WO2015109870A1 - Mimo radar system and target end phase synchronization method thereof - Google Patents

Mimo radar system and target end phase synchronization method thereof Download PDF

Info

Publication number
WO2015109870A1
WO2015109870A1 PCT/CN2014/088100 CN2014088100W WO2015109870A1 WO 2015109870 A1 WO2015109870 A1 WO 2015109870A1 CN 2014088100 W CN2014088100 W CN 2014088100W WO 2015109870 A1 WO2015109870 A1 WO 2015109870A1
Authority
WO
WIPO (PCT)
Prior art keywords
radar
phase
time slot
frequency
array element
Prior art date
Application number
PCT/CN2014/088100
Other languages
French (fr)
Chinese (zh)
Inventor
谢宁
张莉
王晖
林晓辉
曾捷
Original Assignee
深圳大学
谢宁
张莉
王晖
林晓辉
曾捷
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳大学, 谢宁, 张莉, 王晖, 林晓辉, 曾捷 filed Critical 深圳大学
Publication of WO2015109870A1 publication Critical patent/WO2015109870A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/28Details of pulse systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/66Radar-tracking systems; Analogous systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/87Combinations of radar systems, e.g. primary radar and secondary radar
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/40Means for monitoring or calibrating
    • G01S7/4004Means for monitoring or calibrating of parts of a radar system

Definitions

  • phase synchronization methods are mostly the same as the above methods, some require a fixed network topology, some have poor stability, and some have too slow convergence, resulting in a greatly reduced lifetime of the network.
  • Step A At the beginning of the first time slot, the radar transmitting array element transmits an initial signal, and the initial signal is received by the radar receiving array element after being reflected by the target end, and the radar receiving array element estimates the frequency parameter and the phase parameter of the received signal. ;
  • Step C At the end of the second time slot, the radar transmitting array element receives the feedback signal reflected by the target end after the second radar receiving array element is transmitted, and the frequency parameter and the phase parameter of the feedback signal Make an estimate;
  • Step D at the beginning of the third time slot, the radar transmitting array element reconstructs the initial frequency and phase of the transmitted signal of the radar transmitting array element by using the frequency parameter and the phase parameter of the feedback signal estimated at the end of the second time slot, and in the third The time slot is transmitted by the radar transmitting array element to reconstruct the transmitted signal, and the phase of the received signal reaching the target end is synchronized.
  • the two transmitting radar elements use the frequency and phase parameters estimated by the previous time slot to estimate the error to construct a new frequency phase as the initial transmission frequency and phase at the beginning of the third time slot:
  • the target end when the SNR is high, the target end can reach the ideal phase synchronization state.
  • the invention uses three time slots to estimate the frequency and phase parameters of the signal, and uses the estimation parameters to construct new frequency and phase parameters, and the radar array element transmits the feedback signal to realize the ideal phase of the target end.
  • Bit synchronization Compared with the existing phase-and-receiver phase synchronization technology, the number of time slots required when the number of radars is large is greatly reduced, and the proposed phase synchronization technology does not require high network topology of the radar system, and does not need Multiple iterations achieve the effect of state convergence, thus greatly reducing the power consumption of the network and prolonging the service life of the network.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

A MIMO radar system and a target end phase synchronization method thereof. Complete signal phase synchronization of a target end is achieved through feedback retransmission of signals in three time slots and estimation of frequency and phase parameters of signals received in the first two time slots to construct a feedback signal of the next time slot. No matter how many radar array elements exist in the MIMO radar system, only three non-overlapping time slots are needed to realize phase synchronization of a single target end.

Description

MIMO雷达系统及其目标端相位同步方法MIMO radar system and its target phase synchronization method 技术领域Technical field
本发明属于无线通信技术领域,尤其涉及一种MIMO雷达系统及其目标端相位同步方法。The invention belongs to the field of wireless communication technologies, and in particular relates to a MIMO radar system and a target phase synchronization method thereof.
背景技术Background technique
雷达技术,特别是MIMO雷达技术近几十年得到了广泛的应用,关于MIMO雷达中相位同步的研究也越来越多。相位是否同步直接关系到信号的合并能量值。考虑雷达中目标追踪功能时,接收端接收信号的能量越大,越有利于我们进行有用信号的提取从而对目标的参数进行估计。Radar technology, especially MIMO radar technology has been widely used in recent decades. There are more and more researches on phase synchronization in MIMO radar. Whether the phase is synchronized is directly related to the combined energy value of the signal. When considering the target tracking function in the radar, the greater the energy received by the receiving end, the more favorable it is for us to extract the useful signal and estimate the parameters of the target.
MIMO雷达系统中已有关于相位同步的研究包含源端相位同步技术、接收端相位同步技术。对于分布式MIMO雷达系统来说,源端相位同步实现的过程占用的时隙较多,对于M个雷达需要2M-1个时隙来实现所有基站的节点同步。对于接收端相位同步来说,现有的方法包含master-slave closed loop方法、round-trip方法、broadcast consensus方法。其中,master-slave closed loop方法能够简单实现良好的接收端相位同步,但是一旦主节点崩溃,整个相位同步系统崩溃,稳定性较差;round-trip方法利用非解调的信标信号沿着所有雷达阵元环行一圈保证每个阵元都能经过,其性能容易受网络拓扑结构和单个雷达的传输累积相位频率估算误差的影响;broadcast consensus方法不受网络拓扑的限制,但是由于采用的是迭代方式需要多次信号发射才能达到状态收敛。Research on phase synchronization in MIMO radar systems includes source phase synchronization technology and receiver phase synchronization technology. For the distributed MIMO radar system, the process of source phase synchronization implementation occupies more time slots, and 2M-1 time slots are needed for M radars to achieve node synchronization of all base stations. For the phase synchronization of the receiver, the existing methods include the master-slave closed loop method, the round-trip method, and the broadcast consensus method. Among them, the master-slave closed loop method can easily achieve good phase synchronization at the receiving end, but once the master node crashes, the entire phase synchronization system collapses and the stability is poor; the round-trip method uses non-demodulated beacon signals along all The radar array element loops once to ensure that each array element can pass, and its performance is easily affected by the network topology and the cumulative phase frequency estimation error of the single radar transmission; the broadcast consensus method is not limited by the network topology, but due to the adoption The iterative approach requires multiple signal transmissions to achieve state convergence.
其他已有的相位同步方法大多数和上述几种方法一样,有的需要固定的网络拓扑结构,有的稳定性能不好,有的收敛性太慢,从而导致网络的寿命大大减小。 Other existing phase synchronization methods are mostly the same as the above methods, some require a fixed network topology, some have poor stability, and some have too slow convergence, resulting in a greatly reduced lifetime of the network.
MIMO雷达中,由于来自同一个反射目标的反射信号到接收端的相位不同,导致雷达接收阵元接收到的合并信号的能量值大小在一个较大范围内变化,如信号相位差很大(投影到一个相位周期后为π时),其信号累加能量值为最小,而相位差很小(如投影到一个相位周期后为0时),其信号累加能量为最大。In MIMO radar, because the phase of the reflected signal from the same reflective target to the receiving end is different, the energy value of the combined signal received by the radar receiving array element changes within a large range, such as the signal phase difference is large (projected to When a phase period is π), the signal accumulated energy value is the smallest, and the phase difference is small (such as 0 when projected to a phase period), and the signal accumulated energy is maximum.
发明内容Summary of the invention
鉴于上述原因,本发明所要解决的第一个技术问题在于提供一种MIMO雷达系统的目标端相位同步方法,旨在使达到接收端的信号的累加能量值始终处于最大的状态。In view of the above, the first technical problem to be solved by the present invention is to provide a target phase synchronization method for a MIMO radar system, which aims to keep the accumulated energy value of the signal reaching the receiving end at the maximum state.
本发明是这样实现的,一种MIMO雷达系统的目标端相位同步方法,所述方法包括下述步骤:The present invention is implemented as a target phase synchronization method for a MIMO radar system, the method comprising the following steps:
步骤A,第一个时隙初,雷达发射阵元发射初始信号,所述初始信号经目标端反射后由雷达接收阵元接收,雷达接收阵元对所接收信号的频率参数和相位参数进行估计;Step A: At the beginning of the first time slot, the radar transmitting array element transmits an initial signal, and the initial signal is received by the radar receiving array element after being reflected by the target end, and the radar receiving array element estimates the frequency parameter and the phase parameter of the received signal. ;
步骤B,第二个时隙初,雷达接收端阵元利用在第一时隙估计出来的频率参数和相位参数构建雷达接收阵元的反馈信号的初始频率和相位,并在第二时隙初由雷达接收阵元将所述反馈信号发射出去;Step B: At the beginning of the second time slot, the radar receiving end element constructs the initial frequency and phase of the feedback signal of the radar receiving array element by using the frequency parameter and the phase parameter estimated in the first time slot, and at the beginning of the second time slot The feedback signal is transmitted by the radar receiving array element;
步骤C,第二个时隙末,雷达发射阵元接收到第二个时隙初雷达接收阵元发射后由目标端反射的所述反馈信号,并对所述反馈信号的频率参数和相位参数进行估计;Step C: At the end of the second time slot, the radar transmitting array element receives the feedback signal reflected by the target end after the second radar receiving array element is transmitted, and the frequency parameter and the phase parameter of the feedback signal Make an estimate;
步骤D,第三个时隙初,雷达发射阵元利用第二时隙末估计出来的反馈信号的频率参数和相位参数重新构建雷达发射阵元的发射信号的初始频率和相位,在第三个时隙由雷达发射阵元将重新构建的发射信号发射出去,实现到达目标端的接收信号相位同步。Step D, at the beginning of the third time slot, the radar transmitting array element reconstructs the initial frequency and phase of the transmitted signal of the radar transmitting array element by using the frequency parameter and the phase parameter of the feedback signal estimated at the end of the second time slot, in the third The time slot is transmitted by the radar transmitting array element to reconstruct the transmitted signal, and the phase of the received signal reaching the target end is synchronized.
本发明所要解决的第二个技术问题在于提供一种MIMO雷达系统,包括 雷达发射阵元、目标端、雷达接收阵元,所述雷达发射阵元用于在第一个时隙初发射初始信号,所述初始信号经目标端反射后由雷达接收阵元接收,所述雷达接收阵元对所接收信号的频率参数和相位参数进行估计,并在第二个时隙初利用在第一时隙估计出来的频率参数和相位参数构建雷达接收阵元的反馈信号的初始频率和相位,并在第二时隙初由雷达接收阵元将所述反馈信号发射出去;A second technical problem to be solved by the present invention is to provide a MIMO radar system, including a radar transmitting array element, a target end, and a radar receiving array element, wherein the radar transmitting array element is configured to transmit an initial signal at the beginning of the first time slot, and the initial signal is received by the radar receiving array element after being reflected by the target end, The radar receiving array element estimates the frequency parameter and the phase parameter of the received signal, and constructs the initial frequency of the feedback signal of the radar receiving array element by using the frequency parameter and the phase parameter estimated in the first time slot at the beginning of the second time slot. And phase, and the feedback signal is transmitted by the radar receiving array element at the beginning of the second time slot;
所述雷达发射阵元用于在第二个时隙末接收到由目标端反射的所述反馈信号后,对所述反馈信号的频率参数和相位参数进行估计,并在第三个时隙初利用第二时隙末估计出来的反馈信号的频率参数和相位参数重新构建雷达发射阵元的发射信号的初始频率和相位,然后在第三个时隙由雷达发射阵元将重新构建的发射信号发射出去,实现到达目标端的接收信号相位同步。The radar transmitting array element is configured to estimate a frequency parameter and a phase parameter of the feedback signal after receiving the feedback signal reflected by the target end at the end of the second time slot, and at the beginning of the third time slot Reconstructing the initial frequency and phase of the transmitted signal of the radar transmitting array element by using the frequency parameter and the phase parameter of the feedback signal estimated at the end of the second time slot, and then reconstructing the transmitted signal by the radar transmitting array element in the third time slot Transmitted to achieve phase synchronization of the received signal to the target end.
本发明充分利用了一次反馈信号(第二时隙初)和一次雷达监测信号(第三时隙初)的频率和相位估算参数。两次对信号的频率和相位估算都会包含频率和相位估算误差在内,但根据一般估计器的原理,在SNR(Signal to Noise Ratio,信噪比)较高的情况下,我们可以得到估算误差很小的对应参数的估计值。此外,重新构建频率和相位参数的时候,为实现单个目标端的相位同步,第二个时隙初和第三个时隙初构建新的初始发射频率和相位有所区别,无论MIMO雷达系统中有多少个雷达阵元,实现单个目标端相位同步只需要三个不重叠时隙即可。The present invention makes full use of the frequency and phase estimation parameters of one feedback signal (initial of the second time slot) and the primary radar monitoring signal (initial of the third time slot). Both the frequency and phase estimation of the signal will include the frequency and phase estimation errors, but according to the general estimator principle, we can get the estimation error when the SNR (Signal to Noise Ratio) is high. Very small estimate of the corresponding parameter. In addition, when reconstructing the frequency and phase parameters, in order to achieve phase synchronization of a single target, the initial initial transmission frequency and phase are different from the beginning of the second time slot and the third time slot, regardless of the MIMO radar system. How many radar array elements, to achieve a single target phase synchronization, only need three non-overlapping time slots.
附图说明DRAWINGS
图1是本发明提供的MIMO雷达系统的单个目标端相位同步方法的实现流程图;1 is a flowchart showing an implementation of a single target phase synchronization method of a MIMO radar system provided by the present invention;
图2是本发明提供的两发射---一目标---两接收架构的MIMO雷达系统的示意图。 2 is a schematic diagram of a MIMO radar system with two transmit---one target-two receive architectures provided by the present invention.
具体实施方式detailed description
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。The present invention will be further described in detail below with reference to the accompanying drawings and embodiments. It is understood that the specific embodiments described herein are merely illustrative of the invention and are not intended to limit the invention.
本发明中,具体利用三个时隙内信息的反馈重传,以及对前两个时隙接收到的信号的频率相位参数进行估计用以构建下一个时隙的反馈信号的方式实现目标端的信号相位完全同步。In the present invention, the feedback retransmission of information in three time slots is specifically utilized, and the frequency phase parameters of the signals received in the first two time slots are estimated to construct a feedback signal of the next time slot to implement the signal of the target end. The phases are fully synchronized.
图1示出了本发明提供的MIMO雷达系统的目标端相位同步方法的实现流程,详述如下。FIG. 1 shows an implementation flow of a target phase synchronization method of a MIMO radar system provided by the present invention, which is described in detail below.
步骤A,第一个时隙初,雷达发射阵元发射初始信号,所述初始信号经目标端反射后由雷达接收阵元接收,雷达接收阵元对所接收信号的频率参数和相位参数进行估计。Step A: At the beginning of the first time slot, the radar transmitting array element transmits an initial signal, and the initial signal is received by the radar receiving array element after being reflected by the target end, and the radar receiving array element estimates the frequency parameter and the phase parameter of the received signal. .
如图2所示,本发明仅以两个发射雷达两个接收雷达一个反射目标的MIMO雷达系统描述目标端信号的相位同步。As shown in FIG. 2, the present invention describes the phase synchronization of the target signal only by a MIMO radar system in which two transmitting radars and two receiving radars have one reflecting target.
第一个时隙初,两个发射雷达阵元发射初始信号,其中初始发射相位
Figure PCTCN2014088100-appb-000001
发射端晶振产生的相位偏移χ1(t1,1)χ2(t2,1),发射载波频率ω1(1),ω2(1),t1,t2分别为发射端的本地时间,与参考时间t的关系可以表示如下:
At the beginning of the first time slot, two transmitting radar elements emit an initial signal, where the initial transmit phase
Figure PCTCN2014088100-appb-000001
The phase shift generated by the crystal of the transmitting end χ 1 (t 1 ,1) χ 2 (t 2 ,1), the transmitting carrier frequency ω 1 (1), ω 2 (1), t 1 , t 2 are respectively local to the transmitting end The relationship between time and reference time t can be expressed as follows:
tm=βm(t+Δm)    (1)t mm (t+Δ m ) (1)
其中βm,Δm分别为每个雷达阵元相对于参考时间的相对速率和时间偏移量,m=1、2。Where β m and Δ m are the relative rates and time offsets of each radar array element with respect to the reference time, respectively, m=1, 2.
天线的发射波形为相互正交的信号,则得到下面的初始发射信号:The transmit waveform of the antenna is a mutually orthogonal signal, and the following initial transmit signal is obtained:
Figure PCTCN2014088100-appb-000002
Figure PCTCN2014088100-appb-000002
其中s1(t1),s2(t2)分别表示第一个时隙两个发射雷达端的发射波形。除了初始发射相位的影响,我们还需要考虑信道相位的影响,信道相位与只与该时隙的载波频率ωm(n)以及发射雷达阵元和接收雷达阵元之间的距离dm有关系,可 以表示如下:Where s 1 (t 1 ) and s 2 (t 2 ) respectively represent the emission waveforms of the two transmitting radar ends of the first time slot. In addition to the influence of the initial transmit phase, we also need to consider the influence of the channel phase, which is related only to the carrier frequency ω m (n) of the time slot and the distance d m between the transmitting radar array element and the receiving radar array element. Can be expressed as follows:
Figure PCTCN2014088100-appb-000003
Figure PCTCN2014088100-appb-000003
式中,(d,θ)为目标在极坐标上的半径和角度信息,(rm,0)为雷达阵元在极坐标上的半径和角度信息,c是光速。Where, (d, θ) is the radius and angle information of the target in polar coordinates, (r m , 0) is the radius and angle information of the radar array element on the polar coordinates, and c is the speed of light.
同时我们考虑每个信道的幅度响应,定义为αm(1),和第n个时隙内的第m个雷达阵元端的噪声n(tm,n),定义为0均值,方差为σ2的高斯白噪声,上述(2)中的信号达到目标经反射目标反射至接收端,接收端接收到的信号表示如下:At the same time, we consider the amplitude response of each channel, defined as α m (1), and the noise n(t m ,n) of the mth radar array element in the nth time slot, defined as 0 mean, variance σ 2 Gaussian white noise, the signal in (2) above reaches the target reflected by the reflection target to the receiving end, and the signal received by the receiving end is expressed as follows:
Figure PCTCN2014088100-appb-000004
Figure PCTCN2014088100-appb-000004
Figure PCTCN2014088100-appb-000005
Figure PCTCN2014088100-appb-000005
由于发射波形的正交特性,可以将接收信号相对于不同发射雷达阵元的部分提取出来,表示如下: Due to the orthogonal nature of the transmitted waveform, the portion of the received signal relative to the different transmitted radar array elements can be extracted as follows:
Figure PCTCN2014088100-appb-000006
Figure PCTCN2014088100-appb-000006
Figure PCTCN2014088100-appb-000007
Figure PCTCN2014088100-appb-000007
对上式(6)、(7)采用参数估计算法,可以得出第一个时隙末的频率相位参数估计值如下:For the above equations (6) and (7), the parameter estimation algorithm is used to obtain the estimated frequency phase parameters at the end of the first time slot as follows:
Figure PCTCN2014088100-appb-000008
Figure PCTCN2014088100-appb-000008
Figure PCTCN2014088100-appb-000009
Figure PCTCN2014088100-appb-000009
Figure PCTCN2014088100-appb-000010
Figure PCTCN2014088100-appb-000010
Figure PCTCN2014088100-appb-000011
Figure PCTCN2014088100-appb-000011
其中,
Figure PCTCN2014088100-appb-000012
分别为频率估算的误差,
Figure PCTCN2014088100-appb-000013
分别为相位估算的误差。对于多参数的估计,一般我们无法得到准确的频率参数和和相位参数估计值
Figure PCTCN2014088100-appb-000014
但是我们可以通过构建Fisher information matrix获得参数估计的误差方差的Cramer-Rao下界,从而产生一个估算误差,而实际的包含误差的估算值即为理想参数值和估算误差值的和。
among them,
Figure PCTCN2014088100-appb-000012
The error of the frequency estimation,
Figure PCTCN2014088100-appb-000013
The error of the phase estimation is respectively. For multi-parameter estimation, we generally cannot get accurate frequency parameters and phase parameter estimates.
Figure PCTCN2014088100-appb-000014
However, we can obtain the Cramer-Rao lower bound of the error variance of the parameter estimation by constructing the Fisher information matrix, and generate an estimation error, and the actual estimated value of the error is the sum of the ideal parameter value and the estimated error value.
步骤B,第二个时隙初,雷达接收端阵元利用在第一时隙估计出来的频率参数和相位参数构建雷达接收阵元的反馈信号的初始频率和相位,并在第二时隙由雷达接收阵元将所述反馈信号发射出去。Step B: At the beginning of the second time slot, the radar receiving end element constructs the initial frequency and phase of the feedback signal of the radar receiving array element by using the frequency parameter and the phase parameter estimated in the first time slot, and in the second time slot The radar receiving array element transmits the feedback signal.
在第二个时隙初,两个接收雷达利用估算出来的频率和相位
Figure PCTCN2014088100-appb-000015
构建出新的载波频率和相位,作为第二个时隙内反馈信号的初始发射频率和相位,构建方法如下:
At the beginning of the second time slot, the two receiving radars use the estimated frequency and phase
Figure PCTCN2014088100-appb-000015
A new carrier frequency and phase are constructed as the initial transmission frequency and phase of the feedback signal in the second time slot. The construction method is as follows:
Figure PCTCN2014088100-appb-000016
Figure PCTCN2014088100-appb-000016
Figure PCTCN2014088100-appb-000017
Figure PCTCN2014088100-appb-000017
两个接收雷达第二个时隙以新构建的频率和相位发射信号,得到如下发射信号:The second time slot of the two receiving radars transmits the signal with the newly constructed frequency and phase, and the following transmitted signals are obtained:
Figure PCTCN2014088100-appb-000018
Figure PCTCN2014088100-appb-000018
步骤C,第二个时隙末,雷达发射阵元接收到第二个时隙初雷达接收阵元发射后由目标端反射的所述反馈信号,并对所述反馈信号的频率参数和相位参 数进行估计。Step C: At the end of the second time slot, the radar transmitting array element receives the feedback signal reflected by the target end after the second radar receiving array element is transmitted, and the frequency parameter and phase parameter of the feedback signal The number is estimated.
公式(1.14)发射信号经反射目标反射回两个雷达发射端,得到的接收信号可以表示如下:The emission signal of formula (1.14) is reflected back to the two radar transmitting ends by the reflecting target, and the obtained receiving signal can be expressed as follows:
Figure PCTCN2014088100-appb-000019
Figure PCTCN2014088100-appb-000019
Figure PCTCN2014088100-appb-000020
Figure PCTCN2014088100-appb-000020
此时发射雷达端利用参数估计算法,估算(15)(16)中信号的频率和相位,考虑估算误差,得到第二个时隙末的发射雷达端的频率和相位参数估计如下:At this time, the transmitting radar uses the parameter estimation algorithm to estimate the frequency and phase of the signal in (15)(16). Considering the estimation error, the frequency and phase parameters of the transmitting radar end at the end of the second time slot are estimated as follows:
Figure PCTCN2014088100-appb-000021
Figure PCTCN2014088100-appb-000021
Figure PCTCN2014088100-appb-000022
Figure PCTCN2014088100-appb-000022
Figure PCTCN2014088100-appb-000023
Figure PCTCN2014088100-appb-000023
Figure PCTCN2014088100-appb-000024
Figure PCTCN2014088100-appb-000024
步骤D,第三个时隙初,雷达发射阵元利用第二时隙末估计出来的反馈信号的频率参数和相位参数重新构建雷达发射阵元的发射信号的初始频率和相位,并在第三个时隙由雷达发射阵元将重新构建的发射信号发射出去,实现到达目标端的接收信号相位同步。Step D, at the beginning of the third time slot, the radar transmitting array element reconstructs the initial frequency and phase of the transmitted signal of the radar transmitting array element by using the frequency parameter and the phase parameter of the feedback signal estimated at the end of the second time slot, and in the third The time slot is transmitted by the radar transmitting array element to reconstruct the transmitted signal, and the phase of the received signal reaching the target end is synchronized.
第三个时隙初,两个发射雷达阵元利用上一时隙估算出的包含估算误差的频率和相位参数构建新的频率相位,作为第三个时隙初的初始发射频率和相位: At the beginning of the third time slot, the two transmitting radar elements use the frequency and phase parameters estimated by the previous time slot to estimate the error to construct a new frequency phase as the initial transmission frequency and phase at the beginning of the third time slot:
Figure PCTCN2014088100-appb-000025
Figure PCTCN2014088100-appb-000025
Figure PCTCN2014088100-appb-000026
Figure PCTCN2014088100-appb-000026
可以得出,两个发射雷达阵元在第三个时隙初发射出去的信号表示如下:It can be concluded that the signals emitted by the two transmitting radar elements at the beginning of the third time slot are expressed as follows:
Figure PCTCN2014088100-appb-000027
Figure PCTCN2014088100-appb-000027
对于目标端,第三个时隙来自不同发射雷达阵元的到达信号分别可以表示为: For the target end, the arrival signals of the third time slot from different transmitting radar array elements can be expressed as:
Figure PCTCN2014088100-appb-000028
Figure PCTCN2014088100-appb-000028
Figure PCTCN2014088100-appb-000029
Figure PCTCN2014088100-appb-000029
考虑估算误差时,第三个时隙内到达目标端的信号的频率参数可以得出如下:When considering the estimation error, the frequency parameter of the signal reaching the target end in the third time slot can be obtained as follows:
Figure PCTCN2014088100-appb-000030
Figure PCTCN2014088100-appb-000030
Figure PCTCN2014088100-appb-000031
Figure PCTCN2014088100-appb-000031
从上式(26)和(27)可知,第三个时隙到达目标端的两个信号的载波频率在频率和相位参数没有估算误差时可以视为完全相等,在实际场景中,由于参数估计算法本身的特点以及MIMO radar系统中噪声、干扰等因素的存在,估算误差总是不可避免的。然而在实际的场景中,我们总能得到较理想的估算误差,从而可以认为第三个时隙到达目标端的两个信号的载波频率近似相等。It can be seen from the above equations (26) and (27) that the carrier frequencies of the two signals arriving at the target end of the third time slot can be regarded as completely equal when the frequency and phase parameters have no estimation error. In the actual scenario, due to the parameter estimation algorithm The estimation error is always inevitable due to its own characteristics and the existence of noise and interference in the MIMO radar system. However, in the actual scenario, we can always get a better estimation error, so that the carrier frequencies of the two signals arriving at the target end of the third time slot are approximately equal.
考虑估算误差时,第三个时隙内到达目标端的信号的相位参数可以得出如下:When considering the estimation error, the phase parameters of the signal reaching the target end in the third time slot can be obtained as follows:
Figure PCTCN2014088100-appb-000032
Figure PCTCN2014088100-appb-000032
Figure PCTCN2014088100-appb-000033
Figure PCTCN2014088100-appb-000033
从而可以得到第三个时隙内,到达目标端的信号的相位差可以表示如下:Therefore, the phase difference of the signal reaching the target end in the third time slot can be expressed as follows:
Figure PCTCN2014088100-appb-000034
Figure PCTCN2014088100-appb-000034
由(30)式可知,不考虑频率,相位估算误差以及相位噪声时,得到第三个时隙内,到达目标端的信号的相位差可以表示如下:It can be seen from equation (30) that, regardless of frequency, phase estimation error, and phase noise, the phase difference of the signal arriving at the target end in the third time slot can be expressed as follows:
Figure PCTCN2014088100-appb-000035
Figure PCTCN2014088100-appb-000035
而前面已经分析过,第二个时隙内雷达接收阵元的发射载波频率由(12)给出,而第三个时隙雷达发射阵元的载波频率由(21)给出,假设MIMO系统理想情况下参数的估算的误差非常小可以忽略不计,注意到雷达阵元端存在本地时间相对参考时间的变化率,若转换到参考时间上看,即从信道的角度上来说,可以认为第二个时隙和第三个时隙内信道上的载波频率是完全一致的,根据式(3)给出的信道相位的定义可以得出如下结论:As has been analyzed before, the carrier frequency of the radar receiving array element in the second time slot is given by (12), and the carrier frequency of the third time slot radar transmitting element is given by (21), assuming MIMO system In the ideal case, the error of the estimation of the parameter is very small, and it is noted that there is a change rate of the local time relative to the reference time at the radar array element. If it is converted to the reference time, it can be considered as the second from the perspective of the channel. The carrier frequencies on the channels in the time slots and the third time slots are completely identical. According to the definition of the channel phase given by equation (3), the following conclusions can be drawn:
φ1(3)=φ1(2)Φ 1 (3)=φ 1 (2)
φ2(3)=φ2(2)         (32)φ 2 (3)=φ 2 (2) (32)
将(32)代入(31)可知Substituting (32) into (31)
Figure PCTCN2014088100-appb-000036
Figure PCTCN2014088100-appb-000036
此时,目标端到达信号的相位差完全由时间偏移量决定,如果没有时间偏移,可认为达到完全同步,需要引起注意的是,时间偏移量是个非常小的值,因此即使考虑时间偏移量,相位差仍然是个很小的值;考虑估算误差时,基于大部分的参数估计器(如ML估计器等)在SNR高的时候,估算误差的方差很小,因此,SNR高的时候,我们仍然可以达到理想的相位同步。At this time, the phase difference of the arrival signal of the target end is completely determined by the time offset. If there is no time offset, it can be considered that the complete synchronization is achieved. It should be noted that the time offset is a very small value, so even considering the time Offset, the phase difference is still a small value; considering the estimation error, based on most of the parameter estimators (such as ML estimator, etc.), when the SNR is high, the variance of the estimation error is small, so the SNR is high. At the time, we can still achieve the ideal phase synchronization.
进一步地,本发明还提供了一种MIMO雷达系统,包括雷达发射阵元、目标端、雷达接收阵元,其中,雷达发射阵元、目标端、雷达接收阵元的功能原理如上文所述,此处不再赘述。Further, the present invention further provides a MIMO radar system, including a radar transmitting array element, a target end, and a radar receiving array element, wherein the functional principle of the radar transmitting array element, the target end, and the radar receiving array element is as described above. I will not repeat them here.
综上所述,在SNR较高的时候,目标端可以达到理想相位同步的状态。本发明采用三个时隙内对信号的频率和相位参数进行估计,并利用估计参数构建新的频率和相位参数,由雷达阵元发射反馈信号的方式实现目标端的理想相 位同步。与现有的源端和接收端相位同步技术相比,在雷达数量较多的时候需要的时隙数量大大减少,且提出的相位同步技术对雷达系统的网络拓扑结构要求不高,也不需要多次迭代达到状态收敛的效果,因此大大减小了网络的功耗,延长了网络的使用寿命。In summary, when the SNR is high, the target end can reach the ideal phase synchronization state. The invention uses three time slots to estimate the frequency and phase parameters of the signal, and uses the estimation parameters to construct new frequency and phase parameters, and the radar array element transmits the feedback signal to realize the ideal phase of the target end. Bit synchronization. Compared with the existing phase-and-receiver phase synchronization technology, the number of time slots required when the number of radars is large is greatly reduced, and the proposed phase synchronization technology does not require high network topology of the radar system, and does not need Multiple iterations achieve the effect of state convergence, thus greatly reducing the power consumption of the network and prolonging the service life of the network.
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。 The above is only the preferred embodiment of the present invention, and is not intended to limit the present invention. Any modifications, equivalent substitutions and improvements made within the spirit and principles of the present invention should be included in the protection of the present invention. Within the scope.

Claims (10)

  1. 一种MIMO雷达系统的目标端相位同步方法,其特征在于,所述方法包括下述步骤:A target phase synchronization method for a MIMO radar system, characterized in that the method comprises the following steps:
    步骤A,第一个时隙初,雷达发射阵元发射初始信号,所述初始信号经目标端反射后由雷达接收阵元接收,雷达接收阵元对所接收信号的频率参数和相位参数进行估计;Step A: At the beginning of the first time slot, the radar transmitting array element transmits an initial signal, and the initial signal is received by the radar receiving array element after being reflected by the target end, and the radar receiving array element estimates the frequency parameter and the phase parameter of the received signal. ;
    步骤B,第二个时隙初,雷达接收阵元利用在第一时隙估计出来的频率参数和相位参数构建雷达接收阵元的反馈信号的初始频率和相位,并在第二时隙初由雷达接收阵元将所述反馈信号发射出去;Step B: At the beginning of the second time slot, the radar receiving array element constructs the initial frequency and phase of the feedback signal of the radar receiving array element by using the frequency parameter and the phase parameter estimated in the first time slot, and is initially formed in the second time slot. The radar receiving array element transmits the feedback signal;
    步骤C,第二个时隙末,雷达发射阵元接收到第二个时隙初雷达接收阵元发射后由目标端反射的所述反馈信号,并对所述反馈信号的频率参数和相位参数进行估计;Step C: At the end of the second time slot, the radar transmitting array element receives the feedback signal reflected by the target end after the second radar receiving array element is transmitted, and the frequency parameter and the phase parameter of the feedback signal Make an estimate;
    步骤D,第三个时隙初,雷达发射阵元利用第二时隙末估计出来的反馈信号的频率参数和相位参数重新构建雷达发射阵元的发射信号的初始频率和相位,在第三个时隙由雷达发射阵元将重新构建的发射信号发射出去,实现到达单个目标端的接收信号相位同步。Step D, at the beginning of the third time slot, the radar transmitting array element reconstructs the initial frequency and phase of the transmitted signal of the radar transmitting array element by using the frequency parameter and the phase parameter of the feedback signal estimated at the end of the second time slot, in the third The time slot is transmitted by the radar transmitting array element to reconstruct the transmitted signal to achieve phase synchronization of the received signal to a single target end.
  2. 如权利要求1所述的目标端相位同步方法,其特征在于,步骤A中雷达接收阵元采用如下公式对所接收信号的频率参数和相位参数进行估计:The target phase synchronization method according to claim 1, wherein the radar receiving array element in step A estimates the frequency parameter and the phase parameter of the received signal by using the following formula:
    Figure PCTCN2014088100-appb-100001
    Figure PCTCN2014088100-appb-100001
    Figure PCTCN2014088100-appb-100002
    Figure PCTCN2014088100-appb-100002
    Figure PCTCN2014088100-appb-100003
    Figure PCTCN2014088100-appb-100003
    Figure PCTCN2014088100-appb-100004
    Figure PCTCN2014088100-appb-100004
    其中,
    Figure PCTCN2014088100-appb-100005
    分别为频率估算的误差,
    Figure PCTCN2014088100-appb-100006
    分别为相位估算的误差,ω1(1),ω2(1)分别表示第一个时隙初两个雷达发射阵元发射信号的发射载波频率,β1,β2,β3,β4和Δ1,Δ2,Δ3,Δ4分别为两个雷达发射阵元和两个雷达接收阵元的本地时间相对于参考时间变化的相对速率和时间偏移量,
    Figure PCTCN2014088100-appb-100007
    表示第一个时隙初两个雷达发射阵元的初始发射相位;φ1(1),φ2(1),φ3(1),φ4(1)分别表示第一个时隙内两个雷达发射阵元和两个接收雷达阵元与目标端之间的传输距离带来的信道相位,信道相位φi(n)由第n个时隙内第i条信道的长度和该信道中载波信号的载波频率共同决定,χ1(t1,1),χ2(t2,1)表示第一个时隙初两个雷达发射阵元端由于雷达内部晶振引起的相位噪声。
    among them,
    Figure PCTCN2014088100-appb-100005
    The error of the frequency estimation,
    Figure PCTCN2014088100-appb-100006
    The error of phase estimation, ω 1 (1), ω 2 (1) respectively represent the transmitting carrier frequency of the two radar transmitting array elements at the beginning of the first time slot, β 1 , β 2 , β 3 , β 4 And Δ 1 , Δ 2 , Δ 3 , Δ 4 are the relative rates and time offsets of the local time of the two radar transmitting elements and the two radar receiving elements, respectively, with respect to the reference time.
    Figure PCTCN2014088100-appb-100007
    Indicates the initial transmit phase of the two radar transmit array elements at the beginning of the first time slot; φ 1 (1), φ 2 (1), φ 3 (1), φ 4 (1) represent two in the first time slot, respectively The channel phase brought by the transmission distance between the two radar transmitting array elements and the two receiving radar array elements and the target end, the channel phase φ i (n) is the length of the ith channel in the nth time slot and the channel The carrier frequency of the carrier signal is determined jointly, χ 1 (t 1 , 1), χ 2 (t 2 , 1) represents the phase noise caused by the internal crystal oscillator of the radar at the beginning of the first time slot.
  3. 如权利要求2所述的目标端相位同步方法,其特征在于,所述步骤B包括下述步骤:The target phase synchronization method according to claim 2, wherein said step B comprises the following steps:
    步骤B1,根据所述步骤A,雷达接收阵元采用如下公式构建雷达接收阵元的初始频率和相位:Step B1, according to the step A, the radar receiving array element adopts the following formula to construct the initial frequency and phase of the radar receiving array element:
    Figure PCTCN2014088100-appb-100008
    Figure PCTCN2014088100-appb-100008
    Figure PCTCN2014088100-appb-100009
    Figure PCTCN2014088100-appb-100009
    步骤B2,根据步骤B1中构建的初始频率和相位,雷达接收阵元采用如下公式构建反馈信号:Step B2, according to the initial frequency and phase constructed in step B1, the radar receiving array element uses the following formula to construct a feedback signal:
    Figure PCTCN2014088100-appb-100010
    Figure PCTCN2014088100-appb-100010
    上式中s1(t3,2),s2(t3,2)分别为第二个时隙初两个接收雷达端的发射波形,ω3(2),ω4(2)分别表示第二个时隙初两个雷达接收阵元发射信号的发射载波频 率,也即重构的频率,
    Figure PCTCN2014088100-appb-100011
    表示第二个时隙初两个雷达接收阵元重构的初始发射相位,χ3(t3,2),χ4(t4,2)表示第二个时隙初两个雷达接收阵元端由于雷达内部晶振引起的相位噪声。
    In the above formula, s 1 (t 3 , 2), s 2 (t 3 , 2) are the emission waveforms of the two receiving radar ends at the beginning of the second time slot, respectively, ω 3 (2), ω 4 (2) respectively indicate The first two radars receive the carrier frequency of the transmitted signal of the array element, that is, the reconstructed frequency.
    Figure PCTCN2014088100-appb-100011
    Representing the initial transmit phase of the reconstruction of the two radar receiving elements in the first time slot, χ 3 (t 3 , 2), χ 4 (t 4 , 2) indicating the first two radar receiving elements in the second time slot The phase noise caused by the internal crystal of the radar.
  4. 如权利要求1所述的目标端相位同步方法,其特征在于,步骤C中雷达发射阵元采用如下公式对所述反馈信号的频率参数和相位参数进行估计:The target phase synchronization method according to claim 1, wherein the radar transmitting array element in step C estimates the frequency parameter and the phase parameter of the feedback signal by using the following formula:
    Figure PCTCN2014088100-appb-100012
    Figure PCTCN2014088100-appb-100012
    Figure PCTCN2014088100-appb-100013
    Figure PCTCN2014088100-appb-100013
    Figure PCTCN2014088100-appb-100014
    Figure PCTCN2014088100-appb-100014
    Figure PCTCN2014088100-appb-100015
    Figure PCTCN2014088100-appb-100015
    其中,
    Figure PCTCN2014088100-appb-100016
    分别为频率估算的误差,
    Figure PCTCN2014088100-appb-100017
    分别为相位估算的误差,ω3(2),ω4(2)分别表示第二个时隙初两个雷达接收阵元重构的发射信号的发射载波频率,β1,β2,β3,β4和Δ1,Δ2,Δ3,Δ4分别为两个雷达发射阵元和两个雷达接收阵元的本地时间相对于参 考时间变化的相对速率和时间偏移量,
    Figure PCTCN2014088100-appb-100018
    表示第二个时隙初两个雷达接收阵元重构的初始发射相位,φ1(2),φ2(2),φ3(2),φ4(2)分别表示第二个时隙内两个雷达发射阵元和两个接收雷达阵元与目标端之间的传输距离带来的信道相位,该信道相位由该时隙内载波各信道载波频率和该信道距离共同决定,χ3(t3,2),χ4(t4,2)表示第二个时隙初两个雷达接收阵元由于雷达内部晶振引起的相位噪声。
    among them,
    Figure PCTCN2014088100-appb-100016
    The error of the frequency estimation,
    Figure PCTCN2014088100-appb-100017
    The error of phase estimation, ω 3 (2), ω 4 (2) respectively represent the transmitting carrier frequency of the transmitted signal reconstructed by the two radar receiving elements in the first time slot, β 1 , β 2 , β 3 , β 4 and Δ 1 , Δ 2 , Δ 3 , Δ 4 are the relative rates and time offsets of the local time of the two radar transmitting elements and the two radar receiving elements relative to the reference time change, respectively.
    Figure PCTCN2014088100-appb-100018
    Representing the initial transmit phase of the reconstruction of the two radar receiving elements at the beginning of the second time slot, φ 1 (2), φ 2 (2), φ 3 (2), φ 4 (2) respectively represent the second time slot The channel phase brought by the transmission distance between the two radar transmitting array elements and the two receiving radar array elements and the target end, the channel phase is determined by the carrier frequency of each channel of the carrier in the time slot and the channel distance, χ 3 (t 3 , 2), χ 4 (t 4 , 2) represents the phase noise caused by the radar internal crystal oscillator at the beginning of the second time slot.
  5. 如权利要求1所述的目标端相位同步方法,其特征在于,所述步骤D包括下述步骤:The target phase synchronization method according to claim 1, wherein said step D comprises the following steps:
    步骤D1,雷达发射阵元采用如下公式构建其发射信号的初始频率和相位:In step D1, the radar transmitting array element uses the following formula to construct the initial frequency and phase of its transmitted signal:
    Figure PCTCN2014088100-appb-100019
    Figure PCTCN2014088100-appb-100019
    Figure PCTCN2014088100-appb-100020
    Figure PCTCN2014088100-appb-100020
    Figure PCTCN2014088100-appb-100021
    Figure PCTCN2014088100-appb-100021
    步骤D2,根据步骤D1中构建的初始频率和相位,雷达发射阵元进一步采用如下公式构建反射信号:Step D2, according to the initial frequency and phase constructed in step D1, the radar transmitting array element further constructs a reflected signal by using the following formula:
    Figure PCTCN2014088100-appb-100022
    Figure PCTCN2014088100-appb-100022
    上式中s1(t1,3),s2(t2,2)分别为第三个时隙初两个发射雷达端的发射波形,ω1(3),ω2(3)分别表示第三个时隙初两个雷达发射阵元重构的发射信号的发射载波频率,
    Figure PCTCN2014088100-appb-100023
    表示第三个时隙初两个雷达发射阵元重构的初始发射相位,χ1(t1,3),χ2(t2,3)表示第三个时隙初两个雷达发射阵元端由于雷达内部晶振引起的相位噪声。
    In the above formula, s 1 (t 1 , 3), s 2 (t 2 , 2) are the emission waveforms of the two transmitting radar ends at the beginning of the third time slot, respectively, ω 1 (3), ω 2 (3) respectively indicate The transmit carrier frequency of the transmitted signal reconstructed by the two radar transmit array elements at the beginning of the three time slots,
    Figure PCTCN2014088100-appb-100023
    Indicates the initial transmit phase of the reconstruction of the two radar transmit elements at the beginning of the third time slot, χ 1 (t 1 , 3), χ 2 (t 2 , 3) represents the first two radar transmit array elements in the third time slot The phase noise caused by the internal crystal of the radar.
  6. 一种MIMO雷达系统,包括雷达发射阵元、目标端、雷达接收阵元,其特征在于,所述雷达发射阵元用于在第一个时隙初发射初始信号,所述初始信号经目标端反射后由雷达接收阵元接收,所述雷达接收阵元对所接收信号的频率参数和相位参数进行估计,并在第二个时隙初利用第一时隙估计出来的频率参数和相位参数构建雷达接收阵元的反馈信号的初始频率和相位,并在第二时隙初由雷达接收阵元将所述反馈信号发射出去;A MIMO radar system comprising a radar transmitting array element, a target end, and a radar receiving array element, wherein the radar transmitting array element is configured to transmit an initial signal at an initial stage of the first time slot, the initial signal passing through the target end After the reflection is received by the radar receiving array element, the radar receiving array element estimates the frequency parameter and the phase parameter of the received signal, and constructs the frequency parameter and the phase parameter estimated by the first time slot at the beginning of the second time slot. The radar receives the initial frequency and phase of the feedback signal of the array element, and transmits the feedback signal by the radar receiving array element at the beginning of the second time slot;
    所述雷达发射阵元用于在第二个时隙末接收到由目标端反射的所述反馈信 号后,对所述反馈信号的频率参数和相位参数进行估计,并在第三个时隙初利用第二时隙末估计出来的反馈信号的频率参数和相位参数重新构建雷达发射阵元的发射信号的初始频率和相位,然后在第三个时隙由雷达发射阵元将重新构建的发射信号发射出去,实现到达目标端的接收信号相位同步。The radar transmit array element is configured to receive the feedback signal reflected by the target end at the end of the second time slot After the number, the frequency parameter and the phase parameter of the feedback signal are estimated, and the transmission of the radar transmitting element is reconstructed by using the frequency parameter and the phase parameter of the feedback signal estimated at the end of the second time slot at the beginning of the third time slot. The initial frequency and phase of the signal are then transmitted by the radar transmit element in the third time slot to reconstruct the transmitted signal to achieve phase synchronization of the received signal to the target.
  7. 如权利要求6所述的MIMO雷达系统,其特征在于,所述雷达接收阵元采用如下公式对所接收信号的频率参数和相位参数进行估计:The MIMO radar system according to claim 6, wherein said radar receiving array element estimates a frequency parameter and a phase parameter of the received signal using the following formula:
    Figure PCTCN2014088100-appb-100024
    Figure PCTCN2014088100-appb-100024
    Figure PCTCN2014088100-appb-100025
    Figure PCTCN2014088100-appb-100025
    Figure PCTCN2014088100-appb-100026
    Figure PCTCN2014088100-appb-100026
    Figure PCTCN2014088100-appb-100027
    Figure PCTCN2014088100-appb-100027
    其中,
    Figure PCTCN2014088100-appb-100028
    分别为频率估算的误差,
    Figure PCTCN2014088100-appb-100029
    分别为相位估算的误差,ω1(1),ω2(1)分别表示第一个时隙初两个雷达发射阵元发射信号的发射载波频率,β1,β2,β3,β4和Δ1,Δ2,Δ3,Δ4分别为两个雷达发射阵元和两个雷达接收阵元的本地时间相对于参考时间变化的相对速率和时间偏移量,
    Figure PCTCN2014088100-appb-100030
    表示第一个时隙初两个雷达发射阵元的初始发射相位,φ1(1),φ2(1),φ3(1),φ4(1)分别表示第一个时隙内两个雷达发射阵元和两个接收雷达阵元与目标端之间的传输距离带来的信道相位,该信道相位由该时刻内载波各信道载波频率和该信道距离共同决定,χ1(t1,1),χ2(t2,1)表示第一个时隙初两个雷达发射阵元端由于雷达内部晶振引起的相位噪声。
    among them,
    Figure PCTCN2014088100-appb-100028
    The error of the frequency estimation,
    Figure PCTCN2014088100-appb-100029
    The error of phase estimation, ω 1 (1), ω 2 (1) respectively represent the transmitting carrier frequency of the two radar transmitting array elements at the beginning of the first time slot, β 1 , β 2 , β 3 , β 4 And Δ 1 , Δ 2 , Δ 3 , Δ 4 are the relative rates and time offsets of the local time of the two radar transmitting elements and the two radar receiving elements, respectively, with respect to the reference time.
    Figure PCTCN2014088100-appb-100030
    Indicates the initial transmit phase of the two radar transmit elements at the beginning of the first time slot, φ 1 (1), φ 2 (1), φ 3 (1), φ 4 (1) respectively represent the first time slot The channel phase brought by the transmission distance between the two radar transmitting array elements and the two receiving radar array elements and the target end. The channel phase is determined by the carrier frequency of each channel of the carrier and the channel distance at that time, χ 1 (t 1 , 1), χ 2 (t 2 , 1) represents the phase noise caused by the internal crystal oscillator of the radar at the beginning of the first time slot.
  8. 如权利要求7所述的MIMO雷达系统,其特征在于,所述雷达接收阵元根据得到的第一个时隙末雷达接收阵元得到的频率和相位的参数估计值,采 用如下公式构建雷达接收阵元的初始频率和相位:The MIMO radar system according to claim 7, wherein said radar receiving array element estimates a parameter of a frequency and a phase obtained by the radar receiving array element at the end of the first time slot obtained. The initial frequency and phase of the radar receiving element are constructed using the following formula:
    Figure PCTCN2014088100-appb-100031
    Figure PCTCN2014088100-appb-100031
    Figure PCTCN2014088100-appb-100032
    Figure PCTCN2014088100-appb-100032
    然后再根据构建的初始频率和相位,采用如下公式构建反馈信号:Then based on the initial frequency and phase of the construction, the feedback signal is constructed using the following formula:
    Figure PCTCN2014088100-appb-100033
    Figure PCTCN2014088100-appb-100033
    上式中s1(t3,2),s2(t3,2)分别为第二个时隙初两个接收雷达端的发射波形,ω3(2),ω4(2)分别表示第二个时隙初两个雷达接收阵元发射信号的发射载波频率,也即重构的频率,
    Figure PCTCN2014088100-appb-100034
    表示第二个时隙初两个雷达接收阵元重构的初始发射相位,χ3(t3,2),χ4(t4,2)表示第二个时隙初两个雷达接收阵元端由于雷达内部晶振引起的相位噪声。
    In the above formula, s 1 (t 3 , 2), s 2 (t 3 , 2) are the emission waveforms of the two receiving radar ends at the beginning of the second time slot, respectively, ω 3 (2), ω 4 (2) respectively indicate The first two radars receive the carrier frequency of the transmitted signal of the array element, that is, the reconstructed frequency.
    Figure PCTCN2014088100-appb-100034
    Representing the initial transmit phase of the reconstruction of the two radar receiving elements in the first time slot, χ 3 (t 3 , 2), χ 4 (t 4 , 2) indicating the first two radar receiving elements in the second time slot The phase noise caused by the internal crystal of the radar.
  9. 如权利要求6所述的MIMO雷达系统,其特征在于,所述雷达发射阵元采用如下公式对所述反馈信号的频率参数和相位参数进行估计:The MIMO radar system according to claim 6, wherein said radar transmitting array element estimates frequency parameters and phase parameters of said feedback signal using the following formula:
    Figure PCTCN2014088100-appb-100035
    Figure PCTCN2014088100-appb-100035
    Figure PCTCN2014088100-appb-100036
    Figure PCTCN2014088100-appb-100036
    Figure PCTCN2014088100-appb-100037
    Figure PCTCN2014088100-appb-100037
    Figure PCTCN2014088100-appb-100038
    Figure PCTCN2014088100-appb-100038
    其中,
    Figure PCTCN2014088100-appb-100039
    分别为频率估算的误差,
    Figure PCTCN2014088100-appb-100040
    分别为相位估算的误差,ω3(2),ω4(2)分别表示第二个时隙初两个雷达接收阵元重构的发射信号的发射载波频率,β1,β2,β3,β4和Δ1,Δ2,Δ3,Δ4分别为两个雷达发射阵元和两个雷达接收阵元的本地时间相对于参考时间变化的相对速率和时间偏移量,
    Figure PCTCN2014088100-appb-100041
    表示第二个时隙初两个雷达接收阵元重构的初始发射相位,φ1(2),φ2(2),φ3(2),φ4(2)分别表示第二个时隙内两个雷达发射阵元和两个接收雷达阵元与目标端之间的传输距离带来的信道相位,该信道相位由该时隙内载波各信道载波频率和该信道距离共同决定,χ3(t3,2),χ4(t4,2)表示第二个时隙初两个雷达接收阵元端由于雷达内部晶振引起的相位噪声。
    among them,
    Figure PCTCN2014088100-appb-100039
    The error of the frequency estimation,
    Figure PCTCN2014088100-appb-100040
    The error of phase estimation, ω 3 (2), ω 4 (2) respectively represent the transmitting carrier frequency of the transmitted signal reconstructed by the two radar receiving elements in the first time slot, β 1 , β 2 , β 3 , β 4 and Δ 1 , Δ 2 , Δ 3 , Δ 4 are the relative rates and time offsets of the local time of the two radar transmitting elements and the two radar receiving elements, respectively, with respect to the reference time.
    Figure PCTCN2014088100-appb-100041
    Representing the initial transmit phase of the reconstruction of the two radar receiving elements at the beginning of the second time slot, φ 1 (2), φ 2 (2), φ 3 (2), φ 4 (2) respectively represent the second time slot The channel phase brought by the transmission distance between the two radar transmitting array elements and the two receiving radar array elements and the target end, the channel phase is determined by the carrier frequency of each channel of the carrier in the time slot and the channel distance, χ 3 (t 3 , 2), χ 4 (t 4 , 2) represents the phase noise caused by the internal crystal oscillator of the radar at the beginning of the second time slot.
  10. 如权利要求6所述的MIMO雷达系统,其特征在于,所述雷达发射阵元采用如下公式构建其发射信号的初始频率和相位: The MIMO radar system of claim 6 wherein said radar transmit array element constructs an initial frequency and phase of its transmitted signal using the following formula:
    Figure PCTCN2014088100-appb-100042
    Figure PCTCN2014088100-appb-100042
    Figure PCTCN2014088100-appb-100043
    Figure PCTCN2014088100-appb-100043
    Figure PCTCN2014088100-appb-100044
    Figure PCTCN2014088100-appb-100044
    然后再根据构建的初始频率和相位,雷达发射阵元进一步采用如下公式构建反射信号:Then according to the initial frequency and phase of the construction, the radar transmitting array element further constructs the reflected signal by the following formula:
    Figure PCTCN2014088100-appb-100045
    Figure PCTCN2014088100-appb-100045
    上式中s1(t1,3),s2(t2,2)分别为第三个时隙初两个发射雷达端的发射波形,ω1(3),ω2(3)分别表示第三个时隙初两个雷达发射阵元重构的发射信号的发射载波频率,
    Figure PCTCN2014088100-appb-100046
    表示第三个时隙初两个雷达发射阵元重构的初始发射相位,χ1(t1,3),χ2(t2,3)表示第三个时隙初两个雷达发射阵元端由于雷达内部晶振引起的相位噪声。
    In the above formula, s 1 (t 1 , 3), s 2 (t 2 , 2) are the emission waveforms of the two transmitting radar ends at the beginning of the third time slot, respectively, ω 1 (3), ω 2 (3) respectively indicate The transmit carrier frequency of the transmitted signal reconstructed by the two radar transmit array elements at the beginning of the three time slots,
    Figure PCTCN2014088100-appb-100046
    Indicates the initial transmit phase of the reconstruction of the two radar transmit elements at the beginning of the third time slot, χ 1 (t 1 , 3), χ 2 (t 2 , 3) represents the first two radar transmit array elements in the third time slot The phase noise caused by the internal crystal of the radar.
PCT/CN2014/088100 2014-01-24 2014-10-03 Mimo radar system and target end phase synchronization method thereof WO2015109870A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410035770.XA CN103777180B (en) 2014-01-24 2014-01-24 MIMO radar system and destination end phase synchronization method thereof
CN201410035770.X 2014-01-24

Publications (1)

Publication Number Publication Date
WO2015109870A1 true WO2015109870A1 (en) 2015-07-30

Family

ID=50569646

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/088100 WO2015109870A1 (en) 2014-01-24 2014-10-03 Mimo radar system and target end phase synchronization method thereof

Country Status (2)

Country Link
CN (1) CN103777180B (en)
WO (1) WO2015109870A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109614905A (en) * 2018-12-03 2019-04-12 中国人民解放军空军工程大学 A kind of radar emitter signal depth intrapulse feature extraction method
CN109946655A (en) * 2019-03-18 2019-06-28 西安电子科技大学 MIMO radar LFM signal zero setting waveform design method
CN111257847A (en) * 2020-03-23 2020-06-09 西安电子科技大学 FDA radar directional diagram decoupling method based on simulated annealing algorithm
CN112327264A (en) * 2020-10-14 2021-02-05 海南大学 Bistatic FDA-MIMO radar multi-dimensional parameter joint estimation method
CN112612013A (en) * 2020-11-26 2021-04-06 西安电子科技大学 FDA-MIMO radar increment distance-angle two-dimensional beam forming method
CN112710993A (en) * 2019-10-25 2021-04-27 深圳开阳电子股份有限公司 TDM-MIMO radar space spectrum estimation compensation method
CN113126076A (en) * 2021-03-10 2021-07-16 西安电子科技大学 Collaborative distance and angle parameter estimation method and device based on dual-mode radar

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103777180B (en) * 2014-01-24 2016-04-06 深圳大学 MIMO radar system and destination end phase synchronization method thereof
CN104820210B (en) * 2015-04-16 2018-06-05 深圳大学 Adaptive range estimation method and system under frequency interferences
CN105306190B (en) * 2015-12-08 2018-04-03 深圳大学 Closed loop phase synchronization method and distributed communication system based on accumulation positive feedback
CN105356994B (en) * 2015-12-08 2018-04-03 深圳大学 A kind of MIMO radar system and its phase synchronization method at dynamic object end
WO2017096538A1 (en) * 2015-12-08 2017-06-15 深圳大学 Mimo radar system and phase synchronization method therefor at dynamic target end
CN108988963B (en) * 2018-04-12 2021-02-05 华为技术有限公司 Test method, transmitting equipment, test equipment and test system
CN108983162A (en) * 2018-05-25 2018-12-11 中国人民解放军国防科技大学 Method for performing phase compensation on moving target by using phase compensation matrix
CN108983176A (en) * 2018-05-25 2018-12-11 中国人民解放军国防科技大学 Radar Moving Target phase correction method based on reference array element
CN112034444B (en) * 2020-08-25 2022-11-18 西安电子科技大学 Multi-beam radar communication integration method based on cyclic coding array

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120114026A1 (en) * 2010-11-05 2012-05-10 Nguyen Tien M Datalink System Architecture Using OTS/COTS Modem for MIMO Multipath Sensing Networks
CN102549935A (en) * 2009-09-24 2012-07-04 杜伊斯堡-埃森大学 Method, relay station and system for transmitting signals between a first signal source and a second signal source
US20120188125A1 (en) * 2009-12-10 2012-07-26 Lockheed Martin Corporation Method and system for use of gps disciplined oscillators for coherent timing reference in distributed radar systems
CN103777180A (en) * 2014-01-24 2014-05-07 深圳大学 MIMO radar system and target end phase synchronization method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102549935A (en) * 2009-09-24 2012-07-04 杜伊斯堡-埃森大学 Method, relay station and system for transmitting signals between a first signal source and a second signal source
US20120188125A1 (en) * 2009-12-10 2012-07-26 Lockheed Martin Corporation Method and system for use of gps disciplined oscillators for coherent timing reference in distributed radar systems
US20120114026A1 (en) * 2010-11-05 2012-05-10 Nguyen Tien M Datalink System Architecture Using OTS/COTS Modem for MIMO Multipath Sensing Networks
CN103777180A (en) * 2014-01-24 2014-05-07 深圳大学 MIMO radar system and target end phase synchronization method thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YANG YANG ET AL.: "Phase Synchronization for Coherent MIMO Radar: Algorithms and Their Analysis", IEEE TRANSACTIONS ON SIGNAL PROCESSING, vol. 59, no. 11, 30 November 2011 (2011-11-30), pages 5538 - 5557, XP011366345 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109614905A (en) * 2018-12-03 2019-04-12 中国人民解放军空军工程大学 A kind of radar emitter signal depth intrapulse feature extraction method
CN109614905B (en) * 2018-12-03 2022-10-21 中国人民解放军空军工程大学 Automatic extraction method for depth intra-pulse features of radar radiation source signals
CN109946655B (en) * 2019-03-18 2022-12-02 西安电子科技大学 MIMO radar LFM signal zero setting waveform design method
CN109946655A (en) * 2019-03-18 2019-06-28 西安电子科技大学 MIMO radar LFM signal zero setting waveform design method
CN112710993B (en) * 2019-10-25 2024-05-14 深圳开阳电子股份有限公司 TDM-MIMO radar space spectrum estimation compensation method
CN112710993A (en) * 2019-10-25 2021-04-27 深圳开阳电子股份有限公司 TDM-MIMO radar space spectrum estimation compensation method
CN111257847A (en) * 2020-03-23 2020-06-09 西安电子科技大学 FDA radar directional diagram decoupling method based on simulated annealing algorithm
CN111257847B (en) * 2020-03-23 2023-05-02 西安电子科技大学 FDA radar directional diagram decoupling method based on simulated annealing algorithm
CN112327264A (en) * 2020-10-14 2021-02-05 海南大学 Bistatic FDA-MIMO radar multi-dimensional parameter joint estimation method
CN112327264B (en) * 2020-10-14 2023-10-13 海南大学 Bistatic FDA-MIMO radar multidimensional parameter joint estimation method
CN112612013B (en) * 2020-11-26 2023-06-30 西安电子科技大学 FDA-MIMO radar incremental distance-angle two-dimensional beam forming method
CN112612013A (en) * 2020-11-26 2021-04-06 西安电子科技大学 FDA-MIMO radar increment distance-angle two-dimensional beam forming method
CN113126076A (en) * 2021-03-10 2021-07-16 西安电子科技大学 Collaborative distance and angle parameter estimation method and device based on dual-mode radar
CN113126076B (en) * 2021-03-10 2023-12-26 西安电子科技大学 Cooperative distance and angle parameter estimation method and device based on dual-mode radar

Also Published As

Publication number Publication date
CN103777180A (en) 2014-05-07
CN103777180B (en) 2016-04-06

Similar Documents

Publication Publication Date Title
WO2015109870A1 (en) Mimo radar system and target end phase synchronization method thereof
US10746844B2 (en) Low-power, long-range RF localization system and method
US9980244B2 (en) Distributed co-operating nodes using time reversal
Corbalán et al. Chorus: UWB concurrent transmissions for GPS-like passive localization of countless targets
US20220070818A1 (en) Methods and apparatuses for positioning based on signal correlation function characteristics feedback
KR102225144B1 (en) Asymmetric double-sided two-way ranging in an ultrawideband communication system
US9554348B2 (en) Timing synchronization of wireless networks
US9983292B2 (en) Method and system for multipath reduction for wireless synchronizing and/or locating
US10158443B1 (en) Methods and apparatus for fine timing measurement with frequency domain processing
Bar-Shalom et al. Emitter geolocation using single moving receiver
CN105264920A (en) Multi-path mitigation in rangefinding and tracking objects using reduced attenuation rf technology
Koivisto et al. Joint 3D positioning and network synchronization in 5G ultra-dense networks using UKF and EKF
Smaoui et al. Single-antenna AoA estimation with UWB radios
US20220404451A1 (en) Methods and Apparatuses for Positioning in a Wireless Communications Network
Yang et al. ilps: Local positioning system with simultaneous localization and wireless communication
WO2017096538A1 (en) Mimo radar system and phase synchronization method therefor at dynamic target end
Koivisto et al. Continuous device positioning and synchronization in 5G dense networks with skewed clocks
Staudinger et al. Towards a radio-based swarm navigation system on mars—Key technologies and performance assessment
Yen et al. Indoor positioning based on statistical multipath channel modeling
Bialer et al. Two-way location estimation with synchronized base stations
Keating et al. Multiuser two-way ranging
Navarro et al. Assessment of Direct Positioning for IR-UWB in IEEE 802.15. 4a channels
Yu et al. Maximum likelihood network localization using range estimation and gps measurements
US11671793B2 (en) Channel frequency response reconstruction assisted time-of-arrival estimation method
Gao et al. Network Scalability for Ultra‐Wideband Real‐Time Location Systems Based on vMISO

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14880249

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14880249

Country of ref document: EP

Kind code of ref document: A1