WO2015111512A1 - X-ray tube defect sign detection device, x-ray tube defect sign detection method, and x-ray device - Google Patents

X-ray tube defect sign detection device, x-ray tube defect sign detection method, and x-ray device Download PDF

Info

Publication number
WO2015111512A1
WO2015111512A1 PCT/JP2015/051041 JP2015051041W WO2015111512A1 WO 2015111512 A1 WO2015111512 A1 WO 2015111512A1 JP 2015051041 W JP2015051041 W JP 2015051041W WO 2015111512 A1 WO2015111512 A1 WO 2015111512A1
Authority
WO
WIPO (PCT)
Prior art keywords
ray tube
failure sign
vibration
sensor
sign detection
Prior art date
Application number
PCT/JP2015/051041
Other languages
French (fr)
Japanese (ja)
Inventor
中原 崇
晋也 湯田
青野 宇紀
徹 稲原
茂 立木
喜代美 阿部
Original Assignee
株式会社 日立メディコ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 日立メディコ filed Critical 株式会社 日立メディコ
Priority to JP2015558822A priority Critical patent/JP6159827B2/en
Publication of WO2015111512A1 publication Critical patent/WO2015111512A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/58Testing, adjusting or calibrating thereof
    • A61B6/586Detection of faults or malfunction of the device
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G1/00X-ray apparatus involving X-ray tubes; Circuits therefor
    • H05G1/08Electrical details
    • H05G1/26Measuring, controlling or protecting
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G1/00X-ray apparatus involving X-ray tubes; Circuits therefor
    • H05G1/08Electrical details
    • H05G1/26Measuring, controlling or protecting
    • H05G1/54Protecting or lifetime prediction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/04Electrodes ; Mutual position thereof; Constructional adaptations therefor
    • H01J35/08Anodes; Anti cathodes
    • H01J35/10Rotary anodes; Arrangements for rotating anodes; Cooling rotary anodes

Definitions

  • the present invention relates to an X-ray tube failure sign detection device and an X-ray tube failure sign detection method for detecting an X-ray tube failure sign, and an X-ray apparatus using the X-ray tube failure sign detection device.
  • a type of X-ray tube that generates X-rays by irradiating a rotating anode with electrons emitted from a high-voltage cathode is often used.
  • a solid bearing is used to smoothly rotate the anode. If the solid bearing deteriorates, the X-ray tube will break down and the X-ray diagnostic apparatus becomes unusable.
  • the X-ray tube is replaced with a new one in a sufficiently usable state long before failure. This is a major cause of an increase in maintenance costs of the X-ray diagnostic apparatus. Therefore, in order to reduce maintenance costs, the X-ray tube is required to be used until just before failure and to be usable as long as possible.
  • Patent Document 1 discloses a technique in which vibration generated by an X-ray tube is detected by a vibration sensor, frequency analysis is performed, and abnormal noise of the X-ray tube, that is, a failure sign is detected from the frequency analysis result.
  • abnormal noise generated from a deteriorated X-ray tube is generated due to electromagnetic noise generated from an inverter used to generate a high voltage applied to the cathode and an alternating current that rotates the anode. It is a practically difficult situation to detect.
  • Patent Document 2 the vibration data obtained from the X-ray tube is filtered to remove the electromagnetic noise of the frequency component generated by the inverter, thereby preventing the influence of the electromagnetic noise of the inverter.
  • An example of a tube failure sign detection device is disclosed.
  • Patent Document 3 discloses an example of an X-ray tube failure sign detection apparatus that determines the rotation state of an anode from an off signal of an anode drive motor and detects a failure sign detection during inertial rotation. Has been.
  • the object of the present invention is to detect a sign of failure of an X-ray tube while minimizing the modification of the X-ray device and without being affected by the electromagnetic noise of the inverter.
  • a possible X-ray tube failure sign detection device, an X-ray tube failure sign detection method, and an X-ray device are provided.
  • An X-ray tube failure sign detection apparatus includes a first vibration sensor that measures vibration generated inside an X-ray tube, a second vibration sensor that measures vibration generated outside the X-ray tube, A frequency analysis unit that analyzes frequency of vibration data measured by the first vibration sensor, and triggers a timing when the vibration level of the vibration measured by the second vibration sensor becomes lower than a predetermined threshold value.
  • the vibration data of the vibration measured by the first vibration sensor is acquired, the frequency analysis of the vibration data is performed via the frequency analysis unit, and the failure sign detection is performed based on the frequency analysis result. Is an X-ray tube failure sign detection device.
  • an X-ray tube failure sign detection device capable of detecting a failure sign of an X-ray tube with minimal modification of the X-ray device and without being affected by the electromagnetic noise of the inverter, An X-ray tube failure sign detection method and an X-ray apparatus are provided.
  • the figure which showed the example of the functional block structure of a detection time determination part The figure which showed the example of the whole processing flow of the X-ray tube failure sign detection process in an X-ray tube failure sign detection apparatus.
  • the figure which showed the example of the detailed process flow of the diagnostic input permission reception process by a diagnostic input permission reception part The figure which showed the example of the detailed process flow of the failure sign detection process by a failure sign detection part.
  • FIG. 1 is a diagram illustrating an example of the entire configuration of an X-ray apparatus 100 including an X-ray tube failure sign detection apparatus 10 according to an embodiment of the present invention.
  • the X-ray apparatus 100 includes an X-ray tube failure sign detection device 10, an X-ray tube 12, a high voltage device 16, a filament heating device 17, a starter device 18, and an AC power source 19. , Including.
  • the X-ray tube 12 is configured by housing and fixing an X-ray tube 121, which is a kind of vacuum tube, in an X-ray tube housing 120.
  • a rotating anode 123 and a cathode 124 are accommodated in the X-ray tube 121.
  • the rotating anode 123 is supported on the inner wall of the container of the X-ray tube 121 via a bearing mechanism such as a solid bearing, and on the outside of the X-ray tube 121 on which the rotating anode 123 is disposed,
  • a stator 122 that supplies an alternating magnetic field that rotates the rotating anode 123 is disposed.
  • the high voltage device 16 is a device that generates a high voltage applied between the cathode 124 and the rotary anode 123 of the X-ray tube 12, and a DC power source 161 connected to the AC power source 19, and an AC of a specific frequency from the DC voltage.
  • a high voltage inverter 162 that generates a voltage and a high voltage transformer 163 that converts an AC voltage having a specific frequency into a DC voltage are included.
  • the filament heating device 17 is a device that generates a current for heating the filament of the cathode 124, and includes a DC power source 171, a filament inverter 172, and a filament transformer 173, similar to the high voltage device 16. Is done.
  • the starter device 18 is a device for generating a voltage for generating a magnetic force in the stator 122 of the X-ray tube 12, and includes a DC power supply 181, a starter inverter 182, a starter transformer 183, and a starter control device 184. And comprising.
  • the starter control device 184 controls the rotation of the rotating anode 123 by controlling how the voltage is applied to the stator 122.
  • the X-ray tube failure sign detection apparatus 10 includes a data processing unit 11 configured by a computer such as a so-called personal computer, and a source for measuring vibrations generated in the X-ray tube 12 and the position, posture, temperature, etc. of the X-ray tube 12.
  • the acceleration sensor 131 (see FIG. 2) included in the source sensor unit 13 is attached to the X-ray tube casing 120, and particularly measures slight vibration (sound) generated when the rotating anode 123 rotates. Is.
  • the acceleration sensor 131 cannot avoid the influence of electromagnetic noise from the high voltage inverter 162, the filament inverter 172, the starter inverter 182 and the like.
  • the noise sensor unit 14 measures vibrations caused by electromagnetic noise mainly from the high voltage inverter 162, the filament inverter 172, the starter inverter 182 and the like, that is, noise that is a noise for the acceleration sensor 131. To do. Therefore, in the present embodiment, the noise sensor unit 14 is attached to the X-ray tube casing 120 via the vibration blocking material 15 that does not propagate vibration, and does not measure vibration generated inside the X-ray tube 12. Has been.
  • the noise sensor unit 14 is not attached to the X-ray tube casing 120 via the vibration isolator 15 but is located as far as possible from the X-ray tube 12, for example, a high voltage that is a source of electromagnetic noise. It may be installed at a location close to the inverter 162 for use.
  • FIG. 2 is a diagram showing an example of a hardware configuration of the X-ray tube failure sign detection apparatus 10 according to the embodiment of the present invention.
  • the source sensor unit 13 of the X-ray tube failure sign detection apparatus 10 includes an acceleration sensor 131, a temperature sensor 132, a gyro sensor 133, an A / D converter 134, and a signal processing unit 135. Is done.
  • the acceleration sensor 131 is a so-called three-axis acceleration sensor, and measures the three-dimensional (x direction, y direction, and z direction) acceleration received by the X-ray tube 12.
  • the temperature sensor 132 measures the temperature of the X-ray tube casing 120
  • the gyro sensor 133 measures the rotation angle of the X-ray tube casing 120.
  • the A / D converter 134 converts each analog signal measured by the acceleration sensor 131, the temperature sensor 132, and the gyro sensor 133 into digital data.
  • the signal processing unit 135 serves to remove unnecessary frequency components for detection of a failure sign of the X-ray tube 12 (hereinafter also referred to as failure sign diagnosis or simply diagnosis) from each A / D converted digital data. Fulfill.
  • the signal processing unit 135 converts the three-dimensional acceleration data obtained via the acceleration sensor 131 into vibration data emitted from the X-ray tube 12 and outputs the vibration data as X-ray tube vibration data Sa. Further, the signal processing unit 135 calculates and outputs housing position data Sb (in particular, the X coordinate and the Y coordinate) representing the position of the X-ray tube 12 by integrating the acceleration data in each direction. Similarly, the signal processing unit 135 outputs the temperature data obtained via the temperature sensor 132 as the case temperature data Sc, and outputs the angle data obtained via the gyro sensor 133 as the case angle data Sd.
  • the processing order of the A / D converter 134 and the signal processing unit 135 may be reversed.
  • a voice detection microphone may be used instead of the acceleration sensor 131.
  • the noise sensor unit 14 includes an acceleration sensor 141, an A / D converter 142, and a signal processing unit 143.
  • the acceleration sensor 141 is a so-called three-axis acceleration sensor, and measures the three-dimensional (x direction, y direction, and z direction) acceleration received by itself.
  • the A / D converter 142 converts each analog signal measured by the acceleration sensor 141 into digital data.
  • the signal processing unit 143 removes frequency components unnecessary for diagnosis from the three-dimensional acceleration data obtained via the acceleration sensor 141, and generates vibration data emitted from other than the X-ray tube 12, that is, noise vibration data Se. Output.
  • a voice detection microphone may be used instead of the acceleration sensor 141.
  • the data processing unit 11 of the X-ray tube failure sign detection device 10 includes a display device 111, an alarm device 112, a central processing device 113, an operation input device 114, a recording device 115, a storage device 116, an I / O port 117, and the like. It has a general computer configuration such as a so-called personal computer.
  • the I / O port 117 includes X-ray tube vibration data Sa, case position data Sb, case temperature data Sc, case angle data Sd, and noise vibration data output from the source sensor unit 13 or the noise sensor unit 14. Se is taken in and the data is written in the recording device 115.
  • the recording device 115 is a storage device that records data necessary for the X-ray tube failure sign detection process, and here is particularly distinguished from the storage device 116 that stores temporary data.
  • the central processing unit 113 implements a predetermined function of the X-ray tube failure sign detection device 10 by executing, for example, an X-ray tube failure sign detection processing program stored in the storage device 116. Details of the function will be described later.
  • the display device 111 performs a display requesting permission for diagnosis of the X-ray tube failure sign detection to the operator according to a program executed by the central processing unit 113.
  • the operation input device 114 is used by an operator to input data for permitting or not permitting diagnosis.
  • the alarm device 112 is a device that issues an alarm when an abnormality occurs in the diagnosis result of the X-ray tube failure sign detection.
  • FIG. 3 is a diagram showing an example of a functional block configuration of the data processing unit 11 in the X-ray tube failure sign detection apparatus 10 according to the embodiment of the present invention.
  • the data processing unit 11 includes a frequency analysis unit 21, a detection mode determination unit 22, a noise level calculation unit 23, a threshold processing unit 24, a failure sign detection unit 25, a detection time determination unit 26, and the like. Composed.
  • the frequency analysis unit 21 acquires the X-ray tube vibration data Sa from the source sensor unit 13, performs frequency analysis by Fast Fourier Transform (FFT), and outputs the result as the frequency analysis result Sf.
  • the detection mode determination part 22 determines the angle of the attitude
  • the noise level calculation unit 23 calculates the noise level Sh from the value of the noise vibration data Se.
  • the failure sign detection unit 25 detects the failure sign of the X-ray tube 12 using the frequency analysis result Sf using the rise of the noise low level signal Si as a trigger, and outputs the result as a failure sign signal Sj.
  • the detection time determination unit 26 measures the detection time by using the rising edge of the diagnosis permission signal Sk as a start signal and measuring the detection time as a termination signal when the rotational component of the frequency analysis result Sf is less than a predetermined threshold. By determining whether or not the threshold value is exceeded, a genuine tube detection signal Sm indicating whether or not the tube is a genuine tube is output.
  • the detection time determination unit 26 measures the time from the rising edge to the falling edge of the failure sign signal Sj, and determines whether or not it is a genuine tube by determining whether or not a predetermined threshold value is exceeded. May be.
  • the diagnosis permission input reception unit 27 receives the diagnosis permission request signal S1 from the failure sign detection unit 25 and displays on the display device 111 asking for diagnosis permission.
  • the diagnosis permission input receiving unit 27 outputs a diagnosis permission signal Sk toward the failure sign detection unit 25 and the detection time determination unit 26 when receiving an input regarding diagnosis permission via the operation input device 114.
  • FIG. 4 is a diagram showing an example of determination processing in the detection mode determination unit 22 as a list.
  • the detection mode determination unit 22 determines whether or not the housing angle data Sd is equal to or greater than the threshold value ⁇ c, and then determines whether or not the housing temperature data Sc is equal to or greater than the threshold value Tc. Of these, it is determined whether or not the x-axis component is greater than or equal to Xc, and it is determined whether or not the y-axis component is greater than or equal to Yc. Then, the detection mode determination unit 22 refers to the detection mode classification table prepared in advance as shown in FIG. 4 according to the determination results of the above four items, obtains the corresponding mode number, and determines the mode number. Output as detection mode Sg.
  • the detection mode Sg is the mode number “5”.
  • the mode number classification in FIG. 4 is merely an example and does not have a specific meaning.
  • FIG. 5 is a diagram schematically illustrating an example of processing contents of the noise level calculation unit 23.
  • the noise vibration data Se is represented as a time function a (t)
  • the time function z (t) representing the noise level Sh can be defined by, for example, Expression (1).
  • the function z (t) representing the noise level Sh is expressed by the area from the time t to t + dT of the absolute value of the function a (t) representing the noise vibration data Se.
  • the absolute value of the function a (t) representing the noise vibration data Se may be simply used.
  • frequency analysis of the noise level Sh is performed, and the absolute value of the specific frequency component, the area from time t to t + dT, and the like may be used as the noise level Sh.
  • FIG. 6 is a diagram illustrating an example of a functional block configuration of the failure sign detection unit 25.
  • the failure sign detection unit 25 includes a switching unit 254, m distance calculation units 251, a minimum value calculation unit 252, and a threshold determination unit 253.
  • the m-means clustering method is adopted as a basic concept of the failure sign detection in the failure sign detection unit 25.
  • newly acquired data is compared with the average value for each cluster of normal data acquired in the past and clustered into m pieces. Then, when the newly acquired data is considered to be substantially the same as any one of the average values for the m clusters, the newly acquired data is considered normal. Note that the number m of clusters may be one.
  • newly acquired data is a vector (y1, y2,... Yn) composed of n frequency components acquired by frequency analysis of the X-ray tube vibration data Sa.
  • the m normal data acquired in the past is the center of each of the m clusters composed of n frequency components acquired in the past normal time (that is, when there is no abnormality in the X-ray tube 12).
  • each component of the vector representing the center of the cluster is represented by an average value of each component of the vector belonging to each cluster.
  • the distance between the newly acquired vector (y1, y2,..., Yn) consisting of n frequency components and m vectors representing the centers of the clusters is obtained (the distance is m is obtained), and the minimum value of the obtained m distances is obtained. If the minimum distance is smaller than a predetermined threshold distance, the newly acquired vector (y1, y2,..., Yn) It is judged to be almost the same as the vector representing the center, and is regarded as normal data. On the other hand, if the minimum distance is equal to or greater than the threshold distance, it is determined that the newly acquired vector (y1, y2,..., Yn) does not belong to any cluster and is abnormal. Data is considered.
  • the failure sign detection unit 25 shown in FIG. 6 detects a failure sign based on the m-average clustering method described above. Hereinafter, the function of each block constituting the failure sign detection unit 25 will be described.
  • the switching unit 254 receives the noise low level signal Si output from the threshold processing unit 24 (see FIG. 3), and outputs a diagnosis permission request signal S1 to the diagnosis permission input receiving unit 27. Further, the switching unit 254 receives the diagnosis permission signal Sk output from the diagnosis permission input receiving unit 27, and decomposes the frequency analysis result Sf into frequency components y1, y2,.
  • the distance from the vector represented by the center (average value) of the j-th cluster obtained in advance from the normal X-ray tube vibration data Sa is calculated.
  • the distance L j calculated by the j-th distance calculation unit 251 # j is defined by the following equation (2).
  • yka j is an average value of the frequency components yj of the j-th cluster.
  • the average value yka j is prepared for each detection mode Sg, and therefore the distance L j is calculated according to the detection mode Sg at that time.
  • the minimum value calculation unit 252 performs an operation for obtaining a minimum value from the distances L 1 to L m calculated by the distance calculation units 251 # 1 to #m, and sets the minimum value obtained as a result as the degree of abnormality Sn. Output as.
  • the threshold determination unit 253 determines whether or not the degree of abnormality Sn is greater than or equal to a predetermined threshold, and if it is greater than or equal to the threshold, outputs a failure sign signal Sj.
  • FIG. 7 is a diagram illustrating an example of a functional block configuration of the switching unit 254.
  • the switch 2540 connects the frequency analysis result Sf to the demultiplexer 2543 when the diagnosis permission signal Sk is ON, and frequency analysis when the diagnosis permission signal Sk is OFF.
  • the output of the temporary result output unit 2541 is connected to the demultiplexer 2543.
  • the demultiplexer 2543 takes in the frequency analysis result Sf or the temporary frequency analysis result according to the ON / OFF of the diagnosis permission signal Sk, and outputs it as the frequency components y1 to yn.
  • the frequency analysis provisional result output unit 2541 a frequency analysis provisional result, and outputs the average value y1a 1 ⁇ yna n frequency components y1 ⁇ yn of each detection mode Sg. That is, by outputting an average value y1a 1 ⁇ yna n in the detection mode Sg, the value of the distance L 1 ⁇ L m calculated by the distance calculation unit 251 is zero. That is, since the degree of abnormality Sn is 0, the failure predictor signal Sj is not detected when the threshold value is determined by the threshold value determination unit 253, so that the diagnostic function can be turned off.
  • the switching unit 254 has a function of causing the diagnosis permission request generation unit 2542 to generate a diagnosis permission request signal Sl from the noise low level signal Si.
  • FIG. 8 is a diagram illustrating an example of a functional block configuration of the detection time determination unit 26.
  • the switch 260 connects the frequency analysis result Sf to the demultiplexer 263 when the diagnosis permission signal Sk is ON, and when the diagnosis permission signal Sk is OFF.
  • the output of the frequency analysis temporary result output unit 261 is connected to the demultiplexer 263.
  • the demultiplexer 263 outputs frequency components y1 to yn based on the frequency analysis result Sf or the temporary frequency analysis result.
  • the role of the frequency analysis temporary result output unit 261 is the same as the role of the frequency analysis temporary result output unit 2541 in the switching unit 254.
  • the first threshold value processing unit 264 determines whether or not the frequency component yi of the rotation of the rotating anode 123 exceeds a predetermined threshold value, and outputs a rotation end signal when it falls below the threshold value.
  • the first time measurement unit 265 performs time measurement using the diagnosis permission signal Sk as a start signal and the rotation end signal as an end signal, and outputs it as detection time # 1.
  • the second threshold processing unit 267 determines whether or not the detection time # 1 measured by the first time measurement unit 265 is below a predetermined threshold, and if the detection time # 1 is below the threshold, the determination result # 1 is output as ON, and if it is not less than the threshold, determination result # 1 is output as OFF.
  • the second time measurement unit 266 starts time measurement when the failure sign signal Sj changes from OFF to ON, ends time measurement when the failure sign signal Sj changes from ON to OFF, and detects the result as detection time # 2. Output as.
  • the third threshold processing unit 268 determines whether or not the detection time # 2 measured by the second time measurement unit 266 is below a predetermined threshold, and if the detection time # 2 is below the threshold, The determination result # 2 is output as ON, and if it is not below the threshold, the determination result # 2 is output as OFF. Furthermore, the detection time determination unit 26 outputs a content obtained by ANDing the determination result # 1 and the determination result # 2 as a genuine tube detection signal Sm.
  • the genuine tube detection signal Sm determined and output as described above is based on the following concept. That is, the genuine X-ray tube 121 is designed in consideration of the time from the decrease in the noise level Sh to the rotation stop, or the detection time from the detection of the failure sign signal Sj to the end of detection,
  • the non-genuine X-ray tube 121 is generally different from the genuine X-ray tube 121 in terms of its characteristics.
  • the non-genuine X-ray tube 121 is used because its price is low. Therefore, in the non-genuine X-ray tube 121, no extra man-hours are spent for shortening the rotation stop time described above. Therefore, it is possible to determine whether or not the X-ray tube is genuine by determining whether or not each time is equal to or less than a certain value.
  • FIG. 9 is a diagram showing an example of the entire processing flow of the X-ray tube failure sign detection process in the X-ray tube failure sign detection apparatus 10.
  • the noise sensor unit 14 mainly measures noise vibration caused by the outside such as electromagnetic noise of the inverter (step S01).
  • the data processing unit 11 acquires the noise vibration data Se from the noise sensor unit 14 via the noise level calculation unit 23, and calculates the noise level Sh (step S02).
  • the data processing unit 11 determines whether or not the noise level Sh is lower than a predetermined threshold value via the threshold processing unit 24 (step S03), and if not lower than the threshold value (No in step S03). Then, the X-ray tube failure sign detection process is terminated.
  • the data processing unit 11 accepts an operation input for diagnosis permission by the operator via the diagnosis permission input reception unit 27 (step S04). ) If the diagnosis is not permitted (No in step S05), the X-ray tube failure sign detection process is terminated.
  • the source sensor unit 13 measures the vibration of the X-ray tube 12 (step S06) and measures the housing position of the X-ray tube 12 (step S06). S07), the housing temperature of the X-ray tube 12 is measured (step S08), and the housing angle of the X-ray tube 12 is further measured (step S09).
  • the data processing unit 11 acquires the X-ray tube vibration data Sa from the source sensor unit 13, performs frequency analysis via the frequency analysis unit 21 (step S ⁇ b> 10), and obtains it from the source sensor unit 13.
  • the detection mode determination unit 22 determines the detection mode Sg using the case position data Sb, the case temperature data Sc, and the case angle data to be detected (step S11).
  • the data processing unit 11 executes a failure sign detection process by the failure sign detection unit 25 (step S12), executes a detection time determination process by the detection time determination unit 26 (step S13), and the X-ray tube failure The sign detection process is terminated. Details of the failure sign detection process and the detection time determination process will be described later.
  • FIG. 10 is a diagram showing an example of a processing flow of measurement processing by the source sensor unit 13 or the noise sensor unit 14.
  • the source sensor unit 13 or the noise sensor unit 14 is simply referred to as a sensor unit
  • the three-axis acceleration sensors 131 and 141, the temperature sensor 132, or the gyro sensor 133 is simply referred to as a sensor. .
  • the sensor unit measures raw data by the sensor (step S21), and subsequently converts the measured raw data from analog data to digital data using A / D converters 134 and 142. Conversion is performed (step S22).
  • the sensor unit subjects the measurement data converted to digital data to filter processing by the signal processing units 135 and 143, and removes unused frequency components (step S23). Note that the execution order of step S22 and step S23 may be reversed.
  • the sensor unit determines the type of measurement data (step S24), and when the type of measurement data is a case temperature or a case angle (temperature, angle in step S24), the measurement process ends. To do. Further, when the type of measurement data is vibration data (vibration data in step S24), the sensor unit calculates vibration data from triaxial acceleration data (step S25), and the type of measurement data is position. If it is data (position data in step S24), the position data is calculated by integrating the three-axis acceleration data (step S26), and the measurement process is terminated.
  • FIG. 11 is a diagram showing an example of a detailed processing flow of the diagnosis input permission receiving process by the diagnosis permission input receiving unit 27.
  • the diagnostic input permission acceptance process described below corresponds to the process of step S04 in FIG.
  • the data processing unit 11 first refers to a diagnosis availability flag (see FIG. 14 described later) stored in the recording device 115 to determine whether diagnosis is possible (step S0401).
  • step S0401 the data processing unit 11 further refers to the diagnosis time and the internal clock stored in the recording device 115 to determine whether the diagnosis is in progress. It is determined whether or not (step S0402). As a result of the determination, if the diagnosis is being performed (Yes in step S0402), the data processing unit 11 ends the diagnosis input permission acceptance process. On the other hand, if it is not under diagnosis (No in step S0402), the process proceeds to step S0404.
  • step S0401 determines whether or not the diagnosis is stopped. Determination is made (step S0403). As a result of the determination, if the diagnosis is stopped (Yes in step S0403), the data processing unit 11 ends the diagnosis input permission acceptance process. On the other hand, if the diagnosis is not stopped (No in step S0403), the process proceeds to step S0404.
  • the data processing unit 11 performs a display requesting diagnosis permission on the display device 111 and receives an operation input for diagnosis permission (step S0404). If diagnosis is permitted by the operation input (Yes in step S0405), the data processing unit 11 inquires of the operator via the display device 111 whether the diagnosis is automatically continued. If an operation input indicating that diagnosis is automatically continued is received (Yes in step S0406), the data processing unit 11 receives an input of diagnosis time via the operation input device 114 (step S0408). The diagnosis input permission acceptance process is terminated. On the other hand, when an operation input indicating that the diagnosis is not automatically continued is received (No in step S0406), the data processing unit 11 sets the diagnosis time to 0 (step S0409) and performs the diagnosis input permission reception process. finish.
  • the data processing unit 11 determines whether or not the diagnosis is automatically continued for the operator via the display device 111. Inquire. If an operation input for automatically continuing diagnosis stop is received (Yes in step S0407), the data processing unit 11 receives an input of a stop time via the operation input device 114 (step S0410). Then, the diagnosis input permission acceptance process is terminated. On the other hand, when an operation input indicating that the diagnosis is not automatically continued is received (No in step S0407), the data processing unit 11 sets the stop time to 0 (step S0411), and performs the diagnosis input permission reception process. finish.
  • FIG. 12 is a diagram showing an example of a detailed processing flow of the failure sign detection process by the failure sign detection unit 25.
  • the failure sign detection process described below corresponds to the process of step S12 in FIG.
  • the data processing unit 11 takes in the detection mode Sg determined by the detection mode determination unit 22, and reads the average value data of the frequency components corresponding to the detection mode Sg with reference to the recording device 115 (step S121).
  • 1 is set to the repeat counter j (step S122), the distance calculating unit 251 # j by calculating the distance L j (step S123), while counting up the counter j, the counter j to the process of step S123
  • m is the number of characteristic frequency components, that is, the number of frequency components for which average value data is prepared in the recording device 115.
  • the data processing unit 11 calculates the minimum value from the distances L 1 to L m via the minimum value calculation unit 252 (step S125), and sets the minimum value as the degree of abnormality Sn. Subsequently, the data processing unit 11 determines whether or not the abnormality level Sn is larger than the predetermined threshold value via the threshold value determination unit 253 (step S126). If the abnormality level Sn is larger than the predetermined threshold value, A failure sign signal Sj is output.
  • FIG. 13 is a diagram illustrating an example of a detailed processing flow of detection time determination processing by the detection time determination unit 26. Note that the detection time determination process described below corresponds to the process of step S13 in FIG.
  • the data processing unit 11 determines whether or not the diagnosis permission signal Sk has changed from rejection to permission (S1301). If the diagnosis processing signal Sk has changed from rejection to permission (Yes in S1301), the first time measuring unit 265 is determined. Thus, measurement of the detection time # 1 is started (step S1302). If the diagnosis permission signal Sk does not change from rejection to permission (No in S1301), the process of step S1302 is skipped.
  • the data processing unit 11 determines whether or not the failure sign signal Sj has changed from OFF to ON (step S1303), and when the failure sign signal Sj has changed from OFF to ON (Yes in step S1303). ), The measurement of the detection time # 2 by the second time measurement unit 266 is started (step S1304). Further, when the failure sign signal Sj does not change from OFF to ON (No in step S1303), the process of step S1304 is skipped.
  • the data processing unit 11 determines whether or not the frequency component yi output from the demultiplexer 263 is greater than or equal to a predetermined threshold yc (step S1305). In step S1305, Yes), the measurement of the detection time # 1 by the first time measurement unit 265 is terminated (step S1306). Further, the data processing unit 11 executes the second threshold value processing by the second threshold value processing unit 267 (step S1307), and when the value of the detection time # 1 is equal to or greater than the predetermined threshold value, the determination result # If Y is set to 1 and it is not equal to or greater than the predetermined threshold value, N is set to determination result # 1.
  • step S1305 if it is determined in step S1305 that the frequency component yi is not equal to or greater than the predetermined threshold yc (No in step S1305), the data processing unit 11 sets Y to the determination result # 1 (step S1308).
  • the data processing unit 11 determines whether or not the failure sign signal Sj has changed from ON to OFF (step S1309), and when the failure sign signal Sj has changed from ON to OFF (Yes in step S1309). ), The measurement of the detection time # 2 by the second time measurement unit 266 is terminated (step S1310). Further, the data processing unit 11 executes the third threshold processing by the third threshold processing unit 268 (step S1311), and when the value of the detection time # 2 is equal to or greater than the predetermined threshold, the determination result # If Y is set to 2 and it is not equal to or greater than the predetermined threshold value, N is set to determination result # 2. On the other hand, if the failure sign signal Sj does not change from ON to OFF in the determination in step S1309 (No in step S1309), the data processing unit 11 sets Y to the determination result # 2 (step S1312).
  • the data processing unit 11 determines whether or not Y is set for both the determination result # 1 and the determination result # 2 (step S1313), and when both are set for Y (step S1313) In S1313, Y is set to the genuine tube detection signal Sm (Step S1314). On the other hand, if Y is not set in both the determination result # 1 and the determination result # 2, the data processing unit 11 sets N in the genuine tube detection signal Sm (step S1315).
  • the genuine tube detection signal Sm is Y, it is considered that a genuine tube is used as the X-ray tube 12, and when the genuine tube detection signal Sm is N, the genuine tube is used as the X-ray tube 12. Is considered unused.
  • FIG. 14 is a diagram showing an example of a data configuration stored in the recording device 115.
  • the recording device 115 includes frequency analysis data 1151, noise level calculation time interval (dT) 1152, noise low level threshold (ac) 1153, detection mode determination data 1154, failure sign detection. Data 1155, detection time determination data 1156, and diagnosis permission input acceptance data 1157 are stored.
  • the frequency analysis data 1151 is data used by the frequency analysis unit 21 and includes a sampling frequency (fs) and a frequency resolution (fc).
  • the sampling frequency (fs) represents the frequency at which the measurement data is sampled
  • the frequency resolution (fc) represents the frequency interval at which the frequency analysis result is output.
  • the frequency analysis unit 21 determines the number of FFT (Fast Fourier Transform) based on the sampling frequency (fs) and the frequency resolution (fc), and performs an FFT operation.
  • the noise level calculation amount time interval (dT) 1152 is a variable used by the noise level calculation unit 23, and is a parameter used in the integration interval in the calculation of the noise level (see also FIG. 5).
  • the noise low level threshold (ac) 1153 is a variable used by the threshold processing unit 24 and is used as a threshold for determining whether or not the noise level is low.
  • the detection mode determination data 1154 is a table used by the detection mode determination unit 22 to determine the detection mode Sg from the measured position, temperature, and angle of the X-ray tube 12 (see also FIG. 4). Therefore, as the detection mode determination data 1154, an angle threshold, a temperature threshold, an X-axis threshold, and a Y-axis threshold are stored. Further, as a mode table element of the detection mode determination data 1154, for each mode number of each detection mode, whether the measured angle is equal to or greater than the angle threshold, whether the measured temperature is equal to or greater than the temperature threshold is measured. Data indicating whether or not the X coordinate at the position is greater than or equal to the X-axis threshold and whether the Y coordinate is greater than or equal to the Y-axis threshold is stored.
  • the failure sign detection data 1155 is used by the failure sign detection unit 25 and is a variable for performing calculation related to failure sign detection, and includes detection mode i average value data and an abnormality degree threshold for the number of detection modes.
  • the average value data for detection mode i is an accumulation of average values for distance calculation in detection mode i. That is, the average value data for detection mode i is composed of m distance calculation j average value data, and each distance calculation j average value data is composed of n frequency component k average values. . That is, the average value of the frequency component k represents the average value of the frequency component k in the detection mode i and the cluster j.
  • the abnormality level threshold value is a threshold value used when the threshold value determination unit 253 performs threshold value determination of the abnormality level Sn.
  • the detection time determination data 1156 is used by the detection time determination unit 26 and includes a determination result # 1 threshold, a determination result # 2 threshold, and a frequency component threshold.
  • the threshold for determination result # 1 is a threshold used by the second threshold processing unit 267 for threshold determination (step S1307 in FIG. 13), and the threshold for determination result # 2 is used by the third threshold processing unit 268 for threshold determination. (Step S1311 in FIG. 13).
  • the frequency component threshold is a threshold used by the first threshold processing unit 264 for threshold determination (step S1305 in FIG. 13).
  • the diagnosis permission input reception data 1157 is used by the diagnosis permission input reception unit 27 and includes diagnosis (stop) time and diagnosis availability data.
  • the diagnosis (stop) time represents the time from the start to the end of diagnosis when the diagnosis is automatically continued for a certain period of time.
  • the diagnosis (stop) time can also indicate the time from the start to the end of diagnosis when the diagnosis is automatically stopped for a certain time.
  • the diagnosis availability is data indicating whether a diagnosis or a stop has been made when diagnosis or diagnosis stop is automatically continued.
  • FIG. 15 is a diagram illustrating an example of a display screen displayed on the display device 111 when the diagnosis permission input receiving process by the diagnosis permission input receiving unit 27 is executed.
  • the display device 111 displays a screen G01 for asking whether diagnosis is possible. Therefore, when “Yes” is selected, a screen G02 for asking whether or not to automatically diagnose is displayed.
  • the screen returns to the screen G01.
  • a screen G03 for accepting an input of a diagnosis time is displayed.
  • the screen moves to a screen G04 indicating that the diagnosis is ongoing.
  • the diagnosis duration time elapses, the screen returns to the screen G01 for asking whether diagnosis is possible.
  • a screen G05 is displayed asking whether or not to continue the stop automatically.
  • the screen returns to the screen G01.
  • a screen G06 for accepting the input of the stop time is displayed.
  • the screen moves to a screen G07 indicating that the stop is continuing.
  • the stop duration time elapses, the screen returns to the screen G01 for asking whether diagnosis is possible.
  • FIG. 16 is a diagram showing an example of a time chart of the noise level Sh, the noise low level signal Si, and the frequency components y1, y2, and yn.
  • the horizontal axis represents the time axis
  • the vertical axis represents the values of the noise level Sh, the noise low level signal Si, and the frequency components y1, y2, and yn in order from the top.
  • the measured values including noise are represented by thick solid lines
  • the true values not including noise are represented by thick broken lines.
  • ac noise low level threshold
  • FIG. 17 is a diagram showing an example of a time chart relating to detection time determination in the detection time determination unit 26.
  • the horizontal axis is the time axis
  • the vertical axis is the frequency component yi, diagnosis permission signal Sk, rotation end signal, detection time # 1, determination result # 1, failure sign signal Sj, detection time # 2, in order from the top.
  • the determination result # 2 is the value of each of the genuine tube detection signal Sm.
  • the determination result # 1 changes from Y (ON) to N (OFF).
  • the failure sign signal Sj when the failure sign signal Sj is turned from OFF to ON, counting of the detection time # 2 is started, and the value of the detection time # 2 increases from that timing.
  • the failure sign signal Sj changes from ON to OFF, the detection time # 2 is counted, and the value of the detection time # 2 becomes constant at that timing.
  • the determination result # 2 changes from Y (ON) to N (OFF).
  • the genuine tube detection signal Sm changes from Y (ON) to N (OFF) at the timing when either of the determination result # 1 and the determination result # 2 becomes N.
  • FIG. 18 is a diagram showing an example of a control processing flow in the starter control device 184.
  • the starter control device 184 first starts to rotate the rotating anode 123 (step S181). Specifically, a drive current is supplied to the stator 122 to rotate the rotary anode 123. Subsequently, the starter control device 184 ends the rotational drive of the rotary anode 123 (step S182). Specifically, the supply of drive current to the stator 122 is stopped. Thereafter, a dummy count is performed for several seconds (step S183).
  • the starter control device 184 starts rotational braking of the rotary anode 123 (step S184). Specifically, a braking current is supplied to the stator 122 so that the rotating anode 123 stops. Subsequently, the starter control device 184 ends the rotational braking of the rotary anode 123 (step S185). Specifically, the supply of the braking current to the rotating anode 123 is stopped.
  • the current supply to the stator 122 is stopped during the dummy count for several seconds (step S183), so that the noise level Sh is reduced below a predetermined threshold value. Therefore, the X-ray tube failure sign detection apparatus 10 can detect a failure sign without being significantly affected by noise during the dummy count (step S183) for several seconds.
  • the embodiment of the present invention it is possible to determine a noise level from a noise generation source such as an inverter and detect a failure sign while the noise level is low. Therefore, it is possible to detect the occurrence of abnormal noise from the rotating anode 123 or the like without being affected by noise from the noise generation source. In this case, it is not necessary to make a modification such as newly acquiring a control signal from the starter controller 184 or the like.
  • the detection mode is determined based on the housing position, housing angle, and housing temperature of the X-ray tube 12
  • the detection mode that is, various housing positions and housings of the X-ray tube 12 are determined. Appropriate failure sign detection can be performed according to the angle and the casing temperature.
  • the genuine X-ray tube 12 is designed in consideration of the detection time from the stop command to the stop, whereas the non-genuine X-ray tube 12 has a detection time of genuine X-ray due to its characteristics. It is thought that it is different from the tube. In the present embodiment, it is possible to determine whether or not the X-ray tube 12 is genuine by determining whether or not the detection time is equal to or greater than a certain value.
  • FIG. 19 is a diagram illustrating an example of a hardware configuration of an X-ray tube failure sign detection apparatus 10a according to a modification of the embodiment of the present invention.
  • the configuration of the X-ray tube failure sign detection device 10a according to this modification is the same as that of the X-ray tube failure sign detection device 10 shown in FIG. 2, the source sensor unit 13a, and the noise sensor.
  • the difference is that each of the units 14a includes sound sensors 136 and 144 such as microphones.
  • the source sensor unit 13a has an audio sensor 136 added to the acceleration sensor 131, the temperature sensor 132, and the gyro sensor 133 as sensors.
  • the sound sensor 136 detects vibration generated by the X-ray tube 12 as sound, and the detection signal passes through the A / D converter 134 and the signal processing unit 135 and is output as sound X-ray tube vibration data Sa. Therefore, in this modification, the detection signal of the acceleration sensor 131 is used to calculate the housing position data Sb representing the position of the X-ray tube 12, and is not used to generate the X-ray tube vibration data Sa. .
  • a voice sensor 144 is used instead of the acceleration sensor 141. Then, noise emitted from other than the X-ray tube 12 is detected by the voice sensor 144, passes through the A / D converter 142 and the signal processing unit 143, and is output as voice noise vibration data Se.
  • the configuration of the data processing unit 11 is the same as the configuration in the above-described embodiment, and various processes performed in the data processing unit 11 are the same as the processing in the above-described embodiment. That is, in this modification, it can be said that the above-described embodiment is configured to detect a sign of failure of the X-ray tube 12 by detecting an abnormality in the sound emitted from the X-ray tube 12, that is, an abnormal sound. .
  • the acceleration sensor 131 that detects the position can be used with an inexpensive sensor that does not require high-frequency characteristics.
  • the frequency characteristics of the audio sensors 136 and 144 are not limited to the human audible frequency band, and may be wider or narrower than that.
  • the present invention is not limited to the embodiment described above, and includes various modifications.
  • the above embodiment has been described in detail for easy understanding of the present invention, and is not necessarily limited to the one having all the configurations described.
  • a part of the configuration of an embodiment can be replaced with a part of the configuration of another embodiment, and further, a part or all of the configuration of the other embodiment is added to the configuration of the certain embodiment. Is also possible.

Landscapes

  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • Toxicology (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • X-Ray Techniques (AREA)

Abstract

A data processing unit (11) provided with a frequency analyzer (21) for performing vibration frequency analysis, a noise level calculator (23) for calculating the level of noise produced outside an X-ray tube, and a defect sign detector (25) for detecting a sign of an X-ray tube defect. The defect sign detector (25), upon being triggered by the noise level calculated by the noise level calculator (23) falling to or below a predetermined threshold value, performs a frequency analysis on the vibration produced inside the X-ray tube through the frequency analyzer (21), and detects a sign of a detect on the basis of the analysis result.

Description

X線管故障予兆検知装置、X線管故障予兆検知方法およびX線装置X-ray tube failure sign detection apparatus, X-ray tube failure sign detection method, and X-ray apparatus
 本発明は、X線管の故障予兆を検知するX線管故障予兆検知装置およびX線管故障予兆検知方法、ならびに、そのX線管故障予兆検知装置を用いたX線装置に関する。 The present invention relates to an X-ray tube failure sign detection device and an X-ray tube failure sign detection method for detecting an X-ray tube failure sign, and an X-ray apparatus using the X-ray tube failure sign detection device.
 一般的なX線診断装置では、高電圧の陰極から出射した電子を回転する陽極に照射することによりX線を発生させるタイプのX線管が多く用いられている。このようなX線管では、陽極を滑らかに回転させるために固体ベアリングが用いられている。その固体ベアリングが劣化するとX線管が故障を引き起こし、X線診断装置が使用不能となる。 In general X-ray diagnostic apparatuses, a type of X-ray tube that generates X-rays by irradiating a rotating anode with electrons emitted from a high-voltage cathode is often used. In such an X-ray tube, a solid bearing is used to smoothly rotate the anode. If the solid bearing deteriorates, the X-ray tube will break down and the X-ray diagnostic apparatus becomes unusable.
 とくに医療現場でX線診断装置が使用不能となることは許容されないので、X線管は、故障するかなり前の十分に使用可能な状態で新品と交換される。これは、X線診断装置の保守費用増大の大きな原因となっている。そこで、保守費用削減のために、X線管は、故障する直前まで使用し、できるだけ長く使用可能にすることが求められている。 In particular, since it is not allowed that the X-ray diagnostic apparatus cannot be used in the medical field, the X-ray tube is replaced with a new one in a sufficiently usable state long before failure. This is a major cause of an increase in maintenance costs of the X-ray diagnostic apparatus. Therefore, in order to reduce maintenance costs, the X-ray tube is required to be used until just before failure and to be usable as long as possible.
 例えば、特許文献1には、振動センサによりX線管が発する振動を検出して周波数分析を行い、その周波数分析結果からX線管の異音すなわち故障予兆を検知する技術が開示されている。しかしながら、現実のX線管では、陰極に印加する高電圧や陽極を回転させる交流を発生するために用いられているインバータから生じる電磁ノイズのため、劣化したX線管球から発生する異音を検出するのは、実質的に困難な状況となっている。 For example, Patent Document 1 discloses a technique in which vibration generated by an X-ray tube is detected by a vibration sensor, frequency analysis is performed, and abnormal noise of the X-ray tube, that is, a failure sign is detected from the frequency analysis result. However, in an actual X-ray tube, abnormal noise generated from a deteriorated X-ray tube is generated due to electromagnetic noise generated from an inverter used to generate a high voltage applied to the cathode and an alternating current that rotates the anode. It is a practically difficult situation to detect.
 そこで、例えば、特許文献2には、X線管から得られる振動データをフィルタリングして、インバータが発する周波数成分の電磁ノイズを除去することにより、インバータの電磁ノイズの影響を受けないようにしたX線管の故障予兆検知装置の例が開示されている。また、特許文献3には、陽極の駆動モータのオフ信号から陽極の回転状態を判定し、慣性回転であるときに故障予兆検知を行うようにしたX線管の故障予兆検知装置の例が開示されている。 Therefore, for example, in Patent Document 2, the vibration data obtained from the X-ray tube is filtered to remove the electromagnetic noise of the frequency component generated by the inverter, thereby preventing the influence of the electromagnetic noise of the inverter. An example of a tube failure sign detection device is disclosed. Patent Document 3 discloses an example of an X-ray tube failure sign detection apparatus that determines the rotation state of an anode from an off signal of an anode drive motor and detects a failure sign detection during inertial rotation. Has been.
特開2011-45626号公報JP 2011-45626 A 特開2013-29484号公報JP 2013-29484 A WO2006/030786WO2006 / 030786
 特許文献1に記載のX線管の故障予兆検知技術では、インバータの電磁ノイズを機械的、構造的な手段で遮蔽さえできればよいのであるが、それには、振動センサの取り付け位置などに様々な制約が生じたり、製造コストが増大したりするデメリットがある。
 また、特許文献2に記載の電磁ノイズをフィルタで除去する技術の場合、電磁ノイズの周波数成分と異音の周波数成分が近い場合には、異音の周波数成分まで除去されてしまう恐れがある。
In the X-ray tube failure sign detection technology described in Patent Document 1, it is only necessary to shield the electromagnetic noise of the inverter by mechanical and structural means, but there are various restrictions on the mounting position of the vibration sensor and the like. There is a demerit that the production cost increases.
In the case of the technology for removing electromagnetic noise described in Patent Document 2 with a filter, if the frequency component of electromagnetic noise is close to the frequency component of abnormal noise, there is a risk that even the frequency component of abnormal noise may be removed.
 特許文献3に記載の技術の場合、インバータが作動していない慣性回転時のX線管の異音を検出するので、インバータによる電磁ノイズの問題は解決される。しかしながら、既存のX線装置にX線管の故障の予兆を検知する装置を組み込もうとすると、陽極回転を駆動するためのスタータ制御装置から陽極回転のオン/オフ信号を取り込む必要があるため、X線管だけでなく、X線装置本体側にも改造が必要となるという問題点が生じる。 In the case of the technique described in Patent Document 3, since the abnormal noise of the X-ray tube during inertial rotation when the inverter is not operating is detected, the problem of electromagnetic noise due to the inverter is solved. However, if an apparatus for detecting a sign of a failure of an X-ray tube is to be incorporated into an existing X-ray apparatus, it is necessary to capture an anode rotation on / off signal from a starter controller for driving the anode rotation. In addition to the X-ray tube, the X-ray apparatus main body side needs to be modified.
 以上の従来技術の問題点に鑑み、本発明の目的は、X線装置の改造をできるだけ少なくし、かつ、インバータの電磁ノイズの影響を受けることなく、X線管の故障予兆を検知することが可能なX線管故障予兆検知装置、X線管故障予兆検知方法およびX線装置を提供することある。 In view of the above-described problems of the prior art, the object of the present invention is to detect a sign of failure of an X-ray tube while minimizing the modification of the X-ray device and without being affected by the electromagnetic noise of the inverter. A possible X-ray tube failure sign detection device, an X-ray tube failure sign detection method, and an X-ray device are provided.
 本発明のX線管故障予兆検知装置は、X線管の内部で生じる振動を計測する第1の振動センサと、X線管の外部で生じる振動を計測する第2の振動センサと、前記第1の振動センサにより計測される振動の振動データを周波数分析する周波数分析部と、を備え、前記第2の振動センサで計測される振動の振動レベルが既定の閾値よりも低くなったタイミングをトリガとして、前記第1の振動センサによって計測される振動の振動データを取得し、前記周波数分析部を介して前記振動データの周波数分析を行い、その周波数分析結果に基づき故障予兆検知を行うことを特徴とするX線管故障予兆検知装置である。 An X-ray tube failure sign detection apparatus according to the present invention includes a first vibration sensor that measures vibration generated inside an X-ray tube, a second vibration sensor that measures vibration generated outside the X-ray tube, A frequency analysis unit that analyzes frequency of vibration data measured by the first vibration sensor, and triggers a timing when the vibration level of the vibration measured by the second vibration sensor becomes lower than a predetermined threshold value. The vibration data of the vibration measured by the first vibration sensor is acquired, the frequency analysis of the vibration data is performed via the frequency analysis unit, and the failure sign detection is performed based on the frequency analysis result. Is an X-ray tube failure sign detection device.
 本発明によれば、X線装置の改造をできるだけ少なくし、かつ、インバータの電磁ノイズの影響を受けることなく、X線管の故障予兆を検知することが可能なX線管故障予兆検知装置、X線管故障予兆検知方法およびX線装置が提供される。 According to the present invention, an X-ray tube failure sign detection device capable of detecting a failure sign of an X-ray tube with minimal modification of the X-ray device and without being affected by the electromagnetic noise of the inverter, An X-ray tube failure sign detection method and an X-ray apparatus are provided.
本発明の実施形態に係るX線管故障予兆検知装置を備えたX線装置の全体構成の例を示した図。The figure which showed the example of the whole structure of the X-ray apparatus provided with the X-ray tube failure sign detection apparatus which concerns on embodiment of this invention. 本発明の実施形態に係るX線管故障予兆検知装置のハードウェア構成の例を示した図。The figure which showed the example of the hardware constitutions of the X-ray tube failure sign detection apparatus which concerns on embodiment of this invention. 本発明の実施形態に係るX線管故障予兆検知装置におけるデータ処理ユニットの機能ブロック構成の例を示した図。The figure which showed the example of the functional block structure of the data processing unit in the X-ray tube failure sign detection apparatus which concerns on embodiment of this invention. 検知モード判定部における判定処理の例を一覧表として示した図。The figure which showed the example of the determination process in a detection mode determination part as a list. 雑音レベル算出部の処理内容の例を模式的に示した図。The figure which showed typically the example of the processing content of a noise level calculation part. 故障予兆検知部の機能ブロック構成の例を示した図。The figure which showed the example of the functional block structure of a failure sign detection part. 切替部の機能ブロック構成の例を示した図。The figure which showed the example of the functional block structure of the switch part. 検知時間判定部の機能ブロック構成の例を示した図。The figure which showed the example of the functional block structure of a detection time determination part. X線管故障予兆検知装置におけるX線管故障予兆検知処理の全体処理フローの例を示した図。The figure which showed the example of the whole processing flow of the X-ray tube failure sign detection process in an X-ray tube failure sign detection apparatus. ソース用センサユニットまたは雑音用センサユニットによる計測処理の処理フローの例を示した図。The figure which showed the example of the processing flow of the measurement process by the sensor unit for sources or the sensor unit for noise. 診断入力許可受付部による診断入力許可受付処理の詳細な処理フローの例を示した図。The figure which showed the example of the detailed process flow of the diagnostic input permission reception process by a diagnostic input permission reception part. 故障予兆検知部による故障予兆検知処理の詳細な処理フローの例を示した図。The figure which showed the example of the detailed process flow of the failure sign detection process by a failure sign detection part. 検知時間判定部による検知時間判定処理の詳細な処理フローの例を示した図。The figure which showed the example of the detailed process flow of the detection time determination process by a detection time determination part. 記録装置に記憶されるデータ構成の例を示した図。The figure which showed the example of the data structure memorize | stored in a recording device. 診断許可入力受付部による診断許可入力受付処理が実行される際に表示装置に表示される表示画面の例を示した図。The figure which showed the example of the display screen displayed on a display apparatus when the diagnosis permission input reception process by a diagnosis permission input reception part is performed. 雑音レベル信号、雑音低レベル信号および周波数成分のタイムチャートの例を示した図。The figure which showed the example of the time chart of a noise level signal, a noise low level signal, and a frequency component. 検知時間判定部における検知時間判定に関するタイムチャートの例を示した図。The figure which showed the example of the time chart regarding the detection time determination in a detection time determination part. スタータ制御装置における制御処理フローの例を示した図。The figure which showed the example of the control processing flow in a starter control apparatus. 本発明の実施形態の変形例に係るX線管故障予兆検知装置のハードウェア構成の例を示した図The figure which showed the example of the hardware constitutions of the X-ray tube failure sign detection apparatus which concerns on the modification of embodiment of this invention
 以下、本発明を実施するための形態(以下「実施形態」という)について、図面を参照して詳細に説明する。 Hereinafter, modes for carrying out the present invention (hereinafter referred to as “embodiments”) will be described in detail with reference to the drawings.
 図1は、本発明の実施形態に係るX線管故障予兆検知装置10を備えたX線装置100の全体構成の例を示した図である。図1に示すように、X線装置100は、X線管故障予兆検知装置10と、X線管12と、高電圧装置16と、フィラメント加熱装置17と、スタータ装置18と、交流電源19と、を含んで構成される。 FIG. 1 is a diagram illustrating an example of the entire configuration of an X-ray apparatus 100 including an X-ray tube failure sign detection apparatus 10 according to an embodiment of the present invention. As shown in FIG. 1, the X-ray apparatus 100 includes an X-ray tube failure sign detection device 10, an X-ray tube 12, a high voltage device 16, a filament heating device 17, a starter device 18, and an AC power source 19. , Including.
 X線管12は、X線管筐体120に真空管の一種であるX線管球121が収納、固定されて構成される。そして、X線管球121内には、回転陽極123および陰極124が収納されている。このとき、回転陽極123は、X線管球121の容器の内壁に個体ベアリングなどのベアリング機構を介して支持され、また、回転陽極123が配設されたX線管球121の外側には、回転陽極123を回転させる交流磁場を供給するステータ122が配設されている。
 このようなX線管12においては、陰極124と回転陽極123との間に高電圧が印加されると、陰極124のフィラメントから放出された電子がその高電圧により加速され、回転陽極123に取り付けられたターゲット材123aに衝突することによりX線が発生する。
The X-ray tube 12 is configured by housing and fixing an X-ray tube 121, which is a kind of vacuum tube, in an X-ray tube housing 120. A rotating anode 123 and a cathode 124 are accommodated in the X-ray tube 121. At this time, the rotating anode 123 is supported on the inner wall of the container of the X-ray tube 121 via a bearing mechanism such as a solid bearing, and on the outside of the X-ray tube 121 on which the rotating anode 123 is disposed, A stator 122 that supplies an alternating magnetic field that rotates the rotating anode 123 is disposed.
In such an X-ray tube 12, when a high voltage is applied between the cathode 124 and the rotating anode 123, electrons emitted from the filament of the cathode 124 are accelerated by the high voltage and attached to the rotating anode 123. X-rays are generated by colliding with the target material 123a.
 高電圧装置16は、X線管12の陰極124と回転陽極123との間に印加する高電圧を発生させる装置であり、交流電源19につながれた直流電源161と、直流電圧から特定周波数の交流電圧を発生させる高電圧用インバータ162と、特定周波数の交流電圧を直流電圧へ変換する高電圧用トランス163と、を含んで構成される。 The high voltage device 16 is a device that generates a high voltage applied between the cathode 124 and the rotary anode 123 of the X-ray tube 12, and a DC power source 161 connected to the AC power source 19, and an AC of a specific frequency from the DC voltage. A high voltage inverter 162 that generates a voltage and a high voltage transformer 163 that converts an AC voltage having a specific frequency into a DC voltage are included.
 フィラメント加熱装置17は、陰極124のフィラメントを加熱させる電流を発生させる装置であり、高電圧装置16と同様に、直流電源171と、フィラメント用インバータ172と、フィラメント用トランス173と、を含んで構成される。 The filament heating device 17 is a device that generates a current for heating the filament of the cathode 124, and includes a DC power source 171, a filament inverter 172, and a filament transformer 173, similar to the high voltage device 16. Is done.
 スタータ装置18は、X線管12のステータ122に磁力を発生させるための電圧を発生させるための装置であり、直流電源181と、スタータ用インバータ182と、スタータ用トランス183と、スタータ制御装置184と、を含んで構成される。スタータ制御装置184は、ステータ122への電圧の加え方を制御することにより、回転陽極123の回転を制御する。 The starter device 18 is a device for generating a voltage for generating a magnetic force in the stator 122 of the X-ray tube 12, and includes a DC power supply 181, a starter inverter 182, a starter transformer 183, and a starter control device 184. And comprising. The starter control device 184 controls the rotation of the rotating anode 123 by controlling how the voltage is applied to the stator 122.
 X線管故障予兆検知装置10は、いわゆるパソコンなどのコンピュータによって構成されるデータ処理ユニット11と、X線管12の内部で生じる振動やX線管12の位置、姿勢、温度などを計測するソース用センサユニット13と、X線管12の外部に起因する振動を計測する雑音用センサユニット14と、雑音用センサユニット14をX線管12の内部の振動から遮断する振動遮断材15と、を含んで構成される。 The X-ray tube failure sign detection apparatus 10 includes a data processing unit 11 configured by a computer such as a so-called personal computer, and a source for measuring vibrations generated in the X-ray tube 12 and the position, posture, temperature, etc. of the X-ray tube 12. A sensor unit 13 for noise, a noise sensor unit 14 for measuring vibration caused by the outside of the X-ray tube 12, and a vibration isolating material 15 for blocking the noise sensor unit 14 from vibration inside the X-ray tube 12. Consists of including.
 ここで、ソース用センサユニット13に含まれる加速度センサ131(図2参照)は、X線管筐体120に取り付けられ、とくに回転陽極123が回転するときに生ずるわずかな振動(音)を計測するものである。しかしながら、加速度センサ131は、高電圧用インバータ162、フィラメント用インバータ172、スタータ用インバータ182などからの電磁ノイズの影響を免れ得ないのが現実である。 Here, the acceleration sensor 131 (see FIG. 2) included in the source sensor unit 13 is attached to the X-ray tube casing 120, and particularly measures slight vibration (sound) generated when the rotating anode 123 rotates. Is. However, in reality, the acceleration sensor 131 cannot avoid the influence of electromagnetic noise from the high voltage inverter 162, the filament inverter 172, the starter inverter 182 and the like.
 一方、雑音用センサユニット14は、主として高電圧用インバータ162、フィラメント用インバータ172、スタータ用インバータ182などからの電磁ノイズによって生じる振動、すなわち、加速度センサ131にとっては雑音(ノイズ)となるものを計測する。従って、本実施形態では、雑音用センサユニット14は、振動を伝播しない素材の振動遮断材15を介してX線管筐体120に取り付けられ、X線管12の内部で発生する振動を計測しないようにされている。 On the other hand, the noise sensor unit 14 measures vibrations caused by electromagnetic noise mainly from the high voltage inverter 162, the filament inverter 172, the starter inverter 182 and the like, that is, noise that is a noise for the acceleration sensor 131. To do. Therefore, in the present embodiment, the noise sensor unit 14 is attached to the X-ray tube casing 120 via the vibration blocking material 15 that does not propagate vibration, and does not measure vibration generated inside the X-ray tube 12. Has been.
 なお、雑音用センサユニット14は、振動遮断材15を介してX線管筐体120に取り付けられるのではなく、X線管12からできるだけ離れた場所、例えば、電磁ノイズの発生源である高電圧用インバータ162に近い場所に設置されてもよい。 The noise sensor unit 14 is not attached to the X-ray tube casing 120 via the vibration isolator 15 but is located as far as possible from the X-ray tube 12, for example, a high voltage that is a source of electromagnetic noise. It may be installed at a location close to the inverter 162 for use.
 図2は、本発明の実施形態に係るX線管故障予兆検知装置10のハードウェア構成の例を示した図である。図2に示すように、X線管故障予兆検知装置10のソース用センサユニット13は、加速度センサ131、温度センサ132、ジャイロセンサ133、A/D変換器134、信号処理部135を含んで構成される。 FIG. 2 is a diagram showing an example of a hardware configuration of the X-ray tube failure sign detection apparatus 10 according to the embodiment of the present invention. As shown in FIG. 2, the source sensor unit 13 of the X-ray tube failure sign detection apparatus 10 includes an acceleration sensor 131, a temperature sensor 132, a gyro sensor 133, an A / D converter 134, and a signal processing unit 135. Is done.
 ここで、加速度センサ131は、いわゆる3軸加速度センサであり、X線管12が受ける3次元(x方向、y方向およびz方向)の加速度を計測する。また、温度センサ132は、X線管筐体120の温度を計測し、ジャイロセンサ133は、X線管筐体120の回転角度を計測する。 Here, the acceleration sensor 131 is a so-called three-axis acceleration sensor, and measures the three-dimensional (x direction, y direction, and z direction) acceleration received by the X-ray tube 12. The temperature sensor 132 measures the temperature of the X-ray tube casing 120, and the gyro sensor 133 measures the rotation angle of the X-ray tube casing 120.
 A/D変換器134は、加速度センサ131、温度センサ132およびジャイロセンサ133で計測したそれぞれのアナログ信号をディジタルデータへ変換する。 The A / D converter 134 converts each analog signal measured by the acceleration sensor 131, the temperature sensor 132, and the gyro sensor 133 into digital data.
 信号処理部135は、A/D変換されたそれぞれのディジタルデータからX線管12の故障予兆検知(以下、故障予兆診断とも、単に、診断ともいう)に不必要な周波数成分を除去する役割を果たす。そして、信号処理部135は、加速度センサ131を介して得られる3次元の加速度データを、X線管12が発する振動データに変換し、X線管振動データSaとして出力する。さらに、信号処理部135は、各方向の加速度データを積分することにより、X線管12の位置を表す筐体位置データSb(とくに、X座標とY座標)を算出し、出力する。同様に、信号処理部135は、温度センサ132を介して得られる温度データを筐体温度データScとして出力し、ジャイロセンサ133を介して得られる角度データを筐体角度データSdとして出力する。 The signal processing unit 135 serves to remove unnecessary frequency components for detection of a failure sign of the X-ray tube 12 (hereinafter also referred to as failure sign diagnosis or simply diagnosis) from each A / D converted digital data. Fulfill. The signal processing unit 135 converts the three-dimensional acceleration data obtained via the acceleration sensor 131 into vibration data emitted from the X-ray tube 12 and outputs the vibration data as X-ray tube vibration data Sa. Further, the signal processing unit 135 calculates and outputs housing position data Sb (in particular, the X coordinate and the Y coordinate) representing the position of the X-ray tube 12 by integrating the acceleration data in each direction. Similarly, the signal processing unit 135 outputs the temperature data obtained via the temperature sensor 132 as the case temperature data Sc, and outputs the angle data obtained via the gyro sensor 133 as the case angle data Sd.
 なお、ソース用センサユニット13において、A/D変換器134と信号処理部135とで、その処理順番は逆であってもよい。X線管12が発する振動を検知するセンサとしては、加速度センサ131の代わりに音声検知用のマイクロフォンを用いてもよい。 In the source sensor unit 13, the processing order of the A / D converter 134 and the signal processing unit 135 may be reversed. As a sensor for detecting vibration generated by the X-ray tube 12, a voice detection microphone may be used instead of the acceleration sensor 131.
 同様に、雑音用センサユニット14は、加速度センサ141、A/D変換器142、信号処理部143を含んで構成される。ここで、加速度センサ141は、いわゆる3軸加速度センサであり、自身が受ける3次元(x方向、y方向およびz方向)の加速度を計測する。A/D変換器142は、加速度センサ141で計測したそれぞれのアナログ信号をディジタルデータへ変換する。信号処理部143は、加速度センサ141を介して得られる3次元の加速度データから診断に不必要な周波数成分を除去し、X線管12以外から発せられる振動のデータ、つまり、雑音振動データSeとして出力する。
 なお、雑音振動データSeを取得するセンサとしては、加速度センサ141の代わりに音声検知用のマイクロフォンを用いてもよい。
Similarly, the noise sensor unit 14 includes an acceleration sensor 141, an A / D converter 142, and a signal processing unit 143. Here, the acceleration sensor 141 is a so-called three-axis acceleration sensor, and measures the three-dimensional (x direction, y direction, and z direction) acceleration received by itself. The A / D converter 142 converts each analog signal measured by the acceleration sensor 141 into digital data. The signal processing unit 143 removes frequency components unnecessary for diagnosis from the three-dimensional acceleration data obtained via the acceleration sensor 141, and generates vibration data emitted from other than the X-ray tube 12, that is, noise vibration data Se. Output.
As a sensor for acquiring the noise vibration data Se, a voice detection microphone may be used instead of the acceleration sensor 141.
 X線管故障予兆検知装置10のデータ処理ユニット11は、表示装置111、警報装置112、中央処理装置113、操作入力装置114、記録装置115、記憶装置116、I/Oポート117などを含んで構成され、いわゆるパソコンなど一般的なコンピュータの構成をなしている。 The data processing unit 11 of the X-ray tube failure sign detection device 10 includes a display device 111, an alarm device 112, a central processing device 113, an operation input device 114, a recording device 115, a storage device 116, an I / O port 117, and the like. It has a general computer configuration such as a so-called personal computer.
 I/Oポート117は、ソース用センサユニット13または雑音用センサユニット14から出力されるX線管振動データSa、筐体位置データSb、筐体温度データSc、筐体角度データSdおよび雑音振動データSeを取り込み、そのデータを記録装置115に書き込む。なお、記録装置115は、X線管故障予兆検知処理に必要なデータを記録しておく記憶装置であり、ここでは、テンポラリデータを記憶する記憶装置116とは、とくに区別をしている。 The I / O port 117 includes X-ray tube vibration data Sa, case position data Sb, case temperature data Sc, case angle data Sd, and noise vibration data output from the source sensor unit 13 or the noise sensor unit 14. Se is taken in and the data is written in the recording device 115. Note that the recording device 115 is a storage device that records data necessary for the X-ray tube failure sign detection process, and here is particularly distinguished from the storage device 116 that stores temporary data.
 中央処理装置113は、例えば、記憶装置116に格納されたX線管故障予兆検知処理のプログラムを実行することにより、X線管故障予兆検知装置10が有する所定の機能を実現する。なお、その機能の詳細については、後記するところによる。 The central processing unit 113 implements a predetermined function of the X-ray tube failure sign detection device 10 by executing, for example, an X-ray tube failure sign detection processing program stored in the storage device 116. Details of the function will be described later.
 なお、表示装置111は、中央処理装置113が実行するプログラムに従って、操作者に対し、X線管故障予兆検知の診断の許可を求める表示を行う。操作入力装置114は、操作者が診断の許可または不許可のデータを入力するのに用いられる。警報装置112は、X線管故障予兆検知の診断結果で異常が出た場合に警報を発する装置である。 Note that the display device 111 performs a display requesting permission for diagnosis of the X-ray tube failure sign detection to the operator according to a program executed by the central processing unit 113. The operation input device 114 is used by an operator to input data for permitting or not permitting diagnosis. The alarm device 112 is a device that issues an alarm when an abnormality occurs in the diagnosis result of the X-ray tube failure sign detection.
 図3は、本発明の実施形態に係るX線管故障予兆検知装置10におけるデータ処理ユニット11の機能ブロック構成の例を示した図である。図3に示すように、データ処理ユニット11は、周波数分析部21、検知モード判定部22、雑音レベル算出部23、閾値処理部24、故障予兆検知部25、検知時間判定部26などを含んで構成される。 FIG. 3 is a diagram showing an example of a functional block configuration of the data processing unit 11 in the X-ray tube failure sign detection apparatus 10 according to the embodiment of the present invention. As shown in FIG. 3, the data processing unit 11 includes a frequency analysis unit 21, a detection mode determination unit 22, a noise level calculation unit 23, a threshold processing unit 24, a failure sign detection unit 25, a detection time determination unit 26, and the like. Composed.
 周波数分析部21は、ソース用センサユニット13からX線管振動データSaを取得し、高速フーリエ変換(FFT:Fast Fourier Transform)などにより周波数分析を行い、その結果を周波数分析結果Sfとして出力する。また、検知モード判定部22は、筐体位置データSbと筐体温度データScと筐体角度データSdとからX線管12の姿勢の角度を判定し、その結果を検知モードSgとして出力する。また、雑音レベル算出部23は、雑音振動データSeの値から雑音レベルShを算出する。また、閾値処理部24は、雑音レベルShが既定の閾値を超えたか否かを判定し、その結果を雑音低レベル信号Siとして出力する。ただし、雑音低レベル信号Siは、雑音レベルShが閾値以下であることを表す。 The frequency analysis unit 21 acquires the X-ray tube vibration data Sa from the source sensor unit 13, performs frequency analysis by Fast Fourier Transform (FFT), and outputs the result as the frequency analysis result Sf. Moreover, the detection mode determination part 22 determines the angle of the attitude | position of the X-ray tube 12 from housing | casing position data Sb, housing | casing temperature data Sc, and housing | casing angle data Sd, and outputs the result as detection mode Sg. In addition, the noise level calculation unit 23 calculates the noise level Sh from the value of the noise vibration data Se. Further, the threshold processing unit 24 determines whether or not the noise level Sh exceeds a predetermined threshold, and outputs the result as a noise low level signal Si. However, the noise low level signal Si represents that the noise level Sh is equal to or less than a threshold value.
 故障予兆検知部25は、雑音低レベル信号Siの立ち上がりをトリガとして、周波数分析結果Sfを用いてX線管12の故障予兆を検知し、その結果を故障予兆信号Sjとして出力する。このとき、検知時間判定部26は、診断許可信号Skの立ち上がりを開始信号とし、周波数分析結果Sfのうち回転成分が既定の閾値未満になったときを終了信号として、検知時間を計測し、既定の閾値を越えているか否かを判定することにより、純正管球であるか否かを示す純正管球検知信号Smを出力する。なお、検知時間判定部26は、故障予兆信号Sjの立ち上がりから立ち下がりまでの時間を計測し、既定の閾値を越えているか否かを判定することにより、純正管球であるか否かを判定してもよい。 The failure sign detection unit 25 detects the failure sign of the X-ray tube 12 using the frequency analysis result Sf using the rise of the noise low level signal Si as a trigger, and outputs the result as a failure sign signal Sj. At this time, the detection time determination unit 26 measures the detection time by using the rising edge of the diagnosis permission signal Sk as a start signal and measuring the detection time as a termination signal when the rotational component of the frequency analysis result Sf is less than a predetermined threshold. By determining whether or not the threshold value is exceeded, a genuine tube detection signal Sm indicating whether or not the tube is a genuine tube is output. The detection time determination unit 26 measures the time from the rising edge to the falling edge of the failure sign signal Sj, and determines whether or not it is a genuine tube by determining whether or not a predetermined threshold value is exceeded. May be.
 診断許可入力受付部27は、故障予兆検知部25からの診断許可要求信号Slを受け取り、表示装置111に診断許可を求める表示を行う。また、診断許可入力受付部27は、操作入力装置114を介して診断許可に関する入力を受け付けたときには、診断許可信号Skを故障予兆検知部25および検知時間判定部26へ向けて出力する。 The diagnosis permission input reception unit 27 receives the diagnosis permission request signal S1 from the failure sign detection unit 25 and displays on the display device 111 asking for diagnosis permission. The diagnosis permission input receiving unit 27 outputs a diagnosis permission signal Sk toward the failure sign detection unit 25 and the detection time determination unit 26 when receiving an input regarding diagnosis permission via the operation input device 114.
 なお、以上のデータ処理ユニット11を構成する機能ブロックについては、これ以降の図面を参照して、さらに詳しく説明する。 Note that the functional blocks constituting the above data processing unit 11 will be described in more detail with reference to the subsequent drawings.
 図4は、検知モード判定部22における判定処理の例を一覧表として示した図である。検知モード判定部22は、筐体角度データSdが閾値θc以上か否かを判定し、次に、筐体温度データScが閾値Tc以上か否かを判定し、さらに、筐体位置データSbのうち、x軸成分がXc以上か否かを判定し、y軸成分がYc以上か否かを判定する。そして、検知モード判定部22は、以上の4項目の判定結果に従って、予め準備された図4に示すような検知モードの分類テーブルを参照して、該当するモード番号を求め、そのモード何号を検知モードSgとして出力する。 FIG. 4 is a diagram showing an example of determination processing in the detection mode determination unit 22 as a list. The detection mode determination unit 22 determines whether or not the housing angle data Sd is equal to or greater than the threshold value θc, and then determines whether or not the housing temperature data Sc is equal to or greater than the threshold value Tc. Of these, it is determined whether or not the x-axis component is greater than or equal to Xc, and it is determined whether or not the y-axis component is greater than or equal to Yc. Then, the detection mode determination unit 22 refers to the detection mode classification table prepared in advance as shown in FIG. 4 according to the determination results of the above four items, obtains the corresponding mode number, and determines the mode number. Output as detection mode Sg.
 例えば、図4において、筐体角度データSdが閾値θc以上、筐体温度データScが閾値Tc未満、筐体位置データSbのうちX軸成分がXc以上、Y軸成分がYc未満である場合、検知モードSgは、モード番号「5」となる。なお、図4におけるモード番号の分類は、単なる例であって、具体的な意味を有するものではない。 For example, in FIG. 4, when the case angle data Sd is equal to or greater than the threshold value θc, the case temperature data Sc is less than the threshold value Tc, and the X-axis component of the case position data Sb is equal to or greater than Xc and the Y-axis component is less than Yc. The detection mode Sg is the mode number “5”. The mode number classification in FIG. 4 is merely an example and does not have a specific meaning.
 図5は、雑音レベル算出部23の処理内容の例を模式的に示した図である。ここで、雑音振動データSeを時間の関数a(t)と表した場合、雑音レベルShを表す時間の関数z(t)は、例えば、式(1)によって定義することができる。
Figure JPOXMLDOC01-appb-M000001
FIG. 5 is a diagram schematically illustrating an example of processing contents of the noise level calculation unit 23. Here, when the noise vibration data Se is represented as a time function a (t), the time function z (t) representing the noise level Sh can be defined by, for example, Expression (1).
Figure JPOXMLDOC01-appb-M000001
 なお、この式(1)では、雑音レベルShを表す関数z(t)は、雑音振動データSeを表す関数a(t)の絶対値の時刻t~t+dTまでの面積で表されるとしているが、単に、雑音振動データSeを表す関数a(t)の絶対値そのものであっても構わない。また、雑音レベルShの周波数分析を行い、その特定周波数成分の絶対値や時刻t~t+dTまでの面積などを雑音レベルShとしてもよい。 In this equation (1), the function z (t) representing the noise level Sh is expressed by the area from the time t to t + dT of the absolute value of the function a (t) representing the noise vibration data Se. The absolute value of the function a (t) representing the noise vibration data Se may be simply used. In addition, frequency analysis of the noise level Sh is performed, and the absolute value of the specific frequency component, the area from time t to t + dT, and the like may be used as the noise level Sh.
 図6は、故障予兆検知部25の機能ブロック構成の例を示した図である。図6に示すように、故障予兆検知部25は、切替部254と、m個の距離算出部251と、最小値算出部252と、閾値判定部253と、を含んで構成される。本実施形態では、この故障予兆検知部25における故障予兆検知の基本的な考え方として、m平均クラスタリング手法を採用している。 FIG. 6 is a diagram illustrating an example of a functional block configuration of the failure sign detection unit 25. As illustrated in FIG. 6, the failure sign detection unit 25 includes a switching unit 254, m distance calculation units 251, a minimum value calculation unit 252, and a threshold determination unit 253. In this embodiment, the m-means clustering method is adopted as a basic concept of the failure sign detection in the failure sign detection unit 25.
 すなわち、m平均クラスタリング手法では、新たに取得されたデータは、過去に取得され、m個にクラスタリングされた正常データのクラスタごとの平均値と比較される。そして、新たに取得されたデータがm個のクラスタごとの平均値のいずれか1つと概ね同じとみなされる場合には、新たに取得されたデータは、正常であるとみなされる。なお、クラスタの数mは、1つであっても構わない。 That is, in the m-average clustering method, newly acquired data is compared with the average value for each cluster of normal data acquired in the past and clustered into m pieces. Then, when the newly acquired data is considered to be substantially the same as any one of the average values for the m clusters, the newly acquired data is considered normal. Note that the number m of clusters may be one.
 本実施形態の場合、新たに取得されるデータは、X線管振動データSaを周波数分析して取得されるn個の周波数成分からなるベクトル(y1,y2,・・・.yn)である。また、過去に取得されたm個の正常データは、過去の正常時(すなわち、X線管12に異常がないとき)に取得されたn個の周波数成分からなるm個のクラスタそれぞれの中心を表すベクトル(y1a,y2a,・・・.yna)(j=1,・・・,m)である。なお、ここでは、クラスタの中心を表すベクトルの各成分は、それぞれのクラスタに属するベクトルの各成分の平均値で表されるものとする。 In the case of the present embodiment, newly acquired data is a vector (y1, y2,... Yn) composed of n frequency components acquired by frequency analysis of the X-ray tube vibration data Sa. Further, the m normal data acquired in the past is the center of each of the m clusters composed of n frequency components acquired in the past normal time (that is, when there is no abnormality in the X-ray tube 12). This is a vector (y1a i , y2a i ,... Yna i ) (j = 1,..., M). Here, each component of the vector representing the center of the cluster is represented by an average value of each component of the vector belonging to each cluster.
 また、本実施形態では、新たに取得されたn個の周波数成分からなるベクトル(y1,y2,・・・,yn)と各クラスタの中心を表すm個のベクトルとの距離を求め(距離はm個求められる)、さらに、その求められたm個の距離の最小値を求める。そして、その最小値の距離が予め定められた閾値の距離よりも小さかった場合には、新たに取得されたベクトル(y1,y2,・・・,yn)は、距離が最小となったクラスタの中心を表すベクトルと概ね同じと判断され、正常なデータとみなされる。
 一方、最小値の距離が前記閾値の距離以上である場合には、新たに取得されたベクトル(y1,y2,・・・,yn)は、いずれのクラスタに属するものではないと判断され、異常なデータとみなされる。
In the present embodiment, the distance between the newly acquired vector (y1, y2,..., Yn) consisting of n frequency components and m vectors representing the centers of the clusters is obtained (the distance is m is obtained), and the minimum value of the obtained m distances is obtained. If the minimum distance is smaller than a predetermined threshold distance, the newly acquired vector (y1, y2,..., Yn) It is judged to be almost the same as the vector representing the center, and is regarded as normal data.
On the other hand, if the minimum distance is equal to or greater than the threshold distance, it is determined that the newly acquired vector (y1, y2,..., Yn) does not belong to any cluster and is abnormal. Data is considered.
 図6に示した故障予兆検知部25では、以上に説明したm平均クラスタリング手法に基づいて故障予兆が検知される。以下、故障予兆検知部25を構成する各ブロックの機能について説明する。 The failure sign detection unit 25 shown in FIG. 6 detects a failure sign based on the m-average clustering method described above. Hereinafter, the function of each block constituting the failure sign detection unit 25 will be described.
 切替部254は、閾値処理部24(図3参照)から出力される雑音低レベル信号Siを受け取り、診断許可入力受付部27に対し、診断許可要求信号Slを出力する。また、切替部254は、診断許可入力受付部27から出力される診断許可信号Skを受け取り、周波数分析結果Sfを周波数成分y1,y2,・・・,ynに分解する。 The switching unit 254 receives the noise low level signal Si output from the threshold processing unit 24 (see FIG. 3), and outputs a diagnosis permission request signal S1 to the diagnosis permission input receiving unit 27. Further, the switching unit 254 receives the diagnosis permission signal Sk output from the diagnosis permission input receiving unit 27, and decomposes the frequency analysis result Sf into frequency components y1, y2,.
 距離算出部251のうちj番目の距離算出部251#j(i=1,・・・,m)は、切替部254から出力される周波数成分y1,y2,・・・,ynが表すベクトルと、正常なX線管振動データSaから予め求められているj番目のクラスタの中心(平均値)が表すベクトルとの距離を計算する。ここで、j番目の距離算出部251#jで算出される距離Lを次の式(2)で定義する。
Figure JPOXMLDOC01-appb-M000002
 ここで、ykaは、第j番目のクラスタの周波数成分yjの平均値である。なお、この平均値ykaは、検知モードSgごとに用意されており、従って、距離Lは、そのときの検知モードSgに応じて算出される。
Among the distance calculation units 251, the j-th distance calculation unit 251 # j (i = 1,..., M) is a vector represented by the frequency components y1, y2,. The distance from the vector represented by the center (average value) of the j-th cluster obtained in advance from the normal X-ray tube vibration data Sa is calculated. Here, the distance L j calculated by the j-th distance calculation unit 251 # j is defined by the following equation (2).
Figure JPOXMLDOC01-appb-M000002
Here, yka j is an average value of the frequency components yj of the j-th cluster. The average value yka j is prepared for each detection mode Sg, and therefore the distance L j is calculated according to the detection mode Sg at that time.
 次に、最小値算出部252は、距離算出部251#1~#mにより算出された距離L~Lの中から最小値を求める演算を行い、その結果求められる最小値を異常度Snとして出力する。また、閾値判定部253は、異常度Snが既定の閾値以上であるか否かを判定し、その閾値以上であった場合には、故障予兆信号Sjを出力する。 Next, the minimum value calculation unit 252 performs an operation for obtaining a minimum value from the distances L 1 to L m calculated by the distance calculation units 251 # 1 to #m, and sets the minimum value obtained as a result as the degree of abnormality Sn. Output as. In addition, the threshold determination unit 253 determines whether or not the degree of abnormality Sn is greater than or equal to a predetermined threshold, and if it is greater than or equal to the threshold, outputs a failure sign signal Sj.
 図7は、切替部254の機能ブロック構成の例を示した図である。図7に示すように、切替部254においてスイッチ2540は、診断許可信号SkがONの場合には、周波数分析結果Sfをデマルチプレクサ2543につなぎ、診断許可信号SkがOFFの場合には、周波数分析仮結果出力部2541の出力をデマルチプレクサ2543につなぐ。その結果、デマルチプレクサ2543は、診断許可信号SkのON/OFFに応じて周波数分析結果Sfまたは周波数分析仮結果を取り込むこととなり、周波数成分y1~ynとして出力する。 FIG. 7 is a diagram illustrating an example of a functional block configuration of the switching unit 254. As shown in FIG. 7, in the switching unit 254, the switch 2540 connects the frequency analysis result Sf to the demultiplexer 2543 when the diagnosis permission signal Sk is ON, and frequency analysis when the diagnosis permission signal Sk is OFF. The output of the temporary result output unit 2541 is connected to the demultiplexer 2543. As a result, the demultiplexer 2543 takes in the frequency analysis result Sf or the temporary frequency analysis result according to the ON / OFF of the diagnosis permission signal Sk, and outputs it as the frequency components y1 to yn.
 このとき、周波数分析仮結果出力部2541は、周波数分析仮結果として、検知モードSgごとの周波数成分y1~ynの平均値y1a~ynaを出力する。すなわち、検知モードSgにおける平均値y1a~ynaを出力することにより、距離算出部251で演算される距離L~Lの値が0になる。つまり、異常度Snが0になるので、閾値判定部253で閾値判定されたときに故障予兆信号Sjが検知されなくなるため診断機能をオフにすることができる。 In this case, the frequency analysis provisional result output unit 2541, a frequency analysis provisional result, and outputs the average value y1a 1 ~ yna n frequency components y1 ~ yn of each detection mode Sg. That is, by outputting an average value y1a 1 ~ yna n in the detection mode Sg, the value of the distance L 1 ~ L m calculated by the distance calculation unit 251 is zero. That is, since the degree of abnormality Sn is 0, the failure predictor signal Sj is not detected when the threshold value is determined by the threshold value determination unit 253, so that the diagnostic function can be turned off.
 さらに、切替部254は、雑音低レベル信号Siから診断許可要求発生部2542により診断許可要求信号Slを発生させる機能を有している。 Furthermore, the switching unit 254 has a function of causing the diagnosis permission request generation unit 2542 to generate a diagnosis permission request signal Sl from the noise low level signal Si.
 図8は、検知時間判定部26の機能ブロック構成の例を示した図である。図8に示すように、検知時間判定部26において、スイッチ260は、診断許可信号SkがONの場合には、周波数分析結果Sfをデマルチプレクサ263につなぎ、診断許可信号SkがOFFの場合には、周波数分析仮結果出力部261の出力をデマルチプレクサ263につなぐ。そして、デマルチプレクサ263からは、周波数分析結果Sfまたは周波数分析仮結果に基づく周波数成分y1~ynが出力される。 FIG. 8 is a diagram illustrating an example of a functional block configuration of the detection time determination unit 26. As shown in FIG. 8, in the detection time determination unit 26, the switch 260 connects the frequency analysis result Sf to the demultiplexer 263 when the diagnosis permission signal Sk is ON, and when the diagnosis permission signal Sk is OFF. The output of the frequency analysis temporary result output unit 261 is connected to the demultiplexer 263. The demultiplexer 263 outputs frequency components y1 to yn based on the frequency analysis result Sf or the temporary frequency analysis result.
 なお、周波数分析仮結果出力部261の役割は、切替部254における周波数分析仮結果出力部2541の役割と同じである。 The role of the frequency analysis temporary result output unit 261 is the same as the role of the frequency analysis temporary result output unit 2541 in the switching unit 254.
 第一閾値処理部264は、回転陽極123の回転の周波数成分yiが既定の閾値を越えているか否かを判定し、その閾値を下回る場合に回転終了信号を出力する。第一時間計測部265は、診断許可信号Skを開始信号、前記の回転終了信号を終了信号として、時間計測を行い、検知時間#1として出力する。また、第二閾値処理部267は、第一時間計測部265により計測された検知時間#1が既定の閾値を下回っているか否かを判定し、その閾値を下回っている場合には、判定結果#1をONとして出力し、閾値を下回っていない場合には、判定結果#1をOFFとして出力する。 The first threshold value processing unit 264 determines whether or not the frequency component yi of the rotation of the rotating anode 123 exceeds a predetermined threshold value, and outputs a rotation end signal when it falls below the threshold value. The first time measurement unit 265 performs time measurement using the diagnosis permission signal Sk as a start signal and the rotation end signal as an end signal, and outputs it as detection time # 1. Further, the second threshold processing unit 267 determines whether or not the detection time # 1 measured by the first time measurement unit 265 is below a predetermined threshold, and if the detection time # 1 is below the threshold, the determination result # 1 is output as ON, and if it is not less than the threshold, determination result # 1 is output as OFF.
 一方、第二時間計測部266は、故障予兆信号SjがOFFからONになったときに時間計測を開始し、ONからOFFになったときに時間計測を終了し、その結果を検知時間#2として出力する。第三閾値処理部268は、第二時間計測部266により計測された検知時間#2が既定の閾値を下回っているか否かを判定し、検知時間#2がその閾値を下回っている場合には、判定結果#2をONとして出力し、閾値を下回っていない場合には、判定結果#2をOFFとして出力する。さらに、検知時間判定部26は、判定結果#1と判定結果#2の論理積を取った内容を、純正管球検知信号Smとして出力する。 On the other hand, the second time measurement unit 266 starts time measurement when the failure sign signal Sj changes from OFF to ON, ends time measurement when the failure sign signal Sj changes from ON to OFF, and detects the result as detection time # 2. Output as. The third threshold processing unit 268 determines whether or not the detection time # 2 measured by the second time measurement unit 266 is below a predetermined threshold, and if the detection time # 2 is below the threshold, The determination result # 2 is output as ON, and if it is not below the threshold, the determination result # 2 is output as OFF. Furthermore, the detection time determination unit 26 outputs a content obtained by ANDing the determination result # 1 and the determination result # 2 as a genuine tube detection signal Sm.
 なお、以上のようにして判定され、出力される純正管球検知信号Smは、次の考え方に基づくものである。すなわち、純正のX線管球121が雑音レベルShの低下から回転停止までの時間、または、故障予兆信号Sjの検知から検知終了までの検知時間を考慮して設計されているのに対して、非純正のX線管球121はその特性上、各時間が純正のX線管球121と異なるのが一般的である。非純正のX線管球121が使用されるのは、その価格が安いからである。そのため、非純正のX線管球121では、前記した回転停止時間などを短縮するなどのために余分な工数が費やされることはない。よって、各時間が一定値以下であるか否か判定することにより、X線管球が純正であるか否かを判断することができる。 The genuine tube detection signal Sm determined and output as described above is based on the following concept. That is, the genuine X-ray tube 121 is designed in consideration of the time from the decrease in the noise level Sh to the rotation stop, or the detection time from the detection of the failure sign signal Sj to the end of detection, The non-genuine X-ray tube 121 is generally different from the genuine X-ray tube 121 in terms of its characteristics. The non-genuine X-ray tube 121 is used because its price is low. Therefore, in the non-genuine X-ray tube 121, no extra man-hours are spent for shortening the rotation stop time described above. Therefore, it is possible to determine whether or not the X-ray tube is genuine by determining whether or not each time is equal to or less than a certain value.
 図9は、X線管故障予兆検知装置10におけるX線管故障予兆検知処理の全体処理フローの例を示した図である。まず、雑音用センサユニット14は、主として、インバータの電磁ノイズなど外部起因の雑音振動を計測する(ステップS01)。次に、データ処理ユニット11は、雑音レベル算出部23を介して、雑音用センサユニット14から雑音振動データSeを取得し、雑音レベルShを算出する(ステップS02)。次に、データ処理ユニット11は、閾値処理部24を介して雑音レベルShが既定の閾値より低いか否かを判定し(ステップS03)、その閾値より低くない場合には(ステップS03でNo)、当該X線管故障予兆検知処理を終了する。 FIG. 9 is a diagram showing an example of the entire processing flow of the X-ray tube failure sign detection process in the X-ray tube failure sign detection apparatus 10. First, the noise sensor unit 14 mainly measures noise vibration caused by the outside such as electromagnetic noise of the inverter (step S01). Next, the data processing unit 11 acquires the noise vibration data Se from the noise sensor unit 14 via the noise level calculation unit 23, and calculates the noise level Sh (step S02). Next, the data processing unit 11 determines whether or not the noise level Sh is lower than a predetermined threshold value via the threshold processing unit 24 (step S03), and if not lower than the threshold value (No in step S03). Then, the X-ray tube failure sign detection process is terminated.
 一方、雑音レベルShが既定の閾値より低い場合には(ステップS03でYes)、データ処理ユニット11は、診断許可入力受付部27を介して、操作者による診断許可の操作入力を受け付け(ステップS04)、診断許可されなかった場合には(ステップS05でNo)、当該X線管故障予兆検知処理を終了する。 On the other hand, when the noise level Sh is lower than the predetermined threshold value (Yes in step S03), the data processing unit 11 accepts an operation input for diagnosis permission by the operator via the diagnosis permission input reception unit 27 (step S04). ) If the diagnosis is not permitted (No in step S05), the X-ray tube failure sign detection process is terminated.
 一方、診断許可された場合には(ステップS05でYes)、ソース用センサユニット13は、X線管12の振動を計測し(ステップS06)、X線管12の筐体位置を計測し(ステップS07)、X線管12の筐体温度を計測し(ステップS08)、さらに、X線管12の筐体角度を計測する(ステップS09)。 On the other hand, when the diagnosis is permitted (Yes in step S05), the source sensor unit 13 measures the vibration of the X-ray tube 12 (step S06) and measures the housing position of the X-ray tube 12 (step S06). S07), the housing temperature of the X-ray tube 12 is measured (step S08), and the housing angle of the X-ray tube 12 is further measured (step S09).
 次に、データ処理ユニット11は、ソース用センサユニット13からX線管振動データSaを取得し、周波数分析部21を介して、その周波数分析を行い(ステップS10)、ソース用センサユニット13から得られる筐体位置データSb、筐体温度データSc、筐体角度データを用いて、検知モード判定部22により検知モードSgを判定する(ステップS11)。 Next, the data processing unit 11 acquires the X-ray tube vibration data Sa from the source sensor unit 13, performs frequency analysis via the frequency analysis unit 21 (step S <b> 10), and obtains it from the source sensor unit 13. The detection mode determination unit 22 determines the detection mode Sg using the case position data Sb, the case temperature data Sc, and the case angle data to be detected (step S11).
 さらに、データ処理ユニット11は、故障予兆検知部25による故障予兆検知処理を実行し(ステップS12)、検知時間判定部26による検知時間判定処理を実行して(ステップS13)、当該X線管故障予兆検知処理を終了する。なお、故障予兆検知処理および検知時間判定処理の詳細については後記する。 Further, the data processing unit 11 executes a failure sign detection process by the failure sign detection unit 25 (step S12), executes a detection time determination process by the detection time determination unit 26 (step S13), and the X-ray tube failure The sign detection process is terminated. Details of the failure sign detection process and the detection time determination process will be described later.
 図10は、ソース用センサユニット13または雑音用センサユニット14による計測処理の処理フローの例を示した図である。なお、ここでの説明では、ソース用センサユニット13または雑音用センサユニット14を、単に、センサユニットといい、3軸の加速度センサ131,141、温度センサ132またはジャイロセンサ133を、単に、センサという。 FIG. 10 is a diagram showing an example of a processing flow of measurement processing by the source sensor unit 13 or the noise sensor unit 14. In the description here, the source sensor unit 13 or the noise sensor unit 14 is simply referred to as a sensor unit, and the three- axis acceleration sensors 131 and 141, the temperature sensor 132, or the gyro sensor 133 is simply referred to as a sensor. .
 図10に示すように、センサユニットは、センサによる生データの計測を行い(ステップS21)、引き続き、その計測した生データを、A/D変換器134,142を用いてアナログデータからディジタルデータへ変換する(ステップS22)。次に、センサユニットは、ディジタルデータに変換された計測データを、信号処理部135,143によりフィルタ処理を施し、使用しない周波数成分の除去を行う(ステップS23)。なお、ステップS22とステップS23の実行順序は逆であってもよい。 As shown in FIG. 10, the sensor unit measures raw data by the sensor (step S21), and subsequently converts the measured raw data from analog data to digital data using A / D converters 134 and 142. Conversion is performed (step S22). Next, the sensor unit subjects the measurement data converted to digital data to filter processing by the signal processing units 135 and 143, and removes unused frequency components (step S23). Note that the execution order of step S22 and step S23 may be reversed.
 次に、センサユニットは、計測データの種別を判定し(ステップS24)、計測データの種別が筐体温度または筐体角度である場合には(ステップS24で温度、角度)、当該計測処理を終了する。さらに、センサユニットは、計測データの種別が振動データである場合には(ステップS24で振動データ)、3軸の加速度データから振動データを計算し(ステップS25)、また、計測データの種別が位置データである場合には(ステップS24で位置データ)、3軸の加速度データを積分することにより位置データを計算し(ステップS26)、それぞれ当該計測処理を終了する。 Next, the sensor unit determines the type of measurement data (step S24), and when the type of measurement data is a case temperature or a case angle (temperature, angle in step S24), the measurement process ends. To do. Further, when the type of measurement data is vibration data (vibration data in step S24), the sensor unit calculates vibration data from triaxial acceleration data (step S25), and the type of measurement data is position. If it is data (position data in step S24), the position data is calculated by integrating the three-axis acceleration data (step S26), and the measurement process is terminated.
 図11は、診断許可入力受付部27による診断入力許可受付処理の詳細な処理フローの例を示した図である。なお、以下に示す診断入力許可受付処理は、図9のステップS04の処理に相当する。 FIG. 11 is a diagram showing an example of a detailed processing flow of the diagnosis input permission receiving process by the diagnosis permission input receiving unit 27. The diagnostic input permission acceptance process described below corresponds to the process of step S04 in FIG.
 図11に示すように、データ処理ユニット11は、まず、記録装置115に記憶されている診断可否フラグ(後出の図14参照)を参照し、診断の可否を判定する(ステップS0401)。 As shown in FIG. 11, the data processing unit 11 first refers to a diagnosis availability flag (see FIG. 14 described later) stored in the recording device 115 to determine whether diagnosis is possible (step S0401).
 その判定の結果、診断可であった場合には(ステップS0401でYes)、データ処理ユニット11は、さらに、記録装置115に記憶されている診断時間および内部時計を参照し、診断中であるか否かを判定する(ステップS0402)。その判定の結果、診断中であった場合には(ステップS0402でYes)、データ処理ユニット11は、当該診断入力許可受付処理を終了する。それに対し、診断中でなかった場合には(ステップS0402でNo)、ステップS0404の処理に移行する。 As a result of the determination, if the diagnosis is possible (Yes in step S0401), the data processing unit 11 further refers to the diagnosis time and the internal clock stored in the recording device 115 to determine whether the diagnosis is in progress. It is determined whether or not (step S0402). As a result of the determination, if the diagnosis is being performed (Yes in step S0402), the data processing unit 11 ends the diagnosis input permission acceptance process. On the other hand, if it is not under diagnosis (No in step S0402), the process proceeds to step S0404.
 一方、ステップS0401の判定で診断否であった場合には(ステップS0401でNo)、さらに、記録装置115に記憶されている診断時間および内部時計を参照し、診断停止中であるか否かを判定する(ステップS0403)。その判定の結果、診断停止中であった場合には(ステップS0403でYes)、データ処理ユニット11は、当該診断入力許可受付処理を終了する。それに対し、診断停止中でなかった場合には(ステップS0403でNo)、ステップS0404の処理に移行する。 On the other hand, if the determination in step S0401 is a diagnosis failure (No in step S0401), the diagnosis time and internal clock stored in the recording device 115 are further referred to to determine whether or not the diagnosis is stopped. Determination is made (step S0403). As a result of the determination, if the diagnosis is stopped (Yes in step S0403), the data processing unit 11 ends the diagnosis input permission acceptance process. On the other hand, if the diagnosis is not stopped (No in step S0403), the process proceeds to step S0404.
 そこで、データ処理ユニット11は、診断許可を求める表示を表示装置111に行い、診断許可の操作入力を受け付ける(ステップS0404)。そして、その操作入力により診断許可がされた場合には(ステップS0405でYes)、データ処理ユニット11は、表示装置111を介して操作者に対し、自動的に診断継続するか否かを問い合わせる。そして、自動的に診断継続する旨の操作入力を受け付けた場合には(ステップS0406でYes)、データ処理ユニット11は、操作入力装置114を介しての診断時間の入力を受け付け(ステップS0408)、当該診断入力許可受付処理を終了する。一方、自動的に診断継続しない旨の操作入力を受け付けた場合には(ステップS0406でNo)、データ処理ユニット11は、診断時間を0に設定し(ステップS0409)、当該診断入力許可受付処理を終了する。 Therefore, the data processing unit 11 performs a display requesting diagnosis permission on the display device 111 and receives an operation input for diagnosis permission (step S0404). If diagnosis is permitted by the operation input (Yes in step S0405), the data processing unit 11 inquires of the operator via the display device 111 whether the diagnosis is automatically continued. If an operation input indicating that diagnosis is automatically continued is received (Yes in step S0406), the data processing unit 11 receives an input of diagnosis time via the operation input device 114 (step S0408). The diagnosis input permission acceptance process is terminated. On the other hand, when an operation input indicating that the diagnosis is not automatically continued is received (No in step S0406), the data processing unit 11 sets the diagnosis time to 0 (step S0409) and performs the diagnosis input permission reception process. finish.
 また、ステップS0404の操作入力により診断許可がされなかった場合には(ステップS0405でNo)、データ処理ユニット11は、表示装置111を介して操作者に対し、自動的に診断停止継続するか否かを問い合わせる。そして、自動的に診断停止継続する旨の操作入力を受け付けた場合には(ステップS0407でYes)、データ処理ユニット11は、操作入力装置114を介しての停止時間の入力を受け付け(ステップS0410)、当該診断入力許可受付処理を終了する。一方、自動的に診断継続しない旨の操作入力を受け付けた場合には(ステップS0407でNo)、データ処理ユニット11は、停止時間を0に設定し(ステップS0411)、当該診断入力許可受付処理を終了する。 If the diagnosis is not permitted by the operation input in step S0404 (No in step S0405), the data processing unit 11 determines whether or not the diagnosis is automatically continued for the operator via the display device 111. Inquire. If an operation input for automatically continuing diagnosis stop is received (Yes in step S0407), the data processing unit 11 receives an input of a stop time via the operation input device 114 (step S0410). Then, the diagnosis input permission acceptance process is terminated. On the other hand, when an operation input indicating that the diagnosis is not automatically continued is received (No in step S0407), the data processing unit 11 sets the stop time to 0 (step S0411), and performs the diagnosis input permission reception process. finish.
 なお、以上の診断入力許可受付処理に係る表示画面の例については、別途、図面を参照して説明する。 Note that examples of display screens related to the above diagnostic input permission acceptance processing will be described separately with reference to the drawings.
 図12は、故障予兆検知部25による故障予兆検知処理の詳細な処理フローの例を示した図である。なお、以下に示す故障予兆検知処理は、図9のステップS12の処理に相当する。 FIG. 12 is a diagram showing an example of a detailed processing flow of the failure sign detection process by the failure sign detection unit 25. The failure sign detection process described below corresponds to the process of step S12 in FIG.
 データ処理ユニット11は、検知モード判定部22で判定された検知モードSgを取り込み、記録装置115を参照して、検知モードSgに対応する周波数成分の平均値データを読み込む(ステップS121)。次に、繰り返しのカウンタjに1をセットし(ステップS122)、距離算出部251#jにより距離Lを算出し(ステップS123)、カウンタjをカウントアップしながら、ステップS123の処理をカウンタj=mになるまで繰り返し実行する(ステップS124)。ここで、mは、特徴のある周波数成分の数、つまり、記録装置115に平均値データが用意されている周波数成分の数である。 The data processing unit 11 takes in the detection mode Sg determined by the detection mode determination unit 22, and reads the average value data of the frequency components corresponding to the detection mode Sg with reference to the recording device 115 (step S121). Next, 1 is set to the repeat counter j (step S122), the distance calculating unit 251 # j by calculating the distance L j (step S123), while counting up the counter j, the counter j to the process of step S123 The process is repeatedly executed until m = m (step S124). Here, m is the number of characteristic frequency components, that is, the number of frequency components for which average value data is prepared in the recording device 115.
 次に、データ処理ユニット11は、最小値算出部252を介して、距離L~距離Lのうちから最小値を算出し(ステップS125)、その最小値を異常度Snとする。続いて、データ処理ユニット11は、閾値判定部253を介して、異常度Snが既定の閾値より大きいか否かを判定し(ステップS126)、異常度Snが既定の閾値より大きい場合には、故障予兆信号Sjを出力する。 Next, the data processing unit 11 calculates the minimum value from the distances L 1 to L m via the minimum value calculation unit 252 (step S125), and sets the minimum value as the degree of abnormality Sn. Subsequently, the data processing unit 11 determines whether or not the abnormality level Sn is larger than the predetermined threshold value via the threshold value determination unit 253 (step S126). If the abnormality level Sn is larger than the predetermined threshold value, A failure sign signal Sj is output.
 図13は、検知時間判定部26による検知時間判定処理の詳細な処理フローの例を示した図である。なお、以下に示す検知時間判定処理は、図9のステップS13の処理に相当する。 FIG. 13 is a diagram illustrating an example of a detailed processing flow of detection time determination processing by the detection time determination unit 26. Note that the detection time determination process described below corresponds to the process of step S13 in FIG.
 まず、データ処理ユニット11は、診断許可信号Skが拒否から許可へ変化したか否かを判定し(S1301)、拒否から許可へ変化した場合には(S1301でYes)、第一時間計測部265により検知時間#1の計測を開始する(ステップS1302)。また、診断許可信号Skが拒否から許可へ変化しない場合には(S1301でNo)、ステップS1302の処理はスキップされる。 First, the data processing unit 11 determines whether or not the diagnosis permission signal Sk has changed from rejection to permission (S1301). If the diagnosis processing signal Sk has changed from rejection to permission (Yes in S1301), the first time measuring unit 265 is determined. Thus, measurement of the detection time # 1 is started (step S1302). If the diagnosis permission signal Sk does not change from rejection to permission (No in S1301), the process of step S1302 is skipped.
 次に、データ処理ユニット11は、故障予兆信号SjがOFFからONへ変化したか否かを判定し(ステップS1303)、故障予兆信号SjがOFFからONへ変化した場合には(ステップS1303でYes)、第二時間計測部266による検知時間#2の計測を開始する(ステップS1304)。また、故障予兆信号SjがOFFからONへ変化しない場合には(ステップS1303でNo)、ステップS1304の処理はスキップされる。 Next, the data processing unit 11 determines whether or not the failure sign signal Sj has changed from OFF to ON (step S1303), and when the failure sign signal Sj has changed from OFF to ON (Yes in step S1303). ), The measurement of the detection time # 2 by the second time measurement unit 266 is started (step S1304). Further, when the failure sign signal Sj does not change from OFF to ON (No in step S1303), the process of step S1304 is skipped.
 続いて、データ処理ユニット11は、デマルチプレクサ263から出力される周波数成分yiが既定の閾値yc以上であるか否かを判定し(ステップS1305)、既定の閾値yc以上であった場合には(ステップS1305でYes)、第一時間計測部265による検知時間#1の計測を終了する(ステップS1306)。さらに、データ処理ユニット11は、第二閾値処理部267による第二閾値処理を実行することによって(ステップS1307)、検知時間#1の値が既定の閾値以上であった場合には、判定結果#1にYを設定し、既定の閾値以上でなかった場合には、判定結果#1にNを設定する。一方、ステップS1305の判定で、周波数成分yiが既定の閾値yc以上でなかった場合には(ステップS1305でNo)、データ処理ユニット11は、判定結果#1にYを設定する(ステップS1308)。 Subsequently, the data processing unit 11 determines whether or not the frequency component yi output from the demultiplexer 263 is greater than or equal to a predetermined threshold yc (step S1305). In step S1305, Yes), the measurement of the detection time # 1 by the first time measurement unit 265 is terminated (step S1306). Further, the data processing unit 11 executes the second threshold value processing by the second threshold value processing unit 267 (step S1307), and when the value of the detection time # 1 is equal to or greater than the predetermined threshold value, the determination result # If Y is set to 1 and it is not equal to or greater than the predetermined threshold value, N is set to determination result # 1. On the other hand, if it is determined in step S1305 that the frequency component yi is not equal to or greater than the predetermined threshold yc (No in step S1305), the data processing unit 11 sets Y to the determination result # 1 (step S1308).
 次に、データ処理ユニット11は、故障予兆信号SjがONからOFFへ変化したか否かを判定し(ステップS1309)、故障予兆信号SjがONからOFFへ変化した場合には(ステップS1309でYes)、第二時間計測部266による検知時間#2の計測を終了する(ステップS1310)。さらに、データ処理ユニット11は、第三閾値処理部268による第三閾値処理を実行することによって(ステップS1311)、検知時間#2の値が既定の閾値以上であった場合には、判定結果#2にYを設定し、既定の閾値以上でなかった場合には、判定結果#2にNを設定する。一方、ステップS1309の判定で、故障予兆信号SjがONからOFFへ変化しない場合には(ステップS1309でNo)、データ処理ユニット11は、判定結果#2にYを設定する(ステップS1312)。 Next, the data processing unit 11 determines whether or not the failure sign signal Sj has changed from ON to OFF (step S1309), and when the failure sign signal Sj has changed from ON to OFF (Yes in step S1309). ), The measurement of the detection time # 2 by the second time measurement unit 266 is terminated (step S1310). Further, the data processing unit 11 executes the third threshold processing by the third threshold processing unit 268 (step S1311), and when the value of the detection time # 2 is equal to or greater than the predetermined threshold, the determination result # If Y is set to 2 and it is not equal to or greater than the predetermined threshold value, N is set to determination result # 2. On the other hand, if the failure sign signal Sj does not change from ON to OFF in the determination in step S1309 (No in step S1309), the data processing unit 11 sets Y to the determination result # 2 (step S1312).
 次に、データ処理ユニット11は、判定結果#1および判定結果#2の両方ともにYが設定されているか否かを判定し(ステップS1313)、両方ともにYが設定されている場合には(ステップS1313でYes)、純正管球検知信号SmにYを設定する(ステップS1314)。一方、判定結果#1および判定結果#2の両方ともにYが設定されていない場合には、データ処理ユニット11は、純正管球検知信号SmにNを設定する(ステップS1315)。ここで、純正管球検知信号SmがYの場合、X線管12として純正管球が使用されているとみなされ、純正管球検知信号SmがNの場合、X線管12として純正管球が使用されていないとみなされる。 Next, the data processing unit 11 determines whether or not Y is set for both the determination result # 1 and the determination result # 2 (step S1313), and when both are set for Y (step S1313) In S1313, Y is set to the genuine tube detection signal Sm (Step S1314). On the other hand, if Y is not set in both the determination result # 1 and the determination result # 2, the data processing unit 11 sets N in the genuine tube detection signal Sm (step S1315). Here, when the genuine tube detection signal Sm is Y, it is considered that a genuine tube is used as the X-ray tube 12, and when the genuine tube detection signal Sm is N, the genuine tube is used as the X-ray tube 12. Is considered unused.
 図14は、記録装置115に記憶されるデータ構成の例を示した図である。図14に示すように、記録装置115には、周波数分析用データ1151、雑音レベル算出用時間間隔(dT)1152、雑音低レベル閾値(ac)1153、検知モード判定用データ1154、故障予兆検知用データ1155、検知時間判定用データ1156、診断許可入力受付用データ1157が格納されている。 FIG. 14 is a diagram showing an example of a data configuration stored in the recording device 115. As shown in FIG. 14, the recording device 115 includes frequency analysis data 1151, noise level calculation time interval (dT) 1152, noise low level threshold (ac) 1153, detection mode determination data 1154, failure sign detection. Data 1155, detection time determination data 1156, and diagnosis permission input acceptance data 1157 are stored.
 周波数分析用データ1151は、周波数分析部21によって使用されるデータであり、サンプリング周波数(fs)と周波数分解能(fc)とにより構成される。
 サンプリング周波数(fs)は、計測データをサンプリングする周波数を表し、周波数分解能(fc)は、周波数分析結果を出力する周波数の間隔を表す。すなわち、周波数分析部21は、サンプリング周波数(fs)と周波数分解能(fc)とに基づき、FFT(高速フーリエ変換)の点数を決定してFFT演算を行う。
The frequency analysis data 1151 is data used by the frequency analysis unit 21 and includes a sampling frequency (fs) and a frequency resolution (fc).
The sampling frequency (fs) represents the frequency at which the measurement data is sampled, and the frequency resolution (fc) represents the frequency interval at which the frequency analysis result is output. In other words, the frequency analysis unit 21 determines the number of FFT (Fast Fourier Transform) based on the sampling frequency (fs) and the frequency resolution (fc), and performs an FFT operation.
 雑音レベル算出量時間間隔(dT)1152は、雑音レベル算出部23によって使用される変数であり、雑音レベルの算出において積分の区間に使われるパラメータである(図5も参照)。また、雑音低レベル閾値(ac)1153は、閾値処理部24によって使用される変数であり、雑音レベルが低いか否かを判定する閾値として用いられる。 The noise level calculation amount time interval (dT) 1152 is a variable used by the noise level calculation unit 23, and is a parameter used in the integration interval in the calculation of the noise level (see also FIG. 5). The noise low level threshold (ac) 1153 is a variable used by the threshold processing unit 24 and is used as a threshold for determining whether or not the noise level is low.
 検知モード判定用データ1154は、検知モード判定部22によって使用され、計測されたX線管12の位置、温度および角度から検知モードSgを判定するためのテーブルである(図4も参照)。
 そのため、検知モード判定用データ1154としては、角度閾値、温度閾値、X軸閾値、Y軸閾値が格納されている。さらに、検知モード判定用データ1154のモード用テーブル要素として、それぞれの検知モードのモード番号ごとに、計測された角度が角度閾値以上か否か、計測された温度が温度閾値以上か否か、計測された位置のX座標がX軸閾値以上か否か、Y座標がY軸閾値以上か否かというデータが格納される。
The detection mode determination data 1154 is a table used by the detection mode determination unit 22 to determine the detection mode Sg from the measured position, temperature, and angle of the X-ray tube 12 (see also FIG. 4).
Therefore, as the detection mode determination data 1154, an angle threshold, a temperature threshold, an X-axis threshold, and a Y-axis threshold are stored. Further, as a mode table element of the detection mode determination data 1154, for each mode number of each detection mode, whether the measured angle is equal to or greater than the angle threshold, whether the measured temperature is equal to or greater than the temperature threshold is measured. Data indicating whether or not the X coordinate at the position is greater than or equal to the X-axis threshold and whether the Y coordinate is greater than or equal to the Y-axis threshold is stored.
 故障予兆検知用データ1155は、故障予兆検知部25によって使用され、故障予兆検知に関する計算を行うための変数あり、検知モード数分の検知モードi用平均値データと異常度閾値とからなる。
 検知モードi用平均値データは、検知モードiにおける距離計算用の平均値を蓄積したものである。すなわち、検知モードi用平均値データは、m個分の距離算出j用平均値データから成り、さらに、それぞれの距離算出j用平均値データは、n個分の周波数成分kの平均値から成る。すなわち、周波数成分kの平均値は、検知モードi、クラスタjにおける周波数成分kの平均値を表したものである。
 また、異常度閾値は、閾値判定部253が異常度Snの閾値判定を行う場合に用いられる閾値である。
The failure sign detection data 1155 is used by the failure sign detection unit 25 and is a variable for performing calculation related to failure sign detection, and includes detection mode i average value data and an abnormality degree threshold for the number of detection modes.
The average value data for detection mode i is an accumulation of average values for distance calculation in detection mode i. That is, the average value data for detection mode i is composed of m distance calculation j average value data, and each distance calculation j average value data is composed of n frequency component k average values. . That is, the average value of the frequency component k represents the average value of the frequency component k in the detection mode i and the cluster j.
The abnormality level threshold value is a threshold value used when the threshold value determination unit 253 performs threshold value determination of the abnormality level Sn.
 検知時間判定用データ1156は、検知時間判定部26によって使用され、判定結果#1用閾値と判定結果#2用閾値と周波数成分閾値とからなる。
 判定結果#1用閾値は、第二閾値処理部267が閾値判定に使用する閾値であり(図13のステップS1307)、判定結果#2用閾値は、第三閾値処理部268が閾値判定に使用する閾値である(図13のステップS1311)。
 周波数成分閾値は、第一閾値処理部264が閾値判定に使用するための閾値である(図13のステップS1305)。
The detection time determination data 1156 is used by the detection time determination unit 26 and includes a determination result # 1 threshold, a determination result # 2 threshold, and a frequency component threshold.
The threshold for determination result # 1 is a threshold used by the second threshold processing unit 267 for threshold determination (step S1307 in FIG. 13), and the threshold for determination result # 2 is used by the third threshold processing unit 268 for threshold determination. (Step S1311 in FIG. 13).
The frequency component threshold is a threshold used by the first threshold processing unit 264 for threshold determination (step S1305 in FIG. 13).
 診断許可入力受付用データ1157は、診断許可入力受付部27によって使用され、診断(停止)時間と診断可否のデータからなる。
 診断(停止)時間は、診断を一定時間自動的に継続させる際に診断の継続開始から終了までの時間を表したものである。また、診断(停止)時間は、診断を一定時間自動的に停止させる際に診断の停止開始から終了までの時間を示すこともできる。
 診断可否は、診断または診断停止が自動的に継続中の場合、診断しているか停止しているかを表すデータである。
The diagnosis permission input reception data 1157 is used by the diagnosis permission input reception unit 27 and includes diagnosis (stop) time and diagnosis availability data.
The diagnosis (stop) time represents the time from the start to the end of diagnosis when the diagnosis is automatically continued for a certain period of time. The diagnosis (stop) time can also indicate the time from the start to the end of diagnosis when the diagnosis is automatically stopped for a certain time.
The diagnosis availability is data indicating whether a diagnosis or a stop has been made when diagnosis or diagnosis stop is automatically continued.
 図15は、診断許可入力受付部27による診断許可入力受付処理が実行される際に表示装置111に表示される表示画面の例を示した図である。まず、表示装置111には診断の可否を聞く画面G01が表示される。そこで、「はい」が選択されると、自動的に診断するか否かを聞く画面G02が表示される。次に、画面G02で「いいえ」が選択されると、画面G01に戻る。また、画面G02で「はい」が選択されると、診断時間の入力を受け付ける画面G03が表示される。画面G03で、診断時間の入力が完了すると、診断が継続中であることを表す画面G04に移動する。そして、診断継続時間が経過すると、診断の可否を聞く画面G01に戻る。 FIG. 15 is a diagram illustrating an example of a display screen displayed on the display device 111 when the diagnosis permission input receiving process by the diagnosis permission input receiving unit 27 is executed. First, the display device 111 displays a screen G01 for asking whether diagnosis is possible. Therefore, when “Yes” is selected, a screen G02 for asking whether or not to automatically diagnose is displayed. Next, when “No” is selected on the screen G02, the screen returns to the screen G01. Further, when “Yes” is selected on the screen G02, a screen G03 for accepting an input of a diagnosis time is displayed. When the input of the diagnosis time is completed on the screen G03, the screen moves to a screen G04 indicating that the diagnosis is ongoing. When the diagnosis duration time elapses, the screen returns to the screen G01 for asking whether diagnosis is possible.
 一方、画面G01で「いいえ」が選択されると、自動的に停止を継続するか否かを聞く画面G05が表示される。そして、画面G05で「いいえ」が選択されると、画面G01に戻る。また、画面G05で「はい」が選択されると、停止時間の入力を受け付ける画面G06が表示される。画面G06で、停止時間の入力が完了すると、停止が継続中であることを表す画面G07に移動する。そして、停止継続時間が経過すると、診断の可否を聞く画面G01に戻る。 On the other hand, when “No” is selected on the screen G01, a screen G05 is displayed asking whether or not to continue the stop automatically. When “No” is selected on the screen G05, the screen returns to the screen G01. Further, when “Yes” is selected on the screen G05, a screen G06 for accepting the input of the stop time is displayed. When the input of the stop time is completed on the screen G06, the screen moves to a screen G07 indicating that the stop is continuing. When the stop duration time elapses, the screen returns to the screen G01 for asking whether diagnosis is possible.
 図16は、雑音レベルSh、雑音低レベル信号Siおよび周波数成分y1,y2,ynのタイムチャートの例を示した図である。図16において、横軸は時間軸、縦軸は、上から順に雑音レベルSh、雑音低レベル信号Si、周波数成分y1,y2,ynそれぞれの値である。ここで、周波数成分y1,y2,ynについては、雑音を含めた計測値を太い実線で表し、雑音を含めない真値を太い破線で表している。 FIG. 16 is a diagram showing an example of a time chart of the noise level Sh, the noise low level signal Si, and the frequency components y1, y2, and yn. In FIG. 16, the horizontal axis represents the time axis, and the vertical axis represents the values of the noise level Sh, the noise low level signal Si, and the frequency components y1, y2, and yn in order from the top. Here, for the frequency components y1, y2, and yn, the measured values including noise are represented by thick solid lines, and the true values not including noise are represented by thick broken lines.
 図16に示すように、細い破線のタイミングで雑音レベルSh(=z(t))が既定の閾値(図14に示す雑音低レベル閾値(ac)1153)以下に低下すると、閾値処理部24は、雑音低レベル信号SiをONにする。そして、この細い破線を境に雑音が小さくなるため、周波数成分y1,y2,ynは、計測値と真値との差が縮まる。そのため雑音レベルShの閾値処理を行い、そのタイミングで診断を開始することにより、雑音の影響を最小限に抑えて、故障予兆診断を行うことが可能となる。 As shown in FIG. 16, when the noise level Sh (= z (t)) falls below a predetermined threshold (noise low level threshold (ac) 1153 shown in FIG. 14) at the timing of the thin broken line, the threshold processing unit 24 The noise low level signal Si is turned ON. And since noise becomes small bordering on this thin broken line, the difference between the measured value and the true value of the frequency components y1, y2, yn is reduced. Therefore, by performing threshold processing of the noise level Sh and starting diagnosis at that timing, it becomes possible to perform failure sign diagnosis while minimizing the influence of noise.
 図17は、検知時間判定部26における検知時間判定に関するタイムチャートの例を示した図である。図17において、横軸は時間軸、縦軸は、上から順に周波数成分yi、診断許可信号Sk,回転終了信号、検知時間#1、判定結果#1、故障予兆信号Sj、検知時間#2、判定結果#2、純正管球検知信号Smそれぞれの値である。 FIG. 17 is a diagram showing an example of a time chart relating to detection time determination in the detection time determination unit 26. In FIG. 17, the horizontal axis is the time axis, and the vertical axis is the frequency component yi, diagnosis permission signal Sk, rotation end signal, detection time # 1, determination result # 1, failure sign signal Sj, detection time # 2, in order from the top. The determination result # 2 is the value of each of the genuine tube detection signal Sm.
 ここで、診断許可信号Skが立ち上がると検知時間#1の計数が開始され検知時間#1は増加する。周波数成分yiが既定の閾値以下になると、回転終了信号はOFFからONになり、そのタイミングで検知時間#1の計測が終了し、検知時間#1の値は一定になる。その間に検知時間#1の値が既定の閾値を超えた時点で、判定結果#1はY(ON)からN(OFF)に変化する。 Here, when the diagnosis permission signal Sk rises, the counting of the detection time # 1 is started and the detection time # 1 increases. When the frequency component yi falls below a predetermined threshold value, the rotation end signal changes from OFF to ON, and the measurement of the detection time # 1 ends at that timing, and the value of the detection time # 1 becomes constant. Meanwhile, when the value of the detection time # 1 exceeds a predetermined threshold, the determination result # 1 changes from Y (ON) to N (OFF).
 一方、故障予兆信号SjがOFFからONになると検知時間#2の計数が開始され、そのタイミングから検知時間#2の値が増加する。故障予兆信号SjがONからOFFになると検知時間#2の計数が終了し、そのタイミングで検知時間#2の値が一定になる。その間に検知時間#2の値が既定の閾値を超えた時点で、判定結果#2は、Y(ON)からN(OFF)に変化する。そして、判定結果#1と判定結果#2のどちらかがNになったタイミングで、純正管球検知信号Smは、Y(ON)からN(OFF)へ変化する。 On the other hand, when the failure sign signal Sj is turned from OFF to ON, counting of the detection time # 2 is started, and the value of the detection time # 2 increases from that timing. When the failure sign signal Sj changes from ON to OFF, the detection time # 2 is counted, and the value of the detection time # 2 becomes constant at that timing. During this time, when the value of the detection time # 2 exceeds a predetermined threshold, the determination result # 2 changes from Y (ON) to N (OFF). The genuine tube detection signal Sm changes from Y (ON) to N (OFF) at the timing when either of the determination result # 1 and the determination result # 2 becomes N.
 図18は、スタータ制御装置184における制御処理フローの例を示した図である。図18に示すように、スタータ制御装置184は、まず、回転陽極123の回転駆動を開始する(ステップS181)。具体的にはステータ122に駆動電流を供給して、回転陽極123を回転させる。続いて、スタータ制御装置184は、回転陽極123の回転駆動を終了する(ステップS182)。具体的にはステータ122への駆動電流の供給を停止する。その後、数秒間ダミーカウントする(ステップS183)。 FIG. 18 is a diagram showing an example of a control processing flow in the starter control device 184. As shown in FIG. 18, the starter control device 184 first starts to rotate the rotating anode 123 (step S181). Specifically, a drive current is supplied to the stator 122 to rotate the rotary anode 123. Subsequently, the starter control device 184 ends the rotational drive of the rotary anode 123 (step S182). Specifically, the supply of drive current to the stator 122 is stopped. Thereafter, a dummy count is performed for several seconds (step S183).
 次に、スタータ制御装置184は、回転陽極123の回転制動を開始する(ステップS184)。具体的には回転陽極123が停止するようにステータ122に制動電流を供給する。続いて、スタータ制御装置184は、回転陽極123の回転制動を終了する(ステップS185)。具体的には回転陽極123への制動電流の供給を停止する。 Next, the starter control device 184 starts rotational braking of the rotary anode 123 (step S184). Specifically, a braking current is supplied to the stator 122 so that the rotating anode 123 stops. Subsequently, the starter control device 184 ends the rotational braking of the rotary anode 123 (step S185). Specifically, the supply of the braking current to the rotating anode 123 is stopped.
 以上の制御処理において、数秒間のダミーカウント(ステップS183)の間には、ステータ122への電流供給が停止されるので、雑音レベルShが既定の閾値以下に低下する。従って、X線管故障予兆検知装置10は、この数秒間のダミーカウント(ステップS183)の間に、雑音の影響をあまり受けることなく故障予兆を検知することが可能になる。 In the above control process, the current supply to the stator 122 is stopped during the dummy count for several seconds (step S183), so that the noise level Sh is reduced below a predetermined threshold value. Therefore, the X-ray tube failure sign detection apparatus 10 can detect a failure sign without being significantly affected by noise during the dummy count (step S183) for several seconds.
 以上、本発明の実施形態によれば、インバータなど雑音発生源からの雑音レベルを判定し、雑音レベルが低くなっている間に故障予兆検知を行うことができる。従って、雑音発生源からの雑音の影響を受けずに、回転陽極123などからの異音の発生を検知することができる。この場合、スタータ制御装置184などから新たに制御信号を取り込むなど改造を加える必要もない。 As described above, according to the embodiment of the present invention, it is possible to determine a noise level from a noise generation source such as an inverter and detect a failure sign while the noise level is low. Therefore, it is possible to detect the occurrence of abnormal noise from the rotating anode 123 or the like without being affected by noise from the noise generation source. In this case, it is not necessary to make a modification such as newly acquiring a control signal from the starter controller 184 or the like.
 また、本実施形態では、X線管12の筐体位置、筐体角度および筐体温度に基づき検知モードを判定しているので、検知モードすなわちX線管12の様々な筐体位置、筐体角度および筐体温度に応じて適切な故障予兆検知を行うことができる。 In this embodiment, since the detection mode is determined based on the housing position, housing angle, and housing temperature of the X-ray tube 12, the detection mode, that is, various housing positions and housings of the X-ray tube 12 are determined. Appropriate failure sign detection can be performed according to the angle and the casing temperature.
 また、純正のX線管12は、停止指令から停止までの検知時間が考慮されて設計されているのに対して、非純正のX線管12は、その特性上、検知時間が純正のX線管球と異なると考えられる。本実施形態では、検知時間が一定値以上か否かを判定することにより、X線管12が純正であるかどうかを判断することが可能できる。 In addition, the genuine X-ray tube 12 is designed in consideration of the detection time from the stop command to the stop, whereas the non-genuine X-ray tube 12 has a detection time of genuine X-ray due to its characteristics. It is thought that it is different from the tube. In the present embodiment, it is possible to determine whether or not the X-ray tube 12 is genuine by determining whether or not the detection time is equal to or greater than a certain value.
 図19は、本発明の実施形態の変形例に係るX線管故障予兆検知装置10aのハードウェア構成の例を示した図である。図19に示すように、この変形例に係るX線管故障予兆検知装置10aの構成は、図2に示したX線管故障予兆検知装置10の構成と、ソース用センサユニット13aおよび雑音用センサユニット14aのそれぞれにマイクロフォンなどの音声センサ136,144が含まれる点で相違している。 FIG. 19 is a diagram illustrating an example of a hardware configuration of an X-ray tube failure sign detection apparatus 10a according to a modification of the embodiment of the present invention. As shown in FIG. 19, the configuration of the X-ray tube failure sign detection device 10a according to this modification is the same as that of the X-ray tube failure sign detection device 10 shown in FIG. 2, the source sensor unit 13a, and the noise sensor. The difference is that each of the units 14a includes sound sensors 136 and 144 such as microphones.
 すなわち、本変形例では、ソース用センサユニット13aは、センサとして、加速度センサ131、温度センサ132、ジャイロセンサ133に音声センサ136が追加されている。音声センサ136は、X線管12が発する振動を音として検出し、その検出信号は、A/D変換器134および信号処理部135を経て、音声のX線管振動データSaとして出力される。従って、本変形例では、加速度センサ131の検出信号は、X線管12の位置を表す筐体位置データSbを算出するために用いられ、X線管振動データSa生成のためには用いられない。 That is, in the present modification, the source sensor unit 13a has an audio sensor 136 added to the acceleration sensor 131, the temperature sensor 132, and the gyro sensor 133 as sensors. The sound sensor 136 detects vibration generated by the X-ray tube 12 as sound, and the detection signal passes through the A / D converter 134 and the signal processing unit 135 and is output as sound X-ray tube vibration data Sa. Therefore, in this modification, the detection signal of the acceleration sensor 131 is used to calculate the housing position data Sb representing the position of the X-ray tube 12, and is not used to generate the X-ray tube vibration data Sa. .
 また、本変形例の雑音用センサユニット14aでは、加速度センサ141の代わりに音声センサ144が用いられている。そして、X線管12以外から発せられる雑音は、音声センサ144により検出され、A/D変換器142および信号処理部143を経て、音声の雑音振動データSeとして出力される。 Further, in the noise sensor unit 14a of the present modification, a voice sensor 144 is used instead of the acceleration sensor 141. Then, noise emitted from other than the X-ray tube 12 is detected by the voice sensor 144, passes through the A / D converter 142 and the signal processing unit 143, and is output as voice noise vibration data Se.
 以下、データ処理ユニット11の構成は、前記した実施形態での構成と同じであり、また、データ処理ユニット11で行われる様々な処理も、前記した実施形態での処理と同じである。すなわち、本変形例は、前記した実施形態を、X線管12から発せられる音の異常、つまり、異音を検出することによってX線管12の故障の予兆を検知するようにしたものといえる。 Hereinafter, the configuration of the data processing unit 11 is the same as the configuration in the above-described embodiment, and various processes performed in the data processing unit 11 are the same as the processing in the above-described embodiment. That is, in this modification, it can be said that the above-described embodiment is configured to detect a sign of failure of the X-ray tube 12 by detecting an abnormality in the sound emitted from the X-ray tube 12, that is, an abnormal sound. .
 なお、この変形例では、音声センサ136,144としてマイクロフォンなどの音声センサが用いられるので、位置を検出する加速度センサ131としては、高周波特性を必要としない安価なものが使用可能になるなどのメリットがある。なお、音声センサ136,144の周波数特性は、人間の可聴周波数帯域に限定されず、それよりも広くても狭くても構わない。 In this modified example, since a voice sensor such as a microphone is used as the voice sensors 136 and 144, the acceleration sensor 131 that detects the position can be used with an inexpensive sensor that does not require high-frequency characteristics. There is. The frequency characteristics of the audio sensors 136 and 144 are not limited to the human audible frequency band, and may be wider or narrower than that.
 なお、本発明は、以上に説明した実施形態に限定されるものでなく、さらに様々な変形例が含まれる。例えば、前記の実施形態は、本発明を分かりやすく説明するために、詳細に説明したものであり、必ずしも説明したすべての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成の一部で置き換えることが可能であり、さらに、ある実施形態の構成に他の実施形態の構成の一部または全部を加えることも可能である。 Note that the present invention is not limited to the embodiment described above, and includes various modifications. For example, the above embodiment has been described in detail for easy understanding of the present invention, and is not necessarily limited to the one having all the configurations described. Further, a part of the configuration of an embodiment can be replaced with a part of the configuration of another embodiment, and further, a part or all of the configuration of the other embodiment is added to the configuration of the certain embodiment. Is also possible.
 10,10a  X線管故障予兆検知装置
 11  データ処理ユニット
 12  X線管
 13,13a  ソース用センサユニット
 14,14a  雑音用センサユニット
 15  振動遮断材
 16  高電圧装置
 17  フィラメント加熱装置
 18  スタータ装置
 19  交流電源
 21  周波数分析部
 22  検知モード判定部
 23  雑音レベル算出部
 24  閾値処理部
 25  故障予兆検知部
 26  検知時間判定部
 27  診断許可入力受付部
 100 X線装置
 111 表示装置
 112 警報装置
 113 中央処理装置
 114 操作入力装置
 115 記録装置
 116 記憶装置
 117 I/Oポート
 120 X線管筐体
 121 X線管球
 122 ステータ
 123 回転陽極
 123a ターゲット材
 124 陰極
 131 加速度センサ(第1の振動センサ、3軸加速度センサ)
 132 温度センサ
 133 ジャイロセンサ(角度センサ)
 134 A/D変換器
 135 信号処理部
 136 音声センサ(第1の振動センサ)
 141 加速度センサ(第1の振動センサ、3軸加速度センサ)
 142 A/D変換器
 143 信号処理部
 144 音声センサ(第1の振動センサ)
 161 直流電源
 162 高電圧用インバータ
 163 高電圧用トランス
 171 直流電源
 172 フィラメント用インバータ
 173 フィラメント用トランス
 181 直流電源
 182 スタータ用インバータ
 183 スタータ用トランス
 184 スタータ制御装置
 251 距離算出部
 252 最小値算出部
 253 閾値判定部
 254 切替部
 260 スイッチ
 261 周波数分析仮結果出力部
 263 デマルチプレクサ
 264 第一閾値処理部
 265 第一時間計測部
 266 第二時間計測部
 267 第二閾値処理部
 268 第三閾値処理部
 1151 周波数分析用データ
 1154 検知モード判定用データ
 1155 故障予兆検知用データ
 1156 検知時間判定用データ
 1157 診断許可入力受付用データ
 2540 スイッチ
 2541 周波数分析仮結果出力部
 2542 診断許可要求発生部
 2543 デマルチプレクサ
 Sa  X線管振動データ
 Sb  筐体位置データ
 Sc  筐体温度データ
 Sd  筐体角度データ
 Se  雑音振動データ
 Sf  周波数分析結果
 Sg  検知モード
 Sh  雑音レベル
 Si  雑音低レベル信号
 Sj  故障予兆信号
 Sk  診断許可信号
 Sl  診断許可要求信号
 Sm  純正管球検知信号
 Sn  異常度
 So  純正管球検知信号
10, 10a X-ray tube failure sign detection device 11 Data processing unit 12 X-ray tube 13, 13a Source sensor unit 14, 14a Noise sensor unit 15 Vibration isolator 16 High voltage device 17 Filament heating device 18 Starter device 19 AC power supply DESCRIPTION OF SYMBOLS 21 Frequency analysis part 22 Detection mode determination part 23 Noise level calculation part 24 Threshold processing part 25 Failure sign detection part 26 Detection time determination part 27 Diagnosis permission input reception part 100 X-ray apparatus 111 Display apparatus 112 Alarm apparatus 113 Central processing unit 114 Operation Input device 115 Recording device 116 Storage device 117 I / O port 120 X-ray tube housing 121 X-ray tube 122 Stator 123 Rotating anode 123a Target material 124 Cathode 131 Acceleration sensor (first vibration sensor, 3-axis acceleration sensor)
132 Temperature sensor 133 Gyro sensor (angle sensor)
134 A / D converter 135 Signal processor 136 Audio sensor (first vibration sensor)
141 Acceleration sensor (first vibration sensor, three-axis acceleration sensor)
142 A / D converter 143 Signal processing unit 144 Audio sensor (first vibration sensor)
161 DC power supply 162 High voltage inverter 163 High voltage transformer 171 DC power supply 172 Filament inverter 173 Filament transformer 181 DC power supply 182 Starter inverter 183 Starter transformer 184 Starter controller 251 Distance calculation unit 252 Minimum value calculation unit 253 Threshold Determination unit 254 switching unit 260 switch 261 frequency analysis temporary result output unit 263 demultiplexer 264 first threshold processing unit 265 first time measurement unit 266 second time measurement unit 267 second threshold processing unit 268 third threshold processing unit 1151 frequency analysis Data 1154 Detection mode determination data 1155 Failure sign detection data 1156 Detection time determination data 1157 Diagnosis permission input acceptance data 2540 Switch 2541 Temporary analysis result Force unit 2542 Diagnosis permission request generation unit 2543 Demultiplexer Sa X-ray tube vibration data Sb Case position data Sc Case temperature data Sd Case angle data Se Noise vibration data Sf Frequency analysis result Sg Detection mode Sh Noise level Si Noise low level Signal Sj Predictive failure signal Sk Diagnosis permission signal Sl Diagnosis permission request signal Sm Genuine tube detection signal Sn Abnormality level So Genuine tube detection signal

Claims (11)

  1.  X線管の内部で生じる振動を計測する第1の振動センサと、
     X線管の外部で生じる振動を計測する第2の振動センサと、
     前記第1の振動センサにより計測される振動の振動データを周波数分析する周波数分析部と、
     前記第2の振動センサで計測される振動の振動レベルが既定の閾値よりも低くなったタイミングをトリガとして、前記第1の振動センサによって計測される振動の振動データを取得し、前記周波数分析部を介して前記振動データの周波数分析を行い、その周波数分析結果に基づき故障予兆検知を行う故障予兆検知部と、
     を備えること
     を特徴とするX線管故障予兆検知装置。
    A first vibration sensor for measuring vibration generated inside the X-ray tube;
    A second vibration sensor for measuring vibration generated outside the X-ray tube;
    A frequency analysis unit that performs frequency analysis on vibration data of vibrations measured by the first vibration sensor;
    Using the timing at which the vibration level of the vibration measured by the second vibration sensor becomes lower than a predetermined threshold as a trigger, vibration data measured by the first vibration sensor is acquired, and the frequency analysis unit A failure sign detection unit that performs frequency analysis of the vibration data through the frequency analysis and performs failure sign detection based on the frequency analysis result;
    An X-ray tube failure sign detection device comprising:
  2.  前記故障予兆検知部は、
     前記周波数分析結果として得られる複数の周波数成分からなる第1のベクトルと、予め前記X線管が正常であるときに、前記X線管の内部で生じる振動の周波数分析結果として得られた複数の周波数成分それぞれの平均からなる1つまたは複数個の第2のベクトルとのそれぞれの距離を算出し、
     前記算出された距離のうち最小の距離が予め定められた閾値以上であった場合に、前記X線管の故障予兆を検知したと判定すること
     を特徴とする請求項1に記載のX線管故障予兆検知装置。
    The failure sign detection unit is
    A first vector composed of a plurality of frequency components obtained as a result of the frequency analysis, and a plurality of frequencies obtained as a result of frequency analysis of vibrations generated inside the X-ray tube when the X-ray tube is normal in advance. Calculating a distance to each of one or more second vectors comprising an average of each frequency component;
    2. The X-ray tube according to claim 1, wherein when the minimum distance among the calculated distances is equal to or greater than a predetermined threshold, it is determined that a failure sign of the X-ray tube has been detected. Failure sign detection device.
  3.  前記X線管が取り付けられた筐体の筐体位置を検出する位置センサと、
     前記X線管が取り付けられた筐体の姿勢を表す筐体角度を検出する角度センサと、
     前記X線管が取り付けられた筐体の筐体温度を検出する温度センサと、
     前記位置センサ、角度センサおよび温度センサそれぞれによって検出される筐体位置、筐体角度および筐体温度それぞれの値に応じて予め設定された複数の検知モードのうち、いずれの検知モードに属するかを判定する検知モード判定部と、
     をさらに備え、
     前記故障予兆検知部は、
     前記検知モード判定部で判定された検知モードごと予め用意された前記第2のベクトルを用いて前記故障予兆検知を行うこと
     を特徴とする請求項2に記載のX線管故障予兆検知装置。
    A position sensor for detecting a housing position of a housing to which the X-ray tube is attached;
    An angle sensor for detecting a housing angle representing a posture of the housing to which the X-ray tube is attached;
    A temperature sensor for detecting a housing temperature of a housing to which the X-ray tube is attached;
    Which detection mode belongs to a plurality of detection modes set in advance according to the values of the housing position, the housing angle, and the housing temperature detected by the position sensor, the angle sensor, and the temperature sensor, respectively. A detection mode determination unit for determining;
    Further comprising
    The failure sign detection unit is
    The X-ray tube failure sign detection apparatus according to claim 2, wherein the failure sign detection is performed using the second vector prepared in advance for each detection mode determined by the detection mode determination unit.
  4.  前記第2の振動センサで計測される振動の振動レベルが既定の閾値よりも低くなったタイミングから、前記周波数分析部によって得られた特定周波数成分が既定の閾値以下になるまでの時間を計測し、そのとき計測された時間が既定の範囲内であることを判定する第1の判定部と、
     前記故障予兆検知部により故障予兆が検知されてから、検知されなくなるまでの時間を計測し、そのとき計測された時間が既定の範囲内であることを判定する第2の判定部と、
     をさらに備え、
     前記第1の判定部と前記第2の判定部との結果に基づき、前記X線管が純正品であるか否かを判定すること
     を特徴とする請求項1に記載のX線管故障予兆検知装置。
    The time from the timing when the vibration level of the vibration measured by the second vibration sensor becomes lower than a predetermined threshold to the time when the specific frequency component obtained by the frequency analysis unit falls below the predetermined threshold is measured. A first determination unit for determining that the measured time is within a predetermined range;
    A second determination unit that measures a time from when a failure sign is detected by the failure sign detection unit until it is no longer detected, and determines that the measured time is within a predetermined range;
    Further comprising
    The X-ray tube failure sign according to claim 1, wherein it is determined whether or not the X-ray tube is a genuine product based on results of the first determination unit and the second determination unit. Detection device.
  5.  前記振動センサは、3軸加速度センサであること
     を特徴とする請求項1に記載のX線管故障予兆検知装置。
    The X-ray tube failure sign detection apparatus according to claim 1, wherein the vibration sensor is a triaxial acceleration sensor.
  6.  前記振動センサは、音声センサであること
     を特徴とする請求項1に記載のX線管故障予兆検知装置。
    The X-ray tube failure sign detection apparatus according to claim 1, wherein the vibration sensor is an audio sensor.
  7.  X線管の内部で生じる振動を計測する第1の振動センサと、
     X線管の外部で生じる振動を計測する第2の振動センサと、
     前記第1の振動センサにより計測される振動の振動データを周波数分析する周波数分析部と、
     を備えたX線管故障予兆検知装置が、
     前記第2の振動センサで計測される振動の振動レベルを取得するステップと、
     前記取得した振動レベルが既定の閾値よりも低くなったタイミングをトリガとして、前記第1の振動センサによって計測される振動の振動データを取得し、その取得した振動データを前記周波数分析部を介して周波数分析するステップと、
     前記周波数分析するステップにおける周波数分析結果に基づき、故障予兆検知を行うステップと、
     を実行すること
     を特徴とするX線管故障予兆検知方法。
    A first vibration sensor for measuring vibration generated inside the X-ray tube;
    A second vibration sensor for measuring vibration generated outside the X-ray tube;
    A frequency analysis unit that performs frequency analysis on vibration data of vibrations measured by the first vibration sensor;
    X-ray tube failure sign detection device equipped with
    Obtaining a vibration level of vibration measured by the second vibration sensor;
    Using the timing when the acquired vibration level becomes lower than a predetermined threshold as a trigger, vibration data of vibration measured by the first vibration sensor is acquired, and the acquired vibration data is transmitted via the frequency analysis unit. A frequency analysis step;
    Performing failure sign detection based on the frequency analysis result in the frequency analyzing step;
    An X-ray tube failure sign detection method comprising:
  8.  前記X線管故障予兆検知装置は、前記故障予兆検知を行うステップにおいて、
     前記周波数分析結果として得られる複数の周波数成分からなる第1のベクトルと、予め前記X線管が正常であるときに、前記X線管の内部で生じる振動の周波数分析結果として得られた複数の周波数成分それぞれの平均からなる1つまたは複数個の第2のベクトルとのそれぞれの距離を算出し、
     前記算出された距離のうち最小の距離が予め定められた閾値以上であった場合に、前記X線管の故障予兆を検知したと判定すること
     を特徴とする請求項7に記載のX線管故障予兆検知方法。
    The X-ray tube failure sign detection device performs the failure sign detection,
    A first vector composed of a plurality of frequency components obtained as a result of the frequency analysis, and a plurality of frequencies obtained as a result of frequency analysis of vibrations generated inside the X-ray tube when the X-ray tube is normal in advance. Calculating a distance to each of one or more second vectors comprising an average of each frequency component;
    8. The X-ray tube according to claim 7, wherein when the minimum distance among the calculated distances is equal to or greater than a predetermined threshold, it is determined that a failure sign of the X-ray tube has been detected. Failure sign detection method.
  9.  前記X線管故障予兆検知装置は、
     前記X線管が取り付けられた筐体の筐体位置を検出する位置センサと、
     前記X線管が取り付けられた筐体の姿勢を表す筐体角度を検出する角度センサと、
     前記X線管が取り付けられた筐体の筐体温度を検出する温度センサと、
     前記位置センサ、角度センサおよび温度センサそれぞれによって検出される筐体位置、筐体角度および筐体温度それぞれの値に応じて予め設定された複数の検知モードのうち、いずれの検知モードに属するかを判定する検知モード判定部と、
     をさらに備え、
     前記故障予兆検知を行うステップにおいて、
     前記検知モード判定部で判定された検知モードごと予め用意された前記第2のベクトルを用いて前記故障予兆検知を行うこと
     を特徴とする請求項8に記載のX線管故障予兆検知方法。
    The X-ray tube failure sign detection device is
    A position sensor for detecting a housing position of a housing to which the X-ray tube is attached;
    An angle sensor for detecting a housing angle representing a posture of the housing to which the X-ray tube is attached;
    A temperature sensor for detecting a housing temperature of a housing to which the X-ray tube is attached;
    Which detection mode belongs to a plurality of detection modes set in advance according to the values of the housing position, the housing angle, and the housing temperature detected by the position sensor, the angle sensor, and the temperature sensor, respectively. A detection mode determination unit for determining;
    Further comprising
    In the step of performing the failure sign detection,
    The X-ray tube failure sign detection method according to claim 8, wherein the failure sign detection is performed using the second vector prepared in advance for each detection mode determined by the detection mode determination unit.
  10.  前記X線管故障予兆検知装置は、
     前記第2の振動センサで計測される振動の振動レベルが既定の閾値よりも低くなったタイミングから、前記周波数分析部によって得られた特定周波数成分が既定の閾値以下になるまでの時間を計測し、そのとき計測された時間が既定の範囲内であることを判定する第1の判定ステップと、
     前記故障予兆検知を行うステップにより故障予兆が検知されてから、検知されなくなるまでの時間を計測し、そのとき計測された時間が既定の範囲内であることを判定する第2の判定ステップと、
     前記第1の判定ステップと前記第2の判定ステップとの結果に基づき、前記X線管が純正品であるか否かを判定するステップを
     さらに実行すること
     を特徴とする請求項7に記載のX線管故障予兆検知方法。
    The X-ray tube failure sign detection device is
    The time from the timing when the vibration level of the vibration measured by the second vibration sensor becomes lower than a predetermined threshold to the time when the specific frequency component obtained by the frequency analysis unit falls below the predetermined threshold is measured. A first determination step for determining that the measured time is within a predetermined range;
    A second determination step of measuring a time from when a failure sign is detected by the step of performing the failure sign detection until no longer detected, and determining that the measured time is within a predetermined range;
    The step of determining whether or not the X-ray tube is a genuine product based on the results of the first determination step and the second determination step is further performed. X-ray tube failure sign detection method.
  11.  請求項1ないし請求項6のいずれか1項に記載のX線管故障予兆検知装置を有してなることを特徴とするX線装置。 An X-ray apparatus comprising the X-ray tube failure sign detection device according to any one of claims 1 to 6.
PCT/JP2015/051041 2014-01-23 2015-01-16 X-ray tube defect sign detection device, x-ray tube defect sign detection method, and x-ray device WO2015111512A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015558822A JP6159827B2 (en) 2014-01-23 2015-01-16 X-ray tube failure sign detection apparatus, X-ray tube failure sign detection method, and X-ray apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-010599 2014-01-23
JP2014010599 2014-01-23

Publications (1)

Publication Number Publication Date
WO2015111512A1 true WO2015111512A1 (en) 2015-07-30

Family

ID=53681316

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/051041 WO2015111512A1 (en) 2014-01-23 2015-01-16 X-ray tube defect sign detection device, x-ray tube defect sign detection method, and x-ray device

Country Status (2)

Country Link
JP (1) JP6159827B2 (en)
WO (1) WO2015111512A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018061823A (en) * 2016-10-13 2018-04-19 ヴァレックス イメージング コーポレイション Authentication for X-ray imaging components
JP2019063505A (en) * 2017-10-03 2019-04-25 キヤノンメディカルシステムズ株式会社 X-ray diagnostic device and x-ray high-voltage device
CN111110261A (en) * 2019-12-26 2020-05-08 上海联影医疗科技有限公司 X-ray tube assembly, medical imaging device, monitoring system and monitoring method
US11123038B2 (en) 2017-05-16 2021-09-21 Canon Medical Systems Corporation Medical image diagnostic apparatus and medical image diagnostic system
CN114595788A (en) * 2022-05-09 2022-06-07 云智慧(北京)科技有限公司 Transformer fault diagnosis method, device and equipment
EP4390963A1 (en) * 2022-12-22 2024-06-26 Koninklijke Philips N.V. Method for determining a workflow phase of a medical system in a medical environment

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61153932A (en) * 1984-12-27 1986-07-12 Toshiba Corp Evaluation of rotary mechanism in x-ray tube and device therefor
JP2001218762A (en) * 2000-02-09 2001-08-14 Ge Yokogawa Medical Systems Ltd X-ray ct device and monitoring system therefor
US20010031036A1 (en) * 1998-11-25 2001-10-18 William A. Berezowitz X-ray tube life prediction method and apparatus
JP2002280195A (en) * 2001-03-13 2002-09-27 Ge Medical Systems Global Technology Co Llc X-ray tube, its malfunction detector, and device and sytem for x-ray ct
JP2005241089A (en) * 2004-02-25 2005-09-08 Mitsubishi Electric Corp Apparatus diagnosing device, refrigeration cycle device, apparatus diagnosing method, apparatus monitoring system and refrigeration cycle monitoring system
US20070189463A1 (en) * 2003-08-22 2007-08-16 Josef Deuringer Method for estimating the remaining life span of an X-ray radiator

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61153932A (en) * 1984-12-27 1986-07-12 Toshiba Corp Evaluation of rotary mechanism in x-ray tube and device therefor
US20010031036A1 (en) * 1998-11-25 2001-10-18 William A. Berezowitz X-ray tube life prediction method and apparatus
JP2001218762A (en) * 2000-02-09 2001-08-14 Ge Yokogawa Medical Systems Ltd X-ray ct device and monitoring system therefor
JP2002280195A (en) * 2001-03-13 2002-09-27 Ge Medical Systems Global Technology Co Llc X-ray tube, its malfunction detector, and device and sytem for x-ray ct
US20070189463A1 (en) * 2003-08-22 2007-08-16 Josef Deuringer Method for estimating the remaining life span of an X-ray radiator
JP2005241089A (en) * 2004-02-25 2005-09-08 Mitsubishi Electric Corp Apparatus diagnosing device, refrigeration cycle device, apparatus diagnosing method, apparatus monitoring system and refrigeration cycle monitoring system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018061823A (en) * 2016-10-13 2018-04-19 ヴァレックス イメージング コーポレイション Authentication for X-ray imaging components
US11123038B2 (en) 2017-05-16 2021-09-21 Canon Medical Systems Corporation Medical image diagnostic apparatus and medical image diagnostic system
JP2019063505A (en) * 2017-10-03 2019-04-25 キヤノンメディカルシステムズ株式会社 X-ray diagnostic device and x-ray high-voltage device
JP7224825B2 (en) 2017-10-03 2023-02-20 キヤノンメディカルシステムズ株式会社 X-ray diagnostic equipment and X-ray high voltage equipment
CN111110261A (en) * 2019-12-26 2020-05-08 上海联影医疗科技有限公司 X-ray tube assembly, medical imaging device, monitoring system and monitoring method
CN114595788A (en) * 2022-05-09 2022-06-07 云智慧(北京)科技有限公司 Transformer fault diagnosis method, device and equipment
EP4390963A1 (en) * 2022-12-22 2024-06-26 Koninklijke Philips N.V. Method for determining a workflow phase of a medical system in a medical environment

Also Published As

Publication number Publication date
JPWO2015111512A1 (en) 2017-03-23
JP6159827B2 (en) 2017-07-05

Similar Documents

Publication Publication Date Title
JP6159827B2 (en) X-ray tube failure sign detection apparatus, X-ray tube failure sign detection method, and X-ray apparatus
US10298051B2 (en) Charging position prompting method and electronic device
JP6320524B2 (en) X-ray tube failure sign detection apparatus, X-ray tube failure sign detection method, and X-ray imaging apparatus
JP6659384B2 (en) Rotary machine abnormality detection device and rotating machine abnormality detection system
JP5738711B2 (en) Rotating machine state monitoring device, rotating machine state monitoring method, and rotating machine state monitoring program
JP5954606B1 (en) Diagnostic device, diagnostic system, device and program
JP6922708B2 (en) Anomaly detection computer program, anomaly detection device and anomaly detection method
US20150310878A1 (en) Method and apparatus for determining emotion information from user voice
JP6251658B2 (en) Rotating machine abnormality detection device, method and system, and rotating machine
CN109768002A (en) For manufacturing or analyzing device, operating method and the system of semiconductor crystal wafer
WO2011036815A1 (en) Monitoring device
JP2013221877A (en) Abnormality inspection method and abnormality inspection device
US9036291B1 (en) Systems and methods for asynchronous-frequency tracking of disk drive rotational vibration (RV) performance with position error signal (PES)
US9456288B2 (en) System and method for use in analyzing vibrations
KR20180043292A (en) A respiratory function test system and a method for testing the respiratory function of such a system
US20190163599A1 (en) Tape library integrated failure indication based on cognitive sound and vibration analysis
JP2010266327A (en) Facility diagnosis device and facility diagnosis method
JP2011237198A (en) Abnormal sound detector and power supply unit checking device using abnormal sound detector
CN106963324B (en) A kind of presumption method and device of capsule endoscope position
US20230377718A1 (en) Medical tool aiding diagnosed psychosis patients in detecting auditory psychosis symptoms associated with psychosis
US9138198B2 (en) Electric arc detection for X-ray generators
JP5321646B2 (en) Abnormality inspection method and abnormality inspection device
JP2017170118A (en) Radiographic system, control device, information processing method and program
Collin et al. The etiology of chatter in the himalayan singing bowl
JP5929376B2 (en) Information processing apparatus, operator determination program, and projection system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15740934

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015558822

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15740934

Country of ref document: EP

Kind code of ref document: A1