WO2015111634A1 - Spark plug - Google Patents

Spark plug Download PDF

Info

Publication number
WO2015111634A1
WO2015111634A1 PCT/JP2015/051569 JP2015051569W WO2015111634A1 WO 2015111634 A1 WO2015111634 A1 WO 2015111634A1 JP 2015051569 W JP2015051569 W JP 2015051569W WO 2015111634 A1 WO2015111634 A1 WO 2015111634A1
Authority
WO
WIPO (PCT)
Prior art keywords
ground electrode
metal shell
boundary
outer layer
spark plug
Prior art date
Application number
PCT/JP2015/051569
Other languages
French (fr)
Japanese (ja)
Inventor
武人 久野
聡史 長澤
鈴木 彰
Original Assignee
日本特殊陶業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本特殊陶業株式会社 filed Critical 日本特殊陶業株式会社
Priority to DE112015000475.0T priority Critical patent/DE112015000475B4/en
Priority to CN201580005368.XA priority patent/CN106415956B/en
Priority to JP2015530213A priority patent/JP6033442B2/en
Publication of WO2015111634A1 publication Critical patent/WO2015111634A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T13/00Sparking plugs
    • H01T13/20Sparking plugs characterised by features of the electrodes or insulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T13/00Sparking plugs
    • H01T13/20Sparking plugs characterised by features of the electrodes or insulation
    • H01T13/32Sparking plugs characterised by features of the electrodes or insulation characterised by features of the earthed electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T13/00Sparking plugs
    • H01T13/20Sparking plugs characterised by features of the electrodes or insulation
    • H01T13/39Selection of materials for electrodes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium

Definitions

  • This disclosure relates to a spark plug.
  • spark plugs have been used in internal combustion engines.
  • the spark plug has an electrode that forms a gap.
  • an electrode for example, a ground electrode having a coating material excellent in oxidation resistance and a core material that has better thermal conductivity than the coating material and is enclosed inside the coating material has been proposed. If such a ground electrode is employed, the oxidation resistance can be improved by lowering the temperature of the ground electrode.
  • the bonding strength when the ground electrode is bonded to the metal shell, the bonding strength may be low.
  • the bonding strength between the covering material and the metal shell may be low.
  • This disclosure discloses a technique for improving the bonding strength between the ground electrode and the metal shell.
  • a spark plug comprising: The ground electrode is Forming at least a part of the surface of the ground electrode, bonded to the metal shell, and an outer layer formed of a material containing nickel as a main component and aluminum in an amount of more than 0 wt% to 2.5 wt%; A core portion disposed on the inner peripheral side of the outer layer; Including The amount of oxygen on the surface of the outer layer is more than 0 wt% and 8 wt% or less,
  • the core includes a first layer formed of copper or a material containing copper as a main component, At the base end portion of the ground electrode having a cross section including the center axis of the spark plug and the center axis of the ground electrode, at least one of two boundary lines representing a
  • the bonding strength between the outer layer and the metal shell can be improved as compared with the case where the oxygen amount exceeds 8 wt%.
  • at least one of the two boundary lines representing the boundary between the outer layer and the core portion in the cross section includes an inclined line extending obliquely from the end on the metal shell side toward the outer peripheral side, the outer layer, the metal shell, The bonding area can be increased. As a result, the bonding strength between the ground electrode and the metal shell can be improved.
  • the boundary lines including the inclined line, a straight line passing through the boundary end parallel to the central axis of the ground electrode, and the outer periphery located in a direction in which the inclined line extends when viewed from the boundary end
  • the total distance between the straight line passing through the end and parallel to the central axis of the ground electrode is a junction distance W1
  • the ratio t is greater than 0% and not greater than 80%. Spark plug.
  • the bonding strength between the outer layer and the metal shell can be further improved. Further, since the ratio t of the joint distance W1 to the total distance W2 is greater than 0% and 80% or less, the joint strength between the ground electrode and the metal shell can be further improved.
  • the spark plug according to application example 1 The core portion is further arranged in part on the inner peripheral side of the first layer, and is formed of a material containing nickel with a larger content (% by weight) than the outer layer, and is more thermally conductive than the outer layer.
  • Including a second layer with a high rate In the base end of the ground electrode of the cross section, The end on the metal shell side of the inclined line is a boundary end, The distance in the direction perpendicular to the central axis of the ground electrode between the two outer peripheral ends that are the ends on the metal shell side of each of the two outer peripheral lines representing the outer peripheral surface of the outer layer is defined as a total distance W2.
  • the boundary lines including the inclined line, a straight line passing through the boundary end parallel to the central axis of the ground electrode, and the outer periphery located in a direction in which the inclined line extends when viewed from the boundary end
  • the total distance between the straight line passing through the end and parallel to the central axis of the ground electrode is a junction distance W1
  • the ratio t is greater than 0% and not greater than 20%. Spark plug.
  • the bonding strength between the ground electrode and the metal shell can be further improved.
  • the metal shell is separated from the first layer and is bonded to the outer layer and the second layer, the bonding strength between the ground electrode and the metal shell can be further improved.
  • the bonding area between the outer layer and the metal shell can be increased as compared with the case where only one of the two boundary lines includes an inclined line, the bonding between the ground electrode and the metal shell can be performed. Strength can be improved.
  • the technology disclosed in the present specification can be realized in various modes, for example, in a mode such as a spark plug, an internal combustion engine equipped with a spark plug, a method for manufacturing a spark plug, and the like. it can.
  • FIG. 3 is a cross-sectional view of a joint portion between a ground electrode 30 and a metal shell 50.
  • FIG. It is the schematic which shows an example of a joining process.
  • FIG. 1 is a cross-sectional view of an example of a spark plug according to the first embodiment.
  • the illustrated line CL indicates the central axis of the spark plug 100.
  • the illustrated cross section is a cross section including the central axis CL.
  • the central axis CL is also referred to as “axis line CL”
  • the direction parallel to the central axis CL is also referred to as “axis line direction”.
  • the radial direction of the circle centered on the central axis CL is also simply referred to as “radial direction”
  • the circumferential direction of the circle centered on the central axis CL is also referred to as “circumferential direction”.
  • the upper direction in FIG. 1 is referred to as a front end direction D1
  • the lower direction is also referred to as a rear end direction D1r.
  • the tip direction D1 is a direction from the terminal fitting 40 described later toward the electrodes 20 and 30. 1 is referred to as the front end side of the spark plug 100, and the rear end direction D1r side in FIG. 1 is referred to as the rear end side of the spark plug 100.
  • the spark plug 100 includes an insulator 10 (hereinafter also referred to as “insulator 10”), a center electrode 20, a ground electrode 30, a terminal metal fitting 40, a metal shell 50, a conductive first seal portion 60, A resistor 70, a conductive second seal portion 80, a front end side packing 8, a talc 9, a first rear end side packing 6, and a second rear end side packing 7 are provided.
  • insulator 10 insulator 10
  • the insulator 10 is a substantially cylindrical member having a through-hole 12 (hereinafter also referred to as “shaft hole 12”) extending along the central axis CL and penetrating the insulator 10.
  • the insulator 10 is formed by firing alumina (other insulating materials can also be used).
  • the insulator 10 includes a leg portion 13, a first reduced outer diameter portion 15, a distal end side body portion 17, a flange portion 19, and a second reduced outer diameter that are arranged in order from the front end side toward the rear end direction D1r. Part 11 and rear end side body part 18.
  • the outer diameter of the first reduced outer diameter portion 15 gradually decreases from the rear end side toward the front end side.
  • a reduced inner diameter portion 16 whose inner diameter gradually decreases from the rear end side toward the front end side is formed.
  • the outer diameter of the second reduced outer diameter portion 11 gradually decreases from the front end side toward the rear end side.
  • a rod-shaped center electrode 20 extending along the center axis CL is inserted on the tip end side of the shaft hole 12 of the insulator 10.
  • the center electrode 20 includes a leg portion 25, a flange portion 24, and a head portion 23 that are arranged in order from the front end side toward the rear end direction D1r.
  • a portion on the distal end side of the leg portion 25 is exposed outside the shaft hole 12 on the distal end side of the insulator 10.
  • the surface of the flange portion 24 on the distal direction D1 side is supported by the reduced inner diameter portion 16 of the insulator 10.
  • the center electrode 20 has an outer layer 21 and a core portion 22.
  • the rear end portion of the core portion 22 is exposed from the outer layer 21 and forms the rear end portion of the center electrode 20.
  • the other part of the core part 22 is covered with the outer layer 21. However, the entire core portion 22 may be covered with the outer layer 21.
  • the outer layer 21 is formed using a material that is more excellent in oxidation resistance than the core portion 22, that is, a material that consumes less when exposed to combustion gas in the combustion chamber of the internal combustion engine.
  • a material that is more excellent in oxidation resistance than the core portion 22 that is, a material that consumes less when exposed to combustion gas in the combustion chamber of the internal combustion engine.
  • the material of the outer layer 21 for example, nickel (Ni) or an alloy containing nickel as a main component (for example, Inconel ("INCONEL" is a registered trademark)) is used.
  • the “main component” means a component having the highest content (hereinafter the same).
  • wt%) a value represented by weight percent (wt%) is adopted.
  • the core portion 22 is formed of a material having a higher thermal conductivity than the outer layer 21, for example, a material containing copper (for example, pure copper or an alloy containing copper as a main component).
  • a terminal fitting 40 is inserted on the rear end side of the shaft hole 12 of the insulator 10.
  • the terminal fitting 40 is formed using a conductive material (for example, a metal such as low carbon steel).
  • a columnar resistor 70 for suppressing electrical noise is disposed between the terminal fitting 40 and the center electrode 20.
  • a conductive first seal portion 60 is disposed between the resistor 70 and the center electrode 20, and a conductive second seal portion 80 is disposed between the resistor 70 and the terminal fitting 40. Yes.
  • the center electrode 20 and the terminal fitting 40 are electrically connected through the resistor 70 and the seal portions 60 and 80.
  • the metallic shell 50 is a substantially cylindrical member having a through hole 59 extending along the central axis CL and penetrating the metallic shell 50 (in this embodiment, the central axis of the metallic shell 50 is the center of the spark plug 100). Coincides with the axis CL).
  • the metal shell 50 is formed using a low carbon steel material (other conductive materials (for example, metal materials) can also be used).
  • the insulator 10 is inserted into the through hole 59 of the metal shell 50.
  • the metal shell 50 is fixed to the outer periphery of the insulator 10.
  • the distal end of the insulator 10 on the distal end side of the metal shell 50, the distal end of the insulator 10 (in this embodiment, the portion on the distal end side of the leg portion 13) is exposed outside the through hole 59.
  • the rear end of the insulator 10 (in this embodiment, the portion on the rear end side of the rear end side body portion 18) is exposed outside the through hole 59.
  • the metal shell 50 includes a body portion 55, a seat portion 54, a deformation portion 58, a tool engaging portion 51, and a caulking portion 53, which are arranged in order from the front end side to the rear end side. Yes.
  • the seat part 54 is a bowl-shaped part.
  • a screw portion 52 for screwing into a mounting hole of an internal combustion engine for example, a gasoline engine
  • An annular gasket 5 formed by bending a metal plate is fitted between the seat portion 54 and the screw portion 52.
  • the metal shell 50 has a reduced inner diameter portion 56 disposed on the distal direction D1 side with respect to the deformable portion 58.
  • the inner diameter of the reduced inner diameter portion 56 gradually decreases from the rear end side toward the front end side.
  • the front end packing 8 is sandwiched between the reduced inner diameter portion 56 of the metal shell 50 and the first reduced outer diameter portion 15 of the insulator 10.
  • the front end packing 8 is an iron-shaped O-shaped ring (other materials (for example, metal materials such as copper) can also be used).
  • the shape of the tool engaging portion 51 is a shape (for example, a hexagonal column) with which a spark plug wrench is engaged.
  • a caulking portion 53 is provided on the rear end side of the tool engaging portion 51.
  • the caulking portion 53 is disposed on the rear end side of the second reduced outer diameter portion 11 of the insulator 10 and forms the rear end (that is, the end on the rear end direction D1r side) of the metal shell 50.
  • the caulking portion 53 is bent toward the inner side in the radial direction.
  • the first rear end side packing 6, the talc 9, and the second rear end side are provided between the inner peripheral surface of the metal shell 50 and the outer peripheral surface of the insulator 10.
  • the packings 7 are arranged in this order toward the tip direction D1. In this embodiment, these rear end side packings 6 and 7 are iron-made C-shaped rings (other materials are also employable).
  • the crimping portion 53 is crimped so as to be bent inward. And the crimping part 53 is pressed to the front end direction D1 side. Thereby, the deformation
  • the front end side packing 8 is pressed between the first reduced outer diameter portion 15 and the reduced inner diameter portion 56 and seals between the metal shell 50 and the insulator 10.
  • the metal shell 50 is fixed to the insulator 10.
  • the ground electrode 30 is a rod-like electrode having a substantially rectangular cross section.
  • the end surface 37 of one end portion 30x of the ground electrode 30 is joined to the end surface 57 of the end portion 50x on the front end direction D1 side of the metal shell 50.
  • the end portion 30x of the ground electrode 30 is referred to as a “base end portion 30x”
  • the end surface 37 of the base end portion 30x is referred to as a “base end surface 37”.
  • the end portion 50x of the metal shell 50 is referred to as a “tip portion 50x”
  • the end surface 57 of the tip portion 50x is referred to as a “tip surface 57”.
  • the base end surface 37 and the front end surface 57 are both substantially perpendicular to the central axis CL of the metal shell 50.
  • the ground electrode 30 extends from the distal end surface 57 of the metal shell 50 toward the distal end direction D1, bends toward the central axis CL, and reaches the distal end portion 31.
  • the distal end portion 31 forms a gap g between the distal end surface 29 of the central electrode 20 (surface 29 on the distal end direction D1 side).
  • the ground electrode 30 has an outer layer 35 that forms at least a part of the surface of the ground electrode 30, and a core portion 36 embedded in the outer layer 35.
  • the base end portion 30x of the ground electrode 30 is a portion closer to the metal shell 50 than the bent portion 38 of the ground electrode 30.
  • FIG. 2 is a schematic view of the spark plug 100 as viewed from the front end side.
  • the center electrode 20, the insulator 10, and the metal shell 50 are arranged on the same axis with the center axis CL as the center.
  • the ground electrode 30 is joined to the front end surface 57 of the metal shell 50.
  • a wide portion 350 that is wide at the time of welding is formed at a joint portion between the base end surface 37 of the ground electrode 30 and the front end surface 57 of the metal shell 50.
  • the wide portion 350 is formed by at least one of melting and deformation of at least one of the ground electrode 30 and the metal shell 50.
  • FIG. 3 is a cross-sectional view of a joint portion between the ground electrode 30 and the metal shell 50.
  • This sectional view is a section in a plane P1 including the central axis CL (FIG. 2) of the metal shell 50 and the central axis CLx of the ground electrode 30.
  • a cross section including the two central axes CL and CLx is referred to as a “reference cross section”.
  • the right direction Di is a direction toward the inside of the radial direction (hereinafter referred to as “inward direction Di”)
  • the left direction Do is a direction toward the outside of the radial direction (hereinafter referred to as “outward direction Do”). It is.
  • the central axis CLx of the ground electrode 30 is a rod-shaped central axis of the ground electrode 30. As shown in FIG. 3, the central axis CLx is not the bent portion 38 of the ground electrode 30, but the base end portion 30x (particularly, the portion 30s (hereinafter referred to as “the original shape without being deformed during welding”). As shown in FIG. 2, when viewed from the central axis CL of the metal shell 50, the central axis CLx is the circumference of the ground electrode 30 (particularly, the maintenance portion 30s). It is located in the central direction obtained by equally dividing the angle range AR from one end 301 to the other end 302.
  • the central axis CLx is the same as the central axis CL of the metal shell 50, 2
  • the first width Wa indicates the length of the first side Sa having a substantially rectangular shape in the cross section of the ground electrode 30, and the second width Wb is approximately the cross section of the ground electrode 30.
  • the length of the second side Sb orthogonal to the rectangular first side Sa is shown.
  • the first side Sa is substantially perpendicular to the plane P1, is bisected by the plane P1.
  • the ground electrode 30 includes an outer layer 35 and a core portion 36.
  • the outer layer 35 forms the surface of the ground electrode 30 and is joined to the metal shell 50.
  • the outer layer 35 is formed of a material that has better oxidation resistance than the core portion 36.
  • the outer layer 35 is formed of a material containing nickel, chromium, and aluminum as main components, specifically, a nickel chromium alloy to which aluminum is added.
  • oxidation resistance can be improved by adding aluminum to a nickel chromium alloy.
  • the core portion 36 is disposed on the inner peripheral side of the outer layer 35 and is joined to the metal shell 50.
  • the core part 36 is formed of a material having a higher thermal conductivity than the outer layer 35. In the present embodiment, the core portion 36 is formed using pure copper.
  • the two boundary lines L10 and L20 in the figure represent the boundary between the outer layer 35 and the core part 36.
  • the first boundary line L10 indicates the boundary line on the inner direction Di side
  • the second boundary line L20 indicates the boundary line on the outer direction Do side.
  • the first boundary end P11 is an end of the first boundary line L10 on the metal shell 50 side.
  • the second boundary end P21 is an end of the second boundary line L20 on the metal shell 50 side.
  • the two outer peripheral lines L30 and L40 in the figure represent the outer peripheral surface of the outer layer 35.
  • the first outer peripheral line L30 indicates the outer peripheral line on the inner direction Di side
  • the second outer peripheral line L40 indicates the outer peripheral line on the outer direction Do side.
  • the first outer peripheral end P32 is an end of the first outer peripheral line L30 on the metal shell 50 side.
  • the second outer peripheral end P42 is an end of the second outer peripheral line L40 on the metal shell 50 side.
  • the two boundary lines L10 and L20 are approximately parallel to the central axis CLx in the maintenance portion 30s.
  • the second boundary line L20 is curved so as to be farther from the central axis CLx as it is closer to the metal shell 50, and reaches the second boundary end P21. The reason why such a second boundary line L20 can be formed will be described later.
  • the first boundary line L10 is curved in the same manner as the second boundary line L20 in the portion of the wide portion 350 close to the maintenance portion 30s. However, in the portion of the wide portion 350 close to the metal shell 50, the first boundary line L10 is curved so as to be closer to the central axis CLx as it is closer to the metal shell 50, and reaches the first boundary end P11. In other words, the first boundary line L10 is inclined from the first boundary end P11 to the outer peripheral side of the portion of the outer layer 35 that forms the first boundary line L10, obliquely with respect to the central axis CLx of the ground electrode 30. An inclined portion L11 extending in the direction is included. Thus, on the inner direction Di side of the ground electrode 30, the outer layer 35 extends toward the central axis CLx along the distal end surface 57 of the metal shell 50. Therefore, the joint area between the outer layer 35 and the metal shell 50 increases.
  • the welding area between the ground electrode 30 and the metal shell 50 can be improved by increasing the joint area between the outer layer 35 and the metal shell 50.
  • the reason for this is as follows.
  • the thermal conductivity of copper is higher than that of nickel alloys. That is, copper is more likely to release heat than a nickel alloy. Therefore, at the time of welding the ground electrode 30 and the metal shell 50, the temperature of copper (that is, the core portion 36) tends to be lower than the temperature of the nickel alloy (that is, the outer layer 35) at the joint surface.
  • the bonding strength between the core portion 36 and the metal shell 50 can be lower than the bonding strength between the outer layer 35 and the metal shell 50. Therefore, when the ratio of the bonding area between the outer layer 35 and the metal shell 50 on the bonding surface is large, the bonding strength between the ground electrode 30 and the metal shell 50 can be improved as compared with the case where the ratio is small.
  • FIG. 4 is a schematic diagram illustrating an example of a bonding process.
  • the joining process proceeds in the order of FIG. 4 (A) to FIG. 4 (F).
  • a part of the ground electrode 30 (part joined to the metal shell 50) and a part of the metal shell 50 (part joined to the ground electrode 30) are shown.
  • a reference cross section (cross section in the plane P1) similar to that in FIG. 3 is shown.
  • one end of the ground electrode 30 is cut to form a base end face 37.
  • the boundary lines L10u and L20u in the figure correspond to the boundary lines L10 and L20 (FIG. 3) before joining, respectively, and the outer peripheral lines L30u and L40u correspond to the outer peripheral lines L30 and L40 before joining, respectively.
  • Each of the lines L10u, L20u, L30u, and L40u is parallel to the central axis CLx.
  • the ground electrode 30 is sheared by moving the cutting blade 920 in a direction perpendicular to the central axis CLx with respect to the ground electrode 30 supported by the support 910.
  • the cutting blade 920 moves from the inner direction Di side of the ground electrode 30 toward the outer direction Do.
  • a cut surface formed by this cutting corresponds to the base end surface 37.
  • FIG. 4C shows the ground electrode 30 after cutting.
  • each element of the ground electrode 30 here, the outer layer 35 and the core portion 36
  • the first boundary line L10u is deformed so that the closer to the base end surface 37, the closer to the central axis CLx.
  • the ground electrode 30 is disposed on the front end surface 57 of the metal shell 50.
  • the proximal end surface 37 of the ground electrode 30 contacts a predetermined portion on the distal end surface 57 of the metal shell 50.
  • the ground electrode 30 and the metal shell 50 are joined by resistance welding.
  • a force parallel to the central axis CLx is applied to the ground electrode 30 and the metal shell 50.
  • a force in the direction toward the metal shell 50 (rear end direction D1r) is applied to the ground electrode 30, and a force in the front end direction D1 is applied to the metal shell 50.
  • FIG. 4 (E) shows an example of a cross-sectional view after welding.
  • the distal end portion 50x of the metal shell 50 extends along the base end surface 37 of the ground electrode 30 in a direction perpendicular to the central axis CLx.
  • the base end portion 30x of the ground electrode 30 extends in the direction perpendicular to the central axis CLx along the distal end surface 57 of the metal shell 50.
  • the base end portion 30x and the tip end portion 50x can be deformed as shown in FIG. 4E by the force applied during welding.
  • the core portion 36 Since the core portion 36 is pressed against the distal end surface 57 of the metal shell 50 during welding, the core portion 36 is deformed so as to expand along the distal end surface 57 in a direction away from the central axis CLx. As a result, after welding, the second boundary line L20 can be formed so as to be farther from the central axis CLx as it is closer to the distal end surface 57.
  • the first boundary line L10 is as follows. As described with reference to FIG. 4C, the boundary line L10u before welding is formed in the vicinity of the base end face 37 so as to be closer to the central axis CLx as it is closer to the base end face 37.
  • the core portion 36 is difficult to expand in the vicinity of the first boundary line L10u, and the outer layer 35 can expand toward the central axis CLx.
  • the first boundary end P11 of the first boundary line L10 can be formed at a position closer to the central axis CLx than the second boundary end P21 of the second boundary line L20.
  • FIG. 4F shows a state where the bonding is completed, which is the same as the cross-sectional view of FIG.
  • the first reference surface Si is substantially the same as a surface obtained by extending the inner peripheral surface of the metal shell 50 (the inner peripheral surface before welding in the vicinity of the front end surface 57) in the front end direction D1.
  • the portions 35o and 50o on the outer direction Do side than the second reference plane So are removed.
  • the second reference surface So is approximately the same as a surface obtained by extending the outer peripheral surface of the metal shell 50 (the outer peripheral surface before welding near the front end surface 57) in the front end direction D1.
  • ground electrode 30 various methods can be adopted. For example, the following method can be employed. A cup-shaped outer member formed of the material of the outer layer 35 is prepared, and the inner member formed of the material of the core portion 36 is inserted into the outer member. A rod-shaped member having an inner member and an outer member covering the inner member, that is, a ground electrode before bending, is formed by molding the outer shape of the outer member with the inner member inserted. The obtained rod-shaped ground electrode is joined to the metal shell 50 according to the procedure described in FIG. Then, the ground electrode 30 is formed by bending the ground electrode so that an appropriate gap g is formed. In order to make the ground electrode 30 easy to bend, the rod-shaped ground electrode before bending may be annealed.
  • the joining of the ground electrode 30 and the metal shell 50 can be performed at various stages in the process of manufacturing the spark plug 100. For example, after the metal shell 50 is fixed to the insulator 10 that holds the center electrode 20 and the terminal metal fitting 40, a bar-shaped ground electrode before bending may be joined to the metal shell 50. Then, after this joining, the ground electrode may be bent so as to form an appropriate gap g. Instead, the metal shell 50 may be fixed to the insulator 10 holding the center electrode 20 and the terminal metal fitting 40 after the bar-shaped ground electrode before bending is joined to the metal shell 50.
  • “Surface oxygen content” is the oxygen content in the surface of the outer layer 35 of the ground electrode 30 before welding (unit: weight percent).
  • the method for measuring the surface oxygen amount is as follows. The kind and amount of elements on the surface of the outer layer 35 of the portion different from the portion that melts or deforms during welding in the ground electrode 30 before welding were analyzed by electron beam microanalysis (EPMA). . The analyzed area was a 500 ⁇ m ⁇ 500 ⁇ m square area. Then, the ratio of the amount of the oxygen element to the total amount of the elements constituting the outer layer 35 and the oxygen element was calculated as the surface oxygen amount.
  • SEM / EDS scanning electron microscope / energy dispersive X-ray analyzer
  • JSM-6490LA manufactured by JEOL Ltd.
  • the acceleration voltage was set to 20 kV.
  • the elements on the surface of the ground electrode 30 can be oxidized by oxygen contained in an environmental gas (for example, air) surrounding the ground electrode 30.
  • an environmental gas for example, air
  • the outer layer 35 includes aluminum
  • the surface of the outer layer 35 that is, the surface of the ground electrode 30 is easily oxidized.
  • the above-described annealing is performed, the amount of surface oxide can be increased. Such oxides can cause weld defects. Therefore, when the amount of oxygen on the surface is large, the welding strength may be reduced.
  • the amount of surface oxygen was adjusted by adjusting the annealing temperature and the annealing time.
  • the method for controlling the surface oxygen amount is not limited to the method of adjusting the annealing temperature and time, and various methods can be adopted. For example, the oxygen concentration in the environmental gas during annealing may be adjusted. Further, in order to reduce the amount of surface oxygen, annealing may be performed in a container evacuated by a vacuum pump.
  • “Proportion t” in Table 1 is the ratio of the joining distance W1 to the total distance W2 shown in FIG. 3 (unit:%).
  • the total distance W2 is in the direction perpendicular to the central axis CLx of the ground electrode 30 between the outer peripheral ends P32 and P42 of the two outer peripheral lines L30 and L40 on the metal shell 50 side in the reference cross section shown in FIG. Distance.
  • the joining distance W1 is a straight line LP1 passing through the boundary end P11 on the metal shell 50 side of the inclined portion L11 and parallel to the central axis CLx of the ground electrode 30, and the outer peripheral end positioned in the extending direction of the inclined portion L11 when viewed from the boundary end P11.
  • the junction distance W1 is a distance in a direction perpendicular to the central axis CLx of the ground electrode 30.
  • the second boundary line L20 is inclined from the boundary end P21 of the second boundary line L20 to the outer peripheral side of the portion of the outer layer 35 that forms the second boundary line L20, obliquely with respect to the central axis CLx of the ground electrode 30. It does not include an inclined part that extends. Therefore, the distance between the boundary end P21 of the second boundary line L20 and the second outer peripheral end P42 of the second outer peripheral line L40 is not included in the joint distance W1.
  • the strength evaluation results in Table 1 were determined as follows. That is, a tensile test was performed by pulling the ground electrode 30 and the metal shell 50 in directions away from each other parallel to the central axis CLx, and the tensile strength (that is, the maximum tensile load that the sample can withstand) was measured. A rating indicates that tensile strength is 450 N / mm 2 or more, B rating is a tensile strength of 350 N / mm 2 or more, the tensile strength showed to be less than 450 N / mm 2, C rating, tensile The strength is less than 350 N / mm 2 . The tensile test was performed using AG-5000B manufactured by Shimadzu Corporation.
  • the measurement of the ratio t and the tensile test were performed using a plurality of samples manufactured under the same conditions.
  • a ratio t measured by cutting a sample manufactured under the same conditions at the reference cross section was adopted.
  • the proportion t was approximately the same among the samples made under the same conditions.
  • First width Wa (FIG. 2) of the cross section of the ground electrode 30: 2.8 mm
  • Second width Wb (FIG. 2) of the cross section of the ground electrode 30: 1.5 mm
  • Material of outer layer 35 Inconel 601
  • Aluminum content of outer layer 35 1.4 wt%
  • Material of core part 36 pure copper
  • the strength evaluation result was C evaluation regardless of the ratio t.
  • the surface oxygen amount was 8 wt% or less, it was possible to realize a better evaluation result (A evaluation or B evaluation).
  • the welding strength could be improved by suppressing the surface oxygen amount to 8 wt% or less.
  • achieve a favorable evaluation result was 1, 2, 4, 5, 8 (wt%). Any value among these values can be adopted as the upper limit of the preferable range (more than the lower limit and less than the upper limit) of the surface oxygen amount. For example, a value of 8 wt% or less can be adopted as the surface oxygen amount. Moreover, any value below the upper limit among these values can be adopted as the lower limit of the preferable range of the surface oxygen amount. For example, a value of 1 wt% or more can be adopted as the surface oxygen amount.
  • the surface oxygen amount was 5 wt% or less, particularly good A evaluation could be realized.
  • achieve A evaluation was 1, 2, 4, 5 (wt%). Therefore, it is particularly preferable to select the upper limit and the lower limit of the preferable range of the surface oxygen amount from these four values.
  • the ratio t at which A was obtained was 5, 10, 30, 50, and 80 (%). Any value among these values can be adopted as the upper limit of the preferable range of the ratio t. For example, a value of 80% or less can be adopted as the ratio t.
  • the ratio t is larger than zero%, it is estimated that welding strength can be improved rather than the case where the ratio t is zero%.
  • ratio t various values larger than zero% can be adopted as the ratio t. Moreover, you may select the minimum of the ratio t from the ratio t (5, 10, 30, 50, 80 (%)) from which A evaluation was obtained. For example, a value of 5% or more may be adopted as the ratio t.
  • FIG. 5 is a cross-sectional view of an example of the spark plug according to the second embodiment.
  • FIG. 3 a cross-sectional view of a joint portion between the base end portion 30bx of the ground electrode 30b and the tip end portion 50x of the metal shell 50 is shown.
  • the core portion 36b of the ground electrode 30b includes the first layer 34a and the second layer 34b disposed on the inner peripheral side of the first layer 34a. It is.
  • the configuration other than the core portion 36b is the same as the configuration of the ground electrode 30 shown in FIG.
  • the configuration of the spark plug 100b of the second embodiment other than the ground electrode 30b is the same as the configuration of the spark plug 100 shown in FIG.
  • the first layer 34a is formed of a material having a higher thermal conductivity than the outer layer 35, like the core portion 36 of FIG. In the present embodiment, the first layer 34a is formed using pure copper. A part of the second layer 34b is disposed on the inner peripheral side of the first layer 34a.
  • the second layer 34b is formed of a material containing nickel with a larger content rate (wt%) than the outer layer 35. That is, the nickel content of the second layer 34 b is higher than the nickel content of the outer layer 35. Further, the thermal conductivity of the second layer 34 b is higher than the thermal conductivity of the outer layer 35. In the present embodiment, the second layer 34b is formed using pure nickel.
  • the internal structure of the ground electrode 30b is a two-layer structure including an outer layer 35 and a second layer 34b in a part including the base end face 37, and the outer layer 35 and the first layer 34a in the other part. And a second layer 34b.
  • the first layer 34 a is not joined to the metal shell 50
  • the second layer 34 b is joined to the metal shell 50.
  • the internal structure of the tip portion of the ground electrode 30b (the portion corresponding to the tip portion 31 in FIG. 1) is also a two-layer structure of the outer layer 35 and the second layer 34b.
  • the first layer 34a may extend to the tip of the ground electrode 30b.
  • the boundary lines L10b and L20b in the figure represent the boundary between the outer layer 35 and the core part 36b, respectively, similarly to the boundary lines L10 and L20 in FIG.
  • the boundary ends P11b and P21b are the ends on the metal shell 50 side of the boundary lines L10b and L20b, respectively, similarly to the boundary ends P11 and P21 of FIG.
  • the boundary line L10b is, like the first boundary line L10 in FIG. 3, obliquely from the first boundary end P11b to the central axis CLx of the ground electrode 30b, and is the first boundary of the outer layer 35.
  • An inclined portion L11b extending toward the outer peripheral side of the portion forming the line L10b is included.
  • the ground electrode 30b and the metal shell 50 are compared with the case where the first layer 34a is joined to the metal shell 50 without forming the inclined portion L11b.
  • the welding strength can be improved.
  • the welding strength of nickel is stronger than copper.
  • the first layer 34 a containing copper is separated from the metal shell 50.
  • the outer layer 35 containing nickel and the second layer 34 b are joined to the metal shell 50. Therefore, compared with the case where the first layer 34a is joined to the metal shell 50, the welding strength between the ground electrode 30b and the metal shell 50 can be improved.
  • a method for forming the joint portion as shown in FIG. 5 a method similar to the method described in FIGS. 4 (A) to 4 (F) can be employed.
  • various methods can be adopted. For example, a member having a three-layer structure portion of the outer layer 35, the first layer 34a, and the second layer 34b and a two-layer structure portion of the outer layer 35 and the second layer 34b as the ground electrode 30b before cutting. To manufacture. Next, the portion having the two-layer structure is cut in the same manner as in FIGS. 4A and 4B. Next, the base end face 37b and the front end face 57 of the metal shell 50 are welded in the same manner as in FIGS. 4D and 4E. And the joining process is completed by removing the part which protruded from the reference plane Si and So (FIG.4 (E)) similarly to FIG.4 (E) and FIG.4 (F).
  • the same method as the manufacturing method of the ground electrode 30 of 1st Embodiment is employable.
  • a method for manufacturing the spark plug 100b a method similar to the method for manufacturing the spark plug 100 of the first embodiment can be employed.
  • the ratio t is a ratio of the joining distance W1 to the total distance W2 shown in FIG. 5 (unit:%).
  • the total distance W2 is the same as the total distance W2 of the embodiment of FIG.
  • the junction distance W1 is a distance between the two straight lines LP1b and LP3.
  • the straight line LP3 is the same as the straight line LP3 in FIG.
  • the straight line LP1b is a straight line that passes through the boundary end P11b on the metal shell 50 side of the inclined portion L11b and is parallel to the central axis CLx of the ground electrode 30b.
  • the second boundary line L20b is inclined from the boundary end P21b of the second boundary line L20b with respect to the central axis CLx of the ground electrode 30b toward the outer peripheral side of the portion of the outer layer 35 that forms the second boundary line L20b. It does not include an inclined part that extends. Therefore, the distance between the second boundary end P21b of the second boundary line L20b and the second outer peripheral end P42 of the second outer peripheral line L40 is not included in the joint distance W1.
  • “100 ⁇ t (%)” is a value obtained by subtracting the ratio t from 100. The larger this value, the smaller the joining area between the outer layer 35 and the metallic shell 50 and the larger the joining area between the second layer 34b and the metallic shell 50.
  • the strength evaluation method in Table 2 is the same as the strength evaluation method in Table 1 above. However, the evaluation thresholds are different. That is, A evaluation shows that tensile strength is 550 N / mm 2 or more, B evaluation shows that tensile strength is 450 N / mm 2 or more, and tensile strength is less than 550 N / mm 2 , and C evaluation is , Indicating that the tensile strength is less than 450 N / mm 2 .
  • First width of cross section of ground electrode 30b width corresponding to Wa in FIG. 2): 2.0 mm
  • Second width of cross section of ground electrode 30b width corresponding to Wb in FIG. 2): 1.6 mm
  • Material of outer layer 35 Inconel 601
  • Aluminum content of outer layer 35 1.4 wt%
  • Material of first layer 34a Pure copper Material of second layer 34b: Pure nickel Surface oxygen content: 5 wt%
  • the strength evaluation results tend to be better when the ratio t is smaller than when the ratio t is large.
  • the reason is estimated as follows.
  • the higher the nickel content (wt%) the stronger the welding strength.
  • the smaller the ratio t the larger the bonding area between the second layer 34 b having a higher nickel content than the outer layer 35 and the metal shell 50. Therefore, it is estimated that the welding strength improves as the ratio t decreases.
  • the strength evaluation result is not A evaluation but B evaluation. The reason is considered that the first layer 34a may be joined to the metal shell 50 in a cross section different from the reference cross section in which the ratio t is measured.
  • achieve A evaluation was 5, 10, 20 (%). Therefore, any value among these values can be adopted as the upper limit of the preferable range of the ratio t. For example, a value of 20% or less can be adopted as the ratio t.
  • the ratio t is zero%. It is estimated that the welding strength can be improved as compared with the case of. Therefore, various values larger than zero% can be adopted as the ratio t.
  • the above-mentioned preferable range of the ratio t is applicable to various surface oxygen amounts of 5 wt% or less.
  • the metal shell 50 is separated from the first layer 34a and is joined to the outer layer 35 and the second layer 34b.
  • the metal shell 50 may be joined to all of the outer layer 35, the first layer 34a, and the second layer 34b. Also in this case, it is presumed that the bonding strength can be improved because the bonding area between the second layer 34b and the metal shell 50 can be increased by making the ratio t relatively small. Therefore, it is estimated that the preferable range of the ratio t can be applied also in this case.
  • the first boundary lines L10 and L10b include the inclined portions L11 and L11b.
  • the two boundary lines between the outer layer 35 and the core portions 36 and 36b in the reference cross section has an inclined portion. According to this configuration, since the joining area between the outer layer 35 and the metal shell 50 can be increased as compared with the case where both of the two boundary lines do not have an inclined portion, the ground electrodes 30, 30b and The joint strength with the metal shell 50 can be improved.
  • both of the two boundary lines may include an inclined portion.
  • the second boundary lines L20 and L20b include inclined portions extending obliquely from the second boundary ends P21 and P21b toward the outer direction Do.
  • the joining distance W1 the first distance between the first boundary ends P11 and P11b and the first outer peripheral end P32 (the joining distance W1 in FIGS. 3 and 5)
  • the second boundary ends P21 and P21b A total value of the second distance to the second outer peripheral end P42 is employed.
  • the second distance is a distance between the straight lines LP2 and LP2b passing through the second boundary ends P21 and P21b and parallel to the central axis CLx, and the straight line LP4 passing through the second outer peripheral end P42 and parallel to the central axis CLx.
  • the first boundary lines L10 and L10b on the inner direction Di side may not include the inclined portion
  • the second boundary lines L20 and L20b on the outer direction Do side may include the inclined portion.
  • FIG. 6 is a cross-sectional view of an example of a modified spark plug.
  • the spark plug 100c of this modification is an example of a spark plug obtained by applying the configuration in which both of the two boundary lines include an inclined portion to the embodiment of FIG.
  • FIG. 3 similarly to FIG. 3, a sectional view of a joint portion between the base end portion 30 cx of the ground electrode 30 c and the tip end portion 50 x of the metal shell 50 is shown.
  • the difference from the first embodiment shown in FIG. 3 is that the second boundary line L20c on the outer side Do side of the two boundary lines L10 and L20c between the outer layer 35c and the core part 36c of the ground electrode 30c is an inclined portion. It is only a point including L21c.
  • the configuration of the portion of the joint portion of the ground electrode 30 c on the inner direction Di side from the central axis CLx is the configuration of the portion of the joint portion of FIG. 3 on the inner direction Di side. And the same.
  • the configuration of the portion of the joint portion of the ground electrode 30 c that is on the outer side Do side of the central axis CLx is the same as the configuration of the portion of the inner side Di side of the central axis CLx. This is almost the same as the configuration obtained by performing the mirror conversion with the symmetry axis.
  • the configuration of other parts of the ground electrode 30c is substantially the same as the configuration of the ground electrode 30 shown in FIG.
  • the configurations of the outer layer 35c and the core portion 36c are substantially the same as the configurations of the outer layer 35 and the core portion 36 in FIG. 3 except for the shape of the second boundary line L20c at the base end portion 30cx.
  • the configuration of the spark plug 100c according to the modified example other than the ground electrode 30c is the same as the configuration of the spark plug 100 shown in FIG.
  • the same elements as those of the spark plug 100 and the ground electrode 30 of FIGS. 1 and 3 are denoted by the same reference numerals, and description thereof is omitted.
  • the inclined portion L11 of the first boundary line L10 is inclined from the first boundary end P11 with respect to the central axis CLx on the outer peripheral side of the portion forming the first boundary line L10 in the outer layer 35c (here, inward direction). Di side).
  • the 2nd boundary end P21c in a figure is an end by the side of the metal shell 50 of the 2nd boundary line L20c.
  • the inclined portion L21c is inclined from the second boundary end P21c with respect to the central axis CLx of the ground electrode 30c on the outer peripheral side of the portion forming the second boundary line L20c in the outer layer 35c (here, the outer direction Do side) ).
  • the outer layer 35c extends along the distal end surface 57 of the metal shell 50 toward the central axis CLx in both the outer direction Do side portion and the inner direction Di side portion of the ground electrode 30c.
  • both of the two boundary lines L10 and L20c include the inclined portions L11 and L21c
  • the outer layer 35c and the metal shell are compared with the case where only one of the two boundary lines L10 and L20c includes the inclined portion. 50 can be increased. As a result, the bonding strength between the ground electrode 30c and the metal shell 50 can be improved.
  • any method can be adopted as a method of forming the joint as shown in FIG.
  • first and second cutting blades such as the cutting blade 920 in FIG. 4A are prepared and the ground electrode is sandwiched between the two cutting blades for cutting.
  • the first cutting blade moves from the inward direction Di side of the ground electrode toward the central axis CLx
  • the second cutting blade moves from the outer direction Do side of the ground electrode toward the central axis CLx.
  • the two boundary lines corresponding to L20c are inclined obliquely so as to approach the central axis CLx in the vicinity of the base end face 37c of the ground electrode 30c. Therefore, the inclined portions L11 and L21c in FIG. 6 can be formed by welding similar to that in FIG.
  • the surface oxygen amount is preferably within the preferable range of the surface oxygen amount described with reference to Table 1. If such a configuration is adopted, it is estimated that good bonding strength can be realized.
  • the surface oxygen amount is preferably 8 wt% or less, and particularly preferably 5 wt% or less.
  • the second distance W12 in FIG. 6 is a distance between a straight line LP2c passing through the second boundary end P21c and parallel to the central axis CLx, and a straight line LP4 passing through the second outer peripheral end P42 and parallel to the central axis CLx. It is.
  • the joining distance W1 includes a first distance W11 between the first boundary end P11 and the first outer peripheral end P32 (same as the distance W1 in FIG. 3), and a distance between the second boundary end P21c and the second outer peripheral end P42.
  • the total value of the second distance W12 is used.
  • FIG. 7 is a cross-sectional view of an example of another modified spark plug.
  • the spark plug 100d of this modification is an example of a spark plug obtained by applying the configuration in which both of the two boundary lines include an inclined portion to the embodiment of FIG.
  • FIG. 5 similarly to FIG. 5, a sectional view of a joint portion between the base end portion 30 dx of the ground electrode 30 d and the tip end portion 50 x of the metal shell 50 is shown.
  • the difference from the second embodiment shown in FIG. 5 is that the second boundary line L20d on the outer side Do side of the two boundary lines L10b and L20d between the outer layer 35d and the core part 36d of the ground electrode 30d is an inclined portion. It is only a point including L21d.
  • the configuration of the portion of the ground electrode 30d on the inner direction Di side from the central axis CLx is the configuration of the portion of the joint portion of FIG. 5 on the inner direction Di side. And the same. Further, in the modification of FIG. 7, the configuration of the portion of the joint portion of the ground electrode 30d on the outer side Do side with respect to the central axis CLx is the central axis CLx in the configuration of the portion on the inner side Di side with respect to the central axis CLx. This is almost the same as the configuration obtained by performing the mirror conversion with the symmetry axis.
  • the configuration of the other part of the ground electrode 30d is substantially the same as the configuration of the ground electrode 30b shown in FIG.
  • the configuration of the outer layer 35d and the first layer 34c and the second layer 34d of the core portion 36d is the same as that of the outer layer 35 of FIG. 5 except the shape of the second boundary line L20d at the base end portion 30dx.
  • the configuration of the first layer 34a and the second layer 34b of the part 36b is approximately the same.
  • the configuration of the spark plug 100d according to the modification other than the ground electrode 30d is the same as the configuration of the spark plug 100 shown in FIG.
  • the same elements as those of the spark plug 100 and the ground electrode 30b of FIGS. 1 and 5 are denoted by the same reference numerals, and description thereof is omitted.
  • the inclined portion L11b of the first boundary line L10b is inclined from the first boundary end P11b with respect to the central axis CLx on the outer peripheral side of the portion forming the first boundary line L10b in the outer layer 35d (in this case, inward direction) Di side).
  • the second boundary end P21d in the drawing is an end of the second boundary line L20d on the metal shell 50 side.
  • the inclined portion L21d is inclined from the second boundary end P21d with respect to the central axis CLx of the ground electrode 30d on the outer peripheral side of the portion forming the second boundary line L20d in the outer layer 35d (here, the outer side Do side) ).
  • the outer layer 35d extends along the distal end surface 57 of the metal shell 50 toward the central axis CLx in both the outer direction Do side portion and the inner direction Di side portion of the ground electrode 30d.
  • both of the two boundary lines L10b and L20d include the inclined portions L11b and L21d
  • the outer layer 35d and the metal shell are compared with the case where only one of the two boundary lines L10b and L20d includes the inclined portion. 50 can be increased. As a result, the bonding strength between the ground electrode 30d and the metal shell 50 can be improved.
  • any method can be adopted as a method of forming the joint portion as shown in FIG.
  • a method using two cutting blades can be adopted as in the method described in the modification of FIG.
  • the surface oxygen amount is preferably within the above-described preferable range. If such a configuration is adopted, it is estimated that good bonding strength can be realized.
  • the surface oxygen amount is preferably 8 wt% or less, and particularly preferably 5 wt% or less.
  • the second distance W12d in FIG. 7 is a distance between a straight line LP2d passing through the second boundary end P21d and parallel to the central axis CLx, and a straight line LP4 passing through the second outer peripheral end P42 and parallel to the central axis CLx. It is.
  • the joining distance W1 includes a first distance W11d (same as the distance W1 in FIG.
  • a melted part may be formed between the two members.
  • the melting part is a part formed by the members to be joined that are melted during welding. Even in such a case, it can be said that two members are joined.
  • a melting part may be formed between the ground electrodes 30, 30 b, 30 c, 30 d and the metal shell 50.
  • the outer layers 35, 35 c, 35 d and the metal shell 50 are joined via the melting part, it can be said that the outer layers 35, 35 c, 35 d are joined to the metal shell 50.
  • the first layers 34a and 34c are separated from the melting part, it can be said that the metal shell 50 is separated from the first layers 34a and 34c.
  • the metal shell 50 is joined to the first layers 34a and 34c without being separated from the first layers 34a and 34c. It can be said that.
  • the boundary ends include the outer layers 35, 35c, and 35d in the reference cross section and the core portions 36 and 36b. , 36c, and 36d may be adopted at the end of the metal shell 50 side. In this case, the boundary end can be arranged on the outline of the melting part.
  • the end on the metal shell 50 side of the outer peripheral line representing the outer peripheral surface of the outer layer 35, 35c, 35d in the reference cross section may be adopted. In this case, the outer peripheral end can be arranged on the outline of the melting part.
  • the positions in the direction parallel to the central axis CLx may be different between the four ends of the two boundary ends and the two outer peripheral ends.
  • the material of the outer layers 35, 35c, and 35d it is preferable to employ a material containing nickel as a main component and further containing chromium and aluminum. That is, it is preferable to employ a nickel chromium alloy to which at least aluminum is added.
  • the aluminum content is not limited to 1.4 wt%, and various values can be employed. For example, a value greater than 0 wt% and not greater than 2.5 wt% can be employed. If a value within such a range is employed, the oxidation resistance of the outer layer 35 can be improved.
  • Various values can be adopted as the chromium content. For example, a value in the range of 10 wt% or more and 30 wt% or less can be adopted.
  • the material of the second layers 34b and 35d is not limited to pure nickel, and various materials containing more nickel than the outer layers 35 and 35d can be used.
  • a nickel alloy such as a nickel chromium alloy can be used.
  • the material of the core part 36 in FIG. 3, the first layer 34 a in FIG. 5, the core part 36 c in FIG. 6, and the first layer 34 c in FIG. 7 is not limited to pure copper, but is more thermally conductive than the outer layers 35, 35 c, 35 d.
  • Various materials with high rates can be used.
  • a material containing copper as a main component can be used.
  • a material containing copper as a main component for example, a copper alloy such as a copper nickel alloy can be employed.
  • Various values of 100% or less can be adopted as the copper content.
  • the copper content is preferably 80 wt% or more, and particularly preferably 95 wt% or more.
  • the material of the metal shell 50 is not limited to a low carbon steel material, and various conductive materials that can be welded to the ground electrode 30 can be used. For example, a nickel chromium alloy may be adopted.
  • the widths Wa and Wb of the ground electrode 30 are not limited to the above-described sample widths Wa and Wb, and various values can be adopted.
  • the configuration of the spark plug is not limited to the configuration described in FIG. 1, and various configurations can be employed.
  • a noble metal tip may be provided in a portion of the ground electrodes 30, 30b, 30c, 30d where the gap g is formed.
  • materials containing various noble metals such as iridium and platinum can be adopted.
  • a noble metal tip may be provided in a portion of the center electrode 20 where the gap g is formed.
  • the present disclosure can be suitably used for a spark plug used for an internal combustion engine or the like.
  • second seal part 100, 100b, 100c, 100d ... spark plug, 350 ... wide part, 910 ... support, 920 ... cutting blade, L10, L10u, L10b ... first boundary line, L20, L20u, L20b , L20c, L20d ... second boundary line, L30, L30u ... first outer periphery line, L40, L40u ... second outer periphery line, P11, P11b ... first boundary end, P21, P21b, P21c , P21d ... second boundary end, P32 ... first outer peripheral end, P42 ... second outer peripheral end, L11, L11b, L21c, L21d ... inclined portion, CL, CLx ...

Abstract

This spark plug has both a main metal fitting and an earth electrode which has a base part joined to the tip of the main metal fitting. The earth electrode comprises both an outer layer and a core part disposed on the inner peripheral side of the outer layer. The outer layer forms at least a part of the surface of the earth electrode, is joined to the main metal fitting, and is made of a material which comprises nickel as the main component and contains aluminum in an amount of more than 0 to 2.5wt%. The oxygen content of the surface of the outer layer exceeds 0wt% and is up to 8wt%. The core part includes a first layer made of either copper or a material comprising copper as the main component. In a cross section of the base part of the earth electrode, said cross section including the central axis of the spark plug and the central axis of the earth electrode, at least one of the two boundary lines which show the boundary between the outer layer and the core part includes an oblique line which extends from the main-metal-fitting-side end of the boundary line toward the outer periphery side of the outer layer obliquely against the central axis of the earth electrode.

Description

スパークプラグSpark plug
 本開示は、スパークプラグに関するものである。 This disclosure relates to a spark plug.
 従来から、内燃機関に、スパークプラグが用いられている。スパークプラグは、ギャップを形成する電極を有している。電極としては、例えば、耐酸化性に優れる被覆材と、被覆材よりも熱伝導性に優れ被覆材の内部に封入された芯材と、を有する接地電極が、提案されている。このような接地電極を採用すれば、接地電極の温度を低下させることで、耐酸化性を向上できる。 Conventionally, spark plugs have been used in internal combustion engines. The spark plug has an electrode that forms a gap. As an electrode, for example, a ground electrode having a coating material excellent in oxidation resistance and a core material that has better thermal conductivity than the coating material and is enclosed inside the coating material has been proposed. If such a ground electrode is employed, the oxidation resistance can be improved by lowering the temperature of the ground electrode.
特開2001-284013号公報JP 2001-284013 A
 ところで、接地電極が主体金具に接合される場合、接合強度が低い場合があった。例えば、被覆材と主体金具との接合強度が低い場合があった。 By the way, when the ground electrode is bonded to the metal shell, the bonding strength may be low. For example, the bonding strength between the covering material and the metal shell may be low.
 本開示は、接地電極と主体金具との接合強度を向上する技術を開示する。 This disclosure discloses a technique for improving the bonding strength between the ground electrode and the metal shell.
 本開示は、例えば、以下の適用例を開示する。 This disclosure discloses the following application examples, for example.
[適用例1]
 中心電極と、
 前記中心電極を保持する絶縁体と、
 前記絶縁体の径方向の周囲に配置される主体金具と、
 前記主体金具の先端部に接合された基端部を有するとともに、前記中心電極との間でギャップを形成する接地電極と、
 を備えるスパークプラグであって、
 前記接地電極は、
  前記接地電極の表面の少なくとも一部を形成し、前記主体金具に接合されるとともに、ニッケルを主成分として含みアルミニウムを0wt%より多く2.5wt%以下で含む材料で形成された外層と、
  前記外層の内周側に配置される芯部と、
 を含み、
 前記外層の表面における酸素量は、0wt%を超え、8wt%以下であり、
 前記芯部は、銅、または、銅を主成分として含む材料で形成された第1層を含み、
 前記スパークプラグの中心軸と前記接地電極の中心軸とを含む断面の前記接地電極の前記基端部において、前記外層と前記芯部との境界を表す2本の境界線のうちの少なくとも一方は、前記境界線の前記主体金具側の端から前記接地電極の前記中心軸に対して斜めに前記外層の外周側に向かって延びる傾斜線を含む、
 スパークプラグ。
[Application Example 1]
A center electrode;
An insulator holding the center electrode;
A metal shell disposed around a radial direction of the insulator;
A ground electrode having a proximal end joined to a distal end of the metal shell and forming a gap with the center electrode;
A spark plug comprising:
The ground electrode is
Forming at least a part of the surface of the ground electrode, bonded to the metal shell, and an outer layer formed of a material containing nickel as a main component and aluminum in an amount of more than 0 wt% to 2.5 wt%;
A core portion disposed on the inner peripheral side of the outer layer;
Including
The amount of oxygen on the surface of the outer layer is more than 0 wt% and 8 wt% or less,
The core includes a first layer formed of copper or a material containing copper as a main component,
At the base end portion of the ground electrode having a cross section including the center axis of the spark plug and the center axis of the ground electrode, at least one of two boundary lines representing a boundary between the outer layer and the core portion is An inclined line extending obliquely from the end of the boundary line on the metal shell side toward the outer peripheral side of the outer layer obliquely with respect to the central axis of the ground electrode,
Spark plug.
 この構成によれば、外層の表面、すなわち、接地電極の表面における酸素量が8wt%以下であるので、酸素量が8wt%を超える場合と比べて、外層と主体金具との接合強度を向上できる。また、断面において外層と芯部との境界を表す2本の境界線のうちの少なくとも一方が、主体金具側の端から斜めに外周側に向かって延びる傾斜線を含むので、外層と主体金具との接合面積を大きくすることができる。この結果、接地電極と主体金具との接合強度を向上できる。 According to this configuration, since the amount of oxygen on the surface of the outer layer, that is, the surface of the ground electrode is 8 wt% or less, the bonding strength between the outer layer and the metal shell can be improved as compared with the case where the oxygen amount exceeds 8 wt%. . In addition, since at least one of the two boundary lines representing the boundary between the outer layer and the core portion in the cross section includes an inclined line extending obliquely from the end on the metal shell side toward the outer peripheral side, the outer layer, the metal shell, The bonding area can be increased. As a result, the bonding strength between the ground electrode and the metal shell can be improved.
[適用例2]
 適用例1に記載のスパークプラグであって、
 前記外層の前記表面における前記酸素量は、0wt%を超え、5wt%以下であり、
 前記断面の前記接地電極の前記基端部において、
  前記傾斜線の前記主体金具側の端を境界端とし、
  前記外層の外周面を表す2本の外周線のそれぞれの前記主体金具側の端である2つの外周端の間の前記接地電極の前記中心軸と垂直な方向の距離を全距離W2とし、
  前記傾斜線を含む1つまたは2つの前記境界線に関して、前記接地電極の前記中心軸に平行な前記境界端を通る直線と、前記境界端から見て前記傾斜線の延びる方向に位置する前記外周端を通り前記接地電極の前記中心軸に平行な直線と、の間の距離の合計を接合距離W1とし、
  前記全距離W2に対する前記接合距離W1の割合を割合tとしたときに、
  前記割合tは、0%より大きく、80%以下である、
 スパークプラグ。
[Application Example 2]
The spark plug according to application example 1,
The amount of oxygen on the surface of the outer layer is greater than 0 wt% and less than or equal to 5 wt%;
In the base end of the ground electrode of the cross section,
The end on the metal shell side of the inclined line is a boundary end,
The distance in the direction perpendicular to the central axis of the ground electrode between the two outer peripheral ends that are the ends on the metal shell side of each of the two outer peripheral lines representing the outer peripheral surface of the outer layer is defined as a total distance W2.
Regarding one or two of the boundary lines including the inclined line, a straight line passing through the boundary end parallel to the central axis of the ground electrode, and the outer periphery located in a direction in which the inclined line extends when viewed from the boundary end The total distance between the straight line passing through the end and parallel to the central axis of the ground electrode is a junction distance W1,
When the ratio of the joint distance W1 to the total distance W2 is a ratio t,
The ratio t is greater than 0% and not greater than 80%.
Spark plug.
 この構成によれば、外層の表面における酸素量が5wt%以下であるので、外層と主体金具との接合強度を、さらに、向上できる。また、全距離W2に対する接合距離W1の割合tが、0%より大きく、80%以下であるので、接地電極と主体金具との接合強度を、さらに、向上できる。 According to this configuration, since the amount of oxygen on the surface of the outer layer is 5 wt% or less, the bonding strength between the outer layer and the metal shell can be further improved. Further, since the ratio t of the joint distance W1 to the total distance W2 is greater than 0% and 80% or less, the joint strength between the ground electrode and the metal shell can be further improved.
[適用例3]
 適用例1に記載のスパークプラグであって、
 前記芯部は、さらに、一部が前記第1層の内周側に配置されるとともに、前記外層よりも大きな含有率(重量%)でニッケルを含む材料で形成され、前記外層よりも熱伝導率が高い第2層を含み、
 前記断面の前記接地電極の前記基端部において、
  前記傾斜線の前記主体金具側の端を境界端とし、
  前記外層の外周面を表す2本の外周線のそれぞれの前記主体金具側の端である2つの外周端の間の前記接地電極の前記中心軸と垂直な方向の距離を全距離W2とし、
  前記傾斜線を含む1つまたは2つの前記境界線に関して、前記接地電極の前記中心軸に平行な前記境界端を通る直線と、前記境界端から見て前記傾斜線の延びる方向に位置する前記外周端を通り前記接地電極の前記中心軸に平行な直線と、の間の距離の合計を接合距離W1とし、
  前記全距離W2に対する前記接合距離W1の割合を割合tとしたときに、
 前記割合tは、0%より大きく、20%以下である、
 スパークプラグ。
[Application Example 3]
The spark plug according to application example 1,
The core portion is further arranged in part on the inner peripheral side of the first layer, and is formed of a material containing nickel with a larger content (% by weight) than the outer layer, and is more thermally conductive than the outer layer. Including a second layer with a high rate,
In the base end of the ground electrode of the cross section,
The end on the metal shell side of the inclined line is a boundary end,
The distance in the direction perpendicular to the central axis of the ground electrode between the two outer peripheral ends that are the ends on the metal shell side of each of the two outer peripheral lines representing the outer peripheral surface of the outer layer is defined as a total distance W2.
Regarding one or two of the boundary lines including the inclined line, a straight line passing through the boundary end parallel to the central axis of the ground electrode, and the outer periphery located in a direction in which the inclined line extends when viewed from the boundary end The total distance between the straight line passing through the end and parallel to the central axis of the ground electrode is a junction distance W1,
When the ratio of the joint distance W1 to the total distance W2 is a ratio t,
The ratio t is greater than 0% and not greater than 20%.
Spark plug.
 この構成によれば、全距離W2に対する接合距離W1の割合tが、0%より大きく、20%以下であるので、接地電極と主体金具との接合強度を、さらに、向上できる。 According to this configuration, since the ratio t of the bonding distance W1 to the total distance W2 is greater than 0% and 20% or less, the bonding strength between the ground electrode and the metal shell can be further improved.
[適用例4]
 適用例3に記載のスパークプラグであって、
 前記断面において、前記主体金具は、前記第1層から離間しているとともに、前記外層と前記第2層とに接合されている、
 スパークプラグ。
[Application Example 4]
The spark plug according to application example 3,
In the cross section, the metal shell is spaced apart from the first layer and joined to the outer layer and the second layer.
Spark plug.
 この構成によれば、主体金具は、第1層から離間しているとともに、外層と第2層とに接合されているので、接地電極と主体金具との接合強度を、さらに、向上できる。 According to this configuration, since the metal shell is separated from the first layer and is bonded to the outer layer and the second layer, the bonding strength between the ground electrode and the metal shell can be further improved.
[適用例5]
 適用例1から4のいずれか1項に記載のスパークプラグであって、
 前記外層と前記芯部との前記境界を表す前記2本の境界線の両方が、それぞれ、前記境界線の前記主体金具側の端から前記接地電極の前記中心軸に対して斜めに前記外層のうちの前記境界線を形成する部分の外周側に向かって延びる傾斜線を含む、
 スパークプラグ。
[Application Example 5]
The spark plug according to any one of Application Examples 1 to 4,
Both of the two boundary lines representing the boundary between the outer layer and the core portion are respectively inclined with respect to the central axis of the ground electrode from an end of the boundary line on the metal shell side. Including an inclined line extending toward the outer peripheral side of the portion forming the boundary line,
Spark plug.
 この構成によれば、2本の境界線のうちの一方のみが傾斜線を含む場合と比べて、外層と主体金具との接合面積を大きくすることができるので、接地電極と主体金具との接合強度を向上できる。 According to this configuration, since the bonding area between the outer layer and the metal shell can be increased as compared with the case where only one of the two boundary lines includes an inclined line, the bonding between the ground electrode and the metal shell can be performed. Strength can be improved.
 なお、本明細書に開示の技術は、種々の態様で実現することが可能であり、例えば、スパークプラグ、スパークプラグを搭載する内燃機関、スパークプラグの製造方法、等の態様で実現することができる。 The technology disclosed in the present specification can be realized in various modes, for example, in a mode such as a spark plug, an internal combustion engine equipped with a spark plug, a method for manufacturing a spark plug, and the like. it can.
第1実施形態のスパークプラグの一例の断面図である。It is sectional drawing of an example of the spark plug of 1st Embodiment. スパークプラグ100を先端側から見た概略図である。It is the schematic which looked at the spark plug 100 from the front end side. 接地電極30と主体金具50との接合部分の断面図である。3 is a cross-sectional view of a joint portion between a ground electrode 30 and a metal shell 50. FIG. 接合処理の一例を示す概略図である。It is the schematic which shows an example of a joining process. 第2実施形態のスパークプラグの一例の断面図である。It is sectional drawing of an example of the spark plug of 2nd Embodiment. 変形例のスパークプラグの一例の断面図である。It is sectional drawing of an example of the spark plug of a modification. 変形例のスパークプラグの一例の断面図である。It is sectional drawing of an example of the spark plug of a modification.
A.第1実施形態:
A-1.スパークプラグの構成:
 図1は、第1実施形態のスパークプラグの一例の断面図である。図示されたラインCLは、スパークプラグ100の中心軸を示している。図示された断面は、中心軸CLを含む断面である。以下、中心軸CLのことを「軸線CL」とも呼び、中心軸CLと平行な方向を「軸線方向」とも呼ぶ。中心軸CLを中心とする円の径方向を、単に「径方向」とも呼び、中心軸CLを中心とする円の円周方向を「周方向」とも呼ぶ。中心軸CLと平行な方向のうち、図1における上方向を先端方向D1と呼び、下方向を後端方向D1rとも呼ぶ。先端方向D1は、後述する端子金具40から電極20、30に向かう方向である。また、図1における先端方向D1側をスパークプラグ100の先端側と呼び、図1における後端方向D1r側をスパークプラグ100の後端側と呼ぶ。
A. First embodiment:
A-1. Spark plug configuration:
FIG. 1 is a cross-sectional view of an example of a spark plug according to the first embodiment. The illustrated line CL indicates the central axis of the spark plug 100. The illustrated cross section is a cross section including the central axis CL. Hereinafter, the central axis CL is also referred to as “axis line CL”, and the direction parallel to the central axis CL is also referred to as “axis line direction”. The radial direction of the circle centered on the central axis CL is also simply referred to as “radial direction”, and the circumferential direction of the circle centered on the central axis CL is also referred to as “circumferential direction”. Of the directions parallel to the central axis CL, the upper direction in FIG. 1 is referred to as a front end direction D1, and the lower direction is also referred to as a rear end direction D1r. The tip direction D1 is a direction from the terminal fitting 40 described later toward the electrodes 20 and 30. 1 is referred to as the front end side of the spark plug 100, and the rear end direction D1r side in FIG. 1 is referred to as the rear end side of the spark plug 100.
 スパークプラグ100は、絶縁体10(以下「絶縁碍子10」とも呼ぶ)と、中心電極20と、接地電極30と、端子金具40と、主体金具50と、導電性の第1シール部60と、抵抗体70と、導電性の第2シール部80と、先端側パッキン8と、タルク9と、第1後端側パッキン6と、第2後端側パッキン7と、を備えている。 The spark plug 100 includes an insulator 10 (hereinafter also referred to as “insulator 10”), a center electrode 20, a ground electrode 30, a terminal metal fitting 40, a metal shell 50, a conductive first seal portion 60, A resistor 70, a conductive second seal portion 80, a front end side packing 8, a talc 9, a first rear end side packing 6, and a second rear end side packing 7 are provided.
 絶縁体10は、中心軸CLに沿って延びて絶縁体10を貫通する貫通孔12(以下「軸孔12」とも呼ぶ)を有する略円筒状の部材である。絶縁体10は、アルミナを焼成して形成されている(他の絶縁材料も採用可能である)。絶縁体10は、先端側から後端方向D1rに向かって順番に並ぶ、脚部13と、第1縮外径部15と、先端側胴部17と、鍔部19と、第2縮外径部11と、後端側胴部18と、を有している。第1縮外径部15の外径は、後端側から先端側に向かって、徐々に小さくなる。絶縁体10の第1縮外径部15の近傍(図1の例では、先端側胴部17)には、後端側から先端側に向かって内径が徐々に小さくなる縮内径部16が形成されている。第2縮外径部11の外径は、先端側から後端側に向かって、徐々に小さくなる。 The insulator 10 is a substantially cylindrical member having a through-hole 12 (hereinafter also referred to as “shaft hole 12”) extending along the central axis CL and penetrating the insulator 10. The insulator 10 is formed by firing alumina (other insulating materials can also be used). The insulator 10 includes a leg portion 13, a first reduced outer diameter portion 15, a distal end side body portion 17, a flange portion 19, and a second reduced outer diameter that are arranged in order from the front end side toward the rear end direction D1r. Part 11 and rear end side body part 18. The outer diameter of the first reduced outer diameter portion 15 gradually decreases from the rear end side toward the front end side. In the vicinity of the first reduced outer diameter portion 15 of the insulator 10 (in the example of FIG. 1, the front end side body portion 17), a reduced inner diameter portion 16 whose inner diameter gradually decreases from the rear end side toward the front end side is formed. Has been. The outer diameter of the second reduced outer diameter portion 11 gradually decreases from the front end side toward the rear end side.
 絶縁体10の軸孔12の先端側には、中心軸CLに沿って延びる棒状の中心電極20が挿入されている。中心電極20は、先端側から後端方向D1rに向かって順番に並ぶ、脚部25と、鍔部24と、頭部23と、を有している。脚部25の先端側の部分は、絶縁体10の先端側で、軸孔12の外に露出している。鍔部24の先端方向D1側の面は、絶縁体10の縮内径部16によって、支持されている。また、中心電極20は、外層21と芯部22とを有している。芯部22の後端部は、外層21から露出し、中心電極20の後端部を形成する。芯部22の他の部分は、外層21によって被覆されている。ただし、芯部22の全体が、外層21によって覆われていても良い。 A rod-shaped center electrode 20 extending along the center axis CL is inserted on the tip end side of the shaft hole 12 of the insulator 10. The center electrode 20 includes a leg portion 25, a flange portion 24, and a head portion 23 that are arranged in order from the front end side toward the rear end direction D1r. A portion on the distal end side of the leg portion 25 is exposed outside the shaft hole 12 on the distal end side of the insulator 10. The surface of the flange portion 24 on the distal direction D1 side is supported by the reduced inner diameter portion 16 of the insulator 10. The center electrode 20 has an outer layer 21 and a core portion 22. The rear end portion of the core portion 22 is exposed from the outer layer 21 and forms the rear end portion of the center electrode 20. The other part of the core part 22 is covered with the outer layer 21. However, the entire core portion 22 may be covered with the outer layer 21.
 外層21は、芯部22よりも耐酸化性に優れる材料、すなわち、内燃機関の燃焼室内で燃焼ガスに曝された場合の消耗が少ない材料を用いて形成されている。外層21の材料としては、例えば、ニッケル(Ni)、または、ニッケルを主成分として含む合金(例えば、インコネル(「INCONEL」は、登録商標))が用いられる。ここで、「主成分」は、含有率が最も高い成分を意味している(以下、同様)。含有率としては、重量パーセント(wt%)で表される値が、採用される。芯部22は、外層21よりも熱伝導率が高い材料、例えば、銅を含む材料(例えば、純銅、または、銅を主成分とする合金)で形成されている。 The outer layer 21 is formed using a material that is more excellent in oxidation resistance than the core portion 22, that is, a material that consumes less when exposed to combustion gas in the combustion chamber of the internal combustion engine. As the material of the outer layer 21, for example, nickel (Ni) or an alloy containing nickel as a main component (for example, Inconel ("INCONEL" is a registered trademark)) is used. Here, the “main component” means a component having the highest content (hereinafter the same). As the content rate, a value represented by weight percent (wt%) is adopted. The core portion 22 is formed of a material having a higher thermal conductivity than the outer layer 21, for example, a material containing copper (for example, pure copper or an alloy containing copper as a main component).
 絶縁体10の軸孔12の後端側には、端子金具40が挿入されている。端子金具40は、導電材料(例えば、低炭素鋼等の金属)を用いて形成されている。絶縁体10の軸孔12内において、端子金具40と中心電極20との間には、電気的なノイズを抑制するための、円柱状の抵抗体70が配置されている。抵抗体70と中心電極20との間には、導電性の第1シール部60が配置され、抵抗体70と端子金具40との間には、導電性の第2シール部80が配置されている。中心電極20と端子金具40とは、抵抗体70とシール部60、80とを介して、電気的に接続される。 A terminal fitting 40 is inserted on the rear end side of the shaft hole 12 of the insulator 10. The terminal fitting 40 is formed using a conductive material (for example, a metal such as low carbon steel). In the shaft hole 12 of the insulator 10, a columnar resistor 70 for suppressing electrical noise is disposed between the terminal fitting 40 and the center electrode 20. A conductive first seal portion 60 is disposed between the resistor 70 and the center electrode 20, and a conductive second seal portion 80 is disposed between the resistor 70 and the terminal fitting 40. Yes. The center electrode 20 and the terminal fitting 40 are electrically connected through the resistor 70 and the seal portions 60 and 80.
 主体金具50は、中心軸CLに沿って延びて主体金具50を貫通する貫通孔59を有する略円筒状の部材である(本実施形態では、主体金具50の中心軸は、スパークプラグ100の中心軸CLと一致している)。主体金具50は、低炭素鋼材を用いて形成されている(他の導電材料(例えば、金属材料)も採用可能である)。主体金具50の貫通孔59には、絶縁体10が挿入されている。主体金具50は、絶縁体10の外周に固定されている。主体金具50の先端側では、絶縁体10の先端(本実施形態では、脚部13の先端側の部分)が、貫通孔59の外に露出している。主体金具50の後端側では、絶縁体10の後端(本実施形態では、後端側胴部18の後端側の部分)が、貫通孔59の外に露出している。 The metallic shell 50 is a substantially cylindrical member having a through hole 59 extending along the central axis CL and penetrating the metallic shell 50 (in this embodiment, the central axis of the metallic shell 50 is the center of the spark plug 100). Coincides with the axis CL). The metal shell 50 is formed using a low carbon steel material (other conductive materials (for example, metal materials) can also be used). The insulator 10 is inserted into the through hole 59 of the metal shell 50. The metal shell 50 is fixed to the outer periphery of the insulator 10. On the distal end side of the metal shell 50, the distal end of the insulator 10 (in this embodiment, the portion on the distal end side of the leg portion 13) is exposed outside the through hole 59. On the rear end side of the metal shell 50, the rear end of the insulator 10 (in this embodiment, the portion on the rear end side of the rear end side body portion 18) is exposed outside the through hole 59.
 主体金具50は、先端側から後端側に向かって順番に並ぶ、胴部55と、座部54と、変形部58と、工具係合部51と、加締部53と、を有している。座部54は、鍔状の部分である。胴部55の外周面には、内燃機関(例えば、ガソリンエンジン)の取付孔に螺合するためのネジ部52が形成されている。座部54とネジ部52との間には、金属板を折り曲げて形成された環状のガスケット5が嵌め込まれている。 The metal shell 50 includes a body portion 55, a seat portion 54, a deformation portion 58, a tool engaging portion 51, and a caulking portion 53, which are arranged in order from the front end side to the rear end side. Yes. The seat part 54 is a bowl-shaped part. On the outer peripheral surface of the body portion 55, a screw portion 52 for screwing into a mounting hole of an internal combustion engine (for example, a gasoline engine) is formed. An annular gasket 5 formed by bending a metal plate is fitted between the seat portion 54 and the screw portion 52.
 主体金具50は、変形部58よりも先端方向D1側に配置された縮内径部56を有している。縮内径部56の内径は、後端側から先端側に向かって、徐々に小さくなる。主体金具50の縮内径部56と、絶縁体10の第1縮外径部15と、の間には、先端側パッキン8が挟まれている。先端側パッキン8は、鉄製でO字形状のリングである(他の材料(例えば、銅等の金属材料)も採用可能である)。 The metal shell 50 has a reduced inner diameter portion 56 disposed on the distal direction D1 side with respect to the deformable portion 58. The inner diameter of the reduced inner diameter portion 56 gradually decreases from the rear end side toward the front end side. The front end packing 8 is sandwiched between the reduced inner diameter portion 56 of the metal shell 50 and the first reduced outer diameter portion 15 of the insulator 10. The front end packing 8 is an iron-shaped O-shaped ring (other materials (for example, metal materials such as copper) can also be used).
 工具係合部51の形状は、スパークプラグレンチが係合する形状(例えば、六角柱)である。工具係合部51の後端側には、加締部53が設けられている。加締部53は、絶縁体10の第2縮外径部11よりも後端側に配置され、主体金具50の後端(すなわち、後端方向D1r側の端)を形成する。加締部53は、径方向の内側に向かって屈曲されている。加締部53の先端方向D1側では、主体金具50の内周面と、絶縁体10の外周面と、の間に、第1後端側パッキン6と、タルク9と、第2後端側パッキン7とが、先端方向D1に向かってこの順番に、配置されている。本実施形態では、これらの後端側パッキン6、7は、鉄製でC字形状のリングである(他の材料も採用可能である)。 The shape of the tool engaging portion 51 is a shape (for example, a hexagonal column) with which a spark plug wrench is engaged. A caulking portion 53 is provided on the rear end side of the tool engaging portion 51. The caulking portion 53 is disposed on the rear end side of the second reduced outer diameter portion 11 of the insulator 10 and forms the rear end (that is, the end on the rear end direction D1r side) of the metal shell 50. The caulking portion 53 is bent toward the inner side in the radial direction. On the front end direction D1 side of the crimping portion 53, the first rear end side packing 6, the talc 9, and the second rear end side are provided between the inner peripheral surface of the metal shell 50 and the outer peripheral surface of the insulator 10. The packings 7 are arranged in this order toward the tip direction D1. In this embodiment, these rear end side packings 6 and 7 are iron-made C-shaped rings (other materials are also employable).
 スパークプラグ100の製造時には、加締部53が内側に折り曲がるように加締められる。そして、加締部53が先端方向D1側に押圧される。これにより、変形部58が変形し、パッキン6、7とタルク9とを介して、絶縁体10が、主体金具50内で、先端側に向けて押圧される。先端側パッキン8は、第1縮外径部15と縮内径部56との間で押圧され、そして、主体金具50と絶縁体10との間をシールする。以上により、主体金具50が、絶縁体10に、固定される。 At the time of manufacturing the spark plug 100, the crimping portion 53 is crimped so as to be bent inward. And the crimping part 53 is pressed to the front end direction D1 side. Thereby, the deformation | transformation part 58 deform | transforms and the insulator 10 is pressed toward the front end side in the metal shell 50 through the packings 6 and 7 and the talc 9. The front end side packing 8 is pressed between the first reduced outer diameter portion 15 and the reduced inner diameter portion 56 and seals between the metal shell 50 and the insulator 10. Thus, the metal shell 50 is fixed to the insulator 10.
 接地電極30は、本実施形態では、略矩形状の断面を有する棒状の電極である。接地電極30の一方の端部30xの端面37は、主体金具50の先端方向D1側の端部50xの端面57に接合されている。以下、接地電極30の端部30xを「基端部30x」と呼び、基端部30xの端面37を「基端面37」と呼ぶ。また、主体金具50の端部50xを「先端部50x」と呼び、先端部50xの端面57を「先端面57」と呼ぶ。本実施形態では、基端面37と先端面57とは、いずれも、主体金具50の中心軸CLとおおよそ垂直である。 In this embodiment, the ground electrode 30 is a rod-like electrode having a substantially rectangular cross section. The end surface 37 of one end portion 30x of the ground electrode 30 is joined to the end surface 57 of the end portion 50x on the front end direction D1 side of the metal shell 50. Hereinafter, the end portion 30x of the ground electrode 30 is referred to as a “base end portion 30x”, and the end surface 37 of the base end portion 30x is referred to as a “base end surface 37”. Further, the end portion 50x of the metal shell 50 is referred to as a “tip portion 50x”, and the end surface 57 of the tip portion 50x is referred to as a “tip surface 57”. In the present embodiment, the base end surface 37 and the front end surface 57 are both substantially perpendicular to the central axis CL of the metal shell 50.
 接地電極30は、主体金具50の先端面57から先端方向D1に向かって延び、中心軸CLに向かって曲がって、先端部31に至る。先端部31は、中心電極20の先端面29(先端方向D1側の表面29)との間でギャップgを形成する。接地電極30は、接地電極30の表面の少なくとも一部を形成する外層35と、外層35内に埋設された芯部36と、を有している。なお、接地電極30の基端部30xは、接地電極30のうちの屈曲した部分38よりも主体金具50側の部分である。 The ground electrode 30 extends from the distal end surface 57 of the metal shell 50 toward the distal end direction D1, bends toward the central axis CL, and reaches the distal end portion 31. The distal end portion 31 forms a gap g between the distal end surface 29 of the central electrode 20 (surface 29 on the distal end direction D1 side). The ground electrode 30 has an outer layer 35 that forms at least a part of the surface of the ground electrode 30, and a core portion 36 embedded in the outer layer 35. The base end portion 30x of the ground electrode 30 is a portion closer to the metal shell 50 than the bent portion 38 of the ground electrode 30.
 図2は、スパークプラグ100を先端側から見た概略図である。図示するように、中心電極20と、絶縁体10と、主体金具50とが、中心軸CLを中心とする同軸上に、配置されている。主体金具50の先端面57には、接地電極30が接合されている。接地電極30の基端面37と主体金具50の先端面57との接合部分には、溶接時に幅が広くなった幅広部350が形成されている。幅広部350は、接地電極30と主体金具50との少なくとも一方の溶融と変形との少なくとも一方によって、形成される。 FIG. 2 is a schematic view of the spark plug 100 as viewed from the front end side. As shown in the figure, the center electrode 20, the insulator 10, and the metal shell 50 are arranged on the same axis with the center axis CL as the center. The ground electrode 30 is joined to the front end surface 57 of the metal shell 50. A wide portion 350 that is wide at the time of welding is formed at a joint portion between the base end surface 37 of the ground electrode 30 and the front end surface 57 of the metal shell 50. The wide portion 350 is formed by at least one of melting and deformation of at least one of the ground electrode 30 and the metal shell 50.
 図3は、接地電極30と主体金具50との接合部分の断面図である。この断面図は、主体金具50の中心軸CL(図2)と接地電極30の中心軸CLxとを含む平面P1における断面である。以下、2つの中心軸CL、CLxを含む断面を「基準断面」と呼ぶ。図中の右方向Diは、径方向の内側に向かう方向(以下「内方向Di」と呼ぶ)であり、左方向Doは、径方向の外側に向かう方向(以下「外方向Do」と呼ぶ)である。 FIG. 3 is a cross-sectional view of a joint portion between the ground electrode 30 and the metal shell 50. This sectional view is a section in a plane P1 including the central axis CL (FIG. 2) of the metal shell 50 and the central axis CLx of the ground electrode 30. Hereinafter, a cross section including the two central axes CL and CLx is referred to as a “reference cross section”. In the drawing, the right direction Di is a direction toward the inside of the radial direction (hereinafter referred to as “inward direction Di”), and the left direction Do is a direction toward the outside of the radial direction (hereinafter referred to as “outward direction Do”). It is.
 接地電極30の中心軸CLxは、接地電極30の棒形状の中心軸である。図3に示すように、中心軸CLxは、接地電極30のうちの屈曲した部分38ではなく、基端部30x(特に、溶接時に変形せずに元の形状を維持した部分30s(以下、「維持部分30s」と呼ぶ)における中心軸を示している。図2に示すように、主体金具50の中心軸CLから見ると、中心軸CLxは、接地電極30(特に、維持部分30s)の周方向の一端301から他端302までの角度範囲ARを二等分して得られる中央の方向に、位置している。本実施形態では、中心軸CLxは、主体金具50の中心軸CLと、おおよそ平行である。なお、図2中の第1幅Waは、接地電極30の断面の略矩形状の第1辺Saの長さを示し、第2幅Wbは、接地電極30の断面の略矩形状の第1辺Saと直交する第2辺Sbの長さを示している。第1辺Saは、平面P1と略垂直であり、平面P1によって二等分される。 The central axis CLx of the ground electrode 30 is a rod-shaped central axis of the ground electrode 30. As shown in FIG. 3, the central axis CLx is not the bent portion 38 of the ground electrode 30, but the base end portion 30x (particularly, the portion 30s (hereinafter referred to as “the original shape without being deformed during welding”). As shown in FIG. 2, when viewed from the central axis CL of the metal shell 50, the central axis CLx is the circumference of the ground electrode 30 (particularly, the maintenance portion 30s). It is located in the central direction obtained by equally dividing the angle range AR from one end 301 to the other end 302. In this embodiment, the central axis CLx is the same as the central axis CL of the metal shell 50, 2, the first width Wa indicates the length of the first side Sa having a substantially rectangular shape in the cross section of the ground electrode 30, and the second width Wb is approximately the cross section of the ground electrode 30. The length of the second side Sb orthogonal to the rectangular first side Sa is shown. . The first side Sa is substantially perpendicular to the plane P1, is bisected by the plane P1.
 図3に示すように、接地電極30は、外層35と芯部36とを含んでいる。外層35は、接地電極30の表面を形成しており、主体金具50に接合されている。外層35は、芯部36よりも耐酸化性に優れる材料で形成されている。本実施形態では、外層35は、主成分としてのニッケルと、クロムと、アルミニウムと、を含む材料、具体的には、アルミニウムが添加されたニッケルクロム合金で形成されている。このようにニッケルクロム合金にアルミニウムを添加することによって、耐酸化性を向上できる。芯部36は、外層35の内周側に配置されており、主体金具50に接合されている。芯部36は、外層35よりも熱伝導率が高い材料で形成されている。本実施形態では、芯部36は、純銅を用いて形成されている。 As shown in FIG. 3, the ground electrode 30 includes an outer layer 35 and a core portion 36. The outer layer 35 forms the surface of the ground electrode 30 and is joined to the metal shell 50. The outer layer 35 is formed of a material that has better oxidation resistance than the core portion 36. In the present embodiment, the outer layer 35 is formed of a material containing nickel, chromium, and aluminum as main components, specifically, a nickel chromium alloy to which aluminum is added. Thus, oxidation resistance can be improved by adding aluminum to a nickel chromium alloy. The core portion 36 is disposed on the inner peripheral side of the outer layer 35 and is joined to the metal shell 50. The core part 36 is formed of a material having a higher thermal conductivity than the outer layer 35. In the present embodiment, the core portion 36 is formed using pure copper.
 図中の2本の境界線L10、L20は、外層35と芯部36との境界を表している。第1境界線L10は、内方向Di側の境界線を示し、第2境界線L20は、外方向Do側の境界線を示している。第1境界端P11は、第1境界線L10の主体金具50側の端である。第2境界端P21は、第2境界線L20の主体金具50側の端である。また、図中の2本の外周線L30、L40は、外層35の外周面を表している。第1外周線L30は、内方向Di側の外周線を示し、第2外周線L40は、外方向Do側の外周線を示している。第1外周端P32は、第1外周線L30の主体金具50側の端である。第2外周端P42は、第2外周線L40の主体金具50側の端である。 The two boundary lines L10 and L20 in the figure represent the boundary between the outer layer 35 and the core part 36. The first boundary line L10 indicates the boundary line on the inner direction Di side, and the second boundary line L20 indicates the boundary line on the outer direction Do side. The first boundary end P11 is an end of the first boundary line L10 on the metal shell 50 side. The second boundary end P21 is an end of the second boundary line L20 on the metal shell 50 side. In addition, the two outer peripheral lines L30 and L40 in the figure represent the outer peripheral surface of the outer layer 35. The first outer peripheral line L30 indicates the outer peripheral line on the inner direction Di side, and the second outer peripheral line L40 indicates the outer peripheral line on the outer direction Do side. The first outer peripheral end P32 is an end of the first outer peripheral line L30 on the metal shell 50 side. The second outer peripheral end P42 is an end of the second outer peripheral line L40 on the metal shell 50 side.
 図示するように、2本の境界線L10、L20は、維持部分30sでは、中心軸CLxとおおよそ平行である。幅広部350では、第2境界線L20は、主体金具50に近いほど中心軸CLxから遠くなるように湾曲して、第2境界端P21に至る。このような第2境界線L20が形成され得る理由については、後述する。 As shown in the figure, the two boundary lines L10 and L20 are approximately parallel to the central axis CLx in the maintenance portion 30s. In the wide portion 350, the second boundary line L20 is curved so as to be farther from the central axis CLx as it is closer to the metal shell 50, and reaches the second boundary end P21. The reason why such a second boundary line L20 can be formed will be described later.
 第1境界線L10は、幅広部350のうちの維持部分30sに近い部分では、第2境界線L20と同様に湾曲している。しかし、幅広部350のうちの主体金具50に近い部分では、第1境界線L10は、主体金具50に近いほど中心軸CLxに近くなるように湾曲して、第1境界端P11に至る。換言すれば、第1境界線L10は、第1境界端P11から、接地電極30の中心軸CLxに対して斜めに、外層35のうちの第1境界線L10を形成する部分の外周側に向かって延びる傾斜部分L11を含んでいる。このように、接地電極30の内方向Di側では、外層35は、主体金具50の先端面57に沿って中心軸CLxに向かって拡がっている。従って、外層35と主体金具50との接合面積が増大する。 The first boundary line L10 is curved in the same manner as the second boundary line L20 in the portion of the wide portion 350 close to the maintenance portion 30s. However, in the portion of the wide portion 350 close to the metal shell 50, the first boundary line L10 is curved so as to be closer to the central axis CLx as it is closer to the metal shell 50, and reaches the first boundary end P11. In other words, the first boundary line L10 is inclined from the first boundary end P11 to the outer peripheral side of the portion of the outer layer 35 that forms the first boundary line L10, obliquely with respect to the central axis CLx of the ground electrode 30. An inclined portion L11 extending in the direction is included. Thus, on the inner direction Di side of the ground electrode 30, the outer layer 35 extends toward the central axis CLx along the distal end surface 57 of the metal shell 50. Therefore, the joint area between the outer layer 35 and the metal shell 50 increases.
 このように、外層35と主体金具50との接合面積が増大することによって、接地電極30と主体金具50との溶接強度を向上できる。この理由は、以下の通りである。一般的に、銅の熱伝導率は、ニッケル合金の熱伝導率よりも、高い。すなわち、銅は、ニッケル合金よりも、熱を逃がしやすい。従って、接地電極30と主体金具50との溶接時には、接合面において、銅(すなわち、芯部36)の温度が、ニッケル合金(すなわち、外層35)の温度よりも低下し易い。この結果、芯部36と主体金具50との接合強度が、外層35と主体金具50との接合強度よりも、低下し得る。従って、接合面における外層35と主体金具50との接合面積の割合が大きい場合には、その割合が小さい場合と比べて、接地電極30と主体金具50との接合強度を向上できる。 Thus, the welding area between the ground electrode 30 and the metal shell 50 can be improved by increasing the joint area between the outer layer 35 and the metal shell 50. The reason for this is as follows. In general, the thermal conductivity of copper is higher than that of nickel alloys. That is, copper is more likely to release heat than a nickel alloy. Therefore, at the time of welding the ground electrode 30 and the metal shell 50, the temperature of copper (that is, the core portion 36) tends to be lower than the temperature of the nickel alloy (that is, the outer layer 35) at the joint surface. As a result, the bonding strength between the core portion 36 and the metal shell 50 can be lower than the bonding strength between the outer layer 35 and the metal shell 50. Therefore, when the ratio of the bonding area between the outer layer 35 and the metal shell 50 on the bonding surface is large, the bonding strength between the ground electrode 30 and the metal shell 50 can be improved as compared with the case where the ratio is small.
 図3のような接合部分を形成する方法としては、種々の方法を採用可能である。図4は、接合処理の一例を示す概略図である。接合処理は、図4(A)~図4(F)の順番に、進行する。図中には、接地電極30の一部(主体金具50と接合される部分)と、主体金具50の一部(接地電極30と接合される部分)と、が示されている。また、図中には、図3と同様の基準断面(平面P1における断面)が示されている。 As the method for forming the joint portion as shown in FIG. 3, various methods can be adopted. FIG. 4 is a schematic diagram illustrating an example of a bonding process. The joining process proceeds in the order of FIG. 4 (A) to FIG. 4 (F). In the figure, a part of the ground electrode 30 (part joined to the metal shell 50) and a part of the metal shell 50 (part joined to the ground electrode 30) are shown. Further, in the drawing, a reference cross section (cross section in the plane P1) similar to that in FIG. 3 is shown.
 まず、図4(A)、図4(B)に示すように、接地電極30の一端を切断することによって、基端面37が形成される。図中の境界線L10u、L20uは、接合前の境界線L10、L20(図3)に、それぞれ対応し、外周線L30u、L40uは、接合前の外周線L30、L40に、それぞれ対応する。各線L10u、L20u、L30u、L40uは、いずれも、中心軸CLxと平行である。 First, as shown in FIGS. 4A and 4B, one end of the ground electrode 30 is cut to form a base end face 37. The boundary lines L10u and L20u in the figure correspond to the boundary lines L10 and L20 (FIG. 3) before joining, respectively, and the outer peripheral lines L30u and L40u correspond to the outer peripheral lines L30 and L40 before joining, respectively. Each of the lines L10u, L20u, L30u, and L40u is parallel to the central axis CLx.
 接地電極30は、支持具910に支持された接地電極30に対して、切断刃920を、中心軸CLxと垂直な方向に移動させることによって、剪断される。切断刃920は、接地電極30の内方向Di側から外方向Doに向かって移動する。この切断によって形成される切断面が、基端面37に対応する。 The ground electrode 30 is sheared by moving the cutting blade 920 in a direction perpendicular to the central axis CLx with respect to the ground electrode 30 supported by the support 910. The cutting blade 920 moves from the inner direction Di side of the ground electrode 30 toward the outer direction Do. A cut surface formed by this cutting corresponds to the base end surface 37.
 図4(C)は、切断後の接地電極30を示している。基端面37の近傍では、接地電極30の各要素(ここでは、外層35と芯部36)は、外方向Doに移動する切断刃920との接触によって、外方向Doに向かって曲がるように変形する。例えば、第1境界線L10uは、基端面37の近傍において、基端面37に近いほど中心軸CLxに近くなるように、変形する。 FIG. 4C shows the ground electrode 30 after cutting. In the vicinity of the base end surface 37, each element of the ground electrode 30 (here, the outer layer 35 and the core portion 36) is deformed so as to bend toward the outer direction Do by contact with the cutting blade 920 moving in the outer direction Do. To do. For example, in the vicinity of the base end surface 37, the first boundary line L10u is deformed so that the closer to the base end surface 37, the closer to the central axis CLx.
 次に、図4(D)に示すように、主体金具50の先端面57上に、接地電極30が配置される。接地電極30の基端面37は、主体金具50の先端面57上の所定部分に、接触する。そして、接地電極30と主体金具50とが、抵抗溶接によって、接合される。この際、接地電極30と主体金具50とには、中心軸CLxと平行な力が印加される。具体的には、接地電極30には、主体金具50に向かう方向(後端方向D1r)の力が印加され、主体金具50には、先端方向D1の力が印加される。 Next, as shown in FIG. 4D, the ground electrode 30 is disposed on the front end surface 57 of the metal shell 50. The proximal end surface 37 of the ground electrode 30 contacts a predetermined portion on the distal end surface 57 of the metal shell 50. Then, the ground electrode 30 and the metal shell 50 are joined by resistance welding. At this time, a force parallel to the central axis CLx is applied to the ground electrode 30 and the metal shell 50. Specifically, a force in the direction toward the metal shell 50 (rear end direction D1r) is applied to the ground electrode 30, and a force in the front end direction D1 is applied to the metal shell 50.
 図4(E)は、溶接後の断面図の一例を示している。図示するように、主体金具50の先端部50xは、接地電極30の基端面37に沿って、中心軸CLxと垂直な方向に拡がっている。同様に、接地電極30の基端部30xは、主体金具50の先端面57に沿って、中心軸CLxと垂直な方向に拡がっている。溶接時に印加される力によって、基端部30xと先端部50xとは、図4(E)のように、変形し得る。 FIG. 4 (E) shows an example of a cross-sectional view after welding. As shown in the figure, the distal end portion 50x of the metal shell 50 extends along the base end surface 37 of the ground electrode 30 in a direction perpendicular to the central axis CLx. Similarly, the base end portion 30x of the ground electrode 30 extends in the direction perpendicular to the central axis CLx along the distal end surface 57 of the metal shell 50. The base end portion 30x and the tip end portion 50x can be deformed as shown in FIG. 4E by the force applied during welding.
 芯部36は、溶接時に主体金具50の先端面57に押しつけられるので、先端面57に沿って中心軸CLxから離れる方向に拡がるように変形する。この結果、溶接後には、第2境界線L20は、先端面57に近いほど中心軸CLxから遠くなるように、形成され得る。一方、第1境界線L10については、以下の通りである。溶接前の境界線L10uは、図4(C)で説明したように、基端面37の近傍において、基端面37に近いほど中心軸CLxに近くなるように、形成される。この結果、溶接時には、第1境界線L10uの近傍では、芯部36は拡がりにくく、外層35が中心軸CLxに向かって広がり得る。この結果、第1境界線L10の第1境界端P11は、第2境界線L20の第2境界端P21と比べて、中心軸CLxに近い位置に形成され得る。 Since the core portion 36 is pressed against the distal end surface 57 of the metal shell 50 during welding, the core portion 36 is deformed so as to expand along the distal end surface 57 in a direction away from the central axis CLx. As a result, after welding, the second boundary line L20 can be formed so as to be farther from the central axis CLx as it is closer to the distal end surface 57. On the other hand, the first boundary line L10 is as follows. As described with reference to FIG. 4C, the boundary line L10u before welding is formed in the vicinity of the base end face 37 so as to be closer to the central axis CLx as it is closer to the base end face 37. As a result, at the time of welding, the core portion 36 is difficult to expand in the vicinity of the first boundary line L10u, and the outer layer 35 can expand toward the central axis CLx. As a result, the first boundary end P11 of the first boundary line L10 can be formed at a position closer to the central axis CLx than the second boundary end P21 of the second boundary line L20.
 溶接後、接合部分に生じた余分な部分が取り除かれ、そして、接合が完了する。図4(F)は、接合が完了した状態を示しており、図3の断面図と同じである。図4(E)、図4(F)の例では、第1基準面Siよりも内方向Di側の部分35i、50iが、取り除かれる。第1基準面Siは、主体金具50の内周面(先端面57の近傍の溶接前の内周面)を先端方向D1に延長して得られる面と、おおよそ同じである。また、第2基準面Soよりも外方向Do側の部分35o、50oが、取り除かれる。第2基準面Soは、主体金具50の外周面(先端面57の近傍の溶接前の外周面)を先端方向D1に延長して得られる面と、おおよそ同じである。 ) After welding, the excess portion generated in the joint portion is removed, and the joint is completed. FIG. 4F shows a state where the bonding is completed, which is the same as the cross-sectional view of FIG. In the example of FIGS. 4E and 4F, the portions 35i and 50i on the inward direction Di side with respect to the first reference plane Si are removed. The first reference surface Si is substantially the same as a surface obtained by extending the inner peripheral surface of the metal shell 50 (the inner peripheral surface before welding in the vicinity of the front end surface 57) in the front end direction D1. Further, the portions 35o and 50o on the outer direction Do side than the second reference plane So are removed. The second reference surface So is approximately the same as a surface obtained by extending the outer peripheral surface of the metal shell 50 (the outer peripheral surface before welding near the front end surface 57) in the front end direction D1.
 なお、接地電極30の製造方法としては、種々の方法を採用可能である。例えば、以下の方法を採用可能である。外層35の材料で形成されたカップ状の外部材を準備し、その外部材の中に、芯部36の材料で形成された内部材を挿入する。内部材が挿入された状態で、外部材の外形を成形することによって、内部材と、内部材を覆う外部材と、を有する棒状の部材、すなわち、曲げる前の接地電極を形成する。得られた棒状の接地電極を、図4で説明した手順に従って、主体金具50に接合する。そして、適切なギャップgが形成されるように接地電極を曲げることによって、接地電極30を形成する。なお、接地電極30を曲げやすくするために、曲げる前の棒状の接地電極を、焼鈍してもよい。 In addition, as a manufacturing method of the ground electrode 30, various methods can be adopted. For example, the following method can be employed. A cup-shaped outer member formed of the material of the outer layer 35 is prepared, and the inner member formed of the material of the core portion 36 is inserted into the outer member. A rod-shaped member having an inner member and an outer member covering the inner member, that is, a ground electrode before bending, is formed by molding the outer shape of the outer member with the inner member inserted. The obtained rod-shaped ground electrode is joined to the metal shell 50 according to the procedure described in FIG. Then, the ground electrode 30 is formed by bending the ground electrode so that an appropriate gap g is formed. In order to make the ground electrode 30 easy to bend, the rod-shaped ground electrode before bending may be annealed.
 また、接地電極30と主体金具50との接合は、スパークプラグ100の製造の過程の種々の段階で、実行可能である。例えば、主体金具50が、中心電極20と端子金具40とを保持する絶縁体10に固定された後に、曲げる前の棒状の接地電極が、主体金具50に接合されてもよい。そして、この接合の後に、適切なギャップgを形成するように、接地電極が曲げられてもよい。このかわりに、曲げる前の棒状の接地電極が主体金具50に接合された後に、主体金具50が、中心電極20と端子金具40とを保持する絶縁体10に、固定されてもよい。 Also, the joining of the ground electrode 30 and the metal shell 50 can be performed at various stages in the process of manufacturing the spark plug 100. For example, after the metal shell 50 is fixed to the insulator 10 that holds the center electrode 20 and the terminal metal fitting 40, a bar-shaped ground electrode before bending may be joined to the metal shell 50. Then, after this joining, the ground electrode may be bent so as to form an appropriate gap g. Instead, the metal shell 50 may be fixed to the insulator 10 holding the center electrode 20 and the terminal metal fitting 40 after the bar-shaped ground electrode before bending is joined to the metal shell 50.
A-2.評価試験:
 評価試験では、第1実施形態の接地電極30と主体金具50とを有する部材のサンプルを用いて、接合強度が評価された。以下の表1は、表面酸素量と、割合tと、強度の評価結果と、の関係を示している。
A-2. Evaluation test:
In the evaluation test, the bonding strength was evaluated using a sample of a member having the ground electrode 30 and the metal shell 50 of the first embodiment. Table 1 below shows the relationship between the surface oxygen amount, the ratio t, and the strength evaluation result.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 「表面酸素量」は、溶接前の接地電極30の外層35の表面における酸素の含有率である(単位は、重量パーセント)。表面酸素量の測定方法は、以下の通りである。溶接前の接地電極30のうちの溶接時に溶融または変形する部分とは異なる部分の外層35の表面における元素の種類と量とを、電子線微小分析(Electron Probe Micro Analysis:EPMA)によって、分析した。分析された領域は、500μm×500μmの正方形の領域であった。そして、外層35を構成する元素と酸素元素との総量に対する酸素元素の量の比率を、表面酸素量として算出した。この分析には、SEM/EDS(走査型電子顕微鏡/エネルギー分散型X線分析装置)を用いた(具体的には、日本電子株式会社製のJSM-6490LA)。ここで、加速電圧を20kVに設定した。 “Surface oxygen content” is the oxygen content in the surface of the outer layer 35 of the ground electrode 30 before welding (unit: weight percent). The method for measuring the surface oxygen amount is as follows. The kind and amount of elements on the surface of the outer layer 35 of the portion different from the portion that melts or deforms during welding in the ground electrode 30 before welding were analyzed by electron beam microanalysis (EPMA). . The analyzed area was a 500 μm × 500 μm square area. Then, the ratio of the amount of the oxygen element to the total amount of the elements constituting the outer layer 35 and the oxygen element was calculated as the surface oxygen amount. For this analysis, SEM / EDS (scanning electron microscope / energy dispersive X-ray analyzer) was used (specifically, JSM-6490LA manufactured by JEOL Ltd.). Here, the acceleration voltage was set to 20 kV.
 接地電極30の表面の元素は、接地電極30を取り巻く環境ガス(例えば、空気)に含まれる酸素によって、酸化され得る。特に、外層35がアルミニウムを含む場合には、外層35の表面、すなわち、接地電極30の表面は、酸化されやすい。また、上述した焼鈍が行われる場合には、表面の酸化物の量が増大し得る。このような酸化物は、溶接欠陥の原因となり得る。従って、表面の酸素量が多い場合には、溶接強度が低下する可能性がある。 The elements on the surface of the ground electrode 30 can be oxidized by oxygen contained in an environmental gas (for example, air) surrounding the ground electrode 30. In particular, when the outer layer 35 includes aluminum, the surface of the outer layer 35, that is, the surface of the ground electrode 30 is easily oxidized. Further, when the above-described annealing is performed, the amount of surface oxide can be increased. Such oxides can cause weld defects. Therefore, when the amount of oxygen on the surface is large, the welding strength may be reduced.
 表1に示す評価試験では、表面酸素量として、1、2、4、5、8、9、10(wt%)の7個の値が、試験された。「1wt%」と「2wt%」とは、強度の評価結果が同じであったので、表1中では、まとめて示されている。また、「4wt%」と「5wt%」とは、強度の評価結果が同じであったので、表1中では、まとめて示されている。表面酸素量は、焼鈍の温度と焼鈍の時間とを調整することによって、調整された。なお、表面酸素量を制御する方法としては、焼鈍の温度と時間を調整する方法に限らず、種々の方法を採用可能である。例えば、焼鈍を行う際の環境ガス中の酸素濃度を調整してもよい。また、表面酸素量を小さくするために、真空ポンプで排気された容器中で焼鈍を行っても良い。 In the evaluation test shown in Table 1, seven values of 1, 2, 4, 5, 8, 9, 10 (wt%) were tested as the surface oxygen amount. Since “1 wt%” and “2 wt%” have the same strength evaluation results, they are collectively shown in Table 1. Further, “4 wt%” and “5 wt%” have the same strength evaluation result, and are therefore collectively shown in Table 1. The amount of surface oxygen was adjusted by adjusting the annealing temperature and the annealing time. The method for controlling the surface oxygen amount is not limited to the method of adjusting the annealing temperature and time, and various methods can be adopted. For example, the oxygen concentration in the environmental gas during annealing may be adjusted. Further, in order to reduce the amount of surface oxygen, annealing may be performed in a container evacuated by a vacuum pump.
 表1中の「割合t」は、図3に示す全距離W2に対する接合距離W1の割合である(単位は%)。全距離W2は、図3に示す基準断面において、2本の外周線L30、L40のそれぞれの主体金具50側の外周端P32、P42の間の、接地電極30の中心軸CLxと垂直な方向の距離である。接合距離W1は、傾斜部分L11の主体金具50側の境界端P11を通り接地電極30の中心軸CLxに平行な直線LP1と、境界端P11から見て傾斜部分L11の延びる方向に位置する外周端P32を通り接地電極30の中心軸CLxに平行な直線LP3と、の間の距離である。この接合距離W1は、接地電極30の中心軸CLxと垂直な方向の距離である。 “Proportion t” in Table 1 is the ratio of the joining distance W1 to the total distance W2 shown in FIG. 3 (unit:%). The total distance W2 is in the direction perpendicular to the central axis CLx of the ground electrode 30 between the outer peripheral ends P32 and P42 of the two outer peripheral lines L30 and L40 on the metal shell 50 side in the reference cross section shown in FIG. Distance. The joining distance W1 is a straight line LP1 passing through the boundary end P11 on the metal shell 50 side of the inclined portion L11 and parallel to the central axis CLx of the ground electrode 30, and the outer peripheral end positioned in the extending direction of the inclined portion L11 when viewed from the boundary end P11. The distance between the straight line LP3 passing through P32 and parallel to the central axis CLx of the ground electrode 30. The junction distance W1 is a distance in a direction perpendicular to the central axis CLx of the ground electrode 30.
 第2境界線L20は、第2境界線L20の境界端P21から、接地電極30の中心軸CLxに対して斜めに、外層35のうちの第2境界線L20を形成する部分の外周側に向かって延びる傾斜部分を、含んでいない。従って、第2境界線L20の境界端P21と、第2外周線L40の第2外周端P42と、の間の距離は、接合距離W1には含まれない。 The second boundary line L20 is inclined from the boundary end P21 of the second boundary line L20 to the outer peripheral side of the portion of the outer layer 35 that forms the second boundary line L20, obliquely with respect to the central axis CLx of the ground electrode 30. It does not include an inclined part that extends. Therefore, the distance between the boundary end P21 of the second boundary line L20 and the second outer peripheral end P42 of the second outer peripheral line L40 is not included in the joint distance W1.
 表1の評価試験では、割合tとして、0、5、10、30、50、80、90(%)の7個の値が、試験された。これら7個の値は、各表面酸素量毎に、評価された。すなわち、本評価試験では、7個の表面酸素量と7個の割合tとの49個の組み合わせのそれぞれのサンプルが、評価された。なお、割合tは、主に、切断刃920(図4(A))の刃先角と、溶接時に印加される荷重と、溶接電流と、を調整することによって、調整された。刃先角が大きいほど、割合tを大きくすることができる。荷重が大きいほど、割合tを大きくすることができる。溶接電流が小さいほど、割合tを大きくすることができる。 In the evaluation test of Table 1, seven values of 0, 5, 10, 30, 50, 80, and 90 (%) were tested as the ratio t. These seven values were evaluated for each surface oxygen content. That is, in this evaluation test, each sample of 49 combinations of 7 surface oxygen amounts and 7 ratios t was evaluated. The ratio t was adjusted mainly by adjusting the cutting edge angle of the cutting blade 920 (FIG. 4A), the load applied during welding, and the welding current. The ratio t can be increased as the cutting edge angle increases. The ratio t can be increased as the load increases. The ratio t can be increased as the welding current is smaller.
 表1中の強度の評価結果は、以下のように決定された。すなわち、接地電極30と主体金具50とを中心軸CLxと平行に互いに離れる方向に引っ張る引張試験を行い、引張強度(すなわち、サンプルが耐え得る最大引張荷重)を測定した。A評価は、引張強度が450N/mm以上であることを示し、B評価は、引張強度が350N/mm以上、引張強度が450N/mm未満であることを示し、C評価は、引張強度が350N/mm未満であることを示している。なお、引張試験は、株式会社島津製作所製のAG-5000Bを用いて行われた。 The strength evaluation results in Table 1 were determined as follows. That is, a tensile test was performed by pulling the ground electrode 30 and the metal shell 50 in directions away from each other parallel to the central axis CLx, and the tensile strength (that is, the maximum tensile load that the sample can withstand) was measured. A rating indicates that tensile strength is 450 N / mm 2 or more, B rating is a tensile strength of 350 N / mm 2 or more, the tensile strength showed to be less than 450 N / mm 2, C rating, tensile The strength is less than 350 N / mm 2 . The tensile test was performed using AG-5000B manufactured by Shimadzu Corporation.
 なお、割合tの測定と引張試験とは、同じ条件下で作製された複数のサンプルを用いて、行われた。引張試験に用いたサンプルの割合tとしては、同じ条件下で作製されたサンプルを基準断面で切断することによって測定された割合tを、採用した。同じ条件下で作製された複数のサンプルの間で、割合tは、おおよそ同じであった。 Note that the measurement of the ratio t and the tensile test were performed using a plurality of samples manufactured under the same conditions. As the ratio t of the sample used for the tensile test, a ratio t measured by cutting a sample manufactured under the same conditions at the reference cross section was adopted. The proportion t was approximately the same among the samples made under the same conditions.
 49種類のサンプルの間では、表面酸素量と割合tと以外の構成は、共通であった。例えば、以下の構成は、49種類のサンプルに共通であった。
 接地電極30の断面の第1幅Wa(図2) :2.8mm
 接地電極30の断面の第2幅Wb(図2) :1.5mm
 外層35の材料             :インコネル601
 外層35のアルミニウムの含有量     :1.4wt%
 芯部36の材料             :純銅
Among the 49 types of samples, the configuration other than the surface oxygen amount and the ratio t was common. For example, the following configuration was common to 49 types of samples.
First width Wa (FIG. 2) of the cross section of the ground electrode 30: 2.8 mm
Second width Wb (FIG. 2) of the cross section of the ground electrode 30: 1.5 mm
Material of outer layer 35: Inconel 601
Aluminum content of outer layer 35: 1.4 wt%
Material of core part 36: pure copper
 表1に示すように、表面酸素量が9wt%、または、10wt%である場合には、割合tに拘わらずに、強度の評価結果がC評価であった。一方、表面酸素量が8wt%以下である場合には、より良い評価結果(A評価、または、B評価)の実現が可能であった。このように、表面酸素量を8wt%以下に抑えることによって、溶接強度を向上できた。なお、表面酸素量が小さいほど、溶接強度を向上できると推定されるが、表面酸素量をゼロにすることは、現実には、困難である。従って、表面酸素量としては、ゼロwt%よりも大きい種々の値を採用可能である。 As shown in Table 1, when the surface oxygen amount was 9 wt% or 10 wt%, the strength evaluation result was C evaluation regardless of the ratio t. On the other hand, when the surface oxygen amount was 8 wt% or less, it was possible to realize a better evaluation result (A evaluation or B evaluation). Thus, the welding strength could be improved by suppressing the surface oxygen amount to 8 wt% or less. Although it is estimated that the welding strength can be improved as the surface oxygen amount is smaller, it is actually difficult to reduce the surface oxygen amount to zero. Therefore, various values larger than zero wt% can be adopted as the surface oxygen amount.
 なお、良好な評価結果を実現可能な表面酸素量は、1、2、4、5、8(wt%)であった。これらの値のうちの任意の値を、表面酸素量の好ましい範囲(下限以上、上限以下)の上限として採用可能である。例えば、表面酸素量としては、8wt%以下の値を採用可能である。また、これらの値のうちの上限以下の任意の値を、表面酸素量の好ましい範囲の下限として採用可能である。例えば、表面酸素量としては、1wt%以上の値を採用可能である。 In addition, the surface oxygen amount which can implement | achieve a favorable evaluation result was 1, 2, 4, 5, 8 (wt%). Any value among these values can be adopted as the upper limit of the preferable range (more than the lower limit and less than the upper limit) of the surface oxygen amount. For example, a value of 8 wt% or less can be adopted as the surface oxygen amount. Moreover, any value below the upper limit among these values can be adopted as the lower limit of the preferable range of the surface oxygen amount. For example, a value of 1 wt% or more can be adopted as the surface oxygen amount.
 また、表面酸素量が5wt%以下である場合には、特に良いA評価を実現可能であった。なお、A評価を実現可能な表面酸素量は、1、2、4、5(wt%)であった。従って、表面酸素量の好ましい範囲の上限と下限とを、これら4個の値から選択することが特に好ましい。また、これら4個の表面酸素量のそれぞれにおいて、A評価が得られた割合tは、5、10、30、50、80(%)であった。これらの値のうちの任意の値を、割合tの好ましい範囲の上限として採用可能である。例えば、割合tとしては、80%以下の値を採用可能である。なお、割合tがゼロ%よりも大きい場合には、割合tがゼロ%である場合よりも、溶接強度を向上できると推定される。従って、割合tとしては、ゼロ%よりも大きな種々の値を採用可能である。また、A評価が得られた割合t(5、10、30、50、80(%))から、割合tの下限を選択してもよい。例えば、割合tとしては、5%以上の値を採用してもよい。 In addition, when the surface oxygen amount was 5 wt% or less, particularly good A evaluation could be realized. In addition, the surface oxygen amount which can implement | achieve A evaluation was 1, 2, 4, 5 (wt%). Therefore, it is particularly preferable to select the upper limit and the lower limit of the preferable range of the surface oxygen amount from these four values. In each of these four surface oxygen amounts, the ratio t at which A was obtained was 5, 10, 30, 50, and 80 (%). Any value among these values can be adopted as the upper limit of the preferable range of the ratio t. For example, a value of 80% or less can be adopted as the ratio t. In addition, when the ratio t is larger than zero%, it is estimated that welding strength can be improved rather than the case where the ratio t is zero%. Therefore, various values larger than zero% can be adopted as the ratio t. Moreover, you may select the minimum of the ratio t from the ratio t (5, 10, 30, 50, 80 (%)) from which A evaluation was obtained. For example, a value of 5% or more may be adopted as the ratio t.
B.第2実施形態:
B-1.スパークプラグの構成:
 図5は、第2実施形態のスパークプラグの一例の断面図である。図中には、図3と同様に、接地電極30bの基端部30bxと主体金具50の先端部50xとの接合部分の断面図が示されている。図3に示す第1実施形態との差異は、接地電極30bの芯部36bが、第1層34aと、第1層34aの内周側に配置された第2層34bと、を含む点だけである。接地電極30bの構成のうち、芯部36b以外の構成は、図3に示す接地電極30の構成と、同じである。以下、第2実施形態の接地電極30bの要素のうち、図3の接地電極30の要素と同じ要素には、同じ符号を付して、説明を省略する。また、第2実施形態のスパークプラグ100bの構成のうちの接地電極30b以外の構成は、図1に示すスパークプラグ100の構成と、同じである。以下、第2実施形態のスパークプラグ100bの要素のうち、図1のスパークプラグ100の要素と同じ要素には、同じ符号を付して、説明を省略する。
B. Second embodiment:
B-1. Spark plug configuration:
FIG. 5 is a cross-sectional view of an example of the spark plug according to the second embodiment. In the drawing, similarly to FIG. 3, a cross-sectional view of a joint portion between the base end portion 30bx of the ground electrode 30b and the tip end portion 50x of the metal shell 50 is shown. The only difference from the first embodiment shown in FIG. 3 is that the core portion 36b of the ground electrode 30b includes the first layer 34a and the second layer 34b disposed on the inner peripheral side of the first layer 34a. It is. Of the configuration of the ground electrode 30b, the configuration other than the core portion 36b is the same as the configuration of the ground electrode 30 shown in FIG. Hereinafter, among the elements of the ground electrode 30b of the second embodiment, the same elements as those of the ground electrode 30 of FIG. Further, the configuration of the spark plug 100b of the second embodiment other than the ground electrode 30b is the same as the configuration of the spark plug 100 shown in FIG. Hereinafter, among the elements of the spark plug 100b of the second embodiment, the same elements as those of the spark plug 100 of FIG.
 第1層34aは、図3の芯部36と同様に、外層35よりも熱伝導率が高い材料で形成されている。本実施形態では、第1層34aは、純銅を用いて形成されている。第2層34bは、その一部が第1層34aの内周側に配置されている。第2層34bは、外層35よりも大きな含有率(wt%)でニッケルを含む材料で形成されている。すなわち、第2層34bのニッケルの含有率は、外層35のニッケルの含有率よりも、高い。また、第2層34bの熱伝導率は、外層35の熱伝導率よりも、高い。本実施形態では、第2層34bは、純ニッケルを用いて形成されている。 The first layer 34a is formed of a material having a higher thermal conductivity than the outer layer 35, like the core portion 36 of FIG. In the present embodiment, the first layer 34a is formed using pure copper. A part of the second layer 34b is disposed on the inner peripheral side of the first layer 34a. The second layer 34b is formed of a material containing nickel with a larger content rate (wt%) than the outer layer 35. That is, the nickel content of the second layer 34 b is higher than the nickel content of the outer layer 35. Further, the thermal conductivity of the second layer 34 b is higher than the thermal conductivity of the outer layer 35. In the present embodiment, the second layer 34b is formed using pure nickel.
 図5に示すように、接地電極30bの内部構造は、基端面37を含む一部分では、外層35と第2層34bとの2層構造であり、他の部分では、外層35と第1層34aと第2層34bとの3層構造である。第1層34aは、主体金具50に接合されておらず、第2層34bは、主体金具50に接合されている。なお、図示を省略するが、接地電極30bの先端部(図1の先端部31に対応する部分)の内部構造も、外層35と第2層34bとの2層構造である。ただし、第1層34aが、接地電極30bの先端部まで延びていても良い。 As shown in FIG. 5, the internal structure of the ground electrode 30b is a two-layer structure including an outer layer 35 and a second layer 34b in a part including the base end face 37, and the outer layer 35 and the first layer 34a in the other part. And a second layer 34b. The first layer 34 a is not joined to the metal shell 50, and the second layer 34 b is joined to the metal shell 50. Although not shown, the internal structure of the tip portion of the ground electrode 30b (the portion corresponding to the tip portion 31 in FIG. 1) is also a two-layer structure of the outer layer 35 and the second layer 34b. However, the first layer 34a may extend to the tip of the ground electrode 30b.
 図中の境界線L10b、L20bは、それぞれ、図3の境界線L10、L20と同様に、外層35と芯部36bとの境界を表している。境界端P11b、P21bは、それぞれ、図3の境界端P11、P21と同様に、境界線L10b、L20bの主体金具50側の端である。図示するように、境界線L10bは、図3の第1境界線L10と同様に、第1境界端P11bから、接地電極30bの中心軸CLxに対して斜めに、外層35のうちの第1境界線L10bを形成する部分の外周側に向かって延びる傾斜部分L11bを含んでいる。従って、外層35と主体金具50との接合面積が増大するので、傾斜部分L11bが形成されずに第1層34aが主体金具50に接合される場合と比べて、接地電極30bと主体金具50との溶接強度を向上できる。 The boundary lines L10b and L20b in the figure represent the boundary between the outer layer 35 and the core part 36b, respectively, similarly to the boundary lines L10 and L20 in FIG. The boundary ends P11b and P21b are the ends on the metal shell 50 side of the boundary lines L10b and L20b, respectively, similarly to the boundary ends P11 and P21 of FIG. As shown in the figure, the boundary line L10b is, like the first boundary line L10 in FIG. 3, obliquely from the first boundary end P11b to the central axis CLx of the ground electrode 30b, and is the first boundary of the outer layer 35. An inclined portion L11b extending toward the outer peripheral side of the portion forming the line L10b is included. Accordingly, since the joining area between the outer layer 35 and the metal shell 50 is increased, the ground electrode 30b and the metal shell 50 are compared with the case where the first layer 34a is joined to the metal shell 50 without forming the inclined portion L11b. The welding strength can be improved.
 また、上述したように、銅と比べて、ニッケルの溶接強度は強い。また、本実施形態では、銅を含む第1層34aは、主体金具50から離間している。そして、ニッケルを含む外層35と第2層34bとが、主体金具50に接合されている。従って、第1層34aが主体金具50に接合されている場合と比べて、接地電極30bと主体金具50との溶接強度を向上できる。 Also, as described above, the welding strength of nickel is stronger than copper. In the present embodiment, the first layer 34 a containing copper is separated from the metal shell 50. The outer layer 35 containing nickel and the second layer 34 b are joined to the metal shell 50. Therefore, compared with the case where the first layer 34a is joined to the metal shell 50, the welding strength between the ground electrode 30b and the metal shell 50 can be improved.
 図5のような接合部分を形成する方法としては、図4(A)~図4(F)で説明した方法と同様の方法を採用可能である。ここで、第1層34aを主体金具50から離間させる方法としては、種々の方法を採用可能である。例えば、切断前の接地電極30bとして、外層35と第1層34aと第2層34bとの3層構造の部分と、外層35と第2層34bの2層構造の部分と、を有する部材を製造する。次に、2層構造の部分を、図4(A)、図4(B)と同様に、切断する。次に、基端面37bと主体金具50の先端面57とを、図4(D)、図4(E)と同様に、溶接する。そして、基準面Si、So(図4(E)からはみ出た部分を、図4(E)、図4(F)と同様に取り除くことによって、接合処理が完了する。 As a method for forming the joint portion as shown in FIG. 5, a method similar to the method described in FIGS. 4 (A) to 4 (F) can be employed. Here, as a method of separating the first layer 34a from the metal shell 50, various methods can be adopted. For example, a member having a three-layer structure portion of the outer layer 35, the first layer 34a, and the second layer 34b and a two-layer structure portion of the outer layer 35 and the second layer 34b as the ground electrode 30b before cutting. To manufacture. Next, the portion having the two-layer structure is cut in the same manner as in FIGS. 4A and 4B. Next, the base end face 37b and the front end face 57 of the metal shell 50 are welded in the same manner as in FIGS. 4D and 4E. And the joining process is completed by removing the part which protruded from the reference plane Si and So (FIG.4 (E)) similarly to FIG.4 (E) and FIG.4 (F).
 なお、接地電極30bの製造方法としては、第1実施形態の接地電極30の製造方法と同様の方法を採用可能である。また、スパークプラグ100bの製造方法としては
第1実施形態のスパークプラグ100の製造方法と同様の方法を採用可能である。
In addition, as a manufacturing method of the ground electrode 30b, the same method as the manufacturing method of the ground electrode 30 of 1st Embodiment is employable. Further, as a method for manufacturing the spark plug 100b, a method similar to the method for manufacturing the spark plug 100 of the first embodiment can be employed.
B-2.評価試験:
 評価試験では、第2実施形態の接地電極30bと主体金具50とを有する部材のサンプルを用いて、接合強度が評価された。以下の表2は、割合tと、100-tと、強度の評価結果と、の関係を示している。
B-2. Evaluation test:
In the evaluation test, the bonding strength was evaluated using a sample of a member having the ground electrode 30b and the metal shell 50 of the second embodiment. Table 2 below shows the relationship between the ratio t, 100-t, and the strength evaluation result.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 割合tは、図5に示す全距離W2に対する接合距離W1の割合である(単位は%)。図5の実施形態では、全距離W2は、図3の実施形態の全距離W2と、同じである。接合距離W1は、2本の直線LP1b、LP3の間の距離である。直線LP3は、図3の直線LP3と同じである。直線LP1bは、傾斜部分L11bの主体金具50側の境界端P11bを通り接地電極30bの中心軸CLxに平行な直線である。 The ratio t is a ratio of the joining distance W1 to the total distance W2 shown in FIG. 5 (unit:%). In the embodiment of FIG. 5, the total distance W2 is the same as the total distance W2 of the embodiment of FIG. The junction distance W1 is a distance between the two straight lines LP1b and LP3. The straight line LP3 is the same as the straight line LP3 in FIG. The straight line LP1b is a straight line that passes through the boundary end P11b on the metal shell 50 side of the inclined portion L11b and is parallel to the central axis CLx of the ground electrode 30b.
 第2境界線L20bは、第2境界線L20bの境界端P21bから、接地電極30bの中心軸CLxに対して斜めに、外層35のうちの第2境界線L20bを形成する部分の外周側に向かって延びる傾斜部分を、含んでいない。従って、第2境界線L20bの第2境界端P21bと、第2外周線L40の第2外周端P42と、の間の距離は、接合距離W1には含まれない。 The second boundary line L20b is inclined from the boundary end P21b of the second boundary line L20b with respect to the central axis CLx of the ground electrode 30b toward the outer peripheral side of the portion of the outer layer 35 that forms the second boundary line L20b. It does not include an inclined part that extends. Therefore, the distance between the second boundary end P21b of the second boundary line L20b and the second outer peripheral end P42 of the second outer peripheral line L40 is not included in the joint distance W1.
 表2の評価試験では、割合tとして、0、5、10、20、30、50、80、90(%)の8個の値が評価された。すなわち、本評価試験では、8種類のサンプルが、評価された。 In the evaluation test of Table 2, eight values of 0, 5, 10, 20, 30, 50, 80, and 90 (%) were evaluated as the ratio t. That is, in this evaluation test, eight types of samples were evaluated.
「100-t(%)」は、100から割合tを引いた値である。この値が大きいほど、外層35と主体金具50との接合面積が小さい傾向があり、そして、第2層34bと主体金具50との接合面積が大きい傾向がある。 “100−t (%)” is a value obtained by subtracting the ratio t from 100. The larger this value, the smaller the joining area between the outer layer 35 and the metallic shell 50 and the larger the joining area between the second layer 34b and the metallic shell 50.
 表2の強度の評価方法は、上記の表1の強度の評価方法と、同じである。ただし、評価の閾値が異なっている。すなわち、A評価は、引張強度が550N/mm以上であることを示し、B評価は、引張強度が450N/mm以上、引張強度が550N/mm未満であることを示し、C評価は、引張強度が450N/mm未満であることを示している。 The strength evaluation method in Table 2 is the same as the strength evaluation method in Table 1 above. However, the evaluation thresholds are different. That is, A evaluation shows that tensile strength is 550 N / mm 2 or more, B evaluation shows that tensile strength is 450 N / mm 2 or more, and tensile strength is less than 550 N / mm 2 , and C evaluation is , Indicating that the tensile strength is less than 450 N / mm 2 .
 なお、8種類のサンプルの間では、割合t(すなわち、100-t)以外の構成は、共通であった。例えば、以下の構成は、8種類のサンプルに共通であった。
 接地電極30bの断面の第1幅(図2のWaに相当する幅):2.0mm
 接地電極30bの断面の第2幅(図2のWbに相当する幅):1.6mm
 外層35の材料                 :インコネル601
 外層35のアルミニウムの含有量         :1.4wt%
 第1層34aの材料               :純銅
 第2層34bの材料               :純ニッケル
 表面酸素量                   :5wt%
It should be noted that the configuration other than the ratio t (ie, 100-t) was common among the eight types of samples. For example, the following configuration is common to eight types of samples.
First width of cross section of ground electrode 30b (width corresponding to Wa in FIG. 2): 2.0 mm
Second width of cross section of ground electrode 30b (width corresponding to Wb in FIG. 2): 1.6 mm
Material of outer layer 35: Inconel 601
Aluminum content of outer layer 35: 1.4 wt%
Material of first layer 34a: Pure copper Material of second layer 34b: Pure nickel Surface oxygen content: 5 wt%
 表2に示すように、割合tが大きい場合と比べて、割合tが小さい場合に、強度の評価結果が良い傾向があった。この理由は、以下のように推定される。主成分としてニッケルを含む材料を溶接する場合には、その材料中のニッケル以外の成分が、溶接欠陥の原因となり得る。従って、ニッケルの含有率(wt%)が高いほど、溶接強度が強くなる傾向がある。そして、図5の実施形態では、割合tが小さいほど、外層35よりもニッケルの含有率が高い第2層34bと、主体金具50と、の接合面積が大きくなる。従って、割合tが小さいほど、溶接強度が向上する、と推定される。なお、割合tがゼロ%である場合には、強度の評価結果がA評価ではなくB評価である。この理由としては、割合tを測定した基準断面とは異なる断面において第1層34aが主体金具50に接合されている可能性がある、と考えられる。 As shown in Table 2, the strength evaluation results tend to be better when the ratio t is smaller than when the ratio t is large. The reason is estimated as follows. When welding a material containing nickel as a main component, components other than nickel in the material can cause welding defects. Therefore, the higher the nickel content (wt%), the stronger the welding strength. In the embodiment of FIG. 5, the smaller the ratio t, the larger the bonding area between the second layer 34 b having a higher nickel content than the outer layer 35 and the metal shell 50. Therefore, it is estimated that the welding strength improves as the ratio t decreases. When the ratio t is zero%, the strength evaluation result is not A evaluation but B evaluation. The reason is considered that the first layer 34a may be joined to the metal shell 50 in a cross section different from the reference cross section in which the ratio t is measured.
 なお、A評価を実現可能な割合tは、5、10、20(%)であった。従って、これらの値のうちの任意の値を、割合tの好ましい範囲の上限として採用可能である。例えば、割合tとしては、20%以下の値を採用可能である。なお、割合tがゼロ%よりも大きい場合には、溶接時に外層35が中心軸CLxに向かって拡がることによって第1層34aと主体金具50との接合が抑制されるので、割合tがゼロ%である場合よりも、溶接強度を向上できると推定される。従って、割合tとしては、ゼロ%よりも大きな種々の値を採用可能である。また、A評価が得られた割合t(5、10、20(%))から、割合tの下限を選択してもよい。例えば、割合tとしては、5%以上の値を採用してもよい。 In addition, the ratio t which can implement | achieve A evaluation was 5, 10, 20 (%). Therefore, any value among these values can be adopted as the upper limit of the preferable range of the ratio t. For example, a value of 20% or less can be adopted as the ratio t. When the ratio t is greater than zero%, the outer layer 35 expands toward the central axis CLx during welding, thereby suppressing the bonding between the first layer 34a and the metal shell 50. Therefore, the ratio t is zero%. It is estimated that the welding strength can be improved as compared with the case of. Therefore, various values larger than zero% can be adopted as the ratio t. Moreover, you may select the minimum of the ratio t from the ratio t (5, 10, 20 (%)) from which A evaluation was obtained. For example, a value of 5% or more may be adopted as the ratio t.
 また、上述したように、表面酸素量が小さいほど、溶接強度を向上できる。従って、割合tの上述の好ましい範囲は、5wt%以下の種々の表面酸素量に適用可能である。 Also, as described above, the smaller the surface oxygen amount, the better the welding strength. Therefore, the above-mentioned preferable range of the ratio t is applicable to various surface oxygen amounts of 5 wt% or less.
 なお、図5の実施形態では、主体金具50は、第1層34aから離間しているとともに、外層35と第2層34bとに接合されている。このかわりに、主体金具50が、外層35と第1層34aと第2層34bとの全てと接合されていてもよい。この場合も、割合tを比較的小さくすることによって、第2層34bと主体金具50との接合面積を大きくすることができるので、接合強度を向上できると推定される。従って、この場合にも、割合tの上記の好ましい範囲を適用可能と推定される。 In the embodiment of FIG. 5, the metal shell 50 is separated from the first layer 34a and is joined to the outer layer 35 and the second layer 34b. Instead of this, the metal shell 50 may be joined to all of the outer layer 35, the first layer 34a, and the second layer 34b. Also in this case, it is presumed that the bonding strength can be improved because the bonding area between the second layer 34b and the metal shell 50 can be increased by making the ratio t relatively small. Therefore, it is estimated that the preferable range of the ratio t can be applied also in this case.
C.変形例:
(1)上述の実施形態では、第1境界線L10、L10b(図3、図5))が、傾斜部分L11、L11bを含んでいる。一般的には、基準断面における外層35と芯部36、36bとの2本の境界線の少なくとも一方が、傾斜部分を有することが好ましい。この構成によれば、2本の境界線の両方が傾斜部分を有していない場合と比べて、外層35と主体金具50との接合面積を大きくすることができるので、接地電極30、30bと主体金具50との接合強度を向上できる。
C. Variation:
(1) In the above-described embodiment, the first boundary lines L10 and L10b (FIGS. 3 and 5) include the inclined portions L11 and L11b. Generally, it is preferable that at least one of the two boundary lines between the outer layer 35 and the core portions 36 and 36b in the reference cross section has an inclined portion. According to this configuration, since the joining area between the outer layer 35 and the metal shell 50 can be increased as compared with the case where both of the two boundary lines do not have an inclined portion, the ground electrodes 30, 30b and The joint strength with the metal shell 50 can be improved.
 例えば、2本の境界線の両方が、傾斜部分を含んでも良い。このような構成を図3、図5の実施形態に適用する場合、第2境界線L20、L20bが、第2境界端P21、P21bから外方向Doに向かって斜めに延びる傾斜部分を含む。この場合、接合距離W1としては、第1境界端P11、P11bと第1外周端P32との間の第1距離(図3、図5の接合距離W1)と、第2境界端P21、P21bと第2外周端P42との間の第2距離と、の合計値が、採用される。第2距離は、第2境界端P21、P21bを通り中心軸CLxに平行な直線LP2、LP2bと、第2外周端P42を通り中心軸CLxに平行な直線LP4と、の間の距離である。また、内方向Di側の第1境界線L10、L10bが、傾斜部分を含まずに、外方向Do側の第2境界線L20、L20bが、傾斜部分を含んでも良い。 For example, both of the two boundary lines may include an inclined portion. When such a configuration is applied to the embodiments of FIGS. 3 and 5, the second boundary lines L20 and L20b include inclined portions extending obliquely from the second boundary ends P21 and P21b toward the outer direction Do. In this case, as the joining distance W1, the first distance between the first boundary ends P11 and P11b and the first outer peripheral end P32 (the joining distance W1 in FIGS. 3 and 5), the second boundary ends P21 and P21b, A total value of the second distance to the second outer peripheral end P42 is employed. The second distance is a distance between the straight lines LP2 and LP2b passing through the second boundary ends P21 and P21b and parallel to the central axis CLx, and the straight line LP4 passing through the second outer peripheral end P42 and parallel to the central axis CLx. Further, the first boundary lines L10 and L10b on the inner direction Di side may not include the inclined portion, and the second boundary lines L20 and L20b on the outer direction Do side may include the inclined portion.
 図6は、変形例のスパークプラグの一例の断面図である。この変形例のスパークプラグ100cは、2本の境界線の両方が傾斜部分を含むという構成を図3の実施形態に適用して得られるスパークプラグの例である。図中には、図3と同様に、接地電極30cの基端部30cxと主体金具50の先端部50xとの接合部分の断面図が示されている。図3に示す第1実施形態との差異は、接地電極30cの外層35cと芯部36cとの間の2本の境界線L10、L20cのうち外方向Do側の第2境界線L20cが傾斜部分L21cを含んでいる点だけである。図6の変形例では、接地電極30cの接合部分のうち中心軸CLxよりも内方向Di側の部分の構成は、図3の接合部分のうち中心軸CLxよりも内方向Di側の部分の構成と、同じである。また、図6の変形例では、接地電極30cの接合部分のうち中心軸CLxよりも外方向Do側の部分の構成は、中心軸CLxよりも内方向Di側の部分の構成に中心軸CLxを対称軸とする鏡映変換を行って得られる構成と、おおよそ同じである。 FIG. 6 is a cross-sectional view of an example of a modified spark plug. The spark plug 100c of this modification is an example of a spark plug obtained by applying the configuration in which both of the two boundary lines include an inclined portion to the embodiment of FIG. In the drawing, similarly to FIG. 3, a sectional view of a joint portion between the base end portion 30 cx of the ground electrode 30 c and the tip end portion 50 x of the metal shell 50 is shown. The difference from the first embodiment shown in FIG. 3 is that the second boundary line L20c on the outer side Do side of the two boundary lines L10 and L20c between the outer layer 35c and the core part 36c of the ground electrode 30c is an inclined portion. It is only a point including L21c. In the modification of FIG. 6, the configuration of the portion of the joint portion of the ground electrode 30 c on the inner direction Di side from the central axis CLx is the configuration of the portion of the joint portion of FIG. 3 on the inner direction Di side. And the same. In the modification of FIG. 6, the configuration of the portion of the joint portion of the ground electrode 30 c that is on the outer side Do side of the central axis CLx is the same as the configuration of the portion of the inner side Di side of the central axis CLx. This is almost the same as the configuration obtained by performing the mirror conversion with the symmetry axis.
 接地電極30cの他の部分の構成は、図3に示す接地電極30の構成とおおよそ同じである。例えば、外層35cと芯部36cとの構成は、基端部30cxでの第2境界線L20cの形状を除いて、図3の外層35と芯部36との構成と、それぞれ、おおよそ同じである。また、変形例のスパークプラグ100cの構成のうちの接地電極30c以外の構成は、図1に示すスパークプラグ100の構成と同じである。以下、変形例のスパークプラグ100cの要素のうち、図1、図3のスパークプラグ100と接地電極30との要素と同じ要素には、同じ符号を付して、説明を省略する。 The configuration of other parts of the ground electrode 30c is substantially the same as the configuration of the ground electrode 30 shown in FIG. For example, the configurations of the outer layer 35c and the core portion 36c are substantially the same as the configurations of the outer layer 35 and the core portion 36 in FIG. 3 except for the shape of the second boundary line L20c at the base end portion 30cx. . Further, the configuration of the spark plug 100c according to the modified example other than the ground electrode 30c is the same as the configuration of the spark plug 100 shown in FIG. Hereinafter, among the elements of the spark plug 100c of the modified example, the same elements as those of the spark plug 100 and the ground electrode 30 of FIGS. 1 and 3 are denoted by the same reference numerals, and description thereof is omitted.
 第1境界線L10の傾斜部分L11は、第1境界端P11から、中心軸CLxに対して斜めに、外層35cのうちの第1境界線L10を形成する部分の外周側(ここでは、内方向Di側)に向かって延びている。また、図中の第2境界端P21cは、第2境界線L20cの主体金具50側の端である。傾斜部分L21cは、第2境界端P21cから、接地電極30cの中心軸CLxに対して斜めに、外層35cのうちの第2境界線L20cを形成する部分の外周側(ここでは、外方向Do側)に向かって延びている。接地電極30cの外方向Do側の部分と内方向Di側の部分との両方において、外層35cは、主体金具50の先端面57に沿って中心軸CLxに向かって拡がっている。このように、2本の境界線L10、L20cの両方が傾斜部分L11、L21cを含むので、2本の境界線L10、L20cの一方のみが傾斜部分を含む場合と比べて、外層35cと主体金具50との接合面積を増大できる。この結果、接地電極30cと主体金具50との接合強度を向上できる。 The inclined portion L11 of the first boundary line L10 is inclined from the first boundary end P11 with respect to the central axis CLx on the outer peripheral side of the portion forming the first boundary line L10 in the outer layer 35c (here, inward direction). Di side). Moreover, the 2nd boundary end P21c in a figure is an end by the side of the metal shell 50 of the 2nd boundary line L20c. The inclined portion L21c is inclined from the second boundary end P21c with respect to the central axis CLx of the ground electrode 30c on the outer peripheral side of the portion forming the second boundary line L20c in the outer layer 35c (here, the outer direction Do side) ). The outer layer 35c extends along the distal end surface 57 of the metal shell 50 toward the central axis CLx in both the outer direction Do side portion and the inner direction Di side portion of the ground electrode 30c. Thus, since both of the two boundary lines L10 and L20c include the inclined portions L11 and L21c, the outer layer 35c and the metal shell are compared with the case where only one of the two boundary lines L10 and L20c includes the inclined portion. 50 can be increased. As a result, the bonding strength between the ground electrode 30c and the metal shell 50 can be improved.
 図6のような接合部分を形成する方法としては、任意の方法を採用可能である。例えば、図4(A)の切断刃920のような第1と第2の切断刃を準備し、2つの切断刃で接地電極を挟み込んで切断する方法を採用可能である。第1の切断刃は、接地電極の内方向Di側から中心軸CLxに向かって移動し、第2の切断刃は、接地電極の外方向Do側から中心軸CLxに向かって移動する。これにより、図4(B)中で主体金具50に向かって延びる第1境界線L10uが端面37の近傍で中心軸CLxに近づくように斜めに傾斜するのと同様に、図6の境界線L10、L20cに対応する2本の境界線は、接地電極30cの基端面37cの近傍で中心軸CLxに近づくように斜めに傾斜する。従って、図4(D)と同様の溶接によって、図6の傾斜部分L11、L21cを形成可能である。 Any method can be adopted as a method of forming the joint as shown in FIG. For example, it is possible to employ a method in which first and second cutting blades such as the cutting blade 920 in FIG. 4A are prepared and the ground electrode is sandwiched between the two cutting blades for cutting. The first cutting blade moves from the inward direction Di side of the ground electrode toward the central axis CLx, and the second cutting blade moves from the outer direction Do side of the ground electrode toward the central axis CLx. As a result, in the same manner as the first boundary line L10u extending toward the metal shell 50 in FIG. 4B is inclined obliquely so as to approach the central axis CLx in the vicinity of the end surface 37, the boundary line L10 in FIG. The two boundary lines corresponding to L20c are inclined obliquely so as to approach the central axis CLx in the vicinity of the base end face 37c of the ground electrode 30c. Therefore, the inclined portions L11 and L21c in FIG. 6 can be formed by welding similar to that in FIG.
 図6の変形例においても、表面酸素量は、表1を参照して説明した表面酸素量の好ましい範囲内であることが好ましい。このような構成を採用すれば、良好な接合強度を実現できると推定される。例えば、表面酸素量が、8wt%以下であることが好ましく、5wt%以下であることが特に好ましい。また、図6中の第2距離W12は、第2境界端P21cを通り中心軸CLxに平行な直線LP2cと、第2外周端P42を通り中心軸CLxに平行な直線LP4と、の間の距離である。接合距離W1としては、第1境界端P11と第1外周端P32との間の第1距離W11(図3の距離W1と同じ)と、第2境界端P21cと第2外周端P42との間の第2距離W12と、の合計値が、採用される。このような接合距離W1(=W11+W12)から算出される割合t(=W1/W2)が、表1を参照して説明した割合tの好ましい範囲内であることが好ましい。このような構成を採用すれば、さらに良好な接合強度を実現できると推定される。例えば、割合tがゼロ%より大きく、80%以下であることが好ましい。 Also in the modified example of FIG. 6, the surface oxygen amount is preferably within the preferable range of the surface oxygen amount described with reference to Table 1. If such a configuration is adopted, it is estimated that good bonding strength can be realized. For example, the surface oxygen amount is preferably 8 wt% or less, and particularly preferably 5 wt% or less. Further, the second distance W12 in FIG. 6 is a distance between a straight line LP2c passing through the second boundary end P21c and parallel to the central axis CLx, and a straight line LP4 passing through the second outer peripheral end P42 and parallel to the central axis CLx. It is. The joining distance W1 includes a first distance W11 between the first boundary end P11 and the first outer peripheral end P32 (same as the distance W1 in FIG. 3), and a distance between the second boundary end P21c and the second outer peripheral end P42. The total value of the second distance W12 is used. The ratio t (= W1 / W2) calculated from such a joining distance W1 (= W11 + W12) is preferably within the preferable range of the ratio t described with reference to Table 1. If such a configuration is adopted, it is presumed that better bonding strength can be realized. For example, it is preferable that the ratio t is larger than zero% and 80% or less.
 図7は、別の変形例のスパークプラグの一例の断面図である。この変形例のスパークプラグ100dは、2本の境界線の両方が傾斜部分を含むという構成を図5の実施形態に適用して得られるスパークプラグの例である。図中には、図5と同様に、接地電極30dの基端部30dxと主体金具50の先端部50xとの接合部分の断面図が示されている。図5に示す第2実施形態との差異は、接地電極30dの外層35dと芯部36dとの間の2本の境界線L10b、L20dのうち外方向Do側の第2境界線L20dが傾斜部分L21dを含んでいる点だけである。図7の変形例では、接地電極30dの接合部分のうち中心軸CLxよりも内方向Di側の部分の構成は、図5の接合部分のうち中心軸CLxよりも内方向Di側の部分の構成と、同じである。また、図7の変形例では、接地電極30dの接合部分のうち中心軸CLxよりも外方向Do側の部分の構成は、中心軸CLxよりも内方向Di側の部分の構成に中心軸CLxを対称軸とする鏡映変換を行って得られる構成と、おおよそ同じである。 FIG. 7 is a cross-sectional view of an example of another modified spark plug. The spark plug 100d of this modification is an example of a spark plug obtained by applying the configuration in which both of the two boundary lines include an inclined portion to the embodiment of FIG. In the drawing, similarly to FIG. 5, a sectional view of a joint portion between the base end portion 30 dx of the ground electrode 30 d and the tip end portion 50 x of the metal shell 50 is shown. The difference from the second embodiment shown in FIG. 5 is that the second boundary line L20d on the outer side Do side of the two boundary lines L10b and L20d between the outer layer 35d and the core part 36d of the ground electrode 30d is an inclined portion. It is only a point including L21d. In the modification of FIG. 7, the configuration of the portion of the ground electrode 30d on the inner direction Di side from the central axis CLx is the configuration of the portion of the joint portion of FIG. 5 on the inner direction Di side. And the same. Further, in the modification of FIG. 7, the configuration of the portion of the joint portion of the ground electrode 30d on the outer side Do side with respect to the central axis CLx is the central axis CLx in the configuration of the portion on the inner side Di side with respect to the central axis CLx. This is almost the same as the configuration obtained by performing the mirror conversion with the symmetry axis.
 接地電極30dの他の部分の構成は、図5に示す接地電極30bの構成とおおよそ同じである。例えば、外層35dと、芯部36dの第1層34cと第2層34dと、の構成は、基端部30dxでの第2境界線L20dの形状を除いて、図5の外層35と、芯部36bの第1層34aと第2層34bと、の構成と、それぞれ、おおよそ同じである。また、変形例のスパークプラグ100dの構成のうちの接地電極30d以外の構成は、図1に示すスパークプラグ100の構成と、同じである。以下、変形例のスパークプラグ100dの要素のうち、図1、図5のスパークプラグ100と接地電極30bとの要素と同じ要素には、同じ符号を付して、説明を省略する。 The configuration of the other part of the ground electrode 30d is substantially the same as the configuration of the ground electrode 30b shown in FIG. For example, the configuration of the outer layer 35d and the first layer 34c and the second layer 34d of the core portion 36d is the same as that of the outer layer 35 of FIG. 5 except the shape of the second boundary line L20d at the base end portion 30dx. The configuration of the first layer 34a and the second layer 34b of the part 36b is approximately the same. The configuration of the spark plug 100d according to the modification other than the ground electrode 30d is the same as the configuration of the spark plug 100 shown in FIG. Hereinafter, among the elements of the spark plug 100d of the modified example, the same elements as those of the spark plug 100 and the ground electrode 30b of FIGS. 1 and 5 are denoted by the same reference numerals, and description thereof is omitted.
 第1境界線L10bの傾斜部分L11bは、第1境界端P11bから、中心軸CLxに対して斜めに、外層35dのうちの第1境界線L10bを形成する部分の外周側(ここでは、内方向Di側)に向かって延びている。また、図中の第2境界端P21dは、第2境界線L20dの主体金具50側の端である。傾斜部分L21dは、第2境界端P21dから、接地電極30dの中心軸CLxに対して斜めに、外層35dのうちの第2境界線L20dを形成する部分の外周側(ここでは、外方向Do側)に向かって延びている。接地電極30dの外方向Do側の部分と内方向Di側の部分との両方において、外層35dは、主体金具50の先端面57に沿って中心軸CLxに向かって拡がっている。このように、2本の境界線L10b、L20dの両方が傾斜部分L11b、L21dを含むので、2本の境界線L10b、L20dの一方のみが傾斜部分を含む場合と比べて、外層35dと主体金具50との接合面積を増大できる。この結果、接地電極30dと主体金具50との接合強度を向上できる。 The inclined portion L11b of the first boundary line L10b is inclined from the first boundary end P11b with respect to the central axis CLx on the outer peripheral side of the portion forming the first boundary line L10b in the outer layer 35d (in this case, inward direction) Di side). Further, the second boundary end P21d in the drawing is an end of the second boundary line L20d on the metal shell 50 side. The inclined portion L21d is inclined from the second boundary end P21d with respect to the central axis CLx of the ground electrode 30d on the outer peripheral side of the portion forming the second boundary line L20d in the outer layer 35d (here, the outer side Do side) ). The outer layer 35d extends along the distal end surface 57 of the metal shell 50 toward the central axis CLx in both the outer direction Do side portion and the inner direction Di side portion of the ground electrode 30d. Thus, since both of the two boundary lines L10b and L20d include the inclined portions L11b and L21d, the outer layer 35d and the metal shell are compared with the case where only one of the two boundary lines L10b and L20d includes the inclined portion. 50 can be increased. As a result, the bonding strength between the ground electrode 30d and the metal shell 50 can be improved.
 図7のような接合部分を形成する方法としては、任意の方法を採用可能である。例えば、図6の変形例で説明した方法と同様に、2つの切断刃を用いる方法を採用可能である。 Any method can be adopted as a method of forming the joint portion as shown in FIG. For example, a method using two cutting blades can be adopted as in the method described in the modification of FIG.
 図7の変形例においても、表面酸素量は、上述した好ましい範囲内であることが好ましい。このような構成を採用すれば、良好な接合強度を実現できると推定される。例えば、表面酸素量が、8wt%以下であることが好ましく、5wt%以下であることが特に好ましい。また、図7中の第2距離W12dは、第2境界端P21dを通り中心軸CLxに平行な直線LP2dと、第2外周端P42を通り中心軸CLxに平行な直線LP4と、の間の距離である。接合距離W1としては、第1境界端P11bと第1外周端P32との間の第1距離W11d(図5の距離W1と同じ)と、第2境界端P21dと第2外周端P42との間の第2距離W12dと、の合計値が、採用される。このような接合距離W1(=W11d+W12d)から算出される割合t(=W1/W2)が、表2を参照して説明した割合tの好ましい範囲内であることが好ましい。このような構成を採用すれば、さらに良好な接合強度を実現できると推定される。例えば、割合tが、ゼロ%より大きく、20%以下であることが好ましい。 Also in the modified example of FIG. 7, the surface oxygen amount is preferably within the above-described preferable range. If such a configuration is adopted, it is estimated that good bonding strength can be realized. For example, the surface oxygen amount is preferably 8 wt% or less, and particularly preferably 5 wt% or less. Further, the second distance W12d in FIG. 7 is a distance between a straight line LP2d passing through the second boundary end P21d and parallel to the central axis CLx, and a straight line LP4 passing through the second outer peripheral end P42 and parallel to the central axis CLx. It is. The joining distance W1 includes a first distance W11d (same as the distance W1 in FIG. 5) between the first boundary end P11b and the first outer peripheral end P32, and a distance between the second boundary end P21d and the second outer peripheral end P42. The total value of the second distance W12d is adopted. It is preferable that the ratio t (= W1 / W2) calculated from the joining distance W1 (= W11d + W12d) is within the preferable range of the ratio t described with reference to Table 2. If such a configuration is adopted, it is presumed that better bonding strength can be realized. For example, it is preferable that the ratio t is larger than zero% and 20% or less.
(2)2つの部材を溶接によって接合すると、それら2つの部材の間に溶融部が形成される場合がある。溶融部は、溶接時に溶融した接合対象の部材によって形成される部分である。このような場合も、2つの部材が接合されているということができる。例えば、接地電極30、30b、30c、30dと主体金具50との間に、溶融部が形成されてもよい。ここで、外層35、35c、35dと主体金具50とが溶融部を介して接合されている場合、外層35、35c、35dが主体金具50に接合されている、ということができる。第1層34a、34cが溶融部から離間している場合には、主体金具50は第1層34a、34cから離間しているということができる。第1層34a、34cと主体金具50とが溶融部を介して接合されている場合、主体金具50は、第1層34a、34cから離間せずに、第1層34a、34cに接合されている、ということができる。 (2) When two members are joined by welding, a melted part may be formed between the two members. The melting part is a part formed by the members to be joined that are melted during welding. Even in such a case, it can be said that two members are joined. For example, a melting part may be formed between the ground electrodes 30, 30 b, 30 c, 30 d and the metal shell 50. Here, when the outer layers 35, 35 c, 35 d and the metal shell 50 are joined via the melting part, it can be said that the outer layers 35, 35 c, 35 d are joined to the metal shell 50. When the first layers 34a and 34c are separated from the melting part, it can be said that the metal shell 50 is separated from the first layers 34a and 34c. When the first layers 34a and 34c and the metal shell 50 are joined via the melting part, the metal shell 50 is joined to the first layers 34a and 34c without being separated from the first layers 34a and 34c. It can be said that.
(3)接地電極30、30b、30c、30dと主体金具50との間に溶融部が形成されている場合も、境界端としては、基準断面における外層35、35c、35dと芯部36、36b、36c、36dとの境界線の主体金具50側の端を採用すればよい。この場合、境界端が、溶融部の輪郭上に配置され得る。外周端についても、同様に、基準断面における外層35、35c、35dの外周面を表す外周線の主体金具50側の端を採用すればよい。この場合、外周端が、溶融部の輪郭上に配置され得る。いずれの場合も、2つの境界端と2つの外周端との4つの端の間では、中心軸CLxと平行な方向の位置が、互いに異なり得る。 (3) Even when a melted portion is formed between the ground electrodes 30, 30b, 30c, and 30d and the metal shell 50, the boundary ends include the outer layers 35, 35c, and 35d in the reference cross section and the core portions 36 and 36b. , 36c, and 36d may be adopted at the end of the metal shell 50 side. In this case, the boundary end can be arranged on the outline of the melting part. Similarly, for the outer peripheral end, the end on the metal shell 50 side of the outer peripheral line representing the outer peripheral surface of the outer layer 35, 35c, 35d in the reference cross section may be adopted. In this case, the outer peripheral end can be arranged on the outline of the melting part. In any case, the positions in the direction parallel to the central axis CLx may be different between the four ends of the two boundary ends and the two outer peripheral ends.
(4)実施形態のスパークプラグ100の接地電極と主体金具との接合強度の向上は、接地電極に関するパラメータである割合tと表面酸素量とによってもたらされると考えられる。したがって、これらのパラメータ以外の要素は、種々に変更可能である。 (4) It is considered that the improvement in the bonding strength between the ground electrode and the metal shell of the spark plug 100 of the embodiment is caused by the ratio t and the amount of surface oxygen that are parameters related to the ground electrode. Therefore, elements other than these parameters can be variously changed.
 例えば、外層35、35c、35dの材料としては、ニッケルを主成分として含み、さらに、クロムとアルミニウムとを含む材料を採用することが好ましい。すなわち、少なくともアルミニウムが添加されたニッケルクロム合金を採用することが好ましい。なお、アルミニウムの含有率としては、1.4wt%に限らず種々の値を採用可能であり、例えば、0wt%より多く2.5wt%以下の値を採用可能である。このような範囲内の値を採用すれば、外層35の耐酸化性を向上できる。クロムの含有率としても、種々の値を採用可能であり、例えば、10wt%以上、30wt%以下の範囲の値を採用可能である。 For example, as the material of the outer layers 35, 35c, and 35d, it is preferable to employ a material containing nickel as a main component and further containing chromium and aluminum. That is, it is preferable to employ a nickel chromium alloy to which at least aluminum is added. The aluminum content is not limited to 1.4 wt%, and various values can be employed. For example, a value greater than 0 wt% and not greater than 2.5 wt% can be employed. If a value within such a range is employed, the oxidation resistance of the outer layer 35 can be improved. Various values can be adopted as the chromium content. For example, a value in the range of 10 wt% or more and 30 wt% or less can be adopted.
 第2層34b、35d(図5、図7)の材料としては、純ニッケルに限らず、外層35、35dよりもニッケルを多く含む種々の材料を採用可能である。例えば、ニッケルクロム合金等のニッケル合金を採用可能である。 The material of the second layers 34b and 35d (FIGS. 5 and 7) is not limited to pure nickel, and various materials containing more nickel than the outer layers 35 and 35d can be used. For example, a nickel alloy such as a nickel chromium alloy can be used.
 図3の芯部36と図5の第1層34aと図6の芯部36cと図7の第1層34cとの材料としては、純銅に限らず、外層35、35c、35dよりも熱伝導率が高い種々の材料を採用可能である。例えば、銅を主成分として含む材料を採用可能である。銅を主成分として含む材料としては、例えば、銅ニッケル合金等の銅合金を採用可能である。銅の含有率としては、100%以下の種々の値を採用可能である。ここで、良好な熱伝導率を実現するためには、銅の含有率が、80wt%以上であることが好ましく、95wt%以上であることが特に好ましい。 The material of the core part 36 in FIG. 3, the first layer 34 a in FIG. 5, the core part 36 c in FIG. 6, and the first layer 34 c in FIG. 7 is not limited to pure copper, but is more thermally conductive than the outer layers 35, 35 c, 35 d. Various materials with high rates can be used. For example, a material containing copper as a main component can be used. As a material containing copper as a main component, for example, a copper alloy such as a copper nickel alloy can be employed. Various values of 100% or less can be adopted as the copper content. Here, in order to achieve good thermal conductivity, the copper content is preferably 80 wt% or more, and particularly preferably 95 wt% or more.
 主体金具50の材料としては、低炭素鋼材に限らず、接地電極30と溶接可能な種々の導電性材料を採用可能である。例えば、ニッケルクロム合金を採用してもよい。 The material of the metal shell 50 is not limited to a low carbon steel material, and various conductive materials that can be welded to the ground electrode 30 can be used. For example, a nickel chromium alloy may be adopted.
 接地電極30の幅Wa、Wbとしては、上述のサンプルの幅Wa、Wbに限らず、種々の値を採用可能である。 The widths Wa and Wb of the ground electrode 30 are not limited to the above-described sample widths Wa and Wb, and various values can be adopted.
(5)スパークプラグの構成としては、図1で説明した構成に限らず、種々の構成を採用可能である。例えば、接地電極30、30b、30c、30dのうちのギャップgを形成する部分に、貴金属チップが設けられていてもよい。貴金属チップの材料としては、イリジウム、白金等の種々の貴金属を含む材料を採用可能である。同様に、中心電極20のうちのギャップgを形成する部分に、貴金属チップが設けられていてもよい。 (5) The configuration of the spark plug is not limited to the configuration described in FIG. 1, and various configurations can be employed. For example, a noble metal tip may be provided in a portion of the ground electrodes 30, 30b, 30c, 30d where the gap g is formed. As the material of the noble metal tip, materials containing various noble metals such as iridium and platinum can be adopted. Similarly, a noble metal tip may be provided in a portion of the center electrode 20 where the gap g is formed.
 以上、実施形態、変形例に基づき本発明について説明してきたが、上記した発明の実施の形態は、本発明の理解を容易にするためのものであり、本発明を限定するものではない。本発明は、その趣旨並びに請求の範囲を逸脱することなく、変更、改良され得ると共に、本発明にはその等価物が含まれる。 Although the present invention has been described above based on the embodiments and modifications, the above-described embodiments of the present invention are for facilitating the understanding of the present invention and do not limit the present invention. The present invention can be changed and improved without departing from the spirit and scope of the claims, and the present invention includes equivalents thereof.
 本開示は、内燃機関等に使用されるスパークプラグに、好適に利用できる。 The present disclosure can be suitably used for a spark plug used for an internal combustion engine or the like.
5...ガスケット、6...第1後端側パッキン、7...第2後端側パッキン、8...先端側パッキン、9...タルク、10...絶縁体(絶縁碍子)、11...第2縮外径部、12...貫通孔、12...軸孔、13...脚部、15...第1縮外径部、16...縮内径部、17...先端側胴部、18...後端側胴部、19...鍔部、20...中心電極、21...外層、22...芯部、23...頭部、24...鍔部、25...脚部、29...先端面、30、30b、30c、30d...接地電極、30s...維持部分、30x、30bx、30cx、30dx...基端部、31...先端部、34a、34c...第1層、34b、34d...第2層、35、35c、35d...外層、36、36b、36c、36d...芯部、37、37b、37c...基端面、38...屈曲部分、40...端子金具、50...主体金具、50x...先端部、51...工具係合部、52...ネジ部、53...加締部、54...座部、55...胴部、56...縮内径部、57...先端面、58...変形部、59...貫通孔、60...第1シール部、70...抵抗体、80...第2シール部、100、100b、100c、100d...スパークプラグ、350...幅広部、910...支持具、920...切断刃、L10、L10u、L10b...第1境界線、L20、L20u、L20b、L20c、L20d...第2境界線、L30、L30u...第1外周線、L40、L40u...第2外周線、P11、P11b...第1境界端、P21、P21b、P21c、P21d...第2境界端、P32...第1外周端、P42...第2外周端、L11、L11b、L21c、L21d...傾斜部分、CL、CLx...中心軸(軸線)、P1...平面、D1...先端方向、D1r...後端方向、Do...外方向、Di...内方向、LP1、LP1b、LP2、LP2b、LP2c、LP2d、LP3、LP4...直線、W1...接合距離、W2...全距離、W11、W11d...第1距離、W12、W12d...第2距離、AR...角度範囲、Wa...第1幅、Wb...第2幅、Sa...第1辺、Sb...第2辺、g...ギャップ、Si...第1基準面、So...第2基準面 5 ... gasket, 6 ... first rear end packing, 7 ... second rear end packing, 8 ... front end packing, 9 ... talc, 10 ... insulator (insulation) Insulator), 11 ... second reduced outer diameter portion, 12 ... through hole, 12 ... shaft hole, 13 ... leg portion, 15 ... first reduced outer diameter portion, 16 ... Reduced inner diameter part, 17 ... front end side body part, 18 ... rear end side body part, 19 ... collar part, 20 ... center electrode, 21 ... outer layer, 22 ... core part, 23 ... Head, 24 ... Bridge, 25 ... Leg, 29 ... Tip surface, 30, 30b, 30c, 30d ... Ground electrode, 30s ... Maintenance part, 30x, 30bx, 30cx, 30dx ... proximal end, 31 ... tip, 34a, 34c ... first layer, 34b, 34d ... second layer, 35, 35c, 35d ... outer layer, 36 36b, 36c, 36d ... core portion, 37, 37b, 37c ... base end surface, 38 ... bent portion, 40 ... terminal fitting, 50 ... main fitting, 50 ... tip part, 51 ... tool engaging part, 52 ... screw part, 53 ... caulking part, 54 ... seat part, 55 ... body part, 56 ... reduced inner diameter Part, 57 ... tip surface, 58 ... deformation part, 59 ... through hole, 60 ... first seal part, 70 ... resistor, 80 ... second seal part, 100, 100b, 100c, 100d ... spark plug, 350 ... wide part, 910 ... support, 920 ... cutting blade, L10, L10u, L10b ... first boundary line, L20, L20u, L20b , L20c, L20d ... second boundary line, L30, L30u ... first outer periphery line, L40, L40u ... second outer periphery line, P11, P11b ... first boundary end, P21, P21b, P21c , P21d ... second boundary end, P32 ... first outer peripheral end, P42 ... second outer peripheral end, L11, L11b, L21c, L21d ... inclined portion, CL, CLx ... central axis ( Axis), P1 ... plane, 1 ... front direction, D1r ... rear end direction, Do ... outward direction, Di ... inward direction, LP1, LP1b, LP2, LP2b, LP2c, LP2d, LP3, LP4 ... straight line, W1 ... joining distance, W2 ... total distance, W11, W11d ... first distance, W12, W12d ... second distance, AR ... angle range, Wa ... first width, Wb. .. Second width, Sa ... first side, Sb ... second side, g ... gap, Si ... first reference plane, So ... second reference plane

Claims (5)

  1.  中心電極と、
     前記中心電極を保持する絶縁体と、
     前記絶縁体の径方向の周囲に配置される主体金具と、
     前記主体金具の先端部に接合された基端部を有するとともに、前記中心電極との間でギャップを形成する接地電極と、
     を備えるスパークプラグであって、
     前記接地電極は、
      前記接地電極の表面の少なくとも一部を形成し、前記主体金具に接合されるとともに、ニッケルを主成分として含みアルミニウムを0wt%より多く2.5wt%以下で含む材料で形成された外層と、
      前記外層の内周側に配置される芯部と、
     を含み、
     前記外層の表面における酸素量は、0wt%を超え、8wt%以下であり、
     前記芯部は、銅、または、銅を主成分として含む材料で形成された第1層を含み、
     前記スパークプラグの中心軸と前記接地電極の中心軸とを含む断面の前記接地電極の前記基端部において、前記外層と前記芯部との境界を表す2本の境界線のうちの少なくとも一方は、前記境界線の前記主体金具側の端から前記接地電極の前記中心軸に対して斜めに前記外層の外周側に向かって延びる傾斜線を含む、
     スパークプラグ。
    A center electrode;
    An insulator holding the center electrode;
    A metal shell disposed around a radial direction of the insulator;
    A ground electrode having a proximal end joined to a distal end of the metal shell and forming a gap with the center electrode;
    A spark plug comprising:
    The ground electrode is
    Forming at least a part of the surface of the ground electrode, bonded to the metal shell, and an outer layer formed of a material containing nickel as a main component and aluminum in an amount of more than 0 wt% to 2.5 wt%;
    A core portion disposed on the inner peripheral side of the outer layer;
    Including
    The amount of oxygen on the surface of the outer layer is more than 0 wt% and 8 wt% or less,
    The core includes a first layer formed of copper or a material containing copper as a main component,
    At the base end portion of the ground electrode having a cross section including the center axis of the spark plug and the center axis of the ground electrode, at least one of two boundary lines representing a boundary between the outer layer and the core portion is An inclined line extending obliquely from the end of the boundary line on the metal shell side toward the outer peripheral side of the outer layer obliquely with respect to the central axis of the ground electrode,
    Spark plug.
  2.  請求項1に記載のスパークプラグであって、
     前記外層の前記表面における前記酸素量は、0wt%を超え、5wt%以下であり、
     前記断面の前記接地電極の前記基端部において、
      前記傾斜線の前記主体金具側の端を境界端とし、
      前記外層の外周面を表す2本の外周線のそれぞれの前記主体金具側の端である2つの外周端の間の前記接地電極の前記中心軸と垂直な方向の距離を全距離W2とし、
      前記傾斜線を含む1つまたは2つの前記境界線に関して、前記接地電極の前記中心軸に平行な前記境界端を通る直線と、前記境界端から見て前記傾斜線の延びる方向に位置する前記外周端を通り前記接地電極の前記中心軸に平行な直線と、の間の距離の合計を接合距離W1とし、
      前記全距離W2に対する前記接合距離W1の割合を割合tとしたときに、
      前記割合tは、0%より大きく、80%以下である、
     スパークプラグ。
    The spark plug according to claim 1,
    The amount of oxygen on the surface of the outer layer is greater than 0 wt% and less than or equal to 5 wt%;
    In the base end of the ground electrode of the cross section,
    The end on the metal shell side of the inclined line is a boundary end,
    The distance in the direction perpendicular to the central axis of the ground electrode between the two outer peripheral ends that are the ends on the metal shell side of each of the two outer peripheral lines representing the outer peripheral surface of the outer layer is defined as a total distance W2.
    Regarding one or two of the boundary lines including the inclined line, a straight line passing through the boundary end parallel to the central axis of the ground electrode, and the outer periphery located in a direction in which the inclined line extends when viewed from the boundary end The total distance between the straight line passing through the end and parallel to the central axis of the ground electrode is a junction distance W1,
    When the ratio of the joint distance W1 to the total distance W2 is a ratio t,
    The ratio t is greater than 0% and not greater than 80%.
    Spark plug.
  3.  請求項1に記載のスパークプラグであって、
     前記芯部は、さらに、一部が前記第1層の内周側に配置されるとともに、前記外層よりも大きな含有率(重量%)でニッケルを含む材料で形成され、前記外層よりも熱伝導率が高い第2層を含み、
     前記断面の前記接地電極の前記基端部において、
      前記傾斜線の前記主体金具側の端を境界端とし、
      前記外層の外周面を表す2本の外周線のそれぞれの前記主体金具側の端である2つの外周端の間の前記接地電極の前記中心軸と垂直な方向の距離を全距離W2とし、
      前記傾斜線を含む1つまたは2つの前記境界線に関して、前記接地電極の前記中心軸に平行な前記境界端を通る直線と、前記境界端から見て前記傾斜線の延びる方向に位置する前記外周端を通り前記接地電極の前記中心軸に平行な直線と、の間の距離の合計を接合距離W1とし、
      前記全距離W2に対する前記接合距離W1の割合を割合tとしたときに、
     前記割合tは、0%より大きく、20%以下である、
     スパークプラグ。
    The spark plug according to claim 1,
    The core portion is further arranged in part on the inner peripheral side of the first layer, and is formed of a material containing nickel with a larger content (% by weight) than the outer layer, and is more thermally conductive than the outer layer. Including a second layer with a high rate,
    In the base end of the ground electrode of the cross section,
    The end on the metal shell side of the inclined line is a boundary end,
    The distance in the direction perpendicular to the central axis of the ground electrode between the two outer peripheral ends that are the ends on the metal shell side of each of the two outer peripheral lines representing the outer peripheral surface of the outer layer is defined as a total distance W2.
    Regarding one or two of the boundary lines including the inclined line, a straight line passing through the boundary end parallel to the central axis of the ground electrode, and the outer periphery located in a direction in which the inclined line extends when viewed from the boundary end The total distance between the straight line passing through the end and parallel to the central axis of the ground electrode is a junction distance W1,
    When the ratio of the joint distance W1 to the total distance W2 is a ratio t,
    The ratio t is greater than 0% and not greater than 20%.
    Spark plug.
  4.  請求項3に記載のスパークプラグであって、
     前記断面において、前記主体金具は、前記第1層から離間しているとともに、前記外層と前記第2層とに接合されている、
     スパークプラグ。
    The spark plug according to claim 3, wherein
    In the cross section, the metal shell is spaced apart from the first layer and joined to the outer layer and the second layer.
    Spark plug.
  5.  請求項1から4のいずれか1項に記載のスパークプラグであって、
     前記外層と前記芯部との前記境界を表す前記2本の境界線の両方が、それぞれ、前記境界線の前記主体金具側の端から前記接地電極の前記中心軸に対して斜めに前記外層のうちの前記境界線を形成する部分の外周側に向かって延びる傾斜線を含む、
     スパークプラグ。
    The spark plug according to any one of claims 1 to 4,
    Both of the two boundary lines representing the boundary between the outer layer and the core portion are respectively inclined with respect to the central axis of the ground electrode from an end of the boundary line on the metal shell side. Including an inclined line extending toward the outer peripheral side of the portion forming the boundary line,
    Spark plug.
PCT/JP2015/051569 2014-01-23 2015-01-21 Spark plug WO2015111634A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112015000475.0T DE112015000475B4 (en) 2014-01-23 2015-01-21 spark plug
CN201580005368.XA CN106415956B (en) 2014-01-23 2015-01-21 Spark plug
JP2015530213A JP6033442B2 (en) 2014-01-23 2015-01-21 Spark plug

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014010134 2014-01-23
JP2014-010134 2014-01-23

Publications (1)

Publication Number Publication Date
WO2015111634A1 true WO2015111634A1 (en) 2015-07-30

Family

ID=53681435

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/051569 WO2015111634A1 (en) 2014-01-23 2015-01-21 Spark plug

Country Status (4)

Country Link
JP (1) JP6033442B2 (en)
CN (1) CN106415956B (en)
DE (1) DE112015000475B4 (en)
WO (1) WO2015111634A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170025822A1 (en) * 2015-07-22 2017-01-26 Ngk Spark Plug Co., Ltd. Spark plug

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220200246A1 (en) * 2019-04-30 2022-06-23 Federal-Mogul Ignition Llc Spark plug electrode and method of manufacturing same
CN111641114B (en) * 2020-06-05 2021-09-24 潍柴火炬科技股份有限公司 Spark plug

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02121289A (en) * 1988-10-31 1990-05-09 Ngk Spark Plug Co Ltd Manufacture and welding of outside electrode of spark plug, with good heat-conduction metal wrapped therein
JP2005353606A (en) * 2002-02-19 2005-12-22 Denso Corp Spark plug
JP2009016278A (en) * 2007-07-06 2009-01-22 Ngk Spark Plug Co Ltd Spark plug

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11111426A (en) 1997-10-02 1999-04-23 Denso Corp Spark plug and its manufacture
US6320302B1 (en) 1999-01-11 2001-11-20 Honeywell International Inc. Copper core side wire to carbon steel shell weld and method for manufacturing
JP2001284013A (en) 2000-01-24 2001-10-12 Denso Corp Grounded electrode and spark plug to use this spark plug and its manufacturing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02121289A (en) * 1988-10-31 1990-05-09 Ngk Spark Plug Co Ltd Manufacture and welding of outside electrode of spark plug, with good heat-conduction metal wrapped therein
JP2005353606A (en) * 2002-02-19 2005-12-22 Denso Corp Spark plug
JP2009016278A (en) * 2007-07-06 2009-01-22 Ngk Spark Plug Co Ltd Spark plug

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170025822A1 (en) * 2015-07-22 2017-01-26 Ngk Spark Plug Co., Ltd. Spark plug
US10290999B2 (en) * 2015-07-22 2019-05-14 Ngk Spark Plug Co., Ltd. Spark plug

Also Published As

Publication number Publication date
CN106415956B (en) 2018-01-30
JP6033442B2 (en) 2016-11-30
CN106415956A (en) 2017-02-15
DE112015000475T5 (en) 2016-10-06
DE112015000475B4 (en) 2022-04-28
JPWO2015111634A1 (en) 2017-03-23

Similar Documents

Publication Publication Date Title
JP5414896B2 (en) Spark plug
KR101513325B1 (en) Spark plug for internal combustion engine
JP6033442B2 (en) Spark plug
US11456578B2 (en) Spark plug
JP5001963B2 (en) Spark plug for internal combustion engines.
US8253313B2 (en) Spark plug and manufacturing method thereof
KR101998536B1 (en) spark plug
WO2015198555A1 (en) Spark plug
WO2009084565A1 (en) Spark plug
JP5895056B2 (en) Spark plug
JP5815649B2 (en) Spark plug
JP6061307B2 (en) Spark plug
US10431961B2 (en) Spark plug
JP6403643B2 (en) Spark plug
US9197038B1 (en) Spark plug and method of manufacturing the same
JP6054928B2 (en) Spark plug
JP6971956B2 (en) How to make a spark plug and a spark plug
JP5986265B1 (en) Spark plug
JP7147606B2 (en) Manufacturing method of center electrode
JP6230348B2 (en) Spark plug
US9837797B2 (en) Ignition plug
JP6632576B2 (en) Spark plug

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015530213

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15740326

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112015000475

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15740326

Country of ref document: EP

Kind code of ref document: A1