WO2015111592A1 - Closed circulation filtration aquaculture system - Google Patents
Closed circulation filtration aquaculture system Download PDFInfo
- Publication number
- WO2015111592A1 WO2015111592A1 PCT/JP2015/051453 JP2015051453W WO2015111592A1 WO 2015111592 A1 WO2015111592 A1 WO 2015111592A1 JP 2015051453 W JP2015051453 W JP 2015051453W WO 2015111592 A1 WO2015111592 A1 WO 2015111592A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- gas
- mixed water
- breeding
- water
- mixing
- Prior art date
Links
- 238000001914 filtration Methods 0.000 title claims abstract description 75
- 238000009360 aquaculture Methods 0.000 title claims abstract description 30
- 244000144974 aquaculture Species 0.000 title claims abstract description 30
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 253
- 238000002156 mixing Methods 0.000 claims abstract description 208
- 239000007788 liquid Substances 0.000 claims abstract description 182
- 238000009395 breeding Methods 0.000 claims abstract description 99
- 230000001488 breeding effect Effects 0.000 claims abstract description 99
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 claims abstract description 50
- 229910001882 dioxygen Inorganic materials 0.000 claims abstract description 46
- 238000011144 upstream manufacturing Methods 0.000 claims abstract description 24
- 241000251468 Actinopterygii Species 0.000 claims abstract description 11
- 235000015170 shellfish Nutrition 0.000 claims abstract description 4
- 238000004519 manufacturing process Methods 0.000 claims description 11
- 241000894006 Bacteria Species 0.000 claims description 10
- 230000001546 nitrifying effect Effects 0.000 claims description 6
- 239000002105 nanoparticle Substances 0.000 claims description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 41
- 239000001301 oxygen Substances 0.000 description 41
- 229910052760 oxygen Inorganic materials 0.000 description 41
- 239000007789 gas Substances 0.000 description 38
- 230000002093 peripheral effect Effects 0.000 description 28
- 239000006185 dispersion Substances 0.000 description 19
- 239000012530 fluid Substances 0.000 description 18
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 16
- 238000000034 method Methods 0.000 description 13
- 235000014102 seafood Nutrition 0.000 description 11
- 230000000694 effects Effects 0.000 description 10
- 238000004891 communication Methods 0.000 description 9
- 239000002101 nanobubble Substances 0.000 description 9
- 230000000384 rearing effect Effects 0.000 description 9
- 238000010008 shearing Methods 0.000 description 9
- 229910002092 carbon dioxide Inorganic materials 0.000 description 8
- 239000001569 carbon dioxide Substances 0.000 description 8
- 238000003860 storage Methods 0.000 description 7
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 6
- 230000007423 decrease Effects 0.000 description 5
- 238000003780 insertion Methods 0.000 description 5
- 230000037431 insertion Effects 0.000 description 5
- 239000002609 medium Substances 0.000 description 5
- 239000013535 sea water Substances 0.000 description 5
- 238000011001 backwashing Methods 0.000 description 4
- 210000003608 fece Anatomy 0.000 description 4
- 238000004062 sedimentation Methods 0.000 description 4
- 239000002351 wastewater Substances 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 3
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 3
- 238000009825 accumulation Methods 0.000 description 3
- 229910021529 ammonia Inorganic materials 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 238000004140 cleaning Methods 0.000 description 3
- 238000007599 discharging Methods 0.000 description 3
- 229910017604 nitric acid Inorganic materials 0.000 description 3
- 238000001556 precipitation Methods 0.000 description 3
- JVMRPSJZNHXORP-UHFFFAOYSA-N ON=O.ON=O.ON=O.N Chemical compound ON=O.ON=O.ON=O.N JVMRPSJZNHXORP-UHFFFAOYSA-N 0.000 description 2
- MMDJDBSEMBIJBB-UHFFFAOYSA-N [O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[NH6+3] Chemical compound [O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[NH6+3] MMDJDBSEMBIJBB-UHFFFAOYSA-N 0.000 description 2
- 238000005273 aeration Methods 0.000 description 2
- XKMRRTOUMJRJIA-UHFFFAOYSA-N ammonia nh3 Chemical compound N.N XKMRRTOUMJRJIA-UHFFFAOYSA-N 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 235000013305 food Nutrition 0.000 description 2
- 238000007654 immersion Methods 0.000 description 2
- 238000007689 inspection Methods 0.000 description 2
- 238000005304 joining Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 238000005086 pumping Methods 0.000 description 2
- 230000029058 respiratory gaseous exchange Effects 0.000 description 2
- 230000001954 sterilising effect Effects 0.000 description 2
- 238000004659 sterilization and disinfection Methods 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- IOVCWXUNBOPUCH-UHFFFAOYSA-M Nitrite anion Chemical compound [O-]N=O IOVCWXUNBOPUCH-UHFFFAOYSA-M 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 239000003673 groundwater Substances 0.000 description 1
- 239000001963 growth medium Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 231100000053 low toxicity Toxicity 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 239000002985 plastic film Substances 0.000 description 1
- 230000001012 protector Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K63/00—Receptacles for live fish, e.g. aquaria; Terraria
- A01K63/04—Arrangements for treating water specially adapted to receptacles for live fish
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K63/00—Receptacles for live fish, e.g. aquaria; Terraria
- A01K63/04—Arrangements for treating water specially adapted to receptacles for live fish
- A01K63/042—Introducing gases into the water, e.g. aerators, air pumps
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K63/00—Receptacles for live fish, e.g. aquaria; Terraria
- A01K63/04—Arrangements for treating water specially adapted to receptacles for live fish
- A01K63/045—Filters for aquaria
Definitions
- the present invention relates to a closed circulation filtration aquaculture system, and more specifically, a gas-liquid mixed water generating apparatus that generates gas-liquid mixed water by forming oxygen gas into bubbles of nano-level (outer diameter is 1 ⁇ m or less) and mixing it with breeding water Relates to a closed circulation filtration aquaculture system.
- Patent Document 1 collects a seafood rearing tank, a sedimentation tank that collects feces and residual food of seafood in the rearing water, and a suspended suspension in the rearing water that is not collected by the sedimentation tank.
- a filter device a biofilter (biological filtration tank) that oxidizes ammonia in breeding water to nitric acid, a denitrification tank that releases nitric acid accumulated in the breeding water to nitrogen gas into the air by this oxidation action, and sterilization of breeding water Branched and branched the ultraviolet irradiation device for the water, the oxygen infuser that dissolves the required amount of oxygen gas in the breeding water, and the circulation path for supplying the breeding water from the oxygen welder to the breeding tank
- a seafood aquaculture device is disclosed that is configured by sequentially connecting and providing a heat pump for controlling the breeding water temperature provided in one of the circulation paths.
- Patent Document 1 has a problem that oxygen gas necessary for nitrification in a biological filtration tank cannot be sufficiently supplied.
- an object of the present invention is to provide a closed circulation filtration aquaculture system that can sufficiently supply oxygen gas necessary for nitrification in a biological filtration apparatus.
- the invention described in claim 1 includes a breeding water tank for breeding fish and shellfish in a circulation flow path that circulates breeding water with a circulation pump, and a biological filtration device that performs biological filtration treatment of the breeding water discharged from the breeding water tank.
- a closed circulation filtration aquaculture system Gas-liquid mixing that produces gas-liquid mixed water by mixing oxygen gas with nano-sized bubbles in the circulation channel located downstream of the breeding tank and upstream of the biological filtration device.
- a water generator is installed, The gas-liquid mixed water generated by the gas-liquid mixed water generating device and supplied to the biological filtration device is dissolved in supersaturated oxygen gas, and is biologically filtered by the biological filtration device and then supplied to the breeding aquarium.
- the gas-liquid mixed water is also characterized in that oxygen gas is dissolved in a supersaturated state.
- gas-liquid mixed water in which oxygen gas is dissolved in a supersaturated state is generated by the gas-liquid mixed water generating device, and the gas-liquid mixed water is supplied to the biological filtration device. Therefore, the oxygen gas necessary for nitrification in the biological filtration device can be sufficiently supplied.
- the oxygen gas since the oxygen gas is in the form of nano-level bubbles, the oxygen gas stays for a long time in the biological filtration device with almost no floating, and is dissolved and diffused from the bubbles into the gas-liquid mixed water. Therefore, it is not necessary to treat the breeding water that has been subjected to biological filtration separately with an oxygen dissolving device to increase the dissolved oxygen content (DO value) of the breeding water. That is, an oxygen dissolving device is not necessary. Therefore, the cost can be reduced accordingly.
- DO value dissolved oxygen content
- invention of Claim 2 is invention of Claim 1, Comprising:
- the physical filtration apparatus is arrange
- the breeding water filtered by the physical filtration device is mixed with the oxygen gas that has become nano-level bubbles by the gas-liquid mixed water generation device, No decrease in pH, which is an indicator of carbon dioxide accumulated in breeding water. Therefore, there is no need to provide a deaeration device for removing carbon dioxide gas.
- the reason for removing the carbon dioxide gas is that the breeding fish discharges carbon dioxide by respiration, and when the concentration increases, the pH of the breeding water decreases, the growth of the breeding fish slows down, and the like. Therefore, the cost can be reduced because there is no need to provide a deaeration device.
- invention of Claim 3 is invention of Claim 1 or 2, Comprising: The air supply apparatus which pumps air to a breeding aquarium and the biological filtration apparatus which used the immersion filter medium as a culture medium of nitrifying bacteria, respectively is connected It is characterized by that.
- the breeding water can be circulated in the breeding aquarium by pumping air into the breeding aquarium with the air supply device.
- the environment for raising seafood can be improved.
- nitrifying bacteria can be activated by pressure-feeding air to the biological filtration device by the air supply device. As a result, the nitrification effect can be enhanced.
- generation apparatus which concerns on 2nd Embodiment.
- FIG. 16 is a sectional view taken along line VI-VI in FIG. 15. VII-VII sectional view explanatory drawing of FIG. Expansive plane explanatory drawing (a) and a cross-sectional enlarged side explanatory drawing (b) of a mixing unit.
- FIG. 1 is a closed circulation filtration aquaculture system according to this embodiment.
- the closed circulation filtration aquaculture system Sy (hereinafter abbreviated as “aquaculture system Sy”) replenishes only the amount of breeding water lost due to evaporation and management work, so the same amount of breeding water per day.
- aquaculture system Sy replenishes only the amount of breeding water lost due to evaporation and management work, so the same amount of breeding water per day.
- aquaculture is performed only by replenishing the loss of breeding water due to evaporation and management work.
- the aquaculture system Sy includes a breeding water tank Fa, a sedimentation tank Dp, a physical filtration device Pf, and a gas-liquid mixed water generation device (hereinafter, abbreviated as “generation device”). .)
- A, the biological filtration device Bf, the temperature control device Ta, and the circulation pump Pc are arranged in this order.
- the circulation channel C forms a closed annular channel and circulates a gas-liquid mixed water Rm, which will be described later, mixed with breeding water and oxygen gas by the circulation pump Pc.
- the rearing water tank Fa is a water tank formed by stretching a waterproof sheet such as a plastic sheet in a box shape with an upper surface opening for rearing or aquaculture of seafood, and flows in from the upstream side of the circulation channel C.
- the breeding water or the gas-liquid mixed water Rm is stored and a part of the breeding water flows out to the downstream side of the circulation channel C.
- D1 is a first drainage channel, and it is possible to discharge feces, residual food, drainage, etc. of seafood when the bottom of the rearing tank Fa is cleaned through the first drainage channel D1 to a predetermined location outside the system.
- the settling tank Dp introduces breeding water or gas-liquid mixed water Rm flowing out from the breeding tank Fa, and sinks and collects fish dung and residual feed having a larger specific gravity than the breeding water or gas-liquid mixed water Rm.
- the treated water from which the remaining bait is collected and separated is caused to flow out downstream of the circulation channel C.
- the physical filtration device Pf filters the treated water that has flowed out of the precipitation tank Dp.
- the physical filtration device Pf is made of a plastic net or a screen-like material such as a porous body, a metal net, or a glass filter, and can be backwashed with backwashing water to prevent clogging. In the backwash water, treated water is recycled and reused. Cleaning of the screen is performed by constantly spraying the cleaning water intermittently at a speed higher than the flow rate of the treated water.
- the screen in the physical filtration device Pf is replaceable.
- D2 is a second drainage channel, and the physical filtered product can be discharged to a predetermined location outside the system through the second drainage channel D2.
- the generation device A includes filtered water that has flowed out from the physical filtration device Pf and oxygen gas (pure oxygen or mostly oxygen) introduced from an oxygen supply source Ox (see FIG. 2) such as an oxygen gas cylinder or an oxygen supply device. Gas) to produce gas-liquid mixed water Rm.
- the generation apparatus A refines 90% or more of the oxygen gas into nano-level bubbles (outer diameter of 1 ⁇ m or less, preferably 100 nm or less; hereinafter also referred to as “nano bubbles”) and breeding water (Specifically, it is made uniform by mixing with physical filtration treated water).
- oxygen gas is dissolved in a supersaturated state.
- the supersaturated state (for example, 140%) in which the dissolved oxygen saturation of the gas-liquid mixed water Rm is 100% or more is set.
- the dissolved oxygen saturation here is a value (%) obtained by dividing the dissolved oxygen amount by the saturated dissolved oxygen amount and multiplying the divided value by 100.
- the dissolved oxygen saturation of the gas-liquid mixed water Rm when flowing out of the generator A is determined by the amount of oxygen gas introduced into the generator A according to the type, size, number, etc. of seafood to be bred in the breeding aquarium Fa. It can adjust by adjusting suitably according to it. A specific configuration of the generation device A will be described later.
- the biofiltration device Bf introduces the nanobubble-containing gas-liquid mixed water Rm that flows out from the generating device A, and converts the highly toxic seafood excreta contained in the gas-liquid mixed water Rm into an aerobic environment.
- nitrifying bacteria which are bacteria
- biofiltration is performed by oxidizing to nitric acid with low toxicity via nitrite.
- a medium for nitrifying bacteria an immersion filter medium is used.
- the size of the container of the biological filtration device Bf that performs the biological filtration process and the required amount of filter medium vary depending on the size and number of fish and shellfish bred in the breeding aquarium Fa, the amount of nitrogen excreted from ammonia and the like and the ammonia oxidation of the filter medium Design appropriately based on speed. Further, oxygen gas is dissolved in a supersaturated state (for example, 120%) also in the gas-liquid mixed water Rm supplied (refluxed) to the breeding aquarium Fa after being subjected to biological filtration by the biological filtration device Bf. .
- Adjustment of the dissolved oxygen saturation of the gas-liquid mixed water Rm that is refluxed to the breeding aquarium Fa is carried out by adjusting the dissolved oxygen saturation of the gas-liquid mixed water Rm when introduced from the generator A to the biological filtration device Bf in advance. It can be carried out by appropriately adjusting according to the type, size, number of individuals, etc. of the seafood bred in Fa.
- the temperature control device Ta heats or cools the gas-liquid mixed water Rm flowing out from the biological filtration device Bf, thereby controlling the water temperature of the gas-liquid mixed water Rm stored in the breeding aquarium Fa within a certain range (for example, 15 ⁇ 25 ° C., preferably 16 ° C.).
- the temperature control device Ta is connected to a water intake source Ws such as a well outside the system, and heat exchange is performed with temperature control water introduced from the water intake source Ws so that the water temperature of the gas-liquid mixed water Rm can be appropriately adjusted.
- E is a water intake facility, and the water intake facility E includes a water intake pump that takes in groundwater, a water intake filter that filters water intake, a sterilizer that sterilizes water intake, and the like.
- An air supply device As such as a blower pump that pumps air through an air supply pipe Pa is connected to the breeding water tank Fa and the biological filtration device Bf.
- the gas-liquid mixed water Rm in which oxygen gas is dissolved in a supersaturated state is generated by the generating device A, and the gas-liquid mixed water Rm is supplied to the biological filtration device Bf. Therefore, oxygen gas necessary for nitrification in the biological filtration device Bf can be sufficiently supplied.
- the oxygen gas since the oxygen gas is in the form of nanobubbles, the oxygen gas stays for a long time in the biological filtration device Bf, and oxygen is dissolved and diffused from the bubbles into the gas-liquid mixed water Rm. Therefore, it is not necessary to treat the breeding water that has been subjected to biological filtration separately with an oxygen dissolving device to increase the dissolved oxygen content (DO value) of the breeding water. That is, an oxygen dissolving device is not necessary. Therefore, the cost can be reduced accordingly.
- DO value dissolved oxygen content
- the reason for removing the carbon dioxide gas is that the breeding fish discharges carbon dioxide by respiration, and when the concentration increases, the pH of the breeding water decreases, the growth of the breeding fish slows down, and the like. Therefore, in this embodiment, the cost can be reduced because there is no need to provide a deaeration device.
- the breeding water or the gas-liquid mixed water Rm can be circulated in the breeding water tank Fa.
- the environment for raising seafood can be improved.
- nitrifying bacteria can be activated by pumping air to the biological filtration device Bf by the air supply device As. As a result, the nitrification effect can be enhanced.
- the generation device A as the first embodiment accommodates the breeding water W introduced from the physical filtration device Pf in a top-opened box-type tank T, and the gas-liquid mixing device in the breeding water W M is immersed in the structure.
- the gas-liquid mixing device M is connected to the oxygen supply source Ox, and can mix the oxygen gas taken from the oxygen supply source Ox and the breeding water W to generate the gas-liquid mixed water Rm.
- the breeding water W is gas-liquid mixed water Rm generated by the generator A and circulated in the circulation channel C, and the gas-liquid mixed water Rm is stored in the tank T.
- the gas-liquid mixing apparatus M nano-scales the oxygen gas supplied from the submersible pump P and the oxygen supply source Ox used by being immersed in the breeding water W in the housing case 10.
- a fine bubble generating means 20 that becomes a fine bubble of a level and diffuses in the liquid, and a gas-liquid mixing means 30 as a first embodiment that further refines the fine bubble and uniformly mixes with the liquid. Is configured.
- the gas-liquid mixing means 30 can make the breeding water W in the tank T into nanobubble-containing water containing nanobubbles containing oxygen gas as a component quickly and easily.
- the storage case 10 is formed by connecting a bottom case forming body 11 formed in a rectangular flat box shape with an upper opening to a covering case forming body 12 formed in a rectangular box shape with a lower opening. Forming.
- the front and rear end walls 12a and 12b and the left and right side walls 12c and 12d forming the peripheral wall of the covering case forming body 12 are formed with a large number of liquid inflow holes 13 through which liquid flows.
- a cylindrical cable insertion portion 14 and a pipe connection portion 15 are provided in the ceiling portion 12e of the covering case forming body 12 so as to penetrate in the vertical direction.
- the cable insertion part 14 has a cable insertion hole for inserting the power transmission cable 6.
- the pipe connection portion 15 has a pipe communication path for connecting the external gas supply pipe 7 and the internal gas supply pipe 22 in communication.
- 14a is a cable insertion part fixing piece
- 15a is a pipe connection part fixing piece.
- the submersible pump P is configured such that an impeller accommodating portion 2 that accommodates an impeller (not shown) is continuously provided below a motor accommodating portion 1 that accommodates a motor (not shown), and a leg portion 3 is suspended from the lower end of the impeller accommodating portion 2. is doing.
- the impeller accommodating portion 2 is formed in a flat container shape, and a suction opening portion 4 for sucking fluid (liquid mixed with bubbles in the present embodiment) is formed in a circular opening shape downward while a motor accommodating portion is formed.
- a discharge port portion 5 for discharging a fluid is formed in a circular opening shape on the upper surface portion of a bulge portion 2a formed in a bulge shape forward of 1 and upward.
- a power transmission cable 6 inserted from the outside of the housing case 10 into the cable insertion portion 14 is connected to the motor of the submersible pump P in the housing case 10.
- the leg 3 of the submersible pump P is fixed to the bottom case forming body 11 in a standing manner via a fixing bracket 8.
- Reference numeral 9 is a corner protector, and 12f is a handle. By gripping the handle 12f, moving work such as loading and unloading of the gas-liquid mixing device M can be performed easily.
- Es is a power source that supplies electricity to the submersible pump P through the power transmission cable 6.
- the submersible pump P rotates the impeller with a motor, thereby sucking fluid from the suction port 4 and discharging fluid from the discharge port 5.
- the fine bubble generating means 20 includes an air diffuser 21 and an internal gas supply pipe 22 that is connected to the air diffuser 21 in communication therewith.
- the air diffuser 21 is formed of a porous diffused gas 21a made of ceramic or the like in a cylindrical shape, and support pieces 21b and 21b are provided at both ends of the diffused gas 21a.
- a cylindrical connecting part 21c is projected from the center of one support piece 21b. The inner end of the connecting part 21c communicates with the internal space of the diffused gas 21a and is connected to the outer end of the connecting part 21c.
- One end of the internal gas supply pipe 22 is externally fitted and connected.
- a pair of left and right aeration parts 21 and 21 are disposed on the bottom case forming body 11 so as to be positioned on the left and right sides of the leg part 3 of the submersible pump P.
- the connection parts 21c and 21c of both the aeration parts 21 and 21 are projected forward.
- the internal gas supply pipe 22 has a base end connected to the lower end of the pipe connecting portion 15 provided in the ceiling portion 12e of the covering case forming body 12, and a bifurcated bifurcated branch at the tip.
- Branch portions 22a and 22a are formed, and the bifurcated branch portions 22a and 22a are externally fitted and connected to the connection portions 21c and 21c.
- a distal end portion of the external gas supply pipe 7 is connected to an upper end portion of the pipe connection portion 15, and a proximal end portion of the external gas supply pipe 7 is connected to the oxygen supply source Ox.
- oxygen is supplied from the oxygen supply source Ox to the external gas supply pipe 7 ⁇ the pipe connection portion 15 ⁇ the internal gas supply pipe 22 ⁇ the bifurcated branch portions 22a and 22a ⁇ the connection portions 21c and 21c ⁇ the diffused gas 21a and 21a.
- Air is diffused into the breeding water W through the surfaces of the porous diffused gas 21a and 21a.
- the oxygen gas diffused from each of the diffused gases 21a and 21a is refined to a micro level.
- “Airstone” (trade name) manufactured by New Marines can be used as the air diffuser 21.
- the gas-liquid mixing means 30 is connected in an upright manner to the discharge port portion 5 of the submersible pump P as shown in FIGS. As shown in FIG. 8, the gas-liquid mixing means 30 communicates with the gas-liquid supply path 31 that communicates with the discharge port portion 5, and flows through the gas-liquid supply path 31 while meandering the oxygen gas and the breeding water W. And a dispersion / mixing flow path 32 for finely dispersing and mixing oxygen gas in the breeding water W.
- a large number of dispersion / mixing flow paths 32 communicate with each other at intervals in the axial direction and the circumferential direction of the gas-liquid supply path 31, and breeding water W (gas-liquid mixing) mixed with bubbles from the end of each dispersion / mixing flow path 32. Water Rm) is allowed to flow out.
- the gas-liquid supply path 31 is formed in the gas-liquid supply path forming case 33, and the gas-liquid supply path forming case 33 has a regular octagonal cylindrical shape as shown in FIGS.
- the peripheral wall 34 is formed, an upper end surface portion 35 formed to be stretched on the upper end surface of the peripheral wall 34, and a lower end surface portion 36 formed to be stretched on the lower end surface of the peripheral wall 34.
- the lower end surface portion 36 is formed in a disk shape projecting outward from the peripheral wall 34.
- An introduction port 37 is formed in the rear portion of the lower end surface portion 36 so as to be positioned in the peripheral wall 34, and the lower surface of the lower end surface portion 36 located at the peripheral portion of the introduction port 37 is larger in diameter than the introduction port 37 and cylindrical.
- the introduction guide body 38 is suspended and the inside of the introduction guide body 38 and the introduction port 37 are communicated in the vertical direction.
- the introduction guide body 38 can be fitted into the discharge port portion 5 to connect the gas-liquid supply path forming case 33 to the impeller housing portion 2 in communication.
- the gas-liquid supply path 31 in the gas-liquid supply path forming case 33 communicates with the discharge port portion 5 of the impeller accommodating portion 2 via the introduction guide body 38 and the introduction port 37.
- a large number of mixing units 40 are attached to the gas-liquid supply path forming case 33.
- the peripheral wall 34 of the gas-liquid supply path forming case 33 is formed in a regular octagonal cylindrical shape as described above, and a plurality of (in this embodiment) the eight planes of the peripheral wall 34 are spaced apart in the vertical direction.
- Four) flow passage holes 39 are formed in a circular opening shape.
- a mixing unit 40 is attached to each of the eight planes of the peripheral wall 34 so as to close the respective channel communication holes 39.
- the mixing unit 40 has a first element 41 and a second element 42 that are formed in a substantially identical disk shape and are opposed to each other. Dispersion / mixing flow path 32 is formed in this.
- the dispersion / mixing flow path 32 communicates between the flow path communication holes 39 between the central portions, which are the starting edge portions of both elements 41 and 42, via an inflow port 43 formed in the central portion of the first element 41.
- the outflow ports 44 that open radially between the outer peripheral edges, which are the end edges of the elements 41 and 42, are formed.
- a group of a large number of recesses 45 and 46 having the same depth and size are formed on the opposing surfaces of the elements 41 and 42 in an orderly manner without any gaps from the inlet 43 side toward the outlet 44 side.
- the opposing recesses 45 and 46 are arranged at different positions so as to communicate with each other, and between the opposing recesses 45 and 46, the liquid mixed with bubbles repeats merging and splitting while meandering. It forms so that it may flow toward the outflow port 44 side from the inflow port 43 side.
- the gas-liquid-liquid lead-out path forming case 50 includes a cylindrical peripheral wall forming piece 52, a ceiling forming piece 53 that is connected to the upper edge of the peripheral wall forming piece 52, and a circular shape that opens at the upper front of the peripheral wall forming piece 52.
- a cylindrical lead-out guide body 55 projecting forward from the peripheral edge of the lead-out port 54.
- the lead-out guide body 55 protrudes forward from a circular opening 12g opened at the top of the front end wall 12a of the housing case 10.
- a bulging portion 56 that bulges inward along the peripheral edge is formed on the inner peripheral edge of the lower end of the peripheral wall forming piece 52, and a plurality of female screw holes 56 a having axial lines directed vertically in the bulging portion 56. They are formed at intervals in the circumferential direction.
- Reference numeral 36a denotes a number of screw holes formed in the outer peripheral portion of the lower end surface portion 36 so as to be aligned with the female screw hole 56a.
- the gas-liquid mixing apparatus M is configured as described above. According to the gas-liquid mixing apparatus M, the following operational effects are produced. That is, by immersing the housing case 10 in the breeding water W in the tank T, the submersible pump P is soaked in the breeding water W, and the diffused gas 21a, 21a is supplied from the oxygen supply source Ox through the internal gas supply pipe 22. Gas is supplied, and oxygen gas refined
- the submersible pump P is driven to suck water mixed with bubbles (initial bubble mixed water) R from the suction port 4 and form a gas-liquid supply path from the discharge port 5 of the submersible pump P through the inlet 37.
- the initial bubble mixed water R fed into the gas-liquid supply path forming case 33 flows into the dispersion / mixing flow path 32 of the flow passage communication hole 39 ⁇ the inlet 43 ⁇ the mixing unit 40, and joins and splits while meandering. It repeats to flow toward the outlet 44 side.
- the bubbles refined to the micro level are refined to the nano level and uniformly mixed with the breeding water W.
- the oxygen is refined in advance before being sucked into the submersible pump P to form macro-level fine bubbles, thereby preventing air biting of the submersible pump P and the macro-level fine after being discharged from the submersible pump P. Since the air bubbles can be further refined by the mixing unit 40, most of the air bubbles can be steadily reduced to the nano level.
- the dispersion / mixing flow path 32 that can reduce pressure loss can be formed in a compact manner, and a large number of compactly formed dispersion / mixing flow paths 32 can be formed.
- the outflow amount (efficiency) of the gas-liquid mixed water Rm to be performed can be increased.
- the gas-liquid mixed water Rm that has flowed out from the outlet 44 of the mixing unit 40 is discharged from the mixed gas-liquid outlet path 51 ⁇ the outlet 54 ⁇ the outlet guide body 55 into the liquid to be mixed.
- the mixing unit 40 has a disk-shaped first element 41 formed with a disk-shaped first element 41 having an inlet 43 for the initial bubble mixed water R formed in the center.
- Two elements 42 are arranged facing each other, and the initial bubble mixed water R flowing in from the inflow port 43 on the central part side is caused to flow in the radial direction toward the peripheral part between the faces of both elements 41 and 42 and dispersed.
- a dispersion / mixing flow path 32 to be mixed is formed and configured.
- a screw hole 61 is provided in the center of the first element 41, that is, in the center of the inflow port 43 via a support piece 60, while a screw hole 62 is formed in the center of the second element 42 to be matched.
- First and second attachment holes 64, 64, 65, 65 that match each other are formed in the upper and lower portions of both elements 41, 42 so as to be parallel to the central axis, and the peripheral wall of the gas-liquid supply path forming case 33 34, third mounting holes 66, 66 that coincide with the first and second mounting holes 64, 64, 65, 65 are formed, and mounting bolts 67 are screwed into the first to third mounting holes 64-66.
- the mixing unit 40 is attached to the peripheral wall 34 by wearing.
- the dispersion / mixing channel 32 has a large number of the same shape and the same size, each having an opening shape of a regular hexagon (honeycomb shape) on the opposing surfaces of the first and second elements 41 and 42.
- the recesses 45 and 46 are arranged in an orderly manner without any gaps.
- the opening surfaces of the recesses 45 and 46 of the elements 41 and 42 are arranged in contact with each other in abutting manner and at different positions so as to communicate with each other.
- the number of the concave portions 45 and 46 of each element 41 and 42 arranged on the same circumference centering on the inlet 43 of the initial bubble mixed water R is gradually increased from the central side toward the peripheral side to flow.
- the diversion number (dispersion number) is increased in the radial direction.
- An outlet 44 is formed on the peripheral edge side between the elements 41 and 42.
- both elements 41 and 42 are in a state where a corner 48 where the three recesses 46 of the second element 42 are gathered is located at the center of the recess 45 of the first element 41. In contact.
- the initial bubble mixed water R can flow between the recess 45 of the first element 41 and the recess 46 of the second element 42.
- the initial bubble mixed water R flows from the concave portion 45 side of the first element 41 to the concave portion 46 side of the second element 42, the initial bubble mixed water R is divided (dispersed) into two flow paths. Will be.
- the corner portion 48 of the second element 42 arranged at the center position of the recess 45 of the first element 41 functions as a diversion portion for diverting the initial bubble mixed water R.
- the initial bubble mixed water R flowing from two directions flows into one concave portion 45 and merges. become.
- the corner portion 48 of the second element 42 functions as a merging portion.
- the corner 47 where the three recesses 45 of the first element 41 are gathered is located at the center position of the recess 46 of the second element 42.
- the corner portion 47 of the first element 41 functions as the diversion portion or the merge portion described above.
- the initial bubble mixed water R supplied in the axial direction of the elements 41 and 42 from the central inflow port 43 is separated between the elements 41 and 42 facing each other in a facing state.
- a dispersion / mixing flow path 32 (see FIG. 6) is formed that flows in a meandering manner in the radiation direction (radial direction perpendicular to the axial direction) of both elements 41 and 42 while repeating the joining (dispersing and mixing).
- the initial bubble mixed water R flows in the dispersion / mixing flow path 32, the initial bubble mixed water R is subjected to the dispersion / mixing process to generate the gas-liquid mixed water Rm which is the final bubble mixed liquid.
- the number of the concave portions 45 and 46 of the first and second elements 41 and 42 gradually increases from the central side toward the peripheral side, so that the initial bubble mixed water R
- the number of the concave portions 45 and 46 where the two are merged increases toward the peripheral portion side, and is distributed (distributed) in proportion to the number of the concave portions 45 and 46. Therefore, in the dispersion / mixing flow path 32, the number of times the initial bubble mixed water R is refined by the shearing force is along the flow direction of the initial bubble mixed water R (radial direction toward the peripheral side). Gradually increases.
- the generation device A according to the second embodiment includes gas-liquid mixing means 30 as the second embodiment. That is, the generator A connects the base end of the circulation pipe J to the bottom of the top-opening box-shaped tank T containing the breeding water W, and the tip of the circulation pipe J is placed in the breeding water W in the tank T. By inserting, the production
- An oxygen supply source Ox is connected to the middle of the circulation pipe J via an oxygen supply pipe K1, and a gas-liquid mixing means 30 is connected to the downstream of the oxygen supply source Ox.
- the gas-liquid mixing means 30 applies the shearing force to the gas-liquid mixed phase of the oxygen gas supplied from the oxygen supply source Ox and the breeding water W, so that the oxygen gas becomes a group of bubbles having ultrafine bubbles. It is configured to be mixed with W.
- a suction pump P1 and a discharge pump P2 are arranged adjacent to each other in the middle of the circulation pipe J located on the downstream side of the tank T in series.
- An oxygen supply source Ox is connected to a portion of the circulation pipe J located between the discharge port of the suction pump P1 disposed on the upstream side and the suction port of the discharge pump P2 disposed on the downstream side via the oxygen supply pipe K1. Is connected.
- the discharge pressure of the suction pump P1 is set to be equal to or lower than the suction pressure of the discharge pump P2.
- V1 is a gas supply amount adjustment valve provided in the middle of the oxygen supply pipe K1
- V2 is a pressure adjustment valve attached to the tip of the circulation pipe J
- Wk is a breeding water W as a solvent in the tank T as needed. This is a breeding water supply section that can be supplied.
- a backwash channel Bw is connected to the above-described generation circulation channel Cy. That is, one end of the backwash bypass pipe U is connected to the portion of the circulation pipe J located immediately upstream of the gas-liquid mixing means 30 via the upstream three-way valve V3, while the gas-liquid mixing means One end portion of the backwashing detour pipe U is connected to the circulation pipe J located on the downstream side of 30 through a downstream three-way valve V4.
- a midway part three-way valve V5 is provided in the middle part of the backwash detour pipe U, and the drainage accommodating part H is connected via the midway part three-way valve V5.
- the backwash flow path Bw is formed by communicating the circulation pipe J and the backwash bypass pipe U via the upstream / downstream three-way valves V3 and V4.
- the wash water stored in the tank T is circulated by the suction pump P1 and / or the discharge pump P2 in the backwash flow path Bw as many times as necessary, so that the wash water flows from the downstream side to the upstream side of the gas-liquid mixing means 30.
- the gas-liquid mixing means 30 can be washed (backwashed) by flowing back.
- the washing waste water can be discharged to the waste water storage portion H through the midway three-way valve V5 provided in the middle of the backwash bypass pipe U. Thereafter, the three-way valves V3, V4, and V5 are restored to restore the generation circulation flow path Cy, and the breeding water W is accommodated in the tank T, whereby the fluid mixing process can be resumed. .
- the oxygen pump supplied from the oxygen supply source Ox disposed between them by the suction pump P1 and the discharge pump P2 cooperates from the discharge port of the suction pump P1. And a suction pressure (ejector effect) from the suction port of the discharge pump P2, and is sucked smoothly and stably.
- a constant amount of oxygen gas mixed into the breeding water W can be ensured.
- production capability of the mixed fluid of breeding water W and oxygen gas can be ensured and the suction pump P1 and the discharge pump P2 with low power consumption can be combined and used together, Manufacturing costs and running costs can be reduced.
- the wash water is caused to flow backward from the downstream side of the gas-liquid mixing means 30 to the upstream side, so that the gas-liquid mixing means 30 The inside can be washed (backwashed).
- the washing waste water can be discharged to the waste water storage portion H through the midway three-way valve V5.
- the fluid mixing process can be easily restarted by restoring the three-way valves V3, V4, and V5.
- the fluid mixing function of the gas-liquid mixing means 30 can be satisfactorily ensured by appropriately performing the backwash process.
- the gas-liquid mixing means 30 as the second embodiment will be described with reference to FIGS.
- the gas-liquid mixing means 30 is provided with an inlet port in a mixing case 110 provided with an inlet port 111 for introducing bubble-mixed water (initial bubble mixed water) R in a pressurized state.
- a plurality of mixing units 120 for mixing the initial bubble mixed water R introduced from 111 is disposed, and the gas / liquid mixed water Rm (final bubble mixed water) mixed by the mixing unit 120 is led to the mixing case 110.
- An outlet 112 is provided.
- a plurality of mixing units 120 are arranged in series at intervals from the introduction port 111 side to the outlet port 112 side to form a relay reservoir space Sh between the mixing units 120.
- the inlet-side reservoir space Su is formed between the inlet 111 and the mixing unit 120 arranged on the most upstream side, while the outlet is formed between the mixing unit 120 arranged on the most downstream side and the outlet 112.
- a side reservoir space Sd is formed, and the mixing unit 120 is arranged in communication between the reservoir spaces Su, Sh, Sd.
- the surfaces of the plate-like first element 130 and the second element 140 are arranged so as to face each other, and the gap between the start end edges of both the elements 130, 140 serves as the inflow port 150.
- 140 is formed as an outlet 151, and a plurality of recess groups 132 and 142 having the same depth and size are flowed from the inlet 150 side on the opposing surfaces 131 and 141 of both elements 130 and 140.
- the recesses 134 and 144 facing each other toward the outlet 151 side are arranged at different positions so as to communicate with each other.
- the initial bubble mixed water R is configured to flow from the inlet 150 side toward the outlet 151 side while repeating joining and splitting while meandering between 134 and 144.
- the gas-liquid mixing means 30 of this embodiment forms a mixing unit stack 160 by superposing and arranging a plurality (10 in this embodiment) of the mixing units 120 in a stacked manner, and introducing the mixing unit 110 into the mixing case 110. Between the inlet 111 and the outlet 112, between the inlet-side reservoir space Su and the relay reservoir space Sh, between the relay reservoir space Sh and the relay reservoir space Sh, and between the relay reservoir space Sh and the outlet port-side reservoir. Between the spaces Sd, the mixed unit laminates 160 are respectively disposed. In other words, in the present embodiment, a plurality (four in the present embodiment) of the mixing unit stacks 160 are arranged in series in the mixing case 110 with a certain interval from the upstream side toward the downstream side. . The inlet 150 of each mixing unit 120 is arranged to open toward the inlet 111, while the outlet 151 of each mixing unit 120 is arranged to open toward the outlet 112.
- the following functions and effects occur. That is, between the inlet 111 and the outlet 112 in the mixing case 110, between the inlet-side reservoir space Su and the relay reservoir space Sh, between the relay reservoir space Sh and the relay reservoir space Sh, and between the relay Since the mixing units 120 are arranged to communicate with each other between the reservoir space Sh and the outlet-side reservoir space Sd, the initial bubble mixed water R flowing in the mixing case 110 is contained in each reservoir space having no flow resistance. A pulsating flow is steadily caused by passing through Su, Sh, Sd and each mixing unit 120 which becomes flow resistance alternately in series.
- the initial bubble mixed water R flowing in each mixing unit 120 having a mixing function although the flow velocity of the initial bubble mixed water R flowing in the pool spaces Su, Sh, Sd having almost no flow resistance is relatively large. Is subjected to flow resistance and its flow rate is relatively reduced. Therefore, the flow velocity of the initial bubble mixed water R flowing in the mixing case 110 is changed (severely changed) from large ⁇ small ⁇ large ⁇ small ⁇ large, and the flow of the initial bubble mixed water R becomes a steady pulsating flow.
- a shearing effect is generated, and a synergistic shearing effect is obtained.
- the reservoir spaces Su, Sh, and Sd are arranged on the upstream side and the downstream side of each mixing unit 120, respectively, and the inlet 150 of each mixing unit 120 is opened toward the introduction port 111 side.
- the outlet 151 of each mixing unit 120 is arranged to open toward the outlet 112, the pressure loss in the mixing case 110 can be reduced. Therefore, the power consumption of the suction pump P1 and the discharge pump P2 that pressurizes and supplies the fluid to the gas-liquid mixing means 30 can be reduced, and the outflow amount of the gas-liquid mixed water Rm (mixed fluid) ( (Amount of derivation) can be increased (efficiency).
- the initial bubble mixed water R is introduced into the mixing case 110 in a pressurized state through the inlet 111 by the suction pump P1 and the discharge pump P2, and is initially set by the mixing unit 120 disposed in the mixing case 110.
- the mixing unit 120 By mixing the bubble mixed water R, the gas-liquid mixed water Rm can be led out of the mixing case 110 through the outlet 112.
- the initial bubble mixed water R is caused to flow from the inlet 150 between the plate-like first element 130 and the second element 140, the surfaces of which are arranged to face each other.
- the initial bubble mixed water R is repeatedly merged and divided between the opposed recesses 134 and 144 of the respective recess groups 132 and 142 until it flows out from the outlet 151 between the terminal edges 130 and 140.
- the gas-liquid mixed water Rm can be generated steadily by meandering and flowing.
- a fluid (dispersed phase) is formed by shearing force received when the initial bubble mixed water R composed of the continuous phase and the dispersed phase flows while meandering between the recesses 132 and 142 on the inlet side (upstream side).
- Gas-liquid mixed water Rm in which the gas is refined in the form is generated.
- the gas-liquid mixing means 30 of the present embodiment a plurality of mixing unit laminates 160 formed by superposing and arranging the mixing units 120 in a stacked manner are disposed in the mixing case 110.
- a large amount of gas-liquid mixed water Rm can be generated by the body 160. Therefore, the production efficiency of the gas-liquid mixed water Rm can be increased.
- the gas-liquid mixing means 30 can generate the gas-liquid mixed water Rm having high mixing accuracy (for example, fineness and uniformity) even if the initial bubble mixed water R is passed once (one pass).
- the desired gas-liquid mixed water Rm can be obtained in a short time by passing it a predetermined number of times.
- the mixing case 110 is formed in a rectangular box shape extending in one direction (left and right direction in the present embodiment), and has a rectangular plate-like ceiling portion 113 and bottom portion 114 extending in the left and right direction, A rectangular plate-shaped front / rear / left / right side wall 115, 116, 117, 118 interposed between front, rear, left and right side edges of the bottom 114 is formed.
- a circular inlet 111 is provided at the center of the right side wall 118, and the upstream end of the middle part of the circulation pipe J is connected to the inlet 111, and initial bubble mixing is performed from the inlet 111 through the circulation pipe J.
- Water R is introduced in a pressurized state.
- a circular outlet 112 having a smaller diameter than the inlet 111 is provided, and the downstream end of the middle part of the circulation pipe J is connected to the outlet 112 by the mixing unit 120.
- the mixed gas-liquid mixed water Rm is led out from the outlet 112 through the circulation pipe J.
- the concave group 132 of the mixing unit 120 has an opening shape (bottom view) of a hexagonal bottomed cylindrical concave part 134 in the extending direction (in this embodiment, with no gap) in the width direction (front and rear direction in this embodiment).
- a plurality of rows (4 rows in the present embodiment) are provided adjacent to each other in the left-right direction, and the recesses 134 are opened downward.
- a large number of recesses 134 are formed in a so-called honeycomb shape.
- the concave group 142 of the mixing unit 120 has a regular hexagonal bottomed cylindrical concave part 144 on the side of the inflow port 150 of the opposing surface 141 of the second element 140 with a gap across the width direction (the front-rear direction in this embodiment).
- the projections are provided adjacent to a plurality of rows (four rows in this embodiment) in the extending direction (left and right directions in the present embodiment), and the concave portions 144 are opened upward.
- Many concave portions 144 are formed in a so-called honeycomb shape.
- the recesses 134 that form the recess groups 132 and the recesses 144 that form the recess groups 142 are arranged to face each other and at different positions so as to communicate with each other. That is, the corner portion 146 (136) of the concave portion 144 (134) is in contact with the central position of the concave portion 134 (144). Therefore, for example, when considering the case where the initial bubble mixed water R flows from the concave portion 134 side of the first element 130 to the concave portion 144 side of the second element 140, the initial bubble mixed water R is divided (dispersed) into two flow paths. Will be.
- the corner portion 146 of the second element 140 positioned at the center position of the concave portion 134 of the first element 130 functions as a diversion portion for diverting the initial bubble mixed water R.
- the initial bubble mixed water R flowing from two directions flows into one concave portion 134 and merges. become.
- the corner portion 136 of the first element 130 located at the center position of the concave portion 144 of the second element 140 functions as a merging portion.
- the mixing unit 120 may be configured integrally by forming each part (constituent member) with a synthetic resin such as an acrylic resin and integrally bonding them with an adhesive, or an alloy such as stainless steel.
- a synthetic resin such as an acrylic resin
- an adhesive such as an adhesive
- an alloy such as stainless steel
- the initial bubble mixing is greater than the width W2 of the mixing unit 120 that is the flow width of the initial bubble mixed water R (the width in the flow direction of the initial bubble mixed water R flowing from the inlet to the outlet).
- the front / rear width W5 of the mixing unit 120 that is the inflow / outflow width of the water R (the width in the direction substantially perpendicular to the flow direction of the initial bubble mixed water R and the same width as the distance between the front and rear wall portions 115, 116) Is formed into a wide band.
- the left-right width W1 of the inlet-side reservoir space Su is substantially the same width as the left-right width W2 of the mixing unit 120, and the left-right width W3 of the relay reservoir space Sh is approximately half the left-right width W2 of the mixing unit 120.
- the left-right width W4 of the outlet-side reservoir space Sd is substantially the same width as the left-right width W2 of the mixing unit 120.
- the front-rear width and the vertical width of each pool space Su, Sh, Sd are the same as the front-rear width and the vertical width of the inner surface of the mixing case 110. Then, the downstream side surface of the inlet-side reservoir space Su and the inlets 150 of the first mixing unit laminate 160 arranged on the most upstream side are in surface contact and communicate with each other.
- the outflow port 151 and the upstream side surface of the first relay pool space Sh formed on the uppermost stream side are in surface contact and communicate with each other, and the downstream side surface of the first relay pool space Sh and the second mixing unit laminate
- Each inflow port 150 of 160 is in surface contact and communicates, and each outflow port 151 of the second mixing unit laminate 160 and the upstream side surface of the second relay reservoir space Sh are in surface contact and communication.
- the downstream side surface of the second relay reservoir space Sh and the respective inlets 150 of the third mixing unit laminate 160 communicate with each other in surface contact with each outlet 151 of the third mixing unit laminate 160.
- the upstream side surface of the third relay reservoir space Sh The downstream side surface of the third relay reservoir space Sh and the respective inlets 150 of the fourth mixing unit laminate 160 are in surface contact with each other, and the respective outlets 151 of the fourth mixing unit laminate 160 are communicated. And the upstream side surface of the outlet port side accumulation space Sd are in surface contact and communicate with each other.
- the volume of the outlet port side reservoir space Sd is formed to be twice or more the volume of the relay reservoir space Sh, and the volume of the inlet port side reservoir space Su is two to three times the volume of the relay reservoir space Sh. Can be formed.
- the initial bubble mixed water R introduced from the inlet 111 and filling the inlet-side reservoir space Su is in a parallel state from each inlet 150 of the first mixing unit stack 160 into each mixing unit 120. And flowing in the mixing unit 120 while meandering and repeating the merging and splitting (dispersion), the shearing force causes the gas as the dispersed phase to be refined and uniformly mixed. It becomes liquid mixed water Rm.
- the gas-liquid mixed water Rm flows out from each outlet 151 of each mixing unit 120 of the first mixing unit stack 160 and fills the first relay pool space Sh.
- the gas-liquid mixed water Rm filled in the first relay reservoir space Sh flows in parallel from the respective inlets 150 of the second mixing unit stack 160 into the respective mixing units 120, and enters the respective mixing units 120.
- the mixing process is performed.
- the gas that is the dispersed phase is further refined and becomes a gas-liquid mixed water Rm that is uniformly mixed.
- the gas-liquid mixed water Rm flows out from the outlets 151 of the mixing units 120 of the second mixing unit stack 160 and fills the second relay reservoir space Sh.
- the gas-liquid mixed water Rm filled in the second relay reservoir space Sh flows in parallel from the respective inlets 150 of the third mixing unit stack 160 into the respective mixing units 120 and enters the respective mixing units 120.
- the mixing process is performed.
- the gas that is the dispersed phase is further refined and becomes a gas-liquid mixed water Rm that is uniformly mixed.
- the gas-liquid mixed water Rm flows out from each outflow port 151 of each mixing unit 120 of the third mixing unit stack 160 and fills the third relay reservoir space Sh.
- the gas-liquid mixed water Rm filled in the third relay reservoir space Sh flows in parallel from the respective inlets 150 of the fourth mixing unit stack 160 into the respective mixing units 120, and enters the respective mixing units 120.
- the mixing process is performed in the same manner as the third mixing unit laminate 160.
- the gas that is the dispersed phase is further refined and becomes a gas-liquid mixed water Rm that is uniformly mixed.
- the gas-liquid mixed water Rm flows out from the outlets 151 of the mixing units 120 of the fourth mixing unit stack 160 and fills the outlet-side reservoir space Sd.
- the gas-liquid mixed water Rm filled in the outlet port side reservoir space Sd is led out from the outlet port 112.
- each mixing unit 120 the front-rear width W5 of each mixing unit 120 that is the inflow / outflow width of the initial bubble mixed water R is formed wider than the lateral width of each mixing unit 120 that is the flow width of the initial bubble mixed water R. Therefore, a large amount of the initial bubble mixed water R flows and passes through each mixing unit 120 in a short time.
- the initial bubble mixed water R or the gas-liquid mixed water Rm is introduced into the inlet 111 ⁇ the inlet side accumulation space Su ⁇ the first mixing unit stacked body 160 ⁇ the first relay accumulation space Sh.
- the mixing case 110 the reservoir spaces Su, Sh, Sd having a relatively small channel resistance and the first to fourth mixing unit laminates 160 having a relatively large channel resistance are alternately arranged. Therefore, the initial bubble mixed water R or the gas-liquid mixed water Rm flowing in the mixing case 110 becomes a pulsating flow whose flow rate changes suddenly and suddenly. Therefore, the initial bubble mixed water R receives a shearing force when flowing in the mixing case 110 as well as a shearing force when flowing in each mixing unit 120. As a result, the shear effect acting on the initial bubble mixed water R can be increased, the dispersed phase can be refined into nanobubbles, and a large amount of gas-liquid mixed water Rm can be generated.
- the mixing unit stack 160 is compactly formed by superposing and arranging the required number (in this embodiment, 10) of the mixing units 120 in the mixing case 110 in a stacked manner.
- the fluid mixing processes by the mixing units 120 can be performed in parallel at the same time. It can be done efficiently. Therefore, an appropriate amount of the gas-liquid mixed water Rm is efficiently generated and led out from the mixing case 110 by an appropriate number of mixing units 120 arranged compactly in the mixing case 110.
- the gas-liquid mixing means 30 configured as described above connects the introduction port 111 to the discharge part of the submersible pump, and allows a plurality of different fluids sucked from the suction part of the submersible pump to flow into the gas-liquid mixing means 30 from the discharge part.
- the fluid mixing process can also be performed by discharging the fluid into the gas-liquid mixing means 30 and allowing it to flow in the gas-liquid mixing means 30.
- the four mixing unit laminates 160 are arranged in the mixing case 110, but the number of the mixing unit laminates 160 is not limited to this, and the gas-liquid mixed water Rm Depending on the production amount, etc., a desired number of single or plural mixed unit laminates 160 can be provided.
- the generating apparatus A according to the third embodiment can be configured by attaching the gas-liquid mixing unit 30 as the second embodiment instead of the gas-liquid mixing unit 30 as the first embodiment.
- the inlet 111 is connected to the inlet guide 38 and the outlet 112 is connected to the opening 12g of the housing case 10, whereby the gas-liquid mixer 30 as the second embodiment. Can be adopted.
- the generation device A according to the third embodiment configured as described above can obtain the same effects as those of the generation device A according to the first and second embodiments.
- seawater as breeding water physically treated by the physical filtration device Pf is introduced into the tank T, the seawater is filled in the tank T, and two gas-liquid mixtures are mixed in the seawater in the tank T.
- Apparatus M was immersed. Then, 1 L / min of pure oxygen is supplied to the gas-liquid mixing device M from an oxygen gas cylinder as an oxygen supply source Ox, and seawater and oxygen gas are mixed by the gas-liquid mixing means 30, thereby making the gas fine and uniform.
- Gas-liquid mixed water Rm was produced. Thereafter, the gas-liquid mixed water Rm was led to the biological filtration device Bf.
- the temperature of the seawater at this time is about 16 ° C.
- the DO value of the biological filtration device Bf is about 20 mg / L (the dissolved oxygen saturation is about 200%).
- the supply amount was adjusted and set.
- the operation of the aquaculture system Sy was performed for one month while replenishing the decreased amount of the breeding water in the breeding water tank Fa every five days. The results at that time are as follows.
- the DO value when the gas-liquid mixed water Rm, which is biologically filtered by the biological filtration device Bf and temperature-adjusted to about 16 ° C. by the temperature control device Ta, is sent to the breeding aquarium Fa by the circulation pump Pc, is , Approximately 10 mg / L (supersaturated state in which dissolved oxygen saturation is 100% or more).
- the DO value of the gas-liquid mixed water Rm in the breeding aquarium Fa is generally maintained at 7 to 8 mg / L (supersaturated state where the dissolved oxygen saturation is 100% or more), although it varies depending on the amount of the breeding fish in the breeding tank Fa. It had been.
- the pH of the gas-liquid mixed water Rm in the aquaculture system Sy was maintained at 7.5 to 8, and no pH decrease occurred.
- the pH is 7.8, the ammonia nitrogen contained in the gas-liquid mixed water Rm is 0.3 mg / L, the nitrite nitrogen is 0.1 mg / L, and the nitrate nitrogen is 30 mg / L. Met.
- the pH is 7.8, the ammonia nitrogen contained in the gas-liquid mixed water Rm is 0.3 mg / L, the nitrite nitrogen is 0.2 mg / L, and the nitrate nitrogen is 30 mg / L. There was (inspection method; pack test).
- the number of general bacteria in the circulation channel C, the rearing tank Fa, the sedimentation tank Dp, the physical filtration device Pf, the production device A, and the biological filtration device Bf was 30 to 70 individuals / mL (inspection method: JIS K 0101 63.2). (1998)).
- the number of general bacteria in the gas-liquid mixed water Rm is 30 to 70 / mL, which is the same as the level of the sea area where the gas-liquid mixed water Rm is clean (for example, the general bacterial count is 2 to 96 (CFU / mL)). It can be said that it is a standard.
- the reason why the number of general bacteria can be suppressed within this range is considered to be that the bubbles of oxygen gas in the gas-liquid mixed water Rm have been nano-leveled. And it is judged that the gas-liquid mixed water Rm does not need to be sterilized by an ultraviolet sterilizer or the like. As a result, since there is no need to provide a sterilization apparatus such as an ultraviolet sterilizer in the aquaculture system Sy, the cost of the aquaculture system can be reduced accordingly.
- the breeding water tank Fa can be used for a long period by circulating the gas-liquid mixed water Rm in which oxygen gas bubbles are nano-leveled.
- Sy aquaculture system A Gas-liquid mixed water generator C Circulation channel Fa Breeding tank Dp Precipitation tank Pf Physical filtration device Bf Biological filtration device Ta Temperature controller Pc Circulation pump Ox Oxygen supply source
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Environmental Sciences (AREA)
- Marine Sciences & Fisheries (AREA)
- Animal Husbandry (AREA)
- Biodiversity & Conservation Biology (AREA)
- Farming Of Fish And Shellfish (AREA)
Abstract
To provide a closed circulation filtration aquaculture system capable of feeding sufficient oxygen gas required for nitrification in a biological filtration device. A closed circulation filtration aquaculture system in which a breeding tank for breeding fish and shellfish and a biological filtration device for biologically filtering breeding water discharged from the breeding tank are provided on a circulation channel equipped with a circulation pump and provided to circulate breeding water; wherein a gas-liquid mixed water generation device for mixing oxygen gas in the form of nanolevel bubbles into the breeding water and thereby generating a gas-liquid mixed water is provided on a portion of the circulation channel positioned downstream of the breeding tank and upstream of the biological filtration device, oxygen gas is caused to be dissolved in a supersaturated state in the gas-liquid mixed water generated in the gas-liquid mixed water generation device and fed to the biological filtration device, and oxygen gas is also caused to be dissolved in a supersaturated state in the gas-liquid mixed water fed to the breeding tank after being biologically filtered in the biological filtration device.
Description
本発明は、閉鎖循環濾過養殖システム、詳しくは、酸素ガスをナノレベル(外径が1μm以下)の気泡となして飼育水に混合させることで気液混合水を生成する気液混合水生成装置を備えた閉鎖循環濾過養殖システムに関する。
The present invention relates to a closed circulation filtration aquaculture system, and more specifically, a gas-liquid mixed water generating apparatus that generates gas-liquid mixed water by forming oxygen gas into bubbles of nano-level (outer diameter is 1 μm or less) and mixing it with breeding water Relates to a closed circulation filtration aquaculture system.
従来、閉鎖循環濾過養殖システムの一形態として、特許文献1に開示されたものがある。すなわち、特許文献1には、魚介類飼育水槽と、飼育水中の魚介類の糞と残餌等を捕集する沈澱槽と、沈澱槽により捕集されない飼育水中の浮遊懸濁物を捕集するフィルター装置と、 飼育水中のアンモニアを硝酸に酸化するバイオフィルター(生物濾過槽)と、この酸化作用により飼育水中に蓄積する硝酸を窒素ガスにして空気中に放出する脱窒槽と、飼育水の殺菌のための紫外線照射装置と、飼育水中に所要量の酸素ガスを溶かし込む酸素溶入器と、酸素溶入器からの飼育水を飼育水槽に供給するための循環経路を分岐して、分岐した循環経路の一つに設けられた飼育水温調節用のヒートポンプと、を順次接続して設けて構成した魚介類養殖装置が開示されている。
Conventionally, there is one disclosed in Patent Document 1 as one form of a closed circulation filtration aquaculture system. That is, Patent Document 1 collects a seafood rearing tank, a sedimentation tank that collects feces and residual food of seafood in the rearing water, and a suspended suspension in the rearing water that is not collected by the sedimentation tank. A filter device, a biofilter (biological filtration tank) that oxidizes ammonia in breeding water to nitric acid, a denitrification tank that releases nitric acid accumulated in the breeding water to nitrogen gas into the air by this oxidation action, and sterilization of breeding water Branched and branched the ultraviolet irradiation device for the water, the oxygen infuser that dissolves the required amount of oxygen gas in the breeding water, and the circulation path for supplying the breeding water from the oxygen welder to the breeding tank A seafood aquaculture device is disclosed that is configured by sequentially connecting and providing a heat pump for controlling the breeding water temperature provided in one of the circulation paths.
ところが、特許文献1に開示された魚介類養殖装置は、生物濾過槽における硝化に必要な酸素ガスを十分に供給することができないという不具合がある。
However, the seafood aquaculture device disclosed in Patent Document 1 has a problem that oxygen gas necessary for nitrification in a biological filtration tank cannot be sufficiently supplied.
そこで、本発明は、生物濾過装置における硝化に必要な酸素ガスを十分に供給することができる閉鎖循環濾過養殖システムを提供することを目的とする。
Therefore, an object of the present invention is to provide a closed circulation filtration aquaculture system that can sufficiently supply oxygen gas necessary for nitrification in a biological filtration apparatus.
請求項1記載の発明は、循環ポンプを具備して飼育水を循環させる循環流路に、魚介類を飼育する飼育水槽と、飼育水槽から排出される飼育水を生物濾過処理する生物濾過装置を配設した閉鎖循環濾過養殖システムであって、
飼育水槽の下流側でかつ生物濾過装置の上流側に位置する循環流路の部分に、酸素ガスをナノレベルの気泡となして飼育水に混合させることで気液混合水を生成する気液混合水生成装置を配設し、
気液混合水生成装置で生成されて生物濾過装置に供給される気液混合水には、過飽和状態に酸素ガスを溶存させて、生物濾過装置で生物濾過処理された後に飼育水槽に供給される気液混合水にも過飽和状態に酸素ガスが溶存されていることを特徴とする。 The invention described inclaim 1 includes a breeding water tank for breeding fish and shellfish in a circulation flow path that circulates breeding water with a circulation pump, and a biological filtration device that performs biological filtration treatment of the breeding water discharged from the breeding water tank. A closed circulation filtration aquaculture system,
Gas-liquid mixing that produces gas-liquid mixed water by mixing oxygen gas with nano-sized bubbles in the circulation channel located downstream of the breeding tank and upstream of the biological filtration device. A water generator is installed,
The gas-liquid mixed water generated by the gas-liquid mixed water generating device and supplied to the biological filtration device is dissolved in supersaturated oxygen gas, and is biologically filtered by the biological filtration device and then supplied to the breeding aquarium. The gas-liquid mixed water is also characterized in that oxygen gas is dissolved in a supersaturated state.
飼育水槽の下流側でかつ生物濾過装置の上流側に位置する循環流路の部分に、酸素ガスをナノレベルの気泡となして飼育水に混合させることで気液混合水を生成する気液混合水生成装置を配設し、
気液混合水生成装置で生成されて生物濾過装置に供給される気液混合水には、過飽和状態に酸素ガスを溶存させて、生物濾過装置で生物濾過処理された後に飼育水槽に供給される気液混合水にも過飽和状態に酸素ガスが溶存されていることを特徴とする。 The invention described in
Gas-liquid mixing that produces gas-liquid mixed water by mixing oxygen gas with nano-sized bubbles in the circulation channel located downstream of the breeding tank and upstream of the biological filtration device. A water generator is installed,
The gas-liquid mixed water generated by the gas-liquid mixed water generating device and supplied to the biological filtration device is dissolved in supersaturated oxygen gas, and is biologically filtered by the biological filtration device and then supplied to the breeding aquarium. The gas-liquid mixed water is also characterized in that oxygen gas is dissolved in a supersaturated state.
請求項1記載の発明では、過飽和状態に酸素ガスを溶存させた気液混合水が気液混合水生成装置により生成されて、その気液混合水が生物濾過装置に供給されるようにしているため、生物濾過装置における硝化に必要な酸素ガスを十分に供給することができる。この際、酸素ガスは、ナノレベルの気泡となしているため、生物濾過装置内において殆ど浮上することなく長時間滞留するとともに、気泡内から気液混合水中に溶解・拡散される。そのため、生物濾過処理された飼育水を別途に酸素溶解装置により処理して、飼育水の溶存酸素量(DO値)を高める必要がない。つまり、酸素溶解装置が不要となる。そのため、その分のコスト低減が図れる。
In the first aspect of the invention, gas-liquid mixed water in which oxygen gas is dissolved in a supersaturated state is generated by the gas-liquid mixed water generating device, and the gas-liquid mixed water is supplied to the biological filtration device. Therefore, the oxygen gas necessary for nitrification in the biological filtration device can be sufficiently supplied. At this time, since the oxygen gas is in the form of nano-level bubbles, the oxygen gas stays for a long time in the biological filtration device with almost no floating, and is dissolved and diffused from the bubbles into the gas-liquid mixed water. Therefore, it is not necessary to treat the breeding water that has been subjected to biological filtration separately with an oxygen dissolving device to increase the dissolved oxygen content (DO value) of the breeding water. That is, an oxygen dissolving device is not necessary. Therefore, the cost can be reduced accordingly.
請求項2記載の発明は、請求項1記載の発明であって、気液混合水生成装置の直上流側に位置する循環流路の部分に、物理濾過装置を配設していることを特徴とする。
Invention of Claim 2 is invention of Claim 1, Comprising: The physical filtration apparatus is arrange | positioned in the part of the circulation flow path located in the immediately upstream of a gas-liquid mixed water production | generation apparatus, It is characterized by the above-mentioned. And
請求項2記載の発明では、物理濾過装置により濾過処理された飼育水に、気液混合水生成装置によりナノレベルの気泡となした酸素ガスを混合させるようにしているため、循環流路中の飼育水に蓄積する炭酸ガスの指標となるpHの低下が生じない。そのため、炭酸ガスを除去するための脱気装置を設ける必要性がない。ここで、炭酸ガスを除去する理由は、飼育魚が呼吸によって炭酸ガスを排出し、その濃度が上昇すると飼育水のpHの低下や、飼育魚の成長の鈍化などが生じるからである。したがって、脱気装置を設ける必要性がない分のコスト低減が図れる。
In the invention described in claim 2, since the breeding water filtered by the physical filtration device is mixed with the oxygen gas that has become nano-level bubbles by the gas-liquid mixed water generation device, No decrease in pH, which is an indicator of carbon dioxide accumulated in breeding water. Therefore, there is no need to provide a deaeration device for removing carbon dioxide gas. Here, the reason for removing the carbon dioxide gas is that the breeding fish discharges carbon dioxide by respiration, and when the concentration increases, the pH of the breeding water decreases, the growth of the breeding fish slows down, and the like. Therefore, the cost can be reduced because there is no need to provide a deaeration device.
請求項3記載の発明は、請求項1又は2記載の発明であって、飼育水槽と、硝化細菌の培地として浸漬型濾材を用いた生物濾過装置に、それぞれ空気を圧送する送気装置を接続していることを特徴とする。
Invention of Claim 3 is invention of Claim 1 or 2, Comprising: The air supply apparatus which pumps air to a breeding aquarium and the biological filtration apparatus which used the immersion filter medium as a culture medium of nitrifying bacteria, respectively is connected It is characterized by that.
請求項3記載の発明では、送気装置により飼育水槽内に空気を圧送することにより、飼育水槽内で飼育水を循環させることができる。その結果、魚介類の飼育環境を良好となすことができる。また、送気装置により生物濾過装置に空気を圧送することにより、硝化細菌を活性化させることができる。その結果、硝化効果を高めることができる。
In the invention described in claim 3, the breeding water can be circulated in the breeding aquarium by pumping air into the breeding aquarium with the air supply device. As a result, the environment for raising seafood can be improved. Moreover, nitrifying bacteria can be activated by pressure-feeding air to the biological filtration device by the air supply device. As a result, the nitrification effect can be enhanced.
本発明によれば、生物濾過装置における硝化に必要な酸素ガスを十分に供給することができる閉鎖循環濾過養殖システムを提供することができる。
According to the present invention, it is possible to provide a closed circulation filtration aquaculture system that can sufficiently supply oxygen gas necessary for nitrification in a biological filtration apparatus.
以下に、本発明の実施形態について図面を参照しながら説明する。すなわち、図1に示すSyは、本実施形態に係る閉鎖循環濾過養殖システムである。ここでの閉鎖循環濾過養殖システムSy(以下、「養殖システムSy」と略称する。)は、蒸発と管理作業による飼育水の損失分だけを補給するものから、一日当たりの飼育水と同量の注水(換水)を行うものまでを含む広い概念であるが、本実施形態の養殖システムSyでは、蒸発と管理作業による飼育水の損失分だけを補給するだけで養殖を行うようにしている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. That is, Sy shown in FIG. 1 is a closed circulation filtration aquaculture system according to this embodiment. The closed circulation filtration aquaculture system Sy (hereinafter abbreviated as “aquaculture system Sy”) replenishes only the amount of breeding water lost due to evaporation and management work, so the same amount of breeding water per day. Although it is a wide concept including even water injection (replacement), in the aquaculture system Sy of this embodiment, aquaculture is performed only by replenishing the loss of breeding water due to evaporation and management work.
[養殖システムの構成の説明]
養殖システムSyは、図1に示すように、循環流路Cに、飼育水槽Faと、沈澱槽Dpと、物理濾過装置Pfと、気液混合水生成装置(以下、「生成装置」と略称する。)Aと、生物濾過装置Bfと、調温装置Taと、循環ポンプPcと、をこの順で配設して構成している。 [Description of configuration of aquaculture system]
As shown in FIG. 1, the aquaculture system Sy includes a breeding water tank Fa, a sedimentation tank Dp, a physical filtration device Pf, and a gas-liquid mixed water generation device (hereinafter, abbreviated as “generation device”). .) A, the biological filtration device Bf, the temperature control device Ta, and the circulation pump Pc are arranged in this order.
養殖システムSyは、図1に示すように、循環流路Cに、飼育水槽Faと、沈澱槽Dpと、物理濾過装置Pfと、気液混合水生成装置(以下、「生成装置」と略称する。)Aと、生物濾過装置Bfと、調温装置Taと、循環ポンプPcと、をこの順で配設して構成している。 [Description of configuration of aquaculture system]
As shown in FIG. 1, the aquaculture system Sy includes a breeding water tank Fa, a sedimentation tank Dp, a physical filtration device Pf, and a gas-liquid mixed water generation device (hereinafter, abbreviated as “generation device”). .) A, the biological filtration device Bf, the temperature control device Ta, and the circulation pump Pc are arranged in this order.
循環流路Cは、閉鎖する環状の流路を形成して、循環ポンプPcにより飼育水と酸素ガスと混合した後述する気液混合水Rmを循環させるようにしている。
The circulation channel C forms a closed annular channel and circulates a gas-liquid mixed water Rm, which will be described later, mixed with breeding water and oxygen gas by the circulation pump Pc.
飼育水槽Faは、魚介類を飼育ないしは養殖するために、プラスチックシート等の防水性のシートを上面開口の箱形に張設して形成した水槽であり、循環流路Cの上流側から流入するようにした飼育水ないしは気液混合水Rmを貯溜するとともに、その一部を循環流路Cの下流側に流出させるようにしている。D1は第1排水路であり、第1排水路D1を通して、飼育水槽Faの底部を掃除した際の魚介類の糞や残餌や排水等を系外の所定箇所へ排出可能としている。
The rearing water tank Fa is a water tank formed by stretching a waterproof sheet such as a plastic sheet in a box shape with an upper surface opening for rearing or aquaculture of seafood, and flows in from the upstream side of the circulation channel C. The breeding water or the gas-liquid mixed water Rm is stored and a part of the breeding water flows out to the downstream side of the circulation channel C. D1 is a first drainage channel, and it is possible to discharge feces, residual food, drainage, etc. of seafood when the bottom of the rearing tank Fa is cleaned through the first drainage channel D1 to a predetermined location outside the system.
沈澱槽Dpは、飼育水槽Faから流出される飼育水ないしは気液混合水Rmを導入して、飼育水ないしは気液混合水Rmよりも比重の大きい魚類の糞と残餌を沈降させて捕集し、残餌等が捕集・分離された処理水を循環流路Cの下流側に流出させるようにしている。
The settling tank Dp introduces breeding water or gas-liquid mixed water Rm flowing out from the breeding tank Fa, and sinks and collects fish dung and residual feed having a larger specific gravity than the breeding water or gas-liquid mixed water Rm. In addition, the treated water from which the remaining bait is collected and separated is caused to flow out downstream of the circulation channel C.
物理濾過装置Pfは、沈澱槽Dpから流出された処理水を濾過処理するものである。物理濾過装置Pfは、プラスチック製の網または多孔体若しくは金網、ガラスフィルター等のスクリーン状のもので構成され、その目詰まりを防ぐために逆洗水により逆洗浄可能としている。逆洗水は処理水を循環再利用するようにしている。スクリーンの洗浄は、処理水の流れ速度以上の速さで洗浄水を常時間欠的に圧力噴射して行う。物理濾過装置Pf内のスクリーンは交換可能としている。D2は第2排水路であり、第2排水路D2を通して、物理濾過処理物を系外の所定箇所へ排出可能としている。
The physical filtration device Pf filters the treated water that has flowed out of the precipitation tank Dp. The physical filtration device Pf is made of a plastic net or a screen-like material such as a porous body, a metal net, or a glass filter, and can be backwashed with backwashing water to prevent clogging. In the backwash water, treated water is recycled and reused. Cleaning of the screen is performed by constantly spraying the cleaning water intermittently at a speed higher than the flow rate of the treated water. The screen in the physical filtration device Pf is replaceable. D2 is a second drainage channel, and the physical filtered product can be discharged to a predetermined location outside the system through the second drainage channel D2.
生成装置Aは、物理濾過装置Pfから流出された濾過処理水と、酸素ガスボンベや酸素供給装置等の酸素供給源Ox(図2参照)から導入した酸素ガス(純酸素ないしは大部分が酸素からなるガス)と、を混合して気液混合水Rmを生成するものである。そして、生成装置Aは、酸素ガスの90%以上をナノレベルの気泡(外径が1μm以下、好ましくは、100nm以下の気泡;以下「ナノ気泡」とも言う。)に微細化するとともに、飼育水(具体的には、物理濾過処理水)に均一化させて混合可能としている。生成装置Aにより生成される気液混合水Rmには、過飽和状態に酸素ガスを溶存させるようにしている。すなわち、気液混合水Rmの溶存酸素飽和度が100%以上の過飽和状態(例えば、140%)となるようにしている。ここでの溶存酸素飽和度は、溶存酸素量を飽和溶存酸素量で除して、その除した値に100を乗じた値(%)である。生成装置Aから流出させる際の気液混合水Rmの溶存酸素飽和度は、生成装置Aへの酸素ガスの導入量を、飼育水槽Fa内で飼育する魚介類の種類や大きさや個体数等に応じて適宜調整することにより調整することができる。生成装置Aの具体的な構成は後述する。
The generation device A includes filtered water that has flowed out from the physical filtration device Pf and oxygen gas (pure oxygen or mostly oxygen) introduced from an oxygen supply source Ox (see FIG. 2) such as an oxygen gas cylinder or an oxygen supply device. Gas) to produce gas-liquid mixed water Rm. The generation apparatus A refines 90% or more of the oxygen gas into nano-level bubbles (outer diameter of 1 μm or less, preferably 100 nm or less; hereinafter also referred to as “nano bubbles”) and breeding water (Specifically, it is made uniform by mixing with physical filtration treated water). In the gas-liquid mixed water Rm generated by the generator A, oxygen gas is dissolved in a supersaturated state. That is, the supersaturated state (for example, 140%) in which the dissolved oxygen saturation of the gas-liquid mixed water Rm is 100% or more is set. The dissolved oxygen saturation here is a value (%) obtained by dividing the dissolved oxygen amount by the saturated dissolved oxygen amount and multiplying the divided value by 100. The dissolved oxygen saturation of the gas-liquid mixed water Rm when flowing out of the generator A is determined by the amount of oxygen gas introduced into the generator A according to the type, size, number, etc. of seafood to be bred in the breeding aquarium Fa. It can adjust by adjusting suitably according to it. A specific configuration of the generation device A will be described later.
生物濾過装置Bfは、生成装置Aから流出されるナノ気泡含有の気液混合水Rmを導入して、気液混合水Rm中に含まれる毒性の高い魚介類の排泄物のアンモニアを、好気性バクテリアである硝化細菌の働きにより、亜硝酸を経由して毒性の低い硝酸に酸化させる生物濾過処理を行うようにしている。硝化細菌の培地としては浸漬型濾材を用いている。生物濾過処理を行う生物濾過装置Bfの容器の大きさおよび必要濾材量は、飼育水槽Faで飼育される魚介類の大きさと個体数により変化するため、アンモニアなどの窒素排泄量と濾材のアンモニア酸化速度に基づいて適宜設計する。また、生物濾過装置Bfで生物濾過処理された後に飼育水槽Faに供給(還流)される気液混合水Rmにも過飽和状態(例えば、120%)に酸素ガスが溶存されているようにしている。飼育水槽Faに還流される気液混合水Rmの溶存酸素飽和度の調整は、予め生成装置Aから生物濾過装置Bfに導入される際の気液混合水Rmの溶存酸素飽和度を、飼育水槽Fa内で飼育する魚介類の種類や大きさや個体数等に応じて適宜調整することにより行うことができる。
The biofiltration device Bf introduces the nanobubble-containing gas-liquid mixed water Rm that flows out from the generating device A, and converts the highly toxic seafood excreta contained in the gas-liquid mixed water Rm into an aerobic environment. By the action of nitrifying bacteria, which are bacteria, biofiltration is performed by oxidizing to nitric acid with low toxicity via nitrite. As a medium for nitrifying bacteria, an immersion filter medium is used. Since the size of the container of the biological filtration device Bf that performs the biological filtration process and the required amount of filter medium vary depending on the size and number of fish and shellfish bred in the breeding aquarium Fa, the amount of nitrogen excreted from ammonia and the like and the ammonia oxidation of the filter medium Design appropriately based on speed. Further, oxygen gas is dissolved in a supersaturated state (for example, 120%) also in the gas-liquid mixed water Rm supplied (refluxed) to the breeding aquarium Fa after being subjected to biological filtration by the biological filtration device Bf. . Adjustment of the dissolved oxygen saturation of the gas-liquid mixed water Rm that is refluxed to the breeding aquarium Fa is carried out by adjusting the dissolved oxygen saturation of the gas-liquid mixed water Rm when introduced from the generator A to the biological filtration device Bf in advance. It can be carried out by appropriately adjusting according to the type, size, number of individuals, etc. of the seafood bred in Fa.
調温装置Taは、生物濾過装置Bfから流出される気液混合水Rmを加温ないしは冷却することで、飼育水槽Faに貯溜される気液混合水Rmの水温を一定の範囲(例えば、15~25℃、好ましくは、16℃)に維持するようにしている。調温装置Taは、系外である井戸等の取水源Wsに接続して、取水源Wsから導入した調温水により熱交換することで気液混合水Rmの水温を適宜調節可能としている。Eは取水設備であり、取水設備Eは、地下水を取水する取水ポンプや取水を濾過する取水濾過器や取水を殺菌する殺菌装置等を備えている。
The temperature control device Ta heats or cools the gas-liquid mixed water Rm flowing out from the biological filtration device Bf, thereby controlling the water temperature of the gas-liquid mixed water Rm stored in the breeding aquarium Fa within a certain range (for example, 15 ˜25 ° C., preferably 16 ° C.). The temperature control device Ta is connected to a water intake source Ws such as a well outside the system, and heat exchange is performed with temperature control water introduced from the water intake source Ws so that the water temperature of the gas-liquid mixed water Rm can be appropriately adjusted. E is a water intake facility, and the water intake facility E includes a water intake pump that takes in groundwater, a water intake filter that filters water intake, a sterilizer that sterilizes water intake, and the like.
飼育水槽Faと生物濾過装置Bfには、それぞれ送気パイプPaを介して空気を圧送するブロワーポンプ等の送気装置Asを接続している。
An air supply device As such as a blower pump that pumps air through an air supply pipe Pa is connected to the breeding water tank Fa and the biological filtration device Bf.
このように構成した養殖システムSyでは、過飽和状態に酸素ガスを溶存させた気液混合水Rmが生成装置Aにより生成されて、その気液混合水Rmが生物濾過装置Bfに供給されるようにしているため、生物濾過装置Bfにおける硝化に必要な酸素ガスを十分に供給することができる。この際、酸素ガスは、ナノ気泡となっているため、生物濾過装置Bf内において殆ど浮上することなく長時間滞留するとともに、気泡内から気液混合水Rm中に酸素が溶解・拡散される。そのため、生物濾過処理された飼育水を別途に酸素溶解装置により処理して、飼育水の溶存酸素量(DO値)を高める必要がない。つまり、酸素溶解装置が不要となる。そのため、その分のコスト低減が図れる。
In the aquaculture system Sy configured as described above, the gas-liquid mixed water Rm in which oxygen gas is dissolved in a supersaturated state is generated by the generating device A, and the gas-liquid mixed water Rm is supplied to the biological filtration device Bf. Therefore, oxygen gas necessary for nitrification in the biological filtration device Bf can be sufficiently supplied. At this time, since the oxygen gas is in the form of nanobubbles, the oxygen gas stays for a long time in the biological filtration device Bf, and oxygen is dissolved and diffused from the bubbles into the gas-liquid mixed water Rm. Therefore, it is not necessary to treat the breeding water that has been subjected to biological filtration separately with an oxygen dissolving device to increase the dissolved oxygen content (DO value) of the breeding water. That is, an oxygen dissolving device is not necessary. Therefore, the cost can be reduced accordingly.
物理濾過装置Pfにより物理濾過された濾過処理水に、生成装置Aによりナノ気泡となした酸素ガスを混合させるようにしているため、循環流路C中の飼育水に蓄積する炭酸ガスの指標となるpHの低下が生じない。そのため、炭酸ガスを除去するための脱気装置を設ける必要性がない。ここで、炭酸ガスを除去する理由は、飼育魚が呼吸によって炭酸ガスを排出し、その濃度が上昇すると飼育水のpHの低下や、飼育魚の成長の鈍化などが生じるからである。したがって、本実施形態では、脱気装置を設ける必要性がない分のコスト低減が図れる。
Since the filtered water that has been physically filtered by the physical filtration device Pf is mixed with the oxygen gas that has become nanobubbles by the generation device A, the carbon dioxide index accumulated in the breeding water in the circulation channel C No decrease in pH occurs. Therefore, there is no need to provide a deaeration device for removing carbon dioxide gas. Here, the reason for removing the carbon dioxide gas is that the breeding fish discharges carbon dioxide by respiration, and when the concentration increases, the pH of the breeding water decreases, the growth of the breeding fish slows down, and the like. Therefore, in this embodiment, the cost can be reduced because there is no need to provide a deaeration device.
送気装置Asにより飼育水槽Fa内に空気を圧送することにより、飼育水槽Fa内で飼育水ないしは気液混合水Rmを循環させることができる。その結果、魚介類の飼育環境を良好となすことができる。また、送気装置Asにより生物濾過装置Bfに空気を圧送することにより、硝化細菌を活性化させることができる。その結果、硝化効果を高めることができる。
By feeding air into the breeding water tank Fa by the air supply device As, the breeding water or the gas-liquid mixed water Rm can be circulated in the breeding water tank Fa. As a result, the environment for raising seafood can be improved. Further, nitrifying bacteria can be activated by pumping air to the biological filtration device Bf by the air supply device As. As a result, the nitrification effect can be enhanced.
[生成装置の構成の具体的な説明]
以下に、第1~3実施形態に係る生成装置Aの構成を、図面を参照しながら具体的に説明する。 [Specific description of configuration of generation apparatus]
The configuration of the generation apparatus A according to the first to third embodiments will be specifically described below with reference to the drawings.
以下に、第1~3実施形態に係る生成装置Aの構成を、図面を参照しながら具体的に説明する。 [Specific description of configuration of generation apparatus]
The configuration of the generation apparatus A according to the first to third embodiments will be specifically described below with reference to the drawings.
<第1実施形態に係る生成装置の説明>
第1実施形態としての生成装置Aは、図2に示すように、上面開口箱型のタンクT内に物理濾過装置Pfから導入した飼育水Wを収容し、飼育水W中に気液混合装置Mを浸漬して構成している。気液混合装置Mは、酸素供給源Oxに接続して、酸素供給源Oxから取り入れた酸素ガスと飼育水Wを混合して気液混合水Rmを生成可能としている。なお、飼育水Wは、生成装置Aにより生成された気液混合水Rmとなって循環流路C中を循環されて、タンクT内には気液混合水Rmが貯溜される。 <Description of Generation Device According to First Embodiment>
As shown in FIG. 2, the generation device A as the first embodiment accommodates the breeding water W introduced from the physical filtration device Pf in a top-opened box-type tank T, and the gas-liquid mixing device in the breeding water W M is immersed in the structure. The gas-liquid mixing device M is connected to the oxygen supply source Ox, and can mix the oxygen gas taken from the oxygen supply source Ox and the breeding water W to generate the gas-liquid mixed water Rm. The breeding water W is gas-liquid mixed water Rm generated by the generator A and circulated in the circulation channel C, and the gas-liquid mixed water Rm is stored in the tank T.
第1実施形態としての生成装置Aは、図2に示すように、上面開口箱型のタンクT内に物理濾過装置Pfから導入した飼育水Wを収容し、飼育水W中に気液混合装置Mを浸漬して構成している。気液混合装置Mは、酸素供給源Oxに接続して、酸素供給源Oxから取り入れた酸素ガスと飼育水Wを混合して気液混合水Rmを生成可能としている。なお、飼育水Wは、生成装置Aにより生成された気液混合水Rmとなって循環流路C中を循環されて、タンクT内には気液混合水Rmが貯溜される。 <Description of Generation Device According to First Embodiment>
As shown in FIG. 2, the generation device A as the first embodiment accommodates the breeding water W introduced from the physical filtration device Pf in a top-opened box-type tank T, and the gas-liquid mixing device in the breeding water W M is immersed in the structure. The gas-liquid mixing device M is connected to the oxygen supply source Ox, and can mix the oxygen gas taken from the oxygen supply source Ox and the breeding water W to generate the gas-liquid mixed water Rm. The breeding water W is gas-liquid mixed water Rm generated by the generator A and circulated in the circulation channel C, and the gas-liquid mixed water Rm is stored in the tank T.
(気液混合装置の概略的説明)
気液混合装置Mは、図3~図6に示すように、収容ケース10内に、飼育水W中に浸漬して使用する水中ポンプPと、酸素供給源Oxから供給された酸素ガスをナノレベルの微細気泡となして液体中に散気する微細気泡生成手段20と、微細気泡をさらに微細化するとともに液体と均一に混合する第1実施形態としての気液混合手段30と、を収容して構成している。気液混合手段30は、タンクT内の飼育水Wを、迅速かつ簡単に酸素ガスを成分とするナノバブルを含むナノバブル含有水となすことができる。 (Schematic description of gas-liquid mixing device)
As shown in FIGS. 3 to 6, the gas-liquid mixing apparatus M nano-scales the oxygen gas supplied from the submersible pump P and the oxygen supply source Ox used by being immersed in the breeding water W in thehousing case 10. A fine bubble generating means 20 that becomes a fine bubble of a level and diffuses in the liquid, and a gas-liquid mixing means 30 as a first embodiment that further refines the fine bubble and uniformly mixes with the liquid. Is configured. The gas-liquid mixing means 30 can make the breeding water W in the tank T into nanobubble-containing water containing nanobubbles containing oxygen gas as a component quickly and easily.
気液混合装置Mは、図3~図6に示すように、収容ケース10内に、飼育水W中に浸漬して使用する水中ポンプPと、酸素供給源Oxから供給された酸素ガスをナノレベルの微細気泡となして液体中に散気する微細気泡生成手段20と、微細気泡をさらに微細化するとともに液体と均一に混合する第1実施形態としての気液混合手段30と、を収容して構成している。気液混合手段30は、タンクT内の飼育水Wを、迅速かつ簡単に酸素ガスを成分とするナノバブルを含むナノバブル含有水となすことができる。 (Schematic description of gas-liquid mixing device)
As shown in FIGS. 3 to 6, the gas-liquid mixing apparatus M nano-scales the oxygen gas supplied from the submersible pump P and the oxygen supply source Ox used by being immersed in the breeding water W in the
(収容ケースの説明)
収容ケース10は、図3~図6に示すように、上面開口の四角形扁平箱型に形成した底部ケース形成体11に、下面開口の四角形箱型に形成した被覆ケース形成体12を連結して形成している。被覆ケース形成体12の周壁を形成する前・後端壁12a,12bと左・右側壁12c,12dには、それぞれ液体が流入する液体流入孔13を多数形成している。被覆ケース形成体12の天井部12eには、筒状のケーブル挿通部14とパイプ接続部15を、それぞれ上下方向に貫通状に設けている。ケーブル挿通部14は、送電用ケーブル6を挿通するためのケーブル挿通孔を有している。また、パイプ接続部15は、外部気体供給パイプ7と内部気体供給パイプ22を連通連結するためのパイプ連通路を有している。14aはケーブル挿通部固定片、15aはパイプ接続部固定片である。 (Description of the storage case)
As shown in FIGS. 3 to 6, thestorage case 10 is formed by connecting a bottom case forming body 11 formed in a rectangular flat box shape with an upper opening to a covering case forming body 12 formed in a rectangular box shape with a lower opening. Forming. The front and rear end walls 12a and 12b and the left and right side walls 12c and 12d forming the peripheral wall of the covering case forming body 12 are formed with a large number of liquid inflow holes 13 through which liquid flows. A cylindrical cable insertion portion 14 and a pipe connection portion 15 are provided in the ceiling portion 12e of the covering case forming body 12 so as to penetrate in the vertical direction. The cable insertion part 14 has a cable insertion hole for inserting the power transmission cable 6. Further, the pipe connection portion 15 has a pipe communication path for connecting the external gas supply pipe 7 and the internal gas supply pipe 22 in communication. 14a is a cable insertion part fixing piece, and 15a is a pipe connection part fixing piece.
収容ケース10は、図3~図6に示すように、上面開口の四角形扁平箱型に形成した底部ケース形成体11に、下面開口の四角形箱型に形成した被覆ケース形成体12を連結して形成している。被覆ケース形成体12の周壁を形成する前・後端壁12a,12bと左・右側壁12c,12dには、それぞれ液体が流入する液体流入孔13を多数形成している。被覆ケース形成体12の天井部12eには、筒状のケーブル挿通部14とパイプ接続部15を、それぞれ上下方向に貫通状に設けている。ケーブル挿通部14は、送電用ケーブル6を挿通するためのケーブル挿通孔を有している。また、パイプ接続部15は、外部気体供給パイプ7と内部気体供給パイプ22を連通連結するためのパイプ連通路を有している。14aはケーブル挿通部固定片、15aはパイプ接続部固定片である。 (Description of the storage case)
As shown in FIGS. 3 to 6, the
水中ポンプPは、図示しないモータを収容したモータ収容部1の下方に、図示しないインペラを収容したインペラ収容部2を連設し、インペラ収容部2の下端に脚部3を垂設して構成している。インペラ収容部2は、扁平容器状に形成して、底部に流体(本実施形態では気泡混じりの液体)を吸入する吸入口部4を下方へ向けて円形開口状に形成する一方、モータ収容部1よりも前方へ膨出状に形成した膨出部2aの上面部に流体を吐出する吐出口部5を上方へ向けて円形開口状に形成している。収容ケース10内の水中ポンプPのモータには、収容ケース10外からケーブル挿通部14に挿通した送電用ケーブル6を接続している。水中ポンプPの脚部3は、固定ブラケット8を介して底部ケース形成体11に立設状に固定している。9は角部保護体、12fは把手であり、把手12fを把持することで気液混合装置Mの搬入・搬出等の移動作業が楽に行える。Esは、送電用ケーブル6を通して水中ポンプPに電気を供給する電源である。そして、水中ポンプPは、モータによりインペラを回転させることで、吸入口部4から流体を吸入するとともに、吐出口部5から流体を吐出可能としている。
The submersible pump P is configured such that an impeller accommodating portion 2 that accommodates an impeller (not shown) is continuously provided below a motor accommodating portion 1 that accommodates a motor (not shown), and a leg portion 3 is suspended from the lower end of the impeller accommodating portion 2. is doing. The impeller accommodating portion 2 is formed in a flat container shape, and a suction opening portion 4 for sucking fluid (liquid mixed with bubbles in the present embodiment) is formed in a circular opening shape downward while a motor accommodating portion is formed. A discharge port portion 5 for discharging a fluid is formed in a circular opening shape on the upper surface portion of a bulge portion 2a formed in a bulge shape forward of 1 and upward. To the motor of the submersible pump P in the housing case 10, a power transmission cable 6 inserted from the outside of the housing case 10 into the cable insertion portion 14 is connected. The leg 3 of the submersible pump P is fixed to the bottom case forming body 11 in a standing manner via a fixing bracket 8. Reference numeral 9 is a corner protector, and 12f is a handle. By gripping the handle 12f, moving work such as loading and unloading of the gas-liquid mixing device M can be performed easily. Es is a power source that supplies electricity to the submersible pump P through the power transmission cable 6. The submersible pump P rotates the impeller with a motor, thereby sucking fluid from the suction port 4 and discharging fluid from the discharge port 5.
(微細気泡生成手段の説明)
微細気泡生成手段20は、図4~図6に示すように、散気部21と、散気部21に連通連結した内部気体供給パイプ22と、を具備している。散気部21は、セラミックス等により多孔質状となした散気体21aを筒状に形成して、散気体21aの両端部に支持片21b,21bを設けている。一方の支持片21bの中央部には筒状の接続部21cを突設しており、接続部21cの内側端部は散気体21aの内部空間と連通させるとともに、接続部21cの外側端部に内部気体供給パイプ22の一端を外嵌して連通連結している。 (Explanation of fine bubble generation means)
As shown in FIGS. 4 to 6, the fine bubble generating means 20 includes anair diffuser 21 and an internal gas supply pipe 22 that is connected to the air diffuser 21 in communication therewith. The air diffuser 21 is formed of a porous diffused gas 21a made of ceramic or the like in a cylindrical shape, and support pieces 21b and 21b are provided at both ends of the diffused gas 21a. A cylindrical connecting part 21c is projected from the center of one support piece 21b. The inner end of the connecting part 21c communicates with the internal space of the diffused gas 21a and is connected to the outer end of the connecting part 21c. One end of the internal gas supply pipe 22 is externally fitted and connected.
微細気泡生成手段20は、図4~図6に示すように、散気部21と、散気部21に連通連結した内部気体供給パイプ22と、を具備している。散気部21は、セラミックス等により多孔質状となした散気体21aを筒状に形成して、散気体21aの両端部に支持片21b,21bを設けている。一方の支持片21bの中央部には筒状の接続部21cを突設しており、接続部21cの内側端部は散気体21aの内部空間と連通させるとともに、接続部21cの外側端部に内部気体供給パイプ22の一端を外嵌して連通連結している。 (Explanation of fine bubble generation means)
As shown in FIGS. 4 to 6, the fine bubble generating means 20 includes an
本実施形態では、底部ケース形成体11上に、水中ポンプPの脚部3の左右側方に位置させて、左右一対の散気部21、21を配設している。両散気部21、21の接続部21c,21cは、前方へ向けて突出させている。内部気体供給パイプ22は、被覆ケース形成体12の天井部12eに設けたパイプ接続部15の下端部に基端部を接続しており、先端部には、二叉状に分岐させた二叉分岐部22a,22aを形成して、接続部21c,21cに各二叉分岐部22a,22aを外嵌して連通連結している。パイプ接続部15の上端部には、外部気体供給パイプ7の先端部を接続し、外部気体供給パイプ7の基端部は酸素供給源Oxに接続している。そして、酸素供給源Oxから酸素が、外部気体供給パイプ7→パイプ接続部15→内部気体供給パイプ22→二叉分岐部22a,22a→接続部21c,21c→散気体21a,21aに供給され、多孔質性の散気体21a,21aの表面を通して飼育水W中に散気させるようにしている。この際、各散気体21a,21aから散気される酸素ガスは、マイクロレベルに微細化されるようにしている。なお、散気部21としては、例えば、(有)ニューマリンズ製の「エアーストン」(商品名)を使用することができる。
In the present embodiment, a pair of left and right aeration parts 21 and 21 are disposed on the bottom case forming body 11 so as to be positioned on the left and right sides of the leg part 3 of the submersible pump P. The connection parts 21c and 21c of both the aeration parts 21 and 21 are projected forward. The internal gas supply pipe 22 has a base end connected to the lower end of the pipe connecting portion 15 provided in the ceiling portion 12e of the covering case forming body 12, and a bifurcated bifurcated branch at the tip. Branch portions 22a and 22a are formed, and the bifurcated branch portions 22a and 22a are externally fitted and connected to the connection portions 21c and 21c. A distal end portion of the external gas supply pipe 7 is connected to an upper end portion of the pipe connection portion 15, and a proximal end portion of the external gas supply pipe 7 is connected to the oxygen supply source Ox. And oxygen is supplied from the oxygen supply source Ox to the external gas supply pipe 7 → the pipe connection portion 15 → the internal gas supply pipe 22 → the bifurcated branch portions 22a and 22a → the connection portions 21c and 21c → the diffused gas 21a and 21a. Air is diffused into the breeding water W through the surfaces of the porous diffused gas 21a and 21a. At this time, the oxygen gas diffused from each of the diffused gases 21a and 21a is refined to a micro level. For example, “Airstone” (trade name) manufactured by New Marines can be used as the air diffuser 21.
(第1実施形態としての気液混合手段の説明)
第1実施形態としての気液混合手段30は、図4~図6に示すように、水中ポンプPの吐出口部5に起立状に連通連結している。気液混合手段30は、図8に示すように、吐出口部5と連通する気液供給路31と、気液供給路31に連通して酸素ガスと飼育水Wを蛇行させながら流動させるとともに、飼育水W中に酸素ガスを微細化して分散・混合する分散・混合流路32と、を具備している。分散・混合流路32は、気液供給路31の軸線方向と周方向に間隔をあけて多数連通して、各分散・混合流路32の終端部から気泡混じりの飼育水W(気液混合水Rm)を流出させるようにしている。 (Description of Gas-Liquid Mixing Unit as First Embodiment)
The gas-liquid mixing means 30 according to the first embodiment is connected in an upright manner to thedischarge port portion 5 of the submersible pump P as shown in FIGS. As shown in FIG. 8, the gas-liquid mixing means 30 communicates with the gas-liquid supply path 31 that communicates with the discharge port portion 5, and flows through the gas-liquid supply path 31 while meandering the oxygen gas and the breeding water W. And a dispersion / mixing flow path 32 for finely dispersing and mixing oxygen gas in the breeding water W. A large number of dispersion / mixing flow paths 32 communicate with each other at intervals in the axial direction and the circumferential direction of the gas-liquid supply path 31, and breeding water W (gas-liquid mixing) mixed with bubbles from the end of each dispersion / mixing flow path 32. Water Rm) is allowed to flow out.
第1実施形態としての気液混合手段30は、図4~図6に示すように、水中ポンプPの吐出口部5に起立状に連通連結している。気液混合手段30は、図8に示すように、吐出口部5と連通する気液供給路31と、気液供給路31に連通して酸素ガスと飼育水Wを蛇行させながら流動させるとともに、飼育水W中に酸素ガスを微細化して分散・混合する分散・混合流路32と、を具備している。分散・混合流路32は、気液供給路31の軸線方向と周方向に間隔をあけて多数連通して、各分散・混合流路32の終端部から気泡混じりの飼育水W(気液混合水Rm)を流出させるようにしている。 (Description of Gas-Liquid Mixing Unit as First Embodiment)
The gas-liquid mixing means 30 according to the first embodiment is connected in an upright manner to the
すなわち、気液供給路31は、気液供給路形成ケース33内に形成されるようにしており、気液供給路形成ケース33は、図5~図7に示すように、正八角形筒状に形成した周壁34と、周壁34の上端面に張設して形成した上端面部35と、周壁34の下端面に張設して形成した下端面部36と、から形成している。下端面部36は、周壁34よりも外方へ張り出した円板状に形成している。下端面部36の後部には、周壁34内に位置させて導入口37を形成するとともに、導入口37の周縁部に位置する下端面部36の下面には、導入口37よりも大径で円筒状の導入案内体38を垂設して、導入案内体38内と導入口37を上下方向に連通させている。導入案内体38は、吐出口部5に嵌入させて、インペラ収容部2に気液供給路形成ケース33を連通連結することができる。この際、インペラ収容部2の吐出口部5には、導入案内体38及び導入口37を介して気液供給路形成ケース33内の気液供給路31が連通している。
That is, the gas-liquid supply path 31 is formed in the gas-liquid supply path forming case 33, and the gas-liquid supply path forming case 33 has a regular octagonal cylindrical shape as shown in FIGS. The peripheral wall 34 is formed, an upper end surface portion 35 formed to be stretched on the upper end surface of the peripheral wall 34, and a lower end surface portion 36 formed to be stretched on the lower end surface of the peripheral wall 34. The lower end surface portion 36 is formed in a disk shape projecting outward from the peripheral wall 34. An introduction port 37 is formed in the rear portion of the lower end surface portion 36 so as to be positioned in the peripheral wall 34, and the lower surface of the lower end surface portion 36 located at the peripheral portion of the introduction port 37 is larger in diameter than the introduction port 37 and cylindrical. The introduction guide body 38 is suspended and the inside of the introduction guide body 38 and the introduction port 37 are communicated in the vertical direction. The introduction guide body 38 can be fitted into the discharge port portion 5 to connect the gas-liquid supply path forming case 33 to the impeller housing portion 2 in communication. At this time, the gas-liquid supply path 31 in the gas-liquid supply path forming case 33 communicates with the discharge port portion 5 of the impeller accommodating portion 2 via the introduction guide body 38 and the introduction port 37.
気液供給路形成ケース33には、図7及び図8に示すように、多数個の混合ユニット40を取り付けている。すなわち、気液供給路形成ケース33の周壁34は、前記したように正八角形筒状に形成しており、周壁34の八つの各平面には上下方向に間隔をあけて複数(本実施形態では4個)の流路連通孔39を円形開口状に形成している。周壁34の八つの各平面には、各流路連通孔39を閉蓋するように混合ユニット40を取り付けている。
As shown in FIGS. 7 and 8, a large number of mixing units 40 are attached to the gas-liquid supply path forming case 33. In other words, the peripheral wall 34 of the gas-liquid supply path forming case 33 is formed in a regular octagonal cylindrical shape as described above, and a plurality of (in this embodiment) the eight planes of the peripheral wall 34 are spaced apart in the vertical direction. Four) flow passage holes 39 are formed in a circular opening shape. A mixing unit 40 is attached to each of the eight planes of the peripheral wall 34 so as to close the respective channel communication holes 39.
混合ユニット40は、図11~図13に示すように、略同形の円板状に形成した第1エレメント41と第2エレメント42を対向状に配置して、両エレメント41,42の対面同士間に分散・混合流路32を形成している。
As shown in FIGS. 11 to 13, the mixing unit 40 has a first element 41 and a second element 42 that are formed in a substantially identical disk shape and are opposed to each other. Dispersion / mixing flow path 32 is formed in this.
分散・混合流路32は、両エレメント41,42の始端縁部である中央部間を、第1エレメント41の中央部に形成した流入口43を介して前記流路連通孔39と連通させる一方、両エレメント41,42の終端縁部である外周縁部間を半径方向に開口する流出口44となしている。両エレメント41,42の各対向面には、同一の深さと大きさを有する多数の凹部45,46の群を流入口43側から流出口44側に向けて整然と隙間無く形成している。そして、対向する凹部45,46同士は、相互に連通するように位置を違えて配置して、対向する各凹部45,46間には、気泡混じりの液体が蛇行しながら合流と分流を繰り返しながら流入口43側から流出口44側に向けて流動するように形成している。
The dispersion / mixing flow path 32 communicates between the flow path communication holes 39 between the central portions, which are the starting edge portions of both elements 41 and 42, via an inflow port 43 formed in the central portion of the first element 41. The outflow ports 44 that open radially between the outer peripheral edges, which are the end edges of the elements 41 and 42, are formed. A group of a large number of recesses 45 and 46 having the same depth and size are formed on the opposing surfaces of the elements 41 and 42 in an orderly manner without any gaps from the inlet 43 side toward the outlet 44 side. The opposing recesses 45 and 46 are arranged at different positions so as to communicate with each other, and between the opposing recesses 45 and 46, the liquid mixed with bubbles repeats merging and splitting while meandering. It forms so that it may flow toward the outflow port 44 side from the inflow port 43 side.
気液供給路形成ケース33の下端面部36上には、図7及び図10に示すように、周壁34と上端面部35を被覆する混合気液導出路形成ケース50を載置・連結して、気液供給路形成ケース33の外表面と混合気液導出路形成ケース50の内表面との間に混合気液導出路51を形成している。混合気液導出路形成ケース50は、円筒状の周壁形成片52と、周壁形成片52の上端縁部に連設した天井形成片53と、周壁形成片52の前上部に開口した円形状の導出口54の周縁部から前方へ向けて突設した円筒状の導出案内体55と、を具備している。導出案内体55は、図3~図6に示すように、収容ケース10の前端壁12aの上部に開口した円形状の開口部12gから前方へ突出させている。周壁形成片52の下端内周縁部には、その周縁に沿わせて内方へ膨出する膨出部56を形成し、膨出部56に上下方向に軸線を向けた多数の雌ねじ穴56aを周方向に間隔をあけて形成している。36aは、下端面部36の外周部に雌ねじ穴56aに整合させて形成した多数のビス孔であり、雌ねじ穴56aにビス孔36aに通したビス57を螺着することで、下端面部36に混合気液導出路形成ケース50を連結している。
On the lower end surface portion 36 of the gas / liquid supply path forming case 33, as shown in FIGS. 7 and 10, a mixed gas / liquid outlet path forming case 50 covering the peripheral wall 34 and the upper end surface portion 35 is placed and connected, A gas / liquid outlet path 51 is formed between the outer surface of the gas / liquid supply path forming case 33 and the inner surface of the gas / liquid outlet path forming case 50. The gas-liquid-liquid lead-out path forming case 50 includes a cylindrical peripheral wall forming piece 52, a ceiling forming piece 53 that is connected to the upper edge of the peripheral wall forming piece 52, and a circular shape that opens at the upper front of the peripheral wall forming piece 52. And a cylindrical lead-out guide body 55 projecting forward from the peripheral edge of the lead-out port 54. As shown in FIGS. 3 to 6, the lead-out guide body 55 protrudes forward from a circular opening 12g opened at the top of the front end wall 12a of the housing case 10. A bulging portion 56 that bulges inward along the peripheral edge is formed on the inner peripheral edge of the lower end of the peripheral wall forming piece 52, and a plurality of female screw holes 56 a having axial lines directed vertically in the bulging portion 56. They are formed at intervals in the circumferential direction. Reference numeral 36a denotes a number of screw holes formed in the outer peripheral portion of the lower end surface portion 36 so as to be aligned with the female screw hole 56a. By screwing screws 57 passed through the screw holes 36a into the female screw hole 56a, the screw hole 36a is mixed with the lower end surface portion 36. The gas-liquid outlet path forming case 50 is connected.
気液混合装置Mは、上記のように構成しているものであり、かかる気液混合装置Mによれば、下記のような作用効果が生起される。すなわち、タンクT内の飼育水W中に収容ケース10を浸漬することで、飼育水W中に水中ポンプPを浸漬して、酸素供給源Oxから内部気体供給パイプ22を通して散気体21a,21aに気体を供給し、散気体21a,21aを通してマイクロレベルに微細化された酸素ガスを飼育水W中に散気させる。そして、水中ポンプPを駆動させて、その吸入口部4から気泡混じりの水(初期気泡混合水)Rを吸入するとともに、水中ポンプPの吐出口部5から導入口37を通して気液供給路形成ケース33内に圧送する。気液供給路形成ケース33内に圧送された初期気泡混合水Rは、流路連通孔39→流入口43→混合ユニット40の分散・混合流路32内に流入し、蛇行しながら合流と分流を繰り返しながら流出口44側に向けて流動する。この際、マイクロレベルに微細化された気泡は、ナノレベルに微細化されるとともに飼育水Wと均一に混合される。また、水中ポンプP内に吸入する前に予め酸素を微細化してマクロレベルの微細な気泡となすことで、水中ポンプPのエア噛みを防止するとともに、水中ポンプPから吐出した後にマクロレベルの微細な気泡を混合ユニット40によりさらに微細化することができるため、堅実に大部分の気泡をナノレベルにすることができる。
The gas-liquid mixing apparatus M is configured as described above. According to the gas-liquid mixing apparatus M, the following operational effects are produced. That is, by immersing the housing case 10 in the breeding water W in the tank T, the submersible pump P is soaked in the breeding water W, and the diffused gas 21a, 21a is supplied from the oxygen supply source Ox through the internal gas supply pipe 22. Gas is supplied, and oxygen gas refined | miniaturized to micro level through the diffused gas 21a and 21a is diffused in the breeding water W. Then, the submersible pump P is driven to suck water mixed with bubbles (initial bubble mixed water) R from the suction port 4 and form a gas-liquid supply path from the discharge port 5 of the submersible pump P through the inlet 37. Pump into the case 33. The initial bubble mixed water R fed into the gas-liquid supply path forming case 33 flows into the dispersion / mixing flow path 32 of the flow passage communication hole 39 → the inlet 43 → the mixing unit 40, and joins and splits while meandering. It repeats to flow toward the outlet 44 side. At this time, the bubbles refined to the micro level are refined to the nano level and uniformly mixed with the breeding water W. In addition, the oxygen is refined in advance before being sucked into the submersible pump P to form macro-level fine bubbles, thereby preventing air biting of the submersible pump P and the macro-level fine after being discharged from the submersible pump P. Since the air bubbles can be further refined by the mixing unit 40, most of the air bubbles can be steadily reduced to the nano level.
そして、飼育水W中に気泡を微細化して分散・混合する分散・混合流路32は、気液供給路31の軸線方向と周方向に間隔をあけて多数連通して、各分散・混合流路32の終端部から気泡混じりの液体(図7及び図8に示す終期気泡混合水である気液混合水Rm)を流出させるようにしているため、混合ユニット40における圧力損失を低減させることができるとともに、ナノ気泡を含有する気液混合水Rmの流出量の増大化(効率化)を図ることができる。また、圧力損失を低減させることができる分散・混合流路32をコンパクトに形成することができるとともに、コンパクトに形成された分散・混合流路32を多数形成することができるため、ナノ気泡を含有する気液混合水Rmの流出量の増大化(効率化)を図ることができる。
A large number of dispersion / mixing channels 32 for finely dispersing and mixing bubbles in the breeding water W communicate with each other at intervals in the axial direction and the circumferential direction of the gas-liquid supply channel 31, and each dispersion / mixing flow Since the liquid mixed with bubbles (the gas-liquid mixed water Rm, which is the final bubble mixed water shown in FIGS. 7 and 8) is allowed to flow out from the terminal portion of the path 32, the pressure loss in the mixing unit 40 can be reduced. In addition, it is possible to increase (efficiency) the outflow amount of the gas-liquid mixed water Rm containing nanobubbles. In addition, the dispersion / mixing flow path 32 that can reduce pressure loss can be formed in a compact manner, and a large number of compactly formed dispersion / mixing flow paths 32 can be formed. The outflow amount (efficiency) of the gas-liquid mixed water Rm to be performed can be increased.
混合ユニット40の流出口44から流出された気液混合水Rmは、混合気液導出路51→導出口54→導出案内体55から混合処理対象である液体中に吐出される。
The gas-liquid mixed water Rm that has flowed out from the outlet 44 of the mixing unit 40 is discharged from the mixed gas-liquid outlet path 51 → the outlet 54 → the outlet guide body 55 into the liquid to be mixed.
(混合ユニットの構成の具体的な説明)
次に、混合ユニット40の構成をより具体的に説明する。すなわち、混合ユニット40は、図8,図11~図13に示すように、中央部に初期気泡混合水Rの流入口43を形成した円板状の第1エレメント41に、円板状の第2エレメント42を対面させて配置して、両エレメント41,42の対面間に、中央部側の流入口43から流入した初期気泡混合水Rを周縁部側に向けて半径方向に流動させて分散・混合する分散・混合流路32を形成して構成している。第1エレメント41の中央部、つまり、流入口43の中心部に支持片60を介してビス孔部61を設ける一方、第2エレメント42の中央部にビス孔62を形成して、符合させたビス孔部61とビス孔62中にビス63を螺着することで、両エレメント41,42を対面状態に連結して混合ユニット40を形成している。両エレメント41,42の上下部にはそれぞれ符合する第1・第2取付孔64,64,65,65を中心軸と平行させて貫通状に形成するとともに、気液供給路形成ケース33の周壁34に、第1・第2取付孔64,64,65,65と符合する第3取付孔66,66を形成して、これら第1~第3取付孔64~66中に取付ボルト67を螺着することで、周壁34に混合ユニット40を取り付けている。 (Specific description of mixing unit configuration)
Next, the configuration of the mixingunit 40 will be described more specifically. That is, as shown in FIGS. 8 and 11 to 13, the mixing unit 40 has a disk-shaped first element 41 formed with a disk-shaped first element 41 having an inlet 43 for the initial bubble mixed water R formed in the center. Two elements 42 are arranged facing each other, and the initial bubble mixed water R flowing in from the inflow port 43 on the central part side is caused to flow in the radial direction toward the peripheral part between the faces of both elements 41 and 42 and dispersed. A dispersion / mixing flow path 32 to be mixed is formed and configured. A screw hole 61 is provided in the center of the first element 41, that is, in the center of the inflow port 43 via a support piece 60, while a screw hole 62 is formed in the center of the second element 42 to be matched. By screwing a screw 63 into the screw hole 61 and the screw hole 62, the elements 41 and 42 are connected in a face-to-face state to form the mixing unit 40. First and second attachment holes 64, 64, 65, 65 that match each other are formed in the upper and lower portions of both elements 41, 42 so as to be parallel to the central axis, and the peripheral wall of the gas-liquid supply path forming case 33 34, third mounting holes 66, 66 that coincide with the first and second mounting holes 64, 64, 65, 65 are formed, and mounting bolts 67 are screwed into the first to third mounting holes 64-66. The mixing unit 40 is attached to the peripheral wall 34 by wearing.
次に、混合ユニット40の構成をより具体的に説明する。すなわち、混合ユニット40は、図8,図11~図13に示すように、中央部に初期気泡混合水Rの流入口43を形成した円板状の第1エレメント41に、円板状の第2エレメント42を対面させて配置して、両エレメント41,42の対面間に、中央部側の流入口43から流入した初期気泡混合水Rを周縁部側に向けて半径方向に流動させて分散・混合する分散・混合流路32を形成して構成している。第1エレメント41の中央部、つまり、流入口43の中心部に支持片60を介してビス孔部61を設ける一方、第2エレメント42の中央部にビス孔62を形成して、符合させたビス孔部61とビス孔62中にビス63を螺着することで、両エレメント41,42を対面状態に連結して混合ユニット40を形成している。両エレメント41,42の上下部にはそれぞれ符合する第1・第2取付孔64,64,65,65を中心軸と平行させて貫通状に形成するとともに、気液供給路形成ケース33の周壁34に、第1・第2取付孔64,64,65,65と符合する第3取付孔66,66を形成して、これら第1~第3取付孔64~66中に取付ボルト67を螺着することで、周壁34に混合ユニット40を取り付けている。 (Specific description of mixing unit configuration)
Next, the configuration of the mixing
分散・混合流路32は、図11~図13に示すように、第1・第2エレメント41,42の対向面に、それぞれ開口形状が正六角形(ハニカム状)である同形・同大の多数の凹部45,46を隙間のない状態で整然と配列して形成している。各エレメント41,42の凹部45,46の開口面は、突き合わせ状に面接触させるとともに、相互に連通するように位置を違えて配置している。初期気泡混合水Rの流入口43を中心とする同一円周上に配置した各エレメント41,42の凹部45,46の数は、中心部側から周縁部側に向けて漸次増大させて、流動方向である半径方向に分流数(分散数)を増大させている。両エレメント41,42の間の周縁部側に流出口44を形成している。
As shown in FIGS. 11 to 13, the dispersion / mixing channel 32 has a large number of the same shape and the same size, each having an opening shape of a regular hexagon (honeycomb shape) on the opposing surfaces of the first and second elements 41 and 42. The recesses 45 and 46 are arranged in an orderly manner without any gaps. The opening surfaces of the recesses 45 and 46 of the elements 41 and 42 are arranged in contact with each other in abutting manner and at different positions so as to communicate with each other. The number of the concave portions 45 and 46 of each element 41 and 42 arranged on the same circumference centering on the inlet 43 of the initial bubble mixed water R is gradually increased from the central side toward the peripheral side to flow. The diversion number (dispersion number) is increased in the radial direction. An outlet 44 is formed on the peripheral edge side between the elements 41 and 42.
両エレメント41,42の当接面は、図13に示すように、第1エレメント41の凹部45の中心位置に、第2エレメント42の3つの凹部46が集まっている角部48が位置する状態で当接している。
As shown in FIG. 13, the contact surfaces of both elements 41 and 42 are in a state where a corner 48 where the three recesses 46 of the second element 42 are gathered is located at the center of the recess 45 of the first element 41. In contact.
このような状態で第1エレメント41と第2エレメント42を当接させると、第1エレメント41の凹部45と第2エレメント42の凹部46との間で初期気泡混合水Rを流動させることができる。
When the first element 41 and the second element 42 are brought into contact with each other in such a state, the initial bubble mixed water R can flow between the recess 45 of the first element 41 and the recess 46 of the second element 42. .
したがって、例えば、第1エレメント41の凹部45側から第2エレメント42の凹部46側に初期気泡混合水Rが流れる場合を考えると、初期気泡混合水Rは、2つの流路に分流(分散)されることになる。
Therefore, for example, considering the case where the initial bubble mixed water R flows from the concave portion 45 side of the first element 41 to the concave portion 46 side of the second element 42, the initial bubble mixed water R is divided (dispersed) into two flow paths. Will be.
つまり、第1エレメント41の凹部45の中央位置に配置された第2エレメント42の角部48は、初期気泡混合水Rを分流する分流部として機能する。逆に、第2エレメント42側から第1エレメント41側に初期気泡混合水Rが流れる場合を考えると、2方から流れてきた初期気泡混合水Rが1つの凹部45に流れ込むことで合流することになる。この場合、第2エレメント42の角部48は、合流部として機能する。
That is, the corner portion 48 of the second element 42 arranged at the center position of the recess 45 of the first element 41 functions as a diversion portion for diverting the initial bubble mixed water R. On the other hand, considering the case where the initial bubble mixed water R flows from the second element 42 side to the first element 41 side, the initial bubble mixed water R flowing from two directions flows into one concave portion 45 and merges. become. In this case, the corner portion 48 of the second element 42 functions as a merging portion.
また、第2エレメント42の凹部46の中心位置にも、第1エレメント41の3つの凹部45が集まっている角部47が位置する。この場合は、第1エレメント41の角部47が上述した分流部や合流部として機能する。
Also, the corner 47 where the three recesses 45 of the first element 41 are gathered is located at the center position of the recess 46 of the second element 42. In this case, the corner portion 47 of the first element 41 functions as the diversion portion or the merge portion described above.
このように、相互に対向状態に対面配置された両エレメント41,42の間には、中央の流入口43から両エレメント41,42の軸線方向に供給された初期気泡混合水Rが、分流と合流(分散と混合)を繰り返しながら両エレメント41,42の放射線方向(軸線方向と直交する半径方向)に蛇行状態にて流動する分散・混合流路32(図6参照)が形成されている。この分散・混合流路32において初期気泡混合水Rが流動する過程で、初期気泡混合水Rに分散・混合処理が施されて終期気泡混合液体である気液混合水Rmが生成される。
As described above, the initial bubble mixed water R supplied in the axial direction of the elements 41 and 42 from the central inflow port 43 is separated between the elements 41 and 42 facing each other in a facing state. A dispersion / mixing flow path 32 (see FIG. 6) is formed that flows in a meandering manner in the radiation direction (radial direction perpendicular to the axial direction) of both elements 41 and 42 while repeating the joining (dispersing and mixing). In the process in which the initial bubble mixed water R flows in the dispersion / mixing flow path 32, the initial bubble mixed water R is subjected to the dispersion / mixing process to generate the gas-liquid mixed water Rm which is the final bubble mixed liquid.
このように構成した混合ユニット40では、第1・第2エレメント41,42の凹部45,46の数は、中心部側から周縁部側に向けて漸次増大しているため、初期気泡混合水Rが合流する凹部45,46の数は周縁部側ほど増大するとともに、それに比例して数多く分流(分散)される。そのため、分散・混合流路32においては、初期気泡混合水Rにせん断力が作用して微細化される回数が、初期気泡混合水Rの流動方向(周縁部側に向かう半径方向)に沿って漸次増大する。その結果、マイクロレベルの気泡を含有する初期気泡混合水Rが、分散・混合流路32を通して堅実にナノ気泡を含有する終期気泡混合液体である気液混合水Rmとなって大量に流出される。
In the mixing unit 40 configured in this way, the number of the concave portions 45 and 46 of the first and second elements 41 and 42 gradually increases from the central side toward the peripheral side, so that the initial bubble mixed water R The number of the concave portions 45 and 46 where the two are merged increases toward the peripheral portion side, and is distributed (distributed) in proportion to the number of the concave portions 45 and 46. Therefore, in the dispersion / mixing flow path 32, the number of times the initial bubble mixed water R is refined by the shearing force is along the flow direction of the initial bubble mixed water R (radial direction toward the peripheral side). Gradually increases. As a result, a large amount of the initial bubble mixed water R containing micro-level bubbles is discharged as a gas-liquid mixed water Rm which is a final bubble mixed liquid containing nanobubbles steadily through the dispersion / mixing channel 32. .
<第2実施形態に係る生成装置の説明>
(第2実施形態に係る生成装置の全体的な説明)
第2実施形態に係る生成装置Aは、図14に示すように、第2実施形態としての気液混合手段30を具備している。すなわち、生成装置Aは、飼育水Wを収容した上面開口箱型のタンクTの底部に循環パイプJの基端部を接続し、循環パイプJの先端部をタンクT内の飼育水W中に挿入することで、タンクT内と循環パイプJ中で流体を循環させる生成循環流路Cyを形成している。循環パイプJの中途部には酸素供給パイプK1を介して酸素供給源Oxを連通連結するとともに、酸素供給源Oxの下流側に位置させて気液混合手段30を連通連結している。気液混合手段30は、酸素供給源Oxから供給された酸素ガスと飼育水Wの気液混相にせん断力を作用させることで、酸素ガスを超微細な気泡を有する気泡群となして飼育水Wと混合するように構成している。 <Description of Generation Device According to Second Embodiment>
(Overall description of the generating apparatus according to the second embodiment)
As shown in FIG. 14, the generation device A according to the second embodiment includes gas-liquid mixing means 30 as the second embodiment. That is, the generator A connects the base end of the circulation pipe J to the bottom of the top-opening box-shaped tank T containing the breeding water W, and the tip of the circulation pipe J is placed in the breeding water W in the tank T. By inserting, the production | generation circulation flow path Cy which circulates the fluid in the tank T and the circulation pipe J is formed. An oxygen supply source Ox is connected to the middle of the circulation pipe J via an oxygen supply pipe K1, and a gas-liquid mixing means 30 is connected to the downstream of the oxygen supply source Ox. The gas-liquid mixing means 30 applies the shearing force to the gas-liquid mixed phase of the oxygen gas supplied from the oxygen supply source Ox and the breeding water W, so that the oxygen gas becomes a group of bubbles having ultrafine bubbles. It is configured to be mixed with W.
(第2実施形態に係る生成装置の全体的な説明)
第2実施形態に係る生成装置Aは、図14に示すように、第2実施形態としての気液混合手段30を具備している。すなわち、生成装置Aは、飼育水Wを収容した上面開口箱型のタンクTの底部に循環パイプJの基端部を接続し、循環パイプJの先端部をタンクT内の飼育水W中に挿入することで、タンクT内と循環パイプJ中で流体を循環させる生成循環流路Cyを形成している。循環パイプJの中途部には酸素供給パイプK1を介して酸素供給源Oxを連通連結するとともに、酸素供給源Oxの下流側に位置させて気液混合手段30を連通連結している。気液混合手段30は、酸素供給源Oxから供給された酸素ガスと飼育水Wの気液混相にせん断力を作用させることで、酸素ガスを超微細な気泡を有する気泡群となして飼育水Wと混合するように構成している。 <Description of Generation Device According to Second Embodiment>
(Overall description of the generating apparatus according to the second embodiment)
As shown in FIG. 14, the generation device A according to the second embodiment includes gas-liquid mixing means 30 as the second embodiment. That is, the generator A connects the base end of the circulation pipe J to the bottom of the top-opening box-shaped tank T containing the breeding water W, and the tip of the circulation pipe J is placed in the breeding water W in the tank T. By inserting, the production | generation circulation flow path Cy which circulates the fluid in the tank T and the circulation pipe J is formed. An oxygen supply source Ox is connected to the middle of the circulation pipe J via an oxygen supply pipe K1, and a gas-liquid mixing means 30 is connected to the downstream of the oxygen supply source Ox. The gas-liquid mixing means 30 applies the shearing force to the gas-liquid mixed phase of the oxygen gas supplied from the oxygen supply source Ox and the breeding water W, so that the oxygen gas becomes a group of bubbles having ultrafine bubbles. It is configured to be mixed with W.
タンクTの下流側に位置する循環パイプJの中途部には、吸込ポンプP1と吐出ポンプP2とを直列的に隣接させて配設している。そして、上流側に配置した吸込ポンプP1の吐出口と下流側に配置した吐出ポンプP2の吸込口との間に位置する循環パイプJの部分には、酸素供給パイプK1を介して酸素供給源Oxを接続している。ここで、吸込ポンプP1の吐出圧は、吐出ポンプP2の吸込圧以下に設定している。V1は、酸素供給パイプK1の中途部に設けた気体供給量調整弁、V2は、循環パイプJの先端部に取り付けた圧力調整弁、Wkは、タンクT内に溶媒である飼育水Wを随時供給可能とした飼育水供給部である。
A suction pump P1 and a discharge pump P2 are arranged adjacent to each other in the middle of the circulation pipe J located on the downstream side of the tank T in series. An oxygen supply source Ox is connected to a portion of the circulation pipe J located between the discharge port of the suction pump P1 disposed on the upstream side and the suction port of the discharge pump P2 disposed on the downstream side via the oxygen supply pipe K1. Is connected. Here, the discharge pressure of the suction pump P1 is set to be equal to or lower than the suction pressure of the discharge pump P2. V1 is a gas supply amount adjustment valve provided in the middle of the oxygen supply pipe K1, V2 is a pressure adjustment valve attached to the tip of the circulation pipe J, and Wk is a breeding water W as a solvent in the tank T as needed. This is a breeding water supply section that can be supplied.
上記した生成循環流路Cyには、逆洗流路Bwを連通連結している。すなわち、気液混合手段30の直上流側に位置する循環パイプJの部分に、上流側三方弁V3を介して逆洗用迂回パイプUの一側端部を連通連結する一方、気液混合手段30の直下流側に位置する循環パイプJの部分に、下流側三方弁V4を介して逆洗用迂回パイプUの一側端部を連通連結している。逆洗用迂回パイプUの中途部には、中途部三方弁V5を設けて、中途部三方弁V5を介して排水収容部Hを連結している。逆洗流路Bwは、上・下流側三方弁V3,V4を介して循環パイプJと逆洗用迂回パイプUを連通させることで形成される。そして、タンクT内に収容した洗浄水を吸込ポンプP1及び/又は吐出ポンプP2により逆洗流路Bw内で所要回数だけ循環させることで、気液混合手段30の下流側から上流側に洗浄水を逆流させて気液混合手段30内を洗浄(逆洗)処理することができる。逆洗処理後は、逆洗用迂回パイプUの中途部に設けた中途部三方弁V5を介して排水収容部Hに洗浄排水を排出することができる。その後は、各三方弁V3,V4,V5を復元操作することで、生成循環流路Cyを復元するとともに、タンクT内に飼育水Wを収容することで、流体混合処理を再開することができる。
A backwash channel Bw is connected to the above-described generation circulation channel Cy. That is, one end of the backwash bypass pipe U is connected to the portion of the circulation pipe J located immediately upstream of the gas-liquid mixing means 30 via the upstream three-way valve V3, while the gas-liquid mixing means One end portion of the backwashing detour pipe U is connected to the circulation pipe J located on the downstream side of 30 through a downstream three-way valve V4. A midway part three-way valve V5 is provided in the middle part of the backwash detour pipe U, and the drainage accommodating part H is connected via the midway part three-way valve V5. The backwash flow path Bw is formed by communicating the circulation pipe J and the backwash bypass pipe U via the upstream / downstream three-way valves V3 and V4. Then, the wash water stored in the tank T is circulated by the suction pump P1 and / or the discharge pump P2 in the backwash flow path Bw as many times as necessary, so that the wash water flows from the downstream side to the upstream side of the gas-liquid mixing means 30. The gas-liquid mixing means 30 can be washed (backwashed) by flowing back. After the back washing treatment, the washing waste water can be discharged to the waste water storage portion H through the midway three-way valve V5 provided in the middle of the backwash bypass pipe U. Thereafter, the three-way valves V3, V4, and V5 are restored to restore the generation circulation flow path Cy, and the breeding water W is accommodated in the tank T, whereby the fluid mixing process can be resumed. .
このように構成した生成装置Aでは、吸込ポンプP1と吐出ポンプP2を協働させることで、それらの間に配設した酸素供給源Oxから供給される酸素ガスが、吸込ポンプP1の吐出口からの吐出圧を受けるとともに、吐出ポンプP2の吸込口からの吸引圧(エジェクタ効果)を受けて、円滑かつ安定して吸入される。その結果、飼育水Wに混入される酸素ガスの量を一定に確保することができる。また、本実施形態では飼育水Wと酸素ガスとの混合流体の生成能力を確保したまま消費電力が小さい吸込ポンプP1と吐出ポンプP2を組み合わせて協働使用することができるので、生成装置Aの製造コストやランニングコストを低減させることができる。
In the generating apparatus A configured as described above, the oxygen pump supplied from the oxygen supply source Ox disposed between them by the suction pump P1 and the discharge pump P2 cooperates from the discharge port of the suction pump P1. And a suction pressure (ejector effect) from the suction port of the discharge pump P2, and is sucked smoothly and stably. As a result, a constant amount of oxygen gas mixed into the breeding water W can be ensured. Moreover, in this embodiment, since the generation | occurrence | production capability of the mixed fluid of breeding water W and oxygen gas can be ensured and the suction pump P1 and the discharge pump P2 with low power consumption can be combined and used together, Manufacturing costs and running costs can be reduced.
また、上・下流側三方弁V3,V4を操作して逆洗流路Bwを形成することで、気液混合手段30の下流側から上流側に洗浄水を逆流させて、気液混合手段30内を洗浄(逆洗)処理することができる。逆洗処理後は、中途部三方弁V5を介して排水収容部Hに洗浄排水を排出することができる。その後は、各三方弁V3,V4,V5を復元操作することで、簡単に流体混合処理を再開することができる。このように、適宜逆洗処理をすることで、気液混合手段30の流体混合機能を良好に確保することができる。
Further, by operating the upstream / downstream three-way valves V3 and V4 to form the backwash flow path Bw, the wash water is caused to flow backward from the downstream side of the gas-liquid mixing means 30 to the upstream side, so that the gas-liquid mixing means 30 The inside can be washed (backwashed). After the back washing process, the washing waste water can be discharged to the waste water storage portion H through the midway three-way valve V5. Thereafter, the fluid mixing process can be easily restarted by restoring the three-way valves V3, V4, and V5. Thus, the fluid mixing function of the gas-liquid mixing means 30 can be satisfactorily ensured by appropriately performing the backwash process.
(第2実施形態としての気液混合手段の説明)
第2実施形態としての気液混合手段30について、図15~図18を参照しながら説明する。気液混合手段30は、図15~図18に示すように、気泡混じりの水(初期気泡混合水)Rを加圧状態にて導入する導入口111を設けた混合ケース110内に、導入口111から導入された初期気泡混合水Rを混合する複数の混合ユニット120を配設し、混合ケース110には混合ユニット120により混合された気液混合水Rm(終期気泡混合水)を導出する導出口112を設けて構成している。 (Description of Gas-Liquid Mixing Unit as Second Embodiment)
The gas-liquid mixing means 30 as the second embodiment will be described with reference to FIGS. As shown in FIGS. 15 to 18, the gas-liquid mixing means 30 is provided with an inlet port in amixing case 110 provided with an inlet port 111 for introducing bubble-mixed water (initial bubble mixed water) R in a pressurized state. A plurality of mixing units 120 for mixing the initial bubble mixed water R introduced from 111 is disposed, and the gas / liquid mixed water Rm (final bubble mixed water) mixed by the mixing unit 120 is led to the mixing case 110. An outlet 112 is provided.
第2実施形態としての気液混合手段30について、図15~図18を参照しながら説明する。気液混合手段30は、図15~図18に示すように、気泡混じりの水(初期気泡混合水)Rを加圧状態にて導入する導入口111を設けた混合ケース110内に、導入口111から導入された初期気泡混合水Rを混合する複数の混合ユニット120を配設し、混合ケース110には混合ユニット120により混合された気液混合水Rm(終期気泡混合水)を導出する導出口112を設けて構成している。 (Description of Gas-Liquid Mixing Unit as Second Embodiment)
The gas-liquid mixing means 30 as the second embodiment will be described with reference to FIGS. As shown in FIGS. 15 to 18, the gas-liquid mixing means 30 is provided with an inlet port in a
混合ケース110内には、導入口111側から導出口112側に向けて複数の混合ユニット120を相互に間隔をあけて直列的に配設して、混合ユニット120間に中継溜り空間Shを形成するとともに、導入口111と最上流側に配置した混合ユニット120との間に導入口側溜り空間Suを形成する一方、最下流側に配置した混合ユニット120と導出口112との間に導出口側溜り空間Sdを形成して、各溜り空間Su,Sh,Sdの間に混合ユニット120を連通させて配置している。
In the mixing case 110, a plurality of mixing units 120 are arranged in series at intervals from the introduction port 111 side to the outlet port 112 side to form a relay reservoir space Sh between the mixing units 120. At the same time, the inlet-side reservoir space Su is formed between the inlet 111 and the mixing unit 120 arranged on the most upstream side, while the outlet is formed between the mixing unit 120 arranged on the most downstream side and the outlet 112. A side reservoir space Sd is formed, and the mixing unit 120 is arranged in communication between the reservoir spaces Su, Sh, Sd.
混合ユニット120は、板状の第1エレメント130と第2エレメント140の面同士を対向状に配置して、両エレメント130,140の始端縁部間を流入口150となす一方、両エレメント130,140の終端縁部間を流出口151となし、両エレメント130,140の各対向面131,141には、同一の深さと大きさを有する複数の凹部群132,142を流入口150側から流出口151側に向けて間隔をあけて区分して形成するとともに、対向する凹部134,144同士は、相互に連通するように位置を違えて配置して、各凹部群132,142の対向する凹部134,144間には、初期気泡混合水Rが蛇行しながら合流と分流を繰り返しながら流入口150側から流出口151側に向けて流動するように構成している。
In the mixing unit 120, the surfaces of the plate-like first element 130 and the second element 140 are arranged so as to face each other, and the gap between the start end edges of both the elements 130, 140 serves as the inflow port 150. 140 is formed as an outlet 151, and a plurality of recess groups 132 and 142 having the same depth and size are flowed from the inlet 150 side on the opposing surfaces 131 and 141 of both elements 130 and 140. The recesses 134 and 144 facing each other toward the outlet 151 side are arranged at different positions so as to communicate with each other. The initial bubble mixed water R is configured to flow from the inlet 150 side toward the outlet 151 side while repeating joining and splitting while meandering between 134 and 144.
そして、本実施形態の気液混合手段30は、複数(本実施形態では10個)の混合ユニット120を積層状に重合配置して混合ユニット積層体160を形成して、混合ケース110内の導入口111と導出口112との間において、導入口側溜り空間Suと中継溜り空間Shとの間、中継溜り空間Shと中継溜り空間Shとの間、及び、中継溜り空間Shと導出口側溜り空間Sdとの間に、それぞれ混合ユニット積層体160を配設している。つまり、本実施形態では、混合ケース110内に複数(本実施形態では4個)の混合ユニット積層体160を上流側から下流側に向けて一定の間隔をあけて直列的に配設している。各混合ユニット120の流入口150は、導入口111側に向けて開口配置する一方、各混合ユニット120の流出口151は、導出口112側に向けて開口配置している。
The gas-liquid mixing means 30 of this embodiment forms a mixing unit stack 160 by superposing and arranging a plurality (10 in this embodiment) of the mixing units 120 in a stacked manner, and introducing the mixing unit 110 into the mixing case 110. Between the inlet 111 and the outlet 112, between the inlet-side reservoir space Su and the relay reservoir space Sh, between the relay reservoir space Sh and the relay reservoir space Sh, and between the relay reservoir space Sh and the outlet port-side reservoir. Between the spaces Sd, the mixed unit laminates 160 are respectively disposed. In other words, in the present embodiment, a plurality (four in the present embodiment) of the mixing unit stacks 160 are arranged in series in the mixing case 110 with a certain interval from the upstream side toward the downstream side. . The inlet 150 of each mixing unit 120 is arranged to open toward the inlet 111, while the outlet 151 of each mixing unit 120 is arranged to open toward the outlet 112.
このように構成した気液混合手段30では、以下のような作用効果が生起される。すなわち、混合ケース110内の導入口111と導出口112との間において、導入口側溜り空間Suと中継溜り空間Shとの間、中継溜り空間Shと中継溜り空間Shとの間、及び、中継溜り空間Shと導出口側溜り空間Sdとの間に、それぞれ混合ユニット120を連通させて配置しているため、混合ケース110内を流動する初期気泡混合水Rは、流動抵抗のない各溜り空間Su,Sh,Sdと、流動抵抗となる各混合ユニット120を交互に直列的に通過することで堅実に脈流となる。
In the gas-liquid mixing means 30 configured as described above, the following functions and effects occur. That is, between the inlet 111 and the outlet 112 in the mixing case 110, between the inlet-side reservoir space Su and the relay reservoir space Sh, between the relay reservoir space Sh and the relay reservoir space Sh, and between the relay Since the mixing units 120 are arranged to communicate with each other between the reservoir space Sh and the outlet-side reservoir space Sd, the initial bubble mixed water R flowing in the mixing case 110 is contained in each reservoir space having no flow resistance. A pulsating flow is steadily caused by passing through Su, Sh, Sd and each mixing unit 120 which becomes flow resistance alternately in series.
すなわち、流動抵抗が殆どない各溜り空間Su,Sh,Sd内を流動する初期気泡混合水Rの流速は、比較的大きいものの、混合機能を有する各混合ユニット120中を流動する初期気泡混合水Rは、流動抵抗を受けてその流速が比較的低減される。そのため、混合ケース110内を流動する初期気泡混合水Rの流速は、大→小→大→小→大と変化(激変)されて、初期気泡混合水Rの流れが堅実な脈流となる。その結果、各混合ユニット120中を流動する際はもとより、混合ケース110内において脈流となって流動する際にもせん断効果が生起されて、相乗的なせん断効果が得られる。
That is, the initial bubble mixed water R flowing in each mixing unit 120 having a mixing function, although the flow velocity of the initial bubble mixed water R flowing in the pool spaces Su, Sh, Sd having almost no flow resistance is relatively large. Is subjected to flow resistance and its flow rate is relatively reduced. Therefore, the flow velocity of the initial bubble mixed water R flowing in the mixing case 110 is changed (severely changed) from large → small → large → small → large, and the flow of the initial bubble mixed water R becomes a steady pulsating flow. As a result, not only when flowing in each mixing unit 120 but also when flowing as a pulsating flow in the mixing case 110, a shearing effect is generated, and a synergistic shearing effect is obtained.
また、各混合ユニット120の上流側と下流側には、それぞれ各溜り空間Su,Sh,Sdを配置して、各混合ユニット120の流入口150は、導入口111側に向けて開口配置する一方、各混合ユニット120の流出口151は、導出口112側に向けて開口配置しているため、混合ケース110内における圧力損失を低減させることができる。そのため、気液混合手段30に流体を加圧して供給する吸込ポンプP1と吐出ポンプP2の電力消費量の低減を図ることができるとともに、混合処理済み流体である気液混合水Rmの流出量(導出量)の増大化(効率化)を図ることができる。
Further, the reservoir spaces Su, Sh, and Sd are arranged on the upstream side and the downstream side of each mixing unit 120, respectively, and the inlet 150 of each mixing unit 120 is opened toward the introduction port 111 side. In addition, since the outlet 151 of each mixing unit 120 is arranged to open toward the outlet 112, the pressure loss in the mixing case 110 can be reduced. Therefore, the power consumption of the suction pump P1 and the discharge pump P2 that pressurizes and supplies the fluid to the gas-liquid mixing means 30 can be reduced, and the outflow amount of the gas-liquid mixed water Rm (mixed fluid) ( (Amount of derivation) can be increased (efficiency).
また、本実施形態では、吸込ポンプP1と吐出ポンプP2により導入口111を通して混合ケース110に初期気泡混合水Rを加圧状態にて導入し、混合ケース110内に配設した混合ユニット120により初期気泡混合水Rを混合して、気液混合水Rmを導出口112から混合ケース110外に導出することができる。
Further, in the present embodiment, the initial bubble mixed water R is introduced into the mixing case 110 in a pressurized state through the inlet 111 by the suction pump P1 and the discharge pump P2, and is initially set by the mixing unit 120 disposed in the mixing case 110. By mixing the bubble mixed water R, the gas-liquid mixed water Rm can be led out of the mixing case 110 through the outlet 112.
そして、混合ユニット120では、面同士を対向状に配置した板状の第1エレメント130と第2エレメント140の始端縁部間である流入口150から初期気泡混合水Rを流入させて、両エレメント130,140の終端縁部間である流出口151から流出させるまでの間に、流入した初期気泡混合水Rを各凹部群132,142の対向する凹部134,144間にて合流と分流を繰り返しながら蛇行させて流動させることにより、堅実に気液混合水Rmを生成することができる。
In the mixing unit 120, the initial bubble mixed water R is caused to flow from the inlet 150 between the plate-like first element 130 and the second element 140, the surfaces of which are arranged to face each other. The initial bubble mixed water R is repeatedly merged and divided between the opposed recesses 134 and 144 of the respective recess groups 132 and 142 until it flows out from the outlet 151 between the terminal edges 130 and 140. However, the gas-liquid mixed water Rm can be generated steadily by meandering and flowing.
この際、連続相と分散相からなる初期気泡混合水Rが流入口側(上流側)の凹部群132,142間を蛇行しながら流動する際に受けるせん断力により分散相としての流体(本実施形態では気体)が微細化された気液混合水Rmが生成される。
At this time, a fluid (dispersed phase) is formed by shearing force received when the initial bubble mixed water R composed of the continuous phase and the dispersed phase flows while meandering between the recesses 132 and 142 on the inlet side (upstream side). Gas-liquid mixed water Rm in which the gas is refined in the form is generated.
このように、各凹部群132,142の対向する凹部134,144間に初期気泡混合水Rが蛇行しながら合流と分流を繰り返しながら流入口150から流出口151に至る連続的な流路において、分散相としての流体が異なるせん断力を受けながら複数回にわたって微細化されるため、マイクロレベルないしはナノレベルへの微細化生成も堅実にかつ効率良く行うことができる。
In this manner, in the continuous flow path from the inlet 150 to the outlet 151 while repeating the merging and splitting while the initial bubble mixed water R meanders between the opposing depressions 134 and 144 of the respective depression groups 132 and 142, Since the fluid as the dispersed phase is refined a plurality of times while receiving different shearing forces, it is possible to steadily and efficiently carry out refinement to the micro level or nano level.
本実施形態の気液混合手段30では、混合ケース110内に、混合ユニット120を積層状に重合配置して形成した複数の混合ユニット積層体160を配設しているため、これらの混合ユニット積層体160により多量の気液混合水Rmを生成することができる。したがって、気液混合水Rmの生成効率を高めることができる。その結果、気液混合手段30には、初期気泡混合水Rを一度通過(1パス)させるだけでも混合精度(例えば、微細化性と均一化性)の高い気液混合水Rmの生成することができ、所定回数通過させることで短時間に所望の気液混合水Rmを得ることができる。
In the gas-liquid mixing means 30 of the present embodiment, a plurality of mixing unit laminates 160 formed by superposing and arranging the mixing units 120 in a stacked manner are disposed in the mixing case 110. A large amount of gas-liquid mixed water Rm can be generated by the body 160. Therefore, the production efficiency of the gas-liquid mixed water Rm can be increased. As a result, the gas-liquid mixing means 30 can generate the gas-liquid mixed water Rm having high mixing accuracy (for example, fineness and uniformity) even if the initial bubble mixed water R is passed once (one pass). The desired gas-liquid mixed water Rm can be obtained in a short time by passing it a predetermined number of times.
(第2実施形態としての気液混合手段の具体的な説明)
次に、第2実施形態としての気液混合手段30の構成をより具体的に説明する。すなわち、混合ケース110は、一方向(本実施形態では左右方向)に伸延する四角形箱型に形成しており、左右方向に伸延する四角形板状の天井部113及び底部114と、天井部113及び底部114の前後左右側縁部間に介設した四角形板状の前・後・左・右側壁部115,116,117,118と、により形成している。右側壁部118の中央部には、円形の導入口111を設けて、導入口111に循環パイプJの中途部の上流側端部を連通連結し、循環パイプJを通して導入口111から初期気泡混合水Rを加圧状態にて導入するようにしている。左側壁部117の中央部には、導入口111よりも小径で円形の導出口112を設けて、導出口112に循環パイプJの中途部の下流側端部を連通連結し、混合ユニット120により混合された気液混合水Rmを導出口112から循環パイプJを通して導出するようにしている。 (Specific description of the gas-liquid mixing means as the second embodiment)
Next, the structure of the gas-liquid mixing means 30 as 2nd Embodiment is demonstrated more concretely. That is, the mixingcase 110 is formed in a rectangular box shape extending in one direction (left and right direction in the present embodiment), and has a rectangular plate-like ceiling portion 113 and bottom portion 114 extending in the left and right direction, A rectangular plate-shaped front / rear / left / right side wall 115, 116, 117, 118 interposed between front, rear, left and right side edges of the bottom 114 is formed. A circular inlet 111 is provided at the center of the right side wall 118, and the upstream end of the middle part of the circulation pipe J is connected to the inlet 111, and initial bubble mixing is performed from the inlet 111 through the circulation pipe J. Water R is introduced in a pressurized state. At the center of the left side wall 117, a circular outlet 112 having a smaller diameter than the inlet 111 is provided, and the downstream end of the middle part of the circulation pipe J is connected to the outlet 112 by the mixing unit 120. The mixed gas-liquid mixed water Rm is led out from the outlet 112 through the circulation pipe J.
次に、第2実施形態としての気液混合手段30の構成をより具体的に説明する。すなわち、混合ケース110は、一方向(本実施形態では左右方向)に伸延する四角形箱型に形成しており、左右方向に伸延する四角形板状の天井部113及び底部114と、天井部113及び底部114の前後左右側縁部間に介設した四角形板状の前・後・左・右側壁部115,116,117,118と、により形成している。右側壁部118の中央部には、円形の導入口111を設けて、導入口111に循環パイプJの中途部の上流側端部を連通連結し、循環パイプJを通して導入口111から初期気泡混合水Rを加圧状態にて導入するようにしている。左側壁部117の中央部には、導入口111よりも小径で円形の導出口112を設けて、導出口112に循環パイプJの中途部の下流側端部を連通連結し、混合ユニット120により混合された気液混合水Rmを導出口112から循環パイプJを通して導出するようにしている。 (Specific description of the gas-liquid mixing means as the second embodiment)
Next, the structure of the gas-liquid mixing means 30 as 2nd Embodiment is demonstrated more concretely. That is, the mixing
混合ユニット120の凹部群132は、開口形状が(底面視)正六角形で有底筒状の凹部134を幅方向(本実施形態では前後方向)にわたって隙間のない状態で伸延方向(本実施形態では左右方向)に複数列(本実施形態では4列)隣接させて垂設し、凹部134を下方に向けて開口させている。いわゆるハニカム状に多数の凹部134が形成されている。
The concave group 132 of the mixing unit 120 has an opening shape (bottom view) of a hexagonal bottomed cylindrical concave part 134 in the extending direction (in this embodiment, with no gap) in the width direction (front and rear direction in this embodiment). A plurality of rows (4 rows in the present embodiment) are provided adjacent to each other in the left-right direction, and the recesses 134 are opened downward. A large number of recesses 134 are formed in a so-called honeycomb shape.
また、混合ユニット120の凹部群142は、第2エレメント140の対向面141の流入口150側に底面視正六角形で有底筒状の凹部144を幅方向(本実施形態では前後方向)にわたって隙間のない状態で伸延方向(本実施形態では左右方向)に複数列(本実施形態では4列)隣接させて突設し、凹部144を上方に向けて開口させている。いわゆるハニカム状に多数の凹部144が形成されている。
Further, the concave group 142 of the mixing unit 120 has a regular hexagonal bottomed cylindrical concave part 144 on the side of the inflow port 150 of the opposing surface 141 of the second element 140 with a gap across the width direction (the front-rear direction in this embodiment). In this state, the projections are provided adjacent to a plurality of rows (four rows in this embodiment) in the extending direction (left and right directions in the present embodiment), and the concave portions 144 are opened upward. Many concave portions 144 are formed in a so-called honeycomb shape.
凹部群132を形成する凹部134と凹部群142を形成する凹部144同士は、対向させて配置するとともに相互に連通するように位置を違えて配置している。つまり、凹部134(144)の中心位置に、凹部144(134)の角部146(136)が位置する状態で当接している。したがって、例えば、第1エレメント130の凹部134側から第2エレメント140の凹部144側に初期気泡混合水Rが流れる場合を考えると、初期気泡混合水Rは、2つの流路に分流(分散)されることになる。すなわち、第1エレメント130の凹部134の中央位置に位置された第2エレメント140の角部146は、初期気泡混合水Rを分流する分流部として機能する。逆に、第2エレメント140側から第1エレメント130側に初期気泡混合水Rが流れる場合を考えると、2方から流れてきた初期気泡混合水Rが1つの凹部134に流れ込むことで合流することになる。この場合、第2エレメント140の凹部144の中央位置に位置された第1エレメント130の角部136は、合流部として機能する。
The recesses 134 that form the recess groups 132 and the recesses 144 that form the recess groups 142 are arranged to face each other and at different positions so as to communicate with each other. That is, the corner portion 146 (136) of the concave portion 144 (134) is in contact with the central position of the concave portion 134 (144). Therefore, for example, when considering the case where the initial bubble mixed water R flows from the concave portion 134 side of the first element 130 to the concave portion 144 side of the second element 140, the initial bubble mixed water R is divided (dispersed) into two flow paths. Will be. That is, the corner portion 146 of the second element 140 positioned at the center position of the concave portion 134 of the first element 130 functions as a diversion portion for diverting the initial bubble mixed water R. On the other hand, considering the case where the initial bubble mixed water R flows from the second element 140 side to the first element 130 side, the initial bubble mixed water R flowing from two directions flows into one concave portion 134 and merges. become. In this case, the corner portion 136 of the first element 130 located at the center position of the concave portion 144 of the second element 140 functions as a merging portion.
混合ユニット120は、アクリル樹脂等の合成樹脂により各パーツ(構成部材)を形成して、これらを接着剤により一体的に接着することで一体的に構成することも、また、ステンレス鋼等の合金により各パーツを形成して、これらをビス止めにより一体的に組み付けることで一体的に構成するもできる。
The mixing unit 120 may be configured integrally by forming each part (constituent member) with a synthetic resin such as an acrylic resin and integrally bonding them with an adhesive, or an alloy such as stainless steel. Each part can be formed by the above, and these can be integrally assembled by screwing together.
本実施形態では、初期気泡混合水Rの流動幅である混合ユニット120の左右幅W2(導入口から導出口へ向けて流動する初期気泡混合水Rの流動方向の幅)よりも、初期気泡混合水Rの流入・流出幅である混合ユニット120の前後幅W5(初期気泡混合水Rの流動方向と略直交する方向の幅であって、前・後壁部115,116の間隔と同一幅)を広幅となした帯状に形成している。導入口側溜り空間Suの左右幅W1は、混合ユニット120の左右幅W2と略同一幅となし、中継溜り空間Shの左右幅W3は、混合ユニット120の左右幅W2の略二分の一幅となし、導出口側溜り空間Sdの左右幅W4は、混合ユニット120の左右幅W2と略同一幅となしている。各溜り空間Su,Sh,Sdの前後幅と上下幅は、混合ケース110の内面の前後幅と上下幅と同一である。そして、導入口側溜り空間Suの下流側面と最上流側に配置した第1の混合ユニット積層体160の各流入口150とが面接触して連通し、第1の混合ユニット積層体160の各流出口151と、最上流側に形成した第1の中継溜り空間Shの上流側面と、が面接触して連通し、第1の中継溜り空間Shの下流側面と、第2の混合ユニット積層体160の各流入口150と、が面接触して連通し、第2の混合ユニット積層体160の各流出口151と、第2の中継溜り空間Shの上流側面と、が面接触して連通し、第2の中継溜り空間Shの下流側面と、第3の混合ユニット積層体160の各流入口150と、が面接触して連通し、第3の混合ユニット積層体160の各流出口151と、第3の中継溜り空間Shの上流側面と、が面接触して連通し、第3の中継溜り空間Shの下流側面と、第4の混合ユニット積層体160の各流入口150と、が面接触して連通し、第4の混合ユニット積層体160の各流出口151と、導出口側溜り空間Sdの上流側面と、が面接触して連通している。また、上記した左右幅W2~W4は、好ましくは、左右幅W1≧左右幅W2×2、左右幅W3=左右幅W2/2、左右幅W4≧左右幅W2×(2ないしは3)に設定することで、導出口側溜り空間Sdの体積を中継溜り空間Shの体積の2倍以上に形成し、かつ、導入口側溜り空間Suの体積を中継溜り空間Shの体積の2倍~3倍以上に形成できる。
In the present embodiment, the initial bubble mixing is greater than the width W2 of the mixing unit 120 that is the flow width of the initial bubble mixed water R (the width in the flow direction of the initial bubble mixed water R flowing from the inlet to the outlet). The front / rear width W5 of the mixing unit 120 that is the inflow / outflow width of the water R (the width in the direction substantially perpendicular to the flow direction of the initial bubble mixed water R and the same width as the distance between the front and rear wall portions 115, 116) Is formed into a wide band. The left-right width W1 of the inlet-side reservoir space Su is substantially the same width as the left-right width W2 of the mixing unit 120, and the left-right width W3 of the relay reservoir space Sh is approximately half the left-right width W2 of the mixing unit 120. None, the left-right width W4 of the outlet-side reservoir space Sd is substantially the same width as the left-right width W2 of the mixing unit 120. The front-rear width and the vertical width of each pool space Su, Sh, Sd are the same as the front-rear width and the vertical width of the inner surface of the mixing case 110. Then, the downstream side surface of the inlet-side reservoir space Su and the inlets 150 of the first mixing unit laminate 160 arranged on the most upstream side are in surface contact and communicate with each other. The outflow port 151 and the upstream side surface of the first relay pool space Sh formed on the uppermost stream side are in surface contact and communicate with each other, and the downstream side surface of the first relay pool space Sh and the second mixing unit laminate Each inflow port 150 of 160 is in surface contact and communicates, and each outflow port 151 of the second mixing unit laminate 160 and the upstream side surface of the second relay reservoir space Sh are in surface contact and communication. The downstream side surface of the second relay reservoir space Sh and the respective inlets 150 of the third mixing unit laminate 160 communicate with each other in surface contact with each outlet 151 of the third mixing unit laminate 160. And the upstream side surface of the third relay reservoir space Sh The downstream side surface of the third relay reservoir space Sh and the respective inlets 150 of the fourth mixing unit laminate 160 are in surface contact with each other, and the respective outlets 151 of the fourth mixing unit laminate 160 are communicated. And the upstream side surface of the outlet port side accumulation space Sd are in surface contact and communicate with each other. The left and right widths W2 to W4 are preferably set such that left and right width W1 ≧ left and right width W2 × 2, left and right width W3 = left and right width W2 / 2, and left and right width W4 ≧ left and right width W2 × (2 or 3). Thus, the volume of the outlet port side reservoir space Sd is formed to be twice or more the volume of the relay reservoir space Sh, and the volume of the inlet port side reservoir space Su is two to three times the volume of the relay reservoir space Sh. Can be formed.
このようにして、導入口111から導入されて導入口側溜り空間Suに充満した初期気泡混合水Rは、第1の混合ユニット積層体160の各流入口150から各混合ユニット120内に並列状態に流入して、各混合ユニット120内で蛇行しながら合流と分流(分散)を繰り返しながら流動することで、せん断力を受けて分散相である気体が微細化されるとともに均一に混合された気液混合水Rmとなる。
In this way, the initial bubble mixed water R introduced from the inlet 111 and filling the inlet-side reservoir space Su is in a parallel state from each inlet 150 of the first mixing unit stack 160 into each mixing unit 120. And flowing in the mixing unit 120 while meandering and repeating the merging and splitting (dispersion), the shearing force causes the gas as the dispersed phase to be refined and uniformly mixed. It becomes liquid mixed water Rm.
続いて、気液混合水Rmは、第1の混合ユニット積層体160の各混合ユニット120の各流出口151から流出されて、第1の中継溜り空間Shに充満される。第1の中継溜り空間Shに充満された気液混合水Rmは、第2の混合ユニット積層体160の各流入口150から各混合ユニット120内に並列状態に流入して、各混合ユニット120内で第1の混合ユニット積層体160と同様に混合処理される。その結果、分散相である気体が、さらに微細化されるとともに、均一に混合された気液混合水Rmとなる。
Subsequently, the gas-liquid mixed water Rm flows out from each outlet 151 of each mixing unit 120 of the first mixing unit stack 160 and fills the first relay pool space Sh. The gas-liquid mixed water Rm filled in the first relay reservoir space Sh flows in parallel from the respective inlets 150 of the second mixing unit stack 160 into the respective mixing units 120, and enters the respective mixing units 120. In the same manner as in the first mixing unit laminate 160, the mixing process is performed. As a result, the gas that is the dispersed phase is further refined and becomes a gas-liquid mixed water Rm that is uniformly mixed.
続いて、気液混合水Rmは、第2の混合ユニット積層体160の各混合ユニット120の各流出口151から流出されて、第2の中継溜り空間Shに充満される。第2の中継溜り空間Shに充満された気液混合水Rmは、第3の混合ユニット積層体160の各流入口150から各混合ユニット120内に並列状態に流入して、各混合ユニット120内で第2の混合ユニット積層体160と同様に混合処理される。その結果、分散相である気体が、さらに微細化されるとともに、均一に混合された気液混合水Rmとなる。
Subsequently, the gas-liquid mixed water Rm flows out from the outlets 151 of the mixing units 120 of the second mixing unit stack 160 and fills the second relay reservoir space Sh. The gas-liquid mixed water Rm filled in the second relay reservoir space Sh flows in parallel from the respective inlets 150 of the third mixing unit stack 160 into the respective mixing units 120 and enters the respective mixing units 120. In the same manner as the second mixing unit laminate 160, the mixing process is performed. As a result, the gas that is the dispersed phase is further refined and becomes a gas-liquid mixed water Rm that is uniformly mixed.
続いて、気液混合水Rmは、第3の混合ユニット積層体160の各混合ユニット120の各流出口151から流出されて、第3の中継溜り空間Shに充満される。第3の中継溜り空間Shに充満された気液混合水Rmは、第4の混合ユニット積層体160の各流入口150から各混合ユニット120内に並列状態に流入して、各混合ユニット120内で第3の混合ユニット積層体160と同様に混合処理される。その結果、分散相である気体が、さらに微細化されるとともに、均一に混合された気液混合水Rmとなる。
Subsequently, the gas-liquid mixed water Rm flows out from each outflow port 151 of each mixing unit 120 of the third mixing unit stack 160 and fills the third relay reservoir space Sh. The gas-liquid mixed water Rm filled in the third relay reservoir space Sh flows in parallel from the respective inlets 150 of the fourth mixing unit stack 160 into the respective mixing units 120, and enters the respective mixing units 120. Then, the mixing process is performed in the same manner as the third mixing unit laminate 160. As a result, the gas that is the dispersed phase is further refined and becomes a gas-liquid mixed water Rm that is uniformly mixed.
続いて、気液混合水Rmは、第4の混合ユニット積層体160の各混合ユニット120の各流出口151から流出されて、導出口側溜り空間Sdに充満される。導出口側溜り空間Sdに充満された気液混合水Rmは、導出口112から導出される。
Subsequently, the gas-liquid mixed water Rm flows out from the outlets 151 of the mixing units 120 of the fourth mixing unit stack 160 and fills the outlet-side reservoir space Sd. The gas-liquid mixed water Rm filled in the outlet port side reservoir space Sd is led out from the outlet port 112.
各混合ユニット120においては、初期気泡混合水Rの流動幅である各混合ユニット120の左右幅よりも初期気泡混合水Rの流入・流出幅である各混合ユニット120の前後幅W5を広幅に形成しているため、大量の初期気泡混合水Rが短時間に各混合ユニット120を流動して通過する。
In each mixing unit 120, the front-rear width W5 of each mixing unit 120 that is the inflow / outflow width of the initial bubble mixed water R is formed wider than the lateral width of each mixing unit 120 that is the flow width of the initial bubble mixed water R. Therefore, a large amount of the initial bubble mixed water R flows and passes through each mixing unit 120 in a short time.
このように、混合ケース110内では、初期気泡混合水Rないしは気液混合水Rmが、導入口111→導入口側溜り空間Su→第1の混合ユニット積層体160→第1の中継溜り空間Sh→第2の混合ユニット積層体160→第2の中継溜り空間Sh→第3の混合ユニット積層体160→第3の中継溜り空間Sh→第4の混合ユニット積層体160→導出口側溜り空間Sd→導出口112へと流動する。
As described above, in the mixing case 110, the initial bubble mixed water R or the gas-liquid mixed water Rm is introduced into the inlet 111 → the inlet side accumulation space Su → the first mixing unit stacked body 160 → the first relay accumulation space Sh. → second mixing unit stack 160 → second relay storage space Sh → third mixing unit stack 160 → third relay storage space Sh → fourth mixing unit stack 160 → outlet side storage space Sd → Flows to the outlet 112.
この際、混合ケース110内では、比較的流路抵抗が小さい各溜り空間Su,Sh,Sdと、比較的流路抵抗が大きい第1~第4混合ユニット積層体160と、が交互に配置されているため、混合ケース110内を流動する初期気泡混合水Rないしは気液混合水Rmは、その流速が間欠的に激変する脈流になる。そのため、初期気泡混合水Rは、各混合ユニット120中を流動する際にせん断力を受けることはもとより、混合ケース110内においても脈流となって流動される際にせん断力を受ける。その結果、初期気泡混合水Rに作用させるせん断効果を増大させて、分散相をナノ気泡に微細化することができるとともに、大量に気液混合水Rmを生成することができる。
At this time, in the mixing case 110, the reservoir spaces Su, Sh, Sd having a relatively small channel resistance and the first to fourth mixing unit laminates 160 having a relatively large channel resistance are alternately arranged. Therefore, the initial bubble mixed water R or the gas-liquid mixed water Rm flowing in the mixing case 110 becomes a pulsating flow whose flow rate changes suddenly and suddenly. Therefore, the initial bubble mixed water R receives a shearing force when flowing in the mixing case 110 as well as a shearing force when flowing in each mixing unit 120. As a result, the shear effect acting on the initial bubble mixed water R can be increased, the dispersed phase can be refined into nanobubbles, and a large amount of gas-liquid mixed water Rm can be generated.
また、本実施形態では、混合ケース110内に所要枚数(本実施形態では、10枚)の混合ユニット120を積層状に重合させて配設することで混合ユニット積層体160をコンパクトに形成することができるとともに、複数(本実施形態では、4個)の混合ユニット積層体160を上流側から下流側に間隔をあけて配設することで、各混合ユニット120による流体混合処理を同時に平行して効率良く行うことができる。したがって、混合ケース110内にコンパクトに配設された適当な個数の混合ユニット120により、適量の気液混合水Rmが、効率良く生成されるとともに、混合ケース110から導出される。
In the present embodiment, the mixing unit stack 160 is compactly formed by superposing and arranging the required number (in this embodiment, 10) of the mixing units 120 in the mixing case 110 in a stacked manner. In addition, by arranging a plurality (four in this embodiment) of the mixing unit stacks 160 at intervals from the upstream side to the downstream side, the fluid mixing processes by the mixing units 120 can be performed in parallel at the same time. It can be done efficiently. Therefore, an appropriate amount of the gas-liquid mixed water Rm is efficiently generated and led out from the mixing case 110 by an appropriate number of mixing units 120 arranged compactly in the mixing case 110.
前記のように構成した気液混合手段30は、水中ポンプの吐出部に導入口111を接続して、水中ポンプの吸入部から吸入した異なる複数の流体を、吐出部から気液混合手段30内に吐出して、気液混合手段30内にて流動させることで、流体混合処理を行うこともできる。
The gas-liquid mixing means 30 configured as described above connects the introduction port 111 to the discharge part of the submersible pump, and allows a plurality of different fluids sucked from the suction part of the submersible pump to flow into the gas-liquid mixing means 30 from the discharge part. The fluid mixing process can also be performed by discharging the fluid into the gas-liquid mixing means 30 and allowing it to flow in the gas-liquid mixing means 30.
本実施形態では、混合ケース110内に4個の混合ユニット積層体160を配設しているが、混合ユニット積層体160の配設個数は、これに限られるものではなく、気液混合水Rmの生成量等に応じて、所望個数である単数個ないしは複数個の混合ユニット積層体160を配設することができる。
In the present embodiment, the four mixing unit laminates 160 are arranged in the mixing case 110, but the number of the mixing unit laminates 160 is not limited to this, and the gas-liquid mixed water Rm Depending on the production amount, etc., a desired number of single or plural mixed unit laminates 160 can be provided.
<第3実施形態に係る生成装置の説明>
第3実施形態に係る生成装置Aは、第1実施形態としての気液混合手段30に代えて、第2実施形態としての気液混合手段30を取り付けることで構成することができる。すなわち、気液混合装置Mにおいて、導入案内体38に導入口111を接続するとともに、収容ケース10の開口部12gに導出口112を接続することにより、第2実施形態としての気液混合手段30を採用して構成することができる。 <Description of Generation Device According to Third Embodiment>
The generating apparatus A according to the third embodiment can be configured by attaching the gas-liquid mixing unit 30 as the second embodiment instead of the gas-liquid mixing unit 30 as the first embodiment. In other words, in the gas-liquid mixing apparatus M, the inlet 111 is connected to the inlet guide 38 and the outlet 112 is connected to the opening 12g of the housing case 10, whereby the gas-liquid mixer 30 as the second embodiment. Can be adopted.
第3実施形態に係る生成装置Aは、第1実施形態としての気液混合手段30に代えて、第2実施形態としての気液混合手段30を取り付けることで構成することができる。すなわち、気液混合装置Mにおいて、導入案内体38に導入口111を接続するとともに、収容ケース10の開口部12gに導出口112を接続することにより、第2実施形態としての気液混合手段30を採用して構成することができる。 <Description of Generation Device According to Third Embodiment>
The generating apparatus A according to the third embodiment can be configured by attaching the gas-
このように構成した第3実施形態に係る生成装置Aでは、第1・第2実施形態に係る生成装置Aと同様の効果を得ることができる。
The generation device A according to the third embodiment configured as described above can obtain the same effects as those of the generation device A according to the first and second embodiments.
次に、前記した第1実施形態としての生成装置Aを具備する養殖システムSyの実施例について説明する。本実施例では、物理濾過装置Pfにより物理処理された飼育水としての海水をタンクT内に導入して、タンクT内に海水を満たすとともに、タンクT内の海水中に2台の気液混合装置Mを浸漬した。そして、気液混合装置Mに酸素供給源Oxである酸素ガスボンベから1L/分の純酸素を供給して、気液混合手段30により海水と酸素ガスを混合することで、微細化かつ均一化して気液混合水Rmを生成した。その後、気液混合水Rmは、生物濾過装置Bfに導出した。この際の海水の温度は、約16℃であり、生物濾過装置BfのDO値は、約20mg/L(溶存酸素飽和度は約200%)になるように気液混合装置Mへの純酸素の供給量を調整して設定した。そして、養殖システムSyの運転は、5日ごとに飼育水槽Faの飼育水の減少分を補給しながら1ヶ月間行った。その時の結果は、以下の通りである。
Next, an example of the aquaculture system Sy including the generating device A as the first embodiment will be described. In this embodiment, seawater as breeding water physically treated by the physical filtration device Pf is introduced into the tank T, the seawater is filled in the tank T, and two gas-liquid mixtures are mixed in the seawater in the tank T. Apparatus M was immersed. Then, 1 L / min of pure oxygen is supplied to the gas-liquid mixing device M from an oxygen gas cylinder as an oxygen supply source Ox, and seawater and oxygen gas are mixed by the gas-liquid mixing means 30, thereby making the gas fine and uniform. Gas-liquid mixed water Rm was produced. Thereafter, the gas-liquid mixed water Rm was led to the biological filtration device Bf. The temperature of the seawater at this time is about 16 ° C., and the DO value of the biological filtration device Bf is about 20 mg / L (the dissolved oxygen saturation is about 200%). The supply amount was adjusted and set. The operation of the aquaculture system Sy was performed for one month while replenishing the decreased amount of the breeding water in the breeding water tank Fa every five days. The results at that time are as follows.
すなわち、生物濾過装置Bfで生物濾過処理されるとともに、調温装置Taにより約16℃に温度調節された気液混合水Rmが、循環ポンプPcにより飼育水槽Faに送水されるときのDO値は、約10mg/L(溶存酸素飽和度が100%以上の過飽和状態)であった。そして、飼育水槽Fa内おける気液混合水RmのDO値は、飼育水槽Fa内の飼育魚の量によって異なるものの、概ね7~8mg/L(溶存酸素飽和度が100%以上の過飽和状態)に維持されていた。養殖システムSyおける気液混合水RmのpHは、7.5~8に維持され、pHの低下は起きなかった。循環ポンプPcの位置では、pHが7.8、気液混合水Rm中に含まれるアンモニア態窒素が0.3mg/L、亜硝酸態窒素が0.1mg/L、硝酸態窒素が30mg/Lであった。沈澱槽Dp内では、pHが7.8、気液混合水Rm中に含まれるアンモニア態窒素は0.3mg/L、亜硝酸態窒素は0.2mg/L、硝酸態窒素は30mg/Lであった(検査方法;パックテスト)。循環流路C、飼育水槽Fa、沈澱槽Dp、物理濾過装置Pf、生成装置A、及び生物濾過装置Bfにおける一般細菌数は、30~70個体/mLであった(検査方法;JIS K 0101 63.2(1998))。
That is, the DO value when the gas-liquid mixed water Rm, which is biologically filtered by the biological filtration device Bf and temperature-adjusted to about 16 ° C. by the temperature control device Ta, is sent to the breeding aquarium Fa by the circulation pump Pc, is , Approximately 10 mg / L (supersaturated state in which dissolved oxygen saturation is 100% or more). The DO value of the gas-liquid mixed water Rm in the breeding aquarium Fa is generally maintained at 7 to 8 mg / L (supersaturated state where the dissolved oxygen saturation is 100% or more), although it varies depending on the amount of the breeding fish in the breeding tank Fa. It had been. The pH of the gas-liquid mixed water Rm in the aquaculture system Sy was maintained at 7.5 to 8, and no pH decrease occurred. At the position of the circulation pump Pc, the pH is 7.8, the ammonia nitrogen contained in the gas-liquid mixed water Rm is 0.3 mg / L, the nitrite nitrogen is 0.1 mg / L, and the nitrate nitrogen is 30 mg / L. Met. In the precipitation tank Dp, the pH is 7.8, the ammonia nitrogen contained in the gas-liquid mixed water Rm is 0.3 mg / L, the nitrite nitrogen is 0.2 mg / L, and the nitrate nitrogen is 30 mg / L. There was (inspection method; pack test). The number of general bacteria in the circulation channel C, the rearing tank Fa, the sedimentation tank Dp, the physical filtration device Pf, the production device A, and the biological filtration device Bf was 30 to 70 individuals / mL (inspection method: JIS K 0101 63.2). (1998)).
気液混合水Rm中の一般細菌数が30~70個体/mLということは、気液混合水Rmが清浄な海域の水準(例えば、一般細菌数が2~96(CFU/mL))と同じ水準であると言える。一般細菌数をこの範囲に抑えることができたのは、気液混合水Rm中の酸素ガスの気泡をナノレベル化していたことに起因すると考えられる。そして、気液混合水Rmは、紫外線殺菌装置等により滅菌処理する必要がないものと判断される。その結果、養殖システムSyに紫外線殺菌装置等の滅菌処理装置を設ける必要性がないので、その分の養殖システムの低コスト化が図れる。
The number of general bacteria in the gas-liquid mixed water Rm is 30 to 70 / mL, which is the same as the level of the sea area where the gas-liquid mixed water Rm is clean (for example, the general bacterial count is 2 to 96 (CFU / mL)). It can be said that it is a standard. The reason why the number of general bacteria can be suppressed within this range is considered to be that the bubbles of oxygen gas in the gas-liquid mixed water Rm have been nano-leveled. And it is judged that the gas-liquid mixed water Rm does not need to be sterilized by an ultraviolet sterilizer or the like. As a result, since there is no need to provide a sterilization apparatus such as an ultraviolet sterilizer in the aquaculture system Sy, the cost of the aquaculture system can be reduced accordingly.
飼育水槽Faと配管設備内の汚れが少なく、汚れが付いても清掃が極めて簡単にできた。そのため、酸素ガスの気泡がナノレベル化された気液混合水Rmを循環させることで、長期間にわたって飼育水槽Faを使用し続けることができることが分かった。
・ There was little dirt in the rearing tank Fa and the piping equipment, and cleaning was very easy even if it was dirty. Therefore, it was found that the breeding water tank Fa can be used for a long period by circulating the gas-liquid mixed water Rm in which oxygen gas bubbles are nano-leveled.
飼育水槽Fa内に生じる残餌や斃死魚の腐敗が遅くなった。このことから、酸素ガスの気泡がナノレベル化された気液混合水Rmは、水質悪化を防ぐ効果があることが分かった。
¡Residual bait and dying fish decaying in the rearing tank Fa were delayed. From this, it was found that the gas-liquid mixed water Rm in which bubbles of oxygen gas are nano-leveled has an effect of preventing deterioration of water quality.
Sy 養殖システム
A 気液混合水生成装置
C 循環流路
Fa 飼育水槽
Dp 沈澱槽
Pf 物理濾過装置
Bf 生物濾過装置
Ta 調温装置
Pc 循環ポンプ
Ox 酸素供給源 Sy aquaculture system A Gas-liquid mixed water generator C Circulation channel Fa Breeding tank Dp Precipitation tank Pf Physical filtration device Bf Biological filtration device Ta Temperature controller Pc Circulation pump Ox Oxygen supply source
A 気液混合水生成装置
C 循環流路
Fa 飼育水槽
Dp 沈澱槽
Pf 物理濾過装置
Bf 生物濾過装置
Ta 調温装置
Pc 循環ポンプ
Ox 酸素供給源 Sy aquaculture system A Gas-liquid mixed water generator C Circulation channel Fa Breeding tank Dp Precipitation tank Pf Physical filtration device Bf Biological filtration device Ta Temperature controller Pc Circulation pump Ox Oxygen supply source
Claims (3)
- 循環ポンプを具備して飼育水を循環させる循環流路に、魚介類を飼育する飼育水槽と、飼育水槽から排出される飼育水を生物濾過処理する生物濾過装置を配設した閉鎖循環濾過養殖システムであって、
飼育水槽の下流側でかつ生物濾過装置の上流側に位置する循環流路の部分に、酸素ガスをナノレベルの気泡となして飼育水に混合させることで気液混合水を生成する気液混合水生成装置を配設し、
気液混合水生成装置で生成されて生物濾過装置に供給される気液混合水には、過飽和状態に酸素ガスを溶存させて、生物濾過装置で生物濾過処理された後に飼育水槽に供給される気液混合水にも過飽和状態に酸素ガスが溶存されていることを特徴とする閉鎖循環濾過養殖システム。 A closed circulation filtration and aquaculture system in which a circulation tank that circulates breeding water with a circulation pump is provided with a breeding aquarium for breeding fish and shellfish and a biological filtration device for biological filtration of the breeding water discharged from the breeding aquarium Because
Gas-liquid mixing that produces gas-liquid mixed water by mixing oxygen gas with nano-sized bubbles in the circulation channel located downstream of the breeding tank and upstream of the biological filtration device. A water generator is installed,
The gas-liquid mixed water generated by the gas-liquid mixed water generating device and supplied to the biological filtration device is dissolved in supersaturated oxygen gas, and is biologically filtered by the biological filtration device and then supplied to the breeding aquarium. A closed circulation filtration aquaculture system characterized in that oxygen gas is dissolved in a supersaturated state in the gas-liquid mixed water. - 気液混合水生成装置の直上流側に位置する循環流路の部分に、物理濾過装置を配設していることを特徴とする請求項1記載の閉鎖循環濾過養殖システム。 2. A closed circulation filtration aquaculture system according to claim 1, wherein a physical filtration device is disposed in a portion of the circulation channel located immediately upstream of the gas-liquid mixed water production device.
- 飼育水槽と、硝化細菌の培地として浸漬型濾材を用いた生物濾過装置に、それぞれ空気を圧送する送気装置を接続していることを特徴とする請求項1又は2記載の閉鎖循環濾過養殖システム。 The closed circulation filtration aquaculture system according to claim 1 or 2, wherein an air feeding device for feeding air is connected to the breeding tank and a biological filtration device using a submerged filter medium as a medium for nitrifying bacteria. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015559077A JP6218339B2 (en) | 2014-01-24 | 2015-01-21 | Closed circulation filtration aquaculture system |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014-011220 | 2014-01-24 | ||
JP2014011220 | 2014-01-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015111592A1 true WO2015111592A1 (en) | 2015-07-30 |
Family
ID=53681394
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/051453 WO2015111592A1 (en) | 2014-01-24 | 2015-01-21 | Closed circulation filtration aquaculture system |
Country Status (2)
Country | Link |
---|---|
JP (2) | JP6218339B2 (en) |
WO (1) | WO2015111592A1 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018021092A1 (en) * | 2016-07-25 | 2018-02-01 | 丸福水産株式会社 | Mixing process body, mixing process method, mixed production fluid, fluid mixer, fluid mixing processor, fish and shellfish culturing system, and fish and shellfish culturing method |
CN107667938A (en) * | 2017-10-27 | 2018-02-09 | 潍坊市爱嘉水产养殖有限公司 | The intensive high density circulating water cultivation method of Penaeus Vannmei |
JP2018153159A (en) * | 2017-03-21 | 2018-10-04 | 吉川工業株式会社 | Aquarium fish growth system |
JP6488452B1 (en) * | 2018-01-12 | 2019-03-27 | トスレック株式会社 | Shellfish purification method and shellfish purification system |
WO2019138590A1 (en) * | 2018-01-12 | 2019-07-18 | トスレック株式会社 | Shellfish purification method and shellfish purification system |
JP2022171514A (en) * | 2021-04-30 | 2022-11-11 | 有限会社情報科学研究所 | Sectional land-based aquaculture system having denitrification function |
JP7358713B1 (en) | 2022-12-26 | 2023-10-11 | 睦月電機株式会社 | Feed for farmed fish and breeding method for farmed fish |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI700993B (en) * | 2018-12-22 | 2020-08-11 | 丁紹傑 | Multifunctional submersible pump |
KR102424558B1 (en) * | 2022-03-02 | 2022-07-25 | 주식회사 에어프로텍 | Eco-friendly Heat Exchange Hot Water Heater using Turbo Blower Thermal Energy |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000312542A (en) * | 1999-04-30 | 2000-11-14 | Central Res Inst Of Electric Power Ind | Circulatory filtration apparatus for culturing fishes and shellfishes |
JP2008006415A (en) * | 2006-06-30 | 2008-01-17 | Chugoku Electric Power Co Inc:The | Wastewater treatment tank |
JP2010162517A (en) * | 2009-01-19 | 2010-07-29 | Sharp Corp | Water treatment apparatus and water treatment method |
JP2013039500A (en) * | 2011-08-11 | 2013-02-28 | Idec Corp | Gas dissolving apparatus, living thing growing apparatus and method of dissolving gas |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04310300A (en) * | 1991-04-08 | 1992-11-02 | Matsushita Electric Ind Co Ltd | Water purifying apparatus |
JP2013135834A (en) * | 2011-10-24 | 2013-07-11 | Mg Grow Up:Kk | Display stand |
-
2015
- 2015-01-21 JP JP2015559077A patent/JP6218339B2/en active Active
- 2015-01-21 WO PCT/JP2015/051453 patent/WO2015111592A1/en active Application Filing
-
2017
- 2017-09-25 JP JP2017183445A patent/JP6353147B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000312542A (en) * | 1999-04-30 | 2000-11-14 | Central Res Inst Of Electric Power Ind | Circulatory filtration apparatus for culturing fishes and shellfishes |
JP2008006415A (en) * | 2006-06-30 | 2008-01-17 | Chugoku Electric Power Co Inc:The | Wastewater treatment tank |
JP2010162517A (en) * | 2009-01-19 | 2010-07-29 | Sharp Corp | Water treatment apparatus and water treatment method |
JP2013039500A (en) * | 2011-08-11 | 2013-02-28 | Idec Corp | Gas dissolving apparatus, living thing growing apparatus and method of dissolving gas |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018021092A1 (en) * | 2016-07-25 | 2018-02-01 | 丸福水産株式会社 | Mixing process body, mixing process method, mixed production fluid, fluid mixer, fluid mixing processor, fish and shellfish culturing system, and fish and shellfish culturing method |
JP2018153159A (en) * | 2017-03-21 | 2018-10-04 | 吉川工業株式会社 | Aquarium fish growth system |
CN107667938A (en) * | 2017-10-27 | 2018-02-09 | 潍坊市爱嘉水产养殖有限公司 | The intensive high density circulating water cultivation method of Penaeus Vannmei |
JP6488452B1 (en) * | 2018-01-12 | 2019-03-27 | トスレック株式会社 | Shellfish purification method and shellfish purification system |
WO2019138590A1 (en) * | 2018-01-12 | 2019-07-18 | トスレック株式会社 | Shellfish purification method and shellfish purification system |
JP2019122374A (en) * | 2018-01-12 | 2019-07-25 | トスレック株式会社 | Purification method of shellfish and purification system of shellfish |
JP2022171514A (en) * | 2021-04-30 | 2022-11-11 | 有限会社情報科学研究所 | Sectional land-based aquaculture system having denitrification function |
JP7358713B1 (en) | 2022-12-26 | 2023-10-11 | 睦月電機株式会社 | Feed for farmed fish and breeding method for farmed fish |
JP2024092889A (en) * | 2022-12-26 | 2024-07-08 | 睦月電機株式会社 | Feed for farm-raised fish and method for feeding farm-raised fish |
Also Published As
Publication number | Publication date |
---|---|
JP2018011607A (en) | 2018-01-25 |
JPWO2015111592A1 (en) | 2017-03-23 |
JP6218339B2 (en) | 2017-11-01 |
JP6353147B2 (en) | 2018-07-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6353147B2 (en) | Closed circulation filtration aquaculture system | |
JP6176881B2 (en) | Mixed processing body, mixed processing method, fluid mixer, fluid mixing processing apparatus, and fish culture system | |
US10828607B2 (en) | Aerator device, filter system including an aerator device, and method of aerating a filter using an aerator device | |
JP2007160132A (en) | Filtration unit | |
JP6947602B2 (en) | Water treatment equipment and water treatment method | |
JP2010269200A (en) | Water treatment apparatus and water treatment method | |
JP4361432B2 (en) | Water treatment equipment | |
JP2016198058A5 (en) | ||
JPWO2008139618A1 (en) | Water treatment method | |
JP2007130579A (en) | Filtration membrane cleaning apparatus and method for membrane filtration unit in activated sludge treatment | |
CN105339312A (en) | Water treatment device | |
JP2014018782A (en) | System and method for cleaning filtration film of ballast water treatment | |
JP5823489B2 (en) | Membrane separator | |
JP5034210B2 (en) | Ballast water treatment equipment | |
JP2010194434A (en) | Hollow fiber membrane module and water treatment apparatus | |
JP5793713B2 (en) | Ballast water production equipment | |
JP6092454B1 (en) | Closed circulation aquaculture system | |
KR102380257B1 (en) | The water treatment system for fish breeding by applying membrane filtration process | |
JP2007190488A (en) | Membrane separation activated sludge treatment apparatus | |
JP5269331B2 (en) | Waste water treatment equipment | |
JP5016827B2 (en) | Membrane separation activated sludge treatment method | |
JP2002370095A (en) | Liquid cleaning apparatus | |
JP6118668B2 (en) | Water treatment system | |
JP2014188453A (en) | Water treatment system and water treatment method | |
KR200414232Y1 (en) | Water treatment system for cultivation of fish |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15740053 Country of ref document: EP Kind code of ref document: A1 |
|
DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
ENP | Entry into the national phase |
Ref document number: 2015559077 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15740053 Country of ref document: EP Kind code of ref document: A1 |