WO2015109874A1 - 面向链式无线传感器网络的混合介质访问控制方法 - Google Patents

面向链式无线传感器网络的混合介质访问控制方法 Download PDF

Info

Publication number
WO2015109874A1
WO2015109874A1 PCT/CN2014/089110 CN2014089110W WO2015109874A1 WO 2015109874 A1 WO2015109874 A1 WO 2015109874A1 CN 2014089110 W CN2014089110 W CN 2014089110W WO 2015109874 A1 WO2015109874 A1 WO 2015109874A1
Authority
WO
WIPO (PCT)
Prior art keywords
cluster
cluster head
time
access control
data
Prior art date
Application number
PCT/CN2014/089110
Other languages
English (en)
French (fr)
Inventor
于海斌
梁炜
张晓玲
马超凡
Original Assignee
中国科学院沈阳自动化研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院沈阳自动化研究所 filed Critical 中国科学院沈阳自动化研究所
Priority to US14/898,511 priority Critical patent/US9979563B2/en
Priority to EP14879521.4A priority patent/EP2983421B1/en
Publication of WO2015109874A1 publication Critical patent/WO2015109874A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/64Hybrid switching systems
    • H04L12/6418Hybrid transport
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/121Wireless traffic scheduling for groups of terminals or users
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/64Hybrid switching systems
    • H04L12/6418Hybrid transport
    • H04L2012/6445Admission control
    • H04L2012/6459Multiplexing, e.g. TDMA, CDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/46Cluster building
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/18Self-organising networks, e.g. ad-hoc networks or sensor networks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the invention relates to a wireless network technology, in particular to a mixed medium access control method for a chained wireless sensor network.
  • wireless sensor networks have been widely used.
  • Applications such as transmission line monitoring, railway monitoring, subway monitoring, and border monitoring have the characteristics of large dispersion, long distance, and difficulty in maintenance.
  • the more widely used methods of periodic artificial, helicopter, and robot inspections require not only high overhead, high labor intensity, but also continuous monitoring of the entire system.
  • network-based monitoring systems have become inevitable for such applications.
  • monitoring systems based on wired networks have problems such as difficulty in deployment, high cost, and inconvenient maintenance.
  • wireless technology-based monitoring systems are the future development trend.
  • mobile communication technologies such as GSM, WIMAX, and CDMA are still too expensive for a full-scale monitoring system, so these existing systems are only used for some key links.
  • Wireless sensor networks are the technology of choice for such applications due to their real-time online, large-area coverage, self-configuration, self-organization, low cost, flexibility, and easy maintenance.
  • wireless sensor networks are usually deployed in unattended areas, where battery replacement is difficult and battery costs are high. To this end, low energy consumption has become a primary requirement for such wireless sensor networks.
  • the system generally requires battery-powered cluster heads and cluster members to work for more than 5 years.
  • SCADA Supervisory Control and Data Acquisition
  • the data collection period is usually 4-8 seconds, especially when an abnormal event or warning occurs, it needs to be transmitted to the monitoring center in time.
  • the Media Access Control (MAC) method directly manages the rational use of wireless communication resources and becomes a key technology for determining the performance of wireless sensor networks.
  • the wireless sensor network topology in the above applications is usually in the form of a chain or a line, but at the same time it is also locally dense. Taking transmission lines as an example, most of the sensors are installed on or near the tower poles. The entire densely packed area is no more than 10 meters in diameter. Only a small number of sensors are arranged on power lines spanning 200 to 1000 meters. On, such as the dance monitoring sensor. A large number of deployment-intensive local areas appear in chained networks. The local dense feature highlights the hidden terminal problem.
  • Two types of data are typically generated in the above applications: periodic monitoring data and aperiodic data such as alarms, network control, system queries, and configuration.
  • the corresponding network duty cycle is divided into a busy period with a large number of periodic data transmissions and an idle period with only a small amount of aperiodic data transmission. How to face the network traffic characteristics and complex non-equilibrium of network time-varying, ensuring real-time performance while saving energy is another problem.
  • the existing wireless sensor network MAC protocol can not meet the above application needs, the specific performance is as follows: (1) Adoption time division The method of Multiple Division Multiple Access (TDMA) can effectively avoid hidden terminal problems and cope with transmission during busy periods. However, for the chain topology network, how to design an effective TDMA mechanism to ensure the real-time performance of the network under the premise of low energy consumption, the research has just started. (2) Existing wireless sensor network MAC protocols for mesh, low data rate, etc., such as X-MAC, SMAC, TMAC, etc., the real-time nature of the protocol depends on the duty cycle of the receiver, only from the data rate It should deal with the transmission of aperiodic data with low real-time requirements. Therefore, how to ensure the high real-time nature of periodic data transmission and the transmission of urgent data has become a challenging problem.
  • TDMA Adoption time division
  • TDMA Multiple Division Multiple Access
  • the present invention is directed to the existing MAC protocol for chained or linear topology networks, and the defects that cannot effectively guarantee low energy consumption and high real-time performance are provided, and how the MAC protocol satisfies the energy saving under the premise of adaptive network traffic characteristics.
  • Real-time performance requirements avoid hidden terminal problems, adjust cluster heads and cluster member roles to achieve the balance between energy saving and real-time performance, and propose a hybrid medium access control method for chained wireless sensor networks.
  • the cluster head and cluster members can respond to requests in time, the cluster members can save energy as much as possible, so as to meet the demanding requirements of the system for real-time network while saving energy.
  • the technical solution adopted by the present invention is: a mixed medium access control method for a chain wireless sensor network
  • time-division access control Pipelined TDMA including the following steps:
  • In-cluster collection phase in each time slot, some clusters in the network collect sensor data of all cluster members in the subsequent cluster;
  • Data forwarding phase the cluster head forwards the collected sensor data
  • the contention access control S-XMAC is adopted, that is, the wakeup time scheduling based on the location information: according to the cluster head and the cluster member in the network. Geographical location, awakening the cluster heads and cluster members in order.
  • the subsequent cluster is in a direction away from the sink, and the adjacent cluster head of the current cluster head.
  • the partial cluster head is: the hop count of the cluster is expressed as hop,
  • the intra-cluster collection phase and/or the data forwarding phase requires three time slots to complete the network transmission scheduling and the data transmitted by all cluster members simultaneously with the adjacent clusters does not collide.
  • the process of sending data by each cluster member includes:
  • Small time slot allocation process based on address naming algorithm; cluster members select corresponding small time slots to send data according to the order of addr values from small to large;
  • the addr value is an intra-cluster address addr ⁇ [1, Ni] when the cluster member joins the network, where Ni represents the number of cluster members in the i-th cluster.
  • the implementation process of the data forwarding phase is that the cluster head is allocated a plurality of consecutive time slots, and multiple data packets are transmitted by using the consecutive time slots.
  • Each cluster head and cluster member periodically sleeps and wakes up according to a duty cycle T duty-cycle ;
  • the cluster head of the data to be transmitted does not immediately start the radio transmission preamble, but is earlier than the cluster wakeup time of the destination receiver. Transmitting a preamble including cluster head address information of the transmitting end and the destination receiving end;
  • the cluster head of the data to be transmitted waits for the preamble acknowledgment response ACK from the cluster head of the destination receiving end, and repeats the process until the ACK is received, and the data is sent;
  • the receiving end periodically wakes up; if the preamble including the cluster head address information is received during the waking period, it is determined whether the destination receiving end address information in the preamble matches with itself, and if the address is the same, an ACK is returned, and the sending end is notified.
  • the cluster sends data; otherwise, it does not return an ACK and immediately goes to sleep.
  • the cluster wake-up time of each cluster in the duty cycle is the same, and the cluster head records the cluster wake-up time of the adjacent clusters in the duty cycle T duty-cycle .
  • the design of the wake-up time is specifically:
  • the wake-up time T shedule between adjacent cluster heads needs to satisfy the following conditions:
  • represents the processing time required for the cluster head to receive data, including data transmission time and dwell time Dwell Time except for the preamble;
  • T offset_max indicates the maximum clock offset between the transmitting end and the receiving end, and the synchronization period and the cluster head and cluster members Frequency offset decision
  • the location information of the cluster head and the cluster member is indicated by the address ADDR of the cluster head and the cluster member, and the wake-up time of the cluster head and the cluster member is set to:
  • T wake n ⁇ T duty_cycle -((ADDR+1) ⁇ 1) ⁇ T schedule
  • T wake represents the wake-up time of the cluster head or cluster member
  • T schedule represents the wake-up time between adjacent cluster heads
  • T duty_cycle represents the duty ratio of the cluster head or cluster member
  • ADDR represents the address of the cluster head or cluster member
  • the maximum time T preamble required to transmit the preamble is:
  • T preamble indicates the maximum time required to transmit the preamble
  • T duty_cycle indicates the duty ratio of the cluster head or the cluster member
  • T offset_max indicates the maximum clock offset between the transmitting end and the receiving end.
  • the method of the present invention adopts different access strategies at different time periods, can improve throughput and reliability as much as possible during busy periods, save energy as much as possible during idle periods, and meet real-time requirements of communication.
  • the busy time time division access control method (Pipelined TDMA) proposed by the method of the invention adopts a pipelined scheduling transmission method to avoid hidden terminal problems, and its timely forwarding feature reduces congestion and avoids cluster head and cluster members from being cached. Packet loss caused by too small, improving network throughput and communication reliability.
  • the idle time contention access control method (S-XMAC) proposed by the method of the present invention reduces the transmission time of the preamble by using loose synchronization, does not introduce additional communication overhead, saves energy; secondly, adjusts The cluster head and the cluster members adopt different MAC parameters, so that the cluster head can respond to the request more timely, and meet the application real-time requirements of the network, and the common cluster head and cluster members can save energy; meanwhile, according to the topology of the chain network Based on the characteristics, a location-based wake-up time scheduling method is proposed to meet the real-time differentiation requirements of uplink data and downlink data.
  • Figure 1 is a schematic diagram of a pipelined transmission sequence
  • 2 is a wake-up time scheduling based on location information in S-XMAC
  • Figure 3 is a comparison diagram of the transmission time of the X-MAC and S-XMAC preamble in the worst case
  • Figure 4 is a schematic diagram of X-MAC operation.
  • the invention provides a mixed medium access control method for a chain wireless sensor network, and the main idea is to set a cluster head and a cluster member to adopt different MAC parameters, so that the cluster head can respond to the request in time, and the common cluster member is as Save energy and reduce the energy consumption of the application while meeting the real-time requirements of the application.
  • the method of the present invention includes time-division access control Pipelined TDMA and idle time contention access control S-XMAC during busy periods.
  • TDMA time-division access control Pipelined TDMA and idle time contention access control S-XMAC during busy periods.
  • a cluster head and a cluster member that need to simultaneously transmit data reach a certain proportion (20%), it is a busy period; otherwise, it is an idle period.
  • Time-division access control Pipelined TDMA during busy periods including the intra-cluster collection phase and data forwarding phase, including the following steps:
  • Step (1.1) The collection phase within the cluster.
  • some clusters in the network collect sensor data of all cluster members in the subsequent cluster, as shown in FIG. 1 .
  • the cluster members need to send data.
  • the cluster member data transmission process includes: first, equally dividing the time slot into a plurality of small time slots.
  • the minislot allocation process based on the address naming algorithm; when the cluster members join the network, the intra-cluster address addr ⁇ [1, Ni] is assigned, where Ni represents the number of cluster members in the i-th cluster, and the cluster members follow the addr value. Select the corresponding minislot to send data from small to large.
  • the address naming algorithm ensures that the addons of the cluster members in the same cluster are different from each other, thereby avoiding collisions between the cluster member data.
  • the successor cluster refers to the direction away from the sink, and the adjacent cluster head of the current cluster head.
  • the “partial cluster heads” in the sensing data of all the cluster members in the clusters in the cluster are included in the network: 1) part of the cluster heads in the first slot refers to the distance from the cluster head and the cluster members
  • the third cluster head in the (Sink) direction counts the cluster heads of every two cluster heads; 2) the partial cluster heads in the second time slot means that some cluster heads in the first time slot are close to each other.
  • the partial cluster head in the third time slot refers to the set of the cluster heads in the second time slot toward the adjacent cluster heads in the direction of the sink.
  • partial cluster head refers to the hop count of the cluster.
  • Step (1.2) Data Forwarding Phase The cluster head completes the data forwarding at this stage.
  • the cluster head is allocated a plurality of consecutive time slots, and the plurality of data packets are transmitted using the consecutive time slots.
  • the principle is the same as the collection phase in the cluster, which only requires three time slots to complete data forwarding.
  • S-XMAC specifically refers to wake-up time scheduling based on location information. The specific steps are described below.
  • the cluster head records the wake-up time of the adjacent clusters in the duty cycle T duty-cycle , and the wake-up time of the cluster members of each cluster in the duty ratio is the same, which is called the cluster wake-up time;
  • the duty cycle refers to a duty cycle in which the cluster head and the cluster member wake up to sleep, and the formal description T duty_cycle is:
  • T duty_cycle wake-up time + sleep time
  • the cluster wake-up time refers to the wake-up time scheduling based on the location information, and the cluster heads are sequentially awakened according to the geographic location of the cluster head and the cluster members in the network. As time passes, the synchronization error between the cluster head and the cluster member becomes larger and larger, which may cause the receiving cluster head and the cluster member to start transmitting the preamble before receiving the cluster head and the cluster member have been within the same duty cycle. Wake up, causing communication to fail.
  • the location information-based wake-up time scheduling designed by the present invention takes the network topology and wake-up scheduling shown in FIG. 2 as an example, and the wake-up time T shedule between adjacent cluster heads needs to satisfy the following conditions:
  • represents the processing time required for the cluster head to receive data, including data transmission time and dwell time except for the preamble
  • T offset_max indicates the maximum clock offset between the transmitting end and the receiving end
  • the synchronization period and the cluster head sum The frequency offset decision of the cluster member is not limited to a specific synchronization algorithm in the design of the S-XMAC.
  • the implementation of the synchronization algorithm can be performed by other services in the application, such as a data collection process, and the method of the present invention does not limit this.
  • the location information of the cluster head and the cluster member is indicated by the address ADDR of the cluster head and the cluster member, and the wake-up time of the cluster head and the cluster member is set to:
  • T wake n ⁇ T duty_cycle -((ADDR+1) ⁇ 1) ⁇ T schedule
  • the cluster head of the data to be transmitted waits for the preamble acknowledgment response from the cluster head of the destination receiver.
  • the T preamble refers to the maximum time required to transmit the preamble, and is defined as follows:

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明涉及无线网络技术,具体地说是一种面向链式无线传感器网络的混合介质访问控制方法。本发明方法充分考虑输电线路监测等应用的无线传感器网络链式或线型拓扑结构的特征,在网络不同时段采用了不同的接入策略,提出繁忙时期的时分访问控制Pipelined TDMA以及空闲时期的竞争访问控制S-XMAC方法。在繁忙时期,采用了流水线式的调度传输方法来避免隐藏终端问题,以提高传输可靠性和资源利用率;在空闲时期,设置簇首和普通簇成员采用不同的MAC参数,在使簇首簇首和簇成员能够更及时地响应请求的同时,使得普通簇成员尽可能地节省能量,从而使得网络在节省能量的同时,满足应用系统对网络实时性的要求。

Description

面向链式无线传感器网络的混合介质访问控制方法 技术领域
本发明涉及无线网络技术,具体地说是一种面向链式无线传感器网络的混合介质访问控制方法。
背景技术
近年来,无线传感器网络广泛应用。输电线路监测、铁路监测、地铁监测、边境监测等应用,具有分散性大、距离长、难以维护等特点。之前较广泛采用的周期性人工、直升机、机器人巡检的方式,不仅需要高开销、高劳动强度,也难于持续地对整个系统进行监测。为此,基于网络的监控系统成为这类应用实现的必然。然而,基于有线网络的监测系统具有布设困难、成本高、维护不便等问题。那么,基于无线技术的监测系统是未来的发展趋势。但是,GSM、WIMAX、CDMA等移动通信技术,对于全方位的监测系统来说依旧过于昂贵,因此这些现有的系统仅用于部分关键的环节。无线传感器网络以其实时在线、大面积覆盖、自配置自组织、低成本、灵活、维护方便等优点,成为这类应用的首选技术。
对于上述输电线路监测、铁路监测、地铁监测、边境监测等应用,无线传感器网络通常部署在无人值守的区域,更换电池困难,电池成本较高。为此,低能耗成为该类无线传感器网络的首要需求。系统一般要求电池供电的簇首和簇成员可以工作5年以上。此外,这类应用对无线传感器网络的实时性也提出了要求。以智能电网中的数据采集与监控系统(Supervisory Control and Data Acquisition,SCADA)为例,数据采集周期通常为4~8秒,特别当异常事件或警告产生时,需要及时传输到监控中心。
介质访问控制(Media Access Control,MAC)方法直接管理无线通信资源的合理使用,成为决定无线传感器网络性能的关键技术。输电线路监测、铁路监测、地铁监测、边境监测等应用的特点,使得无线传感器网络MAC协议的设计需要面临如下挑战:
上述应用中的无线传感器网络拓扑结构通常呈现链式或线型,但同时还具有局部密集的特点。以输电线路为例,大部分传感器架设于塔杆之上或者接近塔杆的区域,整个被密集布设的区域直径不超过10米,仅有少量传感器布设在跨度200~1000米之间的输电线上,如舞动监测传感器。链式网络中出现大量部署密集的局部区域。局部密集特性凸显了隐藏终端问题。
上述应用中通常产生两类数据:周期性监测数据以及报警、网络控制、系统查询、配置等非周期性数据。对应的网络工作周期划分为有大量周期性数据传输的繁忙时期以及仅少量非周期数据传输的空闲时期。如何面对网络时变的网络流量特性以及复杂的非均衡性,在节能的同时保证实时性是另一个难题。
现有无线传感器网路MAC协议还无法满足上述应用需要,具体表现在:(1)采用时分 多路访问(Time Division Multiple Access,TDMA)的方式能够有效避免隐藏终端问题,应对繁忙时期的传输。但面向链式拓扑结构网络,如何设计有效的TDMA机制,在低能耗前提下保证网络的实时性,研究刚刚起步。(2)现有面向网状、低数据率等特点的无线传感器网络MAC协议,如X-MAC、SMAC、TMAC等,协议的实时性取决于接收方的占空比,仅从数据率看可以应对实时性要求较低的非周期性数据的传输。因此,如何保证周期性数据传输的高实时性以及紧急数据的传输成为了一个挑战性难题。
发明内容
本发明针对现有面向链式或者线型拓扑结构网络的MAC协议研究中,存在的无法有效保障低能耗和高实时性的缺陷,针对MAC协议如何在自适应网络流量特性的前提下,满足节能、实时性能需求,避免隐藏终端问题,调整簇首和簇成员角色以达到节能和实时性之间的平衡这三个问题,提出了一种面向链式无线传感器网络的混合介质访问控制方法,旨在使簇首簇首和簇成员能够及时响应请求,簇成员能够尽可能地节省能量,从而在节能的同时,满足系统对网络实时性的苛刻要求。
为解决上述技术问题,本发明采用的技术方案是:一种面向链式无线传感器网络的混合介质访问控制方法,
在无线传感器网络中,需要同时发送数据的簇首和簇成员达到一定比例时,采用时分访问控制Pipelined TDMA,包括以下步骤:
簇内收集阶段:每个时隙内,网络中部分簇首收集后继簇中所有簇成员的传感数据;
数据转发阶段:簇首转发收集到的传感数据;
在无线传感器网络中,需要同时发送数据的簇首和簇成员没有达到所述比例时,采用竞争访问控制S-XMAC,即基于位置信息的唤醒时间调度:根据簇首和簇成员在网络中的地理位置,有次序地唤醒各簇首和簇成员。
所述后继簇为远离Sink的方向,当前簇首的相邻簇首。
所述部分簇首为:令簇的跳数表示为hop,
1)第一个时隙内的部分簇首为3%hop==0的簇首,即从远离汇聚簇首和簇成员Sink方向的第3个簇首计起,每隔2个簇首的簇首;
2)第二个时隙内的部分簇首为3%hop==2的簇首,即第一个时隙内的部分簇首向靠近Sink方向的相邻簇首的集合;
3)第三个时隙内的部分簇首为3%hop==1的簇首,即第二个时隙内的部分簇首向靠近Sink方向的相邻簇首的集合。
所述簇内收集阶段和/或数据转发阶段需要三个时隙完成网络传输调度并使所有簇成员与相邻簇同时发送的数据不产生碰撞。
所述每个簇成员发送数据的过程包括:
将时隙二次等分为多个小时隙;
基于地址命名算法的小时隙分配过程;簇成员按照addr值从小到大的顺序选择相应的小时隙发送数据;
所述addr值为:簇成员加入网络时,被分配的簇内地址addr∈[1,Ni],其中Ni表示第i个簇内的簇成员的数量。
所述数据转发阶段的实现过程为:簇首被分配连续的多个时隙,并利用该连续时隙发送多个数据包。
所述S-XMAC的实现过程为:
每个簇首和簇成员按照占空比Tduty-cycle周期性休眠和唤醒;
待发送数据的簇首不立即启动射频发送前导码,而是比目的接收端的簇唤醒时间提前
Figure PCTCN2014089110-appb-000001
时间发送包含发送端和目的接收端的簇首地址信息的前导码;
前导码发送完成后,待发送数据的簇首等待来自目的接收端的簇首的前导确认响应ACK,重复此过程直到收到ACK后,发送数据;
接收端周期性地唤醒;若在唤醒期间,收到包含簇首地址信息的前导码后,判断前导码中的目的接收端地址信息和自身是否相符,如果地址相同,则返回ACK,通知发送端簇首发送数据;否则,不返回ACK,并立即进入休眠状态。
所述每个簇在占空比中的簇唤醒时间是相同的,由簇首记录相邻簇在占空比Tduty-cycle中的簇唤醒时间实现。
所述唤醒时间的设计具体为:
相邻簇首间的唤醒时间Tshedule需要满足下面条件:
Tschedule>δ+Toffset_max
其中,δ表示簇首接收数据需要的处理时间,包括除前导码外的数据传输时间和驻留时间Dwell Time;Toffset_max表示发送端和接收端的最大时钟偏差,由同步周期和簇首和簇成员的频偏决定;
利用簇首和簇成员的地址ADDR指示簇首和簇成员的位置信息,簇首和簇成员的唤醒时间被设置成:
Twake=n×Tduty_cycle-((ADDR+1)□1)×Tschedule
Figure PCTCN2014089110-appb-000002
其中,Twake表示簇首或者簇成员的唤醒时间,Tschedule表示相邻簇首间的唤醒时间,Tduty_cycle 表示簇首或者簇成员的占空比,ADDR表示簇首或者簇成员的地址。
所述发送前导码需要的最长时间Tpreamble为:
Figure PCTCN2014089110-appb-000003
其中,Tpreamble表示发送前导码需要的最长时间,Tduty_cycle表示簇首或者簇成员的占空比,Toffset_max表示发送端和接收端的最大时钟偏差。
本发明具有以下优点及有益效果:
1.本发明方法设计在不同时段采取不同接入策略,能够在繁忙时期尽可能地提高吞吐量和可靠性,在空闲时期尽可能地节省能量并满足通信的实时性要求。
2.本发明方法提出的繁忙时期时分访问控制方法(Pipelined TDMA),采用了流水线式的调度传输方法,避免了隐藏终端问题,其及时转发的特性减少了拥塞,避免簇首和簇成员因缓存太小导致的丢包问题,提高了网络吞吐量和通信可靠性。
3.本发明方法提出的空闲时期竞争访问控制方法(S-XMAC),一方面,利用宽松的同步,减少了前导码的发送时间,不引入额外的通信开销,节省了能量;其次,通过调节簇首和簇成员采用不同的MAC参数,使得簇首能够更及时响应请求,满足应用对网络实时性的要求,而普通簇簇首和簇成员能够更节省能量;同时,根据链式网络的拓扑特征,提出了基于位置的唤醒时间调度方法,满足了上行数据和下行数据对实时性的差异化需求。
附图说明
图1为流水线式传输顺序示意图;
图2为S-XMAC中基于位置信息的唤醒时间调度;
图3为最坏情况下X-MAC和S-XMAC前导码发送时间的对比图;
图4为X-MAC运行示意图。
具体实施方式
下面结合附图对本发明做进一步的详细说明。
本发明提出的一种面向链式无线传感器网络的混合介质访问控制方法,其主要思想在于:设置簇首和簇成员采用不同的MAC参数,使得簇首能够更及时响应请求,普通簇成员尽可能地节省能量,从而在降低能耗的同时,满足应用对网络实时性的要求。
本发明方法包括繁忙时期时分访问控制Pipelined TDMA与空闲时期竞争访问控制S-XMAC。在无线传感器网络中,需要同时发送数据的簇首和簇成员达到一定比例(20%)时,为繁忙时期;否则为空闲时期。
(1)繁忙时期时分访问控制Pipelined TDMA:包括簇内收集阶段、数据转发阶段,具体包括以下步骤:
步骤(1.1)簇内收集阶段。每个时隙内,网络中部分簇首收集后继簇中所有簇成员的传感数据,如图1所示。该阶段只需要三个时隙即可完成网络传输调度,并保证与相邻簇同时发送的数据不产生碰撞,规避了隐藏终端问题。数据收集过程中,簇成员都需要发送数据。簇成员数据发送过程包括:首先,将时隙二次等分为多个小时隙。其次,基于地址命名算法的小时隙分配过程;簇成员加入网络时,被分配簇内地址addr∈[1,Ni],其中Ni表示第i个簇内的簇成员的数量,簇成员按照addr值从小到大的顺序选择相应的小时隙发送数据。该地址命名算法保证了同一簇内的簇成员的addr互不相同,从而避免了簇成员数据之间的碰撞。
所述后继簇是指远离Sink的方向,当前簇首的相邻簇首。
所述网络中部分簇首收集后继簇中所有簇成员的传感数据中的“部分簇首”包括:1)第一个时隙内的部分簇首是指,从远离汇聚簇首和簇成员(Sink)方向的第3个簇首计起,每隔2个簇首的簇首;2)第二个时隙内的部分簇首是指,第一个时隙内的部分簇首向靠近Sink方向的相邻簇首的集合;3)第三个时隙内的部分簇首是指,第二个时隙内的部分簇首向靠近Sink方向的相邻簇首的集合。“部分簇首”的具体定义为:令簇的跳数表示为hop,1)第一个时隙内的部分簇首是指,3%hop==0的簇首。2)第二个时隙内的部分簇首是指,3%hop==2的簇首。3)第三个时隙内的部分簇首是指,3%hop==1的簇首。
步骤(1.2)数据转发阶段。簇首完成该阶段的数据转发。簇首被分配连续的多个时隙,并利用该连续时隙发送多个数据包。与簇内收集阶段原理相同,该阶段也仅需要三个时隙完成数据转发。
(2)空闲时期竞争访问控制—S-XMAC:具体是指基于位置信息的唤醒时间调度,具体步骤描述如下。
步骤(2.1):每个簇首和簇成员(簇首和簇成员)按照一定的占空比Tduty-cycle周期性休眠和唤醒。簇首记录相邻簇在占空比Tduty-cycle中的唤醒时间,每个簇的簇成员在占空比中的唤醒时间是相同的,称为簇唤醒时间;
所述占空比是指簇首和簇成员唤醒休眠的工作周期,其形式化描述Tduty_cycle为:
Tduty_cycle=唤醒时间+休眠时间
所述簇唤醒时间,是指基于位置信息的唤醒时间调度,根据簇首和簇成员在网络中的地理位置,依次唤醒各簇首。随着时间推移,收发簇首和簇成员之间的同步误差越来越大,有可能导致发送簇首和簇成员开始发送前导码之前,接收簇首和簇成员已在同一个占空比内被唤醒过,从而导致通信失败。本发明设计的基于位置信息的唤醒时间调度,以图2所示的网 络拓扑和唤醒调度为例,相邻簇首间的唤醒时间Tshedule需要满足下面条件:
Tschedule>δ+Toffset_max
其中,δ表示簇首接收数据需要的处理时间,包括除前导码外的数据传输时间和驻留时间(Dwell Time);Toffset_max表示发送端和接收端的最大时钟偏差,由同步周期和簇首和簇成员的频偏决定,在S-XMAC的设计中并不限于具体的同步算法,同步算法的实施可通过应用中的其它业务,如数据收集过程进行,本发明方法并不对此进行限定。
利用簇首和簇成员的地址ADDR指示簇首和簇成员的位置信息,簇首和簇成员的唤醒时间被设置成:
Twake=n×Tduty_cycle-((ADDR+1)□1)×Tschedule
Figure PCTCN2014089110-appb-000004
步骤(2.2):待发送数据的簇首不立即启动射频,而是比目的接收端的簇唤醒时间提前
Figure PCTCN2014089110-appb-000005
时间发送包含发送端和目的接收端的簇首地址信息的前导码,如图3所示;前导码
发送完成后,待发送数据的簇首等待来自目的接收端的簇首的前导确认响应
(Acknowledgement,ACK)。重复此过程直到收到ACK后,发送数据。
所述Tpreamble是指发送前导码需要的最长时间,定义如下:
Figure PCTCN2014089110-appb-000006
步骤(2.3):接收端周期性地唤醒。若在唤醒期间,收到包含簇首地址信息的前导码后,判断前导码中的目的接收端地址信息和自身是否相符,如果地址相同,则返回ACK,通知发送端簇首发送数据;否则,不返回ACK,并立即进入休眠状态。目的接收端返回ACK的时间如图4所示。

Claims (10)

  1. 一种面向链式无线传感器网络的混合介质访问控制方法,其特征在于,
    在无线传感器网络中,需要同时发送数据的簇首和簇成员达到一定比例时,采用时分访问控制Pipelined TDMA,包括以下步骤:
    簇内收集阶段:每个时隙内,网络中部分簇首收集后继簇中所有簇成员的传感数据;
    数据转发阶段:簇首转发收集到的传感数据;
    在无线传感器网络中,需要同时发送数据的簇首和簇成员没有达到所述比例时,采用竞争访问控制S-XMAC,即基于位置信息的唤醒时间调度:根据簇首和簇成员在网络中的地理位置,有次序地唤醒各簇首和簇成员。
  2. 根据权利要求1所述的面向链式无线传感器网络的混合介质访问控制方法,其特征在于,所述后继簇为远离Sink的方向,当前簇首的相邻簇首。
  3. 根据权利要求1所述的面向链式无线传感器网络的混合介质访问控制方法,其特征在于,所述部分簇首为:令簇的跳数表示为hop,
    1)第一个时隙内的部分簇首为3%hop==0的簇首,即从远离汇聚簇首和簇成员Sink方向的第3个簇首计起,每隔2个簇首的簇首;
    2)第二个时隙内的部分簇首为3%hop==2的簇首,即第一个时隙内的部分簇首向靠近Sink方向的相邻簇首的集合;
    3)第三个时隙内的部分簇首为3%hop==1的簇首,即第二个时隙内的部分簇首向靠近Sink方向的相邻簇首的集合。
  4. 根据权利要求1所述的面向链式无线传感器网络的混合介质访问控制方法,其特征在于,所述簇内收集阶段和/或数据转发阶段需要三个时隙完成网络传输调度并使所有簇成员与相邻簇同时发送的数据不产生碰撞。
  5. 根据权利要求1所述的面向链式无线传感器网络的混合介质访问控制方法,其特征在于,所述每个簇成员发送数据的过程包括:
    将时隙二次等分为多个小时隙;
    基于地址命名算法的小时隙分配过程;簇成员按照addr值从小到大的顺序选择相应的小时隙发送数据;
    所述addr值为:簇成员加入网络时,被分配的簇内地址addr∈[1,Ni],其中Ni表示第i个簇内的簇成员的数量。
  6. 根据权利要求1所述的面向链式无线传感器网络的混合介质访问控制方法,其特征在于,所述数据转发阶段的实现过程为:簇首被分配连续的多个时隙,并利用该连续时隙发送多个数据包。
  7. 根据权利要求1所述的面向链式无线传感器网络的混合介质访问控制方法,其特征在于,所述S-XMAC的实现过程为:
    每个簇首和簇成员按照占空比Tduty-cycle周期性休眠和唤醒;
    待发送数据的簇首不立即启动射频发送前导码,而是比目的接收端的簇唤醒时间提前
    Figure PCTCN2014089110-appb-100001
    时间发送包含发送端和目的接收端的簇首地址信息的前导码;
    前导码发送完成后,待发送数据的簇首等待来自目的接收端的簇首的前导确认响应ACK,重复此过程直到收到ACK后,发送数据;
    接收端周期性地唤醒;若在唤醒期间,收到包含簇首地址信息的前导码后,判断前导码中的目的接收端地址信息和自身是否相符,如果地址相同,则返回ACK,通知发送端簇首发送数据;否则,不返回ACK,并立即进入休眠状态。
  8. 根据权利要求7所述的面向链式无线传感器网络的混合介质访问控制方法,其特征在于,所述每个簇在占空比中的簇唤醒时间是相同的,由簇首记录相邻簇在占空比Tduty-cycle中的簇唤醒时间实现。
  9. 根据权利要求7所述的面向链式无线传感器网络的混合介质访问控制方法,其特征在于,所述唤醒时间的设计具体为:
    相邻簇首间的唤醒时间Tshedule需要满足下面条件:
    Tschedule>δ+Toffset_max
    其中,δ表示簇首接收数据需要的处理时间,包括除前导码外的数据传输时间和驻留时间Dwell Time;Toffset_max表示发送端和接收端的最大时钟偏差,由同步周期和簇首和簇成员的频偏决定;
    利用簇首和簇成员的地址ADDR指示簇首和簇成员的位置信息,簇首和簇成员的唤醒时间被设置成:
    Twake=n′×Tduty_cycle-((ADDR+1)□1)×Tschedule
    Figure PCTCN2014089110-appb-100002
    其中,Twake表示簇首或者簇成员的唤醒时间,Tschedule表示相邻簇首间的唤醒时间,Tduty_cycle表示簇首或者簇成员的占空比,ADDR表示簇首或者簇成员的地址。
  10. 根据权利要求1所述的面向链式无线传感器网络的混合介质访问控制方法,其特征在于,所述发送前导码需要的最长时间Tpreamble为:
    Figure PCTCN2014089110-appb-100003
    其中,Tpreamble表示发送前导码需要的最长时间,Tduty_cycle表示簇首或者簇成员的占空比,Toffset_max表示发送端和接收端的最大时钟偏差。
PCT/CN2014/089110 2014-01-24 2014-10-22 面向链式无线传感器网络的混合介质访问控制方法 WO2015109874A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/898,511 US9979563B2 (en) 2014-01-24 2014-10-22 Chain-type wireless sensor network-oriented hybrid media access control method
EP14879521.4A EP2983421B1 (en) 2014-01-24 2014-10-22 Chain-type wireless sensor network-oriented hybrid media access control method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410036181.3 2014-01-24
CN201410036181.3A CN104812030B (zh) 2014-01-24 2014-01-24 面向链式无线传感器网络的混合介质访问控制方法

Publications (1)

Publication Number Publication Date
WO2015109874A1 true WO2015109874A1 (zh) 2015-07-30

Family

ID=53680777

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/089110 WO2015109874A1 (zh) 2014-01-24 2014-10-22 面向链式无线传感器网络的混合介质访问控制方法

Country Status (4)

Country Link
US (1) US9979563B2 (zh)
EP (1) EP2983421B1 (zh)
CN (1) CN104812030B (zh)
WO (1) WO2015109874A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108513342A (zh) * 2017-02-27 2018-09-07 大唐移动通信设备有限公司 一种物联网终端的调度方法、基站及物联网终端

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106793148B (zh) * 2015-11-20 2021-11-30 中兴通讯股份有限公司 随机接入的方法及装置
WO2018032507A1 (en) * 2016-08-19 2018-02-22 Motorola Solutions, Inc. Methods and systems for adding device to sequential personal area network chain
CN106332249B (zh) * 2016-08-22 2020-04-21 南方科技大学 控制方法和控制装置
CN106507496B (zh) * 2016-11-01 2019-08-09 北京邮电大学 基于能量状态调节竞争概率的mac协议实现方法及装置
CN109168193A (zh) * 2018-11-07 2019-01-08 中南大学 一种适用于占空比无线传感器网络的自适应成组唤醒的机会路由策略
KR102496164B1 (ko) * 2018-12-07 2023-02-07 한국전자통신연구원 다중 MAC 운영 환경에서의 통신 방법 및 IoT 디바이스
CN110022564B (zh) * 2019-05-21 2022-04-15 浙江农林大学 城市综合管廊中的无线传感器网络节点的部署方法
CN110460966B (zh) * 2019-09-23 2021-10-08 东莞理工学院 一种无线多跳网络的能耗降低方法
CN110602257A (zh) * 2019-10-09 2019-12-20 中铁第四勘察设计院集团有限公司 一种基于空天车地通信网的应急通信系统及方法
CN111372213B (zh) * 2020-02-24 2021-08-31 云南大学 一种基于fpga的随机多址与轮询多址协议的两层系统
CN111601354B (zh) * 2020-03-30 2023-12-12 长安大学 面向高耸构筑物监测的簇首选举及自适应分簇方法及系统
CN112073931B (zh) * 2020-08-20 2023-04-07 东南大学 一种基于冗余节点的线性传感网多跳数据收集方法
CN113691890B (zh) * 2021-07-19 2024-03-12 哈尔滨工业大学 一种基于射频能唤醒的无线传感系统
CN117409516B (zh) * 2023-12-15 2024-03-22 杭银消费金融股份有限公司 一种自助终端的节能控制方法以及自助终端

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101013926A (zh) * 2007-02-05 2007-08-08 华中科技大学 一种无线传感器网络通信方法和系统
CN102143570A (zh) * 2010-01-29 2011-08-03 陈瑞杰 实现低功耗节点实时监控的无线传感网调度方法和系统
CN102264146A (zh) * 2011-06-24 2011-11-30 浙江大学 基于TDMA/FDMA的WSN网络mac层调度方法
WO2013046069A1 (en) * 2011-09-30 2013-04-04 International Business Machines Corporation Method and device for transmitting data to and from nodes of a clustered multi-hop network with a tdma scheme

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8724598B1 (en) * 2009-12-07 2014-05-13 The United States Of America As Represented By The Secretary Of The Navy Method for energy-efficient, traffic-adaptive, flow-specific medium access for wireless networks
CN101827378B (zh) * 2010-03-09 2014-11-19 北京交通大学 一种适用于无线传感器网络的混合mac协议设计方法
CN102695237B (zh) * 2012-01-10 2014-10-22 南京邮电大学 一种支持随机移动的移动传感网路由方法
US9049692B2 (en) * 2012-04-13 2015-06-02 Itron, Inc. Hybrid access protocol for network nodes
KR20150016458A (ko) * 2013-08-02 2015-02-12 한국전자통신연구원 무선 센서 네트워크에서의 전송 스케줄링 방법 및 그 장치

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101013926A (zh) * 2007-02-05 2007-08-08 华中科技大学 一种无线传感器网络通信方法和系统
CN102143570A (zh) * 2010-01-29 2011-08-03 陈瑞杰 实现低功耗节点实时监控的无线传感网调度方法和系统
CN102264146A (zh) * 2011-06-24 2011-11-30 浙江大学 基于TDMA/FDMA的WSN网络mac层调度方法
WO2013046069A1 (en) * 2011-09-30 2013-04-04 International Business Machines Corporation Method and device for transmitting data to and from nodes of a clustered multi-hop network with a tdma scheme

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2983421A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108513342A (zh) * 2017-02-27 2018-09-07 大唐移动通信设备有限公司 一种物联网终端的调度方法、基站及物联网终端

Also Published As

Publication number Publication date
US9979563B2 (en) 2018-05-22
CN104812030B (zh) 2018-06-08
EP2983421A4 (en) 2016-09-14
US20160134436A1 (en) 2016-05-12
EP2983421A1 (en) 2016-02-10
CN104812030A (zh) 2015-07-29
EP2983421B1 (en) 2019-09-25

Similar Documents

Publication Publication Date Title
WO2015109874A1 (zh) 面向链式无线传感器网络的混合介质访问控制方法
CN107835527B (zh) 一种基于分时休眠的无线传感器网络通信方法
CN102006670B (zh) 支持应急响应的传感器网络动态轮询介质访问控制方法
CN104202803A (zh) 一种基于无线传感器网络的节能mac协议通信方法
Song et al. Research on SMAC protocol for WSN
Sun et al. A study on medium access control scheme for energy efficiency in wireless smart sensor networks
Wang et al. Optimization method of adaptive backoff and duty cycle for S-MAC protocol in wireless sensor networks
CN105208671B (zh) 用于无线传感器网络的高信道利用率h-mac协议的实现方法
Xu et al. Maximizing throughput for low duty-cycled sensor networks
Annabel et al. An energy efficient wakeup schedule and power management algorithm for wireless sensor networks
CN109413706B (zh) 预约多跳节点的同步rm-mac协议的实现方法
Ali et al. A MAC protocol for energy efficient wireless communication leveraging wake-up estimations on sender data
Feng et al. A novel analysis of delay and power consumption for polling with PHY-assisted power management
CN103327572A (zh) 一种IEEE802.15.4e网络的邻居发现方法
Prakasam et al. Mac protocols for reduced power consumption in intra-cluster design for wireless sensor networks
Gong et al. A study on event-driven TDMA protocol for wireless sensor networks
Walker et al. Energy consumption analysis of flow-specific medium access and the role of probabilistic preamble sampling in energy and delay performance
Pang et al. A new optimization strategy for S-MAC protocol
Banari et al. An Energy-Efficient and Low-Latency MAC Protocol in Smart Grid (SG-MAC)
Lee et al. An energy-efficient MAC using dynamic phase shift for wireless sensor networks
Liu et al. A novel pfmac protocol for wireless sensor network based on prediction and feedback method
Gao et al. An Adaptive MAC Protocol for Energy Harvesting Wireless Sensor Networks in Harsh Environment
Dhull et al. Lifetime Enhancement in Wireless Sensor Networks: A Theoretical
Walker et al. Energy-efficient, flow-specific medium access using preamble sampling
Gong et al. A study on MAC protocols for wireless sensor networks

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14879521

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2014879521

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14898511

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE