiving device by using the corresponding frequency domain resource and/or the time domain resource, or the operation may be measured and determined.
  • the receiving device When the physical layer signaling only corresponds to the frequency domain resource or the time domain resource, it indicates that the receiving device can use the preset default time domain resource or the frequency domain resource to implement the foregoing measurement operation, or measure and judge the operation.
  • the message frame is RRC signaling or application layer signaling
  • the RRC signaling or the application layer signaling includes: operation type information, if the operation type information is the first value, it indicates that the receiver needs to perform The measuring operation, or the measuring and determining the operation; or the resource indexing information, if the resource indexing information is a specific value, indicating that the receiving party needs to preset the frequency domain resource indexed by the specific value And/or the time domain resource, performing the measurement operation, or the measuring and determining the operation; or the frequency domain resource information and/or the time domain resource information, indicating that the receiver needs to utilize the corresponding frequency domain resource and/or time domain Resources, perform the measurement operation, or the measurement and determine the operation.
  • the operation type information included in the message frame may be 1, to indicate the receiving device to perform the measurement operation, or to measure and
  • the operation type information may also indicate other meanings.
  • the value of the operation type identifier is 0, it means that the above measurement operation is not required to be performed, or the operation is measured and judged.
  • " or "0" herein is for example only, and it is obvious that the values of other bits can be used to represent the above meaning.
  • the negotiation between the sending and receiving devices of the message frame may be performed in advance, that is, one or more frequency domain resources and/or time domain resources are predefined, and corresponding indexes are set for the same. Then, by transmitting the resource index information including the specific value, and making the specific value correspond to the index value corresponding to the predefined one or more frequency domain resources and/or the time domain resource, the corresponding device can use the corresponding frequency. Domain resources and/or time domain resources for measurement operations, or Measure and judge the operation.
  • the specific frequency domain resource and/or the time domain resource may be directly notified to the receiver device by using the frequency domain resource information and/or the time domain resource information, so that the measurement may be performed by the receiver device. Operate, or measure and judge the operation.
  • the message frame only informs the frequency domain resource or the time domain resource, it indicates that the receiving device can use the preset default time domain resource or the frequency domain resource to implement the above measurement operation, or measure and judge the operation.
  • the network side may instruct the receiver device to perform measurement in one or more time domain resources and/or frequency domain resources; when there are multiple time domain resources and/or frequency domain resources, the receiver device may separately perform measurement, Return all or most of the measurements to the network side.
  • UE1 and/or UE2 may select a communication mode for use in step 104; and, as shown in FIG. 1B, another implementation according to the present invention
  • the communication mode used by the eNB for UE1 and/or UE2 may be selected.
  • the measurement result may include: an actual distance between the two devices and/or a path fading value, and/or a channel condition between the two devices, and then the estimation of the D2D communication capability of the receiver is specific.
  • the two devices are capable of performing relay D2D communication; when the actual distance and/or the path fading value is greater than the second preset threshold, and/or When the channel condition is inferior to the second preset channel condition, it is determined that the two devices are unable to perform D2D communication.
  • D2D communication is performed on the receiving device.
  • the judgment of the capability is obviously not limited to the above parameters, that is, other types of parameters can be used to help achieve more accurate or faster D2D communication capability judgment on the receiving device.
  • the eNB When it is determined that UE1 and UE2 can perform D2D communication, the eNB further performs a step 108 of FIG. 1A or a part of step 106' shown in FIG. 1B, which specifically includes: generating a offload request, where the offload request includes the two parties An identifier of either or both of the devices, indicating that the two devices need to perform offloading to the D2D communication; sending the offload request to the core network, and receiving the returned acknowledgement message frame, to the two devices At least one of the commands transmits an instruction to use the D2D communication mode.
  • the core network is informed of the corresponding D2D communication status by initiating the offloading request by the core network; especially when the receiving device needs to switch the existing service from the traditional communication mode to the D2D communication mode, the core network can be timely Release the corresponding resources to improve resource utilization and ease system burden.
  • the offloading request further includes: granularity information, indicating that the two devices need to implement offloading to the D2D communication based on the device, the access point name, the radio bearer, and/or the IP flow.
  • the offload request may further include a message type identifier, such as "LTEtoD2D” or “LTEtoD2Drelay”, to indicate that the type of the offload request is: switch from LTE communication mode to D2D communication mode; of course, "LTE” here only uses For example, it should be determined according to the communication mode in which the receiver device is actually located. For example, when the receiver device is originally in the "CDMA” communication mode, the message type identifier should be "CDMAtoD2D” or "CDMAtoD2Drelay” or the like.
  • the eNB since the UE1 and the UE2 have determined the communication mode by themselves and notify the eNB by the mode selection notification, the eNB only needs to notify the UE1 and the UE2 to perform mode switching by using a handover instruction. Proceeding to step 108, a specific communication mode switching operation is implemented.
  • the communication mode used by the eNB for UE1 and UE2 can inform UE1 and UE2 of the communication mode that should be specifically used by, for example, a mode selection notification.
  • the eNB can directly notify the UE1 and the UE2 to perform the handover operation by using the mode, so that the eNB can obviously notify the UE1 and the UE2 to perform mode switching by directly switching the instruction. Proceeding to step 108, a specific communication mode switching operation is implemented.
  • Figure 4 illustrates a schematic flow diagram for selecting a communication mode for a terminal in accordance with one embodiment of the present invention.
  • the process of selecting a communication mode of a terminal includes three stages, each of which is described in detail below.
  • Step 402A position pre-judgment.
  • the UE1 maintains a "neighbor UE database" (specifically, it can be maintained by an upper layer application in UE1), and the terminal information about UE1 is recorded in the database.
  • the UE1 may update the "neighbor UE database" according to a preset period or event triggering manner, for example, the preset period may be 30 minutes, and the triggering event may be after each communication end.
  • the UE1 may determine the surrounding terminal by transmitting specific probe signaling to the surroundings to respond to the response of the surrounding terminal.
  • UE1 when UE1 needs to initiate a new communication, it can directly query the "neighbor UE database" maintained by itself, and when UE2 is located in the "neighbor UE database", it is determined that UE2 is in the D2D communication range corresponding to UE1, that is, Both can perform D2D communication.
  • the neighboring UE database maintained by the UE1 may also be uploaded to the network side, so that the network side determines whether the UE2 is in the D2D communication range corresponding to the UE1, and notifies the UE1.
  • the "neighbor UE database" for UE1 can be maintained by the network side. Specifically, for example, after the UE1 sends a specific probe signaling to perform measurement, the measurement result is notified to the network side, For the maintenance of the terminal information around the UE1, for example, the network side can directly obtain the location of all the connected terminals, such as the UE1, to determine the terminal that is located around the UE1, and in particular, can obtain the same area as the UE1. Or a terminal within the same sector to serve as a terminal around UE1.
  • the network side can directly determine the location relationship between UE2 and UE1; or, the network side can inform the UE1 of the "neighboring UE database", so that UE1 can determine its own relationship with UE2. Positional relationship.
  • UE1 and UE2 can be obtained in a shorter time. A rough positional situation between them to achieve fast location acquisition and D2D capability judgment.
  • the location information of UE1 and UE2 can be acquired in real time.
  • the pre-judgment of the location of UE1 and UE2 needs to be completed in a short time, so that only the coarse location information of both can be obtained.
  • the cell ID, the tracking area ID, the connected base station ID, and the like, where the UE 1 and the UE 2 are located may be acquired by the network side, so that the UE 2 is considered to be in the same cell or tracking area or connected to the same base station. It is within the D2D communication range corresponding to UE1.
  • Step 402B the communication status is pre-judged.
  • the communication state can be judged from any or both of the following aspects.
  • the state of the terminal may include the state of UE1 and/or the state of UE2.
  • the terminal state may include at least one of the following or a combination thereof:
  • the real-time power of the current terminal for example, when the real-time power of UE1 and/or UE2 is less than a preset threshold, the D2D communication mode is preferentially applied;
  • the real-time power consumption of the current terminal for example, when the real-time power consumption of the UE1 and/or the UE2 is less than a preset threshold, the D2D communication mode is preferentially applied;
  • the current terminal supports the D2D communication function, for example, when the UE1 and the UE2 support the D2D communication function, the D2D communication mode is preferentially applied;
  • the D2D communication function of the current terminal is turned on, for example, when both the UE1 and the UE2 have enabled the D2D communication function, the D2D communication mode is preferentially applied.
  • the network status that is, the status of the network side that establishes a connection with UE1, may include at least one of the following or a combination thereof:
  • the resource utilization and/or resource load status of the wireless link for example, when the resource utilization and/or resource load status of the wireless link is greater than the threshold L1, the direct D2D communication mode is preferentially applied, and when the value is less than the threshold L2 When the priority is applied to the relay D2D communication mode or the traditional communication mode (L2 ⁇ L1);
  • the resource utilization and/or resource load status of the backhaul link for example, when the resource utilization and/or resource load status of the backhaul link is greater than the threshold K1, the D2D communication mode is preferentially applied, and when the threshold is less than the threshold In K2, the traditional communication mode (K2 K1) is applied preferentially;
  • the load of the core network data plane nodes (such as S-GW, Serving Gateway) and / or signaling plane nodes (such as MME, Mobility Management Entity).
  • core network data plane nodes such as S-GW, Serving Gateway
  • signaling plane nodes such as MME, Mobility Management Entity
  • step 402A and step 402B belong to two aspects of pre-judgment, and there is no necessary coupling relationship or sequence between the two, that is, step 402A may be performed first, then step 402B may be performed first, or may be performed first.
  • Step 402B after step 402A is performed, and in the step of performing first, when it is determined that UE1 and UE2 are not suitable for applying D2D mode for communication, the latter step may be omitted, and the non-D2D mode may be directly used for communication.
  • Step 404 Determine whether the pre-judgment is passed. If yes, proceed to the second stage re-judgement process, otherwise proceed directly to step 410A.
  • step 402A or step 402B it is determined that UE1 and UE2 are not suitable for communication using the D2D mode, it may be determined that the communication is not passed, and only when both steps are determined to be suitable for communication using the D2D mode, It is judged as passing to shorten the waiting time of the user; or, when it is determined that it is suitable for communication using the D2D method at any step, it is determined to be passed, thereby avoiding erroneous determination.
  • Second stage judge again
  • Step 406A the position is judged again.
  • the positioning module on the terminal such as UE1 and UE2 can perform precise positioning, for example, acquiring location information by using GPS, A-GPS, Beidou positioning system, etc., for accurately determining the positional relationship between UE1 and UE2.
  • the UE1 may determine the location relationship between the two in the distance.
  • the UE1 and the UE2 may respectively set their own location information. After being reported to the network side, the network side compares the location information of the two to determine the positional relationship between the two.
  • UE1 or the network side may also calculate a path fading value between UE1 and UE2 to determine whether the two are suitable for communication by D2D mode.
  • Step 406B the communication state is judged again.
  • a specific pilot signal and/or training sequence may be transmitted by UE1 to UE2, thereby measuring the reception quality and/or reception strength of the signal by UE2, and notifying UE1 and/or the network side to be UE1 and/or the network side. It is judged and it is determined whether the signal condition between UE1 and UE2 is suitable for D2D communication.
  • the UE2 may send the specific pilot signal and/or the training sequence to the UE1, so that the UE1 measures the receiving quality and/or the receiving strength of the signal, and determines the signal status by itself or reports it to the network side. And judged by the network side.
  • step 408 it is determined whether the determination is passed. If yes, the mode selection process of the third stage is entered, otherwise the process directly proceeds to step 410A.
  • step 406A or step 406B it is determined that UE1 and UE2 are not suitable for communication using the D2D mode, it may be determined that the communication is not passed, and only when both steps are determined to be suitable for communication using the D2D mode, It is judged as passing to shorten the waiting time of the user; or, when it is determined that it is suitable for communication using the D2D method at any step, it is determined to be passed, thereby avoiding erroneous determination.
  • step 410A if the UE2 and the UE2 are not applicable to the D2D communication, the traditional communication mode may be applied between the two, that is, the data between the UE1 and the UE2 is implemented by the base station, the S-GW/MME, and the like. Signaling interaction.
  • Step 410B based on the determination result of the location and/or the communication status, for example, the distance between UE1 and UE2 is relatively close, and/or the channel condition between UE1 and UE2 is good, etc., and may be directly performed between UE1 and UE2. D2D communication, and no relay is required for signal forwarding.
  • the direct D2D communication mode can be used; and for the communication state, the assumption is made.
  • the channel condition between UE1 and UE2 is better than the preset first channel condition, and it is determined that the direct D2D communication mode can be used.
  • Step 410C based on the judgment result of the location and/or the communication state, for example, the distance between UE1 and UE2 is relatively long, or the base station, the mobile base station or other terminal may be used as a relay although the distance is relatively close but the channel condition is not ideal.
  • a relay-based D2D communication between UE1 and UE2 is implemented to extend the communication distance and optimize the channel condition by the relay.
  • the distance between the UE1 and the UE2 and/or the path fading value is greater than the preset first distance threshold and less than or equal to the preset second distance threshold (the first distance threshold) If it is smaller than the second distance threshold, it is determined that the relay D2D communication mode can be used; and for the communication state, it is assumed that the channel condition between UE1 and UE2 is worse than the preset first channel condition but better than the preset second channel. The condition (the first channel condition is better than the second channel condition) determines that the relay D2D communication mode can be used.
  • the present invention proposes a technical solution for selecting a communication mode of a terminal, wherein the specific communication mode used is determined by judging the location information, the communication state, and the like between the current terminal and the target terminal. It should be noted that the above technical solution can be applied to the beginning of communication.
  • the initial establishment process can also be applied to the mode switching process after the communication has been established, that is, the process shown in FIG. 2 to FIG. 4 can be triggered when a new service is initiated, thereby selecting an appropriate data path for the new service; Triggered in the process of business occurrence, ensuring seamless and non-destructive mode switching of existing services.
  • 5A through 5C illustrate diagrams of switching communication modes in accordance with one embodiment of the present invention.
  • UE1 receives the measurement pilot/search pilot reception strength or signal quality from UE2 is greater than threshold B, and the base station radio resource load and/or usage rate is greater than threshold L, And/or the load and/or resource usage of the eNB to the S-GW (not shown) is greater than the threshold K.
  • the direct D2D communication mode can be used between UE1 and UE2.
  • the communication mode of UE1 and UE2 can be switched to the relay D2D communication mode, that is, the D2D communication mode in which the eNB is the relay.
  • the distance value between UE 1 and UE 2 is detected to be greater than the threshold E ( E > D ), and both are in different cells; and/or a backhaul is detected. If the load value of the link is lower than the threshold K, the communication modes of UE1 and UE2 can be switched to the traditional communication mode.
  • FIG. 6A through 6B are diagrams showing a switching communication mode according to another embodiment of the present invention. As shown in FIG. 6A, it is assumed that both UE1 and UE2 are in the coverage of the base station eNB, and the communication relationship is established between the UE1 and the UE2 through the legacy mode, that is, the UE1 and the UE2 implement data and/or through the eNB, the S-GW/MME, and/or Signaling interaction.
  • UE1 and UE2 are continuously detected, assuming that the distance between the two UEs is detected to be less than the threshold A, and/or the UE1 receives the received pilot strength or signal of the measurement pilot/search pilot from the UE2. If the quality is greater than the threshold B (or UE2 receives the pilot signal from UE1), the communication modes of UE1 and UE2 can be switched to the direct D2D communication mode.
  • FIGS. 7A through 7B are diagrams showing a switching communication mode in accordance with still another embodiment of the present invention.
  • UE1 and UE2 are in the coverage of the base stations eNB1 and eNB2, respectively, and the communication relationship is established between the UE1 and the UE2 through the legacy mode, that is, the UE1 and the UE2 are implemented by the eNB1, the S-GW/MME, and the eNB2. Interaction of data and/or signaling.
  • UE1 and UE2 are within the coverage of base stations eNB1 and eNB2, respectively, and a communication relationship is established between UE1 and UE2 through the legacy mode.
  • Continuous detection is performed on UE1 and UE2, and 4 determines that the two UEs are in different cells, but the distance between the two is greater than the threshold C (C > A) and less than the threshold D (D > C). and / or detecting radio resources eNB2 eNBl or load or resource utilization less than a threshold value L 2, the UE1 and UE2 may be the D2D communication mode to the communication mode of the relay, i.e. a relay eNBl and eNB2 , by eNB1 and eNB2 through data such as X2 interface / or transmission of signaling.
  • Figure 8 shows a schematic block diagram of a wireless communication device as a network side, in accordance with one embodiment of the present invention.
  • the wireless communication device ie, the receiver device
  • the D2D communication capability of the wireless communication device ie, the receiver device
  • the communication mode does not match the actual situation of the receiver device. For example, when the communication parties requesting D2D communication are too far away, if the D2D communication is used, the communication connection may not be established or the communication quality may be poor, which may affect the user experience.
  • the receiver device can transmit the message frame, and the receiver device can only measure the D2D communication capability of the device, and then return the measurement result to the network side (ie, the sender of the message frame) to perform the D2D communication capability judgment by the network side; or, receive The square device can also self-measure, and further judge its own D2D communication capability according to the measurement result, thereby notifying the network side of the measurement result and/or the judgment result, so that the network side determines which communication mode the receiver device finally uses.
  • the network side ie, the sender of the message frame
  • the message frame is physical layer signaling: if the physical layer signaling is the first value, it indicates that the receiving party needs to perform the measurement operation, or the measurement is Determining an operation; or if the physical layer signaling is a specific value, indicating that the receiver needs to perform the measurement operation on a preset frequency domain resource and/or a time domain resource indexed by the specific value, or The measurement and determination of the operation.
  • the physical layer signaling may only include a value of one bit, for example, when the value is 1, it indicates that the receiving device needs to perform a measurement operation, or measure and judge the operation.
  • the physical layer signaling can also indicate other meanings. For example, when the value of the physical layer signaling is 0, it means that the foregoing measurement operation does not need to be performed, or the operation is measured and judged.
  • “one ratio here" "Special” is used for example only, and it is obvious that the values of other bits can be used to indicate the above meaning.
  • negotiation between the transmitting and receiving devices of the message frame may be performed in advance, that is, a predefined one Or a plurality of frequency domain resources and/or time domain resources, and setting corresponding indexes for the same, by transmitting physical layer signaling including a specific value, and making the specific value correspond to a predefined one or more
  • the corresponding index value of the frequency domain resource and/or the time domain resource may be used by the receiving device to perform the measurement operation by using the corresponding frequency domain resource and/or the time domain resource, or measure and judge the operation.
  • the receiving device When the physical layer signaling only corresponds to the frequency domain resource or the time domain resource, it indicates that the receiving device can use the preset default time domain resource or the frequency domain resource to implement the foregoing measurement operation, or measure and judge the operation.
  • the message frame is RRC signaling or application layer signaling
  • the RRC signaling or application layer signaling includes: operation type information, if the operation type information is the first value. And indicating that the receiving party needs to perform the measuring operation, or the measuring and determining the operation; or the resource index information, if the resource index information is a specific value, indicating that the receiving party needs to use the specific value Performing the measurement operation, or the measuring and determining the operation for the indexed preset frequency domain resource and/or the time domain resource; or the frequency domain resource information and/or the time domain resource information, indicating that the receiver needs to utilize the corresponding The frequency domain resource and/or the time domain resource, perform the measurement operation, or the measurement and determine the operation.
  • the operation type information included in the message frame may be 1, to indicate the receiving device to perform the measurement operation, or to measure and
  • the operation type information may also indicate other meanings.
  • the value of the operation type identifier is 0, it means that the above measurement operation is not required to be performed, or the operation is measured and judged.
  • " or "0" herein is for example only, and it is obvious that the values of other bits can be used to represent the above meaning.
  • the negotiation between the sending and receiving devices of the message frame may be performed in advance, that is, one or more frequency domain resources and/or time domain resources are predefined, and corresponding indexes are set for the same. Then, by sending resource index information including a specific value, and corresponding to the index value corresponding to a predefined one or more frequency domain resources and/or time domain resources, The measurement operation can be performed by the receiver device using the corresponding frequency domain resources and/or time domain resources, or the operation can be measured and judged.
  • the specific frequency domain resource and/or the time domain resource may be directly notified to the receiver device by using the frequency domain resource information and/or the time domain resource information, so that the measurement may be performed by the receiver device. Operate, or measure and judge the operation.
  • the message frame only informs the frequency domain resource or the time domain resource, it indicates that the receiving device can use the preset default time domain resource or the frequency domain resource to implement the above measurement operation, or measure and judge the operation.
  • the network side may instruct the receiver device to perform measurement in one or more time domain resources and/or frequency domain resources; when there are multiple time domain resources and/or frequency domain resources, the receiver device may separately perform measurement, Return all or most of the measurements to the network side.
  • the method further includes: a type determining unit 806, configured to: estimate, according to the received measurement result, the D2D communication capability of the receiver, and determine, according to the estimation result, that the two devices can The D2D communication type is performed, and the specific D2D communication type is determined when the D2D communication is enabled.
  • the message frame generating unit 802 is further configured to: generate a mode notification message frame, where the mode communication message frame includes the receiving The communication mode required by the party, and the frequency domain and/or time domain resources for the communication process; and the data interaction unit 804 is further configured to: send the mode notification message frame to the receiver.
  • the network side can judge the D2D communication capability of the receiver device according to the measurement result returned by the receiver device to ensure that it obtains an optimal communication experience in the most suitable communication mode.
  • the receiver device when it does not have D2D communication capability, the receiver device should be enabled to use a non-D2D communication mode (such as the traditional 2G, 3G, 4G, etc. wireless mobile communication mode); For weaker D2D communication capabilities, the receiver device should be enabled to use the relay D2D communication mode; when it has strong D2D communication capability, the receiver device should be enabled to use the direct D2D communication mode.
  • a non-D2D communication mode such as the traditional 2G, 3G, 4G, etc. wireless mobile communication mode
  • the receiver device should be enabled to use the relay D2D communication mode
  • the receiver device when it has strong D2D communication capability, the receiver device should be enabled to use the direct D2D communication mode.
  • the measurement result includes: an actual distance between the two devices and/or a path fading value, and/or a channel condition between the two devices, where the type determining unit is 806 is configured to: when the actual distance and/or the path fading value is less than or equal to a corresponding first preset threshold, and/or the channel condition is better than the first preset channel condition Determining that the two devices are capable of direct D2D communication; and when the actual distance and/or the path fading value is greater than the first predetermined threshold and less than or equal to a second predetermined threshold, and/or Determining that the two devices are capable of relaying D2D communication when the channel condition is inferior to the first preset channel condition and superior to the second preset channel condition; when the actual distance and/or the path fading value is greater than When the second preset threshold, and/or the channel condition is inferior to the second preset channel condition, it is determined that the two devices are unable to perform D2D communication.
  • the method further includes: a request generating unit 808, configured to generate a offloading request if the two devices are capable of performing D2D communication, where the offloading request includes the two devices The identifier of either or both parties indicates that the two devices need to perform the offloading to the D2D communication; the data interaction unit 804 is further configured to: send the offload request to the core network, and when receiving the returned acknowledgement message frame, An instruction to use the D2D communication mode is transmitted to at least one of the two devices.
  • the core network is informed of the corresponding D2D communication status by initiating the offloading request by the core network; especially when the receiving device needs to switch the existing service from the traditional communication mode to the D2D communication mode, the core network can be timely Release the corresponding resources to improve resource utilization and ease system burden.
  • the offloading request further includes: granularity information, indicating that the two devices need to implement offloading to the D2D communication based on the device, the access point name, the radio bearer, and/or the IP flow.
  • the offload request may further include a message type identifier, such as "LTEtoD2D” or “LTEtoD2Drelay”, to indicate that the type of the offload request is: switch from LTE communication mode to D2D communication mode; of course, "LTE” here only uses For example, it should be determined according to the communication mode in which the receiver device is actually located. For example, when the receiver device is originally in the "CDMA” communication mode, the message type identifier should be "CDMAtoD2D” or "CDMAtoD2Drelay” or the like.
  • the method further includes: a pre-decision unit 810, configured to perform location pre-determination and/or capability pre-determination on the two devices before the message frame generating unit 802 generates the message frame. If the result of the pre-decision is that the corresponding pre-determined condition is met, the message frame is generated by the message frame generating unit 802, and is not generated; wherein the location pre-decision includes: acquiring the receiver-maintained or And maintaining, by the network side, a neighboring terminal database corresponding to the receiver, and/or acquiring area information of the two devices respectively, to determine whether any one of the two devices is in a neighboring terminal corresponding to the other party.
  • the capability pre-judgment includes: acquiring first state information of the receiver and/or second state information of the network side corresponding to the receiver, Determining whether the first state information and/or the second state information meets a corresponding state condition.
  • the waiting time of the user may be too long, thereby affecting the user experience. Therefore, a coarser but faster pre-judgment can be achieved by a relatively simpler position pre-judgment and/or capability pre-judgment, thereby effectively reducing the user's waiting time, and also because the position pre-judgment and/or the capability pre-judgment itself is time consuming. It is very short, so even if it is still necessary to perform measurement operations or measurements and judge the operation, it will not make the user's waiting time too long.
  • the neighboring terminal database may be separately maintained by the receiver and/or the network side, including the terminal around the receiver, and the receiver and/or the network side have previously acquired (can be triggered by periodicity or event)
  • the terminal data of the maintenance and update of the neighboring terminal database helps to shorten the time for position pre-judgment.
  • the two sides of the communication may be reported by the communication party or the network side to determine the coarse location information of the two communication parties, for example, whether the two are in the same area to determine the D2D communication capability of the communication parties.
  • the coarse location information may be a connected base station ID, a cell ID, and/or a tracking area ID, etc., to determine whether the two are in the same cell, sector, tracking area, and the like.
  • the first state information of the receiver and/or the second state information of the corresponding network side may be used to implement a relatively rough but fast communication state judgment, thereby When D2D communication cannot be realized between the two parties, the waiting time of the user can be effectively reduced, and since the capability pre-judgment itself takes a short time, even if it is still necessary to perform measurement operations or measurement and judge the operation, the waiting time of the user is not caused. Too long.
  • the first state information includes at least one of the following or a combination thereof: a real-time power of the receiver; a real-time power consumption of the receiver; and a D2D communication function of the receiver
  • the second state information includes at least one of the following or a combination thereof: resource utilization of the wireless link; resource load state of the wireless link; resource utilization of the backhaul link; The resource load status of the road; the load condition of the core network data plane node (such as SGW) and the signaling plane node (such as MME).
  • Figure 9 shows a schematic block diagram of a base station in accordance with one embodiment of the present invention.
  • a base station 900 includes a network side based wireless communication device 800 as shown in FIG.
  • Fig. 10 shows a schematic block diagram of a wireless communication device as a terminal side according to an embodiment of the present invention.
  • a wireless communication device 1000 as a terminal side includes: a request initiating unit 1002, configured to initiate a handover request to a D2D communication mode; and a data interaction unit 1004, configured to receive a message. a frame for causing the wireless communication device to measure its own D2D communication capability, or to cause the wireless communication device to measure and determine its own D2D communication capability; an operation execution unit 1006, configured to perform the measurement operation Or the measuring and determining the operation to return the measurement result and/or the determination result to the sender of the message frame by the data interaction unit 1004.
  • the wireless communication device ie, the receiver device
  • the D2D communication capability of the wireless communication device ie, the receiver device
  • the communication mode does not match the actual situation of the receiver device. For example, when the communication parties requesting D2D communication are too far away, if the D2D communication is used, the communication connection may not be established or the communication quality may be poor, which may affect the user experience.
  • the receiver device can transmit the message frame, and the receiver device can only measure the D2D communication capability of the device, and then return the measurement result to the network side (ie, the sender of the message frame) to perform the D2D communication capability judgment by the network side; or, receive The square device can also be measured by itself, further The D2D communication capability is judged according to the measurement result, so that the measurement result and/or the judgment result are notified to the network side, so that the network side determines which communication mode the receiver device finally uses.
  • the network side ie, the sender of the message frame
  • the message frame is physical layer signaling: if the physical layer signaling is the first value, it indicates that the wireless communication device needs to perform the measurement operation, or the measurement And determining the operation; or if the physical layer signaling is a specific value, indicating that the wireless communication device needs to perform the measurement operation on a preset frequency domain resource and/or a time domain resource indexed by the specific value. , or the measurement and judgment operation.
  • the physical layer signaling may only include a value of one bit, for example, when the value is 1, it indicates that the receiving device needs to perform a measurement operation, or measure and judge the operation.
  • the physical layer signaling can also indicate other meanings. For example, when the value of the physical layer signaling is 0, it means that the foregoing measurement operation does not need to be performed, or the operation is measured and judged.
  • the "one bit position" herein is only used as an example, and it is obvious that the values of other bits can be used to represent the above meaning.
  • the negotiation between the sending and receiving devices of the message frame may be performed in advance, that is, one or more frequency domain resources and/or time domain resources are predefined, and corresponding indexes are set for the same. Then, by transmitting physical layer signaling including a specific value, and making the specific value correspond to a corresponding index value of a certain one or more frequency domain resources and/or time domain resources, the corresponding device can utilize the corresponding Frequency domain resources and/or time domain resources perform measurement operations, or measure and judge operations.
  • the receiving device When the physical layer signaling only corresponds to the frequency domain resource or the time domain resource, it indicates that the receiving device can use the preset default time domain resource or the frequency domain resource to implement the foregoing measurement operation, or measure and judge the operation.
  • the message frame is RRC signaling or application layer signaling
  • the RRC signaling or application layer signaling includes: operation type information, if the operation type information is the first value. And indicating that the wireless communication device needs to perform the measurement operation, or the measurement and determination operation; or resource index information, if the resource index information is a specific value, indicating that the wireless communication device needs to be Determining the frequency domain resource and/or the time domain resource of the index, performing the measurement operation, or the measuring and determining the operation; or the frequency domain resource information and/or the time domain resource information, indicating the wireless communication device Need to use the corresponding frequency domain
  • the source and/or time domain resources perform the measurement operation, or the measurement and determine the operation.
  • the operation type information included in the message frame may be 1, to indicate the receiving device to perform the measurement operation, or to measure and
  • the operation type information may also indicate other meanings.
  • the value of the operation type identifier is 0, it means that the above measurement operation is not required to be performed, or the operation is measured and judged.
  • " or "0" herein is for example only, and it is obvious that the values of other bits can be used to represent the above meaning.
  • the negotiation between the sending and receiving devices of the message frame may be performed in advance, that is, one or more frequency domain resources and/or time domain resources are predefined, and corresponding indexes are set for the same. Then, by transmitting the resource index information including the specific value, and making the specific value correspond to the index value corresponding to the predefined one or more frequency domain resources and/or the time domain resource, the corresponding device can use the corresponding frequency. Domain resources and/or time domain resources perform measurement operations, or measure and determine operations.
  • the specific frequency domain resource and/or the time domain resource may be directly notified to the receiver device by using the frequency domain resource information and/or the time domain resource information, so that the measurement may be performed by the receiver device. Operate, or measure and judge the operation.
  • the message frame only informs the frequency domain resource or the time domain resource, it indicates that the receiving device can use the preset default time domain resource or the frequency domain resource to implement the above measurement operation, or measure and judge the operation.
  • the network side may instruct the receiver device to perform measurement in one or more time domain resources and/or frequency domain resources; when there are multiple time domain resources and/or frequency domain resources, the receiver device may separately perform measurement, Return all or most of the measurements to the network side.
  • the data interaction unit 1004 is further configured to: receive a mode communication message frame from a sender of the message frame, where the mode communication message frame includes the wireless communication device needs to be used.
  • the network side can be docked according to the measurement result returned by the receiver device.
  • the D2D communication capability of the receiving device is judged to ensure that it has an optimal communication experience in the most suitable communication mode.
  • the receiver device when it does not have D2D communication capability, the receiver device should be enabled to use a non-D2D communication mode (such as the traditional 2G, 3G, 4G, etc. wireless mobile communication mode);
  • the receiver device For weaker D2D communication capabilities, the receiver device should be enabled to use the relay D2D communication mode; when it has strong D2D communication capability, the receiver device should be enabled to use the direct D2D communication mode.
  • the data interaction unit 1004 is further configured to: receive a pre-judgment instruction from a sender of the message frame, where the data interaction unit 1004 returns according to the pre-decision instruction.
  • An adjacent terminal database maintained by the wireless communication device, and/or status information of the wireless communication device.
  • the pre-judgment process may include a location pre-judgment and a capability pre-judgment:
  • the neighboring terminal database may be separately maintained by the receiving party and/or the network side, including the terminal around the receiving party, and the receiving party and/or the network side have acquired in advance (can be triggered by periodicity or event) Terminal data for maintenance and update of neighboring terminal databases, because real-time measurement is not required, thus helping to shorten the time for position pre-judgment.
  • the two sides of the communication may be reported by the communication party or the network side to determine the coarse location information of the two communication parties, for example, whether the two are in the same area to determine the D2D communication capability of the communication parties.
  • the coarse location information may be a connected base station ID, a cell ID, and/or a tracking area ID, etc., to determine whether the two are in the same cell, sector, tracking area, and the like.
  • the status information includes at least one of the following or a combination thereof: a real-time power of the wireless communication device; a real-time power consumption of the wireless communication device; and a D2D communication of the wireless communication device The open state of the function.
  • a terminal 1100 includes a terminal side-based wireless communication device 1000 as shown in FIG.
  • the present invention provides a wireless communication method, a wireless communication device, a base station and a terminal, which can accurately measure a communication device requesting D2D communication, thereby Accurately select the optimal communication mode, which helps to save terminal energy consumption and improve frequency utilization.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供了一种无线通信方法,包括:生成消息帧,所述消息帧用于使所述消息帧的接收方测量自身的D2D通信能力,或使所述接收方测量并判断自身的D2D通信能力;向需要进行D2D通信的双方设备中的至少一方发送所述消息帧,并接收所述接收方返回的测量结果和/或判断结果。本发明还提出了一种无线通信装置以及相应的基站、终端。通过本发明的技术方案,可以对请求D2D通信的通信设备实现准确测量,从而准确选择出最优的通信模式,从而有助于节省终端能耗、提高频率利用率。

Description

无线通信方法、 无线通信装置、 基站和终端 技术领域
本发明涉及无线通信技术领域, 具体而言, 涉及一种无线通信方法、 一种无线通信装置、 一种基站和一种终端。 背景技术
在相关技术中, 提出了一种通信模式, 即终端与终端之间的直接通信
( Device to Device, 即 D2D通信) , 使得数据包可以直接在终端之间进 行传输, 而无需任何中间的基础设施 (如基站、 核心网等) , 或者仅通过 如基站或其他终端等作为中继, 以实现更远的传输距离。
然而, 针对各种应用场景, 如何基于终端的实际状态, 从而确定终端 是否应当选用 D2D 方式进行通信, 或是釆用传统的非 D2D 方式进行通 信, 成为目前亟待解决的技术问题。 发明内容
本发明正是基于上述问题, 提出了一种新的技术方案, 可以对请求 D2D通信的通信设备实现准确测量, 从而准确选择出最优的通信模式, 从 而有助于节省终端能耗、 提高频率利用率。
有鉴于此, 本发明提出了一种无线通信方法, 包括: 生成消息帧, 所 述消息帧用于使所述消息帧的接收方测量自身的 D2D 通信能力, 或使所 述接收方测量并判断自身的 D2D通信能力; 向需要进行 D2D通信的双方 设备中的至少一方发送所述消息帧, 并接收所述接收方返回的测量结果和
/或判断结果。
在该技术方案中, 通过对作为接收方的无线通信装置 (即接收方装 置) D2D 通信能力进行测量, 并就此对其 D2D 通信能力进行判断, 从而 能够了解接收方装置的实际情况, 避免选用的通信模式与接收方装置的实 际情况不匹配, 比如请求 D2D 通信的通信双方距离过远时, 若釆用 D2D 通信则可能导致通信连接无法建立或通信质量差, 影响用户的使用体验。
其中, 通过发送消息帧, 接收方装置可以仅对自身的 D2D 通信能力 进行测量后, 将测量结果返回网络侧 (即消息帧的发送方) , 以由网络侧 进行 D2D 通信能力判断; 或者, 接收方装置也可以自行测量后, 进一步 根据测量结果来判断自身的 D2D 通信能力, 从而将测量结果和 /或判断结 果告知网络侧, 以由网络侧确定接收方装置最终釆用何种通信模式。
在上述技术方案中, 优选地, 所述消息帧为物理层信令时: 若所述物 理层信令为第一值, 则表示所述接收方需要执行所述测量操作, 或所述测 量并判断操作; 或若所述物理层信令为特定数值, 则表示所述接收方需要 对以所述特定数值为索引的预设频域资源和 /或时域资源, 执行所述测量 操作, 或所述测量并判断操作。
在该技术方案中, 作为一种较为具体的实施例, 物理层信令可以仅包 含一个比特位的数值, 比如当该数值为 1 时, 表示需要接收方装置执行测 量操作, 或测量并判断操作; 当然, 该物理层信令也可以表示其他含义, 比如当该物理层信令的数值为 0时, 表示不需要执行上述的测量操作, 或 测量并判断操作。 当然, 本领域技术人员应该理解的是, 这里的 "一个比 特位" 仅用于举例, 显然可以釆用其他比特位的数值来表示上述含义。
作为另一种较为具体的实施例, 可以预先在消息帧的收发双方设备之 间进行协商, 即预定义一种或多种频域资源和 /或时域资源, 并为其设置 相应的索引, 则通过发送包含特定数值的物理层信令, 并使得该特定数值 对应于预定义的某一种或多种频域资源和 /或时域资源相应的索引值, 即 可由接收方装置利用相应的频域资源和 /或时域资源进行测量操作, 或测 量并判断操作。
其中, 当物理层信令仅对应于频域资源或时域资源时, 表明接收方装 置可以釆用预设的默认时域资源或频域资源, 实现上述的测量操作, 或测 量并判断操作。
在上述技术方案中, 优选地, 所述消息帧为 RRC 信令或应用层信 令, 且所述 RRC 信令或应用层信令包括: 操作类型信息, 若所述操作类 型信息为第一值, 则表示所述接收方需要执行所述测量操作, 或所述测量 并判断操作; 或资源索引信息, 若所述资源索引信息为特定数值, 则表示 所述接收方需要对以所述特定数值为索引的预设频域资源和 /或时域资 源, 执行所述测量操作, 或所述测量并判断操作; 或频域资源信息和 /或 时域资源信息, 表示所述接收方需要利用相应的频域资源和 /或时域资 源, 执行所述测量操作, 或所述测量并判断操作。
在该技术方案中, 作为一种较为具体的实施例, 可以由消息帧中包含 的操作类型信息, 比如该操作类型信息的数值可以为 1, 以指示接收方装 置来执行测量操作, 或测量并判断操作; 当然, 该操作类型信息也可以表 示其他含义, 比如当操作类型标识的数值为 0时, 表示不需要执行上述的 测量操作, 或测量并判断操作。 当然, 本领域技术人员应该理解的是, 这 里的 " 或 "0" 仅用于举例, 显然可以釆用其他比特位的数值来表示上 述含义。
作为另一种较为具体的实施例, 可以预先在消息帧的收发双方设备之 间进行协商, 即预定义一种或多种频域资源和 /或时域资源, 并为其设置 相应的索引, 则通过发送包含特定数值的资源索引信息, 并使得该特定数 值对应于预定义的某一种或多种频域资源和 /或时域资源相应的索引值, 即可由接收方装置利用相应的频域资源和 /或时域资源进行测量操作, 或 测量并判断操作。
作为又一种较为具体的实施例, 还可以通过频域资源信息和 /或时域 资源信息, 直接将具体的频域资源和 /或时域资源告知接收方装置, 以供 其执行所述测量操作, 或所述测量并判断操作。
其中, 当消息帧仅告知了频域资源或时域资源时, 表明接收方装置可 以釆用预设的默认时域资源或频域资源, 实现上述的测量操作, 或测量并 判断操作。
此外, 网络侧可以指示接收方装置在单个或多个时域资源和 /或频域 资源进行测量; 当存在多个时域资源和 /或频域资源时, 接收方装置可以 分别进行测量后, 将全部或其中最优的测量结果返回网络侧。
在上述技术方案中, 优选地, 还包括: 根据接收到的所述测量结果, 对所述接收方的 D2D 通信能力进行估计; 根据估计结果确定所述双方设 备能否进行 D2D 通信, 以及在确定能够进行 D2D 通信时, 具体釆用的 D2D通信类型; 以及向所述接收方发送模式通知消息帧, 所述模式通信消 息帧中包含所述接收方需要釆用的通信模式, 以及用于通信过程的频域和 /或时域资源。
在该技术方案中, 网络侧根据接收方装置返回的测量结果, 能够对接 收方装置的 D2D 通信能力进行判断, 以确保其在最适合的通信模式下, 得到最优的通信体验。 作为一种较为具体的实施例, 比如: 当其不具备 D2D通信能力时, 应当使得接收方装置釆用非 D2D通信模式 (如传统的 2G、 3G、 4G 等无线移动通信模式) ; 当其具备较弱的 D2D 通信能力 时, 应当使得接收方装置釆用中继 D2D 通信模式; 当其具备较强的 D2D 通信能力时, 应当使得接收方装置釆用直接 D2D通信模式。
在上述技术方案中, 优选地, 所述测量结果包括: 所述双方设备之间 的实际距离和 /或路径衰落值, 和 /或所述双方设备之间的信道状况; 以及 对所述接收方的 D2D 通信能力的估计具体包括: 当所述实际距离和 /或所 述路径衰落值小于或等于对应的第一预设阔值, 和 /或所述信道状况优于 第一预设信道条件时, 判定所述双方设备能够进行直接 D2D 通信; 当所 述实际距离和 /或所述路径衰落值大于所述第一预设阔值且小于或等于第 二预设阈值, 和 /或所述信道状况劣于所述第一预设信道条件且优于第二 预设信道条件时, 判定所述双方设备能够进行中继 D2D 通信; 当所述实 际距离和 /或所述路径衰落值大于所述第二预设阔值, 和 /或所述信道状况 劣于所述第二预设信道条件时, 判定所述双方设备不能够进行 D2D 通 信。
当然, 本领域技术人员应当理解的是: 在对接收方装置进行 D2D 通 信能力的判断时, 显然并不限于上述参数, 即可以通过其他更多类型的参 数, 以帮助实现对接收方装置的更为准确或更为迅速的 D2D 通信能力判 断。
在上述任一技术方案中, 优选地, 当确定所述双方设备能进行 D2D 通信时, 还包括: 生成分流请求, 所述分流请求中包含所述双方设备中的 任一方或双方的标识, 表示所述双方设备需要执行向 D2D 通信的分流; 向核心网发送所述分流请求, 并在接收到返回的确认消息帧时, 向所述双 方设备中的至少一方发送釆用 D2D通信模式的指令。
在该技术方案中, 通过将核心网发起分流请求, 使得核心网了解到相 应的 D2D 通信状况; 尤其当接收方装置需要将已有业务从传统通信模式 切换至 D2D 通信模式时, 核心网能够及时释放相应的资源, 以便提高资 源利用率, 緩解系统负担。
在上述技术方案中, 优选地, 所述分流请求还包括: 颗粒度信息, 表 示所述双方设备需要基于设备、 接入点名称、 无线承载和 /或 IP 流, 实现 向 D2D通信的分流。
此外, 分流请求中还可以包含消息类型标识, 如 " LTEtoD2D " 或 "LTEtoD2Drelay" , 以表明该分流请求的类型是: 从 LTE通信模式切换 至 D2D 通信模式; 当然, 此处的 "LTE" 仅用于举例, 应当根据接收方 装置实际所处的通信模式来确定, 比如当接收方装置原本处于 "CDMA" 通 信 模 式 时 , 消 息 类 型 标 识 应 当 为 " CDMAtoD2D " 或 "CDMAtoD2Drelay" 等。
在上述任一技术方案中, 优选地, 在生成所述消息帧之前, 还包括: 对所述双方设备进行位置预判决和 /或能力预判决, 若预判决结果为满足 对应的预设条件, 则生成所述消息帧, 否则不生成; 其中, 所述位置预判 决包括: 获取所述接收方维护的或网络侧维护的对应于所述接收方的相邻 终端数据库, 和 /或获取所述双方设备分别所处的区域信息, 以确定是否 所述双方设备中的任一方处于另一方对应的相邻终端数据库中, 和 /或所 述双方设备处于相同区域内; 所述能力预判决包括: 获取所述接收方的第 一状态信息和 /或所述接收方对应的网络侧的第二状态信息, 以确定所述 第一状态信息和 /或所述第二状态信息是否满足对应的状态条件。
在该技术方案中, 由于在基于测量的 D2D 通信能力判断过程中, 其 测量数据的获取和判断过程需要较长时间, 使得可以导致用户的等待时间 过长, 从而影响用户的使用体验。 因此, 可以通过相对更加简单的位置预 判决和 /或能力预判决, 实现更加粗略但快捷的预判断, 从而能够有效减 少用户的等待时间, 又由于位置预判决和 /或能力预判决本身耗时很短, 因而即便是仍需要执行测量操作或测量并判断操作, 也不会使得用户的等 待时间过长。
对于位置预判决, 相邻终端数据库可以由接收方和 /或网络侧各自维 护, 其中包含该接收方周围的终端, 并且是接收方和 /或网络侧已经事先 获取(可以通过周期性或事件触发的方式, 对相邻终端数据库进行维护和 更新) 的终端数据, 由于不需要实时测量, 从而有助于缩短位置预判决的 时间。
或者, 也可以通过通信双方上报, 或网络侧进行测量后, 确定通信双 方的粗略位置信息, 比如两者是否处于相同区域内, 以确定通信双方的
D2D 通信能力。 其中, 粗略位置信息可以为相连的基站 ID、 所处的小区 ID和 /或所处的跟踪区域 ID等, 以确定两者是否处于相同的小区、 扇区、 跟踪区域等。
对于能力预判决, 可以根据接收方的第一状态信息和 /或其对应网络 侧的第二状态信息, 以实现较为粗略但快速的通信状态判断, 从而当通信 双方之间无法实现 D2D 通信时, 能够有效减少用户的等待时间, 又由于 能力预判决本身耗时很短, 因而即便是仍需要执行测量操作或测量并判断 操作, 也不会使得用户的等待时间过长。
在上述技术方案中, 优选地, 所述第一状态信息包括以下至少之一或 其组合: 所述接收方的实时电量; 所述接收方的实时耗电量; 所述接收方 的 D2D 通信功能的开启状态; 和 /或所述第二状态信息包括以下至少之一 或其组合: 无线链路的资源利用率; 无线链路的资源负载状态; 回传链路 的资源利用率; 回传链路的资源负载状态; 核心网数据面节点 (如 S- GW, Serving Gateway ) 和信令面节点 (如 MME, Mobility Management Entity ) 的负载情况。
本发明还提出了一种无线通信装置, 包括: 消息帧生成单元, 用于生 成消息帧, 所述消息帧用于使所述消息帧的接收方测量自身的 D2D 通信 能力, 或使所述接收方测量并判断自身的 D2D 通信能力; 数据交互单 元, 用于向需要进行 D2D 通信的双方设备中的至少一方发送所述消息 帧, 并接收所述接收方返回的测量结果和 /或判断结果。
在该技术方案中, 通过对作为接收方的无线通信装置 (即接收方装 置) D2D 通信能力进行测量, 并就此对其 D2D 通信能力进行判断, 从而 能够了解接收方装置的实际情况, 避免选用的通信模式与接收方装置的实 际情况不匹配, 比如请求 D2D 通信的通信双方距离过远时, 若釆用 D2D 通信则可能导致通信连接无法建立或通信质量差, 影响用户的使用体验。
其中, 通过发送消息帧, 接收方装置可以仅对自身的 D2D 通信能力 进行测量后, 将测量结果返回网络侧 (即消息帧的发送方) , 以由网络侧 进行 D2D 通信能力判断; 或者, 接收方装置也可以自行测量后, 进一步 根据测量结果来判断自身的 D2D 通信能力, 从而将测量结果和 /或判断结 果告知网络侧, 以由网络侧确定接收方装置最终釆用何种通信模式。
在上述技术方案中, 优选地, 所述消息帧为物理层信令时: 若所述物 理层信令为第一值, 则表示所述接收方需要执行所述测量操作, 或所述测 量并判断操作; 或若所述物理层信令为特定数值, 则表示所述接收方需要 对以所述特定数值为索引的预设频域资源和 /或时域资源, 执行所述测量 操作, 或所述测量并判断操作。
在该技术方案中, 作为一种较为具体的实施例, 物理层信令可以仅包 含一个比特位的数值, 比如当该数值为 1 时, 表示需要接收方装置执行测 量操作, 或测量并判断操作; 当然, 该物理层信令也可以表示其他含义, 比如当该物理层信令的数值为 0时, 表示不需要执行上述的测量操作, 或 测量并判断操作。 当然, 本领域技术人员应该理解的是, 这里的 "一个比 特位" 仅用于举例, 显然可以釆用其他比特位的数值来表示上述含义。
作为另一种较为具体的实施例, 可以预先在消息帧的收发双方设备之 间进行协商, 即预定义一种或多种频域资源和 /或时域资源, 并为其设置 相应的索引, 则通过发送包含特定数值的物理层信令, 并使得该特定数值 对应于预定义的某一种或多种频域资源和 /或时域资源相应的索引值, 即 可由接收方装置利用相应的频域资源和 /或时域资源进行测量操作, 或测 量并判断操作。 其中, 当物理层信令仅对应于频域资源或时域资源时, 表明接收方装 置可以釆用预设的默认时域资源或频域资源, 实现上述的测量操作, 或测 量并判断操作。
在上述技术方案中, 优选地, 所述消息帧为 RRC 信令或应用层信 令, 且所述 RRC 信令或应用层信令包括: 操作类型信息, 若所述操作类 型信息为第一值, 则表示所述接收方需要执行所述测量操作, 或所述测量 并判断操作; 或资源索引信息, 若所述资源索引信息为特定数值, 则表示 所述接收方需要对以所述特定数值为索引的预设频域资源和 /或时域资 源, 执行所述测量操作, 或所述测量并判断操作; 或频域资源信息和 /或 时域资源信息, 表示所述接收方需要利用相应的频域资源和 /或时域资 源, 执行所述测量操作, 或所述测量并判断操作。
在该技术方案中, 作为一种较为具体的实施例, 可以由消息帧中包含 的操作类型信息, 比如该操作类型信息的数值可以为 1, 以指示接收方装 置来执行测量操作, 或测量并判断操作; 当然, 该操作类型信息也可以表 示其他含义, 比如当操作类型标识的数值为 0时, 表示不需要执行上述的 测量操作, 或测量并判断操作。 当然, 本领域技术人员应该理解的是, 这 里的 " 或 "0" 仅用于举例, 显然可以釆用其他比特位的数值来表示上 述含义。
作为另一种较为具体的实施例, 可以预先在消息帧的收发双方设备之 间进行协商, 即预定义一种或多种频域资源和 /或时域资源, 并为其设置 相应的索引, 则通过发送包含特定数值的资源索引信息, 并使得该特定数 值对应于预定义的某一种或多种频域资源和 /或时域资源相应的索引值, 即可由接收方装置利用相应的频域资源和 /或时域资源进行测量操作, 或 测量并判断操作。
作为又一种较为具体的实施例, 还可以通过频域资源信息和 /或时域 资源信息, 直接将具体的频域资源和 /或时域资源告知接收方装置, 以供 其执行所述测量操作, 或所述测量并判断操作。 其中, 当消息帧仅告知了 频域资源或时域资源时, 表明接收方装置可以釆用预设的默认时域资源或 频域资源, 实现上述的测量操作, 或测量并判断操作。 此外, 网络侧可以指示接收方装置在单个或多个时域资源和 /或频域 资源进行测量; 当存在多个时域资源和 /或频域资源时, 接收方装置可以 分别进行测量后, 将全部或其中最优的测量结果返回网络侧。
在上述技术方案中, 优选地, 还包括: 类型确定单元, 用于根据接收 到的所述测量结果, 对所述接收方的 D2D 通信能力进行估计, 并根据估 计结果确定所述双方设备能否进行 D2D 通信, 以及在确定能够进行 D2D 通信时, 具体釆用的 D2D 通信类型; 所述消息帧生成单元还用于: 生成 模式通知消息帧, 所述模式通信消息帧中包含所述接收方需要釆用的通信 模式, 以及用于通信过程的频域和 /或时域资源; 以及所述数据交互单元 还用于: 向所述接收方发送所述模式通知消息帧。
在该技术方案中, 网络侧根据接收方装置返回的测量结果, 能够对接 收方装置的 D2D 通信能力进行判断, 以确保其在最适合的通信模式下, 得到最优的通信体验。 作为一种较为具体的实施例, 比如: 当其不具备 D2D通信能力时, 应当使得接收方装置釆用非 D2D通信模式 (如传统的 2G、 3G、 4G 等无线移动通信模式) ; 当其具备较弱的 D2D 通信能力 时, 应当使得接收方装置釆用中继 D2D 通信模式; 当其具备较强的 D2D 通信能力时, 应当使得接收方装置釆用直接 D2D通信模式。
在上述技术方案中, 优选地, 所述测量结果包括: 所述双方设备之间 的实际距离和 /或路径衰落值, 和 /或所述双方设备之间的信道状况, 则所 述类型确定单元用于: 当所述实际距离和 /或所述路径衰落值小于或等于 对应的第一预设阈值, 和 /或所述信道状况优于第一预设信道条件时, 判 定所述双方设备能够进行直接 D2D 通信; 当所述实际距离和 /或所述路径 衰落值大于所述第一预设阔值且小于或等于第二预设阔值, 和 /或所述信 道状况劣于所述第一预设信道条件且优于第二预设信道条件时, 判定所述 双方设备能够进行中继 D2D 通信; 当所述实际距离和 /或所述路径衰落值 大于所述第二预设阈值, 和 /或所述信道状况劣于所述第二预设信道条件 时, 判定所述双方设备不能够进行 D2D通信。
当然, 本领域技术人员应当理解的是: 在对接收方装置进行 D2D 通 信能力的判断时, 显然并不限于上述参数, 即可以通过其他更多类型的参 数, 以帮助实现对接收方装置的更为准确或更为迅速的 D2D 通信能力判 断。
在上述任一技术方案中, 优选地, 还包括: 请求生成单元, 用于在确 定所述双方设备能进行 D2D 通信的情况下生成分流请求, 所述分流请求 中包含所述双方设备中的任一方或双方的标识, 表示所述双方设备需要执 行向 D2D 通信的分流; 所述数据交互单元还用于: 向核心网发送所述分 流请求, 并在接收到返回的确认消息帧时, 向所述双方设备中的至少一方 发送釆用 D2D通信模式的指令。
在该技术方案中, 通过将核心网发起分流请求, 使得核心网了解到相 应的 D2D 通信状况; 尤其当接收方装置需要将已有业务从传统通信模式 切换至 D2D 通信模式时, 核心网能够及时释放相应的资源, 以便提高资 源利用率, 緩解系统负担。
在上述技术方案中, 优选地, 所述分流请求还包括: 颗粒度信息, 表 示所述双方设备需要基于设备、 接入点名称、 无线承载和 /或 IP 流, 实现 向 D2D通信的分流。
此外, 分流请求中还可以包含消息类型标识, 如 " LTEtoD2D " 或 "LTEtoD2Drelay" , 以表明该分流请求的类型是: 从 LTE通信模式切换 至 D2D 通信模式; 当然, 此处的 "LTE" 仅用于举例, 应当根据接收方 装置实际所处的通信模式来确定, 比如当接收方装置原本处于 "CDMA" 通 信 模 式 时 , 消 息 类 型 标 识 应 当 为 " CDMAtoD2D " 或 "CDMAtoD2Drelay" 等。
在上述任一技术方案中, 优选地, 还包括: 预判决单元, 用于在所述 消息帧生成单元生成所述消息帧之前, 对所述双方设备进行位置预判决和 /或能力预判决, 若预判决结果为满足对应的预设条件, 则由所述消息帧 生成单元生成所述消息帧, 否则不生成; 其中, 所述位置预判决包括: 获 取所述接收方维护的或网络侧维护的对应于所述接收方的相邻终端数据 库, 和 /或获取所述双方设备分别所处的区域信息, 以确定是否所述双方 设备中的任一方处于另一方对应的相邻终端数据库中, 和 /或所述双方设 备处于相同区域内; 所述能力预判决包括: 获取所述接收方的第一状态信 息和 /或所述接收方对应的网络侧的第二状态信息, 以确定所述第一状态 信息和 /或所述第二状态信息是否满足对应的状态条件。
在该技术方案中, 由于在基于测量的 D2D 通信能力判断过程中, 其 测量数据的获取和判断过程需要较长时间, 使得可以导致用户的等待时间 过长, 从而影响用户的使用体验。 因此, 可以通过相对更加简单的位置预 判决和 /或能力预判决, 实现更加粗略但快捷的预判断, 从而能够有效减 少用户的等待时间, 又由于位置预判决和 /或能力预判决本身耗时很短, 因而即便是仍需要执行测量操作或测量并判断操作, 也不会使得用户的等 待时间过长。
对于位置预判决, 相邻终端数据库可以由接收方和 /或网络侧各自维 护, 其中包含该接收方周围的终端, 并且是接收方和 /或网络侧已经事先 获取(可以通过周期性或事件触发的方式, 对相邻终端数据库进行维护和 更新) 的终端数据, 由于不需要实时测量, 从而有助于缩短位置预判决的 时间。
或者, 也可以通过通信双方上报, 或网络侧进行测量后, 确定通信双 方的粗略位置信息, 比如两者是否处于相同区域内, 以确定通信双方的 D2D 通信能力。 其中, 粗略位置信息可以为相连的基站 ID、 所处的小区 ID和 /或所处的跟踪区域 ID等, 以确定两者是否处于相同的小区、 扇区、 跟踪区域等。
对于能力预判决, 可以根据接收方的第一状态信息和 /或其对应网络 侧的第二状态信息, 以实现较为粗略但快速的通信状态判断, 从而当通信 双方之间无法实现 D2D 通信时, 能够有效减少用户的等待时间, 又由于 能力预判决本身耗时很短, 因而即便是仍需要执行测量操作或测量并判断 操作, 也不会使得用户的等待时间过长。
在上述技术方案中, 优选地, 所述第一状态信息包括以下至少之一或 其组合: 所述接收方的实时电量; 所述接收方的实时耗电量; 所述接收方 的 D2D 通信功能的开启状态; 和 /或所述第二状态信息包括以下至少之一 或其组合: 无线链路的资源利用率; 无线链路的资源负载状态; 回传链路 的资源利用率; 回传链路的资源负载状态; 核心网数据面节点 (如 SGW ) 和信令面节点 (如 MME ) 的负载情况。
本发明还提出了一种基站, 包括: 如上述技术方案中任一项所述的无 线通信装置。
本发明还提出了一种无线通信方法, 包括: 发起向 D2D 通信模式的 切换请求; 接收消息帧, 所述消息帧用于使所述消息帧的接收方测量自身 的 D2D通信能力, 或使所述接收方测量并判断自身的 D2D通信能力; 执 行所述测量操作或所述测量并判断操作, 并向所述消息帧的发送方返回测 量结果和 /或判断结果。
在该技术方案中, 通过对作为接收方的无线通信装置 (即接收方装 置 ) 的 D2D通信能力进行测量, 并就此对其 D2D通信能力进行判断, 从 而能够了解接收方装置的实际情况, 避免选用的通信模式与接收方装置的 实际情况不匹配, 比如请求 D2D 通信的通信双方距离过远时, 若釆用 D2D通信则可能导致通信连接无法建立或通信质量差, 影响用户的使用体 验。
其中, 通过发送消息帧, 接收方装置可以仅对自身的 D2D 通信能力 进行测量后, 将测量结果返回网络侧 (即消息帧的发送方) , 以由网络侧 进行 D2D 通信能力判断; 或者, 接收方装置也可以自行测量后, 进一步 根据测量结果来判断自身的 D2D 通信能力, 从而将测量结果和 /或判断结 果告知网络侧, 以由网络侧确定接收方装置最终釆用何种通信模式。
在上述技术方案中, 优选地, 所述消息帧为物理层信令时: 若所述物 理层信令为第一值, 则表示所述接收方需要执行所述测量操作, 或所述测 量并判断操作; 或若所述物理层信令为特定数值, 则表示所述接收方需要 对以所述特定数值为索引的预设频域资源和 /或时域资源, 执行所述测量 操作, 或所述测量并判断操作。
在该技术方案中, 作为一种较为具体的实施例, 物理层信令可以仅包 含一个比特位的数值, 比如当该数值为 1 时, 表示需要接收方装置执行测 量操作, 或测量并判断操作; 当然, 该物理层信令也可以表示其他含义, 比如当该物理层信令的数值为 0时, 表示不需要执行上述的测量操作, 或 测量并判断操作。 当然, 本领域技术人员应该理解的是, 这里的 "一个比 特位" 仅用于举例, 显然可以釆用其他比特位的数值来表示上述含义。 作为另一种较为具体的实施例, 可以预先在消息帧的收发双方设备之 间进行协商, 即预定义一种或多种频域资源和 /或时域资源, 并为其设置 相应的索引, 则通过发送包含特定数值的物理层信令, 并使得该特定数值 对应于预定义的某一种或多种频域资源和 /或时域资源相应的索引值, 即 可由接收方装置利用相应的频域资源和 /或时域资源进行测量操作, 或测 量并判断操作。
其中, 当物理层信令仅对应于频域资源或时域资源时, 表明接收方装 置可以釆用预设的默认时域资源或频域资源, 实现上述的测量操作, 或测 量并判断操作。
在上述技术方案中, 优选地, 所述消息帧为 RRC 信令或应用层信 令, 且所述 RRC 信令或应用层信令包括: 操作类型信息, 若所述操作类 型信息为第一值, 则表示所述接收方需要执行所述测量操作, 或所述测量 并判断操作; 或资源索引信息, 若所述资源索引信息为特定数值, 则表示 所述接收方需要对以所述特定数值为索引的预设频域资源和 /或时域资 源, 执行所述测量操作, 或所述测量并判断操作; 或频域资源信息和 /或 时域资源信息, 表示所述接收方需要利用相应的频域资源和 /或时域资 源, 执行所述测量操作, 或所述测量并判断操作。
在该技术方案中, 作为一种较为具体的实施例, 可以由消息帧中包含 的操作类型信息, 比如该操作类型信息的数值可以为 1, 以指示接收方装 置来执行测量操作, 或测量并判断操作; 当然, 该操作类型信息也可以表 示其他含义, 比如当操作类型标识的数值为 0时, 表示不需要执行上述的 测量操作, 或测量并判断操作。 当然, 本领域技术人员应该理解的是, 这 里的 " 或 "0" 仅用于举例, 显然可以釆用其他比特位的数值来表示上 述含义。
作为另一种较为具体的实施例, 可以预先在消息帧的收发双方设备之 间进行协商, 即预定义一种或多种频域资源和 /或时域资源, 并为其设置 相应的索引, 则通过发送包含特定数值的资源索引信息, 并使得该特定数 值对应于预定义的某一种或多种频域资源和 /或时域资源相应的索引值, 即可由接收方装置利用相应的频域资源和 /或时域资源进行测量操作, 或 测量并判断操作。
作为又一种较为具体的实施例, 还可以通过频域资源信息和 /或时域 资源信息, 直接将具体的频域资源和 /或时域资源告知接收方装置, 以供 其执行所述测量操作, 或所述测量并判断操作。
其中, 当消息帧仅告知了频域资源或时域资源时, 表明接收方装置可 以釆用预设的默认时域资源或频域资源, 实现上述的测量操作, 或测量并 判断操作。
此外, 网络侧可以指示接收方装置在单个或多个时域资源和 /或频域 资源进行测量; 当存在多个时域资源和 /或频域资源时, 接收方装置可以 分别进行测量后, 将全部或其中最优的测量结果返回网络侧。
在上述技术方案中, 优选地, 还包括: 接收来自所述消息帧的发送方 的模式通信消息帧, 所述模式通信消息帧中包含所述接收方需要釆用的通 信模式, 以及用于通信过程的频域和 /或时域资源; 以及根据所述通信模 式以及所述频域和 /或时域资源, 实现相应的通信过程。
在该技术方案中, 网络侧根据接收方装置返回的测量结果, 能够对接 收方装置的 D2D 通信能力进行判断, 以确保其在最适合的通信模式下, 得到最优的通信体验。 作为一种较为具体的实施例, 比如: 当其不具备 D2D通信能力时, 应当使得接收方装置釆用非 D2D通信模式 (如传统的 2G、 3G、 4G 等无线移动通信模式) ; 当其具备较弱的 D2D 通信能力 时, 应当使得接收方装置釆用中继 D2D 通信模式; 当其具备较强的 D2D 通信能力时, 应当使得接收方装置釆用直接 D2D通信模式。
在上述技术方案中, 优选地, 还包括: 接收来自所述消息帧的发送方 的预判决指令; 根据所述预判决指令, 返回所述接收方维护的相邻终端数 据库, 和 /或所述接收方的状态信息。
在该技术方案中, 由于在基于测量的 D2D 通信能力判断过程中, 其 测量数据的获取和判断过程需要较长时间, 使得可以导致用户的等待时间 过长, 从而影响用户的使用体验。 因此, 可以通过相对更加简单的预判 决, 实现更加粗略但快捷的预判断, 从而能够有效减少用户的等待时间, 又由于预判决本身耗时很短, 因而即便是仍需要执行测量操作或测量并判 断操作, 也不会使得用户的等待时间过长。 具体地, 预判决过程可以包括 位置预判决和能力预判决:
对于位置预判决, 可以基于相邻终端数据库来实现。 具体地, 相邻终 端数据库可以由接收方和 /或网络侧各自维护, 其中包含该接收方周围的 终端, 并且是接收方和 /或网络侧已经事先获取 (可以通过周期性或事件 触发的方式, 对相邻终端数据库进行维护和更新) 的终端数据, 由于不需 要实时测量, 从而有助于缩短位置预判决的时间。
或者, 也可以通过通信双方上报, 或网络侧进行测量后, 确定通信双 方的粗略位置信息, 比如两者是否处于相同区域内, 以确定通信双方的
D2D 通信能力。 其中, 粗略位置信息可以为相连的基站 ID、 所处的小区 ID和 /或所处的跟踪区域 ID等, 以确定两者是否处于相同的小区、 扇区、 跟踪区域等。
对于能力预判决, 可以根据接收方的状态信息, 以实现较为粗略但快 速的通信状态判断, 从而当通信双方之间无法实现 D2D 通信时, 能够有 效减少用户的等待时间, 又由于能力预判决本身耗时很短, 因而即便是仍 需要执行测量操作或测量并判断操作, 也不会使得用户的等待时间过长。
在上述技术方案中, 优选地, 所述状态信息包括以下至少之一或其组 合: 所述接收方的实时电量; 所述接收方的实时耗电量; 所述接收方的 D2D通信功能的开启状态。
本发明还提出了一种无线通信装置, 包括: 请求发起单元, 用于发起 向 D2D 通信模式的切换请求; 数据交互单元, 用于接收消息帧, 所述消 息帧用于使其所述无线通信装置测量自身的 D2D 通信能力, 或使所述无 线通信装置测量并判断自身的 D2D 通信能力; 操作执行单元, 用于执行 所述测量操作或所述测量并判断操作, 以由所述数据交互单元向所述消息 帧的发送方返回测量结果和 /或判断结果。
在该技术方案中, 通过对作为接收方的无线通信装置 (即接收方装 置) D2D 通信能力进行测量, 并就此对其 D2D 通信能力进行判断, 从而 能够了解接收方装置的实际情况, 避免选用的通信模式与接收方装置的实 际情况不匹配, 比如请求 D2D 通信的通信双方距离过远时, 若釆用 D2D 通信则可能导致通信连接无法建立或通信质量差, 影响用户的使用体验。
其中, 通过发送消息帧, 接收方装置可以仅对自身的 D2D 通信能力 进行测量后, 将测量结果返回网络侧 (即消息帧的发送方) , 以由网络侧 进行 D2D 通信能力判断; 或者, 接收方装置也可以自行测量后, 进一步 根据测量结果来判断自身的 D2D 通信能力, 从而将测量结果和 /或判断结 果告知网络侧, 以由网络侧确定接收方装置最终釆用何种通信模式。
在上述技术方案中, 优选地, 所述消息帧为物理层信令时: 若所述物 理层信令为第一值, 则表示所述无线通信装置需要执行所述测量操作, 或 所述测量并判断操作; 或若所述物理层信令为特定数值, 则表示所述无线 通信装置需要对以所述特定数值为索引的预设频域资源和 /或时域资源, 执行所述测量操作, 或所述测量并判断操作。
在该技术方案中, 作为一种较为具体的实施例, 物理层信令可以仅包 含一个比特位的数值, 比如当该数值为 1 时, 表示需要接收方装置执行测 量操作, 或测量并判断操作; 当然, 该物理层信令也可以表示其他含义, 比如当该物理层信令的数值为 0时, 表示不需要执行上述的测量操作, 或 测量并判断操作。 当然, 本领域技术人员应该理解的是, 这里的 "一个比 特位" 仅用于举例, 显然可以釆用其他比特位的数值来表示上述含义。
作为另一种较为具体的实施例, 可以预先在消息帧的收发双方设备之 间进行协商, 即预定义一种或多种频域资源和 /或时域资源, 并为其设置 相应的索引, 则通过发送包含特定数值的物理层信令, 并使得该特定数值 对应于预定义的某一种或多种频域资源和 /或时域资源相应的索引值, 即 可由接收方装置利用相应的频域资源和 /或时域资源进行测量操作, 或测 量并判断操作。
其中, 当物理层信令仅对应于频域资源或时域资源时, 表明接收方装 置可以釆用预设的默认时域资源或频域资源, 实现上述的测量操作, 或测 量并判断操作。
在上述技术方案中, 优选地, 所述消息帧为 RRC 信令或应用层信 令, 且所述 RRC 信令或应用层信令包括: 操作类型信息, 若所述操作类 型信息为第一值, 则表示所述无线通信装置需要执行所述测量操作, 或所 述测量并判断操作; 或资源索引信息, 若所述资源索引信息为特定数值, 则表示所述无线通信装置需要对以所述特定数值为索引的预设频域资源和 /或时域资源, 执行所述测量操作, 或所述测量并判断操作; 或频域资源 信息和 /或时域资源信息, 表示所述无线通信装置需要利用相应的频域资 源和 /或时域资源, 执行所述测量操作, 或所述测量并判断操作。
在该技术方案中, 作为一种较为具体的实施例, 可以由消息帧中包含 的操作类型信息, 比如该操作类型信息的数值可以为 1, 以指示接收方装 置来执行测量操作, 或测量并判断操作; 当然, 该操作类型信息也可以表 示其他含义, 比如当操作类型标识的数值为 0时, 表示不需要执行上述的 测量操作, 或测量并判断操作。 当然, 本领域技术人员应该理解的是, 这 里的 " 或 "0" 仅用于举例, 显然可以釆用其他比特位的数值来表示上 述含义。
作为另一种较为具体的实施例, 可以预先在消息帧的收发双方设备之 间进行协商, 即预定义一种或多种频域资源和 /或时域资源, 并为其设置 相应的索引, 则通过发送包含特定数值的资源索引信息, 并使得该特定数 值对应于预定义的某一种或多种频域资源和 /或时域资源相应的索引值, 即可由接收方装置利用相应的频域资源和 /或时域资源进行测量操作, 或 测量并判断操作。
作为又一种较为具体的实施例, 还可以通过频域资源信息和 /或时域 资源信息, 直接将具体的频域资源和 /或时域资源告知接收方装置, 以供 其执行所述测量操作, 或所述测量并判断操作。
其中, 当消息帧仅告知了频域资源或时域资源时, 表明接收方装置可 以釆用预设的默认时域资源或频域资源, 实现上述的测量操作, 或测量并 判断操作。
此外, 网络侧可以指示接收方装置在单个或多个时域资源和 /或频域 资源进行测量; 当存在多个时域资源和 /或频域资源时, 接收方装置可以 分别进行测量后, 将全部或其中最优的测量结果返回网络侧。
在上述技术方案中, 优选地, 所述数据交互单元还用于: 接收来自所 述消息帧的发送方的模式通信消息帧, 所述模式通信消息帧中包含所述无 线通信装置需要釆用的通信模式, 以及用于通信过程的频域和 /或时域资 源; 以及所述无线通信装置还包括: 通信实现单元, 用于根据所述通信模 式以及所述频域和 /或时域资源, 实现相应的通信过程。
在该技术方案中, 网络侧根据接收方装置返回的测量结果, 能够对接 收方装置的 D2D 通信能力进行判断, 以确保其在最适合的通信模式下, 得到最优的通信体验。 作为一种较为具体的实施例, 比如: 当其不具备 D2D通信能力时, 应当使得接收方装置釆用非 D2D通信模式 (如传统的 2G、 3G、 4G 等无线移动通信模式) ; 当其具备较弱的 D2D 通信能力 时, 应当使得接收方装置釆用中继 D2D 通信模式; 当其具备较强的 D2D 通信能力时, 应当使得接收方装置釆用直接 D2D通信模式。
在上述技术方案中, 优选地, 所述数据交互单元还用于: 接收来自所 述消息帧的发送方的预判决指令; 其中, 所述数据交互单元根据所述预判 决指令, 返回所述无线通信装置维护的相邻终端数据库, 和 /或所述无线 通信装置的状态信息。
在该技术方案中, 由于在基于测量的 D2D 通信能力判断过程中, 其 测量数据的获取和判断过程需要较长时间, 使得可以导致用户的等待时间 过长, 从而影响用户的使用体验。 因此, 可以通过相对更加简单的预判 决, 实现更加粗略但快捷的预判断, 从而能够有效减少用户的等待时间, 又由于预判决本身耗时很短, 因而即便是仍需要执行测量操作或测量并判 断操作, 也不会使得用户的等待时间过长。 具体地, 预判决过程可以包括 位置预判决和能力预判决:
对于位置预判决, 可以基于相邻终端数据库来实现。 具体地, 相邻终 端数据库可以由接收方和 /或网络侧各自维护, 其中包含该接收方周围的 终端, 并且是接收方和 /或网络侧已经事先获取 (可以通过周期性或事件 触发的方式, 对相邻终端数据库进行维护和更新) 的终端数据, 由于不需 要实时测量, 从而有助于缩短位置预判决的时间。
或者, 也可以通过通信双方上报, 或网络侧进行测量后, 确定通信双 方的粗略位置信息, 比如两者是否处于相同区域内, 以确定通信双方的 D2D 通信能力。 其中, 粗略位置信息可以为相连的基站 ID、 所处的小区 ID和 /或所处的跟踪区域 ID等, 以确定两者是否处于相同的小区、 扇区、 跟踪区域等。
对于能力预判决, 可以根据接收方的状态信息, 以实现较为粗略但快 速的通信状态判断, 从而当通信双方之间无法实现 D2D 通信时, 能够有 效减少用户的等待时间, 又由于能力预判决本身耗时很短, 因而即便是仍 需要执行测量操作或测量并判断操作, 也不会使得用户的等待时间过长。
在上述技术方案中, 优选地, 所述状态信息包括以下至少之一或其组 合: 所述无线通信装置的实时电量; 所述无线通信装置的实时耗电量; 所 述无线通信装置的 D2D通信功能的开启状态。
本发明还提出了一种终端, 包括: 如上述技术方案中任一项所述的无 线通信装置。
通过以上技术方案, 可以对请求 D2D 通信的通信设备实现准确测 量, 从而准确选择出最优的通信模式, 从而有助于节省终端能耗、 提高频 率利用率。 附图说明
图 1A 示出了根据本发明的一个实施例的模式选择的信令交互示意 图;
图 1B 示出了根据本发明的另一个实施例的模式选择的信令交互示意 图;
图 2A 示出了根据本发明的一个实施例的基于网络侧的无线通信方法 的示意流程图;
图 2B 示出了根据本发明的一个实施例的基于终端侧的无线通信方法 的示意流程图;
图 3A 示出了根据本发明的另一个实施例的基于网络侧的无线通信方 法的示意流程图;
图 3B 示出了根据本发明的另一个实施例的基于终端侧的无线通信方 法的示意流程图; 图 4示出了根据本发明的一个实施例的对终端的通信模式进行选择的 示意流程图;
图 5A 至图 5C 示出了根据本发明的一个实施例的切换通信模式的示 意图;
图 6A 至图 6B 示出了根据本发明的另一个实施例的切换通信模式的 示意图;
图 7A 至图 7B 示出了根据本发明的又一个实施例的切换通信模式的 示意图;
图 8示出了根据本发明的一个实施例的作为网络侧的无线通信装置的 示意框图;
图 9示出了根据本发明的一个实施例的基站的示意框图;
图 10 示出了根据本发明的一个实施例的作为终端侧的无线通信装置 的示意框图;
图 11示出了根据本发明的一个实施例的终端的示意框图。 具体实施方式
为了能够更清楚地理解本发明的上述目的、 特征和优点, 下面结合附 图和具体实施方式对本发明进行进一步的详细描述。 需要说明的是, 在不 冲突的情况下, 本申请的实施例及实施例中的特征可以相互组合。
在下面的描述中阐述了很多具体细节以便于充分理解本发明, 但是, 本发明还可以釆用其他不同于在此描述的其他方式来实施, 因此, 本发明 的保护范围并不受下面公开的具体实施例的限制。
图 1A 示出了根据本发明的一个实施例的模式选择的信令交互示意 图; 图 1B 示出了根据本发明的另一个实施例的模式选择的信令交互示意 图。
如图 1A和图 1B所示, 假定 UE1和 UE2为需要建立 D2D通信的通 信双方, 且 UE1 为 D2D通信请求的发起设备、 UE2为 D2D通信请求的 目标设备; eNB可以表示为 UE1和 /或 UE2对应的基站。 基于上述设定, 则根据本发明的一个实施例的模式选择的信令交互过程包括: 一、 预判断
步骤 102, 对 UE1和 UE2能否建立 D2D通信的预判断, 以期快速地 判定两台设备在能力和 /或状态上是否能够釆用 D2D 通信。 当然, 需要指 出的是, 步骤 102并不是必要的步骤。
1、 位置预判断
步骤 102A, 对 UE1和 UE2的位置信息的粗略判断, 根据两台设备间 的距离情况, 确定是否适用于建立 D2D通信。
虽然图 1A中较为具体地将步骤 102A示意为: 由 UE1向对应的 eNB 发起位置请求 (包括对 UE1 自身以及 UE2的位置信息) , 以及 eNB返回 相应的位置信息, 但本领域技术人员应当理解的是, 显然也可以通过其他 方式实现上述的位置预判断过程:
具体地, 获取 UE1 维护的或网络侧维护的对应于所述 UE1 的相邻终 端数据库, 和 /或获取所述 UE1 和所述目标终端分别所处的区域信息; 其 中, 当在所述相邻终端数据库中查找到所述目标终端, 和 /或所述 UE1 与 所述目标终端处于相同区域内时, 执行所述精确定位步骤, 否则判定所述 目标终端未处于所述 UE1对应的 D2D通信范围内。
在该技术方案中, UE1 和 /或网络侧可以各自维护相邻终端数据库, 即 UE1 周围存在的终端, 可以是 UE1 自身和 /或网络侧已经获取的 (UE1 和 /或网络侧可以通过周期性或事件触发的方式, 对 UE1 周围存在的终端 进行测量, 并更新至各自维护的相邻终端数据库中) , 从而由于不需要实 时测量, 使得能够在短时间内确定目标终端是否处于 UE1对应的 D2D通 信范围内。
或者, 可以通过 UE1 和目标终端上报, 或网络侧进行测量后, 确定 UE1 和目标终端的粗略位置信息, 比如两者是否处于相同区域内, 以确定 目标终端是否处于 UE1对应的 D2D通信范围内。 其中, 粗略位置信息可 以为相连的基站 ID、 所处的小区 ID和 /或所处的跟踪区域 ID等, 以确定 两者是否处于相同的小区、 扇区、 跟踪区域等。
2、 状态预判断
步骤 102B, eNB对 UE1和 /或 UE2的通信状态进行判断。 具体地, 获取 UE1 的第一状态信息和 /或所述 UE1对应的网络侧的第 二状态信息; 其中, 当所述第一状态信息和 /或所述第二状态信息满足对 应的状态条件时, 执行所述精确判决步骤, 否则判定 UE1 的通信状态不 满足所述预设条件。
优选地, 所述第一状态信息包括以下至少之一或其组合:
UE1的实时电量;
UE1的实时耗电量;
UE1对 D2D通信功能的支持状况;
在支持所述 D2D通信功能的情况下, UE1的 D2D通信功能的开启状 态;
和 /或所述第二状态信息包括以下至少之一或其组合:
无线链路的资源利用率;
无线链路的资源负载状态;
回传链路的资源利用率;
回传链路的资源负载状态;
核心网数据面节点 (如 S-GW, Serving Gateway ) 和 /或信令面节点 (如 MME, Mobility Management Entity ) 的负载情况。
二、 再判断
(一) 交互过程
实施例一
如图 1A所示, 在步骤 104中, eNB对 UE1和 /或 UE2发送 D2D通信 能力判断通知, 以由 UE1和 /或 UE2对自身进行测量并判断操作, 确定其 是否能够实现 D2D通信, 以及具体釆用何种通信模式, 并告知 eNB最终 的判断结果。
相应地, 图 2A 示出了根据本发明的一个实施例的基于网络侧的无线 通信方法的示意流程图; 图 2B 示出了根据本发明的一个实施例的基于终 端侧的无线通信方法的示意流程图。
1、 网络侧 (即 eNB )
如图 2A 所示, 根据本发明的一个实施例的基于网络侧的无线通信方 法, 包括:
步骤 202, 生成消息帧, 所述消息帧用于使其接收方测量并判断自身 的 D2D通信能力;
步骤 204, 向需要进行 D2D通信的双方设备中的至少一方发送所述消 息帧, 并接收所述接收方返回的测量结果和 /或判断结果。
2、 终端 J (即 UE1和 /或 UE2 )
如图 2B 所示, 根据本发明的一个实施例的基于终端侧的无线通信方 法, 包括:
步骤 202', 在发起向 D2D 通信模式的切换请求之后, 接收消息帧, 所述消息帧用于使其接收方测量并判断自身的 D2D通信能力;
步骤 204', 执行所述测量并判断操作, 并向所述消息帧的发送方返回 测量结果和 /或判断结果。
在该技术方案中, 通过对 UE1 和 /或 UE2 的 D2D 通信能力进行测 量, 并就此对其 D2D 通信能力进行判断, 从而能够了解接收方装置 (在 该实施例中, 即 UE1 和 /或 UE2 ) 的实际情况, 避免选用的通信模式与接 收方装置的实际情况不匹配, 比如请求 D2D 通信的通信双方距离过远 时, 若釆用 D2D 通信则可能导致通信连接无法建立或通信质量差, 影响 用户的使用体验。
实施例二
如图 1B所示, 在步骤 104'中, eNB对 UE1和 /或 UE2发送 D2D通信 能力判断通知, 以由 UE1 和 /或 UE2对自身进行测量操作, 并由 eNB据 此确定其是否能够实现 D2D通信, 以及具体釆用何种通信模式。
相应地, 图 3A 示出了根据本发明的一个实施例的基于网络侧的无线 通信方法的示意流程图; 图 3B 示出了根据本发明的一个实施例的基于终 端侧的无线通信方法的示意流程图。
1、 网络侧 (即 eNB )
如图 3A 所示, 根据本发明的一个实施例的基于网络侧的无线通信方 法, 包括:
步骤 302, 生成消息帧 (即 D2D通信能力判断通知) , 所述消息帧用 于使所述消息帧的接收方测量自身的 D2D通信能力;
步骤 304, 向需要进行 D2D通信的双方设备 (即 UE1 和 UE2 ) 中的 至少一方发送所述消息帧, 并接收所述接收方返回的测量结果。
2、 终端 J (即 UE1和 /或 UE2 )
如图 3B 所示, 根据本发明的一个实施例的基于终端侧的无线通信方 法, 包括:
步骤 302', 在发起向 D2D 通信模式的切换请求之后, 接收消息帧, 所述消息帧用于使所述消息帧的接收方测量自身的 D2D通信能力;
步骤 304', 执行所述测量操作或所述测量并判断操作, 并向所述消息 帧的发送方返回测量结果。
在该技术方案中, 通过对作为接收方的 UE1 和 /或 UE2 的 D2D通信 能力进行测量, 并就此对其 D2D 通信能力进行判断, 从而能够了解接收 方装置 (在该实施例中, 即 UE1 和 /或 UE2 ) 的实际情况, 避免选用的通 信模式与接收方装置的实际情况不匹配, 比如请求 D2D 通信的通信双方 距离过远时, 若釆用 D2D 通信则可能导致通信连接无法建立或通信质量 差, 影响用户的使用体验。
基于上述 D2D 通信能力判断通知的发送, eNB 进一步执行: 根据接 收到的所述测量结果, 对所述接收方的 D2D 通信能力进行估计; 根据估 计结果确定所述双方设备能否进行 D2D 通信, 以及在确定能够进行 D2D 通信时, 具体釆用的 D2D 通信类型; 以及向所述接收方发送模式通知消 息帧, 所述模式通信消息帧中包含所述接收方需要釆用的通信模式, 以及 用于通信过程的频域和 /或时域资源。
在该技术方案中, 网络侧根据接收方装置返回的测量结果, 能够对接 收方装置的 D2D 通信能力进行判断, 以确保其在最适合的通信模式下, 得到最优的通信体验。 作为一种较为具体的实施例, 比如: 当其不具备 D2D通信能力时, 应当使得接收方装置釆用非 D2D通信模式 (如传统的 2G、 3G、 4G 等无线移动通信模式) ; 当其具备较弱的 D2D 通信能力 时, 应当使得接收方装置釆用中继 D2D 通信模式; 当其具备较强的 D2D 通信能力时, 应当使得接收方装置釆用直接 D2D通信模式。 在上述技术方案中, 优选地, 所述测量结果包括: 所述双方设备之间 的实际距离和 /或路径衰落值, 和 /或所述双方设备之间的信道状况; 以及 对所述接收方的 D2D 通信能力的估计具体包括: 当所述实际距离和 /或所 述路径衰落值小于或等于对应的第一预设阔值, 和 /或所述信道状况优于 第一预设信道条件时, 判定所述双方设备能够进行直接 D2D 通信; 当所 述实际距离和 /或所述路径衰落值大于所述第一预设阔值且小于或等于第 二预设阈值, 和 /或所述信道状况劣于所述第一预设信道条件且优于第二 预设信道条件时, 判定所述双方设备能够进行中继 D2D 通信; 当所述实 际距离和 /或所述路径衰落值大于所述第二预设阔值, 和 /或所述信道状况 劣于所述第二预设信道条件时, 判定所述双方设备不能够进行 D2D 通 信。
当然, 本领域技术人员应当理解的是: 在对接收方装置进行 D2D 通 信能力的判断时, 显然并不限于上述参数, 即可以通过其他更多类型的参 数, 以帮助实现对接收方装置的更为准确或更为迅速的 D2D 通信能力判 断。
(二)信令类型
1、 物理层信令
所述消息帧为物理层信令时: 若所述物理层信令为第一值, 则表示所 述接收方需要执行所述测量操作, 或所述测量并判断操作; 或若所述物理 层信令为特定数值, 则表示所述接收方需要对以所述特定数值为索引的预 设频域资源和 /或时域资源, 执行所述测量操作, 或所述测量并判断操 作。
在该技术方案中, 作为一种较为具体的实施例, 物理层信令可以仅包 含一个比特位的数值, 比如当该数值为 1 时, 表示需要接收方装置执行测 量操作, 或测量并判断操作; 当然, 该物理层信令也可以表示其他含义, 比如当该物理层信令的数值为 0时, 表示不需要执行上述的测量操作, 或 测量并判断操作。 当然, 本领域技术人员应该理解的是, 这里的 "一个比 特位" 仅用于举例, 显然可以釆用其他比特位的数值来表示上述含义。
作为另一种较为具体的实施例, 可以预先在消息帧的收发双方设备之 间进行协商, 即预定义一种或多种频域资源和 /或时域资源, 并为其设置 相应的索引, 则通过发送包含特定数值的物理层信令, 并使得该特定数值 对应于预定义的某一种或多种频域资源和 /或时域资源相应的索引值, 即 可由接收方装置利用相应的频域资源和 /或时域资源进行测量操作, 或测 量并判断操作。
其中, 当物理层信令仅对应于频域资源或时域资源时, 表明接收方装 置可以釆用预设的默认时域资源或频域资源, 实现上述的测量操作, 或测 量并判断操作。
2、 RRC信令或应用层信令
所述消息帧为 RRC信令或应用层信令, 且所述 RRC信令或应用层信 令包括: 操作类型信息, 若所述操作类型信息为第一值, 则表示所述接收 方需要执行所述测量操作, 或所述测量并判断操作; 或资源索引信息, 若 所述资源索引信息为特定数值, 则表示所述接收方需要对以所述特定数值 为索引的预设频域资源和 /或时域资源, 执行所述测量操作, 或所述测量 并判断操作; 或频域资源信息和 /或时域资源信息, 表示所述接收方需要 利用相应的频域资源和 /或时域资源, 执行所述测量操作, 或所述测量并 判断操作。
在该技术方案中, 作为一种较为具体的实施例, 可以由消息帧中包含 的操作类型信息, 比如该操作类型信息的数值可以为 1, 以指示接收方装 置来执行测量操作, 或测量并判断操作; 当然, 该操作类型信息也可以表 示其他含义, 比如当操作类型标识的数值为 0时, 表示不需要执行上述的 测量操作, 或测量并判断操作。 当然, 本领域技术人员应该理解的是, 这 里的 " 或 "0" 仅用于举例, 显然可以釆用其他比特位的数值来表示上 述含义。
作为另一种较为具体的实施例, 可以预先在消息帧的收发双方设备之 间进行协商, 即预定义一种或多种频域资源和 /或时域资源, 并为其设置 相应的索引, 则通过发送包含特定数值的资源索引信息, 并使得该特定数 值对应于预定义的某一种或多种频域资源和 /或时域资源相应的索引值, 即可由接收方装置利用相应的频域资源和 /或时域资源进行测量操作, 或 测量并判断操作。
作为又一种较为具体的实施例, 还可以通过频域资源信息和 /或时域 资源信息, 直接将具体的频域资源和 /或时域资源告知接收方装置, 以供 其执行所述测量操作, 或所述测量并判断操作。
其中, 当消息帧仅告知了频域资源或时域资源时, 表明接收方装置可 以釆用预设的默认时域资源或频域资源, 实现上述的测量操作, 或测量并 判断操作。
此外, 网络侧可以指示接收方装置在单个或多个时域资源和 /或频域 资源进行测量; 当存在多个时域资源和 /或频域资源时, 接收方装置可以 分别进行测量后, 将全部或其中最优的测量结果返回网络侧。
三、 模式选择
如图 1A所示, 根据本发明的一个实施例, 在步骤 104中可以由 UE1 和 /或 UE2 自行对釆用的通信模式进行选择; 以及, 如图 1B 所示, 根据 本发明的另一个实施例, 在步骤 106,中可以由 eNB对 UE1 和 /或 UE2釆 用的通信模式进行选择。
1、 模式判断
具体地, 测量结果可以包括: 所述双方设备之间的实际距离和 /或路 径衰落值, 和 /或所述双方设备之间的信道状况, 则对所述接收方的 D2D 通信能力的估计具体可以包括:
当所述实际距离和 /或所述路径衰落值小于或等于对应的第一预设阔 值, 和 /或所述信道状况优于第一预设信道条件时, 判定所述双方设备能 够进行直接 D2D通信;
当所述实际距离和 /或所述路径衰落值大于所述第一预设阔值且小于 或等于第二预设阈值, 和 /或所述信道状况劣于所述第一预设信道条件且 优于第二预设信道条件时, 判定所述双方设备能够进行中继 D2D通信; 当所述实际距离和 /或所述路径衰落值大于所述第二预设阔值, 和 /或 所述信道状况劣于所述第二预设信道条件时, 判定所述双方设备不能够进 行 D2D通信。
当然, 本领域技术人员应当理解的是: 在对接收方装置进行 D2D 通 信能力的判断时, 显然并不限于上述参数, 即可以通过其他更多类型的参 数, 以帮助实现对接收方装置的更为准确或更为迅速的 D2D 通信能力判 断。
2、 分流请求
当确定 UE1和 UE2能进行 D2D通信时, eNB还执行如图 1A所示的 步骤 108或图 1B所示的步骤 106'的一部分, 具体包括: 生成分流请求, 所述分流请求中包含所述双方设备中的任一方或双方的标识, 表示所述双 方设备需要执行向 D2D 通信的分流; 向核心网发送所述分流请求, 并在 接收到返回的确认消息帧时, 向所述双方设备中的至少一方发送釆用 D2D 通信模式的指令。
在该技术方案中, 通过将核心网发起分流请求, 使得核心网了解到相 应的 D2D 通信状况; 尤其当接收方装置需要将已有业务从传统通信模式 切换至 D2D 通信模式时, 核心网能够及时释放相应的资源, 以便提高资 源利用率, 緩解系统负担。
在上述技术方案中, 优选地, 所述分流请求还包括: 颗粒度信息, 表 示所述双方设备需要基于设备、 接入点名称、 无线承载和 /或 IP 流, 实现 向 D2D通信的分流。
此外, 分流请求中还可以包含消息类型标识, 如 " LTEtoD2D " 或 "LTEtoD2Drelay" , 以表明该分流请求的类型是: 从 LTE通信模式切换 至 D2D 通信模式; 当然, 此处的 "LTE" 仅用于举例, 应当根据接收方 装置实际所处的通信模式来确定, 比如当接收方装置原本处于 "CDMA" 通 信 模 式 时 , 消 息 类 型 标 识 应 当 为 " CDMAtoD2D " 或 "CDMAtoD2Drelay" 等。
四、 切换指令
在如图 1A所示的实施例中, 由于 UE1 和 UE2 已经自行确定了通信 模式, 并通过模式选择通知来告知了 eNB, 则 eNB 仅需要通过切换指令 来通知 UE1 和 UE2执行模式切换, 即可进入步骤 108, 即实现具体的通 信模式切换操作。
在如图 1B所示的实施例中, 由 eNB对 UE1和 UE2釆用的通信模式 进行告知, 则 eNB可以通过如模式选择通知来向 UE1和 UE2告知其具体 应当釆用的通信模式。 同时, eNB 可以直接通过该模式选择通知, 使得隐 式地告知 UE1 和 UE2执行切换操作, 即无需发送切换指令; 或者, eNB 显然也可以直接通过切换指令, 通知 UE1 和 UE2执行模式切换, 即可进 入步骤 108, 即实现具体的通信模式切换操作。
综合上述各个流程步骤, 图 4示出了根据本发明的一个实施例的对终 端的通信模式进行选择的示意流程图。
如图 4所示, 根据本发明的一个实施例的对终端的通信模式进行选择 的过程包括三个阶段, 下面分别就每个阶段进行详细描述。
第一阶段: 预判断
步骤 402A, 位置预判断。
具体地, 包括两种实现方式:
1、 基于已有位置信息进行判断
1 )假定发起通信请求的当前终端为 UE1, 而 UE1 需要进行通信的目 标终端为 UE2。
UE1维护一个 "邻 UE数据库" (具体可以由 UE1中的上层应用进行 维护) , 该数据库中记录有 UE1 周围的终端信息。 UE1 可以按照预设周 期或事件性触发的方式, 对 "邻 UE数据库" 进行更新, 比如预设周期可 以为 30分钟, 而触发性事件可以为每次通信结束后。
具体地, UE1 可以通过向周围发送特定的探测信令, 以根据周围终端 的回复情况, 确定周围存在的终端。
因此, 当 UE1 需要发起新的通信时, 可以直接通过查询自身维护的 "邻 UE数据库" , 并当 UE2 位于 "邻 UE数据库" 中的情况下, 确定 UE2处于 UE1对应的 D2D通信范围内, 即两者可以进行 D2D通信。
当然, 对于 UE1维护的 "邻 UE数据库" , 也可以上传至网络侧, 以 由网络侧对 UE2是否处于 UE1 对应的 D2D通信范围进行判断, 并告知 UE1。
2 ) 可以由网络侧维护针对 UE1 的 "邻 UE数据库" 。 具体地, 比如 由 UE1 发送特定的探测信令进行测量后, 将测量结果告知网络侧, 以实 现对 UE1 周围的终端信息的维护; 或者, 比如还可以由网络侧直接对 UE1 等所有建立连接的终端进行位置获取, 以确定处于 UE1 周围的终 端, 特别地, 可以获取与 UE1 处于同一' 区或同一扇区内的终端, 以作 为 UE1周围的终端。
基于网络侧维护的 "邻 UE 数据库" , 网络侧可以直接判断 UE2 与 UE1之间的位置关系; 或者, 网络侧可以将 "邻 UE数据库" 告知 UE1, 以由 UE1 自行判断其与 UE2之间的位置关系。
在上述的各种判断方式中, 由于均釆用了事先获取并维护的 "邻 UE 数据库" 来进行位置判断, 而无需进行实时的位置信息获取, 因而能够在 较短时间内, 得到 UE1 和 UE2之间的粗略位置状况, 以实现快速的位置 获取和 D2D能力判断。
2、 基于实时位置信息的判断
由于 "邻 UE数据库" 中的内容具有一定的时延性, 使得在一定程度 上可能会影响对 UE1 和 UE2 的位置关系的判断准确性。 因此, 可以对 UE1和 UE2的位置信息进行实时获取。
当然, 对于 UE1 和 UE2 的位置预判断需要在短时间内完成, 因而可 以仅获取两者的粗略位置信息即可。 比如可以由网络侧对 UE 1 和 UE2所 处的小区 ID、 跟踪区域 ID、 连接的基站 ID等进行获取, 从而在两者处于 同一小区或跟踪区域, 或连接至同一基站的情况下, 认为 UE2 处于 UE1 对应的 D2D通信范围内。
步骤 402B, 通信状态预判断。
具体地, 可以从下述的任一或全部两个方面, 对通信状态进行判断。
1、 终端状态
终端的状态可以包括 UE1 的状态和 /或 UE2的状态, 具体地, 终端状 态可以包括以下至少之一或其组合:
所述当前终端的实时电量, 比如当 UE1和 /或 UE2的实时电量小于预 设门限值时, 优先应用 D2D通信模式;
所述当前终端的实时耗电量, 比如当 UE1和 /或 UE2的实时耗电量小 于预设门限值时, 优先应用 D2D通信模式; 所述当前终端对 D2D通信功能的支持状况, 比如当 UE1和 UE2支持 D2D通信功能时, 优先应用 D2D通信模式;
在支持所述 D2D通信功能的情况下, 所述当前终端的 D2D通信功能 的开启状态, 比如当 UE1 和 UE2 均已开启 D2D通信功能时, 优先应用 D2D通信模式。
2、 网络状态
网络状态, 即与 UE1 建立连接的网络侧的状态, 可以包括以下至少 之一或其组合:
无线链路的资源利用率和 /或资源负载状态, 比如当无线链路的资源 利用率和 /或资源负载状态大于门限值 L1 时, 优先应用直接 D2D 通信模 式, 而当小于门限值 L2时, 优先应用中继 D2D通信模式或传统通信模式 ( L2 < L1 ) ;
回传链路的资源利用率和 /或资源负载状态, 比如当回传链路的资源 利用率和 /或资源负载状态大于门限值 K1 时, 优先应用 D2D通信模式, 而当小于门限值 K2时, 优先应用传统通信模式 (K2 K1 ) ;
核心网数据面节点 (如 S-GW, Serving Gateway ) 和 /或信令面节点 (如 MME, Mobility Management Entity ) 的负载情况。
需要说明的是, 步骤 402A和步骤 402B 属于预判断的两个方面, 两 者之间并不存在必须的耦合关系或先后顺序, 即: 可以先执行步骤 402A、 后执行步骤 402B, 也可以先执行步骤 402B、 后执行步骤 402A, 并且当先执行的步骤中, 判定 UE1和 UE2不适于应用 D2D方式进行通信 时, 可以不执行后一步骤, 而直接判定使用非 D2D方式进行通信。
步骤 404, 确定预判断是否通过, 若通过, 则进入第二阶段的再判断 过程, 否则直接进入步骤 410A。
其中, 若步骤 402A或步骤 402B中的任一步骤中, 判定 UE1和 UE2 不适于使用 D2D 方式进行通信, 则可以判定为未通过, 而仅当两个步骤 均确定适用于使用 D2D 方式进行通信, 才判定为通过, 以缩短用户的等 待时间; 或者, 也可以在任一步骤判定为适于使用 D2D 方式进行通信 时, 就判定为通过, 以避免误判断。 第二阶段: 再判断
步骤 406A, 位置再判断。
具体地, 可以通过 UE1、 UE2等终端上的定位模块进行精确定位, 比 如通过 GPS、 A-GPS、 北斗定位系统等获取位置信息, 以用于实现对 UE1 和 UE2的位置关系的精确判断。
一种具体的实施方式中, 可以由 UE1 获取 UE2 的位置信息后, 自行 确定两者在距离上的位置关系; 在另一种具体的实施方式下, 可以由 UE1 和 UE2 分别将自身的位置信息上报至网络侧后, 由网络侧对两者的位置 信息进行比较, 以确定两者在距离上的位置关系。
进一步地, 基于上述的精确位置信息, UE1 或网络侧还可以对 UE1 和 UE2之间的路径衰落值进行计算, 以确定两者是否适用于通过 D2D方 式进行通信。
步骤 406B, 通信状态再判断。
可以由 UE1向 UE2发送特定的导频信号和 /或训练序列, 从而由 UE2 对信号的接收质量和 /或接收强度进行测量, 并告知 UE1 和 /或网络侧, 以 由 UE1 和 /或网络侧对其进行判断, 并确定 UE1 和 UE2之间的信号状况 是否适用于 D2D通信。
或者, 也可以由 UE2向 UE1发送上述的特定的导频信号和 /或训练序 列, 从而由 UE1 对信号的接收质量和 /或接收强度进行测量, 并自行判断 信号状况, 或上报至网络侧, 并由网络侧进行判断。
步骤 408, 确定再判断是否通过, 若通过, 则进入第三阶段的模式选 择过程, 否则直接进入步骤 410A。
其中, 若步骤 406A或步骤 406B中的任一步骤中, 判定 UE1和 UE2 不适于使用 D2D 方式进行通信, 则可以判定为未通过, 而仅当两个步骤 均确定适用于使用 D2D 方式进行通信, 才判定为通过, 以缩短用户的等 待时间; 或者, 也可以在任一步骤判定为适于使用 D2D 方式进行通信 时, 就判定为通过, 以避免误判断。
第三阶段: 模式选择
1、 传统通信模式 步骤 410A, 若 UE1和 UE2之间不适用于 D2D通信, 则可以在两者 之间应用传统的通信模式, 即通过基站、 S-GW/MME 等, 实现 UE1 和 UE2之间的数据和 /或信令交互。
2、 直接 D2D通信模式
步骤 410B, 基于位置和 /或通信状态的判断结果, 比如 UE1 和 UE2 之间的距离较近, 和 /或 UE1 和 UE2 之间的信道状况较好等, 则可以由 UE1和 UE2之间直接进行 D2D通信, 且无需中继实现信号转发。
较为具体地, 比如对于位置关系, 假定 UE1和 UE2之间的距离和 /或 路径衰落值小于或等于预设的第一距离阔值, 则确定能够使用直接 D2D 通信模式; 而对于通信状态, 假定 UE1 和 UE2之间的信道状况优于预设 的第一信道状况, 则确定能够使用直接 D2D通信模式。
其中, 可以在 "位置关系" 和 "通信状态" 中的任一方面或两个方面 都满足上述条件的情况下, 确定 UE1和 UE2使用直接 D2D通信模式。
3、 中继 D2D通信模式
步骤 410C, 基于位置和 /或通信状态的判断结果, 比如 UE1 和 UE2 之间的距离较远, 或虽然距离较近但信道状况不太理想, 则可以由基站、 移动基站或其他终端作为中继, 实现 UE1和 UE2之间的基于中继的 D2D 通信, 以由中继扩展通信距离、 优化信道状况。
较为具体地, 比如对于位置关系, 假定 UE1和 UE2之间的距离和 /或 路径衰落值大于预设的第一距离阔值且小于或等于预设的第二距离阔值 (第一距离阔值小于第二距离阔值) , 则确定能够使用中继 D2D 通信模 式; 而对于通信状态, 假定 UE1 和 UE2之间的信道状况差于预设的第一 信道状况但优于预设的第二信道状况 (第一信道状况优于第二信道状 况) , 则确定能够使用中继 D2D通信模式。
其中, 可以在 "位置关系" 和 "通信状态" 中的任一方面或两个方面 都满足上述条件的情况下, 确定 UE1和 UE2使用中继 D2D通信模式。
本发明提出了一种对终端的通信模式进行选择的技术方案, 其中通过 对当前终端和目标终端之间的位置信息、 通信状态等进行判断后, 确定使 用的具体通信模式。 需要说明的是, 上述技术方案既能够适用于通信的初 始建立过程, 也能够适用于通信已经建立后的模式切换过程, 即如图 2至 图 4所示的流程可以由新业务发起时触发, 从而为新业务选择适当的数据 路径; 也可以由已有业务发生过程中触发, 保障已有业务的无缝无损的模 式切换。
对于已经建立通信后的模式切换过程, 需要对通信双方进行持续的状 态监控, 下面通过多个实施例, 对基于本发明的多个具体应用场景进行详 细描述和说明。
实施例一
图 5A 至图 5C 示出了根据本发明的一个实施例的切换通信模式的示 意图。
如图 5A所示, 基于对 UE1 和 UE2 的位置判断, 假定两者之间的距 离小于门限值 A。
和 /或, 基于对 UE1 和 UE2 的状态判断, 假定 UE1接收到来自 UE2 的测量导频 /搜索导频接收强度或信号质量大于门限 B, 以及基站无线资源 负载和 /或使用率大于门限 L, 和 /或 eNB 到 S-GW (图中未示出) 的负载 和 /或资源使用率大于门限 K。
因此, 基于上述判断, 可以在 UE1和 UE2之间釆用直接 D2D通信模 式。
如图 5B所示, 通过持续测量, 4叚定检测到 UE1 和 UE2之间的距离 值大于门限值 C ( C > A ) 、 小于门限值 D ( D > C ) , 且两者处于相同的 小区内, 则可以将 UE1和 UE2的通信模式切换为中继 D2D通信模式, 即 以 eNB为中继的 D2D通信模式。
如图 5 C所示, 通过持续测量, 假定检测到 UE 1 和 UE2之间的距离 值大于门限值 E ( E > D ) , 且两者处于不同的小区内; 和 /或检测到回传 链路的负载值低于门限值 K, 则可以将 UE1 和 UE2的通信模式切换为传 统通信模式。
实施例二
图 6Α 至图 6Β 示出了根据本发明的另一个实施例的切换通信模式的 示意图。 如图 6A所示, 假定 UE1和 UE2均处于基站 eNB的覆盖范围内, 且 UE1 和 UE2 之间通过传统模式建立了通信关系, 即 UE1 和 UE2 通过 eNB、 S-GW/MME实现数据和 /或信令的交互。
如图 6B所示, 对 UE1和 UE2进行持续检测, 假定检测到两 UE之间 的距离小于门限值 A, 和 /或 UE1接收到来自 UE2的测量导频 /搜索导频的 接收强度或信号质量大于门限值 B (或 UE2 接收到来自 UE1 的导频信 号) , 则可以将 UE1和 UE2的通信模式切换为直接的 D2D通信模式。
同时, 基于上述直接的 D2D通信模式, 即便 UE1 和 UE2 离开 eNB 的覆盖范围, 仍然能够保证两者之间的顺利通信。 此外, 可以通过如界 面、 声音等提示, 告知 UE1 和 UE2对应的用户保持在一定的范围内, 以 保证通信过程的顺利进行。
实施例三
图 7A 至图 7B 示出了根据本发明的又一个实施例的切换通信模式的 示意图。
如图 7A所示, 假定 UE1和 UE2分别处于基站 eNBl和 eNB2的覆盖 范围内, 且 UE1 和 UE2之间通过传统模式建立了通信关系, 即 UE1 和 UE2通过 eNBl、 S-GW/MME, eNB2实现数据和 /或信令的交互。
对 UE1 和 UE2进行持续检测, 假定检测到两 UE之间的距离小于门 限值 A, 和 /或 UE1接收到来自 UE2的测量导频 /搜索导频的接收强度或信 号质量大于门限值 B (或 UE2接收到来自 UE1 的导频信号) , 和 /或检测 到 eNBl或 eNB2的无线资源负载或资源利用率大于门限值 , 则可以将 UE1和 UE2的通信模式切换为直接的 D2D通信模式。
如图 7B所示, 假定 UE1和 UE2分别处于基站 eNBl和 eNB2的覆盖 范围内, 且 UE1和 UE2之间通过传统模式建立了通信关系。
对 UE1 和 UE2进行持续检测, 4叚定检测到两 UE 虽然处于不同的小 区内, 但两者之间的距离大于门限值 C ( C > A ) 、 小于门限值 D ( D > C ) , 和 /或检测到 eNBl 或 eNB2 的无线资源负载或资源利用率小于门限 值 L2, 则可以将 UE1 和 UE2 的通信模式切换为中继的 D2D通信模式, 即以 eNBl和 eNB2为中继, 由 eNBl和 eNB2通过如 X2接口进行数据和 /或信令的传输。
图 8示出了根据本发明的一个实施例的作为网络侧的无线通信装置的 示意框图。
如图 8所示, 根据本发明的一个实施例的作为网络侧的无线通信装置 800, 包括: 消息帧生成单元 802, 用于生成消息帧, 所述消息帧用于使 所述消息帧的接收方测量自身的 D2D 通信能力, 或使所述接收方测量并 判断自身的 D2D通信能力; 数据交互单元 804, 用于向需要进行 D2D通 信的双方设备中的至少一方发送所述消息帧, 并接收所述接收方返回的测 量结果和 /或判断结果。
在该技术方案中, 通过对作为接收方的无线通信装置 (即接收方装 置) D2D 通信能力进行测量, 并就此对其 D2D 通信能力进行判断, 从而 能够了解接收方装置的实际情况, 避免选用的通信模式与接收方装置的实 际情况不匹配, 比如请求 D2D 通信的通信双方距离过远时, 若釆用 D2D 通信则可能导致通信连接无法建立或通信质量差, 影响用户的使用体验。
其中, 通过发送消息帧, 接收方装置可以仅对自身的 D2D 通信能力 进行测量后, 将测量结果返回网络侧 (即消息帧的发送方) , 以由网络侧 进行 D2D 通信能力判断; 或者, 接收方装置也可以自行测量后, 进一步 根据测量结果来判断自身的 D2D 通信能力, 从而将测量结果和 /或判断结 果告知网络侧, 以由网络侧确定接收方装置最终釆用何种通信模式。
在上述技术方案中, 优选地, 所述消息帧为物理层信令时: 若所述物 理层信令为第一值, 则表示所述接收方需要执行所述测量操作, 或所述测 量并判断操作; 或若所述物理层信令为特定数值, 则表示所述接收方需要 对以所述特定数值为索引的预设频域资源和 /或时域资源, 执行所述测量 操作, 或所述测量并判断操作。
在该技术方案中, 作为一种较为具体的实施例, 物理层信令可以仅包 含一个比特位的数值, 比如当该数值为 1 时, 表示需要接收方装置执行测 量操作, 或测量并判断操作; 当然, 该物理层信令也可以表示其他含义, 比如当该物理层信令的数值为 0时, 表示不需要执行上述的测量操作, 或 测量并判断操作。 当然, 本领域技术人员应该理解的是, 这里的 "一个比 特位" 仅用于举例, 显然可以釆用其他比特位的数值来表示上述含义。 作为另一种较为具体的实施例, 可以预先在消息帧的收发双方设备之 间进行协商, 即预定义一种或多种频域资源和 /或时域资源, 并为其设置 相应的索引, 则通过发送包含特定数值的物理层信令, 并使得该特定数值 对应于预定义的某一种或多种频域资源和 /或时域资源相应的索引值, 即 可由接收方装置利用相应的频域资源和 /或时域资源进行测量操作, 或测 量并判断操作。
其中, 当物理层信令仅对应于频域资源或时域资源时, 表明接收方装 置可以釆用预设的默认时域资源或频域资源, 实现上述的测量操作, 或测 量并判断操作。
在上述技术方案中, 优选地, 所述消息帧为 RRC 信令或应用层信 令, 且所述 RRC 信令或应用层信令包括: 操作类型信息, 若所述操作类 型信息为第一值, 则表示所述接收方需要执行所述测量操作, 或所述测量 并判断操作; 或资源索引信息, 若所述资源索引信息为特定数值, 则表示 所述接收方需要对以所述特定数值为索引的预设频域资源和 /或时域资 源, 执行所述测量操作, 或所述测量并判断操作; 或频域资源信息和 /或 时域资源信息, 表示所述接收方需要利用相应的频域资源和 /或时域资 源, 执行所述测量操作, 或所述测量并判断操作。
在该技术方案中, 作为一种较为具体的实施例, 可以由消息帧中包含 的操作类型信息, 比如该操作类型信息的数值可以为 1, 以指示接收方装 置来执行测量操作, 或测量并判断操作; 当然, 该操作类型信息也可以表 示其他含义, 比如当操作类型标识的数值为 0时, 表示不需要执行上述的 测量操作, 或测量并判断操作。 当然, 本领域技术人员应该理解的是, 这 里的 " 或 "0" 仅用于举例, 显然可以釆用其他比特位的数值来表示上 述含义。
作为另一种较为具体的实施例, 可以预先在消息帧的收发双方设备之 间进行协商, 即预定义一种或多种频域资源和 /或时域资源, 并为其设置 相应的索引, 则通过发送包含特定数值的资源索引信息, 并使得该特定数 值对应于预定义的某一种或多种频域资源和 /或时域资源相应的索引值, 即可由接收方装置利用相应的频域资源和 /或时域资源进行测量操作, 或 测量并判断操作。
作为又一种较为具体的实施例, 还可以通过频域资源信息和 /或时域 资源信息, 直接将具体的频域资源和 /或时域资源告知接收方装置, 以供 其执行所述测量操作, 或所述测量并判断操作。
其中, 当消息帧仅告知了频域资源或时域资源时, 表明接收方装置可 以釆用预设的默认时域资源或频域资源, 实现上述的测量操作, 或测量并 判断操作。
此外, 网络侧可以指示接收方装置在单个或多个时域资源和 /或频域 资源进行测量; 当存在多个时域资源和 /或频域资源时, 接收方装置可以 分别进行测量后, 将全部或其中最优的测量结果返回网络侧。
在上述技术方案中, 优选地, 还包括: 类型确定单元 806, 用于根据 接收到的所述测量结果, 对所述接收方的 D2D 通信能力进行估计, 并根 据估计结果确定所述双方设备能否进行 D2D 通信, 以及在确定能够进行 D2D通信时, 具体釆用的 D2D通信类型; 所述消息帧生成单元 802还用 于: 生成模式通知消息帧, 所述模式通信消息帧中包含所述接收方需要釆 用的通信模式, 以及用于通信过程的频域和 /或时域资源; 以及所述数据 交互单元 804还用于: 向所述接收方发送所述模式通知消息帧。
在该技术方案中, 网络侧根据接收方装置返回的测量结果, 能够对接 收方装置的 D2D 通信能力进行判断, 以确保其在最适合的通信模式下, 得到最优的通信体验。 作为一种较为具体的实施例, 比如: 当其不具备 D2D通信能力时, 应当使得接收方装置釆用非 D2D通信模式 (如传统的 2G、 3G、 4G 等无线移动通信模式) ; 当其具备较弱的 D2D 通信能力 时, 应当使得接收方装置釆用中继 D2D 通信模式; 当其具备较强的 D2D 通信能力时, 应当使得接收方装置釆用直接 D2D通信模式。
在上述技术方案中, 优选地, 所述测量结果包括: 所述双方设备之间 的实际距离和 /或路径衰落值, 和 /或所述双方设备之间的信道状况, 则所 述类型确定单元 806 用于: 当所述实际距离和 /或所述路径衰落值小于或 等于对应的第一预设阔值, 和 /或所述信道状况优于第一预设信道条件 时, 判定所述双方设备能够进行直接 D2D 通信; 当所述实际距离和 /或所 述路径衰落值大于所述第一预设阔值且小于或等于第二预设阔值, 和 /或 所述信道状况劣于所述第一预设信道条件且优于第二预设信道条件时, 判 定所述双方设备能够进行中继 D2D 通信; 当所述实际距离和 /或所述路径 衰落值大于所述第二预设阔值, 和 /或所述信道状况劣于所述第二预设信 道条件时, 判定所述双方设备不能够进行 D2D通信。
当然, 本领域技术人员应当理解的是: 在对接收方装置进行 D2D 通 信能力的判断时, 显然并不限于上述参数, 即可以通过其他更多类型的参 数, 以帮助实现对接收方装置的更为准确或更为迅速的 D2D 通信能力判 断。
在上述任一技术方案中, 优选地, 还包括: 请求生成单元 808, 用于 在确定所述双方设备能进行 D2D 通信的情况下生成分流请求, 所述分流 请求中包含所述双方设备中的任一方或双方的标识, 表示所述双方设备需 要执行向 D2D通信的分流; 所述数据交互单元 804还用于: 向核心网发 送所述分流请求, 并在接收到返回的确认消息帧时, 向所述双方设备中的 至少一方发送釆用 D2D通信模式的指令。
在该技术方案中, 通过将核心网发起分流请求, 使得核心网了解到相 应的 D2D 通信状况; 尤其当接收方装置需要将已有业务从传统通信模式 切换至 D2D 通信模式时, 核心网能够及时释放相应的资源, 以便提高资 源利用率, 緩解系统负担。
在上述技术方案中, 优选地, 所述分流请求还包括: 颗粒度信息, 表 示所述双方设备需要基于设备、 接入点名称、 无线承载和 /或 IP 流, 实现 向 D2D通信的分流。
此外, 分流请求中还可以包含消息类型标识, 如 " LTEtoD2D " 或 "LTEtoD2Drelay" , 以表明该分流请求的类型是: 从 LTE通信模式切换 至 D2D 通信模式; 当然, 此处的 "LTE" 仅用于举例, 应当根据接收方 装置实际所处的通信模式来确定, 比如当接收方装置原本处于 "CDMA" 通 信 模 式 时 , 消 息 类 型 标 识 应 当 为 " CDMAtoD2D " 或 "CDMAtoD2Drelay" 等。 在上述任一技术方案中, 优选地, 还包括: 预判决单元 810, 用于在 所述消息帧生成单元 802生成所述消息帧之前, 对所述双方设备进行位置 预判决和 /或能力预判决, 若预判决结果为满足对应的预设条件, 则由所 述消息帧生成单元 802生成所述消息帧, 否则不生成; 其中, 所述位置预 判决包括: 获取所述接收方维护的或网络侧维护的对应于所述接收方的相 邻终端数据库, 和 /或获取所述双方设备分别所处的区域信息, 以确定是 否所述双方设备中的任一方处于另一方对应的相邻终端数据库中, 和 /或 所述双方设备处于相同区域内; 所述能力预判决包括: 获取所述接收方的 第一状态信息和 /或所述接收方对应的网络侧的第二状态信息, 以确定所 述第一状态信息和 /或所述第二状态信息是否满足对应的状态条件。
在该技术方案中, 由于在基于测量的 D2D 通信能力判断过程中, 其 测量数据的获取和判断过程需要较长时间, 使得可以导致用户的等待时间 过长, 从而影响用户的使用体验。 因此, 可以通过相对更加简单的位置预 判决和 /或能力预判决, 实现更加粗略但快捷的预判断, 从而能够有效减 少用户的等待时间, 又由于位置预判决和 /或能力预判决本身耗时很短, 因而即便是仍需要执行测量操作或测量并判断操作, 也不会使得用户的等 待时间过长。
对于位置预判决, 相邻终端数据库可以由接收方和 /或网络侧各自维 护, 其中包含该接收方周围的终端, 并且是接收方和 /或网络侧已经事先 获取(可以通过周期性或事件触发的方式, 对相邻终端数据库进行维护和 更新) 的终端数据, 由于不需要实时测量, 从而有助于缩短位置预判决的 时间。
或者, 也可以通过通信双方上报, 或网络侧进行测量后, 确定通信双 方的粗略位置信息, 比如两者是否处于相同区域内, 以确定通信双方的 D2D 通信能力。 其中, 粗略位置信息可以为相连的基站 ID、 所处的小区 ID和 /或所处的跟踪区域 ID等, 以确定两者是否处于相同的小区、 扇区、 跟踪区域等。
对于能力预判决, 可以根据接收方的第一状态信息和 /或其对应网络 侧的第二状态信息, 以实现较为粗略但快速的通信状态判断, 从而当通信 双方之间无法实现 D2D 通信时, 能够有效减少用户的等待时间, 又由于 能力预判决本身耗时很短, 因而即便是仍需要执行测量操作或测量并判断 操作, 也不会使得用户的等待时间过长。
在上述技术方案中, 优选地, 所述第一状态信息包括以下至少之一或 其组合: 所述接收方的实时电量; 所述接收方的实时耗电量; 所述接收方 的 D2D 通信功能的开启状态; 和 /或所述第二状态信息包括以下至少之一 或其组合: 无线链路的资源利用率; 无线链路的资源负载状态; 回传链路 的资源利用率; 回传链路的资源负载状态; 核心网数据面节点 (如 SGW ) 和信令面节点 (如 MME ) 的负载情况。
图 9示出了根据本发明的一个实施例的基站的示意框图。
如图 9所示, 根据本发明的一个实施例的基站 900, 包括如图 8所示 的基于网络侧的无线通信装置 800。
图 10 示出了根据本发明的一个实施例的作为终端侧的无线通信装置 的示意框图。
如图 10 所示, 根据本发明的一个实施例的作为终端侧的无线通信装 置 1000, 包括: 请求发起单元 1002, 用于发起向 D2D通信模式的切换请 求; 数据交互单元 1004, 用于接收消息帧, 所述消息帧用于使其所述无 线通信装置测量自身的 D2D 通信能力, 或使所述无线通信装置测量并判 断自身的 D2D通信能力; 操作执行单元 1006, 用于执行所述测量操作或 所述测量并判断操作, 以由所述数据交互单元 1004 向所述消息帧的发送 方返回测量结果和 /或判断结果。
在该技术方案中, 通过对作为接收方的无线通信装置 (即接收方装 置) D2D 通信能力进行测量, 并就此对其 D2D 通信能力进行判断, 从而 能够了解接收方装置的实际情况, 避免选用的通信模式与接收方装置的实 际情况不匹配, 比如请求 D2D 通信的通信双方距离过远时, 若釆用 D2D 通信则可能导致通信连接无法建立或通信质量差, 影响用户的使用体验。
其中, 通过发送消息帧, 接收方装置可以仅对自身的 D2D 通信能力 进行测量后, 将测量结果返回网络侧 (即消息帧的发送方) , 以由网络侧 进行 D2D 通信能力判断; 或者, 接收方装置也可以自行测量后, 进一步 根据测量结果来判断自身的 D2D 通信能力, 从而将测量结果和 /或判断结 果告知网络侧, 以由网络侧确定接收方装置最终釆用何种通信模式。
在上述技术方案中, 优选地, 所述消息帧为物理层信令时: 若所述物 理层信令为第一值, 则表示所述无线通信装置需要执行所述测量操作, 或 所述测量并判断操作; 或若所述物理层信令为特定数值, 则表示所述无线 通信装置需要对以所述特定数值为索引的预设频域资源和 /或时域资源, 执行所述测量操作, 或所述测量并判断操作。
在该技术方案中, 作为一种较为具体的实施例, 物理层信令可以仅包 含一个比特位的数值, 比如当该数值为 1 时, 表示需要接收方装置执行测 量操作, 或测量并判断操作; 当然, 该物理层信令也可以表示其他含义, 比如当该物理层信令的数值为 0时, 表示不需要执行上述的测量操作, 或 测量并判断操作。 当然, 本领域技术人员应该理解的是, 这里的 "一个比 特位" 仅用于举例, 显然可以釆用其他比特位的数值来表示上述含义。
作为另一种较为具体的实施例, 可以预先在消息帧的收发双方设备之 间进行协商, 即预定义一种或多种频域资源和 /或时域资源, 并为其设置 相应的索引, 则通过发送包含特定数值的物理层信令, 并使得该特定数值 对应于预定义的某一种或多种频域资源和 /或时域资源相应的索引值, 即 可由接收方装置利用相应的频域资源和 /或时域资源进行测量操作, 或测 量并判断操作。
其中, 当物理层信令仅对应于频域资源或时域资源时, 表明接收方装 置可以釆用预设的默认时域资源或频域资源, 实现上述的测量操作, 或测 量并判断操作。
在上述技术方案中, 优选地, 所述消息帧为 RRC 信令或应用层信 令, 且所述 RRC 信令或应用层信令包括: 操作类型信息, 若所述操作类 型信息为第一值, 则表示所述无线通信装置需要执行所述测量操作, 或所 述测量并判断操作; 或资源索引信息, 若所述资源索引信息为特定数值, 则表示所述无线通信装置需要对以所述特定数值为索引的预设频域资源和 /或时域资源, 执行所述测量操作, 或所述测量并判断操作; 或频域资源 信息和 /或时域资源信息, 表示所述无线通信装置需要利用相应的频域资 源和 /或时域资源, 执行所述测量操作, 或所述测量并判断操作。
在该技术方案中, 作为一种较为具体的实施例, 可以由消息帧中包含 的操作类型信息, 比如该操作类型信息的数值可以为 1, 以指示接收方装 置来执行测量操作, 或测量并判断操作; 当然, 该操作类型信息也可以表 示其他含义, 比如当操作类型标识的数值为 0时, 表示不需要执行上述的 测量操作, 或测量并判断操作。 当然, 本领域技术人员应该理解的是, 这 里的 " 或 "0" 仅用于举例, 显然可以釆用其他比特位的数值来表示上 述含义。
作为另一种较为具体的实施例, 可以预先在消息帧的收发双方设备之 间进行协商, 即预定义一种或多种频域资源和 /或时域资源, 并为其设置 相应的索引, 则通过发送包含特定数值的资源索引信息, 并使得该特定数 值对应于预定义的某一种或多种频域资源和 /或时域资源相应的索引值, 即可由接收方装置利用相应的频域资源和 /或时域资源进行测量操作, 或 测量并判断操作。
作为又一种较为具体的实施例, 还可以通过频域资源信息和 /或时域 资源信息, 直接将具体的频域资源和 /或时域资源告知接收方装置, 以供 其执行所述测量操作, 或所述测量并判断操作。
其中, 当消息帧仅告知了频域资源或时域资源时, 表明接收方装置可 以釆用预设的默认时域资源或频域资源, 实现上述的测量操作, 或测量并 判断操作。
此外, 网络侧可以指示接收方装置在单个或多个时域资源和 /或频域 资源进行测量; 当存在多个时域资源和 /或频域资源时, 接收方装置可以 分别进行测量后, 将全部或其中最优的测量结果返回网络侧。
在上述技术方案中, 优选地, 所述数据交互单元 1004 还用于: 接收 来自所述消息帧的发送方的模式通信消息帧, 所述模式通信消息帧中包含 所述无线通信装置需要釆用的通信模式, 以及用于通信过程的频域和 /或 时域资源; 以及所述无线通信装置还包括: 通信实现单元 1008, 用于根 据所述通信模式以及所述频域和 /或时域资源, 实现相应的通信过程。
在该技术方案中, 网络侧根据接收方装置返回的测量结果, 能够对接 收方装置的 D2D 通信能力进行判断, 以确保其在最适合的通信模式下, 得到最优的通信体验。 作为一种较为具体的实施例, 比如: 当其不具备 D2D通信能力时, 应当使得接收方装置釆用非 D2D通信模式 (如传统的 2G、 3G、 4G 等无线移动通信模式) ; 当其具备较弱的 D2D 通信能力 时, 应当使得接收方装置釆用中继 D2D 通信模式; 当其具备较强的 D2D 通信能力时, 应当使得接收方装置釆用直接 D2D通信模式。
在上述技术方案中, 优选地, 所述数据交互单元 1004 还用于: 接收 来自所述消息帧的发送方的预判决指令; 其中, 所述数据交互单元 1004 根据所述预判决指令, 返回所述无线通信装置维护的相邻终端数据库, 和 /或所述无线通信装置的状态信息。
在该技术方案中, 由于在基于测量的 D2D 通信能力判断过程中, 其 测量数据的获取和判断过程需要较长时间, 使得可以导致用户的等待时间 过长, 从而影响用户的使用体验。 因此, 可以通过相对更加简单的预判 决, 实现更加粗略但快捷的预判断, 从而能够有效减少用户的等待时间, 又由于预判决本身耗时很短, 因而即便是仍需要执行测量操作或测量并判 断操作, 也不会使得用户的等待时间过长。 具体地, 预判决过程可以包括 位置预判决和能力预判决:
对于位置预判决, 可以基于相邻终端数据库来实现。 具体地, 相邻终 端数据库可以由接收方和 /或网络侧各自维护, 其中包含该接收方周围的 终端, 并且是接收方和 /或网络侧已经事先获取 (可以通过周期性或事件 触发的方式, 对相邻终端数据库进行维护和更新) 的终端数据, 由于不需 要实时测量, 从而有助于缩短位置预判决的时间。
或者, 也可以通过通信双方上报, 或网络侧进行测量后, 确定通信双 方的粗略位置信息, 比如两者是否处于相同区域内, 以确定通信双方的 D2D 通信能力。 其中, 粗略位置信息可以为相连的基站 ID、 所处的小区 ID和 /或所处的跟踪区域 ID等, 以确定两者是否处于相同的小区、 扇区、 跟踪区域等。
对于能力预判决, 可以根据接收方的状态信息, 以实现较为粗略但快 速的通信状态判断, 从而当通信双方之间无法实现 D2D 通信时, 能够有 效减少用户的等待时间, 又由于能力预判决本身耗时很短, 因而即便是仍 需要执行测量操作或测量并判断操作, 也不会使得用户的等待时间过长。
在上述技术方案中, 优选地, 所述状态信息包括以下至少之一或其组 合: 所述无线通信装置的实时电量; 所述无线通信装置的实时耗电量; 所 述无线通信装置的 D2D通信功能的开启状态。
图 11示出了根据本发明的一个实施例的终端的示意框图。
如图 11 所示, 根据本发明的一个实施例的终端 1100, 包括如图 10 所示的基于终端侧的无线通信装置 1000。
以上结合附图详细说明了本发明的技术方案, 本发明提出了一种无线 通信方法、 一种无线通信装置、 一种基站和一种终端, 可以对请求 D2D 通信的通信设备实现准确测量, 从而准确选择出最优的通信模式, 从而有 助于节省终端能耗、 提高频率利用率。
以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于 本领域的技术人员来说, 本发明可以有各种更改和变化。 凡在本发明的精 神和原则之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明 的保护范围之内。

Claims

权 利 要 求 书
1. 一种无线通信方法, 其特征在于, 包括:
生成消息帧, 所述消息帧用于使所述消息帧的接收方测量自身的 D2D 通信能力, 或使所述接收方测量并判断自身的 D2D通信能力;
向需要进行 D2D 通信的双方设备中的至少一方发送所述消息帧, 并 接收所述接收方返回的测量结果和 /或判断结果。
2. 根据权利要求 1 所述的无线通信方法, 其特征在于, 所述消息帧 为物理层信令时:
若所述物理层信令为第一值, 则表示所述接收方需要执行所述测量操 作, 或所述测量并判断操作;
或若所述物理层信令为特定数值, 则表示所述接收方需要对以所述特 定数值为索引的预设频域资源和 /或时域资源, 执行所述测量操作, 或所 述测量并判断操作。
3. 根据权利要求 1 所述的无线通信方法, 其特征在于, 所述消息帧 为 RRC信令或应用层信令, 且所述 RRC信令或应用层信令包括:
操作类型信息, 若所述操作类型信息为第一值, 则表示所述接收方需 要执行所述测量操作, 或所述测量并判断操作;
或资源索引信息, 若所述资源索引信息为特定数值, 则表示所述接收 方需要对以所述特定数值为索引的预设频域资源和 /或时域资源, 执行所 述测量操作, 或所述测量并判断操作;
或频域资源信息和 /或时域资源信息, 表示所述接收方需要利用相应 的频域资源和 /或时域资源, 执行所述测量操作, 或所述测量并判断操 作。
4. 根据权利要求 1所述的无线通信方法, 其特征在于, 还包括: 根据接收到的所述测量结果, 对所述接收方的 D2D 通信能力进行估 计;
根据估计结果确定所述双方设备能否进行 D2D 通信, 以及在确定能 够进行 D2D通信时, 具体釆用的 D2D通信类型; 以及 向所述接收方发送模式通知消息帧, 所述模式通信消息帧中包含所述 接收方需要釆用的通信模式, 以及用于通信过程的频域和 /或时域资源。
5. 根据权利要求 4 所述的无线通信方法, 其特征在于, 所述测量结 果包括: 所述双方设备之间的实际距离和 /或路径衰落值, 和 /或所述双方 设备之间的信道状况; 以及
对所述接收方的 D2D通信能力的估计具体包括:
当所述实际距离和 /或所述路径衰落值小于或等于对应的第一预设阔 值, 和 /或所述信道状况优于第一预设信道条件时, 判定所述双方设备能 够进行直接 D2D通信;
当所述实际距离和 /或所述路径衰落值大于所述第一预设阔值且小于 或等于第二预设阈值, 和 /或所述信道状况劣于所述第一预设信道条件且 优于第二预设信道条件时, 判定所述双方设备能够进行中继 D2D通信; 当所述实际距离和 /或所述路径衰落值大于所述第二预设阔值, 和 /或 所述信道状况劣于所述第二预设信道条件时, 判定所述双方设备不能够进 行 D2D通信。
6. 根据权利要求 1 至 5 中任一项所述的无线通信方法, 其特征在 于, 当确定所述双方设备能进行 D2D通信时, 还包括:
生成分流请求, 所述分流请求中包含所述双方设备中的任一方或双方 的标识, 表示所述双方设备需要执行向 D2D通信的分流;
向核心网发送所述分流请求, 并在接收到返回的确认消息帧时, 向所 述双方设备中的至少一方发送釆用 D2D通信模式的指令。
7. 根据权利要求 6 所述的无线通信方法, 其特征在于, 所述分流请 求还包括:
颗粒度信息, 表示所述双方设备需要基于设备、 接入点名称、 无线承 载和 /或 IP流, 实现向 D2D通信的分流。
8. 根据权利要求 1 至 5 中任一项所述的无线通信方法, 其特征在 于, 在生成所述消息帧之前, 还包括:
对所述双方设备进行位置预判决和 /或能力预判决, 若预判决结果为 满足对应的预设条件, 则生成所述消息帧, 否则不生成; 其中, 所述位置预判决包括: 获取所述接收方维护的或网络侧维护的 对应于所述接收方的相邻终端数据库, 和 /或获取所述双方设备分别所处 的区域信息, 以确定是否所述双方设备中的任一方处于另一方对应的相邻 终端数据库中, 和 /或所述双方设备处于相同区域内;
所述能力预判决包括: 获取所述接收方的第一状态信息和 /或所述接 收方对应的网络侧的第二状态信息, 以确定所述第一状态信息和 /或所述 第二状态信息是否满足对应的状态条件。
9. 根据权利要求 8所述的无线通信方法, 其特征在于,
所述第一状态信息包括以下至少之一或其组合:
所述接收方的实时电量;
所述接收方的实时耗电量;
所述接收方的 D2D通信功能的开启状态;
和 /或所述第二状态信息包括以下至少之一或其组合:
无线链路的资源利用率;
无线链路的资源负载状态;
回传链路的资源利用率;
回传链路的资源负载状态;
核心网数据面节点 (如 SGW ) 和信令面节点 (如 MME ) 的负载情 况。
10. 一种无线通信装置, 其特征在于, 包括:
消息帧生成单元, 用于生成消息帧, 所述消息帧用于使所述消息帧的 接收方测量自身的 D2D 通信能力, 或使所述接收方测量并判断自身的 D2D通信能力;
数据交互单元, 用于向需要进行 D2D 通信的双方设备中的至少一方 发送所述消息帧, 并接收所述接收方返回的测量结果和 /或判断结果。
11. 根据权利要求 10 所述的无线通信装置, 其特征在于, 所述消息 帧为物理层信令时:
若所述物理层信令为第一值, 则表示所述接收方需要执行所述测量操 作, 或所述测量并判断操作; 或若所述物理层信令为特定数值, 则表示所述接收方需要对以所述特 定数值为索引的预设频域资源和 /或时域资源, 执行所述测量操作, 或所 述测量并判断操作。
12. 根据权利要求 10 所述的无线通信装置, 其特征在于, 所述消息 帧为 RRC信令或应用层信令, 且所述 RRC信令或应用层信令包括:
操作类型信息, 若所述操作类型信息为第一值, 则表示所述接收方需 要执行所述测量操作, 或所述测量并判断操作;
或资源索引信息, 若所述资源索引信息为特定数值, 则表示所述接收 方需要对以所述特定数值为索引的预设频域资源和 /或时域资源, 执行所 述测量操作, 或所述测量并判断操作;
或频域资源信息和 /或时域资源信息, 表示所述接收方需要利用相应 的频域资源和 /或时域资源, 执行所述测量操作, 或所述测量并判断操 作。
13. 根据权利要求 10所述的无线通信装置, 其特征在于, 还包括: 类型确定单元, 用于根据接收到的所述测量结果, 对所述接收方的 D2D 通信能力进行估计, 并根据估计结果确定所述双方设备能否进行 D2D 通信, 以及在确定能够进行 D2D 通信时, 具体釆用的 D2D 通信类 型;
所述消息帧生成单元还用于: 生成模式通知消息帧, 所述模式通信消 息帧中包含所述接收方需要釆用的通信模式, 以及用于通信过程的频域和 /或时域资源; 以及
所述数据交互单元还用于: 向所述接收方发送所述模式通知消息帧。
14. 根据权利要求 13 所述的无线通信装置, 其特征在于, 所述测量 结果包括: 所述双方设备之间的实际距离和 /或路径衰落值, 和 /或所述双 方设备之间的信道状况, 则所述类型确定单元用于:
当所述实际距离和 /或所述路径衰落值小于或等于对应的第一预设阔 值, 和 /或所述信道状况优于第一预设信道条件时, 判定所述双方设备能 够进行直接 D2D通信;
当所述实际距离和 /或所述路径衰落值大于所述第一预设阔值且小于 或等于第二预设阈值, 和 /或所述信道状况劣于所述第一预设信道条件且 优于第二预设信道条件时, 判定所述双方设备能够进行中继 D2D通信; 当所述实际距离和 /或所述路径衰落值大于所述第二预设阔值, 和 /或 所述信道状况劣于所述第二预设信道条件时, 判定所述双方设备不能够进 行 D2D通信。
15. 根据权利要求 10至 14中任一项所述的无线通信装置, 其特征在 于, 还包括:
请求生成单元, 用于在确定所述双方设备能进行 D2D 通信的情况下 生成分流请求, 所述分流请求中包含所述双方设备中的任一方或双方的标 识, 表示所述双方设备需要执行向 D2D通信的分流;
所述数据交互单元还用于: 向核心网发送所述分流请求, 并在接收到 返回的确认消息帧时, 向所述双方设备中的至少一方发送釆用 D2D 通信 模式的指令。
16. 根据权利要求 15 所述的无线通信装置, 其特征在于, 所述分流 请求还包括:
颗粒度信息, 表示所述双方设备需要基于设备、 接入点名称、 无线承 载和 /或 IP流, 实现向 D2D通信的分流。
17. 根据权利要求 10至 14中任一项所述的无线通信装置, 其特征在 于, 还包括:
预判决单元, 用于在所述消息帧生成单元生成所述消息帧之前, 对所 述双方设备进行位置预判决和 /或能力预判决, 若预判决结果为满足对应 的预设条件, 则由所述消息帧生成单元生成所述消息帧, 否则不生成; 其中, 所述位置预判决包括: 获取所述接收方维护的或网络侧维护的 对应于所述接收方的相邻终端数据库, 和 /或获取所述双方设备分别所处 的区域信息, 以确定是否所述双方设备中的任一方处于另一方对应的相邻 终端数据库中, 和 /或所述双方设备处于相同区域内;
所述能力预判决包括: 获取所述接收方的第一状态信息和 /或所述接 收方对应的网络侧的第二状态信息, 以确定所述第一状态信息和 /或所述 第二状态信息是否满足对应的状态条件。
18. 根据权利要求 17所述的无线通信装置, 其特征在于, 所述第一状态信息包括以下至少之一或其组合:
所述接收方的实时电量;
所述接收方的实时耗电量;
所述接收方的 D2D通信功能的开启状态;
和 /或所述第二状态信息包括以下至少之一或其组合:
无线链路的资源利用率;
无线链路的资源负载状态;
回传链路的资源利用率;
回传链路的资源负载状态;
核心网数据面节点 (如 SGW ) 和信令面节点 (如 MME ) 的负载情 况。
19. 一种基站, 其特征在于, 包括: 如权利要求 10至 18中任一项所 述的无线通信装置。
20. 一种无线通信方法, 其特征在于, 包括:
发起向 D2D通信模式的切换请求;
接收消息帧, 所述消息帧用于使所述消息帧的接收方测量自身的 D2D 通信能力, 或使所述接收方测量并判断自身的 D2D通信能力;
执行所述测量操作或所述测量并判断操作, 并向所述消息帧的发送方 返回测量结果和 /或判断结果。
21. 根据权利要求 20 所述的无线通信方法, 其特征在于, 所述消息 帧为物理层信令时:
若所述物理层信令为第一值, 则表示所述接收方需要执行所述测量操 作, 或所述测量并判断操作;
或若所述物理层信令为特定数值, 则表示所述接收方需要对以所述特 定数值为索引的预设频域资源和 /或时域资源, 执行所述测量操作, 或所 述测量并判断操作。
22. 根据权利要求 20 所述的无线通信方法, 其特征在于, 所述消息 帧为 RRC信令或应用层信令, 且所述 RRC信令或应用层信令包括: 操作类型信息, 若所述操作类型信息为第一值, 则表示所述接收方需 要执行所述测量操作, 或所述测量并判断操作;
或资源索引信息, 若所述资源索引信息为特定数值, 则表示所述接收 方需要对以所述特定数值为索引的预设频域资源和 /或时域资源, 执行所 述测量操作, 或所述测量并判断操作;
或频域资源信息和 /或时域资源信息, 表示所述接收方需要利用相应 的频域资源和 /或时域资源, 执行所述测量操作, 或所述测量并判断操 作。
23. 根据权利要求 20所述的无线通信方法, 其特征在于, 还包括: 接收来自所述消息帧的发送方的模式通信消息帧, 所述模式通信消息 帧中包含所述接收方需要釆用的通信模式, 以及用于通信过程的频域和 / 或时域资源; 以及
根据所述通信模式以及所述频域和 /或时域资源, 实现相应的通信过 程。
24. 根据权利要求 20所述的无线通信方法, 其特征在于, 还包括: 接收来自所述; %息帧的发送方的预判决指令;
根据所述预判决指令, 返回所述接收方维护的相邻终端数据库, 和 / 或所述接收方的状态信息。
25. 根据权利要求 24 所述的无线通信方法, 其特征在于, 所述状态 信息包括以下至少之一或其组合:
所述接收方的实时电量;
所述接收方的实时耗电量;
所述接收方的 D2D通信功能的开启状态。
26. 一种无线通信装置, 其特征在于, 包括:
请求发起单元, 用于发起向 D2D通信模式的切换请求;
数据交互单元, 用于接收消息帧, 所述消息帧用于使其所述无线通信 装置测量自身的 D2D 通信能力, 或使所述无线通信装置测量并判断自身 的 D2D通信能力;
操作执行单元, 用于执行所述测量操作或所述测量并判断操作, 以由 所述数据交互单元向所述消息帧的发送方返回测量结果和 /或判断结果。
27. 根据权利要求 26 所述的无线通信装置, 其特征在于, 所述消息 帧为物理层信令时:
若所述物理层信令为第一值, 则表示所述无线通信装置需要执行所述 测量操作, 或所述测量并判断操作;
或若所述物理层信令为特定数值, 则表示所述无线通信装置需要对以 所述特定数值为索引的预设频域资源和 /或时域资源, 执行所述测量操 作, 或所述测量并判断操作。
28. 根据权利要求 26 所述的无线通信装置, 其特征在于, 所述消息 帧为 RRC信令或应用层信令, 且所述 RRC信令或应用层信令包括:
操作类型信息, 若所述操作类型信息为第一值, 则表示所述无线通信 装置需要执行所述测量操作, 或所述测量并判断操作;
或资源索引信息, 若所述资源索引信息为特定数值, 则表示所述无线 通信装置需要对以所述特定数值为索引的预设频域资源和 /或时域资源, 执行所述测量操作, 或所述测量并判断操作;
或频域资源信息和 /或时域资源信息, 表示所述无线通信装置需要利 用相应的频域资源和 /或时域资源, 执行所述测量操作, 或所述测量并判 断操作。
29. 根据权利要求 26所述的无线通信装置, 其特征在于,
所述数据交互单元还用于: 接收来自所述消息帧的发送方的模式通信 消息帧, 所述模式通信消息帧中包含所述无线通信装置需要釆用的通信模 式, 以及用于通信过程的频域和 /或时域资源; 以及
所述无线通信装置还包括: 通信实现单元, 用于根据所述通信模式以 及所述频域和 /或时域资源, 实现相应的通信过程。
30. 根据权利要求 26所述的无线通信装置, 其特征在于,
所述数据交互单元还用于: 接收来自所述消息帧的发送方的预判决指 令;
其中, 所述数据交互单元根据所述预判决指令, 返回所述无线通信装 置维护的相邻终端数据库, 和 /或所述无线通信装置的状态信息。
31. 根据权利要求 30 所述的无线通信装置, 其特征在于, 所述状态 信息包括以下至少之一或其组合:
所述无线通信装置的实时电量;
所述无线通信装置的实时耗电量;
所述无线通信装置的 D2D通信功能的开启状态。
32. 一种终端, 其特征在于, 包括: 如权利要求 26至 31 中任一项所 述的无线通信装置。
PCT/CN2014/079193 2014-01-28 2014-06-04 无线通信方法、无线通信装置、基站和终端 WO2015113355A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410042548.2A CN103781017A (zh) 2014-01-28 2014-01-28 无线通信方法、无线通信装置、基站和终端
CN201410042548.2 2014-01-28

Publications (1)

Publication Number Publication Date
WO2015113355A1 true WO2015113355A1 (zh) 2015-08-06

Family

ID=50572754

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/079193 WO2015113355A1 (zh) 2014-01-28 2014-06-04 无线通信方法、无线通信装置、基站和终端

Country Status (2)

Country Link
CN (1) CN103781017A (zh)
WO (1) WO2015113355A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10764805B2 (en) 2015-11-09 2020-09-01 Huawei Technologies Co., Ltd. Signal strength measurement method and device

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103781017A (zh) * 2014-01-28 2014-05-07 宇龙计算机通信科技(深圳)有限公司 无线通信方法、无线通信装置、基站和终端
CN103747507B (zh) * 2014-01-28 2015-08-12 宇龙计算机通信科技(深圳)有限公司 通信模式的选择方法和选择装置、终端、基站
CN105282681A (zh) * 2014-07-21 2016-01-27 上海贝尔股份有限公司 在LTE系统中支持ProSe的方法和装置
JP6515410B2 (ja) * 2014-07-22 2019-05-22 シャープ株式会社 端末装置、基地局装置、通信システム、通信方法および集積回路
US9883426B2 (en) * 2014-07-31 2018-01-30 Microsoft Technology Licensing, Llc. Enhanced reporting for handover in device-to-device communication
CN105050204B (zh) * 2015-08-14 2019-06-11 宇龙计算机通信科技(深圳)有限公司 一种通信的方法、终端及基站
CN107333221B (zh) * 2016-04-28 2020-11-13 阿尔卡特朗讯 一种用于控制终端通信的方法与设备
WO2018082054A1 (zh) * 2016-11-04 2018-05-11 华为技术有限公司 通信方法及通信设备
CN109151886B (zh) 2017-06-16 2021-04-20 华为技术有限公司 一种用于上报的方法、设备和系统
WO2021134233A1 (zh) * 2019-12-30 2021-07-08 华为技术有限公司 通信方法、终端设备和网络设备
CN113271134B (zh) * 2020-02-17 2023-07-25 北京紫光展锐通信技术有限公司 Ue的中继通信方法及相关产品

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102792759A (zh) * 2010-03-11 2012-11-21 诺基亚公司 用于设备到设备通信建立的方法和装置
CN103037450A (zh) * 2011-09-29 2013-04-10 华为技术有限公司 通信模式切换的方法和装置
CN103179575A (zh) * 2011-12-23 2013-06-26 中兴通讯股份有限公司 一种邻近设备通信的方法和系统、网络侧设备和用户设备
CN103533500A (zh) * 2012-07-04 2014-01-22 中兴通讯股份有限公司 临近终端的通信方法及装置、系统
CN103781017A (zh) * 2014-01-28 2014-05-07 宇龙计算机通信科技(深圳)有限公司 无线通信方法、无线通信装置、基站和终端

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102792759A (zh) * 2010-03-11 2012-11-21 诺基亚公司 用于设备到设备通信建立的方法和装置
CN103037450A (zh) * 2011-09-29 2013-04-10 华为技术有限公司 通信模式切换的方法和装置
CN103179575A (zh) * 2011-12-23 2013-06-26 中兴通讯股份有限公司 一种邻近设备通信的方法和系统、网络侧设备和用户设备
CN103533500A (zh) * 2012-07-04 2014-01-22 中兴通讯股份有限公司 临近终端的通信方法及装置、系统
CN103781017A (zh) * 2014-01-28 2014-05-07 宇龙计算机通信科技(深圳)有限公司 无线通信方法、无线通信装置、基站和终端

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10764805B2 (en) 2015-11-09 2020-09-01 Huawei Technologies Co., Ltd. Signal strength measurement method and device

Also Published As

Publication number Publication date
CN103781017A (zh) 2014-05-07

Similar Documents

Publication Publication Date Title
WO2015113355A1 (zh) 无线通信方法、无线通信装置、基站和终端
WO2015113356A1 (zh) 通信模式的选择方法和选择装置、终端、基站
US10743229B2 (en) Communication control method
US11356905B2 (en) Handling of application layer measurements during handover in wireless communication networks
US10341918B2 (en) Method and apparatus for performing data transmission in a wireless communication system using multiple radio access technologies
KR102080182B1 (ko) 리피터 기능의 활성화를 요청하는 방법 및 사용자 장비
US10924915B2 (en) Exchange of mobility information in cellular radio communications
WO2017045259A1 (zh) 业务处理方法、业务处理装置和通信系统
WO2013102390A1 (zh) 小区间切换的方法及装置
TWM343979U (en) Dual mode wireless transmit-receive unit
WO2015018213A1 (zh) 信息交互、分流处理方法、装置、基站、rnc及终端
WO2015027707A1 (zh) 网络分流方法及装置
WO2014187379A1 (zh) 蜂窝和WiFi网络之间无缝切换的方法、网络设备及用户设备
WO2014177003A1 (zh) 测量配置处理方法及装置
WO2013189310A1 (zh) 认知无线电系统、基站及邻区关系的控制方法
WO2014071600A1 (zh) 设备到设备通信的切换方法、基站以及通信系统
US20090280813A1 (en) Handover Procedure Between Radio Access Networks
WO2014023254A1 (zh) 切换或承载分离的判决及测量上报方法和设备
CN114390634A (zh) 一种中继终端的选择方法、终端及存储介质
JP6371008B2 (ja) 通信方法、セルラ基地局及び無線lan終端ノード
WO2012155752A1 (zh) 家庭基站及其信息上报方法、接入控制方法及系统
JP6527527B2 (ja) 無線基地局及び無線端末
WO2012155681A1 (zh) 一种csg信息的传输方法和设备
WO2014186961A1 (zh) 用户设备接入网络的方法和接入设备
WO2017079457A1 (en) Method of identifying traffic to 3gpp ran handed over from wlan to 3gpp ran

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14881209

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 12/12/2016)

122 Ep: pct application non-entry in european phase

Ref document number: 14881209

Country of ref document: EP

Kind code of ref document: A1