WO2015108685A1 - Vibration-reducing structure for compressing diaphragm pump - Google Patents

Vibration-reducing structure for compressing diaphragm pump Download PDF

Info

Publication number
WO2015108685A1
WO2015108685A1 PCT/US2014/072192 US2014072192W WO2015108685A1 WO 2015108685 A1 WO2015108685 A1 WO 2015108685A1 US 2014072192 W US2014072192 W US 2014072192W WO 2015108685 A1 WO2015108685 A1 WO 2015108685A1
Authority
WO
WIPO (PCT)
Prior art keywords
vibration
reducing
head body
pump head
diaphragm
Prior art date
Application number
PCT/US2014/072192
Other languages
French (fr)
Inventor
Ying Lin Cai
Chao Fou Hsu
Original Assignee
Chen, Chung-Chin
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chen, Chung-Chin filed Critical Chen, Chung-Chin
Publication of WO2015108685A1 publication Critical patent/WO2015108685A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/0027Pulsation and noise damping means
    • F04B39/0044Pulsation and noise damping means with vibration damping supports
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/02Machines, pumps, or pumping installations having flexible working members having plate-like flexible members, e.g. diaphragms
    • F04B43/025Machines, pumps, or pumping installations having flexible working members having plate-like flexible members, e.g. diaphragms two or more plate-like pumping members in parallel
    • F04B43/026Machines, pumps, or pumping installations having flexible working members having plate-like flexible members, e.g. diaphragms two or more plate-like pumping members in parallel each plate-like pumping flexible member working in its own pumping chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/001Noise damping
    • F04B53/003Noise damping by damping supports

Definitions

  • the present invention relates to a vibration-reducing structure for compressing a diaphragm pump used in an RO (reverse osmosis) purification system, and particularly to a structure that can reduce the vibration strength of the pump so that the annoying noise incurred by consonant vibration with the housing of the RO purification system is eliminated when the structure is installed on the housing of the RO purification system.
  • RO reverse osmosis
  • a brushed or brushless motor 10 with an output shaft 11, a motor upper chassis 30, a wobble plate 40 with an integral protruding cam-lobed shaft, an eccentric roundel mount 50, a pump head body 60, a diaphragm membrane 70, three pumping pistons 80, a piston valvular assembly 90 and a pump head cover 20.
  • the motor upper chassis 30 includes a bearing 31 through which an output shaft 11 of the motor 10 extends.
  • the motor upper chassis 30 also includes an upper annular rib ring 32 with several fastening bores 33 evenly and circumferentially disposed in a rim of the upper annular rib ring 32.
  • the wobble plate 40 includes a shaft coupling hole 41 through which the corresponding motor output shaft 11 of the motor 10 extends.
  • the eccentric roundel mount 50 includes a central bearing 51 at the bottom thereof for receiving the corresponding integral protruding cm-lobed shaft of the wobble plate 40, three eccentric roundels 52 disposed evenly and circumferentially thereon.
  • Each eccentric roundel 52 has a screw-threaded bore 54 and an annular positioning groove 55 formed on a horizontally flush top face 53 thereof.
  • the pump head body 60 covers the upper annular rib ring 32 of the motor upper chassis 30 to encompass the wobble plate 40 with integral protruding cam-lobed shaft and eccentric roundel mount 50 therein, and includes three operating holes 61 evenly and circumferentially disposed therein.
  • Each operating hole 61 has an inner diameter that is slightly bigger than the outer diameter of the eccentric roundel 52 in the eccentric roundel mount 50 for receiving each corresponding eccentric roundel 52 respectively, a lower annular flange 62 formed thereunder for mating with corresponding upper annular rib ring 32 of the motor upper chassis 30, and several fastening bores 63 evenly disposed around a circumference of the pump head body 60.
  • the diaphragm membrane 70 which is extrusion-molded from a semi-rigid elastic material and placed on the pump head body 60, includes a pair of parallel outer raised rim 71 and inner raised rim 72 as well as three evenly spaced radial raised partition ribs 73 such that each end of respective radial raised partition ribs 73 connect with the sealing raised rim 71.
  • the diaphragm membrane 70 also includes three equivalent piston acting zones 74 formed and partitioned by the radial raised partition ribs 73, wherein each piston acting zone 74 has an acting zone hole 75 created therein in correspondence with respective screw-threaded bores 54 of the eccentric roundel mount 50, and an annular positioning protrusion 76 for each acting zone hole 75 is formed at the bottom side of the diaphragm membrane 70 (as shown in FIGS. 7 and 8);
  • the pumping pistons 80 are respectively disposed in each of the corresponding piston acting zones 74 of the diaphragm membrane 70.
  • Each pumping piston 80 has a tiered hole 81 extending therethrough.
  • Said piston valvular assembly 90 which suitably covers on the diaphragm membrane 70, includes a downwardly extending raised rim 91 for insertion between the outer raised rim 71 and inner raised rim 72 in the diaphragm membrane 70, a central round outlet mount 92 having a central positioning bore 93 with three equivalent sectors, each of which contains multiple evenly circumferentially-located outlet ports 95, a T-shaped plastic anti-backflow valve 94 with a central positioning shank, and three circumferentially-adjacent inlet mounts 96, each of which includes multiple evenly circumferentially-located inlet ports 97 and an inverted central piston disk 98 respectively so that each piston disk 98 serves as a valve for each corresponding group of multiple inlet ports 97, wherein the central positioning shank of the plastic anti-backflow valve 94 mates with the central positioning bore 93 of the central outlet mount 92 such that multiple outlet ports 95 in the central round outlet mount 92 are in communication with the three inlet mounts 96, and
  • the pump head cover 20 which covers pump head body 60 to encompass the piston valvular assembly 90, pumping piston 80 and diaphragm membrane 70 therein, includes a water inlet orifice 21, a water outlet orifice 22, and several fastening bores 23.
  • a tiered rim 24 and an annular rib ring 25 are disposed in the bottom inside of the pump head cover 20 such that the outer rim for the assembly of diaphragm membrane 70 and piston valvular assembly 90 can be hermetically attached to the tiered rim 24 (as shown in the enlarged view of FIG. 9).
  • a high-pressure water chamber 27 is configured between the cavity formed by the inside wall of the annular rib ring 25 and the central outlet mount 92 of the piston valvular assembly 90 by means of pressing the bottom of the annular rib ring 25 on the rim of the central outlet mount 92 (as shown in FIG. 9).
  • FIGS. 10 and 11 are illustrative figures showing the practical operation mode of the conventional compressing diaphragm pump of FIGS 1-9.
  • the wobble plate 40 is driven to rotate by the motor output shaft 11 so that three eccentric roundels 52 on the eccentric roundel mount 50 sequentially and constantly move in an up-and-down reciprocal stroke.
  • the three pumping pistons 80 and three piston acting zones 74 in the diaphragm membrane 70 are in the meantime sequentially driven by the up-and-down reciprocal stroke of the three eccentric roundels 52 to move in an up-and-down displacement.
  • a cushion base 100 with a pair of wing plates 101 is always provided as a supplemental support.
  • Each wing plate 101 is further sleeved by a rubber shock absorber 102 for vibration suppressing enhancement.
  • the cushion base 100 is firmly screwed onto the housing C of the reverse osmosis purification unit by means of suitable fastening screws 103 and corresponding nuts 104.
  • the practical vibration suppressing efficiency of using the foregoing cushion base 100 with wing plates 101 and rubber shock absorber 102 only addresses the primary direct vibration, while reducing overall vibration only to a limited degree because the primary direct vibration causes a secondary vibration due to resonant shaking of the housing C to occur. This resonant shaking causes the overall vibration noise of the housing C of the reverse osmosis purification unit to become stronger.
  • a further drawback occurs in that the water pipe P connected on the water outlet orifice 22 of the pump head cover 20 will synchronously shake in resonance with the primary vibration (indicated by the hypothetic line a shown in FIG. 14).
  • An objective is to provide a vibration-reducing structure for a compressing diaphragm pump having a pump head body and a diaphragm membrane, in which the pump head body includes three operating holes and at least one basic curved groove, slot, or perforated segment, or a curved protrusion or set of protrusions, circumferentially disposed around at least a portion of the upper side of each operating hole, and in which the diaphragm membrane includes three equivalent piston acting zones each of which has an acting zone hole, an annular positioning protrusion for each acting zone hole, and at least one basic curved protrusion or set of protrusions, or a groove, slot, or perforated segment, at least partially circumferentially disposed around each concentric annular positioning protrusion at a position corresponding to the position of each mating basic curved groove in the pump head body so that the three basic curved protrusions are completely inserted into the corresponding three basic curved grooves, slots, or perforated segments with a short length of moment arm
  • Another objective is to provide a vibration-reducing structure for a compressing diaphragm pump that features a pump head body with at least three basic curved grooves, slots or perforated segments, or curved protrusions, and a diaphragm membrane with three basic curved protrusions, or curved grooves, slots, or perforated segments, such that three basic curved protrusions are completely inserted into corresponding three basic curved grooves, slots, or perforated segments with a short length of moment arm in generating less adverse vibration-causing torque, the torque being obtained by multiplying the length of the moment arm with a constant acting force.
  • FIG. 1 is a perspective assembled view of a conventional compressing diaphragm pump.
  • FIG. 2 is a perspective exploded view of a conventional compressing diaphragm pump.
  • FIG. 3 is a perspective view of a pump head body for the conventional compressing diaphragm pump.
  • FIG. 4 is a cross sectional view taken against the section line 4-4 from previous
  • FIG. 5 is a top view of a pump head body for the conventional compressing diaphragm pump.
  • FIG. 6 is a perspective view of a diaphragm membrane for the conventional compressing diaphragm pump.
  • FIG. 7 is a cross sectional view taken against the section line 7-7 from previous FIG. 6.
  • FIG. 8 is a bottom view of a diaphragm membrane for the conventional compressing diaphragm pump.
  • FIG. 9 is a cross sectional view taken against the section line of 9-9 from previous
  • FIG. 1 FIG. 10 is the first operation illustrative view of the conventional compressing diaphragm pump.
  • FIG. 11 is the second operation illustrative view for conventional compressing diaphragm pump.
  • FIG. 12 is the third operation illustrative view of the conventional compressing diaphragm pump with a partially enlarged view of a major circled-portion.
  • FIG. 13 is a partially enlarged view taken from the circled-portion "a" in the enlarged view of previous FIG. 12.
  • FIG. 14 is a schematic side view showing a conventional compressing diaphragm pump installed on a mounting base in a reverse osmosis purification system.
  • FIG. 14(a) is a schematic end view of the conventional compressing diaphragm pump installed on a mounting base, as illustrated in FIG. 14.
  • FIG. 15 is a perspective exploded view of the first exemplary embodiment of the present invention.
  • FIG. 16 is a perspective view of a pump head body in the first exemplary embodiment of the present invention.
  • FIG. 17 is a cross sectional view taken against the section line 17-17 from previous FIG. 16.
  • FIG. 18 is a top view of the pump head body in the first exemplary embodiment of the present invention.
  • FIG. 19 is a perspective view of a diaphragm membrane in the first exemplary embodiment of the present invention.
  • FIG. 20 is a cross sectional view taken against the section line 20-20 from previous FIG. 19.
  • FIG. 21 is a bottom view of the diaphragm membrane in the first exemplary embodiment of the present invention.
  • FIG. 22 is an assembled cross sectional view of the first exemplary embodiment of the present invention.
  • FIG. 23 is an operation illustrative view for the first exemplary embodiment of the present invention with a partially enlarged view of the major circled-portion.
  • FIG. 24 is a partially enlarged view taken from the circled-portion "a" in the enlarged view of previous FIG. 23.
  • FIG. 25 is a perspective view of another pump head body in the first exemplary embodiment of the present invention.
  • FIG. 26 is a cross sectional view taken against the section line 26-26 from previous FIG. 25.
  • FIG. 27 is a cross sectional view of another pump head body and separated diaphragm membrane in the first exemplary embodiment of the present invention.
  • FIG. 28 is a cross sectional view a combination of the pump head body and diaphragm membrane of FIG. 27.
  • FIG. 29 is a perspective view of a pump head body in the second exemplary embodiment of the present invention.
  • FIG. 30 is a cross sectional view taken against the section line 30-30 from previous FIG. 29.
  • FIG. 31 is a top view of the pump head body in the second exemplary embodiment of the present invention.
  • FIG. 32 is a perspective view of a diaphragm membrane in the second exemplary embodiment of the present invention.
  • FIG. 33 is a cross sectional view taken against the section line 33-33 from previous FIG. 32.
  • FIG. 34 is a bottom view of a diaphragm membrane in the second exemplary embodiment of the present invention.
  • FIG. 35 is a cross sectional view of a combination of the pump head body and diaphragm membrane in the second exemplary embodiment of the present invention.
  • FIG. 36 is a perspective view for another pump head body in the second exemplary embodiment of the present invention.
  • FIG. 37 is a cross sectional view taken against the section line 37-37 from previous FIG. 36.
  • FIG. 38 is a cross sectional view of another pump head body and separated diaphragm membrane in the second exemplary embodiment of the present invention.
  • FIG. 39 is a cross sectional view of a combination of the pump head body and diaphragm membrane of Fig. 38.
  • FIG. 40 is a perspective view of a pump head body in the third exemplary embodiment of the present invention.
  • FIG. 41 is a cross sectional view taken against the section line 41-41 from previous FIG. 40.
  • FIG. 42 is a top view of a pump head body in the third exemplary embodiment of the present invention.
  • FIG. 43 is a perspective view of a diaphragm membrane in the third exemplary embodiment of the present invention.
  • FIG. 44 is a cross sectional view taken against the section line 44-44 from previous FIG. 43.
  • FIG. 45 is a bottom view of a diaphragm membrane in the third exemplary embodiment of the present invention.
  • FIG. 46 is a cross sectional view of a combination of the pump head body and diaphragm membrane in the third exemplary embodiment of the present invention.
  • FIG. 47 is a perspective view of another pump head body in the third exemplary embodiment of the present invention.
  • FIG. 48 is a cross sectional view taken against the section line 48-48 from previous FIG. 47.
  • FIG. 49 is a cross sectional view of another pump head body and separated diaphragm membrane in the third exemplary embodiment of the present invention.
  • FIG. 50 is a cross sectional view of a combination of the pump head body and diaphragm membrane of FIG. 49.
  • FIG. 51 is a perspective view of the pump head body in the fourth exemplary embodiment of the present invention.
  • FIG. 52 is a cross sectional view taken against the section line 52-52 from previous FIG. 51.
  • FIG. 53 is a top view of the pump head body in the fourth exemplary embodiment of the present invention.
  • FIG. 54 is a perspective view of a diaphragm membrane in the fourth exemplary embodiment of the present invention.
  • FIG. 55 is a cross sectional view taken against the section line 55-55 from previous FIG. 54.
  • FIG. 56 is a bottom view of the diaphragm membrane in the fourth exemplary embodiment of the present invention.
  • FIG. 57 is a cross sectional view of a combination of the pump head body and diaphragm membrane in the fourth exemplary embodiment of the present invention.
  • FIG. 58 is a perspective view for another pump head body in the fourth exemplary embodiment of the present invention.
  • FIG. 59 is a cross sectional view taken against the section line 59-59 from previous FIG. 58.
  • FIG. 60 is a cross sectional view of another pump head body and separated diaphragm membrane in the fourth exemplary embodiment of the present invention.
  • FIG. 61 is a cross sectional view of a combination of the pump head body and diaphragm membrane of FIG. 60.
  • FIG. 62 is a perspective view OF A pump head body in the fifth exemplary embodiment of the present invention.
  • FIG. 63 is a cross sectional view taken against the section line of 63-63 from previous FIG. 62.
  • FIG. 64 is a top view of the pump head body in the fifth exemplary embodiment of the present invention.
  • FIG. 65 is a perspective view of the diaphragm membrane in the fifth exemplary embodiment of the present invention.
  • FIG. 66 is a cross sectional view taken against the section line 66-66 from previous FIG. 65.
  • FIG. 67 is a bottom view for diaphragm membrane in the fifth exemplary embodiment of the present invention.
  • FIG. 68 is a cross sectional view of a combination of the pump head body and diaphragm membrane in the fifth exemplary embodiment of the present invention.
  • FIG. 69 is a perspective view of another pump head body in the fifth exemplary embodiment of the present invention.
  • FIG. 70 is a cross sectional view taken against the section line 70-70 from previous FIG. 69.
  • FIG. 71 is a cross sectional view of another pump head body and separated diaphragm membrane in the fifth exemplary embodiment of the present invention.
  • FIG. 72 is a cross sectional view of a combination of the pump head body and diaphragm membrane of FIG. 71.
  • FIG. 73 is a perspective view of a pump head body in the sixth exemplary embodiment of the present invention.
  • FIG. 74 is a cross sectional view taken against the section line 74-74 from previous FIG. 73.
  • FIG. 75 is a top view of the pump head body in the sixth exemplary embodiment of the present invention.
  • FIG. 76 is a perspective view of the diaphragm membrane in the sixth exemplary embodiment of the present invention.
  • FIG. 77 is a cross sectional view taken against the section line 77-77 from previous FIG. 76.
  • FIG. 78 is a bottom view of the diaphragm membrane in the sixth exemplary embodiment of the present invention.
  • FIG. 79 is a cross sectional view of a combination of the pump head body and diaphragm membrane in the sixth exemplary embodiment of the present invention.
  • FIG. 80 is a perspective view of another pump head body in the sixth exemplary embodiment of the present invention.
  • FIG. 81 is a cross sectional view taken against the section line 81-81 from previous FIG. 80.
  • FIG. 82 is a cross sectional view of another pump head body and separated diaphragm membrane in the sixth exemplary embodiment of the present invention.
  • FIG. 83 is a cross sectional view of a combination of the pump head body and diaphragm membrane of FIG. 82.
  • FIG. 84 is a top view of a pump head body in the seventh exemplary embodiment of the present invention.
  • FIG. 85 is a bottom view of a diaphragm membrane in the seventh exemplary embodiment of the present invention.
  • FIG. 86 is a cross sectional view of a combination of the pump head body and diaphragm membrane in the seventh exemplary embodiment of the present invention.
  • FIG. 87 is a perspective view of another pump head body in the seventh exemplary embodiment of the present invention.
  • FIG. 88 is a cross sectional view taken against the section line 88-88 from previous FIG. 87.
  • FIG. 89 is a cross sectional view of another pump head body and separated diaphragm membrane in the seventh exemplary embodiment of the present invention.
  • FIG. 90 is a cross sectional view of a combination of the pump head body and diaphragm membrane of FIG. 89.
  • FIGS. 15 through 22 are illustrative figures of a first exemplary embodiment of a vibration-reducing structure for a compressing diaphragm pump.
  • a basic curved groove 65 is circumferentially disposed around a portion of the upper side of each operating hole 61 in the pump head body 60 while a basic curved protrusion 77 is circumferentially disposed around a portion of each concentric annular positioning protrusion 76 at the bottom side of the diaphragm membrane 70 such that positions of the basic curved groove 65 and curved protrusion 77 correspond to each other, enabling the curved protrusion 77 to extend into and thereby mate with the basic curved groove 65.
  • Each of the basic curved protrusions 77 at the bottom side of the diaphragm membrane 70 is completely inserted into each of the corresponding basic curved grooves 65 at the upper side of the pump head body 60 upon assembly of the pump head body 60 and the diaphragm membrane 70 (as shown in FIG. 22 and associated enlarged view) with the result that a short length of moment arm L2 from the basic curved protrusions 77 to the peripheral of the annular positioning protrusion 76 in the diaphragm membrane 70 is obtained in the operation of the present invention (as shown in FIG. 24).
  • FIGS. 23, 24, 13, 14, and 14(a) which are illustrative figures for the practical operation result in the first exemplary embodiment of the vibration-reducing structure for compressing diaphragm pump of the present invention.
  • the resultant torque of the present invention is smaller than that of the conventional compressing diaphragm pump since the length of moment arm L2 is shorter than the length of moment arm LI.
  • the related vibration strength related is substantially reduced.
  • the result shows that the resulting vibration strength is only one tenth (10 %) of the vibration strength in the conventional compressing diaphragm pump.
  • the present invention is installed on the housing C of the reverse osmosis purification unit pillowed by a conventional cushion base 100 with a rubber shock absorber 102 (as shown in FIGS. 14 and 14(a)), the annoying noise from the resonant shaking incurred in the conventional compressing diaphragm pump can be completely eliminated.
  • each basic curved groove 65 of the pump head body 60 can be adapted into a basic curved slot or bore 64 that extends through the pump head body 60.
  • each basic curved groove 65 in the pump head body 60 (as shown in FIGS. 16 and 17) and each corresponding basic curved protrusion 77 in the diaphragm membrane 70 (as shown in FIGS. 20 and 21) can be exchanged to provide a basic curved protrusion 651 in the pump head body 60 (as shown in FIG. 27) and a corresponding basic curved groove 771 in the diaphragm membrane 70 (as shown in FIG. 28) without affecting their mating condition.
  • Each basic curved protrusion 651 at the upper side of the pump head body 60 is completely inserted into each corresponding basic curved groove 771 at the bottom side of the diaphragm membrane 70 upon assembly of the pump head body 60 and the diaphragm membrane 70 (as shown in FIG. 28), with the result that a short length of moment arm L3 from the basic curved indent 771 to the periphery of the annular positioning protrusion 76 in the diaphragm membrane 70 is also obtained in the operation of the present invention (as shown in FIG. 28 and the associated enlarged view), so that the newly devised contrivances of pump head body 60 and diaphragm membrane 70 have a significant effect in reducing vibration as well.
  • FIGS. 29 through 35 are illustrative figures for the second exemplary embodiment of the vibration-reducing structure for compressing diaphragm pump of the present invention.
  • a second outer curved groove 66 is further circumferentially disposed around each existing basic curved groove 65 in the pump head body 60 (as shown in FIGS. 29 through 31) while a second outer curved protrusion 78 is further circumferentially disposed around each existing basic curved protrusion 77 in the diaphragm membrane 70 at a position corresponding to the position of each mating second outer curved groove 66 in the pump head body 60 (as shown in FIGS. 33 and 34).
  • Each pair of basic curved protrusion 77 and second outer curved protrusion 78 at the bottom side of the diaphragm membrane 70 is completely inserted into each pair of corresponding basic curved groove 65 and second outer curved groove 66 at the upper side of the pump head body 60 upon assembly of the pump head body 60 and the diaphragm membrane 70 (as shown in FIG. 35 and the associated enlarged view), with the result that a short length of moment arm L2 from the basic curved protrusion 77 to the peripheral of the annular positioning protrusion 76 in the diaphragm membrane 70 is obtained in the operation of the present invention (as shown in FIG. 35 and associated enlarged view).
  • the newly devised contrivances of pump head body 60 and diaphragm membrane 70 not only have a significant effect in reducing vibration, but also provide enhanced steadiness in preventing relative displacement of the pump head body 60 and diaphragm member 70 and maintaining the length of moment arm L2 for resisting against the acting force F on the eccentric roundel 52.
  • each pair of basic curved groove 65 and second outer curved groove 66 of the pump head body 60 can be replaced by a pair of basic curved slots or bores 64 and second outer curved slots or bores 67.
  • each pair of basic curved groove 65 and second outer curved groove 66 in the pump head body 60 (as shown in FIGS. 29 to 31) and each corresponding pair of basic curved protrusion 77 and second outer curved protrusion 78 in the diaphragm membrane 70 (as shown in FIGS. 33 and 34) can be exchanged with a pair of basic curved protrusion 651 and second outer curved protrusion 661 in the pump head body 60 (as shown in FIG. 28) and a pair of corresponding basic curved grove 771 and second outer curved groove 781 in the diaphragm membrane 70 (as shown in FIG. 38) without affecting their mating condition.
  • Each pair of basic curved protrusion 651 and second outer curved protrusion 661 at the upper side of the pump head body 60 is completely inserted into each corresponding pair of basic curved groove 771 and second outer curved groove 781 at the bottom side of the diaphragm membrane 70 upon assembly of the pump head body 60 and the diaphragm membrane 70 (as shown in FIG. 39), with the result that a short length of moment arm L3 from the basic curved groove 771 to the periphery of the annular positioning protrusion 76 in the diaphragm membrane 70 is also obtained in the operation of the present invention (as shown in FIG. 39 and the associated enlarged view).
  • FIGS. 40 through 46 are illustrative figures for the third exemplary embodiment of the vibration-reducing structure for compressing diaphragm pump of the present invention.
  • a basic indented ring 601 is further circumferentially disposed around each existing operating hole 61 in the pump head body 60 (as shown in FIGS. 40 through 42) while a basic protruding ring 701 is further circumferentially disposed around each existing annular positioning protrusion 76 in the diaphragm membrane 70 at a position corresponding to a position of each mating basic indented ring 601 in the pump head body 60 (as shown in FIGS. 44 and 45).
  • Each basic protruding ring 701 at the bottom side of the diaphragm membrane 70 is completely inserted into each corresponding basic indented ring 601 in the upper side of the pump head body 60 upon assembly of the pump head body 60 and the diaphragm membrane 70 (as shown in FIG. 46) with the result that a short length of moment arm L2 from the basic protruding ring 701 to the periphery of the annular positioning protrusion 76 in the diaphragm membrane 70 is obtained in the operation of the present invention (as shown in FIG. 46).
  • the newly devised contrivances of pump head body 60 and diaphragm membrane 70 not only has a significant effect in reducing vibration, but also enhances steadiness by preventing relative displacement and maintaining the length of moment arm L2 for resisting against the acting force F on the eccentric roundel 52.
  • each basic indented ring 601 of the pump head body 60 can be adapted into a basic perforated hole 600.
  • each basic indented ring 601 in the pump head body 60 (as shown in FIGS. 40 to 42) and each corresponding basic protruding ring 701 in the diaphragm membrane 70 (as shown in FIGS. 44 and 45) can be exchanged with a basic protruding ring 610 in the pump head body 60 (as shown in FIG. 27) and a corresponding basic indented ring 710 in the diaphragm membrane 70 (as shown in FIG. 50) without affecting their mating condition.
  • Each basic protruding ring 610 at the upper side of the pump head body 60 is completely inserted into each corresponding basic indented ring 710 at the bottom side of the diaphragm membrane 70 upon assembly of the pump head body 60 and the diaphragm membrane 70 (as shown in FIG. 50) with the result that a short length of moment arm L3 from the basic indented ring 710 to the periphery of the annular positioning protrusion 76 in the diaphragm membrane 70 is also obtained in the operation of the present invention (as shown in FIG. 50) so that the newly devised contrivances of pump head body 60 and diaphragm membrane 70 have a significant effect in reducing vibration as well.
  • FIGS. 51 through 57 are illustrative figures for the fourth exemplary embodiment of the vibration-reducing structure for compressing diaphragm pump of the present invention.
  • a pair of curved indented segments 602 is further circumferentially disposed around each existing operating hole 61 in the pump head body 60 (as shown in FIGS. 51 through 53) while a pair of curved protruding segments 702 is further circumferentially disposed around each existing annular positioning protrusion 76 in the diaphragm membrane 70 at a position corresponding to a position of each mating curved indented segment 602 in the pump head body 60 (as shown in FIGS. 55 and 56).
  • Each pair of curved protruding segments 702 at the bottom side of the diaphragm membrane 70 is completely inserted into each corresponding pair of curved indented segments 602 at the upper side of the pump head body 60 upon assembly of the pump head body 60 and the diaphragm membrane 70 (as shown in FIG. 57) with the result that a short length of moment arm L2 from the curved protruding segment 702 to the periphery of the annular positioning protrusion 76 in the diaphragm membrane 70 is obtained in the operation of the present invention (as shown in FIG. 57).
  • each pair of curved indented segments 602 of the pump head body 60 can be replaced by a pair of curved perforated segments 611.
  • each pair of curved indented segments 602 in the pump head body 60 (as shown in FIGS. 51 to 53) and each corresponding pair of curved protruding segments 702 in the diaphragm membrane 70 (as shown in FIGS. 55 and 56) can be exchanged with a pair of curved protruding segments 620 in the pump head body 60 (as shown in FIG. 60) and a pair of corresponding curved indented segments 720 in the diaphragm membrane 70 (as shown in FIG. 61) without affecting their mating condition.
  • Each pair of curved protruding segments 620 at the upper side of the pump head body 60 is completely inserted into each pair of corresponding curved indented segments 720 at the bottom side of the diaphragm membrane 70 upon assembly of the pump head body 60 and the diaphragm membrane 70 (as shown in FIG. 61) with the result that a short length of moment arm L3 from the curved indented segment 720 to the periphery of the annular positioning protrusion 76 in the diaphragm membrane 70 is also obtained in the operation of the present invention (as shown in FIG. 61) so that the newly devised contrivances of pump head body 60 and diaphragm membrane 70 have a significant effect in reducing vibration as well.
  • FIGS. 62 through 68 are illustrative figures for the fifth exemplary embodiment of the vibration-reducing structure for compressing diaphragm pump of the present invention.
  • a group of round indents 603 are further circumferentially disposed around each existing operating hole 61 in the pump head body 60 (as shown in FIGS. 62 through 64) while a group of round protrusions 703 are further circumferentially disposed around each existing annular positioning protrusion 76 in the diaphragm membrane 70 at a position corresponding position corresponding to the position of each group of mating round indents 603 in the pump head body 60 (as shown in FIGS. 66 and 67).
  • Each group of round protrusions 703 at the bottom side of the diaphragm membrane 70 is completely inserted into each corresponding group of round indents 603 at the upper side of the pump head body 60 upon assembly of the pump head body 60 and the diaphragm membrane 70 (as shown in FIG. 68) with the result that a short length of moment arm L2 from the round protrusion 703 to the periphery of the annular positioning protrusion 76 in the diaphragm membrane 70 is obtained in the operation of the present invention (as also shown in FIG. 68).
  • each group of round indents 603 in the pump head body 60 can be replaced by a group of round perforated holes 612.
  • each group of round indents 603 in the pump head body 60 (as shown in FIGS. 62 to 64) and each corresponding group of round protrusions 703 in the diaphragm membrane 70 (as shown in FIGS. 66 and 67) can be exchanged with a group of round protrusions 630 in the pump head body 60 (as shown in FIG. 71) and a group of corresponding round indents 730 in the diaphragm membrane 70 (as shown in FIG. 71) without affecting their mating condition.
  • Each group of round protrusions 630 at the upper side of the pump head body 60 is completely inserted into each group of corresponding round indents 730 at the bottom side of the diaphragm membrane 70 upon assembly of the pump head body 60 and the diaphragm membrane 70 (as shown in FIG. 72) with the result that a short length of moment arm L3 from the round indents 730 to the periphery of the annular positioning protrusion 76 in the diaphragm membrane 70 is also obtained in the operation of the present invention (as shown in FIG. 72) so that the newly devised contrivances of pump head body 60 and diaphragm membrane 70 have significant effect in reducing vibration as well.
  • FIGS. 73 through 79 are illustrative figures for the sixth exemplary embodiment of the vibration-reducing structure for compressing diaphragm pump of the present invention.
  • a group of square indents 604 are further circumferentially disposed around each existing operating hole 61 in the pump head body 60 (as shown in FIGS. 73 through 75) while a group of square protrusions 704 are further circumferentially disposed around each existing annular positioning protrusion 76 in the diaphragm membrane 70 in a corresponding position with each mating group of square indents 604 in the pump head body 60 (as shown in FIGS. 77 and 78).
  • Each group of square protrusions 704 at the bottom side of the diaphragm membrane 70 is completely inserted into each corresponding group of square indents 604 at the upper side of the pump head body 60 upon assembly of the pump head body 60 and the diaphragm membrane 70 (as shown in FIG. 79 and enlarged view of association) with the result that a short length of moment arm L2 from the square protrusions 704 to the periphery of the annular positioning protrusion 76 in the diaphragm membrane 70 is obtained in the operation of the present invention (as shown in FIG. 79 and enlarged view of association).
  • each group of square indents 604 in the pump head body 60 can be replaced by a group of square perforated holes 613.
  • each group of square indents 604 in the pump head body 60 (as shown in FIGS. 73 to 75) and each corresponding group of square protrusions 704 in the diaphragm membrane 70 (as shown in FIGS. 77 and 78) can be exchanged with a group of square protrusions 640 in the pump head body 60 (as shown in FIG. 82) and a group of corresponding square indents 740 in the diaphragm membrane 70 (as shown in FIG. 82) without affecting their mating condition.
  • FIGS. 84 through 86 are illustrative figures for the seventh exemplary embodiment of the vibration-reducing structure for compressing diaphragm pump of the present invention.
  • a pair of concentric first inner indented ring 605 and second outer indented ring 606 are further circumferentially disposed around each existing operating hole 61 in the pump head body 60 (as shown in FIG. 84) while a pair of concentric first inner protruding ring 705 and second outer protruding ring 706 are further circumferentially disposed around each existing annular positioning protrusion 76 in the diaphragm membrane 70 at a position corresponding to a position of each mating pair of first inner indented ring 605 and second outer indented ring 606 in the pump head body 60 (as shown in FIG. 85).
  • Each pair of first inner protruding ring 705 and second outer protruding ring 706 at the bottom side of the diaphragm membrane 70 is completely inserted into each pair of corresponding first inner indented ring 605 and second outer indented ring 606 at the upper side of the pump head body 60 upon assembly of the pump head body 60 and the diaphragm membrane 70 (as shown in FIG. 86) with the result that a short length of moment arm L2 from the first inner protruding ring 705 to the peripheral of the annular positioning protrusion 76 in the diaphragm membrane 70 is obtained in the operation of the present invention (as shown in FIG. 86).
  • each pair of concentric first inner indented ring 605 and second outer indented ring 606 in the pump head body 60 can be replaced by a pair of concentric first inner perforated ring 614 and second outer perforated ring 615.
  • each pair of concentric first inner indented ring 605 and second outer indented ring 606 in the pump head body 60 (as shown in FIG. 84) and each corresponding pair of concentric first inner protruding ring 705 and second outer protruding ring 706 in the diaphragm membrane 70 (as shown in FIGS. 77 and 78) can be exchanged with a pair of concentric first inner protruding ring 650 and second outer protruding ring 660 in the pump head body 60 (as shown in FIG. 89) and a corresponding pair of concentric first inner indented ring 750 and second outer indented ring 760 in the diaphragm membrane 70 (as shown in FIG. 89) without affecting their mating condition.
  • Each pair of first inner protruding ring 650 and second outer protruding ring 660 at the upper side of the pump head body 60 completely is inserted into each corresponding pair of first inner indented ring 750 and second outer indented ring 760 at the bottom side of the diaphragm membrane 70 upon assembly of the pump head body 60 and the diaphragm membrane 70 (as shown in FIG. 90) with the result that a short length of moment arm L3 from the first inner indented ring 750 to the periphery of the annular positioning protrusion 76 in the diaphragm membrane 70 is also obtained in the operation of the present invention (as shown in FIG. 90).
  • the newly devised contrivances of pump head body 60 and diaphragm membrane 70 not only have significant effect in reducing vibration, but also enhance steadiness by preventing relative displacement and maintaining the length of moment arm L3.
  • the present invention substantially achieves the vibration reducing effect of the compressing diaphragm pump by means of simple newly devised pump head body 60 and diaphragm membrane 70 without increasing overall cost.
  • the present invention surely solves all issues of noise and resonant shaking to which the conventional compressing diaphragm pump is subject, and thus the invention has valuable industrial applicability.

Abstract

A vibration-reducing structure for compressing diaphragm pump features a pump head body and a diaphragm membrane. The pump head body includes three operating holes and a first curved vibration-reducing positioning structure circumferentially disposed around the upper side of each operating hole. The diaphragm membrane includes three equivalent piston acting zones and second curved vibration-reducing position structures situated at positions corresponding to the positions of the first curved vibration-reducing positioning structures. The first positioning structures in the pump head body, which may be grooves, slots, perforations, or protrusions, mate with the corresponding second positioning structures in the diaphragm membrane to reduce the moment arm generated during pumping by movement of the diaphragm membrane, which may be protrusions, grooves, slots, or perforations, thereby generating less torque to decrease the strength of vibrations and vibration noise.

Description

Title
Vibration-reducing structure for compressing diaphragm pump
This application claims the benefit of provisional U.S. Patent Application number 61/928,146, filed January 16, 2014, and incorporated herein by reference. Field Of The Present Invention
The present invention relates to a vibration-reducing structure for compressing a diaphragm pump used in an RO (reverse osmosis) purification system, and particularly to a structure that can reduce the vibration strength of the pump so that the annoying noise incurred by consonant vibration with the housing of the RO purification system is eliminated when the structure is installed on the housing of the RO purification system.
Background Of The Invention
Conventional compressing diaphragm pumps, which have been exclusively used with the RO (Reverse Osmosis) purifier or RO water purification system, are disclosed in U.S. Patent Nos. 4396357, 4610605, 5476367, 5571000, 5615597, 5626464, 5649812, 5706715, 5791882, 5816133, 6048183, 6089838, 6299414, 6604909, 6840745 and 6892624. The conventional compressing diaphragm pump, as shown in FIGS. 1 through 9, essentially comprises a brushed or brushless motor 10 with an output shaft 11, a motor upper chassis 30, a wobble plate 40 with an integral protruding cam-lobed shaft, an eccentric roundel mount 50, a pump head body 60, a diaphragm membrane 70, three pumping pistons 80, a piston valvular assembly 90 and a pump head cover 20.
The motor upper chassis 30 includes a bearing 31 through which an output shaft 11 of the motor 10 extends. The motor upper chassis 30 also includes an upper annular rib ring 32 with several fastening bores 33 evenly and circumferentially disposed in a rim of the upper annular rib ring 32.
The wobble plate 40 includes a shaft coupling hole 41 through which the corresponding motor output shaft 11 of the motor 10 extends.
The eccentric roundel mount 50 includes a central bearing 51 at the bottom thereof for receiving the corresponding integral protruding cm-lobed shaft of the wobble plate 40, three eccentric roundels 52 disposed evenly and circumferentially thereon. Each eccentric roundel 52 has a screw-threaded bore 54 and an annular positioning groove 55 formed on a horizontally flush top face 53 thereof.
The pump head body 60, covers the upper annular rib ring 32 of the motor upper chassis 30 to encompass the wobble plate 40 with integral protruding cam-lobed shaft and eccentric roundel mount 50 therein, and includes three operating holes 61 evenly and circumferentially disposed therein. Each operating hole 61 has an inner diameter that is slightly bigger than the outer diameter of the eccentric roundel 52 in the eccentric roundel mount 50 for receiving each corresponding eccentric roundel 52 respectively, a lower annular flange 62 formed thereunder for mating with corresponding upper annular rib ring 32 of the motor upper chassis 30, and several fastening bores 63 evenly disposed around a circumference of the pump head body 60. The diaphragm membrane 70, which is extrusion-molded from a semi-rigid elastic material and placed on the pump head body 60, includes a pair of parallel outer raised rim 71 and inner raised rim 72 as well as three evenly spaced radial raised partition ribs 73 such that each end of respective radial raised partition ribs 73 connect with the sealing raised rim 71. The diaphragm membrane 70 also includes three equivalent piston acting zones 74 formed and partitioned by the radial raised partition ribs 73, wherein each piston acting zone 74 has an acting zone hole 75 created therein in correspondence with respective screw-threaded bores 54 of the eccentric roundel mount 50, and an annular positioning protrusion 76 for each acting zone hole 75 is formed at the bottom side of the diaphragm membrane 70 (as shown in FIGS. 7 and 8);
The pumping pistons 80 are respectively disposed in each of the corresponding piston acting zones 74 of the diaphragm membrane 70. Each pumping piston 80 has a tiered hole 81 extending therethrough. After the annular positioning protrusions 76 in the diaphragm membrane 70 are inserted into corresponding annular positioning grooves 55 in the eccentric roundel 52 of the eccentric roundel mount 50, respective fastening screws 1 are inserted through the tiered hole 81 of each pumping piston 80 and the acting zone hole 74 of each corresponding piston acting zone 74 in the diaphragm membrane 70, so that the diaphragm membrane 70 and three pumping pistons 80 can be securely screwed into screw-threaded bores 54 of the corresponding three eccentric roundels 52 in the eccentric roundel mount 50 (as can be seen in the enlarged view shown in FIG. 9).
Said piston valvular assembly 90, which suitably covers on the diaphragm membrane 70, includes a downwardly extending raised rim 91 for insertion between the outer raised rim 71 and inner raised rim 72 in the diaphragm membrane 70, a central round outlet mount 92 having a central positioning bore 93 with three equivalent sectors, each of which contains multiple evenly circumferentially-located outlet ports 95, a T-shaped plastic anti-backflow valve 94 with a central positioning shank, and three circumferentially-adjacent inlet mounts 96, each of which includes multiple evenly circumferentially-located inlet ports 97 and an inverted central piston disk 98 respectively so that each piston disk 98 serves as a valve for each corresponding group of multiple inlet ports 97, wherein the central positioning shank of the plastic anti-backflow valve 94 mates with the central positioning bore 93 of the central outlet mount 92 such that multiple outlet ports 95 in the central round outlet mount 92 are in communication with the three inlet mounts 96, and a hermetically-sealed preliminary water-pressurizing chamber 26 is formed in each inlet mount 96 and corresponding piston acting zone 74 in the diaphragm membrane 70 upon insertion of the downwardly-extending raised rim 91 between the outer raised rim 71 and inner raised rim 72 in the diaphragm membrane 70 such that one end of each preliminary water-pressuring chamber 26 is in communication with each of the corresponding inlet ports 97 (as enlarged view shown in FIG. 9 of association); and
The pump head cover 20, which covers pump head body 60 to encompass the piston valvular assembly 90, pumping piston 80 and diaphragm membrane 70 therein, includes a water inlet orifice 21, a water outlet orifice 22, and several fastening bores 23. A tiered rim 24 and an annular rib ring 25 are disposed in the bottom inside of the pump head cover 20 such that the outer rim for the assembly of diaphragm membrane 70 and piston valvular assembly 90 can be hermetically attached to the tiered rim 24 (as shown in the enlarged view of FIG. 9). A high-pressure water chamber 27 is configured between the cavity formed by the inside wall of the annular rib ring 25 and the central outlet mount 92 of the piston valvular assembly 90 by means of pressing the bottom of the annular rib ring 25 on the rim of the central outlet mount 92 (as shown in FIG. 9).
By running each fastening bolt 2 through each corresponding fastening bores 23 of pump head cover 20 and each corresponding fastening bore 63 in the pump head body 60, and then putting a nut 3 onto each fastening bolt 2 to securely screw the pump head cover
20 and pump head body 60 to the motor upper chassis 30 via each corresponding fastening bore 33 in the motor upper chassis 30, the whole assembly of the conventional compressing diaphragm pump is finished (as shown in FIGS. 1 and 9). FIGS. 10 and 11 are illustrative figures showing the practical operation mode of the conventional compressing diaphragm pump of FIGS 1-9.
Firstly, when the motor 10 is powered on, the wobble plate 40 is driven to rotate by the motor output shaft 11 so that three eccentric roundels 52 on the eccentric roundel mount 50 sequentially and constantly move in an up-and-down reciprocal stroke. Secondly, the three pumping pistons 80 and three piston acting zones 74 in the diaphragm membrane 70 are in the meantime sequentially driven by the up-and-down reciprocal stroke of the three eccentric roundels 52 to move in an up-and-down displacement.
Thirdly, when the eccentric roundel 52 moves in a down stroke causing pumping piston 80 and piston acting zone 74 to be displaced downwardly, the piston disk 98 in the piston valvular assembly 90 is pushed into an open status so that tap water W can flow into the preliminary-pressurizing chamber 26 via water inlet orifice 21 in the pump head cover 20 and inlet ports 97 in the piston valvular assembly 90 (as indicated by the arrowhead extending from W in the enlarged view of FIG. 10). Fourthly, when the eccentric roundel 52 moves in an up stroke causing pumping piston 80 and piston acting zone 74 to be displaced downwardly, the piston disk 96 in the piston valvular assembly 90 is pulled into a closed status to compress the tap water W in the preliminary-pressurizing chamber 26 and increase the water pressure therein up to a range of 80psi-100psi. The resulting pressurized water Wp causes the plastic anti-backflow valve 94 in the piston valvular assembly 90 to be pushed to an open status.
Fifthly, when the plastic anti-backflow valve 94 in the piston valvular assembly 90 is pushed to an open status, the pressurized water Wp in the preliminary water-pressurizing chamber 26 is directed into high-pressure water chamber 27 via the group of outlet ports 95 for the corresponding sector in the central outlet mount 92, and then expelled out of the water outlet orifice 22 in the pump head cover 20 (as shown in FIG. 11 and indicated by arrowhead WP).
Finally, orderly iterative action for each group of outlet ports 95 for the three sectors in central outlet mount 92 causes the pressurized water Wp to be constantly discharged out of the conventional compressing diaphragm pump to be further RO-filtered by the RO-cartridge so that the final filtered pressurized water Wp can be used in an reverse osmosis water purification system.
Referring to FIGS. 12 through 14, a serious drawback caused by vibrations has long existed in the above-described conventional compressing diaphragm pump. As described previously, when the motor 10 is powered on, the wobble plate 40 is driven to rotate by the motor output shaft 11 so that three eccentric roundels 52 on the eccentric roundel mount 50 constantly and sequentially move in up-and-down reciprocal stroke, and in the meantime three pumping pistons 80 and three piston acting zones 74 in the diaphragm membrane 70 are sequentially driven by the up-and-down reciprocal stroke of the three eccentric roundels 52 to move in up-and-down displacement so that an equivalent force F constantly acts on the three piston acting zones 74 with a length of moment arm LI measured from the outer raised rim 71 to the periphery of the annular positioning protrusion 76 (as shown in FIG. 13). Thereby, a resultant torque is created by the acting force F, multiplying the length of moment arm LI as shown by the formula "torque = acting force F x length of moment arm LI ." The resultant torque causes the whole conventional compressing diaphragm pump to vibrate directly. With a high rotational speed of the motor output shaft 11 in the motor 10 up to a range of 700-1200 rpm, the vibrating strength caused by alternate acting of the three eccentric roundels 52 can reach a persistently unacceptable condition.
To address the direct vibration of the conventional compressing diaphragm pump, as shown in FIG. 14, a cushion base 100 with a pair of wing plates 101 is always provided as a supplemental support. Each wing plate 101 is further sleeved by a rubber shock absorber 102 for vibration suppressing enhancement. Upon installation of the conventional compressing diaphragm pump, the cushion base 100 is firmly screwed onto the housing C of the reverse osmosis purification unit by means of suitable fastening screws 103 and corresponding nuts 104. However, the practical vibration suppressing efficiency of using the foregoing cushion base 100 with wing plates 101 and rubber shock absorber 102 only addresses the primary direct vibration, while reducing overall vibration only to a limited degree because the primary direct vibration causes a secondary vibration due to resonant shaking of the housing C to occur. This resonant shaking causes the overall vibration noise of the housing C of the reverse osmosis purification unit to become stronger. In addition to the drawback of increasing overall vibration noise of the housing C, a further drawback occurs in that the water pipe P connected on the water outlet orifice 22 of the pump head cover 20 will synchronously shake in resonance with the primary vibration (indicated by the hypothetic line a shown in FIG. 14). This synchronous shaking of the water pipe P will result in still further drawbacks by causing other rest parts of the conventional compressing diaphragm pump to simultaneously shake. As a result, after a certain period, water leakage of the conventional compressing diaphragm pump will occur due to gradual loosening of the connection between water pipe P and water outlet orifice 22, as well as gradual loosening fit between other parts affected by the shaking.
The additional drawbacks of overall resonant shaking and water leakage in the conventional compressing diaphragm pump cannot be solved by the conventional way of addressing the foregoing primary vibration drawback. How to substantially reduce all the drawbacks associated with the operating vibration of the compressing diaphragm pump has become an urgent and critical issue.
Summary Of The Invention
An objective is to provide a vibration-reducing structure for a compressing diaphragm pump having a pump head body and a diaphragm membrane, in which the pump head body includes three operating holes and at least one basic curved groove, slot, or perforated segment, or a curved protrusion or set of protrusions, circumferentially disposed around at least a portion of the upper side of each operating hole, and in which the diaphragm membrane includes three equivalent piston acting zones each of which has an acting zone hole, an annular positioning protrusion for each acting zone hole, and at least one basic curved protrusion or set of protrusions, or a groove, slot, or perforated segment, at least partially circumferentially disposed around each concentric annular positioning protrusion at a position corresponding to the position of each mating basic curved groove in the pump head body so that the three basic curved protrusions are completely inserted into the corresponding three basic curved grooves, slots, or perforated segments with a short length of moment arm to generating less adverse vibration-causing torque, the torque being obtained by multiplying the length of the moment arm by a constant acting force. With less torque, the vibration strength of the compressing diaphragm pump is substantially reduced. Another objective is to provide a vibration-reducing structure for a compressing diaphragm pump that features a pump head body with at least three basic curved grooves, slots or perforated segments, or curved protrusions, and a diaphragm membrane with three basic curved protrusions, or curved grooves, slots, or perforated segments, such that three basic curved protrusions are completely inserted into corresponding three basic curved grooves, slots, or perforated segments with a short length of moment arm in generating less adverse vibration-causing torque, the torque being obtained by multiplying the length of the moment arm with a constant acting force. With less torque, the vibration strength of the compressing diaphragm pump is substantially reduced. Having the present invention installed on the housing of the reverse osmosis purification unit pillowed by a conventional cushion base with rubber shock absorber, the annoying noise caused by resonant shaking in the conventional compressing diaphragm pump can be completely eliminated.
Brief Description Of The Drawings
FIG. 1 is a perspective assembled view of a conventional compressing diaphragm pump.
FIG. 2 is a perspective exploded view of a conventional compressing diaphragm pump. FIG. 3 is a perspective view of a pump head body for the conventional compressing diaphragm pump.
FIG. 4 is a cross sectional view taken against the section line 4-4 from previous
FIG. 3. FIG. 5 is a top view of a pump head body for the conventional compressing diaphragm pump.
FIG. 6 is a perspective view of a diaphragm membrane for the conventional compressing diaphragm pump.
FIG. 7 is a cross sectional view taken against the section line 7-7 from previous FIG. 6.
FIG. 8 is a bottom view of a diaphragm membrane for the conventional compressing diaphragm pump.
FIG. 9 is a cross sectional view taken against the section line of 9-9 from previous
FIG. 1 FIG. 10 is the first operation illustrative view of the conventional compressing diaphragm pump.
FIG. 11 is the second operation illustrative view for conventional compressing diaphragm pump.
FIG. 12 is the third operation illustrative view of the conventional compressing diaphragm pump with a partially enlarged view of a major circled-portion.
FIG. 13 is a partially enlarged view taken from the circled-portion "a" in the enlarged view of previous FIG. 12.
FIG. 14 is a schematic side view showing a conventional compressing diaphragm pump installed on a mounting base in a reverse osmosis purification system.
FIG. 14(a) is a schematic end view of the conventional compressing diaphragm pump installed on a mounting base, as illustrated in FIG. 14.
FIG. 15 is a perspective exploded view of the first exemplary embodiment of the present invention.
FIG. 16 is a perspective view of a pump head body in the first exemplary embodiment of the present invention.
FIG. 17 is a cross sectional view taken against the section line 17-17 from previous FIG. 16.
FIG. 18 is a top view of the pump head body in the first exemplary embodiment of the present invention.
FIG. 19 is a perspective view of a diaphragm membrane in the first exemplary embodiment of the present invention.
FIG. 20 is a cross sectional view taken against the section line 20-20 from previous FIG. 19.
FIG. 21 is a bottom view of the diaphragm membrane in the first exemplary embodiment of the present invention.
FIG. 22 is an assembled cross sectional view of the first exemplary embodiment of the present invention. FIG. 23 is an operation illustrative view for the first exemplary embodiment of the present invention with a partially enlarged view of the major circled-portion.
FIG. 24 is a partially enlarged view taken from the circled-portion "a" in the enlarged view of previous FIG. 23.
FIG. 25 is a perspective view of another pump head body in the first exemplary embodiment of the present invention.
FIG. 26 is a cross sectional view taken against the section line 26-26 from previous FIG. 25.
FIG. 27 is a cross sectional view of another pump head body and separated diaphragm membrane in the first exemplary embodiment of the present invention.
FIG. 28 is a cross sectional view a combination of the pump head body and diaphragm membrane of FIG. 27.
FIG. 29 is a perspective view of a pump head body in the second exemplary embodiment of the present invention.
FIG. 30 is a cross sectional view taken against the section line 30-30 from previous FIG. 29.
FIG. 31 is a top view of the pump head body in the second exemplary embodiment of the present invention.
FIG. 32 is a perspective view of a diaphragm membrane in the second exemplary embodiment of the present invention.
FIG. 33 is a cross sectional view taken against the section line 33-33 from previous FIG. 32.
FIG. 34 is a bottom view of a diaphragm membrane in the second exemplary embodiment of the present invention.
FIG. 35 is a cross sectional view of a combination of the pump head body and diaphragm membrane in the second exemplary embodiment of the present invention.
FIG. 36 is a perspective view for another pump head body in the second exemplary embodiment of the present invention.
FIG. 37 is a cross sectional view taken against the section line 37-37 from previous FIG. 36.
FIG. 38 is a cross sectional view of another pump head body and separated diaphragm membrane in the second exemplary embodiment of the present invention.
FIG. 39 is a cross sectional view of a combination of the pump head body and diaphragm membrane of Fig. 38.
FIG. 40 is a perspective view of a pump head body in the third exemplary embodiment of the present invention.
FIG. 41 is a cross sectional view taken against the section line 41-41 from previous FIG. 40.
FIG. 42 is a top view of a pump head body in the third exemplary embodiment of the present invention.
FIG. 43 is a perspective view of a diaphragm membrane in the third exemplary embodiment of the present invention. FIG. 44 is a cross sectional view taken against the section line 44-44 from previous FIG. 43.
FIG. 45 is a bottom view of a diaphragm membrane in the third exemplary embodiment of the present invention.
FIG. 46 is a cross sectional view of a combination of the pump head body and diaphragm membrane in the third exemplary embodiment of the present invention.
FIG. 47 is a perspective view of another pump head body in the third exemplary embodiment of the present invention.
FIG. 48 is a cross sectional view taken against the section line 48-48 from previous FIG. 47.
FIG. 49 is a cross sectional view of another pump head body and separated diaphragm membrane in the third exemplary embodiment of the present invention.
FIG. 50 is a cross sectional view of a combination of the pump head body and diaphragm membrane of FIG. 49.
FIG. 51 is a perspective view of the pump head body in the fourth exemplary embodiment of the present invention.
FIG. 52 is a cross sectional view taken against the section line 52-52 from previous FIG. 51.
FIG. 53 is a top view of the pump head body in the fourth exemplary embodiment of the present invention.
FIG. 54 is a perspective view of a diaphragm membrane in the fourth exemplary embodiment of the present invention.
FIG. 55 is a cross sectional view taken against the section line 55-55 from previous FIG. 54.
FIG. 56 is a bottom view of the diaphragm membrane in the fourth exemplary embodiment of the present invention.
FIG. 57 is a cross sectional view of a combination of the pump head body and diaphragm membrane in the fourth exemplary embodiment of the present invention.
FIG. 58 is a perspective view for another pump head body in the fourth exemplary embodiment of the present invention.
FIG. 59 is a cross sectional view taken against the section line 59-59 from previous FIG. 58.
FIG. 60 is a cross sectional view of another pump head body and separated diaphragm membrane in the fourth exemplary embodiment of the present invention.
FIG. 61 is a cross sectional view of a combination of the pump head body and diaphragm membrane of FIG. 60.
FIG. 62 is a perspective view OF A pump head body in the fifth exemplary embodiment of the present invention.
FIG. 63 is a cross sectional view taken against the section line of 63-63 from previous FIG. 62.
FIG. 64 is a top view of the pump head body in the fifth exemplary embodiment of the present invention. FIG. 65 is a perspective view of the diaphragm membrane in the fifth exemplary embodiment of the present invention.
FIG. 66 is a cross sectional view taken against the section line 66-66 from previous FIG. 65.
FIG. 67 is a bottom view for diaphragm membrane in the fifth exemplary embodiment of the present invention.
FIG. 68 is a cross sectional view of a combination of the pump head body and diaphragm membrane in the fifth exemplary embodiment of the present invention.
FIG. 69 is a perspective view of another pump head body in the fifth exemplary embodiment of the present invention.
FIG. 70 is a cross sectional view taken against the section line 70-70 from previous FIG. 69.
FIG. 71 is a cross sectional view of another pump head body and separated diaphragm membrane in the fifth exemplary embodiment of the present invention.
FIG. 72 is a cross sectional view of a combination of the pump head body and diaphragm membrane of FIG. 71.
FIG. 73 is a perspective view of a pump head body in the sixth exemplary embodiment of the present invention.
FIG. 74 is a cross sectional view taken against the section line 74-74 from previous FIG. 73.
FIG. 75 is a top view of the pump head body in the sixth exemplary embodiment of the present invention.
FIG. 76 is a perspective view of the diaphragm membrane in the sixth exemplary embodiment of the present invention.
FIG. 77 is a cross sectional view taken against the section line 77-77 from previous FIG. 76.
FIG. 78 is a bottom view of the diaphragm membrane in the sixth exemplary embodiment of the present invention.
FIG. 79 is a cross sectional view of a combination of the pump head body and diaphragm membrane in the sixth exemplary embodiment of the present invention.
FIG. 80 is a perspective view of another pump head body in the sixth exemplary embodiment of the present invention.
FIG. 81 is a cross sectional view taken against the section line 81-81 from previous FIG. 80.
FIG. 82 is a cross sectional view of another pump head body and separated diaphragm membrane in the sixth exemplary embodiment of the present invention.
FIG. 83 is a cross sectional view of a combination of the pump head body and diaphragm membrane of FIG. 82.
FIG. 84 is a top view of a pump head body in the seventh exemplary embodiment of the present invention.
FIG. 85 is a bottom view of a diaphragm membrane in the seventh exemplary embodiment of the present invention. FIG. 86 is a cross sectional view of a combination of the pump head body and diaphragm membrane in the seventh exemplary embodiment of the present invention.
FIG. 87 is a perspective view of another pump head body in the seventh exemplary embodiment of the present invention. FIG. 88 is a cross sectional view taken against the section line 88-88 from previous FIG. 87.
FIG. 89 is a cross sectional view of another pump head body and separated diaphragm membrane in the seventh exemplary embodiment of the present invention.
FIG. 90 is a cross sectional view of a combination of the pump head body and diaphragm membrane of FIG. 89.
Detailed Description Of The Preferred Embodiments
FIGS. 15 through 22 are illustrative figures of a first exemplary embodiment of a vibration-reducing structure for a compressing diaphragm pump.
A basic curved groove 65 is circumferentially disposed around a portion of the upper side of each operating hole 61 in the pump head body 60 while a basic curved protrusion 77 is circumferentially disposed around a portion of each concentric annular positioning protrusion 76 at the bottom side of the diaphragm membrane 70 such that positions of the basic curved groove 65 and curved protrusion 77 correspond to each other, enabling the curved protrusion 77 to extend into and thereby mate with the basic curved groove 65.
Each of the basic curved protrusions 77 at the bottom side of the diaphragm membrane 70 is completely inserted into each of the corresponding basic curved grooves 65 at the upper side of the pump head body 60 upon assembly of the pump head body 60 and the diaphragm membrane 70 (as shown in FIG. 22 and associated enlarged view) with the result that a short length of moment arm L2 from the basic curved protrusions 77 to the peripheral of the annular positioning protrusion 76 in the diaphragm membrane 70 is obtained in the operation of the present invention (as shown in FIG. 24).
Referring to FIGS. 23, 24, 13, 14, and 14(a), which are illustrative figures for the practical operation result in the first exemplary embodiment of the vibration-reducing structure for compressing diaphragm pump of the present invention.
Comparing to the operation of conventional compressing diaphragm pump, the length of moment arm LI from the outer raised rim 71 to the periphery of the annular positioning protruding block 76 in the diaphragm membrane 70 in the conventional compressing diaphragm pump is shown in FIGS. 13 and 24), and the length of moment arm L2 from the basic curved protrusions 77 to the peripheral of the annular positioning protruding block 76 in the diaphragm membrane 70 obtained in the operation of the first exemplary embodiment is shown in FIG. 24.
The illustration of the foregoing comparative result shows that the length of moment arm L2 is shorter than the length of moment arm LI.
While the resultant torque is calculated by the same acting force F multiplying the length of moment arm, the resultant torque of the present invention is smaller than that of the conventional compressing diaphragm pump since the length of moment arm L2 is shorter than the length of moment arm LI.
With the smaller resultant torque of the present invention, the related vibration strength related is substantially reduced. Through practical pilot testing of a sample of the present invention, the result shows that the resulting vibration strength is only one tenth (10 %) of the vibration strength in the conventional compressing diaphragm pump.
If the present invention is installed on the housing C of the reverse osmosis purification unit pillowed by a conventional cushion base 100 with a rubber shock absorber 102 (as shown in FIGS. 14 and 14(a)), the annoying noise from the resonant shaking incurred in the conventional compressing diaphragm pump can be completely eliminated.
As shown in FIGS. 25 and 26, in the first exemplary embodiment, each basic curved groove 65 of the pump head body 60 can be adapted into a basic curved slot or bore 64 that extends through the pump head body 60.
As shown in FIGS. 27 and 28, in the first exemplary embodiment, each basic curved groove 65 in the pump head body 60 (as shown in FIGS. 16 and 17) and each corresponding basic curved protrusion 77 in the diaphragm membrane 70 (as shown in FIGS. 20 and 21) can be exchanged to provide a basic curved protrusion 651 in the pump head body 60 (as shown in FIG. 27) and a corresponding basic curved groove 771 in the diaphragm membrane 70 (as shown in FIG. 28) without affecting their mating condition.
Each basic curved protrusion 651 at the upper side of the pump head body 60 is completely inserted into each corresponding basic curved groove 771 at the bottom side of the diaphragm membrane 70 upon assembly of the pump head body 60 and the diaphragm membrane 70 (as shown in FIG. 28), with the result that a short length of moment arm L3 from the basic curved indent 771 to the periphery of the annular positioning protrusion 76 in the diaphragm membrane 70 is also obtained in the operation of the present invention (as shown in FIG. 28 and the associated enlarged view), so that the newly devised contrivances of pump head body 60 and diaphragm membrane 70 have a significant effect in reducing vibration as well.
Referring to FIGS. 29 through 35, which are illustrative figures for the second exemplary embodiment of the vibration-reducing structure for compressing diaphragm pump of the present invention.
A second outer curved groove 66 is further circumferentially disposed around each existing basic curved groove 65 in the pump head body 60 (as shown in FIGS. 29 through 31) while a second outer curved protrusion 78 is further circumferentially disposed around each existing basic curved protrusion 77 in the diaphragm membrane 70 at a position corresponding to the position of each mating second outer curved groove 66 in the pump head body 60 (as shown in FIGS. 33 and 34).
Each pair of basic curved protrusion 77 and second outer curved protrusion 78 at the bottom side of the diaphragm membrane 70 is completely inserted into each pair of corresponding basic curved groove 65 and second outer curved groove 66 at the upper side of the pump head body 60 upon assembly of the pump head body 60 and the diaphragm membrane 70 (as shown in FIG. 35 and the associated enlarged view), with the result that a short length of moment arm L2 from the basic curved protrusion 77 to the peripheral of the annular positioning protrusion 76 in the diaphragm membrane 70 is obtained in the operation of the present invention (as shown in FIG. 35 and associated enlarged view).
The newly devised contrivances of pump head body 60 and diaphragm membrane 70 not only have a significant effect in reducing vibration, but also provide enhanced steadiness in preventing relative displacement of the pump head body 60 and diaphragm member 70 and maintaining the length of moment arm L2 for resisting against the acting force F on the eccentric roundel 52.
As shown in FIGS. 36 and 37, in the second exemplary embodiment, each pair of basic curved groove 65 and second outer curved groove 66 of the pump head body 60 can be replaced by a pair of basic curved slots or bores 64 and second outer curved slots or bores 67.
As shown in FIGS. 38 and 39, in the second exemplary embodiment, each pair of basic curved groove 65 and second outer curved groove 66 in the pump head body 60 (as shown in FIGS. 29 to 31) and each corresponding pair of basic curved protrusion 77 and second outer curved protrusion 78 in the diaphragm membrane 70 (as shown in FIGS. 33 and 34) can be exchanged with a pair of basic curved protrusion 651 and second outer curved protrusion 661 in the pump head body 60 (as shown in FIG. 28) and a pair of corresponding basic curved grove 771 and second outer curved groove 781 in the diaphragm membrane 70 (as shown in FIG. 38) without affecting their mating condition. Each pair of basic curved protrusion 651 and second outer curved protrusion 661 at the upper side of the pump head body 60 is completely inserted into each corresponding pair of basic curved groove 771 and second outer curved groove 781 at the bottom side of the diaphragm membrane 70 upon assembly of the pump head body 60 and the diaphragm membrane 70 (as shown in FIG. 39), with the result that a short length of moment arm L3 from the basic curved groove 771 to the periphery of the annular positioning protrusion 76 in the diaphragm membrane 70 is also obtained in the operation of the present invention (as shown in FIG. 39 and the associated enlarged view).
The newly devised contrivances of pump head body 60 and diaphragm membrane 70 not only have a significant effect in reducing vibration, but also enhance steadiness by preventing relative displacement and maintaining the length of moment arm L2.
FIGS. 40 through 46 are illustrative figures for the third exemplary embodiment of the vibration-reducing structure for compressing diaphragm pump of the present invention. A basic indented ring 601 is further circumferentially disposed around each existing operating hole 61 in the pump head body 60 (as shown in FIGS. 40 through 42) while a basic protruding ring 701 is further circumferentially disposed around each existing annular positioning protrusion 76 in the diaphragm membrane 70 at a position corresponding to a position of each mating basic indented ring 601 in the pump head body 60 (as shown in FIGS. 44 and 45).
Each basic protruding ring 701 at the bottom side of the diaphragm membrane 70 is completely inserted into each corresponding basic indented ring 601 in the upper side of the pump head body 60 upon assembly of the pump head body 60 and the diaphragm membrane 70 (as shown in FIG. 46) with the result that a short length of moment arm L2 from the basic protruding ring 701 to the periphery of the annular positioning protrusion 76 in the diaphragm membrane 70 is obtained in the operation of the present invention (as shown in FIG. 46).
The newly devised contrivances of pump head body 60 and diaphragm membrane 70 not only has a significant effect in reducing vibration, but also enhances steadiness by preventing relative displacement and maintaining the length of moment arm L2 for resisting against the acting force F on the eccentric roundel 52.
As shown in FIGS. 47 and 48, in the third exemplary embodiment, each basic indented ring 601 of the pump head body 60 can be adapted into a basic perforated hole 600.
As shown in FIGS. 49 and 50, in the third exemplary embodiment, each basic indented ring 601 in the pump head body 60 (as shown in FIGS. 40 to 42) and each corresponding basic protruding ring 701 in the diaphragm membrane 70 (as shown in FIGS. 44 and 45) can be exchanged with a basic protruding ring 610 in the pump head body 60 (as shown in FIG. 27) and a corresponding basic indented ring 710 in the diaphragm membrane 70 (as shown in FIG. 50) without affecting their mating condition.
Each basic protruding ring 610 at the upper side of the pump head body 60 is completely inserted into each corresponding basic indented ring 710 at the bottom side of the diaphragm membrane 70 upon assembly of the pump head body 60 and the diaphragm membrane 70 (as shown in FIG. 50) with the result that a short length of moment arm L3 from the basic indented ring 710 to the periphery of the annular positioning protrusion 76 in the diaphragm membrane 70 is also obtained in the operation of the present invention (as shown in FIG. 50) so that the newly devised contrivances of pump head body 60 and diaphragm membrane 70 have a significant effect in reducing vibration as well.
FIGS. 51 through 57 are illustrative figures for the fourth exemplary embodiment of the vibration-reducing structure for compressing diaphragm pump of the present invention.
A pair of curved indented segments 602 is further circumferentially disposed around each existing operating hole 61 in the pump head body 60 (as shown in FIGS. 51 through 53) while a pair of curved protruding segments 702 is further circumferentially disposed around each existing annular positioning protrusion 76 in the diaphragm membrane 70 at a position corresponding to a position of each mating curved indented segment 602 in the pump head body 60 (as shown in FIGS. 55 and 56).
Each pair of curved protruding segments 702 at the bottom side of the diaphragm membrane 70 is completely inserted into each corresponding pair of curved indented segments 602 at the upper side of the pump head body 60 upon assembly of the pump head body 60 and the diaphragm membrane 70 (as shown in FIG. 57) with the result that a short length of moment arm L2 from the curved protruding segment 702 to the periphery of the annular positioning protrusion 76 in the diaphragm membrane 70 is obtained in the operation of the present invention (as shown in FIG. 57).
The newly devised contrivances of pump head body 60 and diaphragm membrane 70 not only have a significant effect in reducing vibration but also enhance steadiness by preventing relative displacement and maintaining the length of moment arm L2.
As shown in FIGS. 58 and 59, in the fourth exemplary embodiment, each pair of curved indented segments 602 of the pump head body 60 can be replaced by a pair of curved perforated segments 611. As shown in FIGS. 60 and 61, in the fourth exemplary embodiment, each pair of curved indented segments 602 in the pump head body 60 (as shown in FIGS. 51 to 53) and each corresponding pair of curved protruding segments 702 in the diaphragm membrane 70 (as shown in FIGS. 55 and 56) can be exchanged with a pair of curved protruding segments 620 in the pump head body 60 (as shown in FIG. 60) and a pair of corresponding curved indented segments 720 in the diaphragm membrane 70 (as shown in FIG. 61) without affecting their mating condition.
Each pair of curved protruding segments 620 at the upper side of the pump head body 60 is completely inserted into each pair of corresponding curved indented segments 720 at the bottom side of the diaphragm membrane 70 upon assembly of the pump head body 60 and the diaphragm membrane 70 (as shown in FIG. 61) with the result that a short length of moment arm L3 from the curved indented segment 720 to the periphery of the annular positioning protrusion 76 in the diaphragm membrane 70 is also obtained in the operation of the present invention (as shown in FIG. 61) so that the newly devised contrivances of pump head body 60 and diaphragm membrane 70 have a significant effect in reducing vibration as well.
FIGS. 62 through 68 are illustrative figures for the fifth exemplary embodiment of the vibration-reducing structure for compressing diaphragm pump of the present invention. A group of round indents 603 are further circumferentially disposed around each existing operating hole 61 in the pump head body 60 (as shown in FIGS. 62 through 64) while a group of round protrusions 703 are further circumferentially disposed around each existing annular positioning protrusion 76 in the diaphragm membrane 70 at a position corresponding position corresponding to the position of each group of mating round indents 603 in the pump head body 60 (as shown in FIGS. 66 and 67).
Each group of round protrusions 703 at the bottom side of the diaphragm membrane 70 is completely inserted into each corresponding group of round indents 603 at the upper side of the pump head body 60 upon assembly of the pump head body 60 and the diaphragm membrane 70 (as shown in FIG. 68) with the result that a short length of moment arm L2 from the round protrusion 703 to the periphery of the annular positioning protrusion 76 in the diaphragm membrane 70 is obtained in the operation of the present invention (as also shown in FIG. 68).
The newly devised contrivances of pump head body 60 and diaphragm membrane 70 not only have significant effect in reducing vibration as well but also enhance the steadiness by preventing relative displacement and maintaining the length of moment arm L2.
As shown in FIGS. 69and 70, in the fifth exemplary embodiment, each group of round indents 603 in the pump head body 60 can be replaced by a group of round perforated holes 612.
As shown in FIGS. 71 and 72, in the fifth exemplary embodiment, each group of round indents 603 in the pump head body 60 (as shown in FIGS. 62 to 64) and each corresponding group of round protrusions 703 in the diaphragm membrane 70 (as shown in FIGS. 66 and 67) can be exchanged with a group of round protrusions 630 in the pump head body 60 (as shown in FIG. 71) and a group of corresponding round indents 730 in the diaphragm membrane 70 (as shown in FIG. 71) without affecting their mating condition.
Each group of round protrusions 630 at the upper side of the pump head body 60 is completely inserted into each group of corresponding round indents 730 at the bottom side of the diaphragm membrane 70 upon assembly of the pump head body 60 and the diaphragm membrane 70 (as shown in FIG. 72) with the result that a short length of moment arm L3 from the round indents 730 to the periphery of the annular positioning protrusion 76 in the diaphragm membrane 70 is also obtained in the operation of the present invention (as shown in FIG. 72) so that the newly devised contrivances of pump head body 60 and diaphragm membrane 70 have significant effect in reducing vibration as well.
FIGS. 73 through 79 are illustrative figures for the sixth exemplary embodiment of the vibration-reducing structure for compressing diaphragm pump of the present invention.
A group of square indents 604 are further circumferentially disposed around each existing operating hole 61 in the pump head body 60 (as shown in FIGS. 73 through 75) while a group of square protrusions 704 are further circumferentially disposed around each existing annular positioning protrusion 76 in the diaphragm membrane 70 in a corresponding position with each mating group of square indents 604 in the pump head body 60 (as shown in FIGS. 77 and 78).
Each group of square protrusions 704 at the bottom side of the diaphragm membrane 70 is completely inserted into each corresponding group of square indents 604 at the upper side of the pump head body 60 upon assembly of the pump head body 60 and the diaphragm membrane 70 (as shown in FIG. 79 and enlarged view of association) with the result that a short length of moment arm L2 from the square protrusions 704 to the periphery of the annular positioning protrusion 76 in the diaphragm membrane 70 is obtained in the operation of the present invention (as shown in FIG. 79 and enlarged view of association).
The newly devised contrivances of pump head body 60 and diaphragm membrane 70 not only have a significant effect in reducing vibration but also enhance steadiness by preventing relative displacement and maintaining the length of moment arm L2.
As shown in FIGS. 80 and 81, in the sixth exemplary embodiment, each group of square indents 604 in the pump head body 60 can be replaced by a group of square perforated holes 613.
As shown in FIGS. 82 and 83 in the sixth exemplary embodiment, each group of square indents 604 in the pump head body 60 (as shown in FIGS. 73 to 75) and each corresponding group of square protrusions 704 in the diaphragm membrane 70 (as shown in FIGS. 77 and 78) can be exchanged with a group of square protrusions 640 in the pump head body 60 (as shown in FIG. 82) and a group of corresponding square indents 740 in the diaphragm membrane 70 (as shown in FIG. 82) without affecting their mating condition.
Each group of square protrusions 640 at the upper side of the pump head body 60 is completely inserted into each group of corresponding square indents 740 at the bottom side of the diaphragm membrane 70 upon assembly of the pump head body 60 and the diaphragm membrane 70 (as shown in FIG. 83) with the result that a short length of moment arm L3 from the square indents 740 to the periphery of the annular positioning protrusion 76 in the diaphragm membrane 70 is also obtained in the operation of the present invention (as shown in FIG. 83 and enlarged view of association) so that the newly devised contrivances of pump head body 60 and diaphragm membrane 70 have significant effect in reducing vibration as well. FIGS. 84 through 86 are illustrative figures for the seventh exemplary embodiment of the vibration-reducing structure for compressing diaphragm pump of the present invention.
A pair of concentric first inner indented ring 605 and second outer indented ring 606 are further circumferentially disposed around each existing operating hole 61 in the pump head body 60 (as shown in FIG. 84) while a pair of concentric first inner protruding ring 705 and second outer protruding ring 706 are further circumferentially disposed around each existing annular positioning protrusion 76 in the diaphragm membrane 70 at a position corresponding to a position of each mating pair of first inner indented ring 605 and second outer indented ring 606 in the pump head body 60 (as shown in FIG. 85).
Each pair of first inner protruding ring 705 and second outer protruding ring 706 at the bottom side of the diaphragm membrane 70 is completely inserted into each pair of corresponding first inner indented ring 605 and second outer indented ring 606 at the upper side of the pump head body 60 upon assembly of the pump head body 60 and the diaphragm membrane 70 (as shown in FIG. 86) with the result that a short length of moment arm L2 from the first inner protruding ring 705 to the peripheral of the annular positioning protrusion 76 in the diaphragm membrane 70 is obtained in the operation of the present invention (as shown in FIG. 86). The newly devised contrivances of pump head body 60 and diaphragm membrane
70 not only have significant effect in reducing vibration but also enhance steadiness by preventing relative displacement and maintaining the length of moment arm L2 for resisting against the acting force F on the eccentric roundel 52.
As shown in FIGS. 87 and 88, in the seventh exemplary embodiment, each pair of concentric first inner indented ring 605 and second outer indented ring 606 in the pump head body 60 can be replaced by a pair of concentric first inner perforated ring 614 and second outer perforated ring 615.
As shown in FIGS. 89 and 90, in the seventh exemplary embodiment, each pair of concentric first inner indented ring 605 and second outer indented ring 606 in the pump head body 60 (as shown in FIG. 84) and each corresponding pair of concentric first inner protruding ring 705 and second outer protruding ring 706 in the diaphragm membrane 70 (as shown in FIGS. 77 and 78) can be exchanged with a pair of concentric first inner protruding ring 650 and second outer protruding ring 660 in the pump head body 60 (as shown in FIG. 89) and a corresponding pair of concentric first inner indented ring 750 and second outer indented ring 760 in the diaphragm membrane 70 (as shown in FIG. 89) without affecting their mating condition.
Each pair of first inner protruding ring 650 and second outer protruding ring 660 at the upper side of the pump head body 60 completely is inserted into each corresponding pair of first inner indented ring 750 and second outer indented ring 760 at the bottom side of the diaphragm membrane 70 upon assembly of the pump head body 60 and the diaphragm membrane 70 (as shown in FIG. 90) with the result that a short length of moment arm L3 from the first inner indented ring 750 to the periphery of the annular positioning protrusion 76 in the diaphragm membrane 70 is also obtained in the operation of the present invention (as shown in FIG. 90).
The newly devised contrivances of pump head body 60 and diaphragm membrane 70 not only have significant effect in reducing vibration, but also enhance steadiness by preventing relative displacement and maintaining the length of moment arm L3. Based on the foregoing disclosure, the present invention substantially achieves the vibration reducing effect of the compressing diaphragm pump by means of simple newly devised pump head body 60 and diaphragm membrane 70 without increasing overall cost. The present invention surely solves all issues of noise and resonant shaking to which the conventional compressing diaphragm pump is subject, and thus the invention has valuable industrial applicability.

Claims

What Is Claimed Is:
1. A compressing diaphragm pump with a vibration-reducing structure, wherein said compressing diaphragm pump includes a motor, a pump head body fixed to a motor housing, a roundel mount situated on a lower side of the pump head body and a plurality of eccentric roundels that extend through operating holes in the pump head body, a diaphragm membrane fixed to the eccentric roundels through the operating holes and situated on an upper side of the pump head body, and a plurality of pumping pistons arranged to be moved in a pumping action upon movement of the diaphragm membrane, wherein:
the pump head body includes at least one first curved vibration-reducing positioning structure at each operating hole on the upper side of the pump head body, the diaphragm membrane includes at least one second curved positioning structure at a respective position on the diaphragm membrane that corresponds to a position of said at least one first vibration-reducing positioning structure on the pump head body, and
the at least one first positioning structure mates with the corresponding at least one second positioning structure to reduce a moment arm generated during pumping by movement of the diaphragm membrane, thereby generating less torque during said movement to decrease a strength of vibrations and vibration noise.
2. A compressing diaphragm pump with a vibration-reducing structure as claimed in claim 1, wherein said motor includes an output shaft, and said compressing diaphragm pump further includes a wobble plate with an integral protruding cam-lobed shaft and a piston valvular assembly, and wherein: said output shaft of said motor extends through a shaft coupling hole in said wobble plate to cause said wobble plate to rotate; said integral protruding cam-lobed shaft of said wobble plate extends through a central bearing of said eccentric roundel mount; said eccentric roundel mount has a plurality of said eccentric roundels evenly disposed around a circumference of the eccentric roundel mount, whereby rotation of said wobble plate causes sequential up-and-down movement of each of said eccentric roundels, each eccentric roundel having a top face and a fastening bore formed in the top face; said pump head body is secured to an upper chassis of the said motor to encompass the wobble plate and eccentric roundel mount therein, said pump head body including a plurality of said operating holes disposed at locations corresponding to locations of said plurality of eccentric roundels, each operating hole having an inner diameter slightly bigger than an outer diameter of a corresponding one of said eccentric roundels for respectively receiving the corresponding one of the eccentric roundels; said diaphragm membrane is made of a semi-rigid elastic material and placed on the pump head body, said diaphragm membrane including at least one raised rim as well as a plurality of evenly spaced radial raised partition ribs connected with the at least one raised brim to form three equivalent piston acting zones, wherein each piston acting zone has an acting zone hole formed therein at a position corresponding to a position of a fastening bore in a respective one of the eccentric roundels; each pumping piston has a tiered hole and a fastening member extends through the tiered hole of each pumping piston, through the acting zone hole of each corresponding piston acting zone in the diaphragm membrane, and into the respective fastening hole in a respective one of the eccentric roundels to secure the diaphragm membrane and each of the pumping pistons to the corresponding eccentric roundels in the eccentric roundel mount; said piston valvular assembly, which covers the diaphragm membrane and is peripherally secured to the diaphragm membrane by sealing engagement, includes a central outlet mount having a central positioning bore and a plurality of equivalent sectors, each of which contains multiple evenly circumferentially-located outlet ports, a T-shaped plastic anti-backflow valve with a central positioning shank, and a plurality of circumferential inlet mounts, each of each of the inlet mounts including multiple evenly circumferentially-located inlet ports and an inverted central piston disk mounted to the respective inlet mount so that each piston disk serves as a valve for each corresponding group of multiple inlet ports, wherein the central positioning shank of the plastic anti-backflow valve mates with the central positioning bore of the central outlet mount such that said multiple outlet ports in the central round outlet mount communicate with the plurality of inlet mounts, and a hermetic preliminary water-pressurizing chamber is formed in each inlet mount and corresponding piston acting zone in the diaphragm membrane upon the diaphragm membrane being peripherally secured to the piston valvular assembly such that one end of each of the preliminary water-pressuring chamber is communicable with each corresponding one of said inlet ports; said pump head cover, which covers on the pump head body to encompass the piston valvular assembly, pumping piston and diaphragm membrane therein, includes a water inlet orifice, and a water outlet orifice, said pump head cover being hermetically attached to the assembly of diaphragm membrane and piston valvular assembly, wherein a high-pressured water chamber is configured between a cavity formed by an inside wall of an annular rib ring and the central outlet mount of the piston valvular assembly; said at least one first positioning structure includes at least one of a basic curved groove, curved slot, curved set of openings, curved protrusion, and curved set of protrusions, and is further circumferentially-disposed around an upper side of each operating hole in the pump head body; and second at least one second vibration-reducing positioning structure includes one of a basic curved protrusion, curved set of protrusions, curved groove, curved slot, and curved set of openings, and is further circumferentially-disposed around each concentric annular positioning protrusion at the bottom side of the diaphragm membrane at a position corresponding to a position of each first positioning structure in the pump head body so that each second positioning structure at the bottom side of the diaphragm membrane is mated with each corresponding first positioning structure at the upper side of the pump head body upon assembly of the pump head body and the diaphragm membrane, whereby the moment arm generated by movement of the diaphragm membrane in response to up-and-down movement of the pistons extends between the first vibration-reducing structures and a periphery of the second vibration-reducing structures to thereby reduce vibrations resulting from said movement of the diaphragm.
3. The compressing diaphragm pump with a vibration-reducing structure as claimed in claim 2, wherein each said first vibration-reducing positioning structure is a curved groove in the pump head body and each said second vibration-reducing positioning structure is a curved protrusion extending from the diaphragm membrane.
4. The compressing diaphragm pump with a vibration-reducing structure as claimed in claim 2, wherein each said first vibration-reducing positioning structure is a curved slot in the pump head body and each said second vibration-reducing positioning structure is a curved protrusion extending from the diaphragm membrane.
5. The compressing diaphragm pump with a vibration-reducing structure as claimed in claim 2, wherein each said first vibration-reducing positioning structure is a curved set of openings in the pump head body and each said second vibration-reducing positioning structure is a curved set of protrusions extending from the diaphragm membrane.
6. The compressing diaphragm pump with a vibration-reducing structure as claimed in claim 2, wherein each said first vibration-reducing positioning structure is a curved protrusion extending from the pump head body and each said second vibration-reducing positioning structure is a curved groove in the diaphragm membrane.
7. The compressing diaphragm pump with a vibration-reducing structure as claimed in claim 2, wherein each said first vibration-reducing positioning structure is a curved protrusion extending from the pump head body and each said second vibration-reducing positioning structure is a curved slot in the diaphragm membrane.
8. The compressing diaphragm pump with a vibration-reducing structure as claimed in claim 2, wherein each said first vibration-reducing positioning structure is a curved set of protrusions extending from the pump head body and each said second vibration-reducing positioning structure is a curved set of openings in the diaphragm membrane.
9. The compressing diaphragm pump with a vibration-reducing structure as claimed in claim 8, wherein said protrusions are round protrusions.
10. The compressing diaphragm pump with a vibration-reducing structure as claimed in claim 8, wherein said protrusions are square protrusions.
11. The compressing diaphragm pump with a vibration-reducing structure as claimed in claim 2, wherein each said first vibration-reducing positioning structure is a pair of curved grooves or slots in the pump head body and each said second vibration-reducing positioning structure is a pair of curved protrusions extending from the diaphragm membrane.
12. The compressing diaphragm pump with a vibration-reducing structure as claimed in claim 2, wherein each said first vibration-reducing positioning structure is a pair of curved protrusions extending from the pump head body and each said second vibration-reducing positioning structure is a pair of curved grooves or slots in the diaphragm membrane.
13. The compressing diaphragm pump with a vibration-reducing structure as claimed in claim 12, wherein said protrusions are round protrusions.
14. The compressing diaphragm pump with a vibration-reducing structure as claimed in claim 12, wherein said protrusions are round protrusions.
15. The compressing diaphragm pump with a vibration-reducing structure as claimed in claim 12, wherein each said first vibration-reducing positioning structure is an indented ring in the pump head body and each said second vibration-reducing positioning structure is a ring structure projecting from the diaphragm membrane.
16. The compressing diaphragm pump with a vibration-reducing structure as claimed in claim 2, wherein each said first vibration-reducing positioning structure is a pair of indented rings in the pump head body and each said second vibration-reducing positioning structure is a pair of ring structures projecting from the diaphragm membrane.
17. The compressing diaphragm pump with a vibration-reducing structure as claimed in claim 2, wherein each said eccentric roundel further includes an annular groove extending around said fastening bore, and said pump head body further includes a plurality of lower annular flanges extending into respective said annular grooves when said pump head body is fastened to said eccentric roundel.
18. The compressing diaphragm pump with a vibration-reducing structure as claimed in claim 2, wherein said at least one raised rim of said diaphragm membrane is an inner raised rim, said diaphragm membrane includes a parallel outer raised rim, said piston valvular assembly includes a downwardly extending raised rim, and said to downwardly extending raised rim of said piston valvular assembly extends between said inner and outer raised rims of said diaphragm membrane to provide a peripheral seal when said diaphragm membrane is peripherally secured to said piston valvular assembly.
19. The compressing diaphragm pump with a vibration-reducing structure as claimed in claim 2, wherein a respective number of said eccentric roundels, said operating holes in said pump head body, said piston acting zones, and said pumping pistons is three.
20. The compressing diaphragm pump with a vibration-reducing structure as claimed in claim 2, wherein a number of said circumferential inlet mounts is three.
21. The compressing diaphragm pump with a vibration-reducing structure as claimed in claim 2, wherein said fastening bores in said eccentric roundels are threaded bores and said fastening members are screws.
22. The compressing diaphragm pump with a vibration-reducing structure as claimed in claim 2, wherein said cavity is formed by a bottom of an annular rib ring of the pump head cover being pressed onto a rim of the central outlet mount of the piston valvular assembly.
23. The compressing diaphragm pump with a vibration-reducing structure as claimed in claim 1, wherein each said first vibration-reducing positioning structure is a curved groove in the pump head body and each said second vibration-reducing positioning structure is a curved protrusion extending from the diaphragm membrane.
24. The compressing diaphragm pump with a vibration-reducing structure as claimed in claim 1, wherein each said first vibration-reducing positioning structure is a curved slot in the pump head body and each said second vibration-reducing positioning structure is a curved protrusion extending from the diaphragm membrane.
25. The compressing diaphragm pump with a vibration-reducing structure as claimed in claim 1, wherein each said first vibration-reducing positioning structure is a curved set of openings in the pump head body and each said second vibration-reducing positioning structure is a curved set of protrusions extending from the diaphragm membrane.
26. The compressing diaphragm pump with a vibration-reducing structure as claimed in claim 1, wherein each said first vibration-reducing positioning structure is a curved protrusion extending from the pump head body and each said second vibration-reducing positioning structure is a curved groove in the diaphragm membrane.
27. The compressing diaphragm pump with a vibration-reducing structure as claimed in claim 1, wherein each said first vibration-reducing positioning structure is a curved protrusion extending from the pump head body and each said second vibration-reducing positioning structure is a curved slot in the diaphragm membrane.
28. The compressing diaphragm pump with a vibration-reducing structure as claimed in claim 1, wherein each said first vibration-reducing positioning structure is a curved set of protrusions extending from the pump head body and each said second vibration-reducing positioning structure is a curved set of openings in the diaphragm membrane.
29. The compressing diaphragm pump with a vibration-reducing structure as claimed in claim 1, wherein each said first vibration-reducing positioning structure is a pair of curved grooves or slots in the pump head body and each said second vibration-reducing positioning structure is a pair of curved protrusions extending from the diaphragm membrane.
30. The compressing diaphragm pump with a vibration-reducing structure as claimed in claim 1, wherein each said first vibration-reducing positioning structure is a pair of curved protrusions extending from the pump head body and each said second vibration-reducing positioning structure is a pair of curved grooves or slots in the diaphragm membrane .
31. The compressing diaphragm pump with a vibration-reducing structure as claimed in claim 1, wherein each said first vibration-reducing positioning structure is an indented ring in the pump head body and each said second vibration-reducing positioning structure is a ring structure projecting from the diaphragm membrane.
32. The compressing diaphragm pump with a vibration-reducing structure as claimed in claim 1, wherein each said first vibration-reducing positioning structure is a pair of indented rings in the pump head body and each said second vibration-reducing positioning structure is a pair of ring structures projecting from the diaphragm membrane.
33. The compressing diaphragm pump with a vibration-reducing structure as claimed in claim 1 , wherein said motor is a brushed motor.
34. The compressing diaphragm pump with a vibration-reducing structure as claimed in claim 1 , wherein said motor is a brushless motor.
PCT/US2014/072192 2014-01-16 2014-12-23 Vibration-reducing structure for compressing diaphragm pump WO2015108685A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201461928146P 2014-01-16 2014-01-16
US61/928,146 2014-01-16

Publications (1)

Publication Number Publication Date
WO2015108685A1 true WO2015108685A1 (en) 2015-07-23

Family

ID=53520962

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2014/072192 WO2015108685A1 (en) 2014-01-16 2014-12-23 Vibration-reducing structure for compressing diaphragm pump

Country Status (2)

Country Link
US (1) US20150198155A1 (en)
WO (1) WO2015108685A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3146212A4 (en) * 2014-05-20 2018-04-25 Ying Lin Cai Vibration-reducing structure for four-compression-chamber diaphragm pump

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2527911B (en) * 2014-05-20 2017-06-14 Lin Cai Ying Compressing diaphragm pump with vibration reducing and positioning structures
WO2015179173A1 (en) * 2014-05-20 2015-11-26 Chen, Chung-Chin Compressing diaphragm pump with multiple effects
GB2527910B (en) * 2014-05-20 2018-05-23 Lin Cai Ying Eccentric roundel structure for compressing diaphragm pump with vibration reducing structures
US20150337818A1 (en) * 2014-05-20 2015-11-26 Ying Lin Cai Vibration-reducing structure for five-compressing-chamber diaphragm pump
CN113482892B (en) * 2020-09-27 2023-01-24 深圳华星恒泰泵阀有限公司 Diaphragm water pump with controllable displacement

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100025614A1 (en) * 2008-08-04 2010-02-04 Ying Lin Cai Piston valve for diaphragm pump
US20100129234A1 (en) * 2008-11-21 2010-05-27 Ying Lin Cai Shock damper for outlet pipe of diaphragm pump
US20120097274A1 (en) * 2010-10-26 2012-04-26 Ying Lin Cai Vibration reducing device for pump cover body of water shut-off diaphragm pump
US20130042753A1 (en) * 2010-02-27 2013-02-21 Knf Neuberger Gmbh Diaphragm pump
US20130330213A1 (en) * 2012-06-07 2013-12-12 Matt Robert Pilcher Diaphragm pump and valve assembly

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4610605A (en) * 1985-06-25 1986-09-09 Product Research And Development Triple discharge pump
US5203803A (en) * 1991-04-03 1993-04-20 Aquatec Water Systems, Inc. Reverse osmosis water purifier booster pump system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100025614A1 (en) * 2008-08-04 2010-02-04 Ying Lin Cai Piston valve for diaphragm pump
US20100129234A1 (en) * 2008-11-21 2010-05-27 Ying Lin Cai Shock damper for outlet pipe of diaphragm pump
US20130042753A1 (en) * 2010-02-27 2013-02-21 Knf Neuberger Gmbh Diaphragm pump
US20120097274A1 (en) * 2010-10-26 2012-04-26 Ying Lin Cai Vibration reducing device for pump cover body of water shut-off diaphragm pump
US20130330213A1 (en) * 2012-06-07 2013-12-12 Matt Robert Pilcher Diaphragm pump and valve assembly

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3146212A4 (en) * 2014-05-20 2018-04-25 Ying Lin Cai Vibration-reducing structure for four-compression-chamber diaphragm pump

Also Published As

Publication number Publication date
US20150198155A1 (en) 2015-07-16

Similar Documents

Publication Publication Date Title
US9945372B2 (en) Compressing diaphragm pump with multiple effects
WO2015108685A1 (en) Vibration-reducing structure for compressing diaphragm pump
GB2524863A (en) Vibration-reducing method for compressing diaphragm pump
US20150337820A1 (en) Five-compressing-chamber diaphragm pump with multiple effects
US10087922B2 (en) Four-compression-chamber diaphragm pump with diaphragm positioning structures to reduce vibration
US20150198154A1 (en) Vibration-reducing structure for compressing diaphragm pump
GB2525277A (en) Vibration-reducing structure for compressing diaphragm pump
US20150337832A1 (en) Vibration-reducing structure for four-compression-chamber diaphragm pump
US9989046B2 (en) Roundel structure for five-compressing-chamber diaphragm pump
US20150337818A1 (en) Vibration-reducing structure for five-compressing-chamber diaphragm pump
US10233916B2 (en) Eccentric roundel structure for four-booster chamber diaphragm pump
JP6098668B2 (en) 4 compression chamber diaphragm pump with multiple effects
US20150337816A1 (en) Eccentric roundel structure for compressing diaphragm pump with multiple effects
GB2527911A (en) Compressing diaphragm pump with multiple effects
JP6098667B2 (en) Eccentric circular structure of multi-effect pumped diaphragm pump
GB2527912A (en) Vibration-reducing structure for four-compression-chamber diaphragm pump
GB2527657A (en) Roundel structure for four-compression-chamber diaphragm pump with multiple effects
US20150337817A1 (en) Roundel structure for four-compression-chamber diaphragm pump with multiple effects

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14879114

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 17/11/2016)

122 Ep: pct application non-entry in european phase

Ref document number: 14879114

Country of ref document: EP

Kind code of ref document: A1