WO2015111755A1 - Method for manufacturing conductive nanofiber - Google Patents

Method for manufacturing conductive nanofiber Download PDF

Info

Publication number
WO2015111755A1
WO2015111755A1 PCT/JP2015/052192 JP2015052192W WO2015111755A1 WO 2015111755 A1 WO2015111755 A1 WO 2015111755A1 JP 2015052192 W JP2015052192 W JP 2015052192W WO 2015111755 A1 WO2015111755 A1 WO 2015111755A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
hyperbranched polymer
plating
fine particles
nanofiber
Prior art date
Application number
PCT/JP2015/052192
Other languages
French (fr)
Japanese (ja)
Inventor
島田 直樹
幸治 中根
信男 小形
小島 圭介
Original Assignee
国立大学法人 福井大学
日産化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 福井大学, 日産化学工業株式会社 filed Critical 国立大学法人 福井大学
Priority to JP2015559164A priority Critical patent/JP6571008B2/en
Publication of WO2015111755A1 publication Critical patent/WO2015111755A1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/83Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with metals; with metal-generating compounds, e.g. metal carbonyls; Reduction of metal compounds on textiles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1635Composition of the substrate
    • C23C18/1639Substrates other than metallic, e.g. inorganic or organic or non-conductive
    • C23C18/1641Organic substrates, e.g. resin, plastic
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1646Characteristics of the product obtained
    • C23C18/165Multilayered product
    • C23C18/1651Two or more layers only obtained by electroless plating
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0015Electro-spinning characterised by the initial state of the material
    • D01D5/003Electro-spinning characterised by the initial state of the material the material being a polymer solution or dispersion
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/72Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
    • D04H1/728Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged by electro-spinning
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/32Coating with nickel, cobalt or mixtures thereof with phosphorus or boron
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/38Coating with copper
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/38Coating with copper
    • C23C18/40Coating with copper using reducing agents
    • C23C18/405Formaldehyde
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/52Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating using reducing agents for coating with metallic material not provided for in a single one of groups C23C18/32 - C23C18/50
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/02Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F6/08Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds from polymers of halogenated hydrocarbons
    • D01F6/12Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds from polymers of halogenated hydrocarbons from polymers of fluorinated hydrocarbons
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/16Synthetic fibres, other than mineral fibres
    • D06M2101/18Synthetic fibres consisting of macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M2101/22Polymers or copolymers of halogenated mono-olefins

Definitions

  • the present invention relates to a method for producing conductive nanofibers by using a resin composition in which a hyperbranched polymer and metal fine particles are blended in a thermoplastic resin as a spinning material, and subjecting the resin composition to electrostatic spinning and electroless plating.
  • conductive fibers can be cited as materials that satisfy these properties.
  • an electroless plating process on the surface of the fiber material is known.
  • electroless plating usually requires a pre-plating process including etching, conditioning, catalyzing, acceleration, and other processes, so that the manufacturing process is complicated and expensive.
  • a chemical etching process since a chemical such as chromic acid or an alkali metal hydroxide solution is used, a waste liquid process is required.
  • Non-patent Document 1 a method of imparting conductivity by irradiating the nanofibers with ions (Patent Document 1), and spinning by the electrospinning method.
  • Nylon 6 nanofibers are electrolessly plated (Non-patent Document 1)
  • a conductive polymer polypyrrole is used to produce nanofibers by electrospinning (Non-patent Document 2)
  • palladium chloride is used.
  • Patent Document 2 An example (Patent Document 2) in which electroless nickel plating is performed on nanofibers mixed with a resin and manufactured by an electrospinning method is disclosed.
  • the nanofiber surface is treated with iodine to form metal iodide composite organic nanofibers, and further, the metal iodide is reduced to a metal body, followed by electroless plating treatment. Examples are also disclosed (Patent Document 3).
  • the surface resistance of the conductive nanofiber obtained by the technique of Patent Document 1 is large, and the electrical conductivity is insufficient for use as a conductive material.
  • etching of the nanofiber surface is performed by low-temperature oxygen plasma treatment, and this plasma treatment apparatus is very expensive, and the plasma treatment performed under vacuum is a batch type, Not suitable for industrial mass production.
  • the conductivity of the conductive polymer disclosed in Non-Patent Document 2 is lower than that of metal, and the electrical conductivity is still insufficient as a conductive material.
  • the method of Patent Document 2 cannot be plated depending on the type of plating solution or the type of metal to be plated.
  • the process before plating is complicated.
  • the electroless plating method using a complex as a catalyst is an activation treatment such as a reduction treatment. And the operation is complicated, and there is a problem that plating cannot be performed depending on the type of plating metal and the type of plating solution. That is, there has been a demand for a method for producing conductive nanofibers that can use various kinds of plating metal species and plating solutions for conductive nanofibers having sufficient conductivity without complicated operations.
  • the present inventors have obtained a result obtained by mixing a hyperbranched polymer having an ammonium group at the molecular terminal and a metal fine particle with a thermoplastic resin as a matrix polymer and electrostatic spinning.
  • electroless plating By applying electroless plating to the nanofibers, it is possible to obtain nanofibers with sufficient electrical conductivity as a conductive material, and electroless plating can be performed without restricting the type of plating metal or plating solution As a result, the present invention was completed.
  • the present invention provides the first aspect as follows: A resin composition comprising (a) a thermoplastic resin, (b) a hyperbranched polymer having an ammonium group at the molecular end and a weight average molecular weight of 1,000 to 5,000,000, and (c) metal fine particles.
  • the present invention relates to a method for producing conductive nanofibers, which includes a spinning step of producing nanofibers according to an electrospinning method as a spinning material, and a plating step of performing electroless plating treatment of the nanofibers produced in the step.
  • the present invention relates to the production method according to the first aspect, in which the ammonium group of the (b) hyperbranched polymer is attached to the metal fine particles (c) to form a complex.
  • the said (b) hyperbranched polymer is related with the manufacturing method as described in a 1st viewpoint or a 2nd viewpoint which is a hyperbranched polymer represented by Formula [1].
  • each R 1 independently represents a hydrogen atom or a methyl group
  • R 2 to R 4 each independently represent a hydrogen atom, a linear, branched or cyclic alkyl group having 1 to 20 carbon atoms.
  • the alkyl group and arylalkyl group may be substituted with an alkoxy group, a hydroxy group, an ammonium group, a carboxyl group, or a cyano group), or two groups of R 2 to R 4 may be bonded together.
  • a number of by unit structure represents an integer of 5 to 100,000
  • a 1 represents a structure represented by the formula [2].)
  • a 2 represents a linear, branched or cyclic alkylene group having 1 to 30 carbon atoms which may contain an ether bond or an ester bond
  • Y 1 to Y 4 are each independently hydrogen.
  • And represents an atom, an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, a nitro group, a hydroxy group, an amino group, a carboxyl group, or a cyano group.
  • the said (b) hyperbranched polymer is related with the manufacturing method as described in a 3rd viewpoint which is a hyperbranched polymer represented by Formula [3].
  • R 1 , R 2 to R 4 and n represent the same meaning as described above.
  • the metal fine particles (c) include iron (Fe), cobalt (Co), nickel (Ni), copper (Cu), palladium (Pd), silver (Ag), tin (Sn), platinum ( The manufacturing method according to any one of the first aspect to the fourth aspect, wherein the fine particles are at least one metal selected from the group consisting of Pt) and gold (Au).
  • the present invention relates to the manufacturing method according to the fifth aspect, wherein the metal fine particles (c) are palladium fine particles.
  • the present invention relates to the production method according to any one of the first to sixth aspects, wherein the (c) metal fine particles are fine particles having an average particle diameter of 1 to 100 nm.
  • the present invention relates to the production method according to any one of the first aspect to the seventh aspect, wherein the (a) thermoplastic resin is polyvinylidene fluoride.
  • the present invention relates to the production method according to any one of the first aspect to the eighth aspect, wherein the nanofiber has an average diameter of 50 to 2,000 nm.
  • the present invention relates to the manufacturing method according to the tenth aspect, in which the plating step is an electroless copper plating treatment and the second plating step is an electroless tin plating treatment.
  • the spinning step relates to the production method according to any one of the first aspect to the eleventh aspect, which is a process of producing a nanofiber aggregate as a nanofiber.
  • the present invention relates to the conductive nanofiber assembly according to the fourteenth aspect, which has a volume resistance value of 1 ⁇ 10 4 ⁇ ⁇ cm or less.
  • the resulting nanofibers are immersed in an electroless plating bath.
  • Conductive nanofibers excellent in electrical conductivity can be easily obtained. For this reason, it is not bothered by the necessity of the complicated pre-processing process required for the conventional electroless-plating process, the complexity of a manufacturing process, and cost increase.
  • the manufacturing method of this invention can be electroless-plated with various plating metal seed
  • a conductive nanofiber having a very low volume resistance value of 1 ⁇ 10 4 ⁇ ⁇ cm or less and satisfying electrical conductivity as a conductive material and an aggregate thereof are provided. be able to.
  • the conductive nanofiber aggregate of the present invention has a very low volume resistance as described above, it can be suitably used for high capacity battery electrodes, sensor electrodes, antistatic sheets, electromagnetic wave shields and the like.
  • FIG. 1 is a diagram showing a 1 H NMR spectrum of a hyperbranched polymer (HPS-Cl) having a chlorine atom at the molecular end obtained in Production Example 1.
  • FIG. 2 is a diagram showing a 13 C NMR spectrum of a hyperbranched polymer (HPS-N (Me) 2 OctCl) having a dimethyloctylammonium group at the molecular end obtained in Production Example 2.
  • FIG. 3 is a diagram showing a 13 C NMR spectrum of a hyperbranched polymer (HPS-NOct 3 Cl) having a trioctylammonium group at the molecular end obtained in Production Example 4.
  • FIG. 4 is a diagram showing an SEM image of the nanofiber mat obtained in Example 1.
  • 5 is a view showing an SEM image of the nanofiber mat obtained in Example 7.
  • FIG. 1 is a diagram showing a 1 H NMR spectrum of a hyperbranched polymer (HPS-Cl) having a chlorine atom at the mo
  • the method for producing conductive nanofibers of the present invention includes a spinning step of producing nanofibers according to an electrospinning method using a resin composition described later as a spinning material, and a plating step of performing electroless plating treatment of the nanofibers produced in the above steps. It is characterized by including.
  • Conductive nanofibers produced by the production method of the present invention are also objects of the present invention.
  • the resin composition used in the method for producing conductive nanofibers of the present invention comprises (a) a thermoplastic resin, (b) an ammonium group at the molecular end, and a weight average molecular weight of 1,000 to 5,000,000. A hyperbranched polymer, and (c) metal fine particles.
  • thermoplastic resin used in the present invention is not particularly limited.
  • PE polyethylene
  • PP polypropylene
  • EVA ethylene-vinyl acetate copolymer
  • EVOH ethylene-vinyl alcohol copolymer
  • PVA polyvinyl
  • the hyperbranched polymer used in the resin composition used in the present invention is a polymer having an ammonium group at the molecular end and a weight average molecular weight of 1,000 to 5,000,000.
  • the hyperbranched polymer represented by [1] is mentioned.
  • R 1 represents a hydrogen atom or a methyl group independently.
  • R 2 to R 4 are each independently a hydrogen atom, a linear, branched or cyclic alkyl group having 1 to 20 carbon atoms, an arylalkyl group having 7 to 20 carbon atoms, or — ( CH 2 CH 2 O) m R 5 (wherein R 5 represents a hydrogen atom or a methyl group, and m represents an arbitrary integer of 2 to 100).
  • the alkyl group and arylalkyl group may be substituted with an alkoxy group, a hydroxy group, an ammonium group, a carboxyl group, or a cyano group.
  • R 2 to R 4 together represent a linear, branched or cyclic alkylene group, or R 2 to R 4 together with the nitrogen atom to which they are attached.
  • X ⁇ represents an anion
  • n represents the number of repeating unit structures, and represents an integer of 5 to 100,000.
  • Examples of the linear alkyl group having 1 to 20 carbon atoms in R 2 to R 4 include methyl group, ethyl group, n-propyl group, n-butyl group, n-pentyl group, n-hexyl group, n -Heptyl, n-octyl, n-nonyl, n-decyl, n-undecyl, n-dodecyl, n-tridecyl, n-tetradecyl, n-pentadecyl, n-hexadecyl, n -Heptadecyl group, n-octadecyl group, n-nonadecyl group, n-eicosyl group and the like.
  • the hyperbranched polymer in the resin composition used as the spinning material is less likely to elute into the electroless plating solution and has 8 or more carbon atoms.
  • Group is preferable, and n-octyl group is particularly preferable.
  • the branched alkyl group include isopropyl group, isobutyl group, sec-butyl group, tert-butyl group and the like.
  • the cyclic alkyl group include a cyclopentyl ring and a group having a cyclohexyl ring structure.
  • Examples of the arylalkyl group having 7 to 20 carbon atoms in R 2 to R 4 include a benzyl group and a phenethyl group. Further, examples of the linear alkylene group in which two of R 2 to R 4 are combined include a methylene group, an ethylene group, an n-propylene group, an n-butylene group, and an n-hexylene group. It is done. Examples of the branched alkylene group include an isopropylene group, an isobutylene group, and a 2-methylpropylene group.
  • Examples of the cyclic alkylene group include alicyclic aliphatic groups having a monocyclic, polycyclic or bridged cyclic structure having 3 to 30 carbon atoms. Specific examples include groups having a monocyclo, bicyclo, tricyclo, tetracyclo, or pentacyclo structure having 4 or more carbon atoms. These alkylene groups may contain a nitrogen atom, a sulfur atom or an oxygen atom in the group.
  • the ring formed by R 2 to R 4 together with the nitrogen atom bonded to them in the structure represented by the formula [1] may contain a nitrogen atom, a sulfur atom or an oxygen atom in the ring.
  • R 2 to R 4 examples include [methyl group, methyl group, methyl group], [methyl group, methyl group, ethyl group], [methyl group, methyl group, n-butyl group], [methyl group] Group, methyl group, n-hexyl group], [methyl group, methyl group, n-octyl group], [methyl group, methyl group, n-decyl group], [methyl group, methyl group, n-dodecyl group], [Methyl group, methyl group, n-tetradecyl group], [methyl group, methyl group, n-hexadecyl group], [methyl group, methyl group, n-octadecyl group], [ethyl group, ethyl group, ethyl group],
  • a 1 represents a structure represented by the following formula [2].
  • a 2 represents a linear, branched or cyclic alkylene group having 1 to 30 carbon atoms which may contain an ether bond or an ester bond.
  • Y 1 to Y 4 each independently represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, a nitro group, a hydroxy group, an amino group, a carboxyl group, or a cyano group.
  • alkylene group of A 2 examples include linear alkylene groups such as methylene group, ethylene group, n-propylene group, n-butylene group and n-hexylene group, isopropylene group, isobutylene group, 2-methyl group.
  • examples include branched alkylene groups such as propylene groups.
  • the cyclic alkylene group include alicyclic aliphatic groups having a monocyclic, polycyclic and bridged cyclic structure having 3 to 30 carbon atoms. Specific examples include groups having a monocyclo, bicyclo, tricyclo, tetracyclo, or pentacyclo structure having 4 or more carbon atoms.
  • structural examples (a) to (s) of the alicyclic portion of the alicyclic aliphatic group are shown below.
  • Examples of the alkyl group having 1 to 20 carbon atoms of Y 1 to Y 4 in the above formula [2] include a methyl group, an ethyl group, an isopropyl group, a cyclohexyl group, and an n-pentyl group.
  • Examples of the alkoxy group having 1 to 20 carbon atoms include methoxy group, ethoxy group, isopropoxy group, cyclohexyloxy group, n-pentyloxy group and the like.
  • Y 1 to Y 4 are preferably a hydrogen atom or an alkyl group having 1 to 20 carbon atoms.
  • the A 1 is a structure represented by the following formula [4].
  • the hyperbranched polymer used in the present invention includes a hyperbranched polymer represented by the following formula [3].
  • R 1, R 2 to R 4 and n are as defined above.
  • the hyperbranched polymer having an ammonium group at the molecular end used in the present invention can be obtained, for example, by reacting an amine compound with a hyperbranched polymer having a halogen atom at the molecular end.
  • a hyperbranched polymer having a halogen atom at the molecular end can be produced from a hyperbranched polymer having a dithiocarbamate group at the molecular end in accordance with the description in WO 2008/029688.
  • As the hyperbranched polymer having a dithiocarbamate group at the molecular end a commercially available product can be used, and Hypertech (registered trademark) HPS-200 manufactured by Nissan Chemical Industries, Ltd. can be preferably used.
  • the amine compounds that can be used in this reaction are, as primary amines, methylamine, ethylamine, n-propylamine, isopropylamine, n-butylamine, isobutylamine, sec-butylamine, tert-butylamine, n-pentylamine, n -Hexylamine, n-heptylamine, n-octylamine, n-nonylamine, n-decylamine, n-undecylamine, n-dodecylamine, n-tridecylamine, n-tetradecylamine, n-pentadecylamine , N-hexadecylamine, n-heptadecylamine, n-octadecylamine, n-nonadecylamine, n-eicosylamine and other aliphatic amines;
  • Secondary amines include dimethylamine, diethylamine, di-n-propylamine, diisopropylamine, di-n-butylamine, diisobutylamine, di-sec-butylamine, di-n-pentylamine, ethylmethylamine, methyl- n-propylamine, methyl-n-butylamine, methyl-n-pentylamine, methyl-n-octylamine, methyl-n-decylamine, methyl-n-dodecylamine, methyl-n-tetradecylamine, methyl-n- Hexadecylamine, methyl-n-octadecylamine, ethylisopropylamine, ethyl-n-butylamine, ethyl-n-pentylamine, ethyl-n-octylamine, di-n-hexylamine, di-n-
  • Tertiary amines include trimethylamine, triethylamine, tri-n-propylamine, tri-n-butylamine, tri-n-pentylamine, tri-n-hexylamine, tri-n-octylamine, tri-n-dodecyl.
  • Amine dimethylethylamine, dimethyl-n-butylamine, dimethyl-n-hexylamine, dimethyl-n-octylamine, dimethyl-n-decylamine, diethyl-n-decylamine, dimethyl-n-dodecylamine, dimethyl-n-tetradecyl Aliphatic amines such as amine, dimethyl-n-hexadecylamine, dimethyl-n-octadecylamine, dimethyl-n-eicosylamine; pyridine, pyrazine, pyrimidine, quinoline, 1-methylimidazole, 4,4′-bipyridyl, 4-methyl-4,4 - Nitrogen-containing heterocyclic compounds such as bipyridyl and the like.
  • the amount of the amine compound that can be used in these reactions is 0.1 to 20 molar equivalents, preferably 0.5 to 10 molar equivalents, based on 1 mol of the halogen atom of the hyperbranched polymer having a halogen atom at the molecular end. Preferably, it is 1 to 5 molar equivalents.
  • the reaction between the hyperbranched polymer having a halogen atom at the molecular end and the amine compound can be carried out in water or an organic solvent in the presence or absence of a base.
  • the solvent to be used is preferably a solvent capable of dissolving a hyperbranched polymer having a halogen atom at the molecular end and an amine compound.
  • a hyperbranched polymer having a halogen atom at the molecular end and an amine compound can be dissolved, but a solvent that does not dissolve the hyperbranched polymer having an ammonium group at the molecular end is more preferable because it can be easily isolated.
  • Solvents that can be used in this reaction are not particularly limited as long as they do not significantly inhibit the progress of this reaction.
  • the amides can be used. These solvents may be used alone or in combination of two or more.
  • the amount used is 0.2 to 1,000 times, preferably 1 to 500 times, more preferably 5 to 100 times, most preferably the mass of the hyperbranched polymer having a halogen atom at the molecular end. It is preferable to use a solvent having a mass of 5 to 50 times.
  • Suitable bases generally include alkali metal hydroxides and alkaline earth metal hydroxides (eg sodium hydroxide, potassium hydroxide, calcium hydroxide), alkali metal oxides and alkaline earth metal oxides (eg lithium oxide). Calcium oxide), alkali metal hydrides and alkaline earth metal hydrides (eg sodium hydride, potassium hydride, calcium hydride), alkali metal amides (eg sodium amide), alkali metal carbonates and alkaline earth metal carbonates Inorganic compounds such as salts (eg lithium carbonate, sodium carbonate, potassium carbonate, calcium carbonate), alkali metal bicarbonates (eg sodium bicarbonate), and alkali metal alkyls, alkylmagnesium halides, alkali metal alkoxides, alkaline earth metals Alkoki De, organometallic compounds such as dimethoxy magnesium was used.
  • alkali metal hydroxides and alkaline earth metal hydroxides eg sodium hydroxide, potassium hydroxide,
  • potassium carbonate and sodium carbonate are particularly preferred.
  • the amount used is 0.2 to 10 molar equivalents, preferably 0.5 to 10 molar equivalents, most preferably 1 to 5 molar equivalents per mole of halogen atoms of the hyperbranched polymer having a halogen atom at the molecular end. It is preferable to use the base.
  • reaction conditions are appropriately selected from a reaction time of 0.01 to 100 hours and a reaction temperature of 0 to 300 ° C.
  • the reaction time is 0.1 to 72 hours, and the reaction temperature is 20 to 150 ° C.
  • a hyperbranched polymer represented by the formula [1] can be obtained regardless of the presence / absence of a base.
  • a hyperbranched polymer having a halogen atom at the molecular end is reacted with a primary amine or secondary amine compound in the absence of a base, the terminal secondary amine and tertiary tertiary of the corresponding hyperbranched polymer are respectively reacted.
  • a hyperbranched polymer having ammonium groups terminated with protonated primary amines is obtained.
  • the terminal secondary amine of the corresponding hyperbranched polymer can be obtained by mixing with an aqueous solution of an acid such as hydrogen chloride, hydrogen bromide, or hydrogen iodide in an organic solvent. And a hyperbranched polymer having an ammonium group terminated with a tertiary amine protonated.
  • the hyperbranched polymer has a weight average molecular weight Mw measured in terms of polystyrene by gel permeation chromatography of 1,000 to 5,000,000, preferably 1,000 to 500,000, more preferably 2 3,000 to 200,000, most preferably 3,000 to 100,000. Further, the dispersity Mw (weight average molecular weight) / Mn (number average molecular weight) is 1.0 to 7.0, preferably 1.1 to 6.0, and more preferably 1.2 to 5. 0.
  • the metal fine particles used in the resin composition used in the present invention are not particularly limited, and the metal species are iron (Fe), cobalt (Co), nickel (Ni), copper (Cu), palladium (Pd), silver. (Ag), tin (Sn), platinum (Pt), and gold (Au) may be mentioned, and one kind of these metals or two or more kinds of alloys may be used. Among these, preferable metal fine particles include palladium fine particles.
  • the metal oxide may be used as the metal fine particles.
  • the metal fine particles can be obtained by reducing metal ions by, for example, a method of irradiating an aqueous solution of a metal salt with a high-pressure mercury lamp or a method of adding a compound having a reducing action (so-called reducing agent) to the aqueous solution.
  • a compound having a reducing action for example, an aqueous solution of a metal salt is added to a solution in which the hyperbranched polymer is dissolved and irradiated with ultraviolet light, or an aqueous solution of a metal salt and a reducing agent are added to the solution to reduce metal ions.
  • a resin composition containing the hyperbranched polymer and the metal fine particles and other components described later can be prepared while forming a composite of the hyperbranched polymer and the metal fine particles.
  • the reducing agent is not particularly limited, and various reducing agents can be used, and it is preferable to select the reducing agent according to the metal species to be contained in the resin composition (that is, nanofiber) obtained later.
  • the reducing agent that can be used include metal borohydrides such as sodium borohydride and potassium borohydride; lithium aluminum hydride, potassium aluminum hydride, cesium aluminum hydride, aluminum beryllium hydride, hydrogenation
  • Aluminum hydride salts such as aluminum magnesium and calcium aluminum hydride; hydrazine compounds; citric acid and salts thereof; succinic acid and salts thereof; ascorbic acid and salts thereof; primary or secondary such as methanol, ethanol, isopropanol and polyol Tertiary alcohols; tertiary amines such as trimethylamine, triethylamine, diisopropylethylamine, diethylmethylamine, tetramethylethylenediamine [TMEDA], ethylenediaminet
  • the average particle size of the metal fine particles is preferably 1 to 100 nm. The reason is that when the average particle diameter of the metal fine particles exceeds 100 nm, the surface area decreases and the catalytic activity decreases.
  • the average particle size is more preferably 75 nm or less, and particularly preferably 1 to 30 nm.
  • the amount of (b) hyperbranched polymer added to (c) metal fine particles is preferably 50 to 2,000 parts by mass with respect to 100 parts by mass of (c) metal fine particles.
  • the amount is less than 50 parts by mass, the dispersibility of the metal fine particles is insufficient, and when the amount exceeds 2,000 parts by mass, the organic matter content increases, and problems such as physical properties tend to occur. More preferably, it is 100 to 1,000 parts by mass.
  • the hyperbranched polymer and the metal fine particles form a composite.
  • the composite is a particle that is in contact with or close to the metal fine particles due to the action of the ammonium group at the end of the hyperbranched polymer to form a particulate form. It is expressed as a composite having a structure in which the ammonium group of the polymer is attached or coordinated to the metal fine particles. Therefore, in the “composite” in the present invention, not only the metal fine particles and the hyperbranched polymer are combined to form one composite as described above, but also the metal fine particles and the hyperbranched polymer have bonding portions. Those that are present independently without being formed may also be included.
  • the hyperbranched polymer and metal fine particle composite may be formed in advance by combining the hyperbranched polymer and metal fine particles, or may be performed simultaneously with the preparation of the resin composition used in the production method of the present invention. .
  • the ligand is exchanged with a hyperbranched polymer, or by directly reducing metal ions in a hyperbranched polymer solution. There are methods of forming a complex.
  • the metal fine particles stabilized to some extent by the lower ammonium ligand used as a raw material can be synthesized by the method described in Journal of Organometallic Chemistry 1996, 520, 143-162 and the like.
  • a hyperbranched polymer is dissolved in the resulting reaction mixture solution of metal fine particles, and the target metal fine particle composite can be obtained by room temperature (approximately 25 ° C.) or heating and stirring.
  • the solvent to be used is not particularly limited as long as it is a solvent capable of dissolving the metal fine particles and the hyperbranched polymer at a required concentration or higher.
  • alcohols such as ethanol, n-propanol, and isopropanol; methylene chloride, Halogenated hydrocarbons such as chloroform; cyclic ethers such as tetrahydrofuran (THF), 2-methyltetrahydrofuran, tetrahydropyran; nitriles such as acetonitrile and butyronitrile; and mixtures of these solvents, preferably tetrahydrofuran.
  • the temperature at which the metal fine particle reaction mixture and the hyperbranched polymer are mixed is usually in the range of 0 ° C. to the boiling point of the solvent, preferably in the range of room temperature (approximately 25 ° C.) to 60 ° C.
  • the metal fine particles can be stabilized to some extent in advance by using a phosphine dispersant (phosphine ligand) in addition to the amine dispersant (lower ammonium ligand).
  • a metal ion and a hyperbranched polymer are dissolved in a solvent and reduced with a primary or secondary alcohol such as methanol, ethanol, isopropanol, polyol, etc.
  • a primary or secondary alcohol such as methanol, ethanol, isopropanol, polyol, etc.
  • a primary or secondary alcohol such as methanol, ethanol, isopropanol, polyol, etc.
  • the metal ion source used here the above-mentioned metal salts can be used.
  • the solvent to be used is not particularly limited as long as it can dissolve the metal ion and the hyperbranched polymer at a required concentration or more.
  • alcohols such as methanol, ethanol, n-propanol, and isopropanol; methylene chloride Halogenated hydrocarbons such as chloroform; cyclic ethers such as tetrahydrofuran (THF), 2-methyltetrahydrofuran, tetrahydropyran; nitriles such as acetonitrile and butyronitrile; N, N-dimethylformamide (DMF), N-methyl- Amides such as 2-pyrrolidone (NMP); Sulfoxides such as dimethyl sulfoxide and the like, and mixtures of these solvents are preferable, and alcohols, halogenated hydrocarbons, and cyclic ethers are preferable, and more preferable.
  • methylene chloride Halogenated hydrocarbons such as chloroform
  • cyclic ethers such as tetrahydrofuran (THF), 2-methyltetrahydrofuran, tetrahydropyran
  • the Etano Le, isopropanol, chloroform, and the like and tetrahydrofuran can usually be in the range of 0 ° C. to the boiling point of the solvent, preferably in the range of room temperature (approximately 25 ° C.) to 60 ° C.
  • a target metal fine particle composite can be obtained by dissolving a metal ion and a hyperbranched polymer in a solvent and reacting them in a hydrogen gas atmosphere.
  • a metal ion source used here the above-mentioned metal salt, hexacarbonyl chromium [Cr (CO) 6 ], pentacarbonyl iron [Fe (CO) 5 ], octacarbonyl dicobalt [Co 2 (CO) 8 ].
  • a metal carbonyl complex such as tetracarbonyl nickel [Ni (CO) 4 ] can be used.
  • zero-valent metal complexes such as metal olefin complexes, metal phosphine complexes, and metal nitrogen complexes can also be used.
  • the solvent to be used is not particularly limited as long as it can dissolve the metal ion and the hyperbranched polymer at a required concentration or more.
  • alcohols such as ethanol and n-propanol; methylene chloride, chloroform and the like Halogenated hydrocarbons; cyclic ethers such as tetrahydrofuran, 2-methyltetrahydrofuran and tetrahydropyran; nitriles such as acetonitrile and butyronitrile; and a mixture of these solvents, preferably tetrahydrofuran.
  • the temperature at which the metal ions and the hyperbranched polymer are mixed can usually be in the range of 0 ° C. to the boiling point of the solvent.
  • a target metal fine particle composite can be obtained by dissolving a metal ion and a hyperbranched polymer in a solvent and causing a thermal decomposition reaction.
  • the metal ion source used here the above metal salts, metal carbonyl complexes, other zero-valent metal complexes, and metal oxides such as silver oxide can be used.
  • the solvent to be used is not particularly limited as long as it can dissolve the metal ion and the hyperbranched polymer at a required concentration or more. Specifically, alcohols such as methanol, ethanol, n-propanol, isopropanol, and ethylene glycol are used.
  • Halogenated hydrocarbons such as methylene chloride and chloroform; cyclic ethers such as tetrahydrofuran (THF), 2-methyltetrahydrofuran and tetrahydropyran; nitriles such as acetonitrile and butyronitrile; aromatic hydrocarbons such as benzene and toluene; And a mixture of these solvents, preferably toluene.
  • the temperature at which the metal ions and the hyperbranched polymer are mixed usually ranges from 0 ° C. to the boiling point of the solvent, preferably around the boiling point of the solvent, for example, 110 ° C. (heated reflux) in the case of toluene.
  • the hyperbranched polymer / metal fine particle composite thus obtained can be in the form of a solid such as a powder through a purification treatment such as reprecipitation.
  • the blending amount of (b) the hyperbranched polymer and (c) the metal fine particles with respect to the thermoplastic resin is a composite formed from the hyperbranched polymer and the metal fine particles.
  • the amount is preferably 0.1 to 20 parts by weight, particularly 1 to 10 parts by weight, based on 100 parts by weight of the thermoplastic resin.
  • additives generally added together with the thermoplastic resin for example, heat stabilizer, light stabilizer, antioxidant, ultraviolet absorber, lubricant, mold release agent, antistatic agent, melting Elastic modifiers, processing aids, crosslinking agents, reinforcing agents, flame retardants, antifoaming agents, dispersants, light diffusing agents, pigments, dyes, fluorescent dyes, and the like may be used in combination.
  • the spinning step in the method for producing a conductive nanofiber of the present invention is performed according to an electrospinning method using the resin composition containing (a) thermoplastic resin, (b) hyperbranched polymer, and (c) metal fine particles as a spinning material.
  • This is a process for producing nanofibers.
  • the composition is dissolved or dispersed in a solvent to form a varnish, which is electrospun to produce nanofibers.
  • the solvent used for the electrostatic spinning may be any solvent that can dissolve and disperse the thermoplastic resin, the hyperbranched polymer, and the metal fine particles.
  • acetone ethyl methyl ketone (MEK), isobutyl methyl ketone (MIBK), chloroform, tetrahydrofuran (THF), 1,4-dioxane, toluene, xylene, N, N-dimethylformamide (DMF), N, N-dimethylacetamide (DMAc), N-methyl-2-pyrrolidone (NMP) ), Cyclohexanone, propylene glycol monomethyl ether (PGME), propylene glycol monomethyl ether acetate (PGMEA), propylene glycol monoethyl ether, ethyl lactate, diethylene glycol monoethyl ether, butyl cello Lube, ethanol, hexafluoroisopropanol (HFIP), .gamm
  • the concentration of the thermoplastic resin, the hyperbranched polymer, and the metal microparticles is arbitrary with respect to the total mass (total mass) of the thermoplastic resin, the hyperbranched polymer, and the metal microparticles and the solvent. (Also referred to as solid content concentration) is 1 to 50% by mass, preferably 10 to 40% by mass, and more preferably 20 to 30% by mass.
  • a commercially available electrospinning apparatus can be used for the electrospinning.
  • the spinning conditions are appropriately selected. For example, nozzle length: 3 to 5 cm, spinning distance (electrode-collector distance): 5 to 30 cm, spinning amount: 0.1 to 5.0 mL / hour, applied voltage between electrodes : 5 to 40 kV.
  • the nanofibers obtained as described above preferably have an average diameter of 50 to 2,000 nm, more preferably 100 to 1,000 nm.
  • the plating step in the method for producing conductive nanofibers of the present invention is a step of electroless plating treatment of the nanofibers produced in the above-described ⁇ spinning step>.
  • the nanofibers produced by the spinning process described above are in a state where the hyperbranched polymer and metal fine particles (composites formed from these) are present on the fiber surface (interface).
  • the nanofiber obtained by the electrospinning method can be used for the electroless plating process as it is, without requiring the plating pretreatment which consists of each process of etching, conditioning, catalyzing, and acceleration.
  • the electroless plating treatment (process) is not particularly limited, and can be performed by any of the generally known electroless plating treatments.
  • a method of immersing nanofibers obtained in the spinning process in the plating solution (bath) is common.
  • the electroless plating solution mainly contains a metal ion (metal salt), a complexing agent, and a reducing agent, and a pH adjuster, a pH buffering agent, a reaction accelerator (second complexing agent) according to other uses.
  • a metal ion metal salt
  • a complexing agent complexing agent
  • a reducing agent a pH adjuster
  • a pH buffering agent pH buffering agent
  • a reaction accelerator second complexing agent
  • Stabilizers surfactants (use for imparting gloss to the plating film, use for improving wettability of the surface to be treated, etc.) and the like are appropriately included.
  • the metal used in the metal plating film formed by electroless plating include iron, cobalt, nickel, copper, palladium, silver, tin, platinum, gold, and alloys thereof, and are appropriately selected according to the purpose. Is done.
  • the complexing agent and the reducing agent may be appropriately selected according to the metal ion.
  • the electroless plating solution may be a commercially available plating solution.
  • an electroless nickel plating chemical (Melplate (registered trademark) NI series) manufactured by Meltex Co., Ltd., an electroless copper plating chemical (Melplate ( (Registered trademark) CU series); Electroless nickel plating solution (ICP Nicolon (registered trademark) series) manufactured by Okuno Pharmaceutical Industry Co., Ltd., Electroless copper plating solution (OPC-700 Electroless copper MK, ATS Addcopper IW) ), Electroless tin plating solution (Substar SN-5), electroless gold plating solution (flash gold 330, self gold OTK-IT); electroless palladium plating solution (pallet II) manufactured by Kojima Chemical Co., Ltd.
  • Electroless gold plating solution (Dip G series, NC gold series); Electroless silver plating solution manufactured by Sasaki Chemical Co., Ltd. ); Electroless nickel plating solution (Schumer (registered trademark) series, Schumer (registered trademark) crab black (registered trademark) series), Electroless palladium plating solution (S-KPD) manufactured by Nippon Kanisen Co., Ltd .; Dow Chemical Company Electroless copper plating solution (Cuposit (registered trademark) Coppermix series, Circuposit (registered trademark) series), Electroless palladium plating solution (Paramars (registered trademark) series), Electroless nickel plating solution (Duraposit ( (Registered trademark) series), electroless gold plating solution (Aurolectroles (registered trademark) series), electroless tin plating solution (Tinposito (registered trademark) series); electroless copper plating solution manufactured by Uemura Kogyo Co., Ltd. ( Surcup (registered trademark) ELC-SP
  • the electroless plating process adjusts the temperature, pH, immersion time, metal ion concentration, presence / absence of stirring, stirring speed, presence / absence of supply of air / oxygen, supply speed, etc. And the film thickness can be controlled.
  • the thickness of the plating film to be obtained is not particularly limited, but can generally be about 10 to 500 nm, for example, 30 to 300 nm.
  • the electroconductive nanofiber of this invention produced can have an aggregate shape (for example, mat shape).
  • the conductive nanofiber aggregate preferably has a volume resistance value of 1 ⁇ 10 4 ⁇ ⁇ cm or less, and desirably 1 ⁇ 10 2 ⁇ ⁇ cm or less.
  • SEM Sccanning Electron Microscope
  • Image Device 3D Real Surface View Microscope VE-9800 manufactured by Keyence Corporation
  • Volume resistance measurement device Loresta (registered trademark) AX MCP-T370 manufactured by Mitsubishi Chemical Analytech Co., Ltd.
  • HPS Hyperbranched polystyrene [Hypertech (registered trademark) HPS-200 manufactured by Nissan Chemical Industries, Ltd.]
  • IPA 2-propanol IPE: diisopropyl ether
  • PVDF polyvinylidene fluoride [manufactured by Aldrich, product number: 427152, Mw (GPC): 180,000, Mn: 71,000]
  • PVDF / HFP Vinylidene fluoride-hexafluoropropylene copolymer [manufactured by Aldrich, product number: 427160, Mw (GPC): 400,000, Mn: 130,000]
  • PU Polyurethane [Elastolan (registered trademark) ET385, Mw (GPC): 146,000, manufactured by BASF Japan Ltd.]
  • DMAc N, N-dimethylacetamide
  • DMF N, N-dimethylformamide
  • THF tetrahydrofuran
  • the white powder obtained by filtering this precipitate was dissolved in 100 g of chloroform and added to 500 g of IPA to reprecipitate the polymer.
  • the precipitate was filtered under reduced pressure and vacuum dried to obtain 8.5 g of hyperbranched polymer (HPS-Cl) having a chlorine atom at the molecular end as a white powder (yield 99%).
  • the 1 H NMR spectrum of the obtained HPS-Cl is shown in FIG. Since the peak (4.0 ppm, 3.7 ppm) derived from the dithiocarbamate group disappeared, it was confirmed that the obtained HPS-Cl had almost all the dithiocarbamate groups at the HPS molecule terminals substituted with chlorine atoms. It became clear.
  • the weight average molecular weight Mw measured by polystyrene conversion by GPC of the obtained HPS-Cl was 14,000, and the dispersity Mw / Mn was 2.9.
  • HPS-N (Me) 2 OctCl obtained from the peak of the benzene ring and the peak of the methyl group at the end of the octyl group shows that the chlorine atom at the end of the HPS-Cl molecule is almost quantitatively substituted with an ammonium group. Became clear.
  • the weight average molecular weight Mw of HPS-N (Me) 2 OctCl calculated from Mw (14,000) of HPS-Cl and ammonium group introduction rate (100%) was 28,000.
  • the reaction mixture was added to 2,000 g of IPE at 0 ° C. and purified by reprecipitation.
  • the precipitated polymer was filtered under reduced pressure and vacuum dried at 60 ° C., and 9.8 g of a complex of a hyperbranched polymer and Pd particles having an ammonium group at the molecular end (Pd [HPS-N (Me) 2 OctCl]) was blackened. Obtained as a powder. From the results of ICP emission analysis, the Pd content of the obtained Pd [HPS-N (Me) 2 OctCl] was 10% by mass. Further, from the TEM (transmission electron microscope) image, the Pd particle diameter was about 2 to 4 nm.
  • HPS-NOct 3 Cl hyperbranched polymer having a trioctylammonium group at the molecular end as a pale yellow powder.
  • the 13 C NMR spectrum of the resulting HPS-NOct 3 Cl is shown in FIG. From the peak of the methylene group to which the chlorine atom is bonded and the peak of the methylene group to which the ammonium group is bonded, the obtained HPS-NOct 3 Cl has 71% of the chlorine atom at the end of the HPS-Cl molecule replaced with the ammonium group. Became clear.
  • the weight average molecular weight Mw of HPS-NOct 3 Cl calculated from Mw (14,000) of HPS-Cl and ammonium group introduction rate (71%) was 37,000.
  • the obtained residue was dissolved in 300 g of THF and cooled to 0 ° C. This solution was added to 6,000 g of IPE at 0 ° C. for reprecipitation purification.
  • the precipitated polymer was filtered under reduced pressure and vacuum dried at 60 ° C. to obtain 19.9 g of a complex of a hyperbranched polymer having an ammonium group at the molecular end and Pd particles (Pd [HPS-NOct 3 Cl]) as a black powder. It was. From the result of ICP emission analysis, the Pd content of the obtained Pd [HPS-NOct 3 Cl] was 11% by mass. Further, from the TEM (transmission electron microscope) image, the Pd particle diameter was about 2 to 4 nm.
  • Example 1 100 parts by mass of PVDF, 5 parts by mass of Pd [HPS-N (Me) 2 OctCl] produced according to Production Example 3 (0.5 parts by mass as Pd), and 300 parts by mass of a DMF / acetone mixed liquid (mass ratio 9: 1) Were uniformly mixed to prepare a resin composition (spun material). This composition was spun under the conditions shown in Table 1 using an electrospinning apparatus to produce an assembly of nanofibers on the mat (hereinafter referred to as nanofiber mat). The obtained nanofiber mat was observed with an SEM, and the nanofiber diameter (average diameter) was calculated. The nanofiber diameter was determined by measuring the diameters of 100 nanofibers randomly selected from five different SEM images, and taking the average value.
  • FIG. 4 shows an SEM image of the obtained nanofiber mat subjected to the electroless plating treatment.
  • Example 2 100 parts by mass of PVDF, 4.5 parts by mass of Pd [HPS-NOct 3 Cl] produced according to Production Example 5 (0.5 parts by mass as Pd), and 300 parts by mass of a DMAc / acetone mixture (mass ratio 7: 3)
  • the resin composition was prepared by mixing uniformly. This composition was used and evaluated in the same manner as in Example 1 except that the plating solution shown in Table 1 was used. The results are also shown in Table 1.
  • Example 3 The same operation as in Example 2 was performed except that the plating solution was changed. The results are also shown in Table 1.
  • Example 4 100 parts by mass of PU, 5 parts by mass of Pd [HPS-N (Me) 2 OctCl] produced according to Production Example 3 (0.5 parts by mass as Pd), and 614 parts by mass of DMF were uniformly mixed to prepare a resin composition. .
  • This composition was used and evaluated in the same manner as in Example 1 except that the plating solution shown in Table 1 was used. The results are also shown in Table 1.
  • Example 5 100 parts by mass of PU, 4.5 parts by mass of Pd [HPS-NOct 3 Cl] produced according to Production Example 5 (0.5 parts by mass as Pd), and 614 parts by mass of DMF were uniformly mixed to prepare a resin composition. This composition was used and evaluated in the same manner as in Example 1 except that the plating solution shown in Table 1 was used. The results are also shown in Table 1.
  • Example 6 100 parts by mass of PVDF / HFP, 5 parts by mass of Pd [HPS-N (Me) 2 OctCl] produced according to Production Example 3 (0.5 parts by mass as Pd), and 400 parts by mass of DMF were uniformly mixed to obtain a resin composition. Prepared. This composition was used and evaluated in the same manner as in Example 1 except that the plating solution shown in Table 1 was used. The results are also shown in Table 1.
  • Example 7 The nanofiber mat obtained in Example 6 was immersed in the electroless tin plating solution A (Sn-A) prepared in Reference Example 5 at 20 ° C. for 5 minutes. Thereafter, the nanofiber mat taken out was washed with water and air-dried. The nanofiber diameter of the obtained electroless plating (substitution type) treated nanofiber mat was calculated in the same manner as described above. Moreover, the volume resistance value of the nanofiber mat was measured. The results are also shown in Table 1. Moreover, the SEM image of the obtained nanofiber mat subjected to electroless plating is shown in FIG.
  • Examples 1 to 7 a conductive material having a low volume resistance of 1 ⁇ 10 4 ⁇ ⁇ cm or less by a simple method without being restricted by the type of plating metal or the type of plating solution. An aggregate of nanofibers (nanofiber mat) could be obtained. On the other hand, in Comparative Example 1 using a spinning material in which palladium chloride was blended with PVDF, copper plating was not performed, and conductive nanofibers could not be obtained.

Abstract

The problem addressed by the present invention is to provide a method for manufacturing a conductive nanofiber that can produce a conductive nanofiber that has sufficient conductivity using various types of plating metal and plating fluids without complicated operations. The problem is addressed by a method for manufacturing a conductive nanofiber characterized by including a fiber spinning step for fabricating the nanofiber according to an electrospinning process with a resin composition that includes (a) a thermoplastic resin, (b) a hyperbranched polymer having ammonium groups at molecular ends and a weight average molecular weight of 1,000 - 5,000,000, and (c) fine metal particles as the spinning material and a plating step for electroless plating of the nanofiber fabricated in the fiber spinning step.

Description

導電性ナノファイバーの製造方法Method for producing conductive nanofiber
 本発明は、熱可塑性樹脂にハイパーブランチポリマー及び金属微粒子を配合した樹脂組成物を紡糸材料として使用し、これを静電紡糸並びに無電解めっき処理することによる導電性ナノファイバーの製造方法に関する。 The present invention relates to a method for producing conductive nanofibers by using a resin composition in which a hyperbranched polymer and metal fine particles are blended in a thermoplastic resin as a spinning material, and subjecting the resin composition to electrostatic spinning and electroless plating.
 近年、スマートテキスタイルや電磁波シールド材などの用途において、軽くて柔軟な導電性材料の需要が非常に大きく、これらの性質を満たす材料として導電性ファイバーが挙げられる。
 従来、ファイバー素材に導電性を付与する方法として、例えば、ファイバー素材表面の無電解めっき処理が知られている。しかしながら、通常、無電解めっきは、エッチング、コンディショニング、キャタライジング、アクセラレーティングなどの各処理からなるめっき前処理が必要であるため、製造工程が煩雑であり、高コストである。また、化学的なエッチング処理を行う場合には、クロム酸やアルカリ金属水酸化物溶液等の薬品を用いるため、廃液処理が必要となる。
In recent years, in applications such as smart textiles and electromagnetic shielding materials, there is a great demand for light and flexible conductive materials, and conductive fibers can be cited as materials that satisfy these properties.
Conventionally, as a method for imparting conductivity to a fiber material, for example, an electroless plating process on the surface of the fiber material is known. However, electroless plating usually requires a pre-plating process including etching, conditioning, catalyzing, acceleration, and other processes, so that the manufacturing process is complicated and expensive. In addition, when a chemical etching process is performed, since a chemical such as chromic acid or an alkali metal hydroxide solution is used, a waste liquid process is required.
 また、エレクトロスピニング法により作製したナノファイバーに導電性を付与する技術としては、例えば、該ナノファイバーにイオン照射を行って、導電性を付与する方法(特許文献1)、エレクトロスピニング法により紡糸されたナイロン6ナノファイバーに無電解めっきを行う方法(非特許文献1)、導電性高分子であるポリピロールを用いて、エレクトロスピニング法によりナノファイバーを作製する方法(非特許文献2)、塩化パラジウムを樹脂に混合してエレクトロスピニング法により作製したナノファイバーに、無電解ニッケルめっきを施した例(特許文献2)などが開示されている。さらに、エレクトロスピニング法によりナノファイバーを作製後、該ナノファイバー表面をヨウ素処理して金属ヨウ化物コンポジット有機ナノファイバーとし、さらに該金属ヨウ化物を金属体へ還元処理した後、無電解めっき処理を施す例なども開示されている(特許文献3)。 In addition, as a technique for imparting conductivity to the nanofibers produced by the electrospinning method, for example, a method of imparting conductivity by irradiating the nanofibers with ions (Patent Document 1), and spinning by the electrospinning method. Nylon 6 nanofibers are electrolessly plated (Non-patent Document 1), a conductive polymer polypyrrole is used to produce nanofibers by electrospinning (Non-patent Document 2), and palladium chloride is used. An example (Patent Document 2) in which electroless nickel plating is performed on nanofibers mixed with a resin and manufactured by an electrospinning method is disclosed. Furthermore, after producing nanofibers by electrospinning method, the nanofiber surface is treated with iodine to form metal iodide composite organic nanofibers, and further, the metal iodide is reduced to a metal body, followed by electroless plating treatment. Examples are also disclosed (Patent Document 3).
特開2009-138305号公報JP 2009-138305 A 特開2010-037592号公報JP 2010-037592 A 特開2011-236512号公報JP2011-236512A
 しかしながら、特許文献1の技術で得られる導電性ナノファイバーの表面抵抗は大きく、導電材料として使用するには電気伝導性が不十分である。また、非特許文献1の技術においては、ナノファイバー表面のエッチングを低温酸素プラズマ処理により行っており、このプラズマ処理装置は非常に高価である上、真空下で行うプラズマ処理はバッチ式であり、工業的な大量生産を考慮した場合に不向きである。さらに、非特許文献2に開示されている導電性高分子の持つ導電性は、金属の導電性と比較すると低く、やはり導電材料としては電気伝導性が不十分である。また、特許文献2の方法では、めっき液の種類やめっきする金属種によってはめっきできない。さらに特許文献3の方法はめっき前の工程が煩雑である。 However, the surface resistance of the conductive nanofiber obtained by the technique of Patent Document 1 is large, and the electrical conductivity is insufficient for use as a conductive material. In the technique of Non-Patent Document 1, etching of the nanofiber surface is performed by low-temperature oxygen plasma treatment, and this plasma treatment apparatus is very expensive, and the plasma treatment performed under vacuum is a batch type, Not suitable for industrial mass production. Furthermore, the conductivity of the conductive polymer disclosed in Non-Patent Document 2 is lower than that of metal, and the electrical conductivity is still insufficient as a conductive material. Further, the method of Patent Document 2 cannot be plated depending on the type of plating solution or the type of metal to be plated. Furthermore, in the method of Patent Document 3, the process before plating is complicated.
 上述のように、導電性微粒子や導電性高分子を用いた手法では、十分な導電性を確保することが難しく、触媒として錯体を用いた無電解めっき法では、還元処理などの活性化処理などが必要で操作が煩雑な上、めっき金属種やめっき液の種類によりめっきができないという課題があった。
 すなわち、十分な導電性を有する導電性ナノファイバーを、煩雑な操作なしで、しかも種々のめっき金属種やめっき液を使用できる導電性ナノファイバーの製造方法が望まれていた。
As described above, it is difficult to ensure sufficient conductivity with the method using conductive fine particles or conductive polymer, and the electroless plating method using a complex as a catalyst is an activation treatment such as a reduction treatment. And the operation is complicated, and there is a problem that plating cannot be performed depending on the type of plating metal and the type of plating solution.
That is, there has been a demand for a method for producing conductive nanofibers that can use various kinds of plating metal species and plating solutions for conductive nanofibers having sufficient conductivity without complicated operations.
 本発明者らは、上記目的を達成するために鋭意検討した結果、アンモニウム基を分子末端に有するハイパーブランチポリマーと金属微粒子をマトリクスポリマーである熱可塑性樹脂と混合して静電紡糸し、得られたナノファイバーを無電解めっき処理することにより、導電性材料として十分な電気伝導性を有するナノファイバーを得られること、まためっき金属種やめっき液の種類を制限することなく無電解めっき処理が可能であることを見出し、本発明を完成させた。 As a result of diligent studies to achieve the above object, the present inventors have obtained a result obtained by mixing a hyperbranched polymer having an ammonium group at the molecular terminal and a metal fine particle with a thermoplastic resin as a matrix polymer and electrostatic spinning. By applying electroless plating to the nanofibers, it is possible to obtain nanofibers with sufficient electrical conductivity as a conductive material, and electroless plating can be performed without restricting the type of plating metal or plating solution As a result, the present invention was completed.
 すなわち本発明は、第1観点として、
(a)熱可塑性樹脂、(b)アンモニウム基を分子末端に有し且つ重量平均分子量が1,000~5,000,000であるハイパーブランチポリマー、及び(c)金属微粒子を含む樹脂組成物を紡糸材料として、エレクトロスピニング法に従いナノファイバーを作製する紡糸工程、及び前記工程で作製したナノファイバーを無電解めっき処理するめっき工程、を含むことを特徴とする、導電性ナノファイバーの製造方法に関する。
 第2観点として、前記(c)金属微粒子に、前記(b)ハイパーブランチポリマーのアンモニウム基が付着して複合体を形成している、第1観点に記載の製造方法に関する。
 第3観点として、前記(b)ハイパーブランチポリマーが、式[1]で表されるハイパーブランチポリマーである、第1観点又は第2観点に記載の製造方法に関する。
Figure JPOXMLDOC01-appb-C000004
(式中、Rはそれぞれ独立して水素原子又はメチル基を表し、R乃至Rはそれぞれ独立して水素原子、炭素原子数1乃至20の直鎖状、枝分かれ状若しくは環状のアルキル基、炭素原子数7乃至20のアリールアルキル基又は-(CHCHO)(式中、Rは水素原子又はメチル基を表し、mは2乃至100の整数を表す。)を表す(該アルキル基及びアリールアルキル基は、アルコキシ基、ヒドロキシ基、アンモニウム基、カルボキシル基又はシアノ基で置換されていてもよい。)か、R乃至Rのうちの2つの基が一緒になって、直鎖状、枝分かれ状又は環状のアルキレン基を表すか、又はR乃至Rはそれらが結合する窒素原子と一緒になって環を形成してもよく、Xは陰イオンを表し、nは繰り返し単位構造の数であって、5乃至100,000の整数を表し、Aは式[2]で表される構造を表す。)
Figure JPOXMLDOC01-appb-C000005
(式中、Aはエーテル結合又はエステル結合を含んでいてもよい炭素原子数1乃至30の直鎖状、枝分かれ状又は環状のアルキレン基を表し、Y乃至Yはそれぞれ独立して水素原子、炭素原子数1乃至20のアルキル基、炭素原子数1乃至20のアルコキシ基、ニトロ基、ヒドロキシ基、アミノ基、カルボキシル基又はシアノ基を表す。)
 第4観点として、前記(b)ハイパーブランチポリマーが、式[3]で表されるハイパーブランチポリマーである、第3観点に記載の製造方法に関する。
Figure JPOXMLDOC01-appb-C000006
(式中、R、R乃至R及びnは前記と同じ意味を表す。)
 第5観点として、前記(c)金属微粒子が、鉄(Fe)、コバルト(Co)、ニッケル(Ni)、銅(Cu)、パラジウム(Pd)、銀(Ag)、スズ(Sn)、白金(Pt)及び金(Au)からなる群より選択される少なくとも一種の金属の微粒子である、第1観点乃至第4観点のうち何れか一項に記載の製造方法に関する。
 第6観点として、前記(c)金属微粒子が、パラジウム微粒子である、第5観点に記載の製造方法に関する。
 第7観点として、前記(c)金属微粒子が、1~100nmの平均粒径を有する微粒子である、第1観点乃至第6観点のうち何れか一項に記載の製造方法に関する。
 第8観点として、前記(a)熱可塑性樹脂がポリフッ化ビニリデンである、第1観点乃至第7観点のうち何れか一項に記載の製造方法に関する。
 第9観点として、前記ナノファイバーの平均直径が50~2,000nmである、第1観点乃至第8観点のうち何れか一項に記載の製造方法に関する。
 第10観点として、前記めっき工程に引き続きさらに他の無電解めっき処理をする第二のめっき工程を含む、第1観点乃至第9観点のうち何れか一項に記載の製造方法に関する。
 第11観点として、前記めっき工程が無電解銅めっき処理であり、且つ、前記第二のめっき工程が無電解スズめっき処理である、第10観点に記載の製造方法に関する。
 第12観点として、前記紡糸工程は、ナノファイバーとしてナノファイバー集合体を作製する工程である、第1観点乃至第11観点のうち何れか一項に記載の製造方法に関する。
 第13観点として、第1観点乃至第12観点のうち何れか一項に記載の製造方法により作製される導電性ナノファイバーに関する。
 第14観点として、第12観点に記載の製造方法により作製される導電性ナノファイバー集合体に関する。
 第15観点として、体積抵抗値が1×10Ω・cm以下である、第14観点に記載の導電性ナノファイバー集合体に関する。
That is, the present invention provides the first aspect as follows:
A resin composition comprising (a) a thermoplastic resin, (b) a hyperbranched polymer having an ammonium group at the molecular end and a weight average molecular weight of 1,000 to 5,000,000, and (c) metal fine particles. The present invention relates to a method for producing conductive nanofibers, which includes a spinning step of producing nanofibers according to an electrospinning method as a spinning material, and a plating step of performing electroless plating treatment of the nanofibers produced in the step.
As a second aspect, the present invention relates to the production method according to the first aspect, in which the ammonium group of the (b) hyperbranched polymer is attached to the metal fine particles (c) to form a complex.
As a 3rd viewpoint, the said (b) hyperbranched polymer is related with the manufacturing method as described in a 1st viewpoint or a 2nd viewpoint which is a hyperbranched polymer represented by Formula [1].
Figure JPOXMLDOC01-appb-C000004
(In the formula, each R 1 independently represents a hydrogen atom or a methyl group, and R 2 to R 4 each independently represent a hydrogen atom, a linear, branched or cyclic alkyl group having 1 to 20 carbon atoms. , An arylalkyl group having 7 to 20 carbon atoms or — (CH 2 CH 2 O) m R 5 (wherein R 5 represents a hydrogen atom or a methyl group, and m represents an integer of 2 to 100). (The alkyl group and arylalkyl group may be substituted with an alkoxy group, a hydroxy group, an ammonium group, a carboxyl group, or a cyano group), or two groups of R 2 to R 4 may be bonded together. Represents a linear, branched or cyclic alkylene group, or R 2 to R 4 may form a ring together with the nitrogen atom to which they are bonded, and X represents an anion. Where n is a repetition A number of by unit structure represents an integer of 5 to 100,000, A 1 represents a structure represented by the formula [2].)
Figure JPOXMLDOC01-appb-C000005
(In the formula, A 2 represents a linear, branched or cyclic alkylene group having 1 to 30 carbon atoms which may contain an ether bond or an ester bond, and Y 1 to Y 4 are each independently hydrogen. And represents an atom, an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, a nitro group, a hydroxy group, an amino group, a carboxyl group, or a cyano group.
As a 4th viewpoint, the said (b) hyperbranched polymer is related with the manufacturing method as described in a 3rd viewpoint which is a hyperbranched polymer represented by Formula [3].
Figure JPOXMLDOC01-appb-C000006
(Wherein R 1 , R 2 to R 4 and n represent the same meaning as described above.)
As a fifth aspect, the metal fine particles (c) include iron (Fe), cobalt (Co), nickel (Ni), copper (Cu), palladium (Pd), silver (Ag), tin (Sn), platinum ( The manufacturing method according to any one of the first aspect to the fourth aspect, wherein the fine particles are at least one metal selected from the group consisting of Pt) and gold (Au).
As a sixth aspect, the present invention relates to the manufacturing method according to the fifth aspect, wherein the metal fine particles (c) are palladium fine particles.
As a seventh aspect, the present invention relates to the production method according to any one of the first to sixth aspects, wherein the (c) metal fine particles are fine particles having an average particle diameter of 1 to 100 nm.
As an eighth aspect, the present invention relates to the production method according to any one of the first aspect to the seventh aspect, wherein the (a) thermoplastic resin is polyvinylidene fluoride.
As a ninth aspect, the present invention relates to the production method according to any one of the first aspect to the eighth aspect, wherein the nanofiber has an average diameter of 50 to 2,000 nm.
As a 10th viewpoint, it is related with the manufacturing method as described in any one of a 1st viewpoint thru | or a 9th viewpoint including the 2nd plating process which performs another electroless-plating process after the said plating process.
As an eleventh aspect, the present invention relates to the manufacturing method according to the tenth aspect, in which the plating step is an electroless copper plating treatment and the second plating step is an electroless tin plating treatment.
As a twelfth aspect, the spinning step relates to the production method according to any one of the first aspect to the eleventh aspect, which is a process of producing a nanofiber aggregate as a nanofiber.
As a 13th viewpoint, it is related with the electroconductive nanofiber produced by the manufacturing method as described in any one of a 1st viewpoint thru | or a 12th viewpoint.
As a 14th viewpoint, it is related with the electroconductive nanofiber assembly produced by the manufacturing method as described in a 12th viewpoint.
As a fifteenth aspect, the present invention relates to the conductive nanofiber assembly according to the fourteenth aspect, which has a volume resistance value of 1 × 10 4 Ω · cm or less.
 本発明によれば、紡糸材料として特定のハイパーブランチポリマーと金属微粒子を配合した熱可塑性樹脂を用いて静電紡糸し、得られたナノファイバーを無電解めっき浴に浸すという簡便な工程にて、電気伝導性に優れる導電性ナノファイバーを容易に得ることができる。このため、従来の無電解めっき処理に必要とされた煩雑な前処理工程の必要性や、製造工程の複雑化、高コスト化といった問題に煩わされることがない。
 また本発明の製造方法は、種々のめっき金属種にて無電解めっき処理が可能であり、幅広い種類のめっき液を用いて電気伝導性に優れる導電性ナノファイバーを得ることができる。
 そして本発明の製造方法によれば、1×10Ω・cm以下という非常に低い体積抵抗値を有し、導電材料としての電気伝導性を満足できる導電性ナノファイバー及びその集合体を提供することができる。
According to the present invention, in a simple process of electrostatic spinning using a thermoplastic resin containing a specific hyperbranched polymer and fine metal particles as a spinning material, the resulting nanofibers are immersed in an electroless plating bath. Conductive nanofibers excellent in electrical conductivity can be easily obtained. For this reason, it is not bothered by the necessity of the complicated pre-processing process required for the conventional electroless-plating process, the complexity of a manufacturing process, and cost increase.
Moreover, the manufacturing method of this invention can be electroless-plated with various plating metal seed | species, and can obtain the electroconductive nanofiber which is excellent in electrical conductivity using a wide variety of plating solutions.
According to the production method of the present invention, a conductive nanofiber having a very low volume resistance value of 1 × 10 4 Ω · cm or less and satisfying electrical conductivity as a conductive material and an aggregate thereof are provided. be able to.
 また、本発明の導電性ナノファイバー集合体は上記のように非常に低い体積抵抗値を有するため、高容量電池用電極、センサー電極、帯電防止シート、電磁波シールド等に好適に使用できる。 In addition, since the conductive nanofiber aggregate of the present invention has a very low volume resistance as described above, it can be suitably used for high capacity battery electrodes, sensor electrodes, antistatic sheets, electromagnetic wave shields and the like.
図1は、製造例1で得られた塩素原子を分子末端に有するハイパーブランチポリマー(HPS-Cl)のH NMRスペクトルを示す図である。FIG. 1 is a diagram showing a 1 H NMR spectrum of a hyperbranched polymer (HPS-Cl) having a chlorine atom at the molecular end obtained in Production Example 1. 図2は、製造例2で得られたジメチルオクチルアンモニウム基を分子末端に有するハイパーブランチポリマー(HPS-N(Me)OctCl)の13C NMRスペクトルを示す図である。FIG. 2 is a diagram showing a 13 C NMR spectrum of a hyperbranched polymer (HPS-N (Me) 2 OctCl) having a dimethyloctylammonium group at the molecular end obtained in Production Example 2. 図3は、製造例4で得られたトリオクチルアンモニウム基を分子末端に有するハイパーブランチポリマー(HPS-NOctCl)の13C NMRスペクトルを示す図である。FIG. 3 is a diagram showing a 13 C NMR spectrum of a hyperbranched polymer (HPS-NOct 3 Cl) having a trioctylammonium group at the molecular end obtained in Production Example 4. 図4は、実施例1で得られたナノファイバーマットのSEM画像を示す図である。FIG. 4 is a diagram showing an SEM image of the nanofiber mat obtained in Example 1. 図5は、実施例7で得られたナノファイバーマットのSEM画像を示す図である。5 is a view showing an SEM image of the nanofiber mat obtained in Example 7. FIG.
 以下、本発明について詳細に説明する。
 本発明の導電性ナノファイバーの製造方法は、後述する樹脂組成物を紡糸材料として、エレクトロスピニング法に従いナノファイバーを作製する紡糸工程と、前記工程で作製したナノファイバーを無電解めっき処理するめっき工程とを含むことを特徴とする。なお本発明の製造方法により作製される導電性ナノファイバーも本発明の対象である。
 そして本発明の導電性ナノファイバーの製造方法に用いる樹脂組成物は、(a)熱可塑性樹脂、(b)アンモニウム基を分子末端に有し且つ重量平均分子量が1,000~5,000,000であるハイパーブランチポリマー、及び(c)金属微粒子を含む。
Hereinafter, the present invention will be described in detail.
The method for producing conductive nanofibers of the present invention includes a spinning step of producing nanofibers according to an electrospinning method using a resin composition described later as a spinning material, and a plating step of performing electroless plating treatment of the nanofibers produced in the above steps. It is characterized by including. Conductive nanofibers produced by the production method of the present invention are also objects of the present invention.
The resin composition used in the method for producing conductive nanofibers of the present invention comprises (a) a thermoplastic resin, (b) an ammonium group at the molecular end, and a weight average molecular weight of 1,000 to 5,000,000. A hyperbranched polymer, and (c) metal fine particles.
[樹脂組成物]
<(a)熱可塑性樹脂>
 本発明で用いる熱可塑性樹脂としては特に限定されないが、例えばPE(ポリエチレン)、PP(ポリプロピレン)、EVA(エチレン-酢酸ビニル共重合体)、EVOH(エチレン-ビニルアルコール共重合体)、PVA(ポリビニルアルコール)、EEA(エチレン-アクリル酸エチル共重合体)、PVDF(ポリフッ化ビニリデン)、フッ化ビニリデン-ヘキサフルオロプロピレン共重合体などのポリオレフィン系樹脂;PS(ポリスチレン)、HIPS(ハイインパクトポリスチレン)、AS(アクリロニトリル-スチレン共重合体)、ABS(アクリロニトリル-ブタジエン-スチレン共重合体)、SBS(スチレン-ブタジエン-スチレン共重合体)、MS(メタクリル酸メチル-スチレン共重合体)などのポリスチレン系樹脂;ポリカーボネート樹脂;塩化ビニル樹脂;ポリアミド樹脂;ポリイミド樹脂;PUE(ポリウレタンエラストマー)などのポリウレタン樹脂;PMMA(ポリメチルメタクリレート)などの(メタ)アクリル樹脂;PAN(ポリアクリロニトリル);PET(ポリエチレンテレフタレート)、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート、PLA(ポリ乳酸)、ポリ-3-ヒドロキシ酪酸、ポリカプロラクトン、ポリブチレンサクシネート、ポリエチレンサクシネート/アジペートなどのポリエステル樹脂;PEO(ポリエチレンオキシド);ポリフェニレンエーテル樹脂;変性ポリフェニレンエーテル樹脂;ポリアセタール樹脂;PES(ポリエーテルスルホン)樹脂、ポリスルホン樹脂;ポリフェニレンサルファイド樹脂;ポリビニルアルコール樹脂;ポリグルコール酸;変性でんぷん;酢酸セルロース、三酢酸セルロース;キチン、キトサン;リグニン等が挙げられる。
 中でも、熱可塑性樹脂として、ポリフッ化ビニリデン、フッ化ビニリデン-ヘキサフルオロプロピレン共重合体及びポリウレタン樹脂を用いることが好ましい。
[Resin composition]
<(A) Thermoplastic resin>
The thermoplastic resin used in the present invention is not particularly limited. For example, PE (polyethylene), PP (polypropylene), EVA (ethylene-vinyl acetate copolymer), EVOH (ethylene-vinyl alcohol copolymer), PVA (polyvinyl). Alcohol), EEA (ethylene-ethyl acrylate copolymer), PVDF (polyvinylidene fluoride), polyvinylidene fluoride-hexafluoropropylene copolymer, and other polyolefin resins; PS (polystyrene), HIPS (high impact polystyrene), Polystyrene resins such as AS (acrylonitrile-styrene copolymer), ABS (acrylonitrile-butadiene-styrene copolymer), SBS (styrene-butadiene-styrene copolymer), MS (methyl methacrylate-styrene copolymer) Polycarbonate resin; Polyamide resin; Polyimide resin; Polyurethane resin such as PUE (polyurethane elastomer); (Meth) acrylic resin such as PMMA (polymethyl methacrylate); PAN (polyacrylonitrile); PET (polyethylene terephthalate), poly Polyethylene resins such as butylene terephthalate, polyethylene naphthalate, polybutylene naphthalate, PLA (polylactic acid), poly-3-hydroxybutyric acid, polycaprolactone, polybutylene succinate, polyethylene succinate / adipate; PEO (polyethylene oxide); polyphenylene Ether resin; modified polyphenylene ether resin; polyacetal resin; PES (polyether sulfone) resin, polysulfone resin; E double sulfide resins, polyvinyl alcohol resins; polyglycolic acid; modified starch; cellulose acetate, cellulose triacetate; chitin, chitosan; lignin and the like.
Among them, it is preferable to use polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer and polyurethane resin as the thermoplastic resin.
<(b)ハイパーブランチポリマー>
 本発明で使用する樹脂組成物に用いられるハイパーブランチポリマーは、アンモニウム基を分子末端に有し且つ重量平均分子量が1,000~5,000,000であるポリマーであり、具体的には下記式[1]で表されるハイパーブランチポリマーが挙げられる。
Figure JPOXMLDOC01-appb-C000007
 前記式[1]中、Rは、それぞれ独立して水素原子又はメチル基を表す。
 また、R乃至Rは、それぞれ独立して、水素原子、炭素原子数1乃至20の直鎖状、枝分かれ状又は環状のアルキル基、炭素原子数7乃至20のアリールアルキル基、又は-(CHCHO)(式中、Rは水素原子又はメチル基を表し、mは2乃至100の任意の整数を表す。)を表す。上記アルキル基及びアリールアルキル基は、アルコキシ基、ヒドロキシ基、アンモニウム基、カルボキシル基又はシアノ基で置換されていてもよい。また、R乃至Rのうちの2つの基が一緒になって、直鎖状、枝分かれ状又は環状のアルキレン基を表すか、又はR乃至Rはそれらが結合する窒素原子と一緒になって環を形成してもよい。
 またXは陰イオンを表し、nは繰り返し単位構造の数であって、5乃至100,000の整数を表す。
<(B) Hyperbranched polymer>
The hyperbranched polymer used in the resin composition used in the present invention is a polymer having an ammonium group at the molecular end and a weight average molecular weight of 1,000 to 5,000,000. The hyperbranched polymer represented by [1] is mentioned.
Figure JPOXMLDOC01-appb-C000007
In the above formula [1], R 1 represents a hydrogen atom or a methyl group independently.
R 2 to R 4 are each independently a hydrogen atom, a linear, branched or cyclic alkyl group having 1 to 20 carbon atoms, an arylalkyl group having 7 to 20 carbon atoms, or — ( CH 2 CH 2 O) m R 5 (wherein R 5 represents a hydrogen atom or a methyl group, and m represents an arbitrary integer of 2 to 100). The alkyl group and arylalkyl group may be substituted with an alkoxy group, a hydroxy group, an ammonium group, a carboxyl group, or a cyano group. And two of R 2 to R 4 together represent a linear, branched or cyclic alkylene group, or R 2 to R 4 together with the nitrogen atom to which they are attached. To form a ring.
X represents an anion, and n represents the number of repeating unit structures, and represents an integer of 5 to 100,000.
 上記R乃至Rにおける炭素原子数1乃至20の直鎖状のアルキル基としては、メチル基、エチル基、n-プロピル基、n-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基、n-ウンデシル基、n-ドデシル基、n-トリデシル基、n-テトラデシル基、n-ペンタデシル基、n-ヘキサデシル基、n-ヘプタデシル基、n-オクタデシル基、n-ノナデシル基、n-エイコシル基等が挙げられる。中でも、本発明の製造方法において、後述するめっき工程において、紡糸材料として使用した樹脂組成物中の(b)ハイパーブランチポリマーが、無電解めっき液に溶出しにくい点で、炭素原子数8以上の基が好ましく、特にn-オクチル基が好ましい。
 枝分かれ状のアルキル基としては、イソプロピル基、イソブチル基、sec-ブチル基、tert-ブチル基等が挙げられる。
 環状のアルキル基としては、シクロペンチル環、シクロヘキシル環構造を有する基等が挙げられる。
 またR乃至Rにおける炭素原子数7乃至20のアリールアルキル基としては、ベンジル基、フェネチル基等が挙げられる。
 さらに、R乃至Rのうちの2つの基が一緒になった直鎖状のアルキレン基としては、メチレン基、エチレン基、n-プロピレン基、n-ブチレン基、n-ヘキシレン基等が挙げられる。枝分かれ状のアルキレン基としては、イソプロピレン基、イソブチレン基、2-メチルプロピレン基等が挙げられる。環状のアルキレン基としては、炭素原子数3乃至30の単環式、多環式、架橋環式の環状構造の脂環式脂肪族基が挙げられる。具体的には、炭素原子数4以上のモノシクロ、ビシクロ、トリシクロ、テトラシクロ、ペンタシクロ構造等を有する基を挙げることができる。これらアルキレン基は基中に窒素原子、硫黄原子又は酸素原子を含んでいてもよい。
 そして、式[1]で表される構造でR乃至Rがそれらと結合する窒素原子と一緒になって形成する環は、環中に窒素原子、硫黄原子又は酸素原子を含んでいてもよく、例えばピリジン環、ピリミジン環、ピラジン環、キノリン環、ビピリジル環等が挙げられる。
 これらR乃至Rの組合せとしては、例えば、[メチル基、メチル基、メチル基]、[メチル基、メチル基、エチル基]、[メチル基、メチル基、n-ブチル基]、[メチル基、メチル基、n-ヘキシル基]、[メチル基、メチル基、n-オクチル基]、[メチル基、メチル基、n-デシル基]、[メチル基、メチル基、n-ドデシル基]、[メチル基、メチル基、n-テトラデシル基]、[メチル基、メチル基、n-ヘキサデシル基]、[メチル基、メチル基、n-オクタデシル基]、[エチル基、エチル基、エチル基]、[n-ブチル基、n-ブチル基、n-ブチル基]、[n-ヘキシル基、n-ヘキシル基、n-ヘキシル基]、[n-オクチル基、n-オクチル基、n-オクチル基]等が挙げられ、中でも[メチル基、メチル基、n-オクチル基]、[n-オクチル基、n-オクチル基、n-オクチル基]の組合せが好ましい。
 またXの陰イオンとして好ましくはハロゲン化物イオン、PF 、BF 又はパーフルオロアルカンスルホナートが挙げられる。
Examples of the linear alkyl group having 1 to 20 carbon atoms in R 2 to R 4 include methyl group, ethyl group, n-propyl group, n-butyl group, n-pentyl group, n-hexyl group, n -Heptyl, n-octyl, n-nonyl, n-decyl, n-undecyl, n-dodecyl, n-tridecyl, n-tetradecyl, n-pentadecyl, n-hexadecyl, n -Heptadecyl group, n-octadecyl group, n-nonadecyl group, n-eicosyl group and the like. Among them, in the production method of the present invention, in the plating step described later, (b) the hyperbranched polymer in the resin composition used as the spinning material is less likely to elute into the electroless plating solution and has 8 or more carbon atoms. Group is preferable, and n-octyl group is particularly preferable.
Examples of the branched alkyl group include isopropyl group, isobutyl group, sec-butyl group, tert-butyl group and the like.
Examples of the cyclic alkyl group include a cyclopentyl ring and a group having a cyclohexyl ring structure.
Examples of the arylalkyl group having 7 to 20 carbon atoms in R 2 to R 4 include a benzyl group and a phenethyl group.
Further, examples of the linear alkylene group in which two of R 2 to R 4 are combined include a methylene group, an ethylene group, an n-propylene group, an n-butylene group, and an n-hexylene group. It is done. Examples of the branched alkylene group include an isopropylene group, an isobutylene group, and a 2-methylpropylene group. Examples of the cyclic alkylene group include alicyclic aliphatic groups having a monocyclic, polycyclic or bridged cyclic structure having 3 to 30 carbon atoms. Specific examples include groups having a monocyclo, bicyclo, tricyclo, tetracyclo, or pentacyclo structure having 4 or more carbon atoms. These alkylene groups may contain a nitrogen atom, a sulfur atom or an oxygen atom in the group.
The ring formed by R 2 to R 4 together with the nitrogen atom bonded to them in the structure represented by the formula [1] may contain a nitrogen atom, a sulfur atom or an oxygen atom in the ring. For example, pyridine ring, pyrimidine ring, pyrazine ring, quinoline ring, bipyridyl ring and the like can be mentioned.
Examples of combinations of R 2 to R 4 include [methyl group, methyl group, methyl group], [methyl group, methyl group, ethyl group], [methyl group, methyl group, n-butyl group], [methyl group] Group, methyl group, n-hexyl group], [methyl group, methyl group, n-octyl group], [methyl group, methyl group, n-decyl group], [methyl group, methyl group, n-dodecyl group], [Methyl group, methyl group, n-tetradecyl group], [methyl group, methyl group, n-hexadecyl group], [methyl group, methyl group, n-octadecyl group], [ethyl group, ethyl group, ethyl group], [N-butyl group, n-butyl group, n-butyl group], [n-hexyl group, n-hexyl group, n-hexyl group], [n-octyl group, n-octyl group, n-octyl group] Among them, [methyl group, methyl group, - octyl], [n- octyl group, n- octyl group, a combination of n- octyl group] are preferable.
The X anion is preferably a halide ion, PF 6 , BF 4 or perfluoroalkanesulfonate.
 上記式[1]中、Aは下記式[2]で表される構造を表す。
Figure JPOXMLDOC01-appb-C000008
 上記式[2]中、Aはエーテル結合又はエステル結合を含んでいてもよい炭素原子数1乃至30の直鎖状、枝分かれ状又は環状のアルキレン基を表す。
 Y乃至Yは、それぞれ独立して、水素原子、炭素原子数1乃至20のアルキル基、炭素原子数1乃至20のアルコキシ基、ニトロ基、ヒドロキシ基、アミノ基、カルボキシル基又はシアノ基を表す。
In the above formula [1], A 1 represents a structure represented by the following formula [2].
Figure JPOXMLDOC01-appb-C000008
In the above formula [2], A 2 represents a linear, branched or cyclic alkylene group having 1 to 30 carbon atoms which may contain an ether bond or an ester bond.
Y 1 to Y 4 each independently represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, a nitro group, a hydroxy group, an amino group, a carboxyl group, or a cyano group. To express.
 上記Aのアルキレン基の具体例としては、メチレン基、エチレン基、n-プロピレン基、n-ブチレン基、n-ヘキシレン基等の直鎖状アルキレン基、イソプロピレン基、イソブチレン基、2-メチルプロピレン基等の枝分かれ状アルキレン基が挙げられる。また環状アルキレン基としては、炭素原子数3乃至30の単環式、多環式及び架橋環式の環状構造の脂環式脂肪族基が挙げられる。具体的には、炭素原子数4以上のモノシクロ、ビシクロ、トリシクロ、テトラシクロ、ペンタシクロ構造等を有する基を挙げることができる。例えば、下記に脂環式脂肪族基のうち、脂環式部分の構造例(a)乃至(s)を示す。
Figure JPOXMLDOC01-appb-C000009
Specific examples of the alkylene group of A 2 include linear alkylene groups such as methylene group, ethylene group, n-propylene group, n-butylene group and n-hexylene group, isopropylene group, isobutylene group, 2-methyl group. Examples include branched alkylene groups such as propylene groups. Examples of the cyclic alkylene group include alicyclic aliphatic groups having a monocyclic, polycyclic and bridged cyclic structure having 3 to 30 carbon atoms. Specific examples include groups having a monocyclo, bicyclo, tricyclo, tetracyclo, or pentacyclo structure having 4 or more carbon atoms. For example, structural examples (a) to (s) of the alicyclic portion of the alicyclic aliphatic group are shown below.
Figure JPOXMLDOC01-appb-C000009
 また上記式[2]中のY乃至Yの炭素原子数1乃至20のアルキル基としては、メチル基、エチル基、イソプロピル基、シクロヘキシル基、n-ペンチル基等が挙げられる。炭素原子数1乃至20のアルコキシ基としては、メトキシ基、エトキシ基、イソプロポキシ基、シクロヘキシルオキシ基、n-ペンチルオキシ基等が挙げられる。Y乃至Yとしては、水素原子又は炭素原子数1乃至20のアルキル基が好ましい。 Examples of the alkyl group having 1 to 20 carbon atoms of Y 1 to Y 4 in the above formula [2] include a methyl group, an ethyl group, an isopropyl group, a cyclohexyl group, and an n-pentyl group. Examples of the alkoxy group having 1 to 20 carbon atoms include methoxy group, ethoxy group, isopropoxy group, cyclohexyloxy group, n-pentyloxy group and the like. Y 1 to Y 4 are preferably a hydrogen atom or an alkyl group having 1 to 20 carbon atoms.
 なお、前記Aは下記式[4]で表される構造であることが好ましい。
Figure JPOXMLDOC01-appb-C000010
Incidentally, it is preferable that the A 1 is a structure represented by the following formula [4].
Figure JPOXMLDOC01-appb-C000010
 好ましくは、本発明に用いられるハイパーブランチポリマーとしては、下記式[3]で表されるハイパーブランチポリマーが挙げられる。
Figure JPOXMLDOC01-appb-C000011
 前記式[3]中、R、R乃至R及びnは上記と同じ意味を表す。
Preferably, the hyperbranched polymer used in the present invention includes a hyperbranched polymer represented by the following formula [3].
Figure JPOXMLDOC01-appb-C000011
In the above formula [3], R 1, R 2 to R 4 and n are as defined above.
 本発明で用いる上記アンモニウム基を分子末端に有するハイパーブランチポリマーは、例えば、分子末端にハロゲン原子を有するハイパーブランチポリマーにアミン化合物を反応させることによって得ることができる。
 なお、分子末端にハロゲン原子を有するハイパーブランチポリマーは、国際公開第2008/029688号パンフレットの記載に従い、ジチオカルバメート基を分子末端に有するハイパーブランチポリマーより製造することができる。該ジチオカルバメート基を分子末端に有するハイパーブランチポリマーは、市販品を用いることができ、日産化学工業(株)製のハイパーテック(登録商標)HPS-200等を好適に使用可能である。
The hyperbranched polymer having an ammonium group at the molecular end used in the present invention can be obtained, for example, by reacting an amine compound with a hyperbranched polymer having a halogen atom at the molecular end.
A hyperbranched polymer having a halogen atom at the molecular end can be produced from a hyperbranched polymer having a dithiocarbamate group at the molecular end in accordance with the description in WO 2008/029688. As the hyperbranched polymer having a dithiocarbamate group at the molecular end, a commercially available product can be used, and Hypertech (registered trademark) HPS-200 manufactured by Nissan Chemical Industries, Ltd. can be preferably used.
 本反応で使用できるアミン化合物は、第一級アミンとしては、メチルアミン、エチルアミン、n-プロピルアミン、イソプロピルアミン、n-ブチルアミン、イソブチルアミン、sec-ブチルアミン、tert-ブチルアミン、n-ペンチルアミン、n-ヘキシルアミン、n-ヘプチルアミン、n-オクチルアミン、n-ノニルアミン、n-デシルアミン、n-ウンデシルアミン、n-ドデシルアミン、n-トリデシルアミン、n-テトラデシルアミン、n-ペンタデシルアミン、n-ヘキサデシルアミン、n-ヘプタデシルアミン、n-オクタデシルアミン、n-ノナデシルアミン、n-エイコシルアミン等の脂肪族アミン;シクロペンチルアミン、シクロヘキシルアミン等の脂環式アミン;ベンジルアミン、フェネチルアミン等のアラルキルアミン;アニリン、p-n-ブチルアニリン、p-tert-ブチルアニリン、p-n-オクチルアニリン、p-n-デシルアニリン、p-n-ドデシルアニリン、p-n-テトラデシルアニリンなどのアニリン類、1-ナフチルアミン、2-ナフチルアミンなどのナフチルアミン類、1-アミノアントラセン、2-アミノアントラセンなどのアミノアントラセン類、1-アミノアントラキノンなどのアミノアントラキノン類、4-アミノビフェニル、2-アミノビフェニルなどのアミノビフェニル類、2-アミノフルオレン、1-アミノ-9-フルオレノン、4-アミノ-9-フルオレノンなどのアミノフルオレン類、5-アミノインダンなどのアミノインダン類、5-アミノイソキノリンなどのアミノイソキノリン類、9-アミノフェナントレンなどのアミノフェナントレン類等の芳香族アミンが挙げられる。更に、N-(tert-ブトキシカルボニル)-1,2-エチレンジアミン、N-(tert-ブトキシカルボニル)-1,3-プロピレンジアミン、N-(tert-ブトキシカルボニル)-1,4-ブチレンジアミン、N-(tert-ブトキシカルボニル)-1,5-ペンタメチレンジアミン、N-(tert-ブトキシカルボニル)-1,6-ヘキサメチレンジアミン、N-(2-ヒドロキシエチル)アミン、N-(3-ヒドロキシプロピル)アミン、N-(2-メトキシエチル)アミン、N-(2-エトキシエチル)アミン等のアミン化合物が挙げられる。 The amine compounds that can be used in this reaction are, as primary amines, methylamine, ethylamine, n-propylamine, isopropylamine, n-butylamine, isobutylamine, sec-butylamine, tert-butylamine, n-pentylamine, n -Hexylamine, n-heptylamine, n-octylamine, n-nonylamine, n-decylamine, n-undecylamine, n-dodecylamine, n-tridecylamine, n-tetradecylamine, n-pentadecylamine , N-hexadecylamine, n-heptadecylamine, n-octadecylamine, n-nonadecylamine, n-eicosylamine and other aliphatic amines; cyclopentylamine, cyclohexylamine and other alicyclic amines; benzylamine, phenethylamine and the like No Alkylamines; anilines such as aniline, pn-butylaniline, p-tert-butylaniline, pn-octylaniline, pn-decylaniline, pn-dodecylaniline, pn-tetradecylaniline Naphthylamines such as 1-naphthylamine and 2-naphthylamine, aminoanthracenes such as 1-aminoanthracene and 2-aminoanthracene, aminoanthraquinones such as 1-aminoanthraquinone, amino such as 4-aminobiphenyl and 2-aminobiphenyl Biphenyls, aminofluorenes such as 2-aminofluorene, 1-amino-9-fluorenone, 4-amino-9-fluorenone, aminoindanes such as 5-aminoindan, aminoisoquinolines such as 5-aminoisoquinoline, 9 -Ami Aromatic amines such as amino-phenanthrene such as phenanthrene and the like. Further, N- (tert-butoxycarbonyl) -1,2-ethylenediamine, N- (tert-butoxycarbonyl) -1,3-propylenediamine, N- (tert-butoxycarbonyl) -1,4-butylenediamine, N -(Tert-butoxycarbonyl) -1,5-pentamethylenediamine, N- (tert-butoxycarbonyl) -1,6-hexamethylenediamine, N- (2-hydroxyethyl) amine, N- (3-hydroxypropyl) And amine compounds such as amine, N- (2-methoxyethyl) amine, and N- (2-ethoxyethyl) amine.
 第二級アミンとしては、ジメチルアミン、ジエチルアミン、ジ-n-プロピルアミン、ジイソプロピルアミン、ジ-n-ブチルアミン、ジイソブチルアミン、ジ-sec-ブチルアミン、ジ-n-ペンチルアミン、エチルメチルアミン、メチル-n-プロピルアミン、メチル-n-ブチルアミン、メチル-n-ペンチルアミン、メチル-n-オクチルアミン、メチル-n-デシルアミン、メチル-n-ドデシルアミン、メチル-n-テトラデシルアミン、メチル-n-ヘキサデシルアミン、メチル-n-オクタデシルアミン、エチルイソプロピルアミン、エチル-n-ブチルアミン、エチル-n-ペンチルアミン、エチル-n-オクチルアミン、ジ-n-ヘキシルアミン、ジ-n-オクチルアミン、ジ-n-ドデシルアミン、ジ-n-ヘキサデシルアミン、ジ-n-オクタデシルアミン等の脂肪族アミン;ジシクロヘキシルアミン等の脂環式アミン;ジベンジルアミン等のアラルキルアミン;ジフェニルアミン等の芳香族アミン;フタルイミド、ピロール、ピペリジン、ピペラジン、イミダゾール等の窒素含有複素環式化合物が挙げられる。更に、ビス(2-ヒドロキシエチル)アミン、ビス(3-ヒドロキシプロピル)アミン、ビス(2-エトキシエチル)アミン、ビス(2-プロポキシエチル)アミン等が挙げられる。 Secondary amines include dimethylamine, diethylamine, di-n-propylamine, diisopropylamine, di-n-butylamine, diisobutylamine, di-sec-butylamine, di-n-pentylamine, ethylmethylamine, methyl- n-propylamine, methyl-n-butylamine, methyl-n-pentylamine, methyl-n-octylamine, methyl-n-decylamine, methyl-n-dodecylamine, methyl-n-tetradecylamine, methyl-n- Hexadecylamine, methyl-n-octadecylamine, ethylisopropylamine, ethyl-n-butylamine, ethyl-n-pentylamine, ethyl-n-octylamine, di-n-hexylamine, di-n-octylamine, di -N-dodecylamine, di-n-hex Aliphatic amines such as decylamine and di-n-octadecylamine; Cycloaliphatic amines such as dicyclohexylamine; Aralkylamines such as dibenzylamine; Aromatic amines such as diphenylamine; Nitrogen such as phthalimide, pyrrole, piperidine, piperazine and imidazole And a containing heterocyclic compound. Furthermore, bis (2-hydroxyethyl) amine, bis (3-hydroxypropyl) amine, bis (2-ethoxyethyl) amine, bis (2-propoxyethyl) amine and the like can be mentioned.
 第三級アミンとしては、トリメチルアミン、トリエチルアミン、トリ-n-プロピルアミン、トリ-n-ブチルアミン、トリ-n-ペンチルアミン、トリ-n-ヘキシルアミン、トリ-n-オクチルアミン、トリ-n-ドデシルアミン、ジメチルエチルアミン、ジメチル-n-ブチルアミン、ジメチル-n-ヘキシルアミン、ジメチル-n-オクチルアミン、ジメチル-n-デシルアミン、ジエチル-n-デシルアミン、ジメチル-n-ドデシルアミン、ジメチル-n-テトラデシルアミン、ジメチル-n-ヘキサデシルアミン、ジメチル-n-オクタデシルアミン、ジメチル-n-エイコシルアミン等の脂肪族アミン;ピリジン、ピラジン、ピリミジン、キノリン、1-メチルイミダゾール、4,4’-ビピリジル、4-メチル-4,4’-ビピリジル等の窒素含有複素環式化合物が挙げられる。 Tertiary amines include trimethylamine, triethylamine, tri-n-propylamine, tri-n-butylamine, tri-n-pentylamine, tri-n-hexylamine, tri-n-octylamine, tri-n-dodecyl. Amine, dimethylethylamine, dimethyl-n-butylamine, dimethyl-n-hexylamine, dimethyl-n-octylamine, dimethyl-n-decylamine, diethyl-n-decylamine, dimethyl-n-dodecylamine, dimethyl-n-tetradecyl Aliphatic amines such as amine, dimethyl-n-hexadecylamine, dimethyl-n-octadecylamine, dimethyl-n-eicosylamine; pyridine, pyrazine, pyrimidine, quinoline, 1-methylimidazole, 4,4′-bipyridyl, 4-methyl-4,4 - Nitrogen-containing heterocyclic compounds such as bipyridyl and the like.
 これらの反応で使用できるアミン化合物の使用量は、分子末端にハロゲン原子を有するハイパーブランチポリマーのハロゲン原子1モルに対して0.1~20モル当量、好ましくは0.5~10モル当量、より好ましくは1~5モル当量であればよい。 The amount of the amine compound that can be used in these reactions is 0.1 to 20 molar equivalents, preferably 0.5 to 10 molar equivalents, based on 1 mol of the halogen atom of the hyperbranched polymer having a halogen atom at the molecular end. Preferably, it is 1 to 5 molar equivalents.
 分子末端にハロゲン原子を有するハイパーブランチポリマーとアミン化合物との反応は、水又は有機溶媒中で、塩基の存在下又は非存在下で行なうことができる。使用する溶媒は、分子末端にハロゲン原子を有するハイパーブランチポリマーとアミン化合物を溶解可能なものが好ましい。さらに、分子末端にハロゲン原子を有するハイパーブランチポリマーとアミン化合物を溶解可能であるが、分子末端にアンモニウム基を有するハイパーブランチポリマーを溶解しない溶媒であれば、単離が容易となりさらに好適である。
 本反応で使用できる溶媒としては、本反応の進行を著しく阻害しないものであればよく、水;イソプロパノール等のアルコール類;酢酸等の有機酸類;ベンゼン、トルエン、キシレン、エチルベンゼン、1,2-ジクロロベンゼン等の芳香族炭化水素類;テトラヒドロフラン(THF)、ジエチルエーテル等のエーテル類;アセトン、メチルエチルケトン(MEK)、メチルイソブチルケトン(MIBK)、シクロヘキサノン等のケトン類;クロロホルム、ジクロロメタン、1,2-ジクロロエタン等のハロゲン化物;n-ヘキサン、n-ヘプタン、シクロヘキサン等の脂肪族炭化水素類;N,N-ジメチルホルムアミド(DMF)、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン(NMP)等のアミド類が使用できる。これらの溶媒は1種を用いてもよいし、2種以上を混合して用いてもよい。また、使用量は、分子末端にハロゲン原子を有するハイパーブランチポリマーの質量に対して0.2~1,000倍質量、好ましくは1~500倍質量、より好ましくは5~100倍質量、最も好ましくは5~50倍質量の溶媒を使用することが好ましい。
The reaction between the hyperbranched polymer having a halogen atom at the molecular end and the amine compound can be carried out in water or an organic solvent in the presence or absence of a base. The solvent to be used is preferably a solvent capable of dissolving a hyperbranched polymer having a halogen atom at the molecular end and an amine compound. Furthermore, a hyperbranched polymer having a halogen atom at the molecular end and an amine compound can be dissolved, but a solvent that does not dissolve the hyperbranched polymer having an ammonium group at the molecular end is more preferable because it can be easily isolated.
Solvents that can be used in this reaction are not particularly limited as long as they do not significantly inhibit the progress of this reaction. Water; alcohols such as isopropanol; organic acids such as acetic acid; benzene, toluene, xylene, ethylbenzene, 1,2-di- Aromatic hydrocarbons such as chlorobenzene; ethers such as tetrahydrofuran (THF) and diethyl ether; ketones such as acetone, methyl ethyl ketone (MEK), methyl isobutyl ketone (MIBK) and cyclohexanone; chloroform, dichloromethane, 1,2-dichloroethane Halides such as n-hexane, n-heptane, cyclohexane, etc .; N, N-dimethylformamide (DMF), N, N-dimethylacetamide, N-methyl-2-pyrrolidone (NMP), etc. The amides can be used. These solvents may be used alone or in combination of two or more. The amount used is 0.2 to 1,000 times, preferably 1 to 500 times, more preferably 5 to 100 times, most preferably the mass of the hyperbranched polymer having a halogen atom at the molecular end. It is preferable to use a solvent having a mass of 5 to 50 times.
 好適な塩基としては一般に、アルカリ金属水酸化物及びアルカリ土類金属水酸化物(例えば水酸化ナトリウム、水酸化カリウム、水酸化カルシウム)、アルカリ金属酸化物及びアルカリ土類金属酸化物(例えば酸化リチウム、酸化カルシウム)、アルカリ金属水素化物及びアルカリ土類金属水素化物(例えば水素化ナトリウム、水素化カリウム、水素化カルシウム)、アルカリ金属アミド(例えばナトリウムアミド)、アルカリ金属炭酸塩及びアルカリ土類金属炭酸塩(例えば炭酸リチウム、炭酸ナトリウム、炭酸カリウム、炭酸カルシウム)、アルカリ金属重炭酸塩(例えば重炭酸ナトリウム)等の無機化合物、並びにアルカリ金属アルキル、アルキルマグネシウムハロゲン化物、アルカリ金属アルコキシド、アルカリ土類金属アルコキシド、ジメトキシマグネシウム等の有機金属化合物が使用される。特に好ましいのは、炭酸カリウム及び炭酸ナトリウムである。また、使用量は、分子末端にハロゲン原子を有するハイパーブランチポリマーのハロゲン原子1モルに対して0.2~10モル当量、好ましくは0.5~10モル当量、最も好ましくは1~5モル当量の塩基を使用することが好ましい。 Suitable bases generally include alkali metal hydroxides and alkaline earth metal hydroxides (eg sodium hydroxide, potassium hydroxide, calcium hydroxide), alkali metal oxides and alkaline earth metal oxides (eg lithium oxide). Calcium oxide), alkali metal hydrides and alkaline earth metal hydrides (eg sodium hydride, potassium hydride, calcium hydride), alkali metal amides (eg sodium amide), alkali metal carbonates and alkaline earth metal carbonates Inorganic compounds such as salts (eg lithium carbonate, sodium carbonate, potassium carbonate, calcium carbonate), alkali metal bicarbonates (eg sodium bicarbonate), and alkali metal alkyls, alkylmagnesium halides, alkali metal alkoxides, alkaline earth metals Alkoki De, organometallic compounds such as dimethoxy magnesium was used. Particularly preferred are potassium carbonate and sodium carbonate. The amount used is 0.2 to 10 molar equivalents, preferably 0.5 to 10 molar equivalents, most preferably 1 to 5 molar equivalents per mole of halogen atoms of the hyperbranched polymer having a halogen atom at the molecular end. It is preferable to use the base.
 この反応では反応開始前に反応系内の酸素を十分に除去することが好ましく、窒素、アルゴン等の不活性気体で系内を置換するとよい。反応条件としては、反応時間は0.01~100時間、反応温度は0~300℃から、適宜選択される。好ましくは反応時間が0.1~72時間で、反応温度が20~150℃である。 In this reaction, it is preferable to sufficiently remove oxygen in the reaction system before starting the reaction, and the inside of the system may be replaced with an inert gas such as nitrogen or argon. The reaction conditions are appropriately selected from a reaction time of 0.01 to 100 hours and a reaction temperature of 0 to 300 ° C. Preferably, the reaction time is 0.1 to 72 hours, and the reaction temperature is 20 to 150 ° C.
 第三級アミンを用いた場合、塩基の存在/非存在に関わらず、式[1]で表されるハイパーブランチポリマーを得ることができる。
 塩基の非存在下で、第一級アミン又は第二級アミン化合物と分子末端にハロゲン原子を有するハイパーブランチポリマーを反応させた場合、それぞれに対応するハイパーブランチポリマーの末端第二級アミン及び第三級アミンがプロトン化されたアンモニウム基末端のハイパーブランチポリマーが得られる。また、塩基を用いて反応を行った場合においても、有機溶媒中で塩化水素、臭化水素、ヨウ化水素等の酸の水溶液と混合することにより、対応するハイパーブランチポリマーの末端第二級アミン及び第三級アミンがプロトン化されたアンモニウム基末端のハイパーブランチポリマーが得られる。
When a tertiary amine is used, a hyperbranched polymer represented by the formula [1] can be obtained regardless of the presence / absence of a base.
When a hyperbranched polymer having a halogen atom at the molecular end is reacted with a primary amine or secondary amine compound in the absence of a base, the terminal secondary amine and tertiary tertiary of the corresponding hyperbranched polymer are respectively reacted. A hyperbranched polymer having ammonium groups terminated with protonated primary amines is obtained. In addition, even when the reaction is performed using a base, the terminal secondary amine of the corresponding hyperbranched polymer can be obtained by mixing with an aqueous solution of an acid such as hydrogen chloride, hydrogen bromide, or hydrogen iodide in an organic solvent. And a hyperbranched polymer having an ammonium group terminated with a tertiary amine protonated.
 前記ハイパーブランチポリマーは、ゲル浸透クロマトグラフィーによるポリスチレン換算で測定される重量平均分子量Mwが1,000~5,000,000であり、好ましくは1,000~500,000であり、より好ましくは2,000~200,000であり、最も好ましくは3,000~100,000である。また、分散度Mw(重量平均分子量)/Mn(数平均分子量)としては1.0~7.0であり、好ましくは1.1~6.0であり、より好ましくは1.2~5.0である。 The hyperbranched polymer has a weight average molecular weight Mw measured in terms of polystyrene by gel permeation chromatography of 1,000 to 5,000,000, preferably 1,000 to 500,000, more preferably 2 3,000 to 200,000, most preferably 3,000 to 100,000. Further, the dispersity Mw (weight average molecular weight) / Mn (number average molecular weight) is 1.0 to 7.0, preferably 1.1 to 6.0, and more preferably 1.2 to 5. 0.
<(c)金属微粒子>
 本発明で使用する樹脂組成物に用いられる金属微粒子としては特に限定されず、金属種としては鉄(Fe)、コバルト(Co)、ニッケル(Ni)、銅(Cu)、パラジウム(Pd)、銀(Ag)、スズ(Sn)、白金(Pt)及び金(Au)が挙げられ、これらの金属の1種類でもよいし2種以上の合金でも構わない。中でも好ましい金属微粒子としてはパラジウム微粒子が挙げられる。なお、金属微粒子として、前記金属の酸化物を用いてもよい。
<(C) Metal fine particles>
The metal fine particles used in the resin composition used in the present invention are not particularly limited, and the metal species are iron (Fe), cobalt (Co), nickel (Ni), copper (Cu), palladium (Pd), silver. (Ag), tin (Sn), platinum (Pt), and gold (Au) may be mentioned, and one kind of these metals or two or more kinds of alloys may be used. Among these, preferable metal fine particles include palladium fine particles. The metal oxide may be used as the metal fine particles.
 前記金属微粒子は、例えば金属塩の水溶液を高圧水銀灯により光照射する方法や、該水溶液に還元作用を有する化合物(所謂還元剤)を添加する方法等により、金属イオンを還元することによって得られる。例えば、上記ハイパーブランチポリマーを溶解した溶液に金属塩の水溶液を添加してこれに紫外線を照射する、或いは、該溶液に金属塩の水溶液及び還元剤を添加するなどして、金属イオンを還元することにより、ハイパーブランチポリマーと金属微粒子の複合体を形成させながら、ハイパーブランチポリマー及び金属微粒子、並びに後述するその他成分を含む樹脂組成物を調製することができる。 The metal fine particles can be obtained by reducing metal ions by, for example, a method of irradiating an aqueous solution of a metal salt with a high-pressure mercury lamp or a method of adding a compound having a reducing action (so-called reducing agent) to the aqueous solution. For example, an aqueous solution of a metal salt is added to a solution in which the hyperbranched polymer is dissolved and irradiated with ultraviolet light, or an aqueous solution of a metal salt and a reducing agent are added to the solution to reduce metal ions. Thus, a resin composition containing the hyperbranched polymer and the metal fine particles and other components described later can be prepared while forming a composite of the hyperbranched polymer and the metal fine particles.
 前記金属塩としては、塩化金酸、硝酸銀、硫酸銅、硝酸銅、酢酸銅、塩化スズ、塩化第一白金、塩化白金酸、Pt(dba)[dba=ジベンジリデンアセトン]、Pt(cod)[cod=1,5-シクロオクタジエン]、Pt(CH(cod)、塩化パラジウム、酢酸パラジウム(Pd(OC(=O)CH)、硝酸パラジウム、Pd(dba)・CHCl、Pd(dba)、塩化ロジウム、酢酸ロジウム、塩化ルテニウム、酢酸ルテニウム、Ru(cod)(cot)[cot=シクロオクタトリエン]、塩化イリジウム、酢酸イリジウム、Ni(cod)等が挙げられる。
 前記還元剤としては、特に限定されるものではなく、種々の還元剤を用いることができ、後に得られる樹脂組成物(すなわちナノファイバー)に含有させる金属種等により還元剤を選択することが好ましい。用いることができる還元剤としては、例えば、水素化ホウ素ナトリウム、水素化ホウ素カリウム等の水素化ホウ素金属塩;水素化アルミニウムリチウム、水素化アルミニウムカリウム、水素化アルミニウムセシウム、水素化アルミニウムベリリウム、水素化アルミニウムマグネシウム、水素化アルミニウムカルシウム等の水素化アルミニウム塩;ヒドラジン化合物;クエン酸及びその塩;コハク酸及びその塩;アスコルビン酸及びその塩;メタノール、エタノール、イソプロパノール、ポリオール等の第一級又は第二級アルコール類;トリメチルアミン、トリエチルアミン、ジイソプロピルエチルアミン、ジエチルメチルアミン、テトラメチルエチレンジアミン[TMEDA]、エチレンジアミン四酢酸[EDTA]等の第三級アミン類;ヒドロキシルアミン;トリ-n-プロピルホスフィン、トリ-n-ブチルホスフィン、トリシクロヘキシルホスフィン、トリベンジルホスフィン、トリフェニルホスフィン、トリエトキシホスフィン、1,2-ビス(ジフェニルホスフィノ)エタン[DPPE]、1,3-ビス(ジフェニルホスフィノ)プロパン[DPPP]、1,1’-ビス(ジフェニルホスフィノ)フェロセン[DPPF]、2,2’-ビス(ジフェニルホスフィノ)-1,1’-ビナフチル[BINAP]等のホスフィン類などが挙げられる。
Examples of the metal salt include chloroauric acid, silver nitrate, copper sulfate, copper nitrate, copper acetate, tin chloride, platinum chloride, chloroplatinic acid, Pt (dba) 2 [dba = dibenzylideneacetone], Pt (cod) 2 [cod = 1,5-cyclooctadiene], Pt (CH 3 ) 2 (cod), palladium chloride, palladium acetate (Pd (OC (═O) CH 3 ) 2 ), palladium nitrate, Pd 2 (dba) 3 · CHCl 3, Pd (dba ) 2, rhodium chloride, rhodium acetate, ruthenium chloride, ruthenium acetate, Ru (cod) (cot) [cot = cyclooctatriene], iridium chloride, iridium acetate, Ni (cod) 2, etc. Is mentioned.
The reducing agent is not particularly limited, and various reducing agents can be used, and it is preferable to select the reducing agent according to the metal species to be contained in the resin composition (that is, nanofiber) obtained later. . Examples of the reducing agent that can be used include metal borohydrides such as sodium borohydride and potassium borohydride; lithium aluminum hydride, potassium aluminum hydride, cesium aluminum hydride, aluminum beryllium hydride, hydrogenation Aluminum hydride salts such as aluminum magnesium and calcium aluminum hydride; hydrazine compounds; citric acid and salts thereof; succinic acid and salts thereof; ascorbic acid and salts thereof; primary or secondary such as methanol, ethanol, isopropanol and polyol Tertiary alcohols; tertiary amines such as trimethylamine, triethylamine, diisopropylethylamine, diethylmethylamine, tetramethylethylenediamine [TMEDA], ethylenediaminetetraacetic acid [EDTA]; Roxylamine; tri-n-propylphosphine, tri-n-butylphosphine, tricyclohexylphosphine, tribenzylphosphine, triphenylphosphine, triethoxyphosphine, 1,2-bis (diphenylphosphino) ethane [DPPE], 1,3 -Bis (diphenylphosphino) propane [DPPP], 1,1'-bis (diphenylphosphino) ferrocene [DPPF], 2,2'-bis (diphenylphosphino) -1,1'-binaphthyl [BINAP], etc. And phosphines.
 前記金属微粒子の平均粒径は1~100nmが好ましい。その理由としては、該金属微粒子の平均粒径が100nmを超えると、表面積が減少し触媒活性が低下するためである。平均粒径としては、75nm以下が更に好ましく、1~30nmが特に好ましい。 The average particle size of the metal fine particles is preferably 1 to 100 nm. The reason is that when the average particle diameter of the metal fine particles exceeds 100 nm, the surface area decreases and the catalytic activity decreases. The average particle size is more preferably 75 nm or less, and particularly preferably 1 to 30 nm.
 本発明で使用する樹脂組成物における(c)金属微粒子に対する上記(b)ハイパーブランチポリマーの添加量は、上記(c)金属微粒子100質量部に対して50~2,000質量部が好ましい。50質量部未満であると、上記金属微粒子の分散性が不充分であり、2,000質量部を超えると、有機物含有量が多くなり、物性等に不具合が生じやすくなる。より好ましくは、100~1,000質量部である。 In the resin composition used in the present invention, the amount of (b) hyperbranched polymer added to (c) metal fine particles is preferably 50 to 2,000 parts by mass with respect to 100 parts by mass of (c) metal fine particles. When the amount is less than 50 parts by mass, the dispersibility of the metal fine particles is insufficient, and when the amount exceeds 2,000 parts by mass, the organic matter content increases, and problems such as physical properties tend to occur. More preferably, it is 100 to 1,000 parts by mass.
[複合体]
 本発明において使用する樹脂組成物において、前記ハイパーブランチポリマーと前記金属微粒子とが複合体を形成していることが好ましい。
 ここで複合体とは、前記ハイパーブランチポリマーの末端のアンモニウム基の作用により、金属微粒子に接触又は近接した状態で両者が共存し、粒子状の形態を為すものであり、言い換えると、前記ハイパーブランチポリマーのアンモニウム基が金属微粒子に付着又は配位した構造を有する複合体であると表現される。
 従って、本発明における「複合体」には、上述のように金属微粒子とハイパーブランチポリマーが結合して一つの複合体を形成しているものだけでなく、金属微粒子とハイパーブランチポリマーが結合部分を形成することなく、夫々独立して存在しているものも含まれていてもよい。
[Complex]
In the resin composition used in the present invention, it is preferable that the hyperbranched polymer and the metal fine particles form a composite.
Here, the composite is a particle that is in contact with or close to the metal fine particles due to the action of the ammonium group at the end of the hyperbranched polymer to form a particulate form. It is expressed as a composite having a structure in which the ammonium group of the polymer is attached or coordinated to the metal fine particles.
Therefore, in the “composite” in the present invention, not only the metal fine particles and the hyperbranched polymer are combined to form one composite as described above, but also the metal fine particles and the hyperbranched polymer have bonding portions. Those that are present independently without being formed may also be included.
 ハイパーブランチポリマーと金属微粒子の複合体の形成は、ハイパーブランチポリマーと金属微粒子を予め複合化させてもよいし、本発明の製造方法で使用する樹脂組成物の調製時に同時に実施しても構わない。その方法としては、低級アンモニウム配位子によりある程度安定化した金属微粒子を合成した後にハイパーブランチポリマーにより配位子を交換する方法や、ハイパーブランチポリマーの溶液中で、金属イオンを直接還元することにより複合体を形成する方法がある。 The hyperbranched polymer and metal fine particle composite may be formed in advance by combining the hyperbranched polymer and metal fine particles, or may be performed simultaneously with the preparation of the resin composition used in the production method of the present invention. . As the method, after synthesizing metal fine particles stabilized to some extent with a lower ammonium ligand, the ligand is exchanged with a hyperbranched polymer, or by directly reducing metal ions in a hyperbranched polymer solution. There are methods of forming a complex.
 配位子交換法において、原料となる低級アンモニウム配位子によりある程度安定化した金属微粒子は、Jounal of Organometallic Chemistry 1996,520,143-162等に記載の方法で合成することができる。得られた金属微粒子の反応混合溶液に、ハイパーブランチポリマーを溶解し、室温(およそ25℃)又は加熱撹拌することにより目的とする金属微粒子複合体を得ることができる。
 使用する溶媒としては、金属微粒子とハイパーブランチポリマーとを必要濃度以上に溶解できる溶媒であれば特に限定はされないが、具体的には、エタノール、n-プロパノール、イソプロパノール等のアルコール類;塩化メチレン、クロロホルム等のハロゲン化炭化水素類;テトラヒドロフラン(THF)、2-メチルテトラヒドロフラン、テトラヒドロピラン等の環状エーテル類;アセトニトリル、ブチロニトリル等のニトリル類など及びこれらの溶媒の混合液が挙げられ、好ましくは、テトラヒドロフランが挙げられる。
 金属微粒子の反応混合液と、ハイパーブランチポリマーを混合する温度は、通常0℃~溶媒の沸点の範囲を使用することができ、好ましくは、室温(およそ25℃)~60℃の範囲である。
 なお、配位子交換法において、アミン系分散剤(低級アンモニウム配位子)以外にホスフィン系分散剤(ホスフィン配位子)を用いることによっても、あらかじめ金属微粒子をある程度安定化することができる。
In the ligand exchange method, the metal fine particles stabilized to some extent by the lower ammonium ligand used as a raw material can be synthesized by the method described in Journal of Organometallic Chemistry 1996, 520, 143-162 and the like. A hyperbranched polymer is dissolved in the resulting reaction mixture solution of metal fine particles, and the target metal fine particle composite can be obtained by room temperature (approximately 25 ° C.) or heating and stirring.
The solvent to be used is not particularly limited as long as it is a solvent capable of dissolving the metal fine particles and the hyperbranched polymer at a required concentration or higher. Specifically, alcohols such as ethanol, n-propanol, and isopropanol; methylene chloride, Halogenated hydrocarbons such as chloroform; cyclic ethers such as tetrahydrofuran (THF), 2-methyltetrahydrofuran, tetrahydropyran; nitriles such as acetonitrile and butyronitrile; and mixtures of these solvents, preferably tetrahydrofuran. Is mentioned.
The temperature at which the metal fine particle reaction mixture and the hyperbranched polymer are mixed is usually in the range of 0 ° C. to the boiling point of the solvent, preferably in the range of room temperature (approximately 25 ° C.) to 60 ° C.
In the ligand exchange method, the metal fine particles can be stabilized to some extent in advance by using a phosphine dispersant (phosphine ligand) in addition to the amine dispersant (lower ammonium ligand).
 直接還元方法としては、金属イオンとハイパーブランチポリマーを溶媒に溶解し、メタノール、エタノール、イソプロパノール、ポリオール等の第一級又は第二級アルコール類で還元させることにより、目的とする金属微粒子複合体を得ることができる。
 ここで用いられる金属イオン源としては、上述の金属塩が使用できる。
 使用する溶媒としては、金属イオンとハイパーブランチポリマーを必要濃度以上に溶解できる溶媒であれば特に限定はされないが、具体的には、メタノール、エタノール、n-プロパノール、イソプロパノール等のアルコール類;塩化メチレン、クロロホルム等のハロゲン化炭化水素類;テトラヒドロフラン(THF)、2-メチルテトラヒドロフラン、テトラヒドロピラン等の環状エーテル類;アセトニトリル、ブチロニトリル等のニトリル類;N,N-ジメチルホルムアミド(DMF)、N-メチル-2-ピロリドン(NMP)等のアミド類;ジメチルスルホキシド等のスルホキシド類など及びこれらの溶媒の混合液が挙げられ、好ましくは、アルコール類、ハロゲン化炭化水素類、環状エーテル類が挙げられ、より好ましくは、エタノール、イソプロパノール、クロロホルム、テトラヒドロフランなどが挙げられる。
 還元反応の温度は、通常0℃~溶媒の沸点の範囲を使用することができ、好ましくは、室温(およそ25℃)~60℃の範囲である。
As a direct reduction method, a metal ion and a hyperbranched polymer are dissolved in a solvent and reduced with a primary or secondary alcohol such as methanol, ethanol, isopropanol, polyol, etc. Obtainable.
As the metal ion source used here, the above-mentioned metal salts can be used.
The solvent to be used is not particularly limited as long as it can dissolve the metal ion and the hyperbranched polymer at a required concentration or more. Specifically, alcohols such as methanol, ethanol, n-propanol, and isopropanol; methylene chloride Halogenated hydrocarbons such as chloroform; cyclic ethers such as tetrahydrofuran (THF), 2-methyltetrahydrofuran, tetrahydropyran; nitriles such as acetonitrile and butyronitrile; N, N-dimethylformamide (DMF), N-methyl- Amides such as 2-pyrrolidone (NMP); Sulfoxides such as dimethyl sulfoxide and the like, and mixtures of these solvents are preferable, and alcohols, halogenated hydrocarbons, and cyclic ethers are preferable, and more preferable. The Etano Le, isopropanol, chloroform, and the like and tetrahydrofuran.
The temperature of the reduction reaction can usually be in the range of 0 ° C. to the boiling point of the solvent, preferably in the range of room temperature (approximately 25 ° C.) to 60 ° C.
 他の直接還元方法としては、金属イオンとハイパーブランチポリマーを溶媒に溶解し、水素ガス雰囲気下で反応させることにより、目的とする金属微粒子複合体を得ることができる。
 ここで用いられる金属イオン源としては、上述の金属塩や、ヘキサカルボニルクロム[Cr(CO)]、ペンタカルボニル鉄[Fe(CO)]、オクタカルボニルジコバルト[Co(CO)]、テトラカルボニルニッケル[Ni(CO)]等の金属カルボニル錯体が使用できる。また金属オレフィン錯体や金属ホスフィン錯体、金属窒素錯体等の0価の金属錯体も使用できる。
 使用する溶媒としては、金属イオンとハイパーブランチポリマーを必要濃度以上に溶解できる溶媒であれば特に限定はされないが、具体的には、エタノール、n-プロパノール等のアルコール類;塩化メチレン、クロロホルム等のハロゲン化炭化水素類;テトラヒドロフラン、2-メチルテトラヒドロフラン、テトラヒドロピラン等の環状エーテル類;アセトニトリル、ブチロニトリル等のニトリル類など及びこれらの溶媒の混合液が挙げられ、好ましくは、テトラヒドロフランが挙げられる。
 金属イオンとハイパーブランチポリマーを混合する温度は、通常0℃~溶媒の沸点の範囲を使用することができる。
As another direct reduction method, a target metal fine particle composite can be obtained by dissolving a metal ion and a hyperbranched polymer in a solvent and reacting them in a hydrogen gas atmosphere.
As a metal ion source used here, the above-mentioned metal salt, hexacarbonyl chromium [Cr (CO) 6 ], pentacarbonyl iron [Fe (CO) 5 ], octacarbonyl dicobalt [Co 2 (CO) 8 ]. A metal carbonyl complex such as tetracarbonyl nickel [Ni (CO) 4 ] can be used. In addition, zero-valent metal complexes such as metal olefin complexes, metal phosphine complexes, and metal nitrogen complexes can also be used.
The solvent to be used is not particularly limited as long as it can dissolve the metal ion and the hyperbranched polymer at a required concentration or more. Specifically, alcohols such as ethanol and n-propanol; methylene chloride, chloroform and the like Halogenated hydrocarbons; cyclic ethers such as tetrahydrofuran, 2-methyltetrahydrofuran and tetrahydropyran; nitriles such as acetonitrile and butyronitrile; and a mixture of these solvents, preferably tetrahydrofuran.
The temperature at which the metal ions and the hyperbranched polymer are mixed can usually be in the range of 0 ° C. to the boiling point of the solvent.
 また、直接還元方法として、金属イオンとハイパーブランチポリマーを溶媒に溶解し、熱分解反応させることにより、目的とする金属微粒子複合体を得ることができる。
 ここで用いられる金属イオン源としては、上述の金属塩や金属カルボニル錯体やその他の0価の金属錯体、酸化銀等の金属酸化物が使用できる。
 使用する溶媒としては、金属イオンとハイパーブランチポリマーを必要濃度以上に溶解できる溶媒であれば特に限定はされないが、具体的には、メタノール、エタノール、n-プロパノール、イソプロパノール、エチレングリコール等のアルコール類;塩化メチレン、クロロホルム等のハロゲン化炭化水素類;テトラヒドロフラン(THF)、2-メチルテトラヒドロフラン、テトラヒドロピラン等の環状エーテル類;アセトニトリル、ブチロニトリル等のニトリル類;ベンゼン、トルエン等の芳香族炭化水素類など及びこれらの溶媒の混合液が挙げられ、好ましくはトルエンが挙げられる。
 金属イオンとハイパーブランチポリマーを混合する温度は、通常0℃~溶媒の沸点の範囲を使用することができ、好ましくは溶媒の沸点近傍、例えばトルエンの場合は110℃(加熱還流)である。
Further, as a direct reduction method, a target metal fine particle composite can be obtained by dissolving a metal ion and a hyperbranched polymer in a solvent and causing a thermal decomposition reaction.
As the metal ion source used here, the above metal salts, metal carbonyl complexes, other zero-valent metal complexes, and metal oxides such as silver oxide can be used.
The solvent to be used is not particularly limited as long as it can dissolve the metal ion and the hyperbranched polymer at a required concentration or more. Specifically, alcohols such as methanol, ethanol, n-propanol, isopropanol, and ethylene glycol are used. Halogenated hydrocarbons such as methylene chloride and chloroform; cyclic ethers such as tetrahydrofuran (THF), 2-methyltetrahydrofuran and tetrahydropyran; nitriles such as acetonitrile and butyronitrile; aromatic hydrocarbons such as benzene and toluene; And a mixture of these solvents, preferably toluene.
The temperature at which the metal ions and the hyperbranched polymer are mixed usually ranges from 0 ° C. to the boiling point of the solvent, preferably around the boiling point of the solvent, for example, 110 ° C. (heated reflux) in the case of toluene.
 こうして得られるハイパーブランチポリマーと金属微粒子の複合体は、再沈殿等の精製処理を経て、粉末などの固形物の形態とすることができる。 The hyperbranched polymer / metal fine particle composite thus obtained can be in the form of a solid such as a powder through a purification treatment such as reprecipitation.
[樹脂組成物]
 本発明において紡糸材料として使用する樹脂組成物における(a)熱可塑性樹脂に対する(b)ハイパーブランチポリマー及び(c)金属微粒子の配合量は、ハイパーブランチポリマーと金属微粒子より形成された複合体として、熱可塑性樹脂100質量部に対して好ましくは0.1~20質量部であり、特に1~10質量部であることが好ましい。
[Resin composition]
In the resin composition used as a spinning material in the present invention, the blending amount of (b) the hyperbranched polymer and (c) the metal fine particles with respect to the thermoplastic resin is a composite formed from the hyperbranched polymer and the metal fine particles. The amount is preferably 0.1 to 20 parts by weight, particularly 1 to 10 parts by weight, based on 100 parts by weight of the thermoplastic resin.
 本発明にかかる樹脂組成物には、熱可塑性樹脂と共に一般に添加される添加剤、例えば、熱安定剤、光安定剤、酸化防止剤、紫外線吸収剤、滑剤、離型剤、帯電防止剤、溶融弾性改質剤、加工助剤、架橋剤、補強剤、難燃剤、消泡剤、分散剤、光拡散剤、顔料、染料、蛍光染料などを併用してもよい。 In the resin composition according to the present invention, additives generally added together with the thermoplastic resin, for example, heat stabilizer, light stabilizer, antioxidant, ultraviolet absorber, lubricant, mold release agent, antistatic agent, melting Elastic modifiers, processing aids, crosslinking agents, reinforcing agents, flame retardants, antifoaming agents, dispersants, light diffusing agents, pigments, dyes, fluorescent dyes, and the like may be used in combination.
[導電性ナノファイバーの製造方法]
<紡糸工程>
 本発明の導電性ナノファイバーの製造方法における紡糸工程は、前記(a)熱可塑性樹脂、(b)ハイパーブランチポリマー、及び(c)金属微粒子を含む樹脂組成物を紡糸材料として、エレクトロスピニング法に従い、ナノファイバーを作製する工程である。実際には、前記組成物を溶媒に溶解又は分散してワニスの形態とし、これを静電紡糸してナノファイバーを作製する工程である。
[Production Method of Conductive Nanofiber]
<Spinning process>
The spinning step in the method for producing a conductive nanofiber of the present invention is performed according to an electrospinning method using the resin composition containing (a) thermoplastic resin, (b) hyperbranched polymer, and (c) metal fine particles as a spinning material. This is a process for producing nanofibers. In practice, the composition is dissolved or dispersed in a solvent to form a varnish, which is electrospun to produce nanofibers.
 静電紡糸時に使用される前記溶媒としては、熱可塑性樹脂、並びにハイパーブランチポリマー及び金属微粒子を溶解・分散することができるものであればよく、例えばアセトン、エチルメチルケトン(MEK)、イソブチルメチルケトン(MIBK)、クロロホルム、テトラヒドロフラン(THF)、1,4-ジオキサン、トルエン、キシレン、N,N-ジメチルホルムアミド(DMF)、N,N-ジメチルアセトアミド(DMAc)、N-メチル-2-ピロリドン(NMP)、シクロヘキサノン、プロピレングリコールモノメチルエーテル(PGME)、プロピレングリコールモノメチルエーテルアセテート(PGMEA)、プロピレングリコールモノエチルエーテル、乳酸エチル、ジエチレングリコールモノエチルエーテル、ブチルセロソルブ、エタノール、ヘキサフルオロイソプロパノール(HFIP)、γ-ブチロラクトン、ギ酸、酢酸、トリフルオロ酢酸等が挙げられる。これら溶媒は単独で使用してもよく、2種類以上の溶媒を混合してもよい。
 また上記溶媒に溶解又は分散させる濃度は任意であるが、熱可塑性樹脂、ハイパーブランチポリマー及び金属微粒子と溶媒の総質量(合計質量)に対して、熱可塑性樹脂、ハイパーブランチポリマー及び金属微粒子の濃度(固形分濃度とも称する)は1~50質量%であり、好ましくは10~40質量%であり、より好ましくは20~30質量%である。
The solvent used for the electrostatic spinning may be any solvent that can dissolve and disperse the thermoplastic resin, the hyperbranched polymer, and the metal fine particles. For example, acetone, ethyl methyl ketone (MEK), isobutyl methyl ketone (MIBK), chloroform, tetrahydrofuran (THF), 1,4-dioxane, toluene, xylene, N, N-dimethylformamide (DMF), N, N-dimethylacetamide (DMAc), N-methyl-2-pyrrolidone (NMP) ), Cyclohexanone, propylene glycol monomethyl ether (PGME), propylene glycol monomethyl ether acetate (PGMEA), propylene glycol monoethyl ether, ethyl lactate, diethylene glycol monoethyl ether, butyl cello Lube, ethanol, hexafluoroisopropanol (HFIP), .gamma.-butyrolactone, formic acid, acetic acid, trifluoroacetic acid and the like. These solvents may be used alone, or two or more kinds of solvents may be mixed.
The concentration of the thermoplastic resin, the hyperbranched polymer, and the metal microparticles is arbitrary with respect to the total mass (total mass) of the thermoplastic resin, the hyperbranched polymer, and the metal microparticles and the solvent. (Also referred to as solid content concentration) is 1 to 50% by mass, preferably 10 to 40% by mass, and more preferably 20 to 30% by mass.
 静電紡糸には、市販のエレクトロスピニング装置を用いることができる。
 紡糸条件は適宜選択され、例えば、ノズルの長さ:3~5cm、紡糸距離(電極-コレクター間距離):5~30cm、紡糸量:0.1~5.0mL/時間、電極間の印加電圧:5~40kV、である。
A commercially available electrospinning apparatus can be used for the electrospinning.
The spinning conditions are appropriately selected. For example, nozzle length: 3 to 5 cm, spinning distance (electrode-collector distance): 5 to 30 cm, spinning amount: 0.1 to 5.0 mL / hour, applied voltage between electrodes : 5 to 40 kV.
 上記のようにして得られるナノファイバーは、好ましくは平均直径が50~2,000nmであり、より好ましくは100~1,000nmである。 The nanofibers obtained as described above preferably have an average diameter of 50 to 2,000 nm, more preferably 100 to 1,000 nm.
<めっき工程>
 本発明の導電性ナノファイバーの製造方法におけるめっき工程は、前述の<紡糸工程>で作製したナノファイバーを無電解めっき処理する工程である。
 なお前述の紡糸工程にて作製されたナノファイバーは、繊維表面部(界面)に前記ハイパーブランチポリマー及び金属微粒子(これらから形成された複合体)が存在した状態にある。このため、エッチング、コンディショニング、キャタライジング、アクセラレーティングといった各処理からなるめっき前処理を必要とすることなく、エレクトロスピニング法によって得られたナノファイバーをそのまま無電解めっき処理に供することができる。
 無電解めっき処理(工程)は特に限定されず、一般的に知られている何れの無電解めっき処理にて行うことができ、例えば、従来一般に知られている無電解めっき液を用い、上述の紡糸工程で得られたナノファイバーを該めっき液(浴)に浸漬する方法が一般的である。
<Plating process>
The plating step in the method for producing conductive nanofibers of the present invention is a step of electroless plating treatment of the nanofibers produced in the above-described <spinning step>.
The nanofibers produced by the spinning process described above are in a state where the hyperbranched polymer and metal fine particles (composites formed from these) are present on the fiber surface (interface). For this reason, the nanofiber obtained by the electrospinning method can be used for the electroless plating process as it is, without requiring the plating pretreatment which consists of each process of etching, conditioning, catalyzing, and acceleration.
The electroless plating treatment (process) is not particularly limited, and can be performed by any of the generally known electroless plating treatments. A method of immersing nanofibers obtained in the spinning process in the plating solution (bath) is common.
 前記無電解めっき液は、主として金属イオン(金属塩)、錯化剤、還元剤を主に含有し、その他用途に合わせてpH調整剤、pH緩衝剤、反応促進剤(第二錯化剤)、安定剤、界面活性剤(めっき膜への光沢付与用途、被処理面の濡れ性改善用途など)などが適宜含まれてなる。
 ここで無電解めっきにより形成される金属めっき膜に用いられる金属としては、鉄、コバルト、ニッケル、銅、パラジウム、銀、スズ、白金、金及びそれらの合金が挙げられ、目的に応じて適宜選択される。
 また上記錯化剤、還元剤についても金属イオンに応じて適宜選択すればよい。
 また無電解めっき液は市販のめっき液を使用してもよく、例えばメルテックス(株)製の無電解ニッケルめっき薬品(メルプレート(登録商標)NIシリーズ)、無電解銅めっき薬品(メルプレート(登録商標)CUシリーズ);奥野製薬工業(株)製の無電解ニッケルめっき液(ICPニコロン(登録商標)シリーズ)、無電解銅めっき液(OPC-700無電解銅M-K、ATSアドカッパーIW)、無電解スズめっき液(サブスターSN-5)、無電解金めっき液(フラッシュゴールド330、セルフゴールドOTK-IT);小島化学薬品(株)製の無電解パラジウムめっき液(パレットII)、無電解金めっき液(ディップGシリーズ、NCゴールドシリーズ);佐々木化学薬品(株)製の無電解銀めっき液(エスダイヤAG-40);日本カニゼン(株)製の無電解ニッケルめっき液(シューマー(登録商標)シリーズ、シューマー(登録商標)カニブラック(登録商標)シリーズ)、無電解パラジウムめっき液(S-KPD);ダウケミカル社製の無電解銅めっき液(キューポジット(登録商標)カッパーミックスシリーズ、サーキュポジット(登録商標)シリーズ)、無電解パラジウムめっき液(パラマース(登録商標)シリーズ)、無電解ニッケルめっき液(デュラポジット(登録商標)シリーズ)、無電解金めっき液(オーロレクトロレス(登録商標)シリーズ)、無電解スズめっき液(ティンポジット(登録商標)シリーズ);上村工業(株)製の無電解銅めっき液(スルカップ(登録商標)ELC-SP、同PSY、同PCY、同PGT、同PSR、同PEA);アトテックジャパン(株)製の無電解銅めっき液(プリントガント(登録商標)PV)等を好適に用いることができる。
The electroless plating solution mainly contains a metal ion (metal salt), a complexing agent, and a reducing agent, and a pH adjuster, a pH buffering agent, a reaction accelerator (second complexing agent) according to other uses. , Stabilizers, surfactants (use for imparting gloss to the plating film, use for improving wettability of the surface to be treated, etc.) and the like are appropriately included.
Examples of the metal used in the metal plating film formed by electroless plating include iron, cobalt, nickel, copper, palladium, silver, tin, platinum, gold, and alloys thereof, and are appropriately selected according to the purpose. Is done.
The complexing agent and the reducing agent may be appropriately selected according to the metal ion.
The electroless plating solution may be a commercially available plating solution. For example, an electroless nickel plating chemical (Melplate (registered trademark) NI series) manufactured by Meltex Co., Ltd., an electroless copper plating chemical (Melplate ( (Registered trademark) CU series); Electroless nickel plating solution (ICP Nicolon (registered trademark) series) manufactured by Okuno Pharmaceutical Industry Co., Ltd., Electroless copper plating solution (OPC-700 Electroless copper MK, ATS Addcopper IW) ), Electroless tin plating solution (Substar SN-5), electroless gold plating solution (flash gold 330, self gold OTK-IT); electroless palladium plating solution (pallet II) manufactured by Kojima Chemical Co., Ltd. Electroless gold plating solution (Dip G series, NC gold series); Electroless silver plating solution manufactured by Sasaki Chemical Co., Ltd. ); Electroless nickel plating solution (Schumer (registered trademark) series, Schumer (registered trademark) crab black (registered trademark) series), Electroless palladium plating solution (S-KPD) manufactured by Nippon Kanisen Co., Ltd .; Dow Chemical Company Electroless copper plating solution (Cuposit (registered trademark) Coppermix series, Circuposit (registered trademark) series), Electroless palladium plating solution (Paramars (registered trademark) series), Electroless nickel plating solution (Duraposit ( (Registered trademark) series), electroless gold plating solution (Aurolectroles (registered trademark) series), electroless tin plating solution (Tinposito (registered trademark) series); electroless copper plating solution manufactured by Uemura Kogyo Co., Ltd. ( Surcup (registered trademark) ELC-SP, PSY, PCY, PGT, PSR, P A); Atotech Japan Co., Ltd. electroless copper plating solution (Printgant (R) PV) and the like can be suitably used.
 上記無電解めっき工程は、めっき浴の温度、pH、浸漬時間、金属イオン濃度、撹拌の有無や撹拌速度、空気・酸素の供給の有無や供給速度等を調節することにより、金属被膜の形成速度や膜厚を制御することができる。
 得られるめっき膜厚は特に限定されないが、一般に10~500nm程度、例えば30~300nmとすることができる。
The electroless plating process adjusts the temperature, pH, immersion time, metal ion concentration, presence / absence of stirring, stirring speed, presence / absence of supply of air / oxygen, supply speed, etc. And the film thickness can be controlled.
The thickness of the plating film to be obtained is not particularly limited, but can generally be about 10 to 500 nm, for example, 30 to 300 nm.
 このようにして作製される本発明の導電性ナノファイバーは、集合体形状(例えばマット状)を有することができる。
 また導電性ナノファイバー集合体は、体積抵抗値が好ましくは1×10Ω・cm以下であり、1×10Ω・cm以下であることが望ましい。
Thus, the electroconductive nanofiber of this invention produced can have an aggregate shape (for example, mat shape).
Further, the conductive nanofiber aggregate preferably has a volume resistance value of 1 × 10 4 Ω · cm or less, and desirably 1 × 10 2 Ω · cm or less.
 以下、実施例を挙げて、本発明をより具体的に説明するが、本発明は下記の実施例に限定されるものではない。
 なお、実施例において、試料の調製及び物性の分析に用いた装置及び条件は、以下の通りである。
EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated more concretely, this invention is not limited to the following Example.
In the examples, the apparatus and conditions used for sample preparation and physical property analysis are as follows.
(1)GPC(ゲル浸透クロマトグラフィー)
 装置:東ソー(株)製 HLC-8220GPC
 カラム:昭和電工(株)製 Shodex(登録商標) KF-804L + KF-803L
 カラム温度:40℃
 溶媒:テトラヒドロフラン
 検出器:UV(254nm)、RI
(2)H NMRスペクトル
 装置:日本電子(株)製 JNM-L400
 溶媒:CDCl
 内部標準:テトラメチルシラン(0.00ppm)
(3)13C NMRスペクトル
 装置:日本電子(株)製 JNM-ECA700
 溶媒:CDCl
 緩和試薬:トリスアセチルアセトナートクロム(Cr(acac)
 基準:CDCl(77.0ppm)
(4)ICP発光分析(誘導結合プラズマ発光分析)
 装置:(株)島津製作所製 ICPM-8500
(5)TEM(透過型電子顕微鏡)画像
 装置:(株)日立ハイテクノロジーズ製 H-8000
(6)エレクトロスピニング
 インフュージョンポンプ(シリンジポンプ):(有)メルクエスト製 FP-1000
 高圧電源:松定プレシジョン(株)製 HR-40R0.75
(7)SEM(走査型電子顕微鏡)画像
 装置:(株)キーエンス製 3Dリアルサーフェスビュー顕微鏡 VE-9800
(8)体積抵抗値測定
 装置:(株)三菱化学アナリテック製 ロレスタ(登録商標)AX MCP-T370
(1) GPC (gel permeation chromatography)
Equipment: HLC-8220GPC manufactured by Tosoh Corporation
Column: Shodex (registered trademark) KF-804L + KF-803L manufactured by Showa Denko KK
Column temperature: 40 ° C
Solvent: Tetrahydrofuran Detector: UV (254 nm), RI
(2) 1 H NMR spectrum apparatus: JNM-L400 manufactured by JEOL Ltd.
Solvent: CDCl 3
Internal standard: Tetramethylsilane (0.00ppm)
(3) 13 C NMR spectrum apparatus: JNM-ECA700 manufactured by JEOL Ltd.
Solvent: CDCl 3
Relaxing reagent: trisacetylacetonatochrome (Cr (acac) 3 )
Standard: CDCl 3 (77.0 ppm)
(4) ICP emission analysis (inductively coupled plasma emission analysis)
Equipment: ICPM-8500, manufactured by Shimadzu Corporation
(5) TEM (Transmission Electron Microscope) image device: H-8000 manufactured by Hitachi High-Technologies Corporation
(6) Electrospinning infusion pump (syringe pump): (Yes) FP-1000 manufactured by Melquest
High voltage power supply: HR-40R0.75 manufactured by Matsusada Precision Co., Ltd.
(7) SEM (Scanning Electron Microscope) Image Device: 3D Real Surface View Microscope VE-9800 manufactured by Keyence Corporation
(8) Volume resistance measurement device: Loresta (registered trademark) AX MCP-T370 manufactured by Mitsubishi Chemical Analytech Co., Ltd.
 また使用した略号は以下のとおりである。
HPS:ハイパーブランチポリスチレン[日産化学工業(株)製 ハイパーテック(登録商標)HPS-200]
IPA:2-プロパノール
IPE:ジイソプロピルエーテル
PVDF:ポリフッ化ビニリデン[アルドリッチ社製 製品番号:427152、Mw(GPC):180,000、Mn:71,000]
PVDF/HFP:フッ化ビニリデン-ヘキサフルオロプロピレン共重合体[アルドリッチ社製 製品番号:427160、Mw(GPC):400,000、Mn:130,000]
PU:ポリウレタン[BASFジャパン(株)製 エラストラン(登録商標)ET385、Mw(GPC):146,000]
DMAc:N,N-ジメチルアセトアミド
DMF:N,N-ジメチルホルムアミド
THF:テトラヒドロフラン
The abbreviations used are as follows.
HPS: Hyperbranched polystyrene [Hypertech (registered trademark) HPS-200 manufactured by Nissan Chemical Industries, Ltd.]
IPA: 2-propanol IPE: diisopropyl ether PVDF: polyvinylidene fluoride [manufactured by Aldrich, product number: 427152, Mw (GPC): 180,000, Mn: 71,000]
PVDF / HFP: Vinylidene fluoride-hexafluoropropylene copolymer [manufactured by Aldrich, product number: 427160, Mw (GPC): 400,000, Mn: 130,000]
PU: Polyurethane [Elastolan (registered trademark) ET385, Mw (GPC): 146,000, manufactured by BASF Japan Ltd.]
DMAc: N, N-dimethylacetamide DMF: N, N-dimethylformamide THF: tetrahydrofuran
[製造例1]HPS-Clの製造
Figure JPOXMLDOC01-appb-C000012
 500mLの反応フラスコに、塩化スルフリル[キシダ化学(株)製]27g及びクロロホルム50gを仕込み、撹拌して均一に溶解させた。この溶液を窒素気流下0℃まで冷却した。
 別の300mLの反応フラスコに、ジチオカルバメート基を分子末端に有するハイパーブランチポリマーHPS15g及びクロロホルム150gを仕込み、窒素気流下均一になるまで撹拌した。
 前述の0℃に冷却されている塩化スルフリル/クロロホルム溶液中に、窒素気流下、HPS/クロロホルム溶液が仕込まれた前記300mLの反応フラスコから、送液ポンプを用いて、該溶液を反応液の温度が-5~5℃となるように60分間かけて加えた。添加終了後、反応液の温度を-5~5℃に保持しながら6時間撹拌した。
 さらにこの反応液へ、シクロヘキセン[東京化成工業(株)製]16gをクロロホルム50gに溶かした溶液を、反応液の温度が-5~5℃となるように加えた。添加終了後、この反応液をIPA1,200gに添加してポリマーを沈殿させた。この沈殿をろ取して得られた白色粉末をクロロホルム100gに溶解し、これをIPA500gに添加してポリマーを再沈殿させた。この沈殿物を減圧ろ過し、真空乾燥して、塩素原子を分子末端に有するハイパーブランチポリマー(HPS-Cl)8.5gを白色粉末として得た(収率99%)。
 得られたHPS-ClのH NMRスペクトルを図1に示す。ジチオカルバメート基由来のピーク(4.0ppm、3.7ppm)が消失していることから、得られたHPS-Clは、HPS分子末端のジチオカルバメート基がほぼ全て塩素原子に置換されていることが明らかとなった。また、得られたHPS-ClのGPCによるポリスチレン換算で測定される重量平均分子量Mwは14,000、分散度Mw/Mnは2.9であった。
[Production Example 1] Production of HPS-Cl
Figure JPOXMLDOC01-appb-C000012
In a 500 mL reaction flask, 27 g of sulfuryl chloride [manufactured by Kishida Chemical Co., Ltd.] and 50 g of chloroform were charged and stirred to dissolve uniformly. The solution was cooled to 0 ° C. under a nitrogen stream.
In another 300 mL reaction flask, 15 g of hyperbranched polymer HPS having a dithiocarbamate group at the molecular end and 150 g of chloroform were charged and stirred under nitrogen flow until uniform.
From the 300 mL reaction flask charged with the HPS / chloroform solution in a sulfuryl chloride / chloroform solution cooled to 0 ° C. in a nitrogen stream, the solution was cooled to the temperature of the reaction solution. Was added over 60 minutes so that the temperature became -5 to 5 ° C. After completion of the addition, the reaction solution was stirred for 6 hours while maintaining the temperature at -5 to 5 ° C.
Further, a solution prepared by dissolving 16 g of cyclohexene [manufactured by Tokyo Chemical Industry Co., Ltd.] in 50 g of chloroform was added to this reaction solution so that the temperature of the reaction solution became −5 to 5 ° C. After completion of the addition, this reaction solution was added to 1,200 g of IPA to precipitate a polymer. The white powder obtained by filtering this precipitate was dissolved in 100 g of chloroform and added to 500 g of IPA to reprecipitate the polymer. The precipitate was filtered under reduced pressure and vacuum dried to obtain 8.5 g of hyperbranched polymer (HPS-Cl) having a chlorine atom at the molecular end as a white powder (yield 99%).
The 1 H NMR spectrum of the obtained HPS-Cl is shown in FIG. Since the peak (4.0 ppm, 3.7 ppm) derived from the dithiocarbamate group disappeared, it was confirmed that the obtained HPS-Cl had almost all the dithiocarbamate groups at the HPS molecule terminals substituted with chlorine atoms. It became clear. Moreover, the weight average molecular weight Mw measured by polystyrene conversion by GPC of the obtained HPS-Cl was 14,000, and the dispersity Mw / Mn was 2.9.
[製造例2]HPS-N(Me)OctClの製造
Figure JPOXMLDOC01-appb-C000013
 凝縮器を設置した300mLの反応フラスコに、製造例1で製造したHPS-Cl4.6g(30mmol)及びクロロホルム15gを仕込み、均一になるまで撹拌した。この溶液へ、ジメチルオクチルアミン[花王(株)製 ファーミン(登録商標)DM0898]5.0g(31.5mmol)をクロロホルム7.5gに溶解させた溶液を加え、さらにIPA7.5gを加えた。この混合物を、窒素雰囲気下65℃で40時間撹拌した。
 液温30℃まで冷却後、溶媒を留去した。得られた残渣を、クロロホルム60gに溶解し、この溶液をIPE290gに添加して再沈精製した。析出したポリマーを減圧ろ過し、50℃で真空乾燥して、ジメチルオクチルアンモニウム基を分子末端に有するハイパーブランチポリマー(HPS-N(Me)OctCl)9.3gを白色粉末として得た。
 得られたHPS-N(Me)OctClの13C NMRスペクトルを図2に示す。ベンゼン環のピークと、オクチル基末端のメチル基のピークから、得られたHPS-N(Me)OctClは、HPS-Cl分子末端の塩素原子がほぼ定量的にアンモニウム基に置換されていることが明らかとなった。また、HPS-ClのMw(14,000)及びアンモニウム基導入率(100%)から算出されるHPS-N(Me)OctClの重量平均分子量Mwは28,000となった。
[Production Example 2] Production of HPS-N (Me) 2 OctCl
Figure JPOXMLDOC01-appb-C000013
A 300 mL reaction flask equipped with a condenser was charged with 4.6 g (30 mmol) of HPS-Cl produced in Production Example 1 and 15 g of chloroform, and stirred until uniform. To this solution, a solution of 5.0 g (31.5 mmol) of dimethyloctylamine [Farmin (registered trademark) DM0898 manufactured by Kao Corporation] dissolved in 7.5 g of chloroform was added, and 7.5 g of IPA was further added. The mixture was stirred at 65 ° C. for 40 hours under a nitrogen atmosphere.
After cooling to a liquid temperature of 30 ° C., the solvent was distilled off. The obtained residue was dissolved in 60 g of chloroform, and this solution was added to 290 g of IPE for purification by reprecipitation. The precipitated polymer was filtered under reduced pressure and vacuum dried at 50 ° C. to obtain 9.3 g of a hyperbranched polymer (HPS-N (Me) 2 OctCl) having a dimethyloctylammonium group at the molecular end as a white powder.
The 13 C NMR spectrum of the resulting HPS-N (Me) 2 OctCl is shown in FIG. The HPS-N (Me) 2 OctCl obtained from the peak of the benzene ring and the peak of the methyl group at the end of the octyl group shows that the chlorine atom at the end of the HPS-Cl molecule is almost quantitatively substituted with an ammonium group. Became clear. The weight average molecular weight Mw of HPS-N (Me) 2 OctCl calculated from Mw (14,000) of HPS-Cl and ammonium group introduction rate (100%) was 28,000.
[製造例3]Pd[HPS-N(Me)OctCl]の製造
 凝縮器を設置した300mLの反応フラスコに、酢酸パラジウム[川研ファインケミカル(株)製]2.1g及びクロロホルム20gを仕込み、均一になるまで撹拌した。この溶液へ、製造例2で製造したHPS-N(Me)OctCl9.0gをクロロホルム135gに溶解させた溶液を、滴下ロートを使用して加えた。この滴下ロート内を、エタノール45gを使用して前記反応フラスコへ洗い込んだ。この混合物を、60℃で8時間撹拌した。
 液温30℃まで冷却後、この反応混合物を0℃のIPE2,000gに添加して再沈精製した。析出したポリマーを減圧ろ過し、60℃で真空乾燥して、アンモニウム基を分子末端に有するハイパーブランチポリマーとPd粒子の複合体(Pd[HPS-N(Me)OctCl])9.8gを黒色粉末として得た。
 ICP発光分析の結果から、得られたPd[HPS-N(Me)OctCl]のPd含有量は10質量%であった。また、TEM(透過型電子顕微鏡)画像から、そのPd粒子径はおよそ2~4nmであった。
[Production Example 3] Production of Pd [HPS-N (Me) 2 OctCl] A 300 mL reaction flask equipped with a condenser was charged with 2.1 g of palladium acetate [manufactured by Kawaken Fine Chemical Co., Ltd.] and 20 g of chloroform. Stir until. To this solution, a solution prepared by dissolving 9.0 g of HPS-N (Me) 2 OctCl prepared in Production Example 2 in 135 g of chloroform was added using a dropping funnel. The dropping funnel was washed into the reaction flask using 45 g of ethanol. The mixture was stirred at 60 ° C. for 8 hours.
After cooling to a liquid temperature of 30 ° C., the reaction mixture was added to 2,000 g of IPE at 0 ° C. and purified by reprecipitation. The precipitated polymer was filtered under reduced pressure and vacuum dried at 60 ° C., and 9.8 g of a complex of a hyperbranched polymer and Pd particles having an ammonium group at the molecular end (Pd [HPS-N (Me) 2 OctCl]) was blackened. Obtained as a powder.
From the results of ICP emission analysis, the Pd content of the obtained Pd [HPS-N (Me) 2 OctCl] was 10% by mass. Further, from the TEM (transmission electron microscope) image, the Pd particle diameter was about 2 to 4 nm.
[製造例4]HPS-NOctClの製造
Figure JPOXMLDOC01-appb-C000014
 還流塔を付した100mLの反応フラスコに、製造例1で製造したHPS-Cl4.6g(30mmol)、トリオクチルアミン[純正化学(株)製]10.6g(30mmol)及びクロロホルム45gを仕込み、窒素置換した。この混合物を、撹拌しながら48時間加熱還流した。
 液温30℃まで冷却後、溶媒を留去した。得られた残渣を、クロロホルム150gに溶解し、0℃に冷却した。この溶液を0℃のIPE3,000gに添加して再沈精製した。析出したポリマーを減圧ろ過し、40℃で真空乾燥して、トリオクチルアンモニウム基を分子末端に有するハイパーブランチポリマー(HPS-NOctCl)9.6gを淡黄色粉末として得た。
 得られたHPS-NOctClの13C NMRスペクトルを図3に示す。塩素原子が結合したメチレン基と、アンモニウム基が結合したメチレン基のピークから、得られたHPS-NOctClは、HPS-Cl分子末端の塩素原子の71%がアンモニウム基に置換されていることが明らかとなった。また、HPS-ClのMw(14,000)及びアンモニウム基導入率(71%)から算出されるHPS-NOctClの重量平均分子量Mwは37,000となった。
[Production Example 4] Production of HPS-NOct 3 Cl
Figure JPOXMLDOC01-appb-C000014
A 100 mL reaction flask equipped with a reflux tower was charged with 4.6 g (30 mmol) of HPS-Cl produced in Production Example 1, 10.6 g (30 mmol) of trioctylamine [manufactured by Junsei Chemical Co., Ltd.] and 45 g of chloroform, and nitrogen was added. Replaced. The mixture was heated to reflux with stirring for 48 hours.
After cooling to a liquid temperature of 30 ° C., the solvent was distilled off. The obtained residue was dissolved in 150 g of chloroform and cooled to 0 ° C. This solution was added to 3,000 g of IPE at 0 ° C. for reprecipitation purification. The precipitated polymer was filtered under reduced pressure and vacuum dried at 40 ° C. to obtain 9.6 g of a hyperbranched polymer (HPS-NOct 3 Cl) having a trioctylammonium group at the molecular end as a pale yellow powder.
The 13 C NMR spectrum of the resulting HPS-NOct 3 Cl is shown in FIG. From the peak of the methylene group to which the chlorine atom is bonded and the peak of the methylene group to which the ammonium group is bonded, the obtained HPS-NOct 3 Cl has 71% of the chlorine atom at the end of the HPS-Cl molecule replaced with the ammonium group. Became clear. The weight average molecular weight Mw of HPS-NOct 3 Cl calculated from Mw (14,000) of HPS-Cl and ammonium group introduction rate (71%) was 37,000.
[製造例5]Pd[HPS-NOctCl]の製造
 1Lの二つ口フラスコに、酢酸パラジウム[川研ファインケミカル(株)製]4.3g及びクロロホルム200gを仕込み、均一になるまで撹拌した。この溶液へ、製造例4に従って製造したHPS-NOctCl18.0gをクロロホルム200gに溶解させた溶液を、滴下ロートを使用して加えた。この滴下ロート内を、エタノール100gを使用して前記反応フラスコへ洗い込んだ。この混合物を60℃で17時間撹拌した。
 液温30℃まで冷却後、溶媒を留去した。得られた残渣をTHF300gに溶解し、0℃に冷却した。この溶液を0℃のIPE6,000gに添加して再沈精製した。析出したポリマーを減圧ろ過し、60℃で真空乾燥して、アンモニウム基を分子末端に有するハイパーブランチポリマーとPd粒子の複合体(Pd[HPS-NOctCl])19.9gを黒色粉末として得た。
 ICP発光分析の結果から、得られたPd[HPS-NOctCl]のPd含有量は11質量%であった。また、TEM(透過型電子顕微鏡)画像から、そのPd粒子径はおよそ2~4nmであった。
[Production Example 5] Production of Pd [HPS-NOct 3 Cl] Into a 1 L two-necked flask, 4.3 g of palladium acetate [manufactured by Kawaken Fine Chemical Co., Ltd.] and 200 g of chloroform were charged and stirred until uniform. To this solution, a solution obtained by dissolving 18.0 g of HPS-NOct 3 Cl produced according to Production Example 4 in 200 g of chloroform was added using a dropping funnel. The dropping funnel was washed into the reaction flask using 100 g of ethanol. The mixture was stirred at 60 ° C. for 17 hours.
After cooling to a liquid temperature of 30 ° C., the solvent was distilled off. The obtained residue was dissolved in 300 g of THF and cooled to 0 ° C. This solution was added to 6,000 g of IPE at 0 ° C. for reprecipitation purification. The precipitated polymer was filtered under reduced pressure and vacuum dried at 60 ° C. to obtain 19.9 g of a complex of a hyperbranched polymer having an ammonium group at the molecular end and Pd particles (Pd [HPS-NOct 3 Cl]) as a black powder. It was.
From the result of ICP emission analysis, the Pd content of the obtained Pd [HPS-NOct 3 Cl] was 11% by mass. Further, from the TEM (transmission electron microscope) image, the Pd particle diameter was about 2 to 4 nm.
[参考例1]無電解銅めっき液Aの調製
 1Lのフラスコに、メルプレート(登録商標、以下同様)CU-390A[メルテックス(株)製]80mL、メルプレートCU-390B[メルテックス(株)製]80mL及びメルプレートCU-390C[メルテックス(株)製]20mLを仕込み、さらに純水を加えて溶液の総量を1Lとした。この溶液へ界面活性剤としてアデカ(登録商標)プルロニックL-34[(株)ADEKA製]0.7gを加えて、無電解銅めっき液A(Cu-A)とした。
[Reference Example 1] Preparation of electroless copper plating solution A In a 1 L flask, Melplate (registered trademark, hereinafter the same) CU-390A [Meltex Co., Ltd.] 80 mL, Melplate CU-390B [Meltex Co., Ltd. )] 80 mL and Melplate CU-390C [Meltex Co., Ltd.] 20 mL were charged, and pure water was added to make the total volume of the solution 1 L. To this solution, 0.7 g of Adeka (registered trademark) Pluronic L-34 [manufactured by ADEKA Co., Ltd.] was added as a surfactant to obtain an electroless copper plating solution A (Cu-A).
[参考例2]無電解銅めっき液Bの調製
 1Lのフラスコに、キューポジット(登録商標、以下同様)カッパーミックス328A[ダウケミカル社製]125mL、キューポジットカッパーミックス328L[ダウケミカル社製]125mL及びキューポジットカッパーミックス328C[ダウケミカル社製]15mLを仕込み、さらに純水を加えて溶液の総量を1Lとした。この溶液へ界面活性剤としてアデカ(登録商標)プルロニックL-34[(株)ADEKA製]0.7gを加えて、無電解銅めっき液B(Cu-B)とした。
[Reference Example 2] Preparation of electroless copper plating solution B In a 1 L flask, Cuposit (registered trademark, the same applies below) Copper Mix 328A (Dow Chemical Co.) 125 mL, Cuposit Copper Mix 328L (Dow Chemical Co.) 125 mL And 15 mL of Cuposit Copper Mix 328C [manufactured by Dow Chemical Co., Ltd.] were added, and pure water was added to make the total amount of the solution 1 L. To this solution, 0.7 g of Adeka (registered trademark) Pluronic L-34 [manufactured by ADEKA Co., Ltd.] was added as a surfactant to obtain an electroless copper plating solution B (Cu-B).
[参考例3]無電解銅めっき液Cの調製
 500mLのフラスコに、イオン交換水200mL、スルカップ(登録商標)PSY-1A[上村工業(株)製]25mL、スルカップ(登録商標)PSY-1B[上村工業(株)製]10mL及び18.5質量%ホルムアルデヒド水溶液0.5mLを仕込み、さらにイオン交換水を加えて溶液の総量を500mLとした。この溶液へ界面活性剤としてアデカ(登録商標)プルロニックL-34[(株)ADEKA製]0.05gを加えて、無電解銅めっき液C(Cu-C)とした。
[Reference Example 3] Preparation of electroless copper plating solution C In a 500 mL flask, ion-exchanged water 200 mL, Sulcup (registered trademark) PSY-1A [manufactured by Uemura Kogyo Co., Ltd.] 25 mL, Sulcup (registered trademark) PSY-1B [ Uemura Kogyo Co., Ltd.] 10 mL and 18.5 mass% formaldehyde aqueous solution 0.5 mL were charged, and ion exchange water was further added to make the total amount of the solution 500 mL. To this solution, 0.05 g of Adeka (registered trademark) Pluronic L-34 [manufactured by ADEKA Co., Ltd.] was added as a surfactant to obtain an electroless copper plating solution C (Cu-C).
[参考例4]無電解ニッケルめっき液Aの調製
 1Lのフラスコに、メルプレート(登録商標、以下同様)NI-6522LF1[メルテックス(株)製]50mL、メルプレートNI-6522LF2[メルテックス(株)製]150mL及びメルプレートNI-6522LFアディティブ[メルテックス(株)製]5mLを仕込み、さらに純水を加えて溶液の総量を1Lとした。この溶液を無電解ニッケルめっき液A(Ni-A)とした。
[Reference Example 4] Preparation of electroless nickel plating solution A In a 1 L flask, Melplate (registered trademark, hereinafter the same) NI-6522LF1 [Meltex Co., Ltd.] 50 mL, Melplate NI-6522LF2 [Meltex Co., Ltd. )] 150 mL and Melplate NI-6522LF additive [Meltex Co., Ltd.] 5 mL were charged, and pure water was added to make the total volume of the solution 1 L. This solution was designated as an electroless nickel plating solution A (Ni-A).
[参考例5]無電解ニッケルめっき液Bの調製
 200mLのフラスコに、カニゼン(登録商標)ブルーシューマー[日本カニゼン(株)製]70mLを仕込み、さらに純水を加えて溶液の総量を100mLとした。この溶液へ界面活性剤として塩化ベンザルコニウム[東京化成工業(株)製]0.01gを加えて、無電解ニッケルめっき液B(Ni-B)とした。
[Reference Example 5] Preparation of electroless nickel plating solution B To a 200 mL flask, 70 mL of Kanisen (registered trademark) Blue Schumer [manufactured by Nippon Kanisen Co., Ltd.] was added, and pure water was added to make the total amount of the solution 100 mL. . To this solution, 0.01 g of benzalkonium chloride [manufactured by Tokyo Chemical Industry Co., Ltd.] was added as a surfactant to obtain an electroless nickel plating solution B (Ni-B).
[参考例6]無電解スズめっき液Aの調製
 ティンポジット(登録商標)LT-34C[ダウケミカル社製]を、無電解スズめっき液A(Sn-A)とした。
[Reference Example 6] Preparation of electroless tin plating solution A Tinposit (registered trademark) LT-34C [manufactured by Dow Chemical Co., Ltd.] was used as electroless tin plating solution A (Sn-A).
[実施例1]
 PVDF100質量部、製造例3に従って製造したPd[HPS-N(Me)OctCl]5質量部(Pdとして0.5質量部)、及びDMF/アセトン混合液(質量比9:1)300質量部を均一に混合し、樹脂組成物(紡糸材料)を調製した。
 この組成物を、エレクトロスピニング装置を用いて表1に記載の条件で紡糸し、マット上のナノファイバーの集合体(以下、ナノファイバーマットと称する)を作製した。得られたナノファイバーマットをSEMで観察し、ナノファイバー径(平均直径)を算出した。ナノファイバー径は、異なる5箇所のSEM画像から無作為に選択した100本のナノファイバーの直径を計測し、その平均値とした。結果を表1に示す。
 次に、このナノファイバーマットを、表1に記載のめっき液に表1に記載の時間浸漬した。その後取り出したナノファイバーマットを水洗し、風乾した。得られた無電解めっき処理したナノファイバーマットのナノファイバー径を、上記同様に算出した。また、ナノファイバーマットの体積抵抗値を測定した。結果を表1に併せて示す。また、得られた無電解めっき処理したナノファイバーマットのSEM画像を図4に示す。
[Example 1]
100 parts by mass of PVDF, 5 parts by mass of Pd [HPS-N (Me) 2 OctCl] produced according to Production Example 3 (0.5 parts by mass as Pd), and 300 parts by mass of a DMF / acetone mixed liquid (mass ratio 9: 1) Were uniformly mixed to prepare a resin composition (spun material).
This composition was spun under the conditions shown in Table 1 using an electrospinning apparatus to produce an assembly of nanofibers on the mat (hereinafter referred to as nanofiber mat). The obtained nanofiber mat was observed with an SEM, and the nanofiber diameter (average diameter) was calculated. The nanofiber diameter was determined by measuring the diameters of 100 nanofibers randomly selected from five different SEM images, and taking the average value. The results are shown in Table 1.
Next, this nanofiber mat was immersed in the plating solution shown in Table 1 for the time shown in Table 1. Thereafter, the nanofiber mat taken out was washed with water and air-dried. The nanofiber diameter of the obtained nanofiber mat subjected to electroless plating was calculated in the same manner as described above. Moreover, the volume resistance value of the nanofiber mat was measured. The results are also shown in Table 1. Further, FIG. 4 shows an SEM image of the obtained nanofiber mat subjected to the electroless plating treatment.
[実施例2]
 PVDF100質量部、製造例5に従って製造したPd[HPS-NOctCl]4.5質量部(Pdとして0.5質量部)、及びDMAc/アセトン混合液(質量比7:3)300質量部を均一に混合し、樹脂組成物を調製した。
 この組成物を用い、表1に記載のめっき液を用いた以外は実施例1と同様に操作し、評価した。結果を表1に併せて示す。
[Example 2]
100 parts by mass of PVDF, 4.5 parts by mass of Pd [HPS-NOct 3 Cl] produced according to Production Example 5 (0.5 parts by mass as Pd), and 300 parts by mass of a DMAc / acetone mixture (mass ratio 7: 3) The resin composition was prepared by mixing uniformly.
This composition was used and evaluated in the same manner as in Example 1 except that the plating solution shown in Table 1 was used. The results are also shown in Table 1.
[実施例3]
 めっき液を変更した以外は実施例2と同様に操作し、評価した。結果を表1に併せて示す。
[Example 3]
The same operation as in Example 2 was performed except that the plating solution was changed. The results are also shown in Table 1.
[実施例4]
 PU100質量部、製造例3に従って製造したPd[HPS-N(Me)OctCl]5質量部(Pdとして0.5質量部)、及びDMF614質量部を均一に混合し、樹脂組成物を調製した。
 この組成物を用い、表1に記載のめっき液を用いた以外は実施例1と同様に操作し、評価した。結果を表1に併せて示す。
[Example 4]
100 parts by mass of PU, 5 parts by mass of Pd [HPS-N (Me) 2 OctCl] produced according to Production Example 3 (0.5 parts by mass as Pd), and 614 parts by mass of DMF were uniformly mixed to prepare a resin composition. .
This composition was used and evaluated in the same manner as in Example 1 except that the plating solution shown in Table 1 was used. The results are also shown in Table 1.
[実施例5]
 PU100質量部、製造例5に従って製造したPd[HPS-NOctCl]4.5質量部(Pdとして0.5質量部)、及びDMF614質量部を均一に混合し、樹脂組成物を調製した。
 この組成物を用い、表1に記載のめっき液を用いた以外は実施例1と同様に操作し、評価した。結果を表1に併せて示す。
[Example 5]
100 parts by mass of PU, 4.5 parts by mass of Pd [HPS-NOct 3 Cl] produced according to Production Example 5 (0.5 parts by mass as Pd), and 614 parts by mass of DMF were uniformly mixed to prepare a resin composition.
This composition was used and evaluated in the same manner as in Example 1 except that the plating solution shown in Table 1 was used. The results are also shown in Table 1.
[実施例6]
 PVDF/HFP100質量部、製造例3に従って製造したPd[HPS-N(Me)OctCl]5質量部(Pdとして0.5質量部)、及びDMF400質量部を均一に混合し、樹脂組成物を調製した。
 この組成物を用い、表1に記載のめっき液を用いた以外は実施例1と同様に操作し、評価した。結果を表1に併せて示す。
[Example 6]
100 parts by mass of PVDF / HFP, 5 parts by mass of Pd [HPS-N (Me) 2 OctCl] produced according to Production Example 3 (0.5 parts by mass as Pd), and 400 parts by mass of DMF were uniformly mixed to obtain a resin composition. Prepared.
This composition was used and evaluated in the same manner as in Example 1 except that the plating solution shown in Table 1 was used. The results are also shown in Table 1.
[実施例7]
 実施例6で得られたナノファイバーマットを、参考例6で調製した無電解スズめっき液A(Sn-A)に、20℃で5分間浸漬した。その後取り出したナノファイバーマットを水洗し、風乾した。得られた無電解めっき(置換型)処理したナノファイバーマットのナノファイバー径を、上記同様に算出した。また、ナノファイバーマットの体積抵抗値を測定した。結果を表1に併せて示す。また、得られた無電解めっき処理したナノファイバーマットのSEM画像を図5に示す。
[Example 7]
The nanofiber mat obtained in Example 6 was immersed in the electroless tin plating solution A (Sn-A) prepared in Reference Example 5 at 20 ° C. for 5 minutes. Thereafter, the nanofiber mat taken out was washed with water and air-dried. The nanofiber diameter of the obtained electroless plating (substitution type) treated nanofiber mat was calculated in the same manner as described above. Moreover, the volume resistance value of the nanofiber mat was measured. The results are also shown in Table 1. Moreover, the SEM image of the obtained nanofiber mat subjected to electroless plating is shown in FIG.
[比較例1]
 PVDF100質量部、塩化パラジウム0.83質量部(Pdとして0.5質量部)、及びDMF300質量部を均一に混合し、樹脂組成物を調製した。
 この組成物を用いた以外は実施例1と同様に操作したところ、金属めっき膜は形成されなかった。
[Comparative Example 1]
100 parts by mass of PVDF, 0.83 parts by mass of palladium chloride (0.5 parts by mass as Pd), and 300 parts by mass of DMF were uniformly mixed to prepare a resin composition.
When the same operation as in Example 1 was carried out except that this composition was used, no metal plating film was formed.
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
 表1に示すように、実施例1乃至実施例7では、めっき金属種やめっき液の種類に囚われることなく、簡便な方法にて1×10Ω・cm以下という低い体積抵抗値を有する導電性ナノファイバーの集合体(ナノファイバーマット)を得ることができた。
 一方、塩化パラジウムをPVDFに配合した紡糸材料を用いた比較例1では、銅めっきがなされず、導電性ナノファイバーを得ることができなかった。
As shown in Table 1, in Examples 1 to 7, a conductive material having a low volume resistance of 1 × 10 4 Ω · cm or less by a simple method without being restricted by the type of plating metal or the type of plating solution. An aggregate of nanofibers (nanofiber mat) could be obtained.
On the other hand, in Comparative Example 1 using a spinning material in which palladium chloride was blended with PVDF, copper plating was not performed, and conductive nanofibers could not be obtained.

Claims (15)

  1. (a)熱可塑性樹脂、(b)アンモニウム基を分子末端に有し且つ重量平均分子量が1,000~5,000,000であるハイパーブランチポリマー、及び(c)金属微粒子を含む樹脂組成物を紡糸材料として、エレクトロスピニング法に従いナノファイバーを作製する紡糸工程、及び
    前記工程で作製したナノファイバーを無電解めっき処理するめっき工程、
    を含むことを特徴とする、導電性ナノファイバーの製造方法。
    A resin composition comprising (a) a thermoplastic resin, (b) a hyperbranched polymer having an ammonium group at the molecular end and a weight average molecular weight of 1,000 to 5,000,000, and (c) metal fine particles. As a spinning material, a spinning process for producing nanofibers according to an electrospinning method, and a plating process for electroless plating of the nanofibers produced in the above process,
    The manufacturing method of electroconductive nanofiber characterized by including these.
  2. 前記(c)金属微粒子に、前記(b)ハイパーブランチポリマーのアンモニウム基が付着して複合体を形成している、請求項1に記載の製造方法。 The manufacturing method according to claim 1, wherein the (c) metal fine particles are attached with the ammonium group of the (b) hyperbranched polymer to form a composite.
  3. 前記(b)ハイパーブランチポリマーが、式[1]で表されるハイパーブランチポリマーである、請求項1又は請求項2に記載の製造方法。
    Figure JPOXMLDOC01-appb-C000001
    (式中、Rはそれぞれ独立して水素原子又はメチル基を表し、R乃至Rはそれぞれ独立して水素原子、炭素原子数1乃至20の直鎖状、枝分かれ状若しくは環状のアルキル基、炭素原子数7乃至20のアリールアルキル基又は-(CHCHO)(式中、Rは水素原子又はメチル基を表し、mは2乃至100の整数を表す。)を表す(該アルキル基及びアリールアルキル基は、アルコキシ基、ヒドロキシ基、アンモニウム基、カルボキシル基又はシアノ基で置換されていてもよい。)か、R乃至Rのうちの2つの基が一緒になって、直鎖状、枝分かれ状又は環状のアルキレン基を表すか、又はR乃至Rはそれらが結合する窒素原子と一緒になって環を形成してもよく、Xは陰イオンを表し、nは繰り返し単位構造の数であって、5乃至100,000の整数を表し、Aは式[2]で表される構造を表す。)
    Figure JPOXMLDOC01-appb-C000002
    (式中、Aはエーテル結合又はエステル結合を含んでいてもよい炭素原子数1乃至30の直鎖状、枝分かれ状又は環状のアルキレン基を表し、Y乃至Yはそれぞれ独立して水素原子、炭素原子数1乃至20のアルキル基、炭素原子数1乃至20のアルコキシ基、ニトロ基、ヒドロキシ基、アミノ基、カルボキシル基又はシアノ基を表す。)
    The manufacturing method of Claim 1 or Claim 2 whose said (b) hyperbranched polymer is a hyperbranched polymer represented by Formula [1].
    Figure JPOXMLDOC01-appb-C000001
    (In the formula, each R 1 independently represents a hydrogen atom or a methyl group, and R 2 to R 4 each independently represent a hydrogen atom, a linear, branched or cyclic alkyl group having 1 to 20 carbon atoms. , An arylalkyl group having 7 to 20 carbon atoms or — (CH 2 CH 2 O) m R 5 (wherein R 5 represents a hydrogen atom or a methyl group, and m represents an integer of 2 to 100). (The alkyl group and arylalkyl group may be substituted with an alkoxy group, a hydroxy group, an ammonium group, a carboxyl group, or a cyano group), or two groups of R 2 to R 4 may be bonded together. Represents a linear, branched or cyclic alkylene group, or R 2 to R 4 may form a ring together with the nitrogen atom to which they are bonded, and X represents an anion. Where n is a repetition A number of by unit structure, an integer of 5 to 100,000, A 1 represents a structure represented by Formula [2].)
    Figure JPOXMLDOC01-appb-C000002
    (In the formula, A 2 represents a linear, branched or cyclic alkylene group having 1 to 30 carbon atoms which may contain an ether bond or an ester bond, and Y 1 to Y 4 are each independently hydrogen. And represents an atom, an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, a nitro group, a hydroxy group, an amino group, a carboxyl group, or a cyano group.
  4. 前記(b)ハイパーブランチポリマーが、式[3]で表されるハイパーブランチポリマーである、請求項3に記載の製造方法。
    Figure JPOXMLDOC01-appb-C000003
    (式中、R、R乃至R及びnは前記と同じ意味を表す。)
    The manufacturing method of Claim 3 whose said (b) hyperbranched polymer is a hyperbranched polymer represented by Formula [3].
    Figure JPOXMLDOC01-appb-C000003
    (Wherein R 1 , R 2 to R 4 and n represent the same meaning as described above.)
  5. 前記(c)金属微粒子が、鉄(Fe)、コバルト(Co)、ニッケル(Ni)、銅(Cu)、パラジウム(Pd)、銀(Ag)、スズ(Sn)、白金(Pt)及び金(Au)からなる群より選択される少なくとも一種の金属の微粒子である、請求項1乃至請求項4のうち何れか一項に記載の製造方法。 The metal fine particles (c) are iron (Fe), cobalt (Co), nickel (Ni), copper (Cu), palladium (Pd), silver (Ag), tin (Sn), platinum (Pt) and gold ( The production method according to any one of claims 1 to 4, wherein the fine particles are at least one metal selected from the group consisting of Au).
  6. 前記(c)金属微粒子が、パラジウム微粒子である、請求項5に記載の製造方法。 The manufacturing method according to claim 5, wherein the (c) metal fine particles are palladium fine particles.
  7. 前記(c)金属微粒子が、1~100nmの平均粒径を有する微粒子である、請求項1乃至請求項6のうち何れか一項に記載の製造方法。 The production method according to any one of claims 1 to 6, wherein (c) the metal fine particles are fine particles having an average particle diameter of 1 to 100 nm.
  8. 前記(a)熱可塑性樹脂がポリフッ化ビニリデンである、請求項1乃至請求項7のうち何れか一項に記載の製造方法。 The manufacturing method according to any one of claims 1 to 7, wherein the (a) thermoplastic resin is polyvinylidene fluoride.
  9. 前記ナノファイバーの平均直径が50~2,000nmである、請求項1乃至請求項8のうち何れか一項に記載の製造方法。 The production method according to any one of claims 1 to 8, wherein an average diameter of the nanofiber is 50 to 2,000 nm.
  10. 前記めっき工程に引き続きさらに他の無電解めっき処理をする第二のめっき工程を含む、請求項1乃至請求項9のうち何れか一項に記載の製造方法。 The manufacturing method as described in any one of Claims 1 thru | or 9 including the 2nd plating process which performs another electroless-plating process after the said plating process.
  11. 前記めっき工程が無電解銅めっき処理であり、且つ、前記第二のめっき工程が無電解スズめっき処理である、請求項10に記載の製造方法。 The manufacturing method according to claim 10, wherein the plating step is an electroless copper plating treatment, and the second plating step is an electroless tin plating treatment.
  12. 前記紡糸工程は、ナノファイバーとしてナノファイバー集合体を作製する工程である、請求項1乃至請求項11のうち何れか一項に記載の製造方法。 The said spinning process is a manufacturing method as described in any one of Claims 1 thru | or 11 which is a process of producing a nanofiber aggregate as nanofiber.
  13. 請求項1乃至請求項12のうち何れか一項に記載の製造方法により作製される導電性ナノファイバー。 The electroconductive nanofiber produced by the manufacturing method as described in any one of Claims 1 thru | or 12.
  14. 請求項12に記載の製造方法により作製される導電性ナノファイバー集合体。 A conductive nanofiber assembly produced by the production method according to claim 12.
  15. 体積抵抗値が1×10Ω・cm以下である、請求項14に記載の導電性ナノファイバー集合体。 The conductive nanofiber aggregate according to claim 14, wherein the volume resistance value is 1 × 10 4 Ω · cm or less.
PCT/JP2015/052192 2014-01-27 2015-01-27 Method for manufacturing conductive nanofiber WO2015111755A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015559164A JP6571008B2 (en) 2014-01-27 2015-01-27 Method for producing conductive nanofiber

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-012539 2014-01-27
JP2014012539 2014-01-27

Publications (1)

Publication Number Publication Date
WO2015111755A1 true WO2015111755A1 (en) 2015-07-30

Family

ID=53681551

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/052192 WO2015111755A1 (en) 2014-01-27 2015-01-27 Method for manufacturing conductive nanofiber

Country Status (2)

Country Link
JP (1) JP6571008B2 (en)
WO (1) WO2015111755A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105256292A (en) * 2015-10-30 2016-01-20 南通大学 Preparing method for cobalt-nickel nanofiber film
WO2017018287A1 (en) * 2015-07-29 2017-02-02 国立大学法人福井大学 Collector for energy storage device, electrode for energy storage device, and energy storage device
KR20200060687A (en) * 2018-11-22 2020-06-01 한국기계연구원 Polymer fiber for electroless plating, process for producing the same, and electroless plating method for polymer fiber
JP2021526595A (en) * 2019-05-09 2021-10-07 ネイール テクノロジー A method and apparatus for manufacturing a polymer composite piezoelectric material in which boron nitride nanotubes are dispersed, and a polymer composite piezoelectric material manufactured by the method.

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111394808A (en) * 2020-03-20 2020-07-10 湖南翰坤实业有限公司 Material capable of being used for manufacturing high-altitude construction safety rope

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010037592A (en) * 2008-08-04 2010-02-18 Yamaguchi Univ Method for producing continuous long metal nanotube and long metal nanotube produced by the method
WO2010021386A1 (en) * 2008-08-22 2010-02-25 日産化学工業株式会社 Metal microparticle-dispersing agent comprising branched polymeric compound having ammonium group
JP2010095826A (en) * 2008-10-17 2010-04-30 Asahi Glass Co Ltd Method for producing fiber, production apparatus, method for producing catalyst layer, conductive fiber and membrane electrode assembly for solid polymer fuel cell
JP2010229563A (en) * 2009-03-25 2010-10-14 Teijin Ltd Method for producing particle-polymer fibrous composite
JP2011236512A (en) * 2010-05-07 2011-11-24 Shinshu Univ Manufacturing method of fiber conductor and fiber conductor obtained thereby
JP2012109224A (en) * 2010-10-27 2012-06-07 Ube Ind Ltd Conductive nonwoven fabric and secondary battery using it
JP2013076203A (en) * 2007-08-29 2013-04-25 Bayer Materialscience Ag Apparatus and method for generating conductive nano structure by electrospinning
JP2014055367A (en) * 2012-09-12 2014-03-27 Kao Corp Process of producing nanofibers

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013076203A (en) * 2007-08-29 2013-04-25 Bayer Materialscience Ag Apparatus and method for generating conductive nano structure by electrospinning
JP2010037592A (en) * 2008-08-04 2010-02-18 Yamaguchi Univ Method for producing continuous long metal nanotube and long metal nanotube produced by the method
WO2010021386A1 (en) * 2008-08-22 2010-02-25 日産化学工業株式会社 Metal microparticle-dispersing agent comprising branched polymeric compound having ammonium group
JP2010095826A (en) * 2008-10-17 2010-04-30 Asahi Glass Co Ltd Method for producing fiber, production apparatus, method for producing catalyst layer, conductive fiber and membrane electrode assembly for solid polymer fuel cell
JP2010229563A (en) * 2009-03-25 2010-10-14 Teijin Ltd Method for producing particle-polymer fibrous composite
JP2011236512A (en) * 2010-05-07 2011-11-24 Shinshu Univ Manufacturing method of fiber conductor and fiber conductor obtained thereby
JP2012109224A (en) * 2010-10-27 2012-06-07 Ube Ind Ltd Conductive nonwoven fabric and secondary battery using it
JP2014055367A (en) * 2012-09-12 2014-03-27 Kao Corp Process of producing nanofibers

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017018287A1 (en) * 2015-07-29 2017-02-02 国立大学法人福井大学 Collector for energy storage device, electrode for energy storage device, and energy storage device
JPWO2017018287A1 (en) * 2015-07-29 2018-05-17 国立大学法人福井大学 Current collector for energy storage device, electrode for energy storage device, and energy storage device
CN105256292A (en) * 2015-10-30 2016-01-20 南通大学 Preparing method for cobalt-nickel nanofiber film
CN105256292B (en) * 2015-10-30 2017-11-28 南通大学 A kind of preparation method of cobalt nickel nano-fiber film
KR20200060687A (en) * 2018-11-22 2020-06-01 한국기계연구원 Polymer fiber for electroless plating, process for producing the same, and electroless plating method for polymer fiber
KR20200060686A (en) * 2018-11-22 2020-06-01 한국기계연구원 Polyvinylalcohol polymer fiber, process for producing the same, and method for strengthening polyvinylalcohol polymer fiber
KR102260544B1 (en) 2018-11-22 2021-06-07 한국재료연구원 Polymer fiber for electroless plating, process for producing the same, and electroless plating method for polymer fiber
KR102261388B1 (en) 2018-11-22 2021-06-08 한국재료연구원 Polyvinylalcohol polymer fiber, process for producing the same, and method for strengthening polyvinylalcohol polymer fiber
JP2021526595A (en) * 2019-05-09 2021-10-07 ネイール テクノロジー A method and apparatus for manufacturing a polymer composite piezoelectric material in which boron nitride nanotubes are dispersed, and a polymer composite piezoelectric material manufactured by the method.
JP7250363B2 (en) 2019-05-09 2023-04-03 ネイール テクノロジー Method and apparatus for producing polymeric composite piezoelectric material in which boron nitride nanotubes are dispersed, and polymeric composite piezoelectric material produced by the method
US11765976B2 (en) 2019-05-09 2023-09-19 NAiEEL Technology Method and apparatus for producing polymeric piezoelectric composite including boron nitride nanotubes dispersed therein, and polymeric piezoelectric composites produced using the method

Also Published As

Publication number Publication date
JPWO2015111755A1 (en) 2017-03-23
JP6571008B2 (en) 2019-09-04

Similar Documents

Publication Publication Date Title
JP6571008B2 (en) Method for producing conductive nanofiber
JP6304512B2 (en) Electroless plating base material containing hyperbranched polymer and fine metal particles
JP6354950B2 (en) Electroless plating base material
JP6108079B2 (en) Catalyst ink for screen printing
JP2016138314A (en) Plating method to fine structure
JP6021804B2 (en) Electroless plating base material containing hyperbranched polymer, metal fine particles and organic acid
JP6047707B2 (en) Electroless copper plating method using pretreatment liquid
CN106662812B (en) Photosensitive electroless plating base agent
JP6649609B2 (en) Catalyst ink for inkjet printing
WO2016017625A1 (en) Electroless plating undercoat agent containing hyperbranched polymer, fine metal particles, and resin primer
KR20140131927A (en) Pretreatment solution for electroless nickel plating or electroless nickel alloy plating, and plating method
TW201623467A (en) Photo-curing electroless plating primer
WO2017018287A1 (en) Collector for energy storage device, electrode for energy storage device, and energy storage device
WO2019022151A1 (en) Method for producing metal fine particle composite body
JP2017033656A (en) Negative electrode active material for energy storage device electrode
CN113195788A (en) Electroless plating base agent comprising polymer and metal fine particles

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15740496

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015559164

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15740496

Country of ref document: EP

Kind code of ref document: A1