WO2015113282A1 - 无线通信网络和设备 - Google Patents

无线通信网络和设备 Download PDF

Info

Publication number
WO2015113282A1
WO2015113282A1 PCT/CN2014/071811 CN2014071811W WO2015113282A1 WO 2015113282 A1 WO2015113282 A1 WO 2015113282A1 CN 2014071811 W CN2014071811 W CN 2014071811W WO 2015113282 A1 WO2015113282 A1 WO 2015113282A1
Authority
WO
WIPO (PCT)
Prior art keywords
wireless communication
function
communication network
base station
functions
Prior art date
Application number
PCT/CN2014/071811
Other languages
English (en)
French (fr)
Inventor
廖德甫
张伟
彭程晖
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201480056826.8A priority Critical patent/CN105659540B/zh
Priority to EP14880608.6A priority patent/EP3101846A4/en
Priority to PCT/CN2014/071811 priority patent/WO2015113282A1/zh
Publication of WO2015113282A1 publication Critical patent/WO2015113282A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/64Hybrid switching systems
    • H04L12/6418Hybrid transport
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/46Interconnection of networks
    • H04L12/4604LAN interconnection over a backbone network, e.g. Internet, Frame Relay
    • H04L12/462LAN interconnection over a bridge based backbone
    • H04L12/4625Single bridge functionality, e.g. connection of two networks over a single bridge
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/0803Configuration setting
    • H04L41/0806Configuration setting for initial configuration or provisioning, e.g. plug-and-play
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/0895Configuration of virtualised networks or elements, e.g. virtualised network function or OpenFlow elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/0894Policy-based network configuration management

Definitions

  • the embodiments of the present invention relate to the field of communications technologies, and in particular, to a wireless communication network and device. Background technique
  • CT Communication Technology
  • SDN Software Defined Network
  • NFV Network Function Virtualization
  • SDN Software Defined Network
  • NFV Network Function Virtualization
  • the main feature of SDN is to separate the control plane from the data plane, centralize the control planes of different network devices together and centrally control them by centralized control devices, and open the data of the network devices to the centralized control devices, and improve the overall through centralized control.
  • the purpose of resource utilization; NFV aims to use the standard virtualization technology to realize the separation of software and hardware, control plane and data plane in the communication network, so that the software in the network equipment can be installed, modified and uninstalled as needed, and turned into The equipment that the operator needs to realize the expansion of the business.
  • base stations which are an important part of wireless communication systems, have various forms, and how to implement support for multi-morphic base stations to form a complete wireless communication system has become an urgent problem to be solved for constructing SDN and NFV new wireless networks. Summary of the invention
  • the embodiments of the present invention provide a wireless communication network and device, which are used to solve the problem of how to implement support for a multi-modal base station when constructing a new SDN and NFV network.
  • an embodiment of the present invention provides a wireless communication network, including: centralized network control a controller SNC, at least one wireless node RN and at least one functional node network FNN;
  • the SNC is configured to perform centralized network control functions and wireless control functions of the wireless communication network
  • the at least one RN is configured to perform a function of a base station radio remote unit RRU of at least one base station;
  • the FNN in a system employing a network function virtualization NFV technology, is configured to perform part or all of the functions of the wireless protocol stack access layer of the at least one base station.
  • the RN is further configured to perform a part of functions of a radio protocol stack access layer of the at least one base station determined according to a preset rule;
  • the FNN is specifically configured to perform a remaining part of a wireless protocol stack access layer of the at least one base station determined according to the preset rule;
  • the preset rule is a rule for separating layers of the wireless protocol stack access layer.
  • the FNN or the SNC is further configured to perform radio resources of the radio protocol stack access layer. Control the RRC layer function.
  • the SNC is specifically configured to perform one or a combination of the following functions. : Wireless protocol stack non-access layer NAS and above layers of functions, flow control functions and resource group control functions.
  • the FNN is further configured to perform the following functions One or a combination: data stream processing, collaboration functions, and interface functions.
  • the FNN is specifically configured to perform one or a combination of the following functions: an interface function, an interface Features and unified features.
  • the FNN is further configured to acquire an interface of the at least one of the at least one RN.
  • the first, second, third, fourth, fifth or sixth possible implementation of the first aspect in a seventh possible implementation of the first aspect , also An at least one other RN is included for performing the function of the base station radio remote unit RRU of at least another base station and the function of the entire radio protocol stack access layer.
  • the base station is a base station in a cellular network, or an access point in a WLAN.
  • an embodiment of the present invention provides a centralized network controller SNC for performing the functions of the centralized network controller SNC according to any of the above.
  • an embodiment of the present invention provides a wireless node RN, configured to perform the function of a wireless node RN as described above.
  • an embodiment of the present invention provides a function node network FNN, which is configured to perform the function of the function node network FNN as described above.
  • a fifth aspect of the present invention provides a wireless communication network control device, including: a processor, a memory, and at least one communication port;
  • the communication port is configured to communicate with an external device
  • the memory is configured to store computer program instructions
  • the processor coupled to the memory, is configured to invoke computer program instructions stored in the memory to perform centralized network control functions and wireless control functions of a wireless communication network.
  • the processor is further configured to perform a radio resource control RRC layer function of the radio protocol stack access layer.
  • the processor is specifically configured to perform one or a combination of the following functions: a wireless protocol Stack non-access layer NAS and above layers of functions, flow control functions and resource group control skills ⁇
  • an embodiment of the present invention provides a wireless communication network processing device, which is implemented in a system that uses a network function to virtualize NFV technology, and includes: a processor, a memory, and at least one communication port;
  • the communication port is configured to communicate with an external device
  • the memory is configured to store computer program instructions
  • the processor coupled to the memory, for invoking computer program instructions stored in the memory to perform part or all of the work of the wireless protocol stack access layer of the at least one base station
  • the processor is specifically configured to perform a remaining part of a wireless protocol stack access layer of the at least one base station determined according to the preset rule
  • the preset rule is a rule for separating layers of the wireless protocol stack access layer.
  • the processor is further configured to perform wireless of the wireless protocol stack access layer The resource controls the RRC layer function.
  • the processor is further configured to perform one of the following functions or Combination: Data stream processing, collaboration and interface functions.
  • the processor is specifically configured to perform one or a combination of the following functions: Processing functions and unified functions.
  • the processor is further configured to acquire an interface of at least one base station of the at least one base station device.
  • the base station It is a base station in a cellular network, or an access point in a WLAN.
  • the wireless communication network includes an SNC that performs centralized network control and wireless control functions of the wireless communication network, an RN that performs RRU function of at least one base station, and performs a wireless protocol in the virtualized NFV.
  • the FNN of the function of the stack access layer based on the reasonable decomposition of the control functions and processing functions of the wireless communication network, completes the support of the virtualized wireless communication network for the functions of various forms of base stations, and realizes the resources for the wireless communication network. Pool centralized control and scheduling.
  • FIG. 1 is a schematic structural diagram of an embodiment of a wireless communication network according to an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of an embodiment of a wireless communication network control device according to an embodiment of the present invention
  • FIG. 3 is a schematic structural diagram of an embodiment of a wireless communication network processing device according to an embodiment of the present invention.
  • the technical solutions in the embodiments of the present invention are clearly and completely described in the following with reference to the accompanying drawings in the embodiments of the present invention.
  • the embodiments are a part of the embodiments of the invention, and not all of the embodiments. All other embodiments obtained by a person of ordinary skill in the art based on the embodiments of the present invention without creative efforts are within the scope of the present invention.
  • the wireless communication network provided by the embodiments of the present invention is a network that virtualizes various wireless communication networks, such as current 2G, 3G, 4G communication and next generation wireless communication networks, such as a global mobile communication network (GSM, Global System for Mobile). Communications ) , Code Division Multiple Access (CDMA) network, Time Division Multiple Access (TDMA) network, Wideband Code Division Multiple Access (WCDMA) network, frequency division FDMA (Frequency Division Multiple Addressing) network, Orthogonal Frequency-Division Multiple Access (OFDMA) network, single carrier FDMA (SC-FDMA) network, General Packet Radio Service (GPRS, General Packet Radio Service) Network, Long Term Evolution (LTE) network, and other such wireless communication networks, various wireless communication network devices provided by embodiments of the present invention are virtualized various networks in a virtualized wireless communication network. yuan.
  • the base station mentioned in the embodiment of the present invention is a base station in each of the foregoing wireless communication networks, for example, a base station including only a Radio Remote Unit (RRU) function, and is also referred to as an Access Point (AP).
  • RRU Radio Remote Unit
  • AP Access Point
  • PHY Physical Layer
  • NodeB or a base station including an RRU function and a radio protocol stack access layer function
  • the radio protocol stack access layer includes: an L1 layer, a data link layer, also called an L2 layer, and a network layer, also called an L3 layer, such as a conventional An LTE base station; or a separate base station that is divided into a resource end function and a control end function, where the resource side function includes an RRU, and the control end function includes a baseband unit (BBU) and a wireless protocol stack access layer.
  • BBU baseband unit
  • Each part of the function is deployed in the RRU and the BBU according to the network requirements, such as the CRAN base station; or a WIFI AP including the RRU, L1 layer, and L2 layer functions, such as a traditional WIFI AP, or a WIFI AP that is integrated and cooperated with the wireless communication protocol stack. , and so on, as well as other types of base stations that have emerged with the development of wireless communication networks.
  • FIG. 1 is a schematic structural diagram of an embodiment of a wireless communication network according to an embodiment of the present invention.
  • the wireless communication network 100 includes: a centralized network controller (SNC) 101, at least one radio node (Radio Node, RN for short) 102, and at least one function node network (Function Nodes Network, Referred to as FNN) 103.
  • SNC centralized network controller
  • Radio Node Radio Node
  • RN Radio Nodes Network
  • FNN Function Nodes Network
  • the SNC 101 is configured to perform centralized network control functions and wireless control functions of the wireless communication network; at least one RN 102 is configured to perform a function of a base station radio remote unit RRU of at least one base station; and the FNN 103 is operated by using a network function to virtualize NFV technology.
  • a function of performing part or all of a wireless protocol stack access layer of at least one base station is configured to perform centralized network control functions and wireless control functions of the wireless communication network; at least one RN 102 is configured to perform a function of a base station radio remote unit RRU of at least one base station; and the FNN 103 is operated by using a network function to virtualize NFV technology.
  • a function of performing part or all of a wireless protocol stack access layer of at least one base station In the system, a function of performing part or all of a wireless protocol stack access layer of at least one base station.
  • the SNC, the RN, and the FNN in this embodiment are virtualized network elements that perform the functions of the wireless communication network in the SDN and NFV networks. It should be noted that the SNC, the RN, and the FNN are named only for convenience of the description of the embodiments of the present invention. The name of the network element is not a restrictive definition of the implementation of this scheme.
  • the wireless communication network provided in this embodiment is applicable to an AP and a separate base station including only the RRU function.
  • the RN in the wireless communication network acts as an air interface node in the network, and one RN can be used to perform the function of the RRU of the at least one AP or the separate base station that performs separation in the RRU, and the function of the wireless protocol stack access layer, that is, the wireless protocol stack access All or part of the functions of the Radio Resource Control (RRC) layer of the L1 layer, the L2 layer and the L3 layer of the layer are performed by the FNN in the NFV network.
  • RRC Radio Resource Control
  • one RN may be configured to perform an AP function
  • another RN performs a function of a separate base station that only includes the RRU function
  • the function of the separate base station that only includes the RRU function is not limited in this embodiment.
  • the base station in each embodiment of the present invention is a base station in a cellular network, or an access point in a WLAN.
  • it is a NodeB in a traditional 3G network, or a traditional LTE base.
  • the station is either a cNB and a uNB in the WiSA architecture, or a separate base station that is separated at any location of the wireless protocol stack access layer, and the like.
  • the RN 102 is further configured to perform a part of functions of the radio protocol stack access layer of the at least one base station determined according to the preset rule; the FNN 103 is specifically configured to perform wireless implementation of the at least one base station determined according to the preset rule.
  • the remaining part of the access layer of the protocol stack; the preset rule is a rule for separating layers of the access layer of the wireless protocol stack.
  • the radio protocol stack access layer includes a Radio Resource Control (RRC) layer of the L1 layer, the L2 layer, and the L3 layer, and the radio protocol stack access layer is separately separated to form different separated base stations.
  • RRC Radio Resource Control
  • the L XY type base station represents a base station configured by differently separating layers of the radio protocol stack access layer.
  • the functional separation of the base station resources end comprising: a first layer of the RRU L x, the radio access protocol stack layer, the second layer L x layers and the following functions of L x + 1 layer tenths of Y, the separation
  • the control terminal function of the base station includes: a function of tenth (10-Y) in the L x+1 layer in the wireless protocol stack, and functions of other layers of the access layer of the wireless protocol stack, X is an integer, XE [ 0, 2] , Y is a real number, YE [0, 10 ).
  • the separated base station is an L 25 type base station
  • the resource end of the separated base station includes radio resources of the L1 layer, the L2 layer, and the L3 layer of the RRU and the radio protocol stack access layer.
  • the split base station is an L QQ type base station, and the resource end of the split base station includes an RRU.
  • the RN is configured to perform the L1 layer function of the RRU and the wireless protocol stack access layer, and the FNN performs the wireless protocol stack access layer.
  • the RRC layer function of the L2 layer and the L3 layer implements the support of the SDN and NFV networks for the L 1Q type base station, and constitutes a complete wireless communication system.
  • the L XY type base station defined in the embodiment of the present invention is only a base station name introduced for a unified description of all possible separated form base stations, and the L XY type base station includes all BBUs and RRUs. Functional, and at least 2 base stations of relatively independent nodes.
  • a WiSA-based base station that is separated at the L2 layer of the radio protocol stack access layer includes a cNB and a uNB, where the uNB includes an L1 layer and an L2 layer function of the RRU and the radio protocol stack access layer, and the cNB includes a radio protocol.
  • X and Y in this embodiment are only representative of the diversity of separation, and do not represent strict division according to the number, complexity, scale, etc. of sub-layers in the wireless communication protocol layer. The introduction of X and Y is only for current wireless communication.
  • the protocol defines a general description of the functionality of the base station, not a limiting definition.
  • the method for virtualizing the function of the wireless communication network provided by the embodiment of the present invention enables the different virtualized network elements to complete the control function of the wireless communication network and the processing of the base station by appropriately decomposing and inheriting the layers of the wireless protocol access stack.
  • the function completes the support of the virtualized wireless communication network for the function of each separated form base station, and realizes centralized control and scheduling of the resource pool of the wireless communication network.
  • WIFI AP For WIFI AP, there are currently two trends. One is the traditional WIFI AP, that is, there is no WIFI AP like the control plane and user plane of the wireless protocol stack. It is similar to the ordinary Internet network, but its WIFI AP coverage.
  • the L2 layer and the following parts are the L1 layer and the RRU; the other is a WIFI AP that considers the fusion and cooperation with the wireless communication protocol stack, and such a WIFI AP actually gives a certain control plane function on the L2 layer. It can interact with the wireless communication protocol stack and function to process certain functional processes, such as mobility processing, SIM card information or other wireless information authentication.
  • the above collaboration functions need to be deployed in the FNN.
  • WIFI AP can also exist as a separate form.
  • it can be in the L1 layer of the L2 layer or below.
  • the separation is performed, so that the existence form may be any one of L00 to L2y.
  • the resource end of the WIFI AP may include the RRU and the L1 layer; or, only the RRU; or the RRU function, and the function of the 1/2 L1 layer; or, including the functions of the RRU, the L1 layer, and the L2 layer, etc. Wait.
  • the FNN or SNC is further configured to perform a radio resource control RRC layer function of the radio protocol stack access layer.
  • the FNN is configured to perform the RRC layer function, or the SNC is used to implement centralized control on the wireless communication network.
  • the SNC is configured to perform the RRC layer function to implement centralized centralization of the network control, which is not limited in this embodiment.
  • the SNC is specifically configured to perform one or a combination of the following functions: a function of the wireless protocol stack non-access stratum NAS and layers, a flow control function, and a resource group control function ⁇
  • the flow control function refers to a decision-making and decision-transfer function of a convection processing rule, for example, a processing strategy of a data stream, a decision function of processing parameters, and a function of transmitting a decision result to a processing node;
  • a resource group control function refers to a processing node Combined assignment, activation, and deactivation functions, such as logical resources such as base stations, sectors, or cells, or Coordinated Multiple Point (CoMP), Beam Forming (BF), and multiple-input multiple-output Assignment, activation, and deactivation of functional node combinations required for functions such as Multiple Input Multiple Output (MIMO); functions of the wireless protocol stack non-access stratum NAS and above include user access authentication, mobility, and bearer management. And other functions.
  • CoMP Coordinated Multiple Point
  • BF Beam Forming
  • MIMO Multiple Input Multiple Output
  • the FNN 103 is further configured to perform one or a combination of the following functions: a data stream processing function, a collaboration function, and an interface function.
  • the FNN performs the corresponding data stream processing functions according to the processing parameters of the SNC decision, such as data stream detection, compression, encryption, and quality of service (QoS) guarantee.
  • the processing parameters of the SNC decision such as data stream detection, compression, encryption, and quality of service (QoS) guarantee.
  • serial processing is a general traditional data processing method, such as video compression, cross-layer optimization, etc., the data is compressed or optimized and then passed to the next processing node in sequence; when bypass processing, it needs to be in a certain node, Data is copied into multiple points, and rules or source routing path labels are required.
  • Video compression such as video compression, cross-layer optimization, etc.
  • bypass processing it needs to be in a certain node, Data is copied into multiple points, and rules or source routing path labels are required.
  • CoMP CoMP
  • network coding etc.
  • the processing of the data stream by the function node may have the same processing strategy or different processing strategies. For different processing strategies, SNCs need to be provisioned or delivered one by one. In the pre-configured mode, a processing policy indication is required in the packet header, and the function node indicates an index-to-data processing policy according to the processing policy. If the data stream has specific processing parameters, the SNC sends the processing parameters to the function node one by one in the process of data stream establishment. Processing strategy, including processing methods for data streams, such as compression mode and compression algorithm during video compression, and data processing priority; processing parameters, including specific parameters when using a certain processing mode.
  • the functional nodes in the FNN may be directly connected, or may be through an IP network. The data forwarding inside the IP network may use the SDN method, or may use the traditional Autonomous way.
  • Some functions between the functional nodes in the FNN or between the functional nodes of the FNN and other functional entities can be accomplished through certain cooperation, such as mobility processing, authentication based on SIM card information or other wireless information.
  • the FNN 103 is specifically used to perform one or a combination of the following functions: an interface adaptation function, a processing function, and a unified function.
  • the FNN needs to complete the interfaces of the SNC, the FNN, and the RN before assigning the control commands sent by the SNC to the corresponding function nodes or RNs.
  • Functions such as interface adaptation, processing, and unification.
  • the RN deploys the RRU and the wireless protocol stack access layer
  • the SNC deploys the NAS function
  • the ijFNN needs to deploy the interface with the RRU and the wireless protocol stack access layer, and the interface with the NAS layer.
  • the NAS layer data is decomposed and packaged into a format that can be recognized by the RN.
  • all functional nodes in the FNN can use the same protocol, and the interfaces between all functional nodes in the FNN need to be performed. Unified processing.
  • the FNN completes the interface adaptation, it can be uniformly adapted, and can be adapted separately on the user plane and the control plane.
  • the user plane completes the interface with various base stations of the RN, and completes the connection with the SNC on the control plane.
  • the FNN 103 is further configured to acquire an interface of the at least one of the at least one RN.
  • the adaptation, processing, and unified functions of the interface in the FNN include adaptation, processing, and unification of the multi-form RN interface.
  • the interface to be adapted by the I-FNN has an inter-layer interface, an intra-layer interface, other separate interfaces or a custom interface, and since these interfaces may coexist, the FNN also includes the function of acquiring the base station form for various RN deployments. .
  • the SDN and NFV networks may adopt the convergence support for the multi-form base station support mode, and may also separately support.
  • Convergence support refers to considering convergence at a certain layer, for example, at the NAS layer, using a protocol stack as a benchmark; or redesigning and constructing a new protocol based on various protocol stacks that need to be supported.
  • Layers, below the convergence protocol layer, the processing layers of each form of the base station are independent and inherited, and above the protocol layer, the processing functions and processes are the same or similar.
  • This type of support needs to consider the adaptation of the interface and the integration of functions; respectively, support refers to the processing on each layer, keeping it The independence of the protocol stack related processing, basically does not consider the layer's fusion adaptation and interface enhancement and unification.
  • This type of support requires consideration of all support for multiple protocol stack related interfaces.
  • the RN and the FNN there may be multiple interfaces for the RN and the FNN, and the number of each interface is variable.
  • the interface between FNN and SNC depends on the deployment location of RRC and related radio resource control layer. If it only needs to be deployed in FNN, the interface will be relatively simple, but if it is deployed in both FNN and SNC, then on the interface. Mixed support for both deployment-related layers needs to be supported at the same time.
  • the wireless communication network further includes at least another RN, configured to perform the function of the base station radio remote unit RRU of at least another base station and the function of all the wireless protocol stack access layers.
  • the traditional base station in this embodiment is a base station defined by a standard protocol, such as an LTE base station, and includes functions of an RRU and a radio protocol stack access layer. It should be noted that the functions of the LTE base station and the separated L 25 type separated base station are described. Similarly, in the SDN and NFV networks, the RN can be configured to perform the functions of the LTE base station, set the FNN to perform corresponding data stream processing functions and/or interface functions, and set the SNC to perform the functions of the wireless protocol stack non-access layer NAS and the above layers. , flow control functions and/or resource group control functions to support LTE base stations.
  • the wireless communication network includes a SNC that performs centralized network control and wireless control functions of the wireless communication network, an RN that performs RRU function of at least one base station, and performs a wireless protocol stack connection in the virtualized NFV.
  • the FNN of the inbound layer function based on the reasonable decomposition of the control functions and processing functions of the wireless communication network, completes the support of the virtualized wireless communication network for each form of base station function, and realizes the concentration of the resource pool of the wireless communication network. Control and scheduling.
  • FIG. 2 is a schematic structural diagram of an embodiment of a wireless communication network control device according to an embodiment of the present invention.
  • the network control device 200 includes: a processor 201, a memory 202, and at least one communication port 203.
  • the communication port 203 is configured to communicate with an external device; the memory 202 is configured to store computer program instructions; the processor 201 is coupled to the memory 202 for invoking computer program instructions stored in the memory 202 to perform centralized operation of the wireless communication network. Network control functions and wireless control functions.
  • the processor 201 is further configured to perform radio resource control RRC of the radio protocol stack access layer. Layer function.
  • the processor 201 is specifically configured to perform one or a combination of the following functions: a function of the wireless protocol stack non-access stratum NAS and layers, a flow control function, and a resource group control function.
  • the wireless communication network control device in this embodiment is a device for performing centralized network control and wireless control of a wireless communication network in an SDN and NFV network, and its function principle is similar to that of the SNC in the wireless communication network provided in FIG. , will not repeat them here.
  • the communication port, memory and processor mentioned in this embodiment are virtualized functional modules for implementing the same or similar functions as the physical function modules.
  • the communication port is used to implement communication between the wireless communication network control device and the wireless communication network processing device, and the processor is used for uniformly scheduling and controlling resources of the wireless communication network, so as to optimize utilization of network resources, and the memory is used for storing related information. instruction.
  • the wireless communication network control device provided by the embodiment of the present invention performs a reasonable decomposition of the control function and the processing function of the wireless communication network, and the wireless communication network control device centrally completes the network control and the wireless control function of the wireless communication network, and completes the virtual
  • the wireless communication network supports the functions of each form of base station, and realizes centralized control and scheduling of resource pools of the wireless communication network.
  • FIG. 3 is a schematic structural diagram of an embodiment of a wireless communication network processing device according to the present invention.
  • the wireless communication network processing device 300 which operates in a system employing network function virtualization NFV technology, includes a processor 301, a memory 302, and at least one communication port 303.
  • the communication port 303 is configured to communicate with an external device; the memory 302 is configured to store computer program instructions; the processor 301 is coupled to the memory 302 for invoking computer program instructions stored in the memory 302 to perform wireless protocol of at least one base station. Part or all of the functionality of the stack access layer.
  • the processor 301 is specifically configured to perform the remaining part of the wireless protocol stack access layer of the at least one base station determined according to the preset rule; the preset rule is a rule for separating layers of the wireless protocol stack access layer.
  • the processor 301 is further configured to perform a radio resource control RRC layer function of the radio protocol stack access layer.
  • the processor 301 is further configured to perform one or a combination of the following functions: a data stream processing function, a collaboration function, and an interface function. Specifically, the processor 301 is specifically configured to perform one or a combination of the following functions: an adaptation function, a processing function, and a unified function of the interface.
  • the processor is further configured to acquire an interface of at least one of the at least one base station device.
  • the base station is a base station in a cellular network, or
  • the specific function of the wireless communication network processing device provided by this embodiment is similar to the FNN function in the wireless communication network embodiment provided by the present invention.
  • the specific implementation of the wireless communication network processing device function may be a detailed description of the foregoing wireless communication network embodiment. , will not repeat them here.
  • the communication port, the memory and the processor mentioned in this embodiment are virtualized functional modules for implementing the same or similar functions as the physical function modules.
  • the communication port is configured to implement communication between the wireless communication network processing device and the wireless communication network control device and each form of the base station in the wireless communication network
  • the processor is configured to receive a control instruction of the wireless communication network control device, process the corresponding service
  • the base stations in the wireless communication network complete the functions of the access layer of the wireless protocol stack, and the like.
  • the wireless communication network processing device operates in a system that uses the network function to virtualize the NFV technology, and implements the NFV network pair by performing some or all functions of the wireless protocol stack access layer of the base station. Support for various forms of base stations.
  • a person skilled in the art can understand that all or part of the steps of implementing the above method embodiments may be implemented by hardware related to program instructions, and the foregoing program may be stored in a computer readable storage medium, when executed, The foregoing steps include the steps of the foregoing method embodiments; and the foregoing storage medium includes: a medium that can store program codes, such as a ROM, a RAM, a magnetic disk, or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供一种无线通信网络和设备,该包括集中网络控制器SNC,至少一个无线节点RN和至少一个功能节点网络FNN;所述SNC,用于执行无线通信网络的集中的网络控制功能和无线控制功能;所述至少一个RN,用于执行至少一个基站的基站射频拉远单元RRU的功能;所述FNN,运行在采用网络功能虚拟化NFV技术的系统中,用于执行所述至少一个基站的无线协议栈接入层的部分或者全部的功能。本发明提供的无线通信网络,在将无线通信网络的控制功能和处理功能进行合理分解的基础上,完成了虚拟化无线通信网络对各形态基站功能的支持,实现了对无线通信网络的资源池集中控制和调度。

Description

无线通信网络和设备
技术领域
本发明实施例涉及通信技术领域, 尤其涉及一种无线通信网络和设备。 背景技术
随着信息技术 (Information Technology, 简称 IT) 的发展, IT基于 X86、 Arm, Mips等通用中央处理机(Central Processing Unit, 简称 CPU) 的硬件平 台应用领域越来越广, 甚至扩展到通信技术 (Communication Technology , 简称 CT)领域。 在 CT领域使用通用平台, 对于通信厂家来说, 可以缩短开发 周期, 减低产品难度, 从而减低开发成本; 而对于使用通信设备的运营商来 说, 也可以减低产品采购价格, 减少维护成本。
为了实现在 CT领域使用通用平台, 目前, 通信行业提出一种新型网络 创新架构 软件定义网络 (Software Defined Network, 简称 SDN) 和网络功 能虚拟化 (Network Function Virtualization, 简称 NFV) 的技术。 SDN的 主要特征是将控制面与数据面进行分离, 将不同网络设备的控制面集中到一 起由集中控制设备进行集中控制, 并将网络设备的数据面向集中控制设备开 放,通过集中控制达到提升整体资源利用率的目的; NFV旨在利用标准的虚 拟化技术实现通讯网络中软件和硬件、 控制面和数据面的分离, 使得网络 设备中的软件可以按需安装、 修改、 卸载, 而变身为运营商需要的设备, 实现业务的扩展。
目前, 作为无线通信系统重要组成部分的基站存在多种多样的形态, 如 何实现对多形态基站的支持, 以便构成完整的无线通信系统, 成为构建 SDN 和 NFV新型无线网络亟待解决的问题。 发明内容
本发明实施例提供一种无线通信网络和设备,用于解决现有构建 SDN 和 NFV新型网络时, 如何实现对多形态基站的支持的问题。
第一方面, 本发明实施例提供一种无线通信网络, 包括: 集中网络控 制器 SNC, 至少一个无线节点 RN和至少一个功能节点网络 FNN;
所述 SNC, 用于执行无线通信网络的集中的网络控制功能和无线控制功 能;
所述至少一个 RN, 用于执行至少一个基站的基站射频拉远单元 RRU的 功能;
所述 FNN, 运行在采用网络功能虚拟化 NFV技术的系统中, 用于执行 所述至少一个基站的无线协议栈接入层的部分或者全部的功能。
在第一方面的第一种可能的实现形式中, 所述 RN, 还用于执行按照预 设规则确定的所述至少一个基站的无线协议栈接入层的部分功能;
所述 FNN, 具体用于执行按照所述预设规则确定的所述至少一个基站的 无线协议栈接入层的剩余部分功能;
所述预设规则为将无线协议栈接入层的各层进行分离的规则。
结合第一方面的第一种可能的实现形式, 在第一方面的第二种可能的 实现形式中, 所述 FNN或者所述 SNC, 还用于执行所述无线协议栈接入层 的无线资源控制 RRC层功能。
结合第一方面、 第一方面的第一种或第二种可能的实现方式, 在第一 方面的第三种可能的实现方式中, 所述 SNC, 具体用于执行下述功能之一 或者组合: 无线协议栈非接入层 NAS及以上各层的功能、流控制功能和资源 组控制功能。
结合第一方面、第一方面的第一种、第二种或第三种可能的实现方式, 在第一方面的第四种可能的实现方式中, 所述 FNN, 还用于执行下述功能 之一或者组合: 数据流处理功能、 协作功能和接口功能。
结合第一方面的第四种可能的实现方式, 在第一方面的第五种可能的 实现方式中, 所述 FNN, 具体用于执行下述功能之一或者组合: 接口的适配 功能、 处理功能和统一功能。
结合第一方面的第五种可能的实现方式, 在第一方面的第六种可能的 实现方式中, 所述 FNN, 还用于获取所述至少一个 RN中的所述至少一个基 站的接口。
结合第一方面、 第一方面的第一种、 第二种、 第三种、 第四种、 第五 种或第六种可能的实现方式, 在第一方面的第七种可能的实现方式中, 还 包括至少另外一个 RN, 用于执行至少另一个基站的基站射频拉远单元 RRU 的功能和全部无线协议栈接入层的功能。
结合第一方面、 第一方面的第一种、 第二种、 第三种、 第四种、 第五 种、 第六种或第七种可能的实现方式, 在第一方面的第八种可能的实现方 式中, 所述基站为蜂窝网络中的基站, 或者 WLAN中的接入点。 第二方面, 本发明实施例提供一种集中网络控制器 SNC, 用于执行如 上任一所述的集中网络控制器 SNC的功能。 第三方面, 本发明实施例提供一种无线节点 RN, 用于执行如上任一所 述的无线节点 RN的功能。 第四方面, 本发明实施例提供一种功能节点网络 FNN, 用于执行如上 任一所述的功能节点网络 FNN的功能。
第五方面, 本发明实施例提供一种无线通信网络控制设备, 包括: 处 理器、 存储器以及至少一个通信端口;
所述通信端口, 用于与外部设备进行通信;
所述存储器, 用于存储计算机程序指令;
所述处理器, 与所述存储器耦合, 用于调用所述存储器中存储的计算 机程序指令, 以执行无线通信网络的集中的网络控制功能和无线控制功能。
在第五方面的第一种可能实现形式中, 所述处理器, 还用于执行所述 无线协议栈接入层的无线资源控制 RRC层功能。
结合第五方面或第五方面的第一种可能的实现形式, 在第五方面的第 二种可能的实现形式中,所述处理器,具体用于执行下述功能之一或者组合: 无线协议栈非接入层 NAS 及以上各层的功能、 流控制功能和资源组控制功 會^
第六方面, 本发明实施例提供一种无线通信网络处理设备, 运行在采 用网络功能虚拟化 NFV 技术的系统中, 包括: 处理器、 存储器以及至少 一个通信端口;
所述通信端口, 用于与外部设备进行通信;
所述存储器, 用于存储计算机程序指令;
所述处理器, 与所述存储器耦合, 用于调用所述存储器中存储的计算 机程序指令, 以执行至少一个基站的无线协议栈接入层的部分或者全部的功 在第六方面的第一种可能的实现形式中, 所述处理器, 具体用于执行 按照所述预设规则确定的所述至少一个基站的无线协议栈接入层的剩余部分 功能;
所述预设规则为将无线协议栈接入层的各层进行分离的规则。
结合第六方面或第六方面的第一种可能的实现形式, 在第六方面的第 二种可能的实现形式中, 所述处理器, 还用于执行所述无线协议栈接入层的 无线资源控制 RRC层功能。
结合第六方面、 第六方面的第一种或第二种可能的实现形式, 在第六 方面的第三种可能的实现形式中, 所述处理器,还用于执行下述功能之一或 者组合: 数据流处理功能、 协作功能和接口功能。
结合第六方面的第三种可能的实现形式, 在第六方面的第四种可能的 实现形式中, 所述处理器, 具体用于执行下述功能之一或者组合: 接口的适 配功能、 处理功能和统一功能。
结合第六方面的第四种可能的实现形式, 在第六方面的第五种可能的 实现方式中, 所述处理器, 还用于获取至少一个基站设备中的至少一个基站 的接口。
结合第六方面、 第六方面的第一种、 第二种、 第三种、 第四种或第五种 可能的实现形式, 在第六方面的第六种可能的实现方式中, 所述基站为蜂窝 网络中的基站,或者 WLAN中的接入点。本发明实施例提供的无线通信网络和 设备, 无线通信网络包括执行无线通信网络的集中的网络控制和无线控制 功能的 SNC,执行至少一个基站的 RRU功能的 RN和在虚拟化 NFV中执行无 线协议栈接入层的功能的 FNN, 在将无线通信网络的控制功能和处理功能 进行合理分解的基础上, 完成了虚拟化无线通信网络对各形态基站功能的 支持, 实现了对无线通信网络的资源池集中控制和调度。 附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对 实施例或现有技术描述中所需要使用的附图作一简单地介绍, 显而易见 地, 下面描述中的附图是本发明的一些实施例, 对于本领域普通技术人员 来讲, 在不付出创造性劳动性的前提下, 还可以根据这些附图获得其他的 附图。
图 1为本发明实施例提供的无线通信网络实施例的结构示意图; 图 2为本发明实施例提供的无线通信网络控制设备实施例的结构示意 图;
图 3为本发明实施例提供的无线通信网络处理设备实施例的结构示意 图。 具体实施方式 为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合本 发明实施例中的附图, 对本发明实施例中的技术方案进行清楚、 完整地描 述, 显然,所描述的实施例是本发明一部分实施例, 而不是全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有作出创造性劳动前提 下所获得的所有其他实施例, 都属于本发明保护的范围。
本分发明实施例提供的无线通信网络为将各种无线通信网络虚拟化 后的网络, 例如当前 2G、 3G、 4G通信和下一代无线通信网络, 例如全球 移动通信网络 ( GSM, Global System for Mobile communications ) , 码分 多址 (CDMA, Code Division Multiple Access ) 网络, 时分多址 (TDMA, Time Division Multiple Access )网络, 宽带码分多址(WCDMA, Wideband Code Division Multiple Access Wireless )网络,频分多址( FDMA, Frequency Division Multiple Addressing ) 网络, 正交频分多址 (OFDMA, Orthogonal Frequency-Division Multiple Access ) 网络, 单载波 FDMA ( SC-FDMA ) 网络, 通用分组无线业务 (GPRS , General Packet Radio Service ) 网络, 长期演进 (LTE, Long Term Evolution) 网络, 以及其他此类无线通信网 络, 本发明实施例提供的各种无线通信网络设备为在虚拟化的无线通信网 络中的虚拟化的各种网元。
本发明实施例提到的基站, 是上述各无线通信网络中的基站, 如仅包 含射频拉远单元 (Radio Remote Unit, 简称 RRU ) 功能的基站, 又称接入 点 (Access Point, 简称 AP ) ; 或者, 包含 RRU功能和无线协议栈物理层 (Physical Layer, 简称 PHY)又称 L1层功能的基站, 例如传统 3G网络中的 NodeB; 或者, 包含 RRU功能和无线协议栈接入层功能的基站, 其中, 无 线协议栈接入层包括: L1层、 数据链路层又称 L2层及网络层又称 L3层, 如 传统的 LTE基站; 又或者, 分为资源端功能和控制端功能的分离基站, 其 中,资源端功能包括 RRU,控制端功能包括基带处理单元(Base Band Unit, 简称 BBU ) , 无线协议栈接入层的各部分功能根据网络需要分别部署在 RRU和 BBU中, 比如 CRAN基站; 或者, 包含 RRU、 L1层和 L2层功能的 WIFI AP , 比如传统 WIFI AP ,或与无线通信协议栈融合、协作的 WIFI AP , 等等, 以及随着无线通信网络的发展出现的其它各类基站。
图 1为本发明实施例提供的无线通信网络实施例的结构示意图。 如图 1 所示, 该无线通信网络 100 包括: 集中网络控制器 (Single Network Controller, 简称 SNC ) 101, 至少一个无线节点 (Radio Node, 简称 RN) 102和至少一个功能节点网络 (Function Nodes Network, 简称 FNN) 103。
其中, SNC101用于执行无线通信网络的集中的网络控制功能和无线控制 功能; 至少一个 RN102用于执行至少一个基站的基站射频拉远单元 RRU的功 能; FNN103运行在采用网络功能虚拟化 NFV技术的系统中, 用于执行至少一 个基站的无线协议栈接入层的部分或者全部的功能。
本实施例中的 SNC、 RN及 FNN, 为 SDN和 NFV网络中完成无线通信网 络功能的虚拟化网络单元, 需要说明的是, SNC、 RN和 FNN仅是为方便本 发明实施例的说明而命名的网络单元名称, 并非对本方案实施的限制性定 义。本实施例提供的无线通信网络,适用于仅包含 RRU功能的 AP和分离基 站。 无线通信网络中的 RN作为网络中的空口节点, 一个 RN可用于执行至 少一个 AP或在 RRU进行分离的分离基站的 RRU的功能,而无线协议栈接入 层的功能, 即无线协议栈接入层的 L1层、 L2层及 L3层的无线资源控制 ( Radio Resource Control, 简称 RRC ) 层的全部或部分功能由 NFV网络中 的 FNN执行。 为实现对该类型基站的支持, 则可设置一个 RN执行一个 AP 的功能, 另一个 RN执行一个仅包含 RRU功能的分离基站的功能, 或者设 置一个 RN在不同时刻分别执行一个 AP的功能和一个仅包含 RRU功能的分 离基站的功能, 本实施例对此不做限定。
其中, 本发明各实施例中的基站为为蜂窝网络中的基站, 或者 WLAN 中的接入点。 举例来说, 为传统 3G网络中的 NodeB, 或者为传统的 LTE基 站, 或者为 WiSA架构中的 cNB和 uNB, 或者为在无线协议栈接入层的任意 位置进行分离的分离基站等等。
在本发明的一个实施例中, RN102 还用于执行按照预设规则确定的至 少一个基站的无线协议栈接入层的部分功能; FNN103 具体用于执行按照预 设规则确定的至少一个基站的无线协议栈接入层的剩余部分功能; 预设规则 为将无线协议栈接入层的各层进行分离的规则。
具体的, 无线协议栈接入层包括 L1层、 L2层及 L3层的无线资源控 制 ( Radio Resource Control, 简称 RRC ) 层, 将无线协议栈接入层进行不 同的分离, 可构成不同的分离基站。
为方便说明, 本方案中以 LXY型基站表示将无线协议栈接入层的各层 进行不同分离构成的基站。 其中, 分离基站的资源端功能包括: RRU、 无 线协议栈接入层的第 Lx层、第 Lx层以下的各层和第 Lx+1层中的十分之 Y 的功能, 所述分离基站的控制端功能, 包括: 无线协议栈中的第 Lx+1层中 的十分之 (10-Y) 的功能, 及无线协议栈接入层的其它层的功能, X为整 数, X E [0, 2] , Y为实数, Y E [0, 10 ) 。
举例来说, 若 Χ=2, Υ=5, 即该分离基站为 L25型基站, 该分离基站的 资源端包括 RRU和无线协议栈接入层的 L1层、 L2层及 L3层的无线资源控 制 ( Radio Resource Control, 简称 RRC ) 层, 相应的, 该分离基站的控制 端包括无线协议栈接入层的 L3层的另 1/2层; 或者, 若 X=0, Y=0, 即该分 离基站为 LQQ型基站, 该分离基站的资源端包括 RRU, 相应的, 该分离基站 的控制端包括无线协议栈接入层的 L1层、 L2层及 L3层;或者,若 X=l, Y=0, 即该分离基站为 L1Q型基站,该分离基站的资源端包括 RRU和无线协议栈接 入层的 L1层, 相应的, 该分离基站的控制端包括无线协议栈接入层的 L2 层及 L3层等等。
以 L1Q型基站为例, 通过设置 SNC101执行无线通信网络的集中的网络 控制功能和无线控制功能, 设置 RN执行 RRU和无线协议栈接入层的 L1 层功能, FNN执行无线协议栈接入层的 L2层、 L3层的 RRC层功能, 实 现了 SDN和 NFV网络对 L1Q型基站的支持,构成了完整的无线通信系统。
需要说明的是, 本发明实施例中定义的 LXY型基站, 仅是为对所有可能分 离形态基站的统一描述而引入的基站称呼, LXY型基站为包含全部 BBU和 RRU 功能, 且至少 2个相对独立节点的基站。举例来说, 在无线协议栈接入层的 L2 层进行分离的 WiSA架构基站, 包括 cNB和 uNB, 其中, uNB包含 RRU和无线 协议栈接入层的 L1层和 L2层功能, cNB包含无线协议栈接入层的 L3层的 RRC 功能; 或者可以在无线协议栈接入层的任一层间进行分离的 CRAN基站等。 本实施例中的 X、 Y仅是代表分离的多样化, 并不是代表严格的按照无线通信 协议层内子层数量、 复杂度、 规模等方式的划分, X、 Y的引入仅是针对当前 无线通信协议定义基站功能的概括性说明, 而非限制性定义。 本发明实施例 提供的无线通信网络功能虚拟化方法, 通过将无线协议接入栈的各层进行 适当的分解和继承, 使不同的虚拟化网元分别完成无线通信网络的控制功 能和基站的处理功能, 完成了虚拟化无线通信网络对各分离形态基站功能 的支持, 实现了对无线通信网络的资源池集中控制和调度。
对于 WIFI AP来说, 当前有两种趋势, 一种是传统的 WIFI AP, 即没有 类似无线协议栈的控制面和用户面的 WIFI AP, 它类似于普通的英特网络, 只是其 WIFI AP覆盖 L2层以及以下的部分即 L1层和 RRU; 另一种是考虑 与无线通信协议栈的融合和协作的 WIFI AP, 这类的 WIFI AP实际上在 L2 层之上赋予了一定的控制面功能,可与无线通信协议栈进行交互和功能协作, 处理一定的功能流程, 例如移动性处理、 基于 SIM卡信息或者其他无线信息 的鉴权等处理, 上述协作功能需要部署在 FNN中。
同样的,在 WIFI AP的发展趋势上,类似于无线协议栈的分离基站, WIFI AP也可以作为分离形态存在, 其基于 TCP/IP的协议模型中, 可以在 L2层或者 以下的各层 L1层间进行分离, 所以其存在形态可以为 L00〜L2y之间的任一一 种。 相应的, WIFI AP的资源端可包括 RRU和 L1层; 或者, 仅包括 RRU; 或 者包括 RRU功能, 及 1/2的 L1层的功能; 或者, 包括 RRU, L1层及 L2层的功 能, 等等。
在本发明的另一实施例中, FNN或者 SNC, 还用于执行无线协议栈接 入层的无线资源控制 RRC层功能。
具体的,若基站为 AP或者资源端不包含无线协议栈接入层的 RRC层 功能的分离型基站, 则设置 FNN执行 RRC层功能, 或者由于 SNC用于 对无线通信网络实现集中控制, 也可设置 SNC执行 RRC层功能, 以实现 网络控制的进一歩集中化, 本实施例对此不做限定。 本发明的再一实施例中, SNC, 具体用于执行下述功能之一或者组合: 无线协议栈非接入层 NAS 及以上各层的功能、 流控制功能和资源组控制功 會^
具体的, 流控制功能指对流处理规则的决策和决策传送功能, 比如, 数据流的处理策略、 处理参数的决策功能, 及将决策结果传送给处理节点 的功能; 资源组控制功能指对处理节点组合的指派、 激活及去激活功能, 比如对基站、 扇区或小区等逻辑资源或者是完成协作多点传输 ( Coordinated Multiple Point, 简称 CoMP) 、 波束成形 ( BeamForming, 简称 BF ) 和多输入多输出 (Multiple Input Multiple Output, 简称 MIMO) 等功能所需的功能节点组合的指派、 激活及去激活; 无线协议栈非接入层 NAS及以上各层的功能包括用户接入鉴权、 移动、 承载管理等功能。
在本发明的再一实施例中, FNN103还用于执行下述功能之一或者组合: 数据流处理功能、 协作功能和接口功能。
在 SDN和 NFV网络中, FNN根据 SNC决策的处理参数完成对应的数据 流处理功能,比如,数据流的检测、压缩、加密、服务质量 (Quality of Service, 简称 QoS)保证等功能。
对于数据流的处理, 功能节点有串行处理和旁路处理等不同的处理方 式。 串行处理是一般传统的数据处理方式, 比如视频压缩, 跨层优化等, 数据经过压缩或者优化的模块再顺序的传递到下一个处理节点上; 旁路处 理时, 需要在某一个节点, 将数据复制成多分, 需要规则或者源路由路径 标签有指示。 比如 CoMP, 网络编码等。
在功能节点对数据流的处理上, 可以是有相同的处理策略, 也可以有 不同的处理策略。对于不同的处理策略,需要 SNC预配下来或者逐条下发。 预配方式的话, 需要在数据包头带有处理策略指示, 功能节点根据该处理 策略指示索引到数据处理的策略。 如果数据流都有特定的处理参数, 则由 SNC在数据流建立的过程中将处理参数逐条下发到功能节点上。 处理策 略, 包括对于数据流的处理方法, 比如视频压缩时的压缩方式、 压缩算法 等, 还包括数据处理优先级; 处理参数, 包括在使用某一个处理方式时的 具体参数。 FNN中的各功能节点之间可能是直接连接, 也可能是经过一个 IP网络, IP网络内部的数据转发可以使用 SDN的方式, 也可以使用传统的 自治方式。
FNN中的各功能节点之间或者 FNN的各功能节点与其它功能实体之 间可通过一定的协作完成某种功能, 比如移动性处理、 基于 SIM卡信息或 者其它无线信息的鉴权处理等。
进一歩地, FNN103具体用于执行下述功能之一或者组合: 接口的适配 功能、 处理功能和统一功能。
另外, 无线通信网络的控制功能和处理功能的底层协议并不相同, 对 应的接口也不同, FNN在将 SNC发送的控制指令分配给对应的功能节点或 者 RN前需要完成 SNC、 FNN及 RN的接口功能, 比如, 接口的适配、 处理 和统一等。举例来说, RN部署 RRU和无线协议栈接入层的功能, SNC部署 NAS的功能, 贝 ijFNN中需要部署与 RRU和无线协议栈接入层的接口的适 配, 及与 NAS层接口的适配, 将 NAS层的数据解协、 打包转化成 RN能识别 的格式, 另外, 为方便数据交互处理, 在 FNN中所有功能节点可使用相同 的协议, 则 FNN中所有功能节点间的接口需要进行统一处理。 FNN完成接 口适配时, 可以是统一进行适配, 也可以在用户面和控制面分别进行适配 的, 用户面完成与 RN的各种基站的接口, 在控制面完成与 SNC的对接。
在本发明实施例的一种可能的实现方式中, FNN103还用于获取所述至 少一个 RN中的所述至少一个基站的接口。
举例来说, 若 RN分别部署了不同形态的传统基站或者分离基站, 则 FNN中接口的适配、 处理和统一功能还包括对多形态 RN接口的适配、 处 理和统一, 由于 RN多形态的并存, 贝 I」FNN需适配的接口有层间接口、 层 内接口、其它分离接口或自定义接口,且由于这些接口可能并存,使得 FNN 还包括对各种 RN部署的基站形态获取的功能。
需要说明的是, 由于基站存在多种形态, SDN和 NFV网络对多形态基 站支持方式可以采用融合支持, 也可以采用分别支持。 融合支持是指在某 个层考虑融合, 例如在 NAS层的融合, 以某一种制式的协议栈作为基准; 或者在各种需要支持的协议栈的基础上, 重新设计和构建一个新的协议 层, 在该融合协议层以下, 各个形态的基站的处理层是独立和继承的, 而 在该协议层以上, 处理功能和流程是相同或者相似的。 该支持类型需要考 虑接口的适配和功能的融合; 分别支持是指, 在各个层上的处理, 保持其 协议栈相关处理的独立性, 基本不考虑层的融合适配和接口的增强统一。 该支持类型需要考虑多个协议栈相关接口的全部支持。
无论采用何种支持方式, 由于基站存在多种形态, RN和 FNN的接口 可能会有多种, 且每种接口的数量不定。 而 FNN和 SNC的接口则取决于 RRC以及相关无线资源控制层的部署位置, 如果只需要将其部署在 FNN, 那么接口相对会比较单一, 但如果其在 FNN和 SNC均有部署, 那么接口上 需要同时支持对这两种部署相关层的混合支持。
本实施例的又一种可能的实现形式中, 无线通信网络还包括至少另外一 个 RN, 用于执行至少另一个基站的基站射频拉远单元 RRU的功能和全部无 线协议栈接入层的功能。
本实施例中的传统基站为在标准协议定义下的基站, 如 LTE基站, 包 括 RRU和无线协议栈接入层的功能, 需要说明的是, LTE基站与分离形态 的 L25型分离基站的功能相同, SDN和 NFV网络中, 可设置 RN执行 LTE基 站的功能, 设置 FNN执行相应的数据流处理功能和 /或接口功能, 并设置 SNC执行无线协议栈非接入层 NAS及以上各层的功能、流控制功能和 /或资 源组控制功能, 以实现对 LTE基站的支持。
本发明实施例提供的无线通信网络, 无线通信网络包括执行无线通信 网络的集中的网络控制和无线控制功能的 SNC, 执行至少一个基站的 RRU 功能的 RN和在虚拟化 NFV中执行无线协议栈接入层的功能的 FNN,在将无 线通信网络的控制功能和处理功能进行合理分解的基础上, 完成了虚拟化 无线通信网络对各形态基站功能的支持, 实现了对无线通信网络的资源池 集中控制和调度。
图 2 为本发明实施例提供的无线通信网络控制设备实施例结构示意 图。 如图 2所示, 该网络控制设备 200包括: 处理器 201、 存储器 202以 及至少一个通信端口 203。
其中, 通信端口 203用于与外部设备进行通信; 存储器 202用于存储 计算机程序指令; 处理器 201与存储器 202耦合, 用于调用存储器 202中 存储的计算机程序指令,以执行无线通信网络的集中的网络控制功能和无线 控制功能。
具体地,处理器 201还用于执行无线协议栈接入层的无线资源控制 RRC 层功能。
其中, 处理器 201具体用于执行下述功能之一或者组合: 无线协议栈非 接入层 NAS及以上各层的功能、 流控制功能和资源组控制功能。
本实施例中的无线通信网络控制设备, 由为 SDN和 NFV网络中完成无 线通信网络的集中网络控制和无线控制的设备, 其功能原理与图 1提供的 无线通信网络中的 SNC的功能相类似, 此处不再赘述。
本实施例中提到的通信端口、 存储器及处理器为虚拟化的功能模块, 用 于实现与实体功能模块相同或相似的功能。 比如, 通信端口用于实现无线通 信网络控制设备与无线通信网络处理设备的通信, 处理器用于对无线通信网 络的资源进行统一的调度和控制, 使网络资源的利用更优化, 存储器用于存 储相关指令。
本发明实施例提供的无线通信网络控制设备, 通过将无线通信网络的 控制功能和处理功能进行合理的分解, 有无线通信网络控制设备集中完成 无线通信网络的网络控制和无线控制功能, 完成了虚拟化的无线通信网络 对各形态基站功能的支持, 实现了对无线通信网络的资源池集中控制和调 度。
图 3为本发明提供的无线通信网络处理设备实施例结构示意图。 如图 3所示, 该无线通信网络处理设备 300, 运行在采用网络功能虚拟化 NFV 技术的系统中, 包括处理器 301、 存储器 302以及至少一个通信端口 303。
其中, 通信端口 303用于与外部设备进行通信; 存储器 302用于存储 计算机程序指令; 处理器 301与存储器 302耦合, 用于调用存储器 302中 存储的计算机程序指令,以执行至少一个基站的无线协议栈接入层的部分或 者全部的功能。
具体的, 处理器 301具体用于执行按照预设规则确定的至少一个基站的 无线协议栈接入层的剩余部分功能; 预设规则为将无线协议栈接入层的各 层进行分离的规则。
本实施例的一种实现方式中, 处理器 301, 还用于执行无线协议栈接入 层的无线资源控制 RRC层功能。
本实施例的再一种实现方式中, 处理器 301还用于执行下述功能之一或 者组合: 数据流处理功能、 协作功能和接口功能。 具体的, 处理器 301具体用于执行下述功能之一或者组合: 接口的适配 功能、 处理功能和统一功能。
本实施例的另一种实现方式中,所述处理器,还用于获取至少一个基站 设备中的至少一个基站的接口。
其中, 在本实施例的各实现方式中, 基站为蜂窝网络中的基站, 或者
WLAN中的接入点。
本实施例提供的无线通信网络处理设备的具体功能与本发明提供的无线 通信网络实施例中的 FNN功能相似,有关无线通信网络处理设备功能的具体 实现可参数上述无线通信网络实施例的详细说明, 此处不再赘述。
本实施例中提到的通信端口、 存储器及处理器为虚拟化的功能模块, 用于实现与实体功能模块相同或相似的功能。 比如, 通信端口用于实现无 线通信网络处理设备与无线通信网络控制设备及无线通信网络中各形态 基站间的通信, 处理器用于接收无线通信网络控制设备的控制指令, 处理 相应的业务, 及与无线通信网络中的基站一起完成无线协议栈接入层的功 能等。
本实施例提供的无线通信网络处理设备,无线通信网络处理设备在采用网 络功能虚拟化 NFV技术的系统中运行, 通过执行基站的无线协议栈接入层 的部分或全部功能, 实现了 NFV 网络对各种形态基站的支持。 本领域普通 技术人员可以理解: 实现上述方法实施例的全部或部分歩骤可以通过程序 指令相关的硬件来完成, 前述的程序可以存储于一计算机可读取存储介质 中, 该程序在执行时, 执行包括上述方法实施例的歩骤; 而前述的存储介 质包括: ROM、 RAM, 磁碟或者光盘等各种可以存储程序代码的介质。
最后应说明的是: 以上各实施例仅用以说明本发明的技术方案, 而非 对其限制; 尽管参照前述各实施例对本发明进行了详细的说明, 本领域的 普通技术人员应当理解: 其依然可以对前述各实施例所记载的技术方案进 行修改, 或者对其中部分或者全部技术特征进行等同替换; 而这些修改或 者替换, 并不使相应技术方案的本质脱离本发明各实施例技术方案的范 围。

Claims

权 利 要 求 书
1、 一种无线通信网络, 其特征在于, 包括集中网络控制器 SNC, 至少一 个无线节点 RN和至少一个功能节点网络 FNN;
所述 SNC, 用于执行无线通信网络的集中的网络控制功能和无线控制功 能;
所述至少一个 RN, 用于执行至少一个基站的基站射频拉远单元 RRU的 功能;
所述 FNN, 运行在采用网络功能虚拟化 NFV技术的系统中, 用于执行 所述至少一个基站的无线协议栈接入层的部分或者全部的功能。
2、 根据权利要求 1所述的无线通信网络, 其特征在于,
所述 RN,还用于执行按照预设规则确定的所述至少一个基站的无线协议 栈接入层的部分功能;
所述 FNN, 具体用于执行按照所述预设规则确定的所述至少一个基站的 无线协议栈接入层的剩余部分功能;
所述预设规则为将无线协议栈接入层的各层进行分离的规则。
3、 根据权利要求 2所述的无线通信网络, 其特征在于,
所述 FNN或者所述 SNC,还用于执行所述无线协议栈接入层的无线资源 控制 RRC层功能。
4、根据权利要求 1〜3任一所述的无线通信网络,其特征在于,所述 SNC, 具体用于执行下述功能之一或者组合:无线协议栈非接入层 NAS及以上各层 的功能、 流控制功能和资源组控制功能。
5、 根据权利要求 1〜4任一所述的无线通信网络, 其特征在于,
所述 FNN, 还用于执行下述功能之一或者组合: 数据流处理功能、 协作 功能和接口功能。
6、 根据权利要求 5所述的无线通信网络, 其特征在于, 所述 FNN, 具 体用于执行下述功能之一或者组合: 接口的适配功能、 处理功能和统一功能。
7、 根据权利要求 6所述的无线通信网络, 其特征在于, 所述 FNN, 还 用于获取所述至少一个 RN中的所述至少一个基站的接口。
8、 根据权利要求 1一 7任一所述的无线通信网络, 其特征在于, 还包括 至少另外一个 RN, 用于执行至少另一个基站的基站射频拉远单元 RRU的功 能和全部无线协议栈接入层的功能。
9、 根据权利要求 1一 8任一所述的无线通信网络, 其特征在于, 所述基站为蜂窝网络中的基站, 或者 WLAN中的接入点。
10、 一种集中网络控制器 SNC, 其特征在于, 用于执行如权利要求 1〜9 任一所述的集中网络控制器 SNC的功能。
11、 一种无线节点 RN, 其特征在于, 用于执行如权利要求 1〜9任一所 述的无线节点 RN的功能。
12、 一种功能节点网络 FNN, 其特征在于, 用于执行如权利要求 1〜9 任一所述的功能节点网络 FNN的功能。
13、 一种无线通信网络控制设备, 其特征在于, 包括: 处理器、 存储器 以及至少一个通信端口; 所述通信端口, 用于与外部设备进行通信;
所述存储器, 用于存储计算机程序指令;
所述处理器, 与所述存储器耦合, 用于调用所述存储器中存储的计算 机程序指令, 以执行无线通信网络的集中的网络控制功能和无线控制功能。
14, 根据权利要求 13所述的无线通信网络控制设备, 其特征在于, 所述 处理器, 还用于执行所述无线协议栈接入层的无线资源控制 RRC层功能。
15、 根据权利要求 13或 14任一所述的无线通信网络控制设备, 其特征 在于, 所述处理器, 具体用于执行下述功能之一或者组合: 无线协议栈非接 入层 NAS及以上各层的功能、 流控制功能和资源组控制功能。
16、 一种无线通信网络处理设备, 其特征在于, 运行在采用网络功能虚 拟化 NFV技术的系统中, 包括: 处理器、 存储器以及至少一个通信端口; 所述通信端口, 用于与外部设备进行通信;
所述存储器, 用于存储计算机程序指令;
所述处理器, 与所述存储器耦合, 用于调用所述存储器中存储的计算 机程序指令, 以执行至少一个基站的无线协议栈接入层的部分或者全部的功 會^
17、 根据权利要求 16所述的无线通信网络处理设备, 其特征在于, 所述 处理器, 具体用于执行按照所述预设规则确定的所述至少一个基站的无线协 议栈接入层的剩余部分功能; 所述预设规则为将无线协议栈接入层的各层进行分离的规则。
18、根据权利要求 16或 17所述的无线通信网络处理设备, 其特征在于, 所述处理器, 还用于执行所述无线协议栈接入层的无线资源控制 RRC层功 能。
19、根据权利要求 16〜18任一所述的无线通信网络处理设备, 其特征在 于, 所述处理器, 还用于执行下述功能之一或者组合: 数据流处理功能、 协 作功能和接口功能。
20、 根据权利要求 19所述的无线通信网络处理设备, 其特征在于, 所述 处理器, 具体用于执行下述功能之一或者组合: 接口的适配功能、 处理功能 和统一功能。
21、 根据权利要求 20所述的无线通信网络处理设备, 其特征在于, 所述 处理器, 还用于获取至少一个基站设备中的至少一个基站的接口。
22、根据权利要求 16〜21任一所述的无线通信网络处理设备, 其特征在 于, 所述基站为蜂窝网络中的基站, 或者 WLAN中的接入点。
PCT/CN2014/071811 2014-01-29 2014-01-29 无线通信网络和设备 WO2015113282A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201480056826.8A CN105659540B (zh) 2014-01-29 2014-01-29 无线通信网络和设备
EP14880608.6A EP3101846A4 (en) 2014-01-29 2014-01-29 WIRELESS COMMUNICATION NETWORK AND DEVICE
PCT/CN2014/071811 WO2015113282A1 (zh) 2014-01-29 2014-01-29 无线通信网络和设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/071811 WO2015113282A1 (zh) 2014-01-29 2014-01-29 无线通信网络和设备

Publications (1)

Publication Number Publication Date
WO2015113282A1 true WO2015113282A1 (zh) 2015-08-06

Family

ID=53756174

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/071811 WO2015113282A1 (zh) 2014-01-29 2014-01-29 无线通信网络和设备

Country Status (3)

Country Link
EP (1) EP3101846A4 (zh)
CN (1) CN105659540B (zh)
WO (1) WO2015113282A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108207008A (zh) * 2016-12-19 2018-06-26 中兴通讯股份有限公司 一种虚拟化网元的管理方法和装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102216062B1 (ko) * 2014-12-16 2021-02-17 한국전자통신연구원 기지국의 데이터 처리 방법 및 그 장치
CN108449214B (zh) * 2018-03-21 2020-09-25 大连理工大学 一种基于Click的虚拟网元在线编排方法
US11233691B2 (en) 2020-04-06 2022-01-25 Cisco Technology, Inc. Third generation partnership project (3GPP) plug and play (PnP) operation in a hybrid open radio access network (O-RAN) environment

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101193397A (zh) * 2006-11-28 2008-06-04 中兴通讯股份有限公司 一种基于射频拉远的管理维护方法
US20110099563A1 (en) * 2009-10-26 2011-04-28 Electronics And Telecommunications Research Institute Network apparatus and method for supporting network virtualization
CN102612832A (zh) * 2009-12-09 2012-07-25 翔跃通信公司 利用协调天线阵列增强基站性能的系统和方法
CN103457770A (zh) * 2013-08-30 2013-12-18 华为技术有限公司 网络事务控制方法及执行方法及网络控制器及转发设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102316055A (zh) * 2011-09-06 2012-01-11 中兴通讯股份有限公司 一种基带单元、bbu、rru及基站
EP2592784B1 (en) * 2011-11-14 2013-09-18 Alcatel Lucent Apparatus, method and computer program for routing data packets
WO2013125900A1 (ko) * 2012-02-23 2013-08-29 엘지전자 주식회사 C-ran 시스템에서 핸드오버를 수행하는 방법 및 이를 위한 장치
US9288689B2 (en) * 2012-04-18 2016-03-15 International Business Machines Corporation Configuration of wireless network cloud system based on density estimation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101193397A (zh) * 2006-11-28 2008-06-04 中兴通讯股份有限公司 一种基于射频拉远的管理维护方法
US20110099563A1 (en) * 2009-10-26 2011-04-28 Electronics And Telecommunications Research Institute Network apparatus and method for supporting network virtualization
CN102612832A (zh) * 2009-12-09 2012-07-25 翔跃通信公司 利用协调天线阵列增强基站性能的系统和方法
CN103457770A (zh) * 2013-08-30 2013-12-18 华为技术有限公司 网络事务控制方法及执行方法及网络控制器及转发设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3101846A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108207008A (zh) * 2016-12-19 2018-06-26 中兴通讯股份有限公司 一种虚拟化网元的管理方法和装置

Also Published As

Publication number Publication date
EP3101846A4 (en) 2016-12-21
EP3101846A1 (en) 2016-12-07
CN105659540B (zh) 2020-06-16
CN105659540A (zh) 2016-06-08

Similar Documents

Publication Publication Date Title
Sun et al. Integrating network function virtualization with SDR and SDN for 4G/5G networks
EP3437358B1 (en) Service delivery to an user equipment (ue) using a software-defined networking (sdn) controller
WO2016058536A1 (en) System and method for generic service nfv orchestration and management for converged services
CN109076383A (zh) 用于由终端配置双连接的方法及其装置
US10645009B2 (en) Method and apparatus for programmable buffers in mobile networks
CN110622549A (zh) 协议数据单元会话分割功能和信令发送
WO2012103779A1 (zh) 一种无线承载的建立方法、接入点设备、用户设备及系统
RU2646347C2 (ru) Архитектура управления и контроля на основе 3gpp для транспортных решений для малых сот
EP2835937A1 (en) Method, ue and access network device for implementing data transmission of convergence network
WO2017222595A2 (en) Device and method for nfv life cycle management
WO2018031057A1 (en) Device and method for managing virtualized ran
EP3107342A1 (en) Relay node (rn), donor enodeb (denb) and communication method
WO2015113282A1 (zh) 无线通信网络和设备
JP5660435B2 (ja) コグニティブ仮想化ネットワークシステム
WO2017078779A1 (en) Split of control plane and user plane for 5g radio access networks
US11196618B1 (en) Wireless communication network fault recovery using integrated access and backhaul
TW201742505A (zh) 用於使用配置管理功能的網路功能虛擬化生命週期管理的裝置及方法
EP2699051B1 (en) Method and system for the distribution of the control and data plane in Wireless Local Area Network Access Points
CN113348652B (zh) 标记上行链路数据分组
Khaturia et al. 5G-flow: Flexible and efficient 5G RAN architecture using OpenFlow
Nakauchi et al. Virtual cognitive base station: Enhancing software-based virtual router architecture with cognitive radio
Ahmad Data collection for Machine Learning in 5G Mobile Networks
Dang et al. Realization of handover management in SDNized 3GPP architecture with protocol independent forwarding
US10932176B1 (en) Wireless access node fault recovery using integrated access and backhaul
US20240056888A1 (en) Quality of Service Management for Protocol Data Unit Sets

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14880608

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014880608

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014880608

Country of ref document: EP