WO2015108215A1 - 무선 통신 시스템에서 최저 우선순위 정보를 기반으로 한 통신 방법 및 이를 지원하는 장치 - Google Patents

무선 통신 시스템에서 최저 우선순위 정보를 기반으로 한 통신 방법 및 이를 지원하는 장치 Download PDF

Info

Publication number
WO2015108215A1
WO2015108215A1 PCT/KR2014/000514 KR2014000514W WO2015108215A1 WO 2015108215 A1 WO2015108215 A1 WO 2015108215A1 KR 2014000514 W KR2014000514 W KR 2014000514W WO 2015108215 A1 WO2015108215 A1 WO 2015108215A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
terminal
information
lowest priority
mobility restriction
Prior art date
Application number
PCT/KR2014/000514
Other languages
English (en)
French (fr)
Inventor
정성훈
이영대
이승준
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to PCT/KR2014/000514 priority Critical patent/WO2015108215A1/ko
Priority to US15/112,005 priority patent/US20160330654A1/en
Publication of WO2015108215A1 publication Critical patent/WO2015108215A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/18Selecting a network or a communication service
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0011Control or signalling for completing the hand-off for data sessions of end-to-end connection
    • H04W36/0016Hand-off preparation specially adapted for end-to-end data sessions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/02Processing of mobility data, e.g. registration information at HLR [Home Location Register] or VLR [Visitor Location Register]; Transfer of mobility data, e.g. between HLR, VLR or external networks
    • H04W8/08Mobility data transfer
    • H04W8/16Mobility data transfer selectively restricting mobility data tracking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/32Reselection being triggered by specific parameters by location or mobility data, e.g. speed data
    • H04W36/322Reselection being triggered by specific parameters by location or mobility data, e.g. speed data by location data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/02Access restriction performed under specific conditions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/20Interfaces between hierarchically similar devices between access points

Definitions

  • the present invention relates to wireless communication, and more particularly, to a communication method based on mobility limitation information and a device supporting the same in a wireless communication system.
  • 3GPP LTE long term evolution
  • UMTS Universal Mobile Telecommunications System
  • 3GPP LTE uses orthogonal frequency division multiple access (OFDMA) in downlink and single carrier-frequency division multiple access (SC-FDMA) in uplink.
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier-frequency division multiple access
  • MIMO multiple input multiple output
  • LTE-A 3GPP LTE-Advanced
  • the quality of the service currently provided to the terminal may be degraded or a cell capable of providing a better service may be detected. Accordingly, the terminal may move to a new cell. Such an operation is called moving of the terminal.
  • the UE selects a target cell based on frequency priority.
  • the terminal may acquire information related to the priority through system information of the cell or through dedicated signaling.
  • the terminal attempts to connect to the target cell through the transmission of the connection setup message.
  • the terminal may receive a service from the target cell.
  • movement of a terminal with respect to a network based on a specific frequency and / or a specific radio access technology (RAT) may be limited.
  • the network may provide mobility information related to movement restriction to the terminal.
  • the network may lower the reselection priority for a specific one or more frequencies and / or a specific RAT, and provide the terminal with mobility restriction information related thereto.
  • the terminal may perform the movement based on the mobility restriction information.
  • the movement to the corresponding frequency and / or the RAT may be limited.
  • mobility restriction information set by a specific network node may not be known to other network nodes.
  • the terminal may attempt to move to another network node while operating based on the received mobility restriction information. Since the other network node is not aware of the mobility restriction information, the terminal may not support operation for proper movement of the terminal. . As a result, the terminal may not receive a normal service, or the efficiency may be reduced in terms of network operation due to unnecessary signaling between the terminal and / or the network.
  • An object of the present invention is to provide a communication method based on mobility limitation information and a device supporting the same in a wireless communication system.
  • a communication method performed by a first base station in a wireless communication system.
  • the method includes generating mobility restriction information related to mobility control of a terminal and transmitting the mobility restriction information to a second base station.
  • the mobility restriction information is transmitted through an X2 interface between the first base station and the second base station.
  • the mobility restriction information may include lowest priority information.
  • the lowest priority information may indicate that the lowest priority is applied to at least one frequency or a specific radio access technology (RAT).
  • RAT radio access technology
  • the lowest priority information may include a frequency list for the at least one frequency to which the lowest priority is applied.
  • the lowest priority information may include a frequency list for frequencies to which the lowest priority is not applied.
  • the mobility restriction information may further include lowest priority duration information.
  • the lowest priority duration information may indicate a duration in which the lowest priority according to the lowest priority information is applied.
  • the mobility restriction information may further include lowest priority duration information.
  • the lowest priority duration information may indicate a duration of network operation based on the lowest priority information.
  • the mobility restriction information may include lowest priority release information indicating that the lowest priority application is released for one or more frequencies or for a specific radio access technology (RAT).
  • RAT radio access technology
  • the mobility restriction information may be included in a handover preparation message transmitted during a handover preparation procedure for handover from the first base station of the terminal to the second base station.
  • the method may further include receiving a request for transmission of the mobility restriction information from the second base station.
  • the mobility restriction information may be sent in response to the request.
  • the first base station may be an evolved Node B (eNB) of an Evolved-UMTS Terrestrial Radio Access Network (E-UTRAN).
  • the second base station may be a Node B of the UTRAN.
  • the mobility restriction information may be an operating base of the second base station.
  • a wireless device operating in a wireless communication system includes a Radio Frequency (RF) unit for transmitting and receiving radio signals and a processor functionally coupled to the RF unit.
  • the processor is configured to generate mobility restriction information related to movement control of a terminal and to transmit the mobility restriction information to a network node.
  • the mobility restriction information is transmitted via an X2 interface between the wireless device and the network node.
  • the mobility restriction information may include lowest priority information.
  • the lowest priority information may indicate that the lowest priority is applied to at least one frequency or a specific radio access technology (RAT).
  • RAT radio access technology
  • the mobility restriction information is provided to the target network node so that the target network node can know about setting the lowest priority for the movement of the terminal.
  • the target network node may perform network operation such as RRC connection establishment, handover, and RRC configuration of the terminal based on the received mobility restriction information.
  • the terminal may move to a more suitable cell in terms of service provision and may receive more efficient service.
  • unnecessary signaling between the terminal and the network and / or between the network and the network can be prevented, thereby improving efficiency in terms of network operation.
  • FIG. 1 shows a wireless communication system to which the present invention is applied.
  • FIG. 2 is a block diagram illustrating a radio protocol architecture for a user plane.
  • FIG. 3 is a block diagram illustrating a radio protocol structure for a control plane.
  • FIG. 4 is a flowchart illustrating an operation of a terminal in an RRC idle state.
  • FIG. 5 is a flowchart illustrating a process of establishing an RRC connection.
  • FIG. 6 is a flowchart illustrating a RRC connection resetting process.
  • FIG. 7 is a flowchart illustrating a handover process.
  • FIG. 8 is a diagram illustrating a RRC connection reestablishment procedure.
  • FIG. 9 is a flowchart illustrating a conventional measurement method.
  • 11 shows an example of deleting a measurement identifier.
  • FIG. 13 is a diagram illustrating an example of a problem that may occur in terms of movement of a terminal.
  • FIG. 14 is a diagram illustrating a mobility restriction information based communication method according to an embodiment of the present invention.
  • 15 is a diagram illustrating an example of a mobility restriction information based communication method according to an embodiment of the present invention.
  • 16 is a diagram illustrating another example of a mobility restriction information based communication method according to an embodiment of the present invention.
  • FIG. 17 illustrates another example of a mobility restriction information based communication method according to an embodiment of the present invention.
  • FIG. 18 is a block diagram illustrating a wireless device in which an embodiment of the present invention is implemented.
  • E-UTRAN Evolved-UMTS Terrestrial Radio Access Network
  • LTE Long Term Evolution
  • the E-UTRAN includes a base station (BS) 20 that provides a control plane and a user plane to a user equipment (UE).
  • the terminal 10 may be fixed or mobile and may be called by other terms such as a mobile station (MS), a user terminal (UT), a subscriber station (SS), a mobile terminal (MT), a wireless device (Wireless Device), and the like.
  • the base station 20 refers to a fixed station communicating with the terminal 10, and may be referred to by other terms such as an evolved-NodeB (eNB), a base transceiver system (BTS), an access point, and the like.
  • eNB evolved-NodeB
  • BTS base transceiver system
  • access point and the like.
  • the base stations 20 may be connected to each other through an X2 interface.
  • the base station 20 is connected to a Serving Gateway (S-GW) through an MME (Mobility Management Entity) and an S1-U through an Evolved Packet Core (EPC) 30, more specifically, an S1-MME through an S1 interface.
  • S-GW Serving Gateway
  • MME Mobility Management Entity
  • EPC Evolved Packet Core
  • EPC 30 is composed of MME, S-GW and P-GW (Packet Data Network-Gateway).
  • the MME has information about the access information of the terminal or the capability of the terminal, and this information is mainly used for mobility management of the terminal.
  • S-GW is a gateway having an E-UTRAN as an endpoint
  • P-GW is a gateway having a PDN as an endpoint.
  • Layers of the Radio Interface Protocol between the terminal and the network are based on the lower three layers of the Open System Interconnection (OSI) reference model, which is widely known in communication systems.
  • L2 second layer
  • L3 third layer
  • the RRC Radio Resource Control
  • the RRC layer located in the third layer plays a role of controlling radio resources between the terminal and the network. To this end, the RRC layer exchanges an RRC message between the terminal and the base station.
  • FIG. 2 is a block diagram illustrating a radio protocol architecture for a user plane.
  • 3 is a block diagram illustrating a radio protocol structure for a control plane.
  • the user plane is a protocol stack for user data transmission
  • the control plane is a protocol stack for control signal transmission.
  • a physical layer (PHY) layer provides an information transfer service to a higher layer using a physical channel.
  • the physical layer is connected to a medium access control (MAC) layer, which is an upper layer, through a transport channel. Data is moved between the MAC layer and the physical layer through the transport channel. Transport channels are classified according to how and with what characteristics data is transmitted over the air interface.
  • MAC medium access control
  • the physical channel may be modulated by an orthogonal frequency division multiplexing (OFDM) scheme and utilizes time and frequency as radio resources.
  • OFDM orthogonal frequency division multiplexing
  • the functions of the MAC layer include mapping between logical channels and transport channels and multiplexing / demultiplexing into transport blocks provided as physical channels on transport channels of MAC service data units (SDUs) belonging to the logical channels.
  • the MAC layer provides a service to a Radio Link Control (RLC) layer through a logical channel.
  • RLC Radio Link Control
  • RLC layer Functions of the RLC layer include concatenation, segmentation, and reassembly of RLC SDUs.
  • QoS Quality of Service
  • the RLC layer has a transparent mode (TM), an unacknowledged mode (UM), and an acknowledged mode (Acknowledged Mode).
  • TM transparent mode
  • UM unacknowledged mode
  • Acknowledged Mode acknowledged mode
  • AM Three modes of operation (AM).
  • AM RLC provides error correction through an automatic repeat request (ARQ).
  • the RRC (Radio Resource Control) layer is defined only in the control plane.
  • the RRC layer is responsible for the control of logical channels, transport channels, and physical channels in connection with configuration, re-configuration, and release of radio bearers.
  • RB means a logical path provided by the first layer (PHY layer) and the second layer (MAC layer, RLC layer, PDCP layer) for data transmission between the terminal and the network.
  • PDCP Packet Data Convergence Protocol
  • Functions of the Packet Data Convergence Protocol (PDCP) layer in the user plane include delivery of user data, header compression, and ciphering.
  • the functionality of the Packet Data Convergence Protocol (PDCP) layer in the control plane includes the transfer of control plane data and encryption / integrity protection.
  • the establishment of the RB means a process of defining characteristics of a radio protocol layer and a channel to provide a specific service, and setting each specific parameter and operation method.
  • RB can be further divided into SRB (Signaling RB) and DRB (Data RB).
  • SRB is used as a path for transmitting RRC messages in the control plane
  • DRB is used as a path for transmitting user data in the user plane.
  • the UE If an RRC connection is established between the RRC layer of the UE and the RRC layer of the E-UTRAN, the UE is in an RRC connected state, otherwise it is in an RRC idle state.
  • the downlink transmission channel for transmitting data from the network to the UE includes a BCH (Broadcast Channel) for transmitting system information and a downlink shared channel (SCH) for transmitting user traffic or control messages.
  • Traffic or control messages of a downlink multicast or broadcast service may be transmitted through a downlink SCH or may be transmitted through a separate downlink multicast channel (MCH).
  • the uplink transport channel for transmitting data from the terminal to the network includes a random access channel (RACH) for transmitting an initial control message and an uplink shared channel (SCH) for transmitting user traffic or control messages.
  • RACH random access channel
  • SCH uplink shared channel
  • BCCH broadcast control channel
  • PCCH paging control channel
  • CCCH common control channel
  • MCCH multicast control channel
  • MTCH multicast traffic
  • the physical channel is composed of several OFDM symbols in the time domain and several sub-carriers in the frequency domain.
  • One sub-frame consists of a plurality of OFDM symbols in the time domain.
  • the RB is a resource allocation unit and includes a plurality of OFDM symbols and a plurality of subcarriers.
  • each subframe may use specific subcarriers of specific OFDM symbols (eg, the first OFDM symbol) of the corresponding subframe for the physical downlink control channel (PDCCH), that is, the L1 / L2 control channel.
  • Transmission Time Interval is a unit time of subframe transmission.
  • a physical channel is a physical downlink shared channel (PDSCH), a physical downlink shared channel (PUSCH), a physical downlink control channel (PDCCH), and a physical channel (PCFICH). It may be divided into a Control Format Indicator Channel (PHICH), a Physical Hybrid-ARQ Indicator Channel (PHICH), and a Physical Uplink Control Channel (PUCCH).
  • PDSCH physical downlink shared channel
  • PUSCH physical downlink shared channel
  • PDCCH physical downlink control channel
  • PCFICH physical channel
  • the PCFICH transmitted in the first OFDM symbol of a subframe carries a control format indicator (CFI) regarding the number of OFDM symbols (that is, the size of the control region) used for transmission of control channels in the subframe.
  • CFI control format indicator
  • the terminal first receives the CFI on the PCFICH, and then monitors the PDCCH.
  • the PDCCH is a downlink control channel and is also called a scheduling channel in that it carries scheduling information.
  • Control information transmitted through the PDCCH is called downlink control information (DCI).
  • DCI is a resource allocation of PDSCH (also called DL grant), a PUSCH resource allocation (also called UL grant), a set of transmit power control commands for individual UEs in any UE group. And / or activation of Voice over Internet Protocol (VoIP).
  • VoIP Voice over Internet Protocol
  • blind decoding is used to detect the PDCCH.
  • Blind decoding is a method of demasking a desired identifier in a cyclic redundancy check (CRC) of a received PDCCH (referred to as a candidate PDCCH) and checking a CRC error to determine whether the corresponding PDCCH is its control channel.
  • CRC cyclic redundancy check
  • the base station determines the PDCCH format according to the DCI to be sent to the terminal, attaches the CRC to the DCI, and masks a unique identifier (referred to as Radio Network Temporary Identifier (RNTI)) to the CRC according to the owner or purpose of the PDCCH. .
  • RNTI Radio Network Temporary Identifier
  • the RRC state refers to whether or not the RRC layer of the UE is in a logical connection with the RRC layer of the E-UTRAN. If connected, the RRC connection state is called. Since the UE in the RRC connected state has an RRC connection, the E-UTRAN can grasp the existence of the corresponding UE in a cell unit, and thus can effectively control the UE. On the other hand, the UE of the RRC idle state cannot be understood by the E-UTRAN, and is managed by the CN (core network) in units of a tracking area, which is a larger area unit than the cell. That is, the UE in the RRC idle state is identified only in a large area unit, and must move to the RRC connected state in order to receive a normal mobile communication service such as voice or data.
  • CN core network
  • the terminal When the user first powers on the terminal, the terminal first searches for an appropriate cell and then stays in an RRC idle state in the cell.
  • the UE in the RRC idle state needs to establish an RRC connection, it establishes an RRC connection with the E-UTRAN through an RRC connection procedure and transitions to the RRC connected state.
  • RRC connection procedure There are several cases in which the UE in RRC idle state needs to establish an RRC connection. For example, an uplink data transmission is necessary due to a user's call attempt, or a paging message is sent from E-UTRAN. If received, a response message may be sent.
  • the non-access stratum (NAS) layer located above the RRC layer performs functions such as session management and mobility management.
  • EMM-REGISTERED EPS Mobility Management-REGISTERED
  • EMM-DEREGISTERED EMM-DEREGISTERED
  • the initial terminal is in the EMM-DEREGISTERED state, and the terminal performs a process of registering with the corresponding network through an initial attach procedure to access the network. If the attach procedure is successfully performed, the UE and the MME are in the EMM-REGISTERED state.
  • an EPS Connection Management (ECM) -IDLE state In order to manage a signaling connection between the UE and the EPC, two states are defined, an EPS Connection Management (ECM) -IDLE state and an ECM-CONNECTED state, and these two states are applied to the UE and the MME.
  • ECM EPS Connection Management
  • ECM-IDLE state When the UE in the ECM-IDLE state establishes an RRC connection with the E-UTRAN, the UE is in the ECM-CONNECTED state.
  • the MME in the ECM-IDLE state becomes the ECM-CONNECTED state when it establishes an S1 connection with the E-UTRAN.
  • the E-UTRAN does not have context information of the terminal.
  • the UE in the ECM-IDLE state performs a terminal-based mobility related procedure such as cell selection or cell reselection without receiving a command from the network.
  • a terminal-based mobility related procedure such as cell selection or cell reselection without receiving a command from the network.
  • the terminal when the terminal is in the ECM-CONNECTED state, the mobility of the terminal is managed by the command of the network.
  • the terminal In the ECM-IDLE state, if the position of the terminal is different from the position known by the network, the terminal informs the network of the corresponding position of the terminal through a tracking area update procedure.
  • the system information includes essential information that the terminal needs to know in order to access the base station. Therefore, the terminal must receive all system information before accessing the base station, and must always have the latest system information. In addition, since the system information is information that all terminals in a cell should know, the base station periodically transmits the system information.
  • System information is divided into a master information block (MIB) and a plurality of system information blocks (SIB).
  • the MIB may include a limited number of the most essential and most frequently transmitted parameters that need to be obtained for other information from the cell.
  • the terminal first finds the MIB after downlink synchronization.
  • the MIB may include information such as downlink channel bandwidth, PHICH settings, SFNs that support synchronization and operate as timing criteria, and eNB transmit antenna settings.
  • the MIB may be broadcast transmitted on the BCH.
  • SIB1 SystemInformationBlockType1
  • SIB2 SystemInformationBlockType2
  • SIB1 and all system information messages are sent on the DL-SCH.
  • the E-UTRAN may be dedicated signaling while the SIB1 includes a parameter set equal to a previously set value, and in this case, the SIB1 may be transmitted by being included in an RRC connection reconfiguration message.
  • SIB1 includes information related to UE cell access and defines scheduling of other SIBs.
  • SIB1 is a PLMN identifier of a network, a tracking area code (TAC) and a cell ID, a cell barring status indicating whether a cell can be camped on, and a cell required for cell reselection. It may include the lowest reception level, and information related to the transmission time and period of other SIBs.
  • TAC tracking area code
  • SIB2 may include radio resource configuration information common to all terminals.
  • SIB2 includes uplink carrier frequency and uplink channel bandwidth, RACH configuration, paging configuration, uplink power control configuration, sounding reference signal configuration, PUCCH configuration supporting ACK / NACK transmission, and It may include information related to the PUSCH configuration.
  • the terminal may apply the acquisition and change detection procedure of the system information only to the PCell.
  • the E-UTRAN may provide all system information related to the RRC connection state operation through dedicated signaling.
  • the E-UTRAN may release the SCell under consideration and add it later, which may be performed with a single RRC connection reset message.
  • the E-UTRAN may set parameter values different from those broadcast in the SCell under consideration through dedicated signaling.
  • Essential system information can be defined as follows.
  • the UE When the UE is in the RRC idle state: The UE should ensure that it has valid versions of MIB and SIB1 as well as SIB2 to SIB8, which may be subject to the support of the considered RAT.
  • the terminal When the terminal is in the RRC connection state: The terminal should ensure that it has a valid version of MIB, SIB1 and SIB2.
  • the system information can be guaranteed valid up to 3 hours after acquisition.
  • services provided by a network to a terminal can be classified into three types as follows.
  • the terminal also recognizes the cell type differently according to which service can be provided. The following describes the service type first, followed by the cell type.
  • Limited service This service provides Emergency Call and Tsunami Warning System (ETWS) and can be provided in an acceptable cell.
  • ETWS Emergency Call and Tsunami Warning System
  • Normal service This service means a public use for general use, and can be provided in a suitable or normal cell.
  • This service means service for network operator. This cell can be used only by network operator and not by general users.
  • the cell types may be classified as follows.
  • Acceptable cell A cell in which the terminal can receive limited service. This cell is a cell that is not barred from the viewpoint of the terminal and satisfies the cell selection criteria of the terminal.
  • Suitable cell The cell that the terminal can receive a regular service. This cell satisfies the conditions of an acceptable cell and at the same time satisfies additional conditions. As an additional condition, this cell must belong to a Public Land Mobile Network (PLMN) to which the terminal can access, and must be a cell which is not prohibited from performing a tracking area update procedure of the terminal. If the cell is a CSG cell, the terminal should be a cell that can be connected to the cell as a CSG member.
  • PLMN Public Land Mobile Network
  • Barred cell A cell that broadcasts information that a cell is a prohibited cell through system information.
  • Reserved cell A cell that broadcasts information that a cell is a reserved cell through system information.
  • 4 is a flowchart illustrating an operation of a terminal in an RRC idle state. 4 illustrates a procedure in which a UE, which is initially powered on, registers with a network through a cell selection process and then reselects a cell if necessary.
  • the terminal selects a radio access technology (RAT) for communicating with a public land mobile network (PLMN), which is a network to be serviced (S410).
  • RAT radio access technology
  • PLMN public land mobile network
  • S410 a network to be serviced
  • Information about the PLMN and the RAT may be selected by a user of the terminal or may be stored in a universal subscriber identity module (USIM).
  • USIM universal subscriber identity module
  • the terminal selects a cell having the largest value among the measured base station and a cell whose signal strength or quality is greater than a specific value (Cell Selection) (S420). This is referred to as initial cell selection by the UE that is powered on to perform cell selection. The cell selection procedure will be described later.
  • the terminal receives system information periodically transmitted by the base station.
  • the above specific value refers to a value defined in the system in order to ensure the quality of the physical signal in data transmission / reception. Therefore, the value may vary depending on the RAT applied.
  • the terminal performs a network registration procedure (S430).
  • the terminal registers its information (eg IMSI) in order to receive a service (eg paging) from the network.
  • a service eg paging
  • the terminal selects a cell, the terminal does not register to the access network, and if the network information received from the system information (e.g., tracking area identity; do.
  • the terminal performs cell reselection based on the service environment provided by the cell or the environment of the terminal (S440).
  • the terminal selects one of the other cells that provides better signal characteristics than the cell of the base station to which the terminal is connected if the strength or quality of the signal measured from the base station being service is lower than the value measured from the base station of the adjacent cell. do.
  • This process is called Cell Re-Selection, which is distinguished from Initial Cell Selection of Step 2.
  • a time constraint is placed. The cell reselection procedure will be described later.
  • FIG. 5 is a flowchart illustrating a process of establishing an RRC connection.
  • the terminal sends an RRC connection request message to the network requesting an RRC connection (S510).
  • the network sends an RRC connection setup message in response to the RRC connection request (S520). After receiving the RRC connection configuration message, the terminal enters the RRC connection mode.
  • the terminal sends an RRC Connection Setup Complete message used to confirm successful completion of RRC connection establishment to the network (S530).
  • RRC connection reconfiguration is used to modify an RRC connection. It is used to establish / modify / release RBs, perform handovers, and set up / modify / release measurements.
  • the network sends an RRC connection reconfiguration message for modifying the RRC connection to the terminal (S610).
  • the UE sends an RRC connection reconfiguration complete message used to confirm successful completion of the RRC connection reconfiguration to the network (S620).
  • PLMN public land mobile network
  • PLMN is a network deployed and operated by mobile network operators. Each mobile network operator runs one or more PLMNs. Each PLMN may be identified by a mobile country code (MCC) and a mobile network code (MCC). The PLMN information of the cell is included in the system information and broadcasted.
  • MCC mobile country code
  • MCC mobile network code
  • PLMN selection In PLMN selection, cell selection and cell reselection, various types of PLMNs may be considered by the terminal.
  • HPLMN Home PLMN
  • MCC Mobility Management Entity
  • Equivalent HPLMN A PLMN that is equivalent to an HPLMN.
  • Registered PLMN A PLMN that has successfully completed location registration.
  • ELMN Equivalent PLMN
  • Each mobile service consumer subscribes to HPLMN.
  • HPLMN When a general service is provided to a terminal by HPLMN or EHPLMN, the terminal is not in a roaming state.
  • a service is provided to a terminal by a PLMN other than HPLMN / EHPLMN, the terminal is in a roaming state, and the PLMN is called a VPLMN (Visited PLMN).
  • PLMN public land mobile network
  • PLMN is a network deployed or operated by a mobile network operator. Each mobile network operator operates one or more PLMNs. Each PLMN may be identified by a mobile country code (MCC) and a mobile network code (MCC). The PLMN information of the cell is included in the system information and broadcasted.
  • MCC mobile country code
  • MCC mobile network code
  • the terminal attempts to register the selected PLMN. If the registration is successful, the selected PLMN becomes a registered PLMN (RPLMN).
  • the network may signal the PLMN list to the UE, which may consider PLMNs included in the PLMN list as PLMNs such as RPLMNs.
  • the terminal registered in the network should be reachable by the network at all times. If the terminal is in the ECM-CONNECTED state (same as RRC connected state), the network recognizes that the terminal is receiving the service. However, when the terminal is in the ECM-IDLE state (same as the RRC idle state), the situation of the terminal is not valid in the eNB but is stored in the MME. In this case, the location of the UE in the ECM-IDLE state is known only to the MME as the granularity of the list of tracking areas (TAs).
  • a single TA is identified by a tracking area identity (TAI) consisting of the PLMN identifier to which the TA belongs and a tracking area code (TAC) that uniquely represents the TA within the PLMN.
  • TAI tracking area identity
  • TAC tracking area code
  • the UE selects a cell having a signal quality and characteristics capable of receiving an appropriate service from among cells provided by the selected PLMN.
  • the terminal selects / reselects a cell of appropriate quality and performs procedures for receiving service.
  • the UE in the RRC idle state should always select a cell of appropriate quality and prepare to receive service through this cell. For example, a terminal that has just been powered on must select a cell of appropriate quality to register with the network. When the terminal in the RRC connected state enters the RRC idle state, the terminal should select a cell to stay in the RRC idle state. As such, the process of selecting a cell satisfying a certain condition in order for the terminal to stay in a service standby state such as an RRC idle state is called cell selection.
  • the cell selection is performed in a state in which the UE does not currently determine a cell to stay in the RRC idle state, it is most important to select the cell as soon as possible. Therefore, if the cell provides a radio signal quality of a predetermined criterion or more, even if this cell is not the cell providing the best radio signal quality to the terminal, it may be selected during the cell selection process of the terminal.
  • an initial cell selection process in which the terminal does not have prior information on the radio channel. Accordingly, the terminal searches all radio channels to find an appropriate cell. In each channel, the terminal finds the strongest cell. Thereafter, the terminal selects a corresponding cell if it finds a suitable cell that satisfies a cell selection criterion.
  • the terminal may select the cell by using the stored information or by using the information broadcast in the cell.
  • cell selection can be faster than the initial cell selection process.
  • the UE selects a corresponding cell if it finds a cell that satisfies a cell selection criterion. If a suitable cell that satisfies the cell selection criteria is not found through this process, the UE performs an initial cell selection process.
  • the cell selection criteria may be defined as in Equation 1 below.
  • Equation 1 each variable of Equation 1 may be defined as shown in Table 1 below.
  • Srxlev Cell selection RX level value (dB) Squal Cell selection quality value (dB) Q rxlevmeas Measured cell RX level value (RSRP) Q qualmeas Measured cell quality value (RSRQ) Q rxlevmin Minimum required RX level in the cell (dBm) Q qualmin Minimum required quality level in the cell (dB) Q rxlevminoffset Offset to the signaled Q rxlevmin taken into account in the Srxlev evaluation as a result of a periodic search for a higher priority PLMN while camped normally in a VPLMN [5] Q qualminoffset Offset to the signaled Q qualmin taken into account in the Squal evaluation as a result of a periodic search for a higher priority PLMN while camped normally in a VPLMN [5] Pcompensation max (P EMAX –P PowerClass , 0) (dB) P EMAX Maximum TX power level an UE may use when transmitting on the
  • the signaled values Q rxlevminoffset and Q qualminoffset may be applied only when cell selection is evaluated as a result of a periodic search for a higher priority PLMN while the UE is camping on a regular cell in the VPLMN.
  • the terminal may perform cell selection evaluation using stored parameter values from other cells of the higher priority PLMN.
  • the terminal After the terminal selects a cell through a cell selection process, the strength or quality of a signal between the terminal and the base station may change due to a change in mobility or a wireless environment of the terminal. Therefore, if the quality of the selected cell is degraded, the terminal may select another cell that provides better quality. When reselecting a cell in this way, a cell that generally provides better signal quality than the currently selected cell is selected. This process is called cell reselection.
  • the cell reselection process has a basic purpose in selecting a cell that generally provides the best quality to a terminal in view of the quality of a radio signal.
  • the network may determine the priority for each frequency and notify the terminal. Upon receiving this priority, the UE considers this priority prior to the radio signal quality criteria in the cell reselection process.
  • a method of selecting or reselecting a cell according to a signal characteristic of a wireless environment In selecting a cell for reselection when reselecting a cell, the following cell reselection is performed according to a cell's RAT and frequency characteristics. There may be a method of selection.
  • Intra-frequency cell reselection Reselection of a cell having a center-frequency equal to the RAT, such as a cell in which the UE is camping
  • Inter-frequency cell reselection Reselects a cell having a center frequency different from that of the same RAT as the cell camping
  • Inter-RAT cell reselection The UE reselects a cell that uses a different RAT from the camping RAT.
  • the UE measures the quality of a serving cell and a neighboring cell for cell reselection.
  • cell reselection is performed based on cell reselection criteria.
  • the cell reselection criteria have the following characteristics with respect to serving cell and neighbor cell measurements.
  • Intra-frequency cell reselection is basically based on ranking.
  • Ranking is an operation of defining index values for cell reselection evaluation and using the index values to order the cells in the order of the index values.
  • the cell with the best indicator is often called the highest ranked cell.
  • the cell index value is a value obtained by applying a frequency offset or a cell offset as necessary based on the value measured by the terminal for the corresponding cell.
  • Inter-frequency cell reselection is based on the frequency priority provided by the network.
  • the terminal attempts to camp on the frequency with the highest frequency priority.
  • the network may provide the priorities to be commonly applied to the terminals in the cell or provide the frequency priority through broadcast signaling, or may provide the priority for each frequency for each terminal through dedicated signaling.
  • the cell reselection priority provided through broadcast signaling may be referred to as common priority, and the cell reselection priority set by the network for each terminal may be referred to as a dedicated priority.
  • the terminal may also receive a validity time associated with the dedicated priority.
  • the terminal starts a validity timer set to the valid time received together.
  • the terminal applies the dedicated priority in the RRC idle mode while the validity timer is running.
  • the validity timer expires, the terminal discards the dedicated priority and applies the public priority again.
  • the network may provide the UE with a parameter (for example, frequency-specific offset) used for cell reselection for each frequency.
  • a parameter for example, frequency-specific offset
  • the network may provide the UE with a neighboring cell list (NCL) used for cell reselection.
  • NCL neighboring cell list
  • This NCL contains cell-specific parameters (eg cell-specific offsets) used for cell reselection.
  • the network may provide the UE with a cell reselection prohibition list (black list) used for cell reselection.
  • the UE does not perform cell reselection for a cell included in the prohibition list.
  • the ranking criterion used to prioritize the cells is defined as in Equation 2.
  • R s is the ranking indicator of the serving cell
  • R n is the ranking indicator of the neighbor cell
  • Q meas s is the quality value measured by the UE for the serving cell
  • Q meas n is the quality measured by the UE for the neighbor cell
  • Q hyst is a hysteresis value for ranking
  • Q offset is an offset between two cells.
  • the terminal may alternately select two cells.
  • Q hyst is a parameter for giving hysteresis in cell reselection to prevent the UE from reselecting two cells alternately.
  • the UE measures R s of the serving cell and R n of the neighboring cell according to the above equation, considers the cell having the highest ranking indicator value as the highest ranked cell, and reselects the cell.
  • the quality of the cell serves as the most important criterion in cell reselection. If the reselected cell is not a normal cell, the terminal excludes the frequency or the corresponding cell from the cell reselection target.
  • the UE When the UE performs cell reselection according to the cell reselection evaluation, if the cell reselection criterion is satisfied for a specific time, the UE may determine that the cell reselection criterion is satisfied and move the cell to the selected target cell.
  • a specific time can be given from the network as a Treselection parameter.
  • Treselection specifies a cell reselection timer value and can be defined for each frequency of the E-UTRAN and for a different RAT.
  • the cell reselection information may be included in system information broadcast from a network in the form of a cell reselection parameter, transmitted, and provided to the terminal.
  • Cell reselection parameters provided to the terminal may include the following types.
  • the cellReselectionPriority parameter specifies the priority for the frequency of the E-UTRAN, the frequency of the UTRAN, the group of GERAN frequencies, the band class of CDMA2000 HRPD, or the band class of CDMA2000 1xRTT.
  • Qoffset frequency specifies a frequency specific offset for the E-UTRAN frequency of the same priority.
  • Q hyst Specifies the hysteresis value for the rank index.
  • Q qualmin Specifies the minimum required quality level, specified in dB.
  • Q rxlevmin Specifies the minimum required Rx level, specified in dB.
  • Treselection EUTRA Specifies a cell reselection timer value for the E-UTRAN and may be set for each frequency of the E-UTRAN.
  • Treselection UTRAN Specifies the cell reselection timer value for the UTRAN.
  • Treselection GERA Specifies the cell reselection timer value for GERAN.
  • Treselection CDMA_HRPD specifies a cell reselection timer value for CDMA HRPD.
  • Treselection CDMA_1xRTT specifies a cell reselection timer value for CDMA 1xRTT.
  • Thresh x, HighP Specifies the Srxlev threshold value used by the UE in dB units when reselecting a cell to a RAT / frequency of higher priority than the serving frequency.
  • Specific thresholds can be set individually for each frequency of E-UTRAN and UTRAN, each group of GERAN frequencies, each band class of CDMA2000 HRPD, and each band class of CDMA2000 1 ⁇ RTT.
  • Thresh x, HighQ Specifies the Squal threshold value used by the terminal in dB units when reselecting a cell to a RAT / frequency having a higher priority than the serving frequency. Specific thresholds may be set separately for each frequency of the E-UTRAN and UTRAN FDD.
  • Thresh x, LowP Specifies the Srxlev threshold value used by the terminal in dB units when reselecting a cell to a RAT / frequency having a lower priority than the serving frequency.
  • Specific thresholds can be set individually for each frequency of E-UTRAN and UTRAN, each group of GERAN frequencies, each band class of CDMA2000 HRPD, and each band class of CDMA2000 1 ⁇ RTT.
  • Thresh x, LowQ specifies the Squal threshold used by the terminal in dB units when reselecting a cell to a lower priority RAT / frequency than the serving frequency. Specific thresholds may be set separately for each frequency of the E-UTRAN and UTRAN FDD.
  • Thresh Serving, LowP Specifies the Srxlev threshold used by the UE on the serving cell in dB units when reselecting a cell with a lower RAT / frequency.
  • Thresh Serving, LowQ Specifies the Squal threshold used by the UE on the serving cell in dB units when reselecting a cell with a lower RAT / frequency.
  • S IntraSerachP Specifies the Srxlev threshold for intra-frequency measurement in dB.
  • S IntraSerachQ Specifies the Squal threshold for intra-frequency measurement in dB.
  • S nonIntraSerachP Specifies the Srxlev threshold for the E-UTRAN inter-frequency and inter-RAT measurement in dB.
  • S nonIntraSerachQ Specifies the Squal threshold for the E-UTRAN inter-frequency and inter-RAT measurement in dB.
  • the cell reselection information may be included in an RRC connection release message, which is an RRC message transmitted for RRC connection release between the network and the terminal, and may be provided to the terminal.
  • the RRC disconnection message may include a subcarrier frequency list and cell reselection priority of E-UTRAN, a subcarrier frequency list and cell reselection priority of UTRA-FDD, a subcarrier frequency list and cell reselection priority of UTRA-TDD. It may include a subcarrier frequency list and cell reselection priority of GERAN, a band class list and cell reselection priority of CDMA2000 HRPD, a band class list and cell reselection priority of CDMA2000 1xRTT.
  • a plurality of operators may separately establish a RAN to provide a service
  • a plurality of providers may share a cell established by a specific operator to provide a service to a subscriber. This is called RAN sharing.
  • a cell shared by a plurality of providers may broadcast a PLMN list.
  • the PLMN list may be included in SIB1 of system information broadcast by the cell and transmitted.
  • the PLMN identifier listed first in the PLMN list included in SIB1 may be implemented to indicate a primary PLMN.
  • cell reselection information provided by a shared cell may be commonly applied to all PLMNs in the PLMN list.
  • the cell reselection information provided by the shared cell is set to mainly conform to the policy of the primary PLMN. Accordingly, terminals receiving a service according to the secondary PLMN perform cell reselection based on information rather than cell reselection information optimized for service provision.
  • FIG. 7 is a flowchart illustrating a handover process.
  • the UE transmits a measurement report to a source BS (S710).
  • the source base station determines the handover using the received measurement report.
  • the source base station determines the handover to the neighbor cell
  • the neighbor cell becomes a target cell
  • the base station belonging to the target cell becomes the target base station (Target BS).
  • the source base station transmits a handover preparation message to the target base station (S711).
  • the target base station performs admission control to increase the likelihood of success of the handover.
  • the target base station transmits a handover preparation acknowledgment (ACK) message to the source base station (S712).
  • the handover preparation ACK message may include a Cell-Radio Network Temporary Identifier (C-RNTI) and / or a dedicated random access preamble.
  • C-RNTI is an identifier for distinguishing a terminal in a cell.
  • the dedicated random access preamble is used when the UE performs a non-contention based random access procedure as a preamble that can be used exclusively for a certain period of time.
  • the random access process may be divided into a contention-based random access process in which the UE uses a random random preamble and a non-competition-based random access process in which the UE uses a dedicated random access preamble.
  • the non-competition based random access procedure can prevent the delay of handover due to competition with other terminals compared to the contention based random access procedure.
  • the source base station transmits a handover command message to the terminal (S713).
  • the handover command message may be transmitted in the form of a radio resource control (RRC) connection reconfiguration (RRC) connection reconfiguration message.
  • RRC radio resource control
  • RRC connection reconfiguration
  • the handover command message may include a C-RNTI and a dedicated random access preamble received from the target base station.
  • the terminal After receiving the handover command message from the source base station, the terminal synchronizes with the target base station (S714).
  • the terminal receives and synchronizes the PSS and the SSS of the target base station, and receives the PBCH to obtain system information.
  • the terminal transmits a random access preamble to the target base station, and initiates a random access procedure (S715).
  • the UE may use the dedicated random access preamble included in the handover command message. Or, if the dedicated random access preamble is not allocated, the terminal may use a random access preamble selected randomly from the random access preamble set.
  • the target base station transmits a random access response message to the terminal (S716).
  • the random access response message may include uplink resource allocation and / or timing advance.
  • the UE Upon receiving the random access response message, the UE adjusts uplink synchronization based on a time offset, and transmits a handover confirm message to a target base station using the uplink resource allocation (S717).
  • the handover confirmation message indicates that the handover process is completed and may be transmitted together with the uplink buffer status report.
  • the target base station transmits a path switch request message to a mobility management entity (MME) to inform the MME that the cell of the terminal has been changed (S718).
  • MME mobility management entity
  • the MME transmits a user plane update request message to a serving-gateway (S-GW) (S719).
  • S-GW serving-gateway
  • the S-GW switches the downlink data path to the target base station (S720).
  • the S-GW transmits a user plane update response message to the MME (S721).
  • the MME transmits a path switch request ACK message to the target base station (S722).
  • the target base station sends a resource release message to the source base station to inform the success of the handover (S723).
  • the source base station releases the resources associated with the terminal (S724).
  • RLM Radio Link Monitoring
  • the terminal monitors the downlink quality based on a cell-specific reference signal to detect the downlink radio link quality of the PCell.
  • the UE estimates the downlink radio link quality for PCell downlink radio link quality monitoring purposes and compares it with thresholds Qout and Qin.
  • the threshold Qout is defined as the level at which the downlink radio link cannot be stably received, which corresponds to a 10% block error rate of hypothetical PDCCH transmission in consideration of the PDFICH error.
  • the threshold Qin is defined as a downlink radio link quality level that can be received more stably than the level of Qout, which corresponds to a 2% block error rate of virtual PDCCH transmission in consideration of PCFICH errors.
  • RLF Radio Link Failure
  • the UE continuously measures to maintain the quality of the radio link with the serving cell receiving the service.
  • the terminal determines whether communication is impossible in the current situation due to deterioration of the quality of the radio link with the serving cell. If the quality of the serving cell is so low that communication is almost impossible, the terminal determines the current situation as a radio connection failure.
  • the UE abandons communication with the current serving cell, selects a new cell through a cell selection (or cell reselection) procedure, and reestablishes an RRC connection to the new cell (RRC connection re). -establishment).
  • FIG. 8 is a diagram illustrating a RRC connection reestablishment procedure.
  • the UE stops using all radio bearers that are set except for Signaling Radio Bearer # 0 (SRB 0) and initializes various sublayers of an access stratum (AS) (S810). In addition, each sublayer and physical layer are set to a default configuration. During this process, the UE maintains an RRC connection state.
  • SRB 0 Signaling Radio Bearer # 0
  • AS Access stratum
  • the UE performs a cell selection procedure for performing an RRC connection reconfiguration procedure (S820).
  • the cell selection procedure of the RRC connection reestablishment procedure may be performed in the same manner as the cell selection procedure performed by the UE in the RRC idle state, although the UE maintains the RRC connection state.
  • the UE After performing the cell selection procedure, the UE checks the system information of the corresponding cell to determine whether the corresponding cell is a suitable cell (S830). If it is determined that the selected cell is an appropriate E-UTRAN cell, the UE transmits an RRC connection reestablishment request message to the cell (S840).
  • the RRC connection re-establishment procedure is stopped, the terminal is in the RRC idle state Enter (S850).
  • the terminal may be implemented to complete the confirmation of the appropriateness of the cell within a limited time through the cell selection procedure and the reception of system information of the selected cell.
  • the UE may drive a timer as the RRC connection reestablishment procedure is initiated.
  • the timer may be stopped when it is determined that the terminal has selected a suitable cell. If the timer expires, the UE may consider that the RRC connection reestablishment procedure has failed and may enter the RRC idle state.
  • This timer is referred to hereinafter as a radio link failure timer.
  • a timer named T311 may be used as a radio link failure timer.
  • the terminal may obtain the setting value of this timer from the system information of the serving cell.
  • the cell When the RRC connection reestablishment request message is received from the terminal and the request is accepted, the cell transmits an RRC connection reestablishment message to the terminal.
  • the UE Upon receiving the RRC connection reestablishment message from the cell, the UE reconfigures the PDCP sublayer and the RLC sublayer for SRB1. In addition, it recalculates various key values related to security setting and reconfigures the PDCP sublayer responsible for security with newly calculated security key values. Through this, SRB 1 between the UE and the cell is opened and an RRC control message can be exchanged. The terminal completes the resumption of SRB1 and transmits an RRC connection reestablishment complete message indicating that the RRC connection reestablishment procedure is completed to the cell (S860).
  • the cell transmits an RRC connection reestablishment reject message to the terminal.
  • the cell and the terminal performs the RRC connection reestablishment procedure.
  • the UE recovers the state before performing the RRC connection reestablishment procedure and guarantees the continuity of the service to the maximum.
  • RRM radio resource management
  • the terminal may perform measurement for a specific purpose set by the network and report the measurement result to the network in order to provide information that may help the operator operate the network in addition to the purpose of mobility support. For example, the terminal receives broadcast information of a specific cell determined by the network.
  • the terminal may include a cell identity (also referred to as a global cell identifier) of the specific cell, location identification information (eg, tracking area code) to which the specific cell belongs, and / or other cell information (eg, For example, whether a member of a closed subscriber group (CSG) cell is a member) may be reported to the serving cell.
  • a cell identity also referred to as a global cell identifier
  • location identification information eg, tracking area code
  • other cell information eg, For example, whether a member of a closed subscriber group (CSG) cell is a member
  • the mobile station may report location information and measurement results of poor quality cells to the network.
  • the network can optimize the network based on the report of the measurement results of the terminals helping the network operation.
  • the terminal In a mobile communication system with a frequency reuse factor of 1, mobility is mostly between different cells in the same frequency band. Therefore, in order to ensure the mobility of the terminal well, the terminal should be able to measure the quality and cell information of neighboring cells having the same center frequency as the center frequency of the serving cell. As such, the measurement of the cell having the same center frequency as that of the serving cell is called intra-frequency measurement. The terminal performs the intra-frequency measurement and reports the measurement result to the network at an appropriate time, so that the purpose of the corresponding measurement result is achieved.
  • the mobile operator may operate the network using a plurality of frequency bands.
  • the terminal may measure quality and cell information of neighboring cells having a center frequency different from that of the serving cell. Should be As such, a measurement for a cell having a center frequency different from that of the serving cell is called inter-frequency measurement.
  • the terminal should be able to report the measurement results to the network at an appropriate time by performing inter-frequency measurements.
  • the terminal When the terminal supports the measurement for the network based on the other RAT, it may be measured for the cell of the network by the base station configuration. This measurement is called inter-radio access technology (inter-RAT) measurement.
  • the RAT may include a UMTS Terrestrial Radio Access Network (UTRAN) and a GSM EDGE Radio Access Network (GERAN) conforming to the 3GPP standard, and may also include a CDMA 2000 system conforming to the 3GPP2 standard.
  • UTRAN UMTS Terrestrial Radio Access Network
  • GERAN GSM EDGE Radio Access Network
  • FIG. 9 is a flowchart illustrating a conventional measurement method.
  • the terminal receives measurement configuration information from the base station (S910).
  • a message including measurement setting information is called a measurement setting message.
  • the terminal performs the measurement based on the measurement setting information (S920). If the measurement result satisfies the reporting condition in the measurement configuration information, and reports the measurement result to the base station (S930).
  • a message containing a measurement result is called a measurement report message.
  • the measurement setting information may include the following information.
  • the measurement object includes at least one of an intra-frequency measurement object that is an object for intra-cell measurement, an inter-frequency measurement object that is an object for inter-cell measurement, and an inter-RAT measurement object that is an object for inter-RAT measurement.
  • the intra-frequency measurement object indicates a neighboring cell having the same frequency band as the serving cell
  • the inter-frequency measurement object indicates a neighboring cell having a different frequency band from the serving cell
  • the inter-RAT measurement object is
  • the RAT of the serving cell may indicate a neighboring cell of another RAT.
  • the report setting information may consist of a list of report settings.
  • Each reporting setup may include a reporting criterion and a reporting format.
  • the reporting criterion is a criterion that triggers the terminal to transmit the measurement result.
  • the reporting criteria may be a single event for the measurement reporting period or the measurement report.
  • the report format is information on what type the terminal configures the measurement result.
  • Measurement identity information This is information about a measurement identifier that associates a measurement object with a report configuration, and allows the terminal to determine what type and when to report to which measurement object.
  • the measurement identifier information may be included in the measurement report message to indicate which measurement object the measurement result is and in which reporting condition the measurement report occurs.
  • Quantitative configuration information information on a parameter for setting filtering of a measurement unit, a reporting unit, and / or a measurement result value.
  • Measurement gap information Information about a measurement gap, which is a section in which a UE can only use measurement without considering data transmission with a serving cell because downlink transmission or uplink transmission is not scheduled. .
  • the terminal has a measurement target list, a measurement report configuration list, and a measurement identifier list to perform a measurement procedure.
  • the base station may set only one measurement target for one frequency band to the terminal.
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • RRC Radio Resource Control
  • Protocol specification Release 8
  • the terminal If the measurement result of the terminal satisfies the set event, the terminal transmits a measurement report message to the base station.
  • measurement identifier 1 1001 connects an intra-frequency measurement object and report setting 1.
  • the terminal performs intra frequency measurement, and report setting 1 is used to determine a criterion and report type of the measurement result report.
  • the measurement identifier 2 1002 is connected to the intra-frequency measurement object like the measurement identifier 1 1001, but is connected to the setting 2 by viewing the intra-frequency measurement object.
  • the terminal performs the measurement, and report setting 2 is used to determine the criteria and report type of the measurement result report.
  • the terminal transmits the measurement result even if the measurement result for the intra-frequency measurement object satisfies any one of the report setting 1 and the report setting 2.
  • Measurement identifier 3 1003 connects inter-frequency measurement object 1 and report configuration 3.
  • the terminal reports the measurement result when the measurement result for the inter-frequency measurement object 1 satisfies the reporting condition included in the report configuration 1.
  • Measurement identifier 4 1004 connects inter-frequency measurement object 2 and report configuration 2.
  • the terminal reports the measurement result if the measurement result for the inter-frequency measurement object 2 satisfies the reporting condition included in the report configuration 2.
  • the measurement target, report setting, and / or measurement identifier may be added, changed, and / or deleted. This may be indicated by the base station sending a new measurement configuration message or a measurement configuration change message to the terminal.
  • FIG. 11 shows an example of deleting a measurement identifier.
  • the measurement identifier 2 1002 is deleted, the measurement for the measurement object associated with the measurement identifier 2 1002 is stopped, and no measurement report is transmitted.
  • the measurement object or report setting associated with the deleted measurement identifier may not be changed.
  • the terminal 12 shows an example of deleting a measurement object. If the inter-frequency measurement object 1 is deleted, the terminal also deletes the associated measurement identifier 3 1003. The measurement for the inter-frequency measurement object 1 is stopped and no measurement report is transmitted. However, the report setting associated with the deleted inter-frequency measurement object 1 may not be changed or deleted.
  • the terminal If the reporting configuration is removed, the terminal also removes the associated measurement identifier. The terminal stops measuring the associated measurement object by the associated measurement identifier. However, the measurement object associated with the deleted report setting may not be changed or deleted.
  • the measurement report may include a measurement identifier, a measured quality of the serving cell, and a measurement result of a neighboring cell.
  • the measurement identifier identifies the measurement object for which the measurement report is triggered.
  • the measurement result of the neighbor cell may include the cell identifier of the neighbor cell and the measured quality.
  • the measured quality may include at least one of Reference Signal Received Power (RSRP) and Reference Signal Received Quality (RSRQ).
  • the network may provide the lowest priority for cell reselection for the frequency and / or all frequencies of the corresponding RAT. Can be set to apply ranking.
  • the application of the lowest priority set by the network also affects the RRC connection establishment procedure of the terminal.
  • the UE in the RRC idle state selects a target cell through a cell selection process and attempts to establish an RRC connection with the corresponding cell.
  • the target cell may reject the RRC connection request received from the terminal because the target cell cannot provide a normal service to the terminal due to congestion or the like, and thus the target cell may transmit an RRC connection rejection message to the terminal.
  • the target cell may include the lowest priority request information in the RRC connection rejection message instructing the UE to apply the lowest priority to the frequency and / or all frequencies of the RAT in performing cell reselection.
  • the lowest priority request information may include lowest priority type information indicating a type to which the lowest priority is applied and lowest priority timer information that is an application duration of the lowest priority.
  • the lowest priority type information may be configured to indicate to apply the lowest priority to the frequency of the cell that has transmitted the RRC connection rejection message or to apply the lowest priority to all frequencies of the RAT of the cell. have.
  • the UE When the UE receives the RRC connection rejection message including the lowest priority request information, the UE starts a timer set to the lowest priority duration and applies the lowest priority to the object indicated by the lowest priority type information. Reselection can be performed.
  • the terminal when the network is operating with the lowest priority applied, certain network nodes may be aware of the lowest priority, but other network nodes may not be aware of the lowest priority. .
  • the terminal When the terminal is moving in such a wireless communication environment, the terminal may select a suitable cell to receive a service and may not have access. A problem that may occur with reference to FIG. 13 will be described below.
  • FIG. 13 is a diagram illustrating an example of a problem that may occur in terms of movement of a terminal.
  • LTE cells of E-UTRAN are deployed on a network, and UMTS cells of UTRAN are deployed together. It is assumed that the terminal is moving in a specific direction. In addition, it is assumed that the lowest priority is applied to all frequencies of the E-UTRAN due to the congestion situation of the E-UTRAN. In addition, it is assumed that the cells of the E-UTRAN and the cells of the UTRAN are uncoordinated with each other, so that the UMTS cells are not aware that the lowest priority is set and applied.
  • the terminal may first attempt to establish an RRC connection with the LTE cell. Accordingly, the terminal transmits an RRC connection request message to the LTE cell (S1310). Due to congestion, the LTE cell may not allow connection establishment of the terminal, and accordingly, the LTE cell may transmit an RRC connection rejection message to the terminal (S1320).
  • the RRC connection rejection message may include the lowest priority request information.
  • the UE may select a UMTS cell as a target cell through cell reselection and attempt to establish an RRC connection. Accordingly, the terminal transmits an RRC connection request message to the UMTS cell (S1330).
  • UMTS cells can provide a more efficient service to the terminal, and may want to move the terminal to the LTE cell preferred by the terminal. Accordingly, the UMTS cell does not allow connection establishment of the terminal, and the terminal may be redirected to the LTE cell. Accordingly, the UMTS cell may transmit an RRC connection rejection message for the UE to switch to the LTE cell (S1340).
  • the terminal rejected from the UMTS cell may select the LTE cell again by performing cell reselection.
  • the LTE cell may not continuously allow connection establishment of the terminal.
  • a UMTS cell that is not aware of congestion of E-UTRAN and / or application of the lowest priority to the E-UTRAN frequency may not allow the terminal to continuously establish the connection for the UE to switch to the LTE cell. Accordingly, the UE may not establish an RRC connection even in the E-UTRAN and the UTRAN, and may cause a problem of moving back and forth between the E-UTRAN and the UTRAN.
  • a problem may occur in the movement of the terminal related to handover.
  • the terminal may move to the target cell through handover.
  • the target cell when the target cell does not recognize the wireless communication environment in the source cell before the handover, the target cell sets the frequency of the previous source cell to the terminal as the measurement target. Accordingly, the terminal may perform unnecessary operations such as performing measurement and reporting on a previous source cell or a corresponding frequency that cannot be actually moved.
  • the terminal may not normally receive the service on the cell or the frequency or may not move to the cell, but the network and / or the terminal may unnecessarily perform an operation related to handover according to the measurement result. As such, the radio resources are occupied by unnecessary operation of the terminal and / or the network, thereby reducing efficiency in terms of network operation, and reducing power efficiency of the terminal.
  • an embodiment of the present invention proposes a method for providing mobility restriction information including lowest priority information to other network nodes. .
  • FIG. 14 is a diagram illustrating a mobility restriction information based communication method according to an embodiment of the present invention.
  • the network node 1 providing the mobility restriction information may be a terminal or a base station.
  • the base station may be an eBN of the E-UTRAN or a Node B of the UTRAN.
  • Network node 2 may be a base station. That is, a scenario in which mobility restriction information is transmitted from a specific base station to another base station or from a terminal to a base station may be considered.
  • the network node 1 obtains lowest priority information and sets mobility restriction information (S1410). Obtaining the lowest priority information and setting the mobility restriction information may be implemented differently depending on whether the network node 1 is a base station or a terminal such as an eNB or a NodeB.
  • Obtaining the lowest priority information by the eBN or Node B may include setting to apply the lowest priority to one or more frequencies and / or all frequencies of a particular RAT and generating information related thereto.
  • the lowest priority information may include one or more frequency lists and / or RAT lists to which the lowest priority is or is to be applied.
  • the lowest priority information may include one or more frequency lists and / or RAT lists to which the lowest priority is not applied.
  • both types of lists may be included.
  • the eNB or Node B sets the mobility restriction information including the lowest priority information.
  • the mobility restriction information may further include lowest priority duration information indicating a time interval for applying the lowest priority.
  • the mobility restriction information may further include lowest priority duration information indicating a duration of operation based on the lowest priority information.
  • Acquiring the lowest priority information by the terminal may include acquiring the lowest priority request information from the base station. This may be performed by the terminal receiving an RRC connection rejection message including the lowest priority request information during the RRC connection establishment procedure.
  • the lowest priority information may include one or more frequency lists and / or RAT lists to which the lowest priority is or is to be applied. Alternatively, the lowest priority information may include one or more frequency lists and / or RAT lists to which the lowest priority is not applied. Alternatively, both types of lists may be included.
  • the mobility control information may further include lowest priority duration information.
  • the lowest priority duration information may be configured to indicate the duration of the lowest priority application according to the setting value of the lowest priority timer in the lowest priority request information received by the terminal.
  • the terminal sets the mobility restriction information including the lowest priority information.
  • the mobility restriction information may further include connection rejection information.
  • the connection rejection information may include information related to the connection establishment attempt that the terminal is rejected from the network.
  • the connection rejection information may be implemented to include the following information.
  • the connection rejection counter may be set to indicate the number of times the terminal attempted to establish a connection but was rejected from the network.
  • the number of rejections of the connection establishment attempt may be implemented as a number of times rejected within a specific fixed time or a specific time set from the network.
  • the number of rejection of the connection establishment attempt may be implemented as the number of rejection of the connection establishment attempt counted after the RRC connection with the network is released, that is, when the terminal enters the RRC idle state. If the terminal attempts to establish a connection but is rejected from the network, the terminal may increase the connection rejection count.
  • connection rejection count may be reset if RRC connection establishment with the network is allowed.
  • the connection establishment attempt of the terminal may be allowed from the network so that the connection rejection count may be reset as the terminal receives the RRC connection establishment message from the network.
  • the connection rejection timer may be set to indicate a time interval that has elapsed since the connection establishment attempt of the terminal is rejected.
  • the connection rejection timer may be started as the attempt to establish a connection of the terminal is rejected by the network. That is, when the terminal receives the RRC connection rejection message from the network, the terminal may start the connection rejection timer.
  • the connection rejection timer can be reset if RRC connection establishment with the network is allowed. For example, if the terminal attempts to establish a connection from the network and the terminal receives the RRC connection establishment message from the network, the connection rejection timer may be reset.
  • connection rejection acceptance information may be set to indicate whether it can be tolerated that the connection establishment attempt of the terminal is further rejected.
  • the terminal may not tolerate further connection rejection in order to receive the service, and the connection rejection acceptance information may be provided to the network to inform the network.
  • the connection rejection acceptance information may be determined based on the connection rejection counter and / or the connection rejection timer described above.
  • the connection rejection counter is information on how many times a connection establishment attempt has been rejected by the terminal, and since the connection rejection timer is information on the time that the terminal did not establish an RRC connection with the network, the terminal may establish a connection thereafter based on the two informations. It can be determined whether the refusal of the attempt is possible or not. More specifically, when the connection rejection counter exceeds a certain threshold, the connection rejection acceptance information may be set to indicate that the connection rejection no longer is allowed. Or, if the connection rejection timer exceeds a certain threshold, the connection rejection acceptance information may be set to indicate that the connection rejection no longer is tolerated connection rejection.
  • the network node 1 transmits mobility restriction information to the network node 2 (S1420).
  • mobility restriction information may be transmitted to network node 2 via an X2 interface.
  • the transmission of mobility restriction information by network node 1 to network node 2 may be performed as network node 1 sets the lowest priority application.
  • the mobility restriction information may be automatically triggered by setting the lowest priority of network node 1 without a request by another network node.
  • the transmission of the mobility restriction information from the network node 1 to the network node 2 may be performed as a response to the request of the network node 2.
  • mobility restriction information may be sent to network node 2 during the handover procedure.
  • the mobility restriction information may be included in the handover preparation message through the X2 interface and transmitted to the network node 2. That is, during the handover preparation procedure between the network node 1 of the source cell and the network node 2 of the target cell, the source cell may include mobility restriction information in the handover preparation message and transmit the same to the network node 2.
  • mobility restriction information may be transmitted to network node 2 during an RRC connection establishment procedure.
  • the mobility restriction information may be included in the RRC connection establishment request message sent for the RRC connection establishment request or the RRC connection establishment end message for terminating the RRC connection establishment procedure, and transmitted to the network node 2.
  • the mobility restriction information may be transmitted in response to the request of the network node 2.
  • the terminal may further include movement trigger information in the mobility restriction information.
  • the movement trigger information may indicate which movement trigger is the most recent movement of the terminal.
  • the movement trigger may indicate a trigger that caused the movement of the terminal, such as redirection, cell reselection, lowest priority setting, PLMN selection, handover, and MBMS service.
  • Cell reselection as a movement trigger may be distinguished and indicated whether it is a cell reselection based on a signaled priority or a cell reselection based on a priority not related to signaling.
  • the network node 2 that has received the mobility restriction information operates based on the received information (S1430).
  • the network node 2 may operate to prevent the UE from moving back to one or more frequencies or specific RATs associated with the lowest priority information included in the mobility restriction information.
  • the network node 2 may be configured to allow RRC connection establishment of a terminal moved from one or more frequencies and / or RATs to which the lowest priority is applied or applied.
  • the UE includes pre-redirection information indicating a preferred frequency and / or RAT in the RRC connection request message and transmits it to the network node 2, and the preferred frequency and / or RAT is applied with the lowest priority. Or may be applied.
  • the network node 2 may not reject the RRC connection request in order to prevent the UE from switching to the preferred frequency and / or RAT.
  • the network node 2 When mobility restriction information is received from the network node 1 through the handover preparation message, the network node 2 prevents the handover target terminal from moving to one or more frequencies and / or RATs to which the lowest priority is applied or is expected to be applied.
  • RRC configuration to provide may be provided to the terminal. The RRC configuration may be provided to the terminal during the handover procedure or after the handover procedure is completed. For example, the network node 2 may provide the UE with a measurement configuration that excludes the frequency and / or the RAT to which the UE which has established the RRC connection through handover is applied or has the lowest priority applied.
  • the network node 2 may perform an operation based on the mobility restriction information during the time interval indicated by the lowest priority duration information.
  • the network node 2 may perform operations such as establishing RRC connection, RRC setting, handover, etc. of the terminal without considering mobility restriction information.
  • the network node 2 may discard the received mobility restriction information.
  • the network node 1 may include the lowest priority release information indicating that the lowest priority application is released in generating the mobility restriction information.
  • the base station that determines that the network is less congested and no longer needs to apply the lowest priority to a specific frequency or a specific RAT stops applying the lowest priority and transfers the lowest priority release information to the mobility restriction information. Can be included.
  • the network node 1 is a terminal, when the lowest priority timer expires, the lowest priority release information may be included in the mobility restriction information.
  • the network node 2 may stop the previously received mobility restriction information based operation. If network node 2 previously received the lowest priority duration information and subsequently received the lowest priority release information, whether to stop mobility based information or stop operating at the end of the duration by the duration information. It may be implementation dependent whether to stop mobility based information based operation upon receipt of release information.
  • 15 is a diagram illustrating an example of a mobility restriction information based communication method according to an embodiment of the present invention.
  • cell 1 is an LTE cell
  • cell 2 is a UMTS cell. It is also assumed that Cell 1 and Cell 2 are not organized with each other.
  • Cell 1 sets the lowest priority through cell reselection priority control due to congestion or the like (S1510).
  • Cell 1 may be configured to apply the lowest priority to all frequencies of the E-UTRAN.
  • Cell 1 transmits mobility restriction information to cell 2 as the lowest priority is set (S1520).
  • the mobility restriction information may be transmitted through an X2 interface between cell 1 and cell 2.
  • the mobility restriction information may include lowest priority information.
  • the lowest priority information may be set to indicate that the lowest priority is applied to all frequencies of the E-UTRAN.
  • Mobility restriction information-based operation may be to attempt to access the cell 2 or to prevent the terminal that accesses the cell 2 to move to the cell on the frequency or RAT to which the lowest priority is applied.
  • the mobility limitation information based operation of cell 2 may be implemented as lasting for a specific time interval T P.
  • the cell 2 may perform mobility restriction information based operation for a predetermined specific time interval.
  • the mobility restriction information may include lowest priority duration information, and cell 2 may perform mobility restriction information based operation during the indicated time interval T P.
  • the terminal transmits an RRC connection request message to cell 1 in order to establish an RRC connection with cell 1 (S1531). Since the UE cannot know that the lowest priority is currently applied to all frequencies of the E-UTRAN, the UE may attempt to establish an RRC connection to access the cell 1.
  • Cell 1 may reject the attempt to establish a connection of the terminal, accordingly, cell 1 transmits an RRC connection rejection message to the terminal (S1532).
  • the RRC connection reject message may include lowest priority request information, and the lowest priority request may indicate that the lowest priority is applied to all frequencies of the E-UTRAN.
  • the terminal performs cell reselection (S1540). Since the lowest priority is applied to all frequencies of the E-UTRAN, the UE may select a cell of the UTRAN as a target cell through cell reselection. In this example, the terminal selects cell 2, which is a UMTS cell, as a target cell.
  • the terminal transmits an RRC connection request message to cell 2 in order to establish RRC connection with cell 2 (S1551).
  • the UE may include the advance look-up information in the RRC connection request message, the advance look-up information may be configured to indicate the E-UTRAN to the RAT preferred by the terminal.
  • Cell 2 may receive an RRC connection request message from the terminal and determine whether to allow the RRC connection of the terminal.
  • the cell 2 when the cell 2 does not recognize that the lowest priority is applied to all frequencies of the E-UTRAN and the advance information indicates the E-UTRAN in the RRC connection request message, the cell 2 indicates that the UE is a UE. It is determined that it is desirable to establish an RRC connection with a cell of the E-UTRAN and receive a service from the cell, and transmit an RRC connection rejection message for the forwarding to the terminal.
  • the UE since the cell 2 receives the mobility restriction information from the cell 1 and recognizes that the lowest priority is currently applied to all frequencies of the E-UTRAN, the UE is a cell of the E-UTRAN. Can be operated to prevent movement. To this end, the cell 2 may determine to allow the RRC connection request of the UE, and transmits an RRC connection establishment message to the UE (S1552).
  • the terminal transmits an RRC connection establishment complete message to cell 2 in order to complete the RRC connection establishment in response to the RRC connection establishment message (S1553).
  • cell 2 when the mobility restriction information includes the lowest priority duration information, cell 2 performs the above mobility restriction information based operation during the time interval T P indicated by the lowest priority duration information. can do.
  • T P expires when the UE is in an RRC connection state with the cell 2
  • the cell 2 considers that the lowest priority no longer applies to the frequency of the E-UTRAN, It may be determined that the service is provided from the cell of the -UTRAN. Therefore, the cell 2 may determine to release the RRC connection with the terminal in order to allow the terminal to access the cell of the E-UTRAN, and may transmit an RRC connection release message to the terminal (S1560).
  • the cell 2 when the cell 2 receives the RRC connection request message from the terminal after the expiration of the time interval T P indicated by the lowest priority duration information, the cell 2 establishes an RRC connection with the cell of the E-UTRAN. It may be desirable to receive services. Accordingly, the cell 2 may transmit an RRC connection rejection message for the UE's conversion to the E-UTRAN to the UE or transmit a command to the UE to access the E-UTRAN after accepting the UE's RRC connection request.
  • 16 is a diagram illustrating another example of a mobility restriction information based communication method according to an embodiment of the present invention.
  • the terminal is in an RRC connected state and operates with cell 1 as a serving cell. It is assumed that cell 1 is an LTE cell operating on frequency f 1 and cell 2 is an LTE cell operating on frequency f 2 . It is assumed that cell 1 and cell 2 are not mutually organized.
  • the terminal may be configured to perform measurement and reporting on frequencies on LTE.
  • Cell 1 sets the lowest priority through cell reselection priority control due to congestion or the like (S1610).
  • Cell 1 may be configured to apply the lowest priority to frequency f 1 .
  • the terminal reports the measurement result to cell 1 (S1621).
  • the measurement result may be determined to include a measurement result for cell 1, which is a serving cell, and a measurement result for cell 2, a neighboring cell.
  • Cell 1 may determine to handover the terminal to cell 2 based on the measurement result of the terminal. Accordingly, cell 1 may perform a handover preparation procedure with cell 2.
  • Cell 1 includes the mobility restriction information in the handover preparation message transmitted for the handover preparation procedure with cell 2 and transmits it to cell 2 (S1622).
  • the mobility restriction information may include lowest priority information.
  • the lowest priority information may be set to indicate application of the lowest priority with respect to the frequency f 1 of the E-UTRAN. Through this, the cell 2 can recognize that the lowest priority is applied to the frequency f 1 .
  • Cell 2 transmits a handover preparation ACK message to cell 1 in response to the handover preparation message (S1623).
  • Cell 1 transmits a handover indication message to the terminal in order to instruct the terminal to perform handover to cell 2 (S1624).
  • the terminal performs a handover procedure with the cell 2 according to the reception of the handover indication message (S1630).
  • the cell 2 having obtained the mobility restriction information through step S1622 may perform mobility restriction information based operation.
  • the mobility limitation information based operation may be to prevent the UE, which has approached the cell 2 through the handover, from moving back to the cell on the frequency f 1 .
  • cell 2 may transmit an RRC connection reconfiguration message to the terminal in order to provide a new RRC configuration (S1640).
  • the RRC connection reconfiguration message may include measurement settings for the measurement and reporting operation of the terminal.
  • the measurement setting may be set to exclude the frequency f 1 from the measurement object.
  • the cell 2 may move up and down during the time interval T P indicated by the lowest priority duration information from the time point at which the mobility restriction information is received.
  • the same mobility restriction information based operation can be performed.
  • cell 2 may decide not to prevent the terminal from moving to the cell on the frequency f 1 any more, and for this purpose, to transmit a RRC connection reconfiguration message to the terminal to provide a new RRC configuration to the terminal It may be (S1650).
  • the RRC connection reconfiguration message may include a measurement setting set to include the frequency f 1 as the measurement target. In the terminal receiving the measurement settings may be obtained by looking at the measurement results for the frequency f 1, a cell can be moved on the frequency f 1 in accordance with the handover result.
  • FIG. 17 illustrates another example of a mobility restriction information based communication method according to an embodiment of the present invention.
  • cell 1 is an LTE cell
  • cell 2 is a UMTS cell. It is also assumed that Cell 1 and Cell 2 are not mutually organized.
  • Cell 1 sets the lowest priority through cell reselection priority control due to congestion or the like (S1710).
  • Cell 1 may be configured to apply the lowest priority to all frequencies of the E-UTRAN.
  • the terminal transmits an RRC connection request message to cell 1 in order to establish an RRC connection with cell 1 (S1721). Since the UE cannot know that the lowest priority is currently applied to all frequencies of the E-UTRAN, the UE may attempt to establish an RRC connection to access the cell 1.
  • Cell 1 may reject the attempt to establish a connection of the terminal, accordingly, cell 1 transmits an RRC connection rejection message to the terminal (S1722).
  • the RRC connection reject message may include lowest priority request information, and the lowest priority request may indicate that the lowest priority is applied to all frequencies of the E-UTRAN.
  • the lowest priority request information may include a lowest priority timer.
  • the terminal performs cell reselection (S1723). Since the lowest priority is applied to all frequencies of the E-UTRAN, the UE may select a cell of the UTRAN other than the E-UTRAN as the target cell through cell reselection. In this example, the terminal selects cell 2, which is a UMTS cell, as a target cell.
  • the terminal transmits an RRC connection request message to cell 2 in order to establish RRC connection with cell 2 (S1551).
  • the terminal may include mobility restriction information in the RRC connection request message.
  • the mobility restriction information may include lowest priority information and advance lookahead information.
  • the lowest priority information may be set to indicate that the lowest priority is applied to all frequencies of the E-UTRAN.
  • the advance look-up information may be configured to indicate the E-UTRAN as the preferred RAT by the terminal.
  • the mobility restriction information may further include lowest priority duration information.
  • the lowest priority duration information may be configured to indicate a duration based on a lowest priority timer of the lowest priority request information acquired by the UE through an RRC connection rejection message, or may be independently configured to indicate a specific duration. have.
  • Cell 2 may receive mobility restriction information and perform mobility restriction information based operation.
  • Mobility restriction information-based operation may be to attempt to access the cell 2 or to prevent the terminal that accesses the cell 2 to move to the cell on the frequency or RAT to which the lowest priority is applied.
  • the mobility limitation information based operation of cell 2 may be implemented as lasting for a specific time interval T P. For example, when the cell 2 receives the mobility restriction information, the cell 2 may perform mobility restriction information based operation for a predetermined specific time interval. As another example, when the mobility restriction information includes the lowest priority duration information, the cell 2 may perform mobility restriction information based operation during the indicated time interval T P.
  • the cell 2 operating based on the mobility restriction information may receive the RRC connection request message from the terminal and may consider the mobility restriction information in determining whether to allow the RRC connection of the terminal.
  • the cell 2 when the cell 2 does not recognize that the lowest priority is applied to all frequencies of the E-UTRAN and the advance information indicates the E-UTRAN in the RRC connection request message, the cell 2 indicates that the UE is a UE. It is determined that it is desirable to establish an RRC connection with a cell of the E-UTRAN and receive a service from the cell, and transmit an RRC connection rejection message for the forwarding to the terminal.
  • the cell 2 since the cell 2 receives the mobility restriction information from the cell 1 and recognizes that the lowest priority is currently applied to all frequencies of the E-UTRAN, the UE is a cell of the E-UTRAN. Can be operated to prevent movement. To this end, the cell 2 may determine to allow the RRC connection request of the terminal, and transmits an RRC connection configuration message to the terminal (S1732).
  • the terminal transmits an RRC connection establishment complete message to cell 2 in order to complete the RRC connection establishment in response to the RRC connection establishment message (S1734).
  • cell 2 when the mobility restriction information includes the lowest priority duration information, cell 2 performs the above mobility restriction information based operation during the time interval T P indicated by the lowest priority duration information. can do.
  • T P expires when the UE is in an RRC connection state with the cell 2
  • the cell 2 considers that the lowest priority no longer applies to the frequency of the E-UTRAN, It may be determined that the service is provided from the cell of the -UTRAN. Therefore, the cell 2 may determine to release the RRC connection with the terminal in order to allow the terminal to access the cell of the E-UTRAN, and may transmit an RRC connection release message to the terminal (S1740).
  • the cell 2 when the cell 2 receives the RRC connection request message from the terminal after the expiration of the time interval T P indicated by the lowest priority duration information, the cell 2 establishes an RRC connection with the cell of the E-UTRAN. It may be desirable to receive services. Accordingly, cell 2 may transmit an RRC connection rejection message for the UE's conversion to the E-UTRAN to the UE.
  • the mobility restriction information is provided to the target network node so that the target network node can know about setting the lowest priority for the movement of the terminal.
  • the target network node may perform network operation such as RRC connection establishment, handover, and RRC configuration of the terminal based on the received mobility restriction information.
  • the terminal may move to a more suitable cell in terms of service provision and may receive more efficient service.
  • unnecessary signaling between the terminal and the network and / or between the network and the network can be prevented, thereby improving efficiency in terms of network operation.
  • FIGS. 14 to 17 are block diagram illustrating a wireless device in which an embodiment of the present invention is implemented.
  • the apparatus may be configured to implement the mobility restriction information based operating method according to the embodiment of the present invention described above with reference to FIGS. 14 to 17.
  • the wireless device 1800 includes a processor 1810, a memory 1820, and an RF unit 1830.
  • the processor 1810 implements the proposed functions, processes, and / or methods. It may be set to set mobility restriction information.
  • the processor 1810 may be configured to transmit and receive mobility restriction information.
  • the processor 1810 may be configured to control the mobility of the terminal based on the mobility restriction information.
  • Processor 1810 may be configured to implement embodiments of the present invention according to FIGS. 14-17.
  • the RF unit 1830 is connected to the processor 1810 to transmit and receive a radio signal.
  • the processor may include application-specific integrated circuits (ASICs), other chipsets, logic circuits, and / or data processing devices.
  • the memory may include read-only memory (ROM), random access memory (RAM), flash memory, memory card, storage medium and / or other storage device.
  • the RF unit may include a baseband circuit for processing a radio signal.
  • the above-described technique may be implemented as a module (process, function, etc.) for performing the above-described function.
  • the module may be stored in memory and executed by a processor.
  • the memory may be internal or external to the processor and may be coupled to the processor by various well known means.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

무선 통신 시스템에서 제1 기지국에 의해 수행되는 통신 방법이 제공된다. 상기 방법은 단말의 이동 제어와 관련된 이동성 제한 정보를 생성하고 및 상기 이동성 제한 정보를 제2 기지국으로 전송하는 것을 포함한다. 상기 이동성 제한 정보는 상기 제1 기지국 및 상기 제2 기지국간 X2 인터페이스를 통해 전송된다.

Description

무선 통신 시스템에서 최저 우선순위 정보를 기반으로 한 통신 방법 및 이를 지원하는 장치
본 발명은 무선 통신에 관한 것으로서, 보다 상세하게는, 무선 통신 시스템에서 이동성 제한 정보를 기반으로 하는 통신 방법과 이를 지원하는 장치에 관한 것이다.
UMTS(Universal Mobile Telecommunications System)의 향상인 3GPP(3rd Generation Partnership Project) LTE(long term evolution)는 3GPP 릴리이즈(release) 8로 소개되고 있다. 3GPP LTE는 하향링크에서 OFDMA(orthogonal frequency division multiple access)를 사용하고, 상향링크에서 SC-FDMA(Single Carrier-frequency division multiple access)를 사용한다. 최대 4개의 안테나를 갖는 MIMO(multiple input multiple output)를 채용한다. 최근에는 3GPP LTE의 진화인 3GPP LTE-A(LTE-Advanced)에 대한 논의가 진행 중이다.
모바일 장치(mobile device)로서의 단말의 이동성으로 인해 현재 단말에 제공되는 서비스의 품질이 열화되거나 또는 보다 나은 서비스를 제공할 수 있는 셀이 감지될 수 있다. 따라서, 단말은 새로운 셀로 이동할 수 있는데, 이와 같은 동작을 단말의 이동 수행이라 한다.
셀 재선택 절차에 있어서, 단말은 주파수 우선순위를 기반으로 타겟 셀(target cell)을 선택한다. 단말은 셀의 시스템 정보를 통해 또는 전용 시그널링을 통해 우선순위와 관련된 정보를 획득할 수 있다. 단말은 연결 설정 메시지의 전송을 통해 타겟 셀로의 연결을 시도한다. 타겟 셀로의 연결이 완료되면, 단말은 타겟 셀로부터 서비스를 제공받을 수 있다.
무선 통신 환경에 따라 특정 주파수 및/또는 특정 RAT(Radio Access Technology)을 기반으로 하는 네트워크에 대한 단말의 이동이 제한될 수 있다. 이 경우, 네트워크는 단말에 이동 제한과 관련된 이동성 정보를 제공해줄 수 있다. 예를 들어, 네트워크는 특정 하나 이상의 주파수 및/또는 특정 RAT에 대한 재선택 우선순위를 저하시키고, 이와 관련된 이동성 제한 정보를 단말에 제공할 수 있다. 단말은 이동성 제한 정보를 기반으로 이동을 수행할 수 있으며, 이 경우 해당하는 주파수 및/또는 RAT으로의 이동이 제한될 수 있다.
한편, 특정 네트워크 노드에 의해 설정된 이동성 제한 정보는 다른 네트워크 노드로 알려지지 않을 수 있다. 단말은 수신된 이동성 제한 정보를 기반으로 동작하던 중 다른 네트워크 노드로 이동하고자 할 수 있으며, 다른 네트워크 노드는 이동성 제한 정보에 대하여 인지하고 있지 않으므로, 단말의 적절한 이동을 위한 운영을 지원하지 못할 수 있다. 이로 인하여 단말이 정상적인 서비스를 제공받지 못하거나, 단말 및/또는 네트워크간 불필요한 시그널링으로 인해 네트워크 운용 측면상 효율성이 저하될 수 있다.
본 발명이 해결하고자 하는 기술적 과제는, 무선 통신 시스템에서 이동성 제한 정보를 기반으로 하는 통신 방법과 이를 지원하는 장치를 제공하는 것이다.
일 양태에 있어서, 무선 통신 시스템에서 제1 기지국에 의해 수행되는 통신 방법이 제공된다. 상기 방법은 단말의 이동 제어와 관련된 이동성 제한 정보를 생성하고 및 상기 이동성 제한 정보를 제2 기지국으로 전송하는 것을 포함한다. 상기 이동성 제한 정보는 상기 제1 기지국 및 상기 제2 기지국간 X2 인터페이스를 통해 전송된다.
상기 이동성 제한 정보는 최저 우선순위 정보를 포함할 수 있다. 상기 최저 우선순위 정보는 적어도 하나의 주파수 또는 특정 RAT(Radio Access Technology)에 대하여 최저 우선순위가 적용됨을 지시할 수 있다.
상기 최저 우선순위 정보는 상기 최저 우선순위가 적용되는 상기 적어도 하나의 주파수에 대한 주파수 리스트를 포함할 수 있다.
상기 최저 우선순위 정보는 상기 최저 우선순위가 적용되지 않는 주파수에 대한 주파수 리스트를 포함할 수 있다.
상기 이동성 제한 정보는 최저 우선순위 지속시간 정보를 더 포함할 수 있다. 상기 최저 우선순위 지속시간 정보는 상기 최저 우선순위 정보에 따른 상기 최저 우선순위가 적용되는 지속 시간을 지시할 수 있다.
상기 이동성 제한 정보는 최저 우선순위 지속시간 정보를 더 포함할 수 있다. 상기 최저 우선순위 지속시간 정보는 상기 최저 우선순위 정보를 기반으로 한 네트워크 운영의 지속 시간을 지시할 수 있다.
상기 이동성 제한 정보는 하나 이상의 주파수에 또는 특정 RAT(Radio Access Technology)에 대하여 최저 우선순위 적용이 해제되었음을 지시하는 최저 우선순위 해제 정보를 포함할 수 있다.
상기 이동성 제한 정보는 단말의 상기 제1 기지국으로부터 상기 제2 기지국으로 핸드오버를 위한 핸드오버 준비 절차 중에 전송되는 핸드오버 준비 메시지에 포함되어 전송될 수 있다.
상기 방법은 상기 제2 기지국으로부터 상기 이동성 제한 정보 전송을 요청 받는 것을 더 포함할 수 있다. 상기 이동성 제한 정보는 상기 요청에 대한 응답으로 전송될 수 있다.
상기 제1 기지국은 E-UTRAN(Evolved-UMTS Terrestrial Radio Access Network)의 eNB(evolved Node B)일 수 있다. 상기 제2 기지국은 UTRAN의 노드 B(Node B)일 수 있다.
상기 이동성 제한 정보는 상기 제2 기지국의 운영 기반이 될 수 있다.
다른 양태에 있어서, 무선 통신 시스템에서 동작하는 무선 장치가 제공된다. 상기 무선 장치는 무선 신호를 송신 및 수신하는 RF(Radio Frequency) 부 및 상기 RF부와 기능적으로 결합된 프로세서를 포함한다. 상기 프로세서는 단말의 이동 제어와 관련된 이동성 제한 정보를 생성하고, 및 상기 이동성 제한 정보를 네트워크 노드로 전송하도록 설정된다. 상기 이동성 제한 정보는 상기 무선 장치 및 상기 네트워크 노드간 X2 인터페이스를 통해 전송된다.
상기 이동성 제한 정보는 최저 우선순위 정보를 포함할 수 있다. 상기 최저 우선순위 정보는 적어도 하나의 주파수 또는 특정 RAT(Radio Access Technology)에 대하여 최저 우선순위가 적용됨을 지시할 수 있다.
본 발명의 실시예에 따르면, 이동성 제한 정보가 타겟 네트워크 노드로 제공됨으로써 타겟 네트워크 노드는 단말의 이동을 위한 최저 우선순위 설정에 대하여 알 수 있다. 타겟 네트워크 노드는 수신한 이동성 제한 정보를 기반으로 단말의 RRC 연결 확립, 핸드 오버, RRC 설정 등의 네트워크 운영을 수행할 있다. 이를 통해 단말은 서비스 제공 측면 상 보다 적합한 셀로 이동하여 보다 효율적인 서비스를 제공 받을 수 있다. 또한, 단말 및 네트워크간 및/또는 네트워크 및 네트워크간 불필요한 시그널링을 방지하여 네트워크 운용 측면상 효율성을 보다 향상시킬 수 있다.
도 1은 본 발명이 적용되는 무선통신 시스템을 나타낸다.
도 2는 사용자 평면(user plane)에 대한 무선 프로토콜 구조(radio protocol architecture)를 나타낸 블록도이다.
도 3은 제어 평면(control plane)에 대한 무선 프로토콜 구조를 나타낸 블록도이다.
도 4는 RRC 아이들 상태의 단말의 동작을 나타내는 흐름도이다.
도 5는 RRC 연결을 확립하는 과정을 나타낸 흐름도이다.
도 6은 RRC 연결 재설정 과정을 나타낸 흐름도이다.
도 7은 핸드오버 과정을 나타낸 흐름도이다.
도 8은 RRC 연결 재확립 절차를 나타내는 도면이다.
도 9는 기존의 측정 수행 방법을 나타낸 흐름도이다.
도 10은 단말에게 설정된 측정 설정의 일 예를 나타낸다.
도 11은 측정 식별자를 삭제하는 예를 나타낸다.
도 12는 측정 대상을 삭제하는 예를 나타낸다.
도 13은 단말의 이동 측면에 있어서 발생할 수 있는 문제의 예시를 나타내는 도면이다.
도 14는 본 발명의 실시예에 따른 이동성 제한 정보 기반 통신 방법을 나타내는 도면이다.
도 15는 본 발명의 실시예에 따른 이동성 제한 정보 기반 통신 방법의 일례를 나타내는 도면이다.
도 16은 본 발명의 실시예에 따른 이동성 제한 정보 기반 통신 방법의 다른 일례를 나타내는 도면이다.
도 17은 본 발명의 실시예에 따른 이동성 제한 정보 기반 통신 방법의 또 다른 일례를 나타내는 도면이다.
도 18은 본 발명의 실시예가 구현되는 무선 장치를 나타낸 블록도이다.
도 1은 본 발명이 적용되는 무선통신 시스템을 나타낸다. 이는 E-UTRAN(Evolved-UMTS Terrestrial Radio Access Network), 또는 LTE(Long Term Evolution)/LTE-A 시스템이라고도 불릴 수 있다.
E-UTRAN은 단말(10; User Equipment, UE)에게 제어 평면(control plane)과 사용자 평면(user plane)을 제공하는 기지국(20; Base Station, BS)을 포함한다. 단말(10)은 고정되거나 이동성을 가질 수 있으며, MS(Mobile station), UT(User Terminal), SS(Subscriber Station), MT(mobile terminal), 무선기기(Wireless Device) 등 다른 용어로 불릴 수 있다. 기지국(20)은 단말(10)과 통신하는 고정된 지점(fixed station)을 말하며, eNB(evolved-NodeB), BTS(Base Transceiver System), 액세스 포인트(Access Point) 등 다른 용어로 불릴 수 있다.
기지국(20)들은 X2 인터페이스를 통하여 서로 연결될 수 있다. 기지국(20)은 S1 인터페이스를 통해 EPC(Evolved Packet Core, 30), 보다 상세하게는 S1-MME를 통해 MME(Mobility Management Entity)와 S1-U를 통해 S-GW(Serving Gateway)와 연결된다.
EPC(30)는 MME, S-GW 및 P-GW(Packet Data Network-Gateway)로 구성된다. MME는 단말의 접속 정보나 단말의 능력에 관한 정보를 가지고 있으며, 이러한 정보는 단말의 이동성 관리에 주로 사용된다. S-GW는 E-UTRAN을 종단점으로 갖는 게이트웨이이며, P-GW는 PDN을 종단점으로 갖는 게이트웨이이다.
단말과 네트워크 사이의 무선인터페이스 프로토콜 (Radio Interface Protocol)의 계층들은 통신시스템에서 널리 알려진 개방형 시스템간 상호접속 (Open System Interconnection; OSI) 기준 모델의 하위 3개 계층을 바탕으로 L1 (제1계층), L2 (제2계층), L3(제3계층)로 구분될 수 있는데, 이 중에서 제1계층에 속하는 물리계층은 물리채널(Physical Channel)을 이용한 정보전송서비스(Information Transfer Service)를 제공하며, 제 3계층에 위치하는 RRC(Radio Resource Control) 계층은 단말과 네트워크 간에 무선자원을 제어하는 역할을 수행한다. 이를 위해 RRC 계층은 단말과 기지국간 RRC 메시지를 교환한다.
도 2는 사용자 평면(user plane)에 대한 무선 프로토콜 구조(radio protocol architecture)를 나타낸 블록도이다. 도 3은 제어 평면(control plane)에 대한 무선 프로토콜 구조를 나타낸 블록도이다. 사용자 평면은 사용자 데이터 전송을 위한 프로토콜 스택(protocol stack)이고, 제어 평면은 제어신호 전송을 위한 프로토콜 스택이다.
도 2 및 3을 참조하면, 물리계층(PHY(physical) layer)은 물리채널(physical channel)을 이용하여 상위 계층에게 정보 전송 서비스(information transfer service)를 제공한다. 물리계층은 상위 계층인 MAC(Medium Access Control) 계층과는 전송채널(transport channel)을 통해 연결되어 있다. 전송채널을 통해 MAC 계층과 물리계층 사이로 데이터가 이동한다. 전송채널은 무선 인터페이스를 통해 데이터가 어떻게 어떤 특징으로 전송되는가에 따라 분류된다.
서로 다른 물리계층 사이, 즉 송신기와 수신기의 물리계층 사이는 물리채널을 통해 데이터가 이동한다. 상기 물리채널은 OFDM(Orthogonal Frequency Division Multiplexing) 방식으로 변조될 수 있고, 시간과 주파수를 무선자원으로 활용한다.
MAC 계층의 기능은 논리채널과 전송채널간의 맵핑 및 논리채널에 속하는 MAC SDU(service data unit)의 전송채널 상으로 물리채널로 제공되는 전송블록(transport block)으로의 다중화/역다중화를 포함한다. MAC 계층은 논리채널을 통해 RLC(Radio Link Control) 계층에게 서비스를 제공한다.
RLC 계층의 기능은 RLC SDU의 연결(concatenation), 분할(segmentation) 및 재결합(reassembly)를 포함한다. 무선베어러(Radio Bearer; RB)가 요구하는 다양한 QoS(Quality of Service)를 보장하기 위해, RLC 계층은 투명모드(Transparent Mode, TM), 비확인 모드(Unacknowledged Mode, UM) 및 확인모드(Acknowledged Mode, AM)의 세 가지의 동작모드를 제공한다. AM RLC는 ARQ(automatic repeat request)를 통해 오류 정정을 제공한다.
RRC(Radio Resource Control) 계층은 제어 평면에서만 정의된다. RRC 계층은 무선 베어러들의 설정(configuration), 재설정(re-configuration) 및 해제(release)와 관련되어 논리채널, 전송채널 및 물리채널들의 제어를 담당한다. RB는 단말과 네트워크간의 데이터 전달을 위해 제1 계층(PHY 계층) 및 제2 계층(MAC 계층, RLC 계층, PDCP 계층)에 의해 제공되는 논리적 경로를 의미한다.
사용자 평면에서의 PDCP(Packet Data Convergence Protocol) 계층의 기능은 사용자 데이터의 전달, 헤더 압축(header compression) 및 암호화(ciphering)를 포함한다. 제어 평면에서의 PDCP(Packet Data Convergence Protocol) 계층의 기능은 제어 평면 데이터의 전달 및 암호화/무결정 보호(integrity protection)를 포함한다.
RB가 설정된다는 것은 특정 서비스를 제공하기 위해 무선 프로토콜 계층 및 채널의 특성을 규정하고, 각각의 구체적인 파라미터 및 동작 방법을 설정하는 과정을 의미한다. RB는 다시 SRB(Signaling RB)와 DRB(Data RB) 두가지로 나누어 질 수 있다. SRB는 제어 평면에서 RRC 메시지를 전송하는 통로로 사용되며, DRB는 사용자 평면에서 사용자 데이터를 전송하는 통로로 사용된다.
단말의 RRC 계층과 E-UTRAN의 RRC 계층 사이에 RRC 연결(RRC Connection)이 확립되면, 단말은 RRC 연결(RRC connected) 상태에 있게 되고, 그렇지 못할 경우 RRC 아이들(RRC idle) 상태에 있게 된다.
네트워크에서 단말로 데이터를 전송하는 하향링크 전송채널로는 시스템정보를 전송하는 BCH(Broadcast Channel)과 그 이외에 사용자 트래픽이나 제어메시지를 전송하는 하향링크 SCH(Shared Channel)이 있다. 하향링크 멀티캐스트 또는 브로드캐스트 서비스의 트래픽 또는 제어메시지의 경우 하향링크 SCH를 통해 전송될 수도 있고, 또는 별도의 하향링크 MCH(Multicast Channel)을 통해 전송될 수도 있다. 한편, 단말에서 네트워크로 데이터를 전송하는 상향링크 전송채널로는 초기 제어메시지를 전송하는 RACH(Random Access Channel)와 그 이외에 사용자 트래픽이나 제어메시지를 전송하는 상향링크 SCH(Shared Channel)가 있다.
전송채널 상위에 있으며, 전송채널에 매핑되는 논리채널(Logical Channel)로는 BCCH(Broadcast Control Channel), PCCH(Paging Control Channel), CCCH(Common Control Channel), MCCH(Multicast Control Channel), MTCH(Multicast Traffic Channel) 등이 있다.
물리채널(Physical Channel)은 시간 영역에서 여러 개의 OFDM 심벌과 주파수 영역에서 여러 개의 부반송파(Sub-carrier)로 구성된다. 하나의 서브프레임(Sub-frame)은 시간 영역에서 복수의 OFDM 심벌(Symbol)들로 구성된다. 자원블록은 자원 할당 단위로, 복수의 OFDM 심벌들과 복수의 부반송파(sub-carrier)들로 구성된다. 또한 각 서브프레임은 PDCCH(Physical Downlink Control Channel) 즉, L1/L2 제어채널을 위해 해당 서브프레임의 특정 OFDM 심벌들(예, 첫번째 OFDM 심볼)의 특정 부반송파들을 이용할 수 있다. TTI(Transmission Time Interval)는 서브프레임 전송의 단위시간이다.
3GPP TS 36.211 V8.7.0에 개시된 바와 같이, 3GPP LTE에서 물리채널은 데이터 채널인 PDSCH(Physical Downlink Shared Channel)와 PUSCH(Physical Uplink Shared Channel) 및 제어채널인 PDCCH(Physical Downlink Control Channel), PCFICH(Physical Control Format Indicator Channel), PHICH(Physical Hybrid-ARQ Indicator Channel) 및 PUCCH(Physical Uplink Control Channel)로 나눌 수 있다.
서브프레임의 첫번째 OFDM 심벌에서 전송되는 PCFICH는 서브프레임내에서 제어채널들의 전송에 사용되는 OFDM 심벌의 수(즉, 제어영역의 크기)에 관한 CFI(control format indicator)를 나른다. 단말은 먼저 PCFICH 상으로 CFI를 수신한 후, PDCCH를 모니터링한다.
PDCCH는 하향링크 제어채널로, 스케줄링 정보를 나르는 점에서 스케줄링 채널이라고도 한다. PDCCH를 통해 전송되는 제어정보를 하향링크 제어정보(downlink control information, DCI)라고 한다. DCI는 PDSCH의 자원 할당(이를 DL 그랜트(downlink grant)라고도 한다), PUSCH의 자원 할당(이를 UL 그랜트(uplink grant)라고도 한다), 임의의 UE 그룹내 개별 UE들에 대한 전송 파워 제어 명령의 집합 및/또는 VoIP(Voice over Internet Protocol)의 활성화를 포함할 수 있다.
3GPP LTE에서는 PDCCH의 검출을 위해 블라인드 디코딩을 사용한다. 블라인드 디코딩은 수신되는 PDCCH(이를 후보(candidate) PDCCH라 함)의 CRC(Cyclic Redundancy Check)에 원하는 식별자를 디마스킹하고, CRC 오류를 체크하여 해당 PDCCH가 자신의 제어채널인지 아닌지를 확인하는 방식이다.
기지국은 단말에게 보내려는 DCI에 따라 PDCCH 포맷을 결정한 후 DCI에 CRC를 붙이고, PDCCH의 소유자(owner)나 용도에 따라 고유한 식별자(이를 RNTI(Radio Network Temporary Identifier)라고 한다)를 CRC에 마스킹한다.
이하 단말의 RRC 상태 (RRC state)와 RRC 연결 방법에 대해 상술한다.
RRC 상태란 단말의 RRC 계층이 E-UTRAN의 RRC 계층과 논리적 연결(logical connection)이 되어 있는가 아닌가를 말하며, 연결되어 있는 경우는 RRC 연결 상태, 연결되어 있지 않은 경우는 RRC 아이들 상태라고 부른다. RRC 연결 상태의 단말은 RRC 연결이 존재하기 때문에 E-UTRAN은 해당 단말의 존재를 셀 단위에서 파악할 수 있으며, 따라서 단말을 효과적으로 제어할 수 있다. 반면에 RRC 아이들 상태의 단말은 E-UTRAN이 파악할 수는 없으며, 셀 보다 더 큰 지역 단위인 트래킹 영역(Tracking Area) 단위로 CN(core network)이 관리한다. 즉, RRC 아이들 상태의 단말은 큰 지역 단위로 존재 여부만 파악되며, 음성이나 데이터와 같은 통상의 이동통신 서비스를 받기 위해서는 RRC 연결 상태로 이동해야 한다.
사용자가 단말의 전원을 맨 처음 켰을 때, 단말은 먼저 적절한 셀을 탐색한 후 해당 셀에서 RRC 아이들 상태에 머무른다. RRC 아이들 상태의 단말은 RRC 연결을 맺을 필요가 있을 때 비로소 RRC 연결 과정(RRC connection procedure)을 통해 E-UTRAN과 RRC 연결을 확립하고, RRC 연결 상태로 천이한다. RRC 아이들 상태에 있던 단말이 RRC 연결을 맺을 필요가 있는 경우는 여러 가지가 있는데, 예를 들어 사용자의 통화 시도 등의 이유로 상향 데이터 전송이 필요하다거나, 아니면 E-UTRAN으로부터 호출(paging) 메시지를 수신한 경우 이에 대한 응답 메시지 전송 등을 들 수 있다.
RRC 계층 상위에 위치하는 NAS(Non-Access Stratum) 계층은 연결관리(Session Management)와 이동성 관리(Mobility Management) 등의 기능을 수행한다.
NAS 계층에서 단말의 이동성을 관리하기 위하여 EMM-REGISTERED(EPS Mobility Management-REGISTERED) 및 EMM-DEREGISTERED 두 가지 상태가 정의되어 있으며, 이 두 상태는 단말과 MME에게 적용된다. 초기 단말은 EMM-DEREGISTERED 상태이며, 이 단말이 네트워크에 접속하기 위해서 초기 연결(Initial Attach) 절차를 통해서 해당 네트워크에 등록하는 과정을 수행한다. 상기 연결(Attach) 절차가 성공적으로 수행되면 단말 및 MME는 EMM-REGISTERED 상태가 된다.
단말과 EPC간 시그널링 연결(signaling connection)을 관리하기 위하여 ECM(EPS Connection Management)-IDLE 상태 및 ECM-CONNECTED 상태 두 가지 상태가 정의되어 있으며, 이 두 상태는 단말 및 MME에게 적용된다. ECM-IDLE 상태의 단말이 E-UTRAN과 RRC 연결을 맺으면 해당 단말은 ECM-CONNECTED 상태가 된다. ECM-IDLE 상태에 있는 MME는 E-UTRAN과 S1 연결(S1 connection)을 맺으면 ECM-CONNECTED 상태가 된다. 단말이 ECM-IDLE 상태에 있을 때에는 E-UTRAN은 단말의 배경(context) 정보를 가지고 있지 않다. 따라서 ECM-IDLE 상태의 단말은 네트워크의 명령을 받을 필요 없이 셀 선택(cell selection) 또는 셀 재선택(reselection)과 같은 단말 기반의 이동성 관련 절차를 수행한다. 반면 단말이 ECM-CONNECTED 상태에 있을 때에는 단말의 이동성은 네트워크의 명령에 의해서 관리된다. ECM-IDLE 상태에서 단말의 위치가 네트워크가 알고 있는 위치와 달라질 경우 단말은 트래킹 영역 갱신(Tracking Area Update) 절차를 통해 네트워크에 단말의 해당 위치를 알린다.
다음은, 시스템 정보(System Information)에 관한 설명이다.
시스템 정보는 단말이 기지국에 접속하기 위해서 알아야 하는 필수 정보를 포함한다. 따라서 단말은 기지국에 접속하기 전에 시스템 정보를 모두 수신하고 있어야 하고, 또한 항상 최신의 시스템 정보를 가지고 있어야 한다. 그리고 상기 시스템 정보는 한 셀 내의 모든 단말이 알고 있어야 하는 정보이므로, 기지국은 주기적으로 상기 시스템 정보를 전송한다. 시스템 정보는 MIB(Master Information Block) 및 복수의 SIB (System Information Block)로 나뉜다.
MIB는 셀로부터 다른 정보를 위해 획득될 것이 요구되는 가장 필수적이고 가장 자주 전송되는 파라터의 제한된 개수를 포함할 수 있다. 단말은 하향링크 동기화 이후에 가장 먼저 MIB를 찾는다. MIB는 하향링크 채널 대역폭, PHICH 설정, 동기화를 지원하고 타이밍 기준으로서 동작하는 SFN, 및 eNB 전송 안테나 설정과 같은 정보를 포함할 수 있다. MIB는 BCH 상으로 브로드캐스트 전송될 수 있다.
포함된 SIB들 중 SIB1 (SystemInformationBlockType1) 은 “SystemInformationBlockType1” 메시지에 포함되어 전송되며, SIB1을 제외한 다른 SIB들은 시스템 정보 메시지에 포함되어 전송된다. SIB들을 시스템 정보 메시지에 맵핑시키는 것은 SIB1에 포함된 스케쥴링 정보 리스트 파라미터에 의하여 유동적으로 설정될 수 있다. 단, 각 SIB는 단일 시스템 정보 메시지에 포함되며, 오직 동일한 스케쥴링 요구치(e.g. 주기)를 가진 SIB들만이 동일한 시스템 정보 메시지에 맵핑될 수 있다. 또한, SIB2(SystemInformationBlockType2)는 항상 스케쥴링 정보 리스트의 시스템정보 메시지 리스트 내 첫번째 엔트리에 해당하는 시스템 정보 메시지에 맵핑된다. 동일한 주기 내에 복수의 시스템 정보 메시지가 전송될 수 있다. SIB1 및 모든 시스템 정보 메시지는 DL-SCH상으로 전송된다.
브로드캐스트 전송에 더하여, E-UTRAN은 SIB1은 기존에 설정된 값과 동일하게 설정된 파라미터를 포함한 채로 전용 시그널링(dedicated signaling)될 수 있으며, 이 경우 SIB1은 RRC 연결 재설정 메시지에 포함되어 전송될 수 있다.
SIB1은 단말 셀 접근과 관련된 정보를 포함하며, 다른 SIB들의 스케쥴링을 정의한다. SIB1은 네트워크의 PLMN 식별자들, TAC(Tracking Area Code) 및 셀 ID, 셀이 캠프온 할 수 있는 셀인지 여부를 지시하는 셀 금지 상태(cell barring status), 셀 재선택 기준으로서 사용되는 셀내 요구되는 최저 수신 레벨, 및 다른 SIB들의 전송 시간 및 주기와 관련된 정보를 포함할 수 있다.
SIB2는 모든 단말에 공통되는 무선 자원 설정 정보를 포함할 수 있다. SIB2는 상향링크 반송파 주파수 및 상향링크 채널 대역폭, RACH 설정, 페이지 설정(paging configuration), 상량링크 파워 제어 설정, 사운딩 기준 신호 설정(Sounding Reference Signal configuration), ACK/NACK 전송을 지원하는 PUCCH 설정 및 PUSCH 설정과 관련된 정보를 포함할 수 있다.
단말은 시스템 정보의 획득 및 변경 감지 절차를 PCell에 대해서만 적용할 수 있다. SCell에 있어서, E-UTRAN은 해당 SCell이 추가될 때 RRC 연결 상태 동작과 관련있는 모든 시스템 정보를 전용 시그널링을 통해 제공해줄 수 있다. 설정된 SCell의 관련된 시스템 정보의 변경시, E-UTRAN은 고려되는 SCell을 해제(release)하고 차후에 추가할 수 있는데, 이는 단일 RRC 연결 재설정 메시지와 함께 수행될 수 있다. E-UTRAN은 고려되는 SCell 내에서 브로드캐스트 되었던 값과 다른 파라미터 값들을 전용 시그널링을 통하여 설정해줄 수 있다.
단말은 특정 타입의 시스템 정보에 대하여 그 유효성을 보장해야 하며, 이와 같은 시스템 정보를 필수 시스템 정보(required system information)이라 한다. 필수 시스템 정보는 아래와 같이 정의될 수 있다.
- 단말이 RRC 아이들 상태인 경우: 단말은 SIB2 내지 SIB8 뿐만 아니라 MIB 및 SIB1의 유효한 버전을 가지고 있도록 보장하여야 하며, 이는 고려되는 RAT의 지원에 따를 수 있다.
- 단말이 RRC 연결 상태인 경우: 단말은 MIB, SIB1 및 SIB2의 유효한 버전을 가지고 있도록 보장하여야 한다.
일반적으로 시스템 정보는 획득 후 최대 3시간 까지 유효성이 보장될 수 있다.
일반적으로, 네트워크가 단말에게 제공하는 서비스는 아래와 같이 세가지 타입으로 구분할 수 있다. 또한, 어떤 서비스를 제공받을 수 있는지에 따라 단말은 셀의 타입 역시 다르게 인식한다. 아래에서 먼저 서비스 타입을 서술하고, 이어 셀의 타입을 서술한다.
1) 제한적 서비스(Limited service): 이 서비스는 응급 호출(Emergency call) 및 재해 경보 시스템(Earthquake and Tsunami Warning System; ETWS)를 제공하며, 수용가능 셀(acceptable cell)에서 제공할 수 있다.
2) 정규 서비스(Normal service) : 이 서비스는 일반적 용도의 범용 서비스(public use)를 의미하여, 정규 셀(suitable or normal cell)에서 제공할 수 있다.
3) 사업자 서비스(Operator service) : 이 서비스는 통신망 사업자를 위한 서비스를 의미하며, 이 셀은 통신망 사업자만 사용할 수 있고 일반 사용자는 사용할 수 없다.
셀이 제공하는 서비스 타입과 관련하여, 셀의 타입은 아래와 같이 구분될 수 있다.
1) 수용가능 셀(Acceptable cell) : 단말이 제한된(Limited) 서비스를 제공받을 수 있는 셀. 이 셀은 해당 단말 입장에서, 금지(barred)되어 있지 않고, 단말의 셀 선택 기준을 만족시키는 셀이다.
2) 정규 셀(Suitable cell) : 단말이 정규 서비스를 제공받을 수 있는 셀. 이 셀은 수용가능 셀의 조건을 만족시키며, 동시에 추가 조건들을 만족시킨다. 추가적인 조건으로는, 이 셀이 해당 단말이 접속할 수 있는 PLMN(Public Land Mobile Network) 소속이어야 하고, 단말의 트래킹 영역(Tracking Area) 갱신 절차의 수행이 금지되지 않은 셀이어야 한다. 해당 셀이 CSG 셀이라고 하면, 단말이 이 셀에 CSG 멤버로서 접속이 가능한 셀이어야 한다.
3) 금지된 (Barred cell) : 셀이 시스템 정보를 통해 금지된 셀이라는 정보를 브로드캐스트하는 셀이다.
4) 예약된 셀(Reserved cell) : 셀이 시스템 정보를 통해 예약된 셀이라는 정보를 브로드캐스트하는 셀이다.
도 4는 RRC 아이들 상태의 단말의 동작을 나타내는 흐름도이다. 도 4는 초기 전원이 켜진 단말이 셀 선택 과정을 거쳐 네트워크 망에 등록하고 이어 필요할 경우 셀 재선택을 하는 절차를 나타낸다.
도 4를 참조하면, 단말은 자신이 서비스 받고자 하는 망인 PLMN(public land mobile network)과 통신하기 위한 라디오 접속 기술(radio access technology; RAT)를 선택한다(S410). PLMN 및 RAT에 대한 정보는 단말의 사용자가 선택할 수도 있으며, USIM(universal subscriber identity module)에 저장되어 있는 것을 사용할 수도 있다.
단말은 측정한 기지국과 신호세기나 품질이 특정한 값보다 큰 셀 중에서, 가장 큰 값을 가지는 셀을 선택한다(Cell Selection)(S420). 이는 전원이 켜진 단말이 셀 선택을 수행하는 것으로서 초기 셀 선택(initial cell selection)이라 할 수 있다. 셀 선택 절차에 대해서 이후에 상술하기로 한다. 셀 선택 이후 단말은, 기지국이 주기적으로 보내는 시스템 정보를 수신한다. 상기 말하는 특정한 값은 데이터 송/수신에서의 물리적 신호에 대한 품질을 보장받기 위하여 시스템에서 정의된 값을 말한다. 따라서, 적용되는 RAT에 따라 그 값은 다를 수 있다.
단말은 망 등록 필요가 있는 경우 망 등록 절차를 수행한다(S430). 단말은 망으로부터 서비스(예:Paging)를 받기 위하여 자신의 정보(예:IMSI)를 등록한다. 단말은 셀을 선택 할 때 마다 접속하는 망에 등록을 하는 것은 아니며, 시스템 정보로부터 받은 망의 정보(예:Tracking Area Identity; TAI)와 자신이 알고 있는 망의 정보가 다른 경우에 망에 등록을 한다.
단말은 셀에서 제공되는 서비스 환경 또는 단말의 환경 등을 기반으로 셀 재선택을 수행한다(S440). 단말은 서비스 받고 있는 기지국으로부터 측정한 신호의 세기나 품질의 값이 인접한 셀의 기지국으로부터 측정한 값보다 낮다면, 단말이 접속한 기지국의 셀 보다 더 좋은 신호 특성을 제공하는 다른 셀 중 하나를 선택한다. 이 과정을 2번 과정의 초기 셀 선택(Initial Cell Selection)과 구분하여 셀 재선택(Cell Re-Selection)이라 한다. 이때, 신호특성의 변화에 따라 빈번히 셀이 재선택되는 것을 방지하기 위하여 시간적인 제약조건을 둔다. 셀 재선택 절차에 대해서 이후에 상술하기로 한다.
도 5는 RRC 연결을 확립하는 과정을 나타낸 흐름도이다.
단말은 RRC 연결을 요청하는 RRC 연결 요청(RRC Connection Request) 메시지를 네트워크로 보낸다(S510). 네트워크는 RRC 연결 요청에 대한 응답으로 RRC 연결 설정(RRC Connection Setup) 메시지를 보낸다(S520). RRC 연결 설정 메시지를 수신한 후, 단말은 RRC 연결 모드로 진입한다.
단말은 RRC 연결 확립의 성공적인 완료를 확인하기 위해 사용되는 RRC 연결 설정 완료(RRC Connection Setup Complete) 메시지를 네트워크로 보낸다(S530).
도 6은 RRC 연결 재설정 과정을 나타낸 흐름도이다. RRC 연결 재설정(reconfiguration)은 RRC 연결을 수정하는데 사용된다. 이는 RB 확립/수정(modify)/해제(release), 핸드오버 수행, 측정 셋업/수정/해제하기 위해 사용된다.
네트워크는 단말로 RRC 연결을 수정하기 위한 RRC 연결 재설정(RRC Connection Reconfiguration) 메시지를 보낸다(S610). 단말은 RRC 연결 재설정에 대한 응답으로, RRC 연결 재설정의 성공적인 완료를 확인하기 위해 사용되는 RRC 연결 재설정 완료(RRC Connection Reconfiguration Complete) 메시지를 네트워크로 보낸다(S620).
이하에서 PLMN(public land mobile network)에 대하여 설명하도록 한다.
PLMN은 모바일 네트워크 운영자에 의해 배치 및 운용되는 네트워크이다. 각 모바일 네트워크 운영자는 하나 또는 그 이상의 PLMN을 운용한다. 각 PLMN은 MCC(Mobile Country Code) 및 MNC(Mobile Network Code)로 식별될 수 있다. 셀의 PLMN 정보는 시스템 정보에 포함되어 브로드캐스트된다.
PLMN 선택, 셀 선택 및 셀 재선택에 있어서, 다양한 타입의 PLMN들이 단말에 의해 고려될 수 있다.
HPLMN(Home PLMN) : 단말 IMSI의 MCC 및 MNC와 매칭되는 MCC 및 MNC를 가지는 PLMN.
EHPLMN(Equivalent HPLMN): HPLMN과 등가로 취급되는 PLMN.
RPLMN(Registered PLMN): 위치 등록이 성공적으로 마쳐진 PLMN.
EPLMN(Equivalent PLMN): RPLMN과 등가로 취급되는 PLMN.
각 모바일 서비스 수요자는 HPLMN에 가입한다. HPLMN 또는 EHPLMN에 의하여 단말로 일반 서비스가 제공될 때, 단말은 로밍 상태(roaming state)에 있지 않는다. 반면, HPLMN/EHPLMN 이외의 PLMN에 의하여 단말로 서비스가 제공될 때, 단말은 로밍 상태에 있으며, 그 PLMN은 VPLMN(Visited PLMN)이라고 불리운다.
단말은 초기에 전원이 켜지면 사용 가능한 PLMN(public land mobile network)을 검색하고 서비스를 받을 수 있는 적절한 PLMN을 선택한다. PLMN은 모바일 네트워크 운영자(mobile network operator)에 의해 배치되거나(deploy) 운영되는 네트워크이다. 각 모바일 네트워크 운영자는 하나 또는 그 이상의 PLMN을 운영한다. 각각의 PLMN은 MCC(mobile country code) 및 MNC(mobile network code)에 의하여 식별될 수 있다. 셀의 PLMN 정보는 시스템 정보에 포함되어 브로드캐스트된다. 단말은 선택한 PLMN을 등록하려고 시도한다. 등록이 성공한 경우, 선택된 PLMN은 RPLMN(registered PLMN)이 된다. 네트워크는 단말에게 PLMN 리스트를 시그널링할 수 있는데, 이는 PLMN 리스트에 포함된 PLMN들을 RPLMN과 같은 PLMN이라 고려할 수 있다. 네트워크에 등록된 단말은 상시 네트워크에 의하여 접근될 수(reachable) 있어야 한다. 만약 단말이 ECM-CONNECTED 상태(동일하게는 RRC 연결 상태)에 있는 경우, 네트워크는 단말이 서비스를 받고 있음을 인지한다. 그러나, 단말이 ECM-IDLE 상태(동일하게는 RRC 아이들 상태)에 있는 경우, 단말의 상황이 eNB에서는 유효하지 않지만 MME에는 저장되어 있다. 이 경우, ECM-IDLE 상태의 단말의 위치는 TA(tracking Area)들의 리스트의 입도(granularity)로 오직 MME에게만 알려진다. 단일 TA는 TA가 소속된 PLMN 식별자로 구성된 TAI(tracking area identity)및 PLMN 내의 TA를 유일하게 표현하는 TAC(tracking area code)에 의해 식별된다.
이어, 선택한 PLMN이 제공하는 셀들 중에서 상기 단말이 적절한 서비스를 제공받을 수 있는 신호 품질과 특성을 가진 셀을 선택한다.
다음은 단말이 셀을 선택하는 절차에 대해서 자세히 설명한다.
전원이 켜지거나 셀에 머물러 있을 때, 단말은 적절한 품질의 셀을 선택/재선택하여 서비스를 받기 위한 절차들을 수행한다.
RRC 아이들 상태의 단말은 항상 적절한 품질의 셀을 선택하여 이 셀을 통해 서비스를 제공받기 위한 준비를 하고 있어야 한다. 예를 들어, 전원이 막 켜진 단말은 네트워크에 등록을 하기 위해 적절한 품질의 셀을 선택해야 한다. RRC 연결 상태에 있던 상기 단말이 RRC 아이들 상태에 진입하면, 상기 단말은 RRC 아이들 상태에서 머무를 셀을 선택해야 한다. 이와 같이, 상기 단말이 RRC 아이들 상태와 같은 서비스 대기 상태로 머물고 있기 위해서 어떤 조건을 만족하는 셀을 고르는 과정을 셀 선택(Cell Selection)이라고 한다. 중요한 점은, 상기 셀 선택은 상기 단말이 상기 RRC 아이들 상태로 머물러 있을 셀을 현재 결정하지 못한 상태에서 수행하는 것이므로, 가능한 신속하게 셀을 선택하는 것이 무엇보다 중요하다. 따라서 일정 기준 이상의 무선 신호 품질을 제공하는 셀이라면, 비록 이 셀이 단말에게 가장 좋은 무선 신호 품질을 제공하는 셀이 아니라고 하더라도, 단말의 셀 선택 과정에서 선택될 수 있다.
이제 3GPP TS 36.304 V8.5.0 (2009-03) "User Equipment (UE) procedures in idle mode (Release 8)"을 참조하여, 3GPP LTE에서 단말이 셀을 선택하는 방법 및 절차에 대하여 상술한다.
셀 선택 과정은 크게 두 가지로 나뉜다.
먼저 초기 셀 선택 과정으로, 이 과정에서는 상기 단말이 무선 채널에 대한 사전 정보가 없다. 따라서 상기 단말은 적절한 셀을 찾기 위해 모든 무선 채널을 검색한다. 각 채널에서 상기 단말은 가장 강한 셀을 찾는다. 이후, 상기 단말이 셀 선택 기준을 만족하는 적절한(suitable) 셀을 찾기만 하면 해당 셀을 선택한다.
다음으로 단말은 저장된 정보를 활용하거나, 셀에서 방송하고 있는 정보를 활용하여 셀을 선택할 수 있다. 따라서, 초기 셀 선택 과정에 비해 셀 선택이 신속할 수 있다. 단말이 셀 선택 기준을 만족하는 셀을 찾기만 하면 해당 셀을 선택한다. 만약 이 과정을 통해 셀 선택 기준을 만족하는 적절한 셀을 찾지 못하면, 단말은 초기 셀 선택 과정을 수행한다.
셀 선택 기준은 하기 수학식 1과 같이 정의될 수 있다.
Figure PCTKR2014000514-appb-M000001
여기서, 상기 수학식 1의 각 변수는 하기 표 1과 같이 정의될 수 있다.
Srxlev Cell selection RX level value (dB)
Squal Cell selection quality value (dB)
Qrxlevmeas Measured cell RX level value (RSRP)
Qqualmeas Measured cell quality value (RSRQ)
Qrxlevmin Minimum required RX level in the cell (dBm)
Qqualmin Minimum required quality level in the cell (dB)
Qrxlevminoffset Offset to the signalled Qrxlevmin taken into account in the Srxlev evaluation as a result of a periodic search for a higher priority PLMN while camped normally in a VPLMN [5]
Qqualminoffset Offset to the signalled Qqualmin taken into account in the Squal evaluation as a result of a periodic search for a higher priority PLMN while camped normally in a VPLMN [5]
Pcompensation max(PEMAX –PPowerClass, 0) (dB)
PEMAX Maximum TX power level an UE may use when transmitting on the uplink in the cell (dBm) defined as PEMAX in [TS 36.101]
PPowerClass Maximum RF output power of the UE (dBm) according to the UE power class as defined in [TS 36.101]
시그널링된 값들인 Qrxlevminoffset 및 Qqualminoffset은 단말이 VPLMN내의 정규 셀에 캠프 하고 있는 동안 보다 높은 우선순위의 PLMN에 대한 주기적 탐색의 결과로서 셀 선택이 평가되는 경우에 한하여 적용될 수 있다. 위와 같이 보다 높은 우선순위의 PLMN에 대한 주기적 탐색동안, 단말은 이와 같은 보다 높은 우선순위의 PLMN의 다른 셀로부터 저장된 파라미터 값들을 사용하여 셀 선택 평가를 수행할 수 있다.
상기 단말이 일단 셀 선택 과정을 통해 어떤 셀을 선택한 이후, 단말의 이동성 또는 무선 환경의 변화 등으로 단말과 기지국간의 신호의 세기나 품질이 바뀔 수 있다. 따라서 만약 선택한 셀의 품질이 저하되는 경우, 단말은 더 좋은 품질을 제공하는 다른 셀을 선택할 수 있다. 이렇게 셀을 다시 선택하는 경우, 일반적으로 현재 선택된 셀보다 더 좋은 신호 품질을 제공하는 셀을 선택한다. 이런 과정을 셀 재선택(Cell Reselection)이라고 한다. 상기 셀 재선택 과정은, 무선 신호의 품질 관점에서, 일반적으로 단말에게 가장 좋은 품질을 제공하는 셀을 선택하는데 기본적인 목적이 있다.
무선 신호의 품질 관점 이외에, 네트워크는 주파수 별로 우선 순위를 결정하여 단말에게 알릴 수 있다. 이러한 우선 순위를 수신한 단말은, 셀 재선택 과정에서 이 우선 순위를 무선 신호 품질 기준보다 우선적으로 고려하게 된다.
위와 같이 무선 환경의 신호 특성에 따라 셀을 선택 또는 재선택하는 방법이 있으며, 셀 재선택시 재선택을 위한 셀을 선택하는데 있어서, 셀의 RAT와 주파수(frequency) 특성에 따라 다음과 같은 셀 재선택 방법이 있을 수 있다.
- 인트라-주파수(Intra-frequency) 셀 재선택 : 단말이 캠핑(camp) 중인 셀과 같은 RAT과 같은 중심 주파수(center-frequency)를 가지는 셀을 재선택
- 인터-주파수(Inter-frequency) 셀 재선택 : 단말이 캠핑 중인 셀과 같은 RAT과 다른 중심 주파수를 가지는 셀을 재선택
- 인터-RAT(Inter-RAT) 셀 재선택 : 단말이 캠핑 중인 RAT와 다른 RAT을 사용하는 셀을 재선택
셀 재선택 과정의 원칙은 다음과 같다
첫째, 단말은 셀 재선택을 위하여 서빙 셀(serving cell) 및 이웃 셀(neighboring cell)의 품질을 측정한다.
둘째, 셀 재선택은 셀 재선택 기준에 기반하여 수행된다. 셀 재선택 기준은 서빙 셀 및 이웃 셀 측정에 관련하여 아래와 같은 특성을 가지고 있다.
인트라-주파수 셀 재선택은 기본적으로 랭킹(ranking)에 기반한다. 랭킹이라는 것은, 셀 재선택 평가를 위한 지표값을 정의하고, 이 지표값을 이용하여 셀들을 지표값의 크기 순으로 순서를 매기는 작업이다. 가장 좋은 지표를 가지는 셀을 흔히 최고 순위 셀(highest ranked cell)이라고 부른다. 셀 지표값은 단말이 해당 셀에 대해 측정한 값을 기본으로, 필요에 따라 주파수 오프셋 또는 셀 오프셋을 적용한 값이다.
인터-주파수 셀 재선택은 네트워크에 의해 제공된 주파수 우선순위에 기반한다. 단말은 가장 높은 주파수 우선순위를 가진 주파수에 머무를(camp on) 수 있도록 시도한다. 네트워크는 브로드캐스트 시그널링(broadcast signaling)를 통해서 셀 내 단말들이 공통적으로 적용할 또는 주파수 우선순위를 제공하거나, 단말별 시그널링(dedicated signaling)을 통해 단말 별로 각각 주파수 별 우선순위를 제공할 수 있다. 브로드캐스트 시그널링을 통해 제공되는 셀 재선택 우선순위를 공용 우선순위(common priority)라고 할 수 있고, 단말별로 네트워크가 설정하는 셀 재선택 우선 순위를 전용 우선순위(dedicated priority)라고 할 수 있다. 단말은 전용 우선순위를 수신하면, 전용 우선순위와 관련된 유효 시간(validity time)를 함께 수신할 수 있다. 단말은 전용 우선순위를 수신하면 함께 수신한 유효 시간으로 설정된 유효성 타이머(validity timer)를 개시한다. 단말은 유효성 타이머가 동작하는 동안 RRC 아이들 모드에서 전용 우선순위를 적용한다. 유효성 타이머가 만료되면 단말은 전용 우선순위를 폐기하고, 다시 공용 우선순위를 적용한다.
인터-주파수 셀 재선택을 위해 네트워크는 단말에게 셀 재선택에 사용되는 파라미터(예를 들어 주파수별 오프셋(frequency-specific offset))를 주파수별로 제공할 수 있다.
인트라-주파수 셀 재선택 또는 인터-주파수 셀 재선택을 위해 네트워크는 단말에게 셀 재선택에 사용되는 이웃 셀 리스트(Neighboring Cell List, NCL)를 단말에게 제공할 수 있다. 이 NCL은 셀 재선택에 사용되는 셀 별 파라미터(예를 들어 셀 별 오프셋(cell-specific offset))를 포함한다
인트라-주파수 또는 인터-주파수 셀 재선택을 위해 네트워크는 단말에게 셀 재선택에 사용되는 셀 재선택 금지 리스트(black list)를 단말에게 제공할 수 있다. 금지 리스트에 포함된 셀에 대해 단말은 셀 재선택을 수행하지 않는다.
이어서, 셀 재선택 평가 과정에서 수행하는 랭킹에 관해 설명한다.
셀의 우선순위를 주는데 사용되는 랭킹 지표(ranking criterion)은 수학식 2와 같이 정의된다.
Figure PCTKR2014000514-appb-M000002
여기서, Rs는 서빙 셀의 랭킹 지표, Rn은 이웃 셀의 랭킹 지표, Qmeas,s는 단말이 서빙 셀에 대해 측정한 품질값, Qmeas,n는 단말이 이웃 셀에 대해 측정한 품질값, Qhyst는 랭킹을 위한 히스테리시스(hysteresis) 값, Qoffset은 두 셀간의 오프셋이다.
인트라-주파수에서, 단말이 서빙 셀과 이웃 셀 간의 오프셋(Qoffsets,n)을 수신한 경우 Qoffset=Qoffsets,n 이고, 단말이 Qoffsets,n 을 수신하지 않은 경우에는 Qoffset = 0 이다.
인터-주파수에서, 단말이 해당 셀에 대한 오프셋(Qoffsets,n)을 수신한 경우 Qoffset = Qoffsets,n + Qfrequency 이고, 단말이 Qoffsets,n 을 수신하지 않은 경우 Qoffset = Qfrequency 이다.
서빙 셀의 랭킹 지표(Rs)과 이웃 셀의 랭킹 지표(Rn)이 서로 비슷한 상태에서 변동하면, 변동 결과 랭킹 순위가 자꾸 뒤바뀌어 단말이 두 셀을 번갈아가면서 재선택을 할 수 있다. Qhyst는 셀 재선택에서 히스테리시스를 주어, 단말이 두 셀을 번갈아가면서 재선택하는 것을 막기 위한 파라미터이다.
단말은 위 식에 따라 서빙 셀의 Rs 및 이웃 셀의 Rn을 측정하고, 랭킹 지표 값이 가장 큰 값을 가진 셀을 최고 순위(highest ranked) 셀로 간주하고, 이 셀을 재선택한다.
상기 기준에 의하면, 셀의 품질이 셀 재선택에서 가장 주요한 기준으로 작용하는 것을 확인할 수 있다. 만약 재선택한 셀이 정규 셀(suitable cell)이 아니면 단말은 해당 주파수 또는 해당 셀을 셀 재선택 대상에서 제외한다.
셀 재선택 평가에 따라 단말이 셀 재선택을 수행함에 있어서, 단말은 상기 셀 재선택 기준이 특정 시간 동안 만족되는 경우 셀 재선택 기준이 만족되었다고 결정하고 선택된 타겟 셀로 셀 이동을 할 수 있다. 여기서 특정 시간은 Treselection 파라미터로 네트워크로부터 주어질 수 있다. Treselection은 셀 재선택 타이머 값을 특정하고, E-UTRAN의 각 주파수에 대하여 및 다른 RAT에 대하여 정의될 수 있다.
이하에서는 단말의 셀 재선택을 위해 사용되는 셀 재선택 정보에 대하여 설명하도록 한다.
셀 재선택 정보는 셀 재선택 파라미터의 형식으로 네트워크로부터 브로드캐스트되는 시스템 정보에 포함되어 전송되고 단말에 제공될 수 있다. 단말에 제공되는 셀 재선택 파라미터는 아래와 같은 종류의 것들이 있을 수 있다.
셀 재선택 우선순위(cellReselectionPriority): cellReselectionPriority 파라미터는 E-UTRAN의 주파수, UTRAN의 주파수, GERAN 주파수들의 그룹, CDMA2000 HRPD의 밴드 클래스 또는 CDMA2000 1xRTT의 밴드 클래스에 대한 우선순위를 특정한다.
Qoffsets,n: 두 셀간의 오프셋 값을 특정한다.
Qoffsetfrequency: 동일한 우선순위의 E-UTRAN 주파수에 대한 주파수 특정 오프셋을 특정한다.
Qhyst: 랭크 지표에 대한 히스테리시스 값을 특정한다.
Qqualmin: 최소 요구되는 품질 레벨을 특정하며 dB 단위로 특정된다.
Qrxlevmin: 최소 요구되는 Rx 레벨을 특정하며 dB 단위로 특정된다.
TreselectionEUTRA: E-UTRAN을 위한 셀 재선택 타이머 값을 특정하며, E-UTRAN의 각 주파수에 대하여 설정될 수 있다.
TreselectionUTRAN: UTRAN을 위한 셀 재선택 타이머 값을 특정한다.
TreselectionGERA: GERAN을 위한 셀 재선택 타이머 값을 특정한다.
TreselectionCDMA_HRPD: CDMA HRPD를 위한 셀 재선택 타이머 값을 특정한다.
TreselectionCDMA_1xRTT: CDMA 1xRTT를 위한 셀 재선택 타이머 값을 특정한다.
Threshx, HighP: 서빙 주파수보다 보다 높은 우선순위의 RAT/주파수로의 셀 재선택시 단말에 의해 사용되는 Srxlev 임계값을 dB 단위로 특정한다. 특정 임계값이 E-UTRAN 및 UTRAN의 각 주파수, GERAN 주파수의 각 그룹, CDMA2000 HRPD의 각 밴드 클래스 및 CDMA2000 1xRTT의 각 밴드 클래스에 대하여 개별적으로 설정될 수 있다.
Threshx, HighQ: 서빙 주파수보다 보다 높은 우선순위의 RAT/주파수로의 셀 재선택시 단말에 의해 사용되는 Squal 임계값을 dB 단위로 특정한다. 특정 임계값이 E-UTRAN 및 UTRAN FDD의 각 주파수에 대하여 개별적으로 설정될 수 있다.
Threshx, LowP: 서빙 주파수보다 보다 낮은 우선순위의 RAT/주파수로의 셀 재선택시 단말에 의해 사용되는 Srxlev 임계값을 dB 단위로 특정한다. 특정 임계값이 E-UTRAN 및 UTRAN의 각 주파수, GERAN 주파수의 각 그룹, CDMA2000 HRPD의 각 밴드 클래스 및 CDMA2000 1xRTT의 각 밴드 클래스에 대하여 개별적으로 설정될 수 있다.
Threshx, LowQ: 서빙 주파수보다 보다 낮은 우선순위의 RAT/주파수로의 셀 재선택시 단말에 의해 사용되는 Squal 임계값을 dB 단위로 특정한다. 특정 임계값이 E-UTRAN 및 UTRAN FDD의 각 주파수에 대하여 개별적으로 설정될 수 있다.
ThreshServing, LowP: 보다 낮은 RAT/주파수로의 셀 재선택시 서빙 셀 상의 단말에 의해 사용되는 Srxlev 임계값을 dB 단위로 특정한다.
ThreshServing, LowQ: 보다 낮은 RAT/주파수로의 셀 재선택시 서빙 셀 상의 단말에 의해 사용되는 Squal 임계값을 dB 단위로 특정한다.
SIntraSerachP: 인트라-주파수 측정에 대한 Srxlev 임계값을 dB 단위로 특정한다.
SIntraSerachQ: 인트라-주파수 측정에 대한 Squal 임계값을 dB 단위로 특정한다.
SnonIntraSerachP: E-UTRAN 인터-주파수 및 인터-RAT 측정에 대한 Srxlev 임계값을 dB 단위로 특정한다.
SnonIntraSerachQ: E-UTRAN 인터-주파수 및 인터-RAT 측정에 대한 Squal 임계값을 dB 단위로 특정한다.
한편 셀 재선택 정보는 네트워크와 단말간 RRC 연결 해제를 위해 전송되는 RRC 메시지인 RRC 연결 해제 메시지에 포함되어 단말에 제공될 수도 있다. 예를 들어, RRC 연결 해제 메시지에는 E-UTRAN의 부반송파 주파수 리스트 및 셀 재선택 우선순위, UTRA-FDD의 부반송파 주파수 리스트 및 셀 재선택 우선순위, UTRA-TDD의 부반송파 주파수 리스트 및 셀 재선택 우선순위, GERAN의 부반송파 주파수 리스트 및 셀 재선택 우선순위, CDMA2000 HRPD의 밴드 클래스 리스트 및 셀 재선택 우선순위, CDMA2000 1xRTT의 밴드 클래스 리스트 및 셀 재선택 우선순위 등을 포함할 수 있다.
이하에서는 복수의 사업자에 의한 RAN 공유에 대하여 설명한다.
복수의 사업자들은 개별적으로 RAN을 구축하여 서비스를 제공할 수도 있지만, 특정 사업자에 의해 구축된 셀을 공유하여 가입자에게 서비스를 제공할 수도 있다. 이를 RAN 공유라 한다. 이 때, 복수의 사업자에 의해 공유되고 있는 셀은 PLMN 리스트를 브로드캐스트할 수 있다. PLMN 리스트는 셀이 브로드캐스트하는 시스템 정보의 SIB1에 포함되어 전송될 수 있다. 한편, SIB1에 포함된 PLMN리스트에 있어서 가장 먼저 리스트된 PLMN 식별자가 주PLMN(Primary PLMN)를 지시할 수 있도록 구현될 수 있다.
한 개의 셀이 복수의 사업자로부터 공유되는 상황에서 공유되는 셀에 의해 제공되는 셀 재선택 정보는 PLMN 리스트 내의 모든 PLMN에 대하여 공통적으로 적용될 수 있다. 일반적으로 공유되는 셀에 의해 제공되는 셀 재선택 정보는 주 PLMN의 정책에 주로 부합하도록 설정되게 된다. 따라서, 부 PLMN에 따른 서비스를 제공받는 단말들은 서비스 제공을 위한 최적화된 셀 재선택 정보가 아닌 정보를 기반으로 셀 재선택을 수행하게 된다.
이하에서는 RRC 연결 상태에서의 단말의 이동과 관련된 핸드오버에 대하여 설명한다.
도 7은 핸드오버 과정을 나타낸 흐름도이다.
단말(UE)은 소스 기지국(Source BS)으로 측정 보고(Measurement Report)를 전송한다(S710). 소스 기지국은 수신한 측정 보고를 이용하여 핸드오버 여부를 결정한다. 소스 기지국이 인접 셀로의 핸드오버를 결정한 경우, 상기 인접 셀이 타겟 셀(Target Cell)이 되고, 타겟 셀에 속한 기지국이 타겟 기지국(Target BS)이 된다.
소스 기지국은 타겟 기지국으로 핸드오버 준비(Handover Preparation) 메시지를 전송한다(S711). 타겟 기지국은 핸드오버의 성공 가능성을 증가시키기 위해 승인 제어(Admission Control)를 수행한다.
타겟 기지국은 소스 기지국으로 핸드오버 준비 ACK(Acknowledgement) 메시지를 전송한다(S712). 핸드오버 준비 ACK 메시지는 C-RNTI(Cell-Radio Network Temporary Identifier) 및/또는 전용(dedicated) 랜덤 액세스 프리앰블(preamble)을 포함할 수 있다. C-RNTI는 셀 내에서 단말을 구별하기 위한 식별자이다. 전용 랜덤 액세스 프리앰블은 단말이 일정 기간동안 독점 사용할 수 있는 프리앰블로, 비-경쟁(non-contention) 기반 랜덤 액세스 과정을 수행할 때 사용된다. 랜덤 액세스 과정은 단말이 임의의 랜덤 액세스 프리앰블을 사용하는 경쟁 기반의 랜덤 액세스 과정과 단말이 전용 랜덤 액세스 프리앰블을 사용하는 비-경쟁 기반의 랜덤 액세스 과정으로 나눌 수 있다. 비-경쟁 기반의 랜덤 액세스 과정은 경쟁 기반의 랜덤 액세스 과정에 비해 타 단말과의 경쟁으로 인한 핸드오버의 지연을 방지할 수 있다.
소스 기지국은 단말로 핸드오버 명령(Handover Command) 메시지를 전송한다(S713). 핸드오버 명령 메시지는 RRC(Radio Resource Control) 연결 재설정(RRC Connection Reconfiguration) 메시지의 형태로 전송될 수 있다. 핸드오버 명령 메시지는 타겟 기지국으로부터 받은 C-RNTI 및 전용 랜덤 액세스 프리앰블을 포함할 수 있다.
단말은 소스 기지국으로부터 핸드오버 명령 메시지를 수신한 후, 타겟 기지국과 동기화(synchronization)한다(S714). 단말은 타겟 기지국의 PSS와 SSS를 수신하여 동기화하고, PBCH를 수신하여 시스템 정보를 획득한다.
단말은 타겟 기지국으로 랜덤 액세스 프리앰블을 전송하여, 랜덤 액세스 과정을 개시한다(S715). 단말은 핸드오버 명령 메시지에 포함된 전용 랜덤 액세스 프리앰블을 사용할 수 있다. 또는, 전용 랜덤 액세스 프리앰블이 할당되지 않았다면, 단말은 랜덤 액세스 프리앰블 집합에서 임의로 선택된 랜덤 액세스 프리앰블을 사용할 수 있다.
타겟 기지국은 단말로 랜덤 액세스 응답 메시지를 전송한다(S716). 랜덤 액세스 응답 메시지는 상향링크 자원 할당 및/또는 시간 옵셋(timing advance)을 포함할 수 있다.
랜덤 액세스 응답 메시지를 수신한 단말은 시간 옵셋을 기반으로 상향링크 동기를 조정하고, 상기 상향링크 자원 할당을 이용하여 타겟 기지국으로 핸드오버 확인(Handover Confirm) 메시지를 전송한다(S717). 핸드오버 확인 메시지는 핸드오버 과정이 완료됨을 지시하고, 상향링크 버퍼 상태 보고(Buffer Status Report)와 함께 전송될 수 있다.
타겟 기지국은 MME(Mobility Management Entity)로 경로 변경 요청(Path Switch Request) 메시지를 전송하여, MME에게 단말의 셀이 변경되었음을 알린다(S718).
MME는 S-GW(Serving-Gateway)로 사용자 평면 업데이트 요청(User Plane Update Request) 메시지를 전송한다(S719).
S-GW는 타겟 기지국으로 하향링크 데이터 경로를 변경(Switch)한다(S720).
S-GW는 MME로 사용자 평면 업데이트 응답(User Plane Update Response) 메시지를 전송한다(S721).
MME는 타겟 기지국으로 경로 변경 요청 ACK(Path Switch Request ACK) 메시지를 전송한다(S722).
타겟 기지국은 소스 기지국으로 자원 해제(Resource Release) 메시지를 전송하여 핸드오버의 성공을 알린다(S723).
소스 기지국은 상기 단말에 관련한 자원을 해제한다(S724).
이하에서, RLM(Radio Link Monitoring)에 대하여 설명하도록 한다.
단말은 PCell의 하향링크 무선 링크 품질을 감지하기 위해 셀 특정 참조 신호(cell-specific reference signal)을 기반으로 하향링크 품질을 모니터링한다. 단말은 PCell의 하향링크 무선 링크 품질 모니터링 목적으로 하향링크 무선 링크 품질을 추정하고 그것을 임계값 Qout 및 Qin과 비교한다. 임계값 Qout은 하향링크 무선 링크가 안정적으로 수신될 수 없는 수준으로서 정의되며, 이는 PDFICH 에러를 고려하여 가상의 PDCCH 전송(hypothetical PDCCH transmission)의 10% 블록 에러율에 상응한다. 임계값 Qin은 Qout의 레벨보다 더 안정적으로 수신될 수 있는 하향링크 무선 링크 품질 레벨로 정의되며, 이는 PCFICH 에러를 고려하여 가상의 PDCCH 전송의 2% 블록 에러율에 상응한다.
이제 무선 링크 실패(Radio Link Failure; RLF)에 대하여 설명한다.
단말은 서비스를 수신하는 서빙셀과의 무선 링크의 품질 유지를 위해 지속적으로 측정을 수행한다. 단말은 서빙셀과의 무선 링크의 품질 악화(deterioration)로 인하여 현재 상황에서 통신이 불가능한지 여부를 결정한다. 만약, 서빙셀의 품질이 너무 낮아서 통신이 거의 불가능한 경우, 단말은 현재 상황을 무선 연결 실패로 결정한다.
만약 무선 링크 실패가 결정되면, 단말은 현재의 서빙셀과의 통신 유지를 포기하고, 셀 선택(또는 셀 재선택) 절차를 통해 새로운 셀을 선택하고, 새로운 셀로의 RRC 연결 재확립(RRC connection re-establishment)을 시도한다.
3GPP LTE의 스펙에서는 정상적인 통신을 할 수 없는 경우로 아래와 같은 예시를 들고 있다.
- 단말의 물리 계층의 무선 품질 측정 결과를 기반으로 단말이 하향 통신 링크 품질에 심각한 문제가 있다고 판단한 경우(RLM 수행 중 PCell의 품질이 낮다고 판단한 경우)
- MAC 부계층에서 랜덤 액세스(random access) 절차가 계속적으로 실패하여 상향링크 전송에 문제가 있다고 판단한 경우.
- RLC 부계층에서 상향 데이터 전송이 계속적으로 실패하여 상향 링크 전송에 문제가 있다고 판단한 경우.
- 핸드오버를 실패한 것으로 판단한 경우.
- 단말이 수신한 메시지가 무결성 검사(integrity check)를 통과하지 못한 경우.
이하에서는 RRC 연결 재확립(RRC connection re-establishment) 절차에 대하여 보다 상세히 설명한다.
도 8은 RRC 연결 재확립 절차를 나타내는 도면이다.
도 8을 참조하면, 단말은 SRB 0(Signaling Radio Bearer #0)을 제외한 설정되어 있던 모든 무선 베어러(radio bearer) 사용을 중단하고, AS(Access Stratum)의 각종 부계층을 초기화 시킨다(S810). 또한, 각 부계층 및 물리 계층을 기본 구성(default configuration)으로 설정한다. 이와 같은 과정중에 단말은 RRC 연결 상태를 유지한다.
단말은 RRC 연결 재설정 절차를 수행하기 위한 셀 선택 절차를 수행한다(S820). RRC 연결 재확립 절차 중 셀 선택 절차는 단말이 RRC 연결 상태를 유지하고 있음에도 불구하고, 단말이 RRC 아이들 상태에서 수행하는 셀 선택 절차와 동일하게 수행될 수 있다.
단말은 셀 선택 절차를 수행한 후 해당 셀의 시스템 정보를 확인하여 해당 셀이 적합한 셀인지 여부를 판단한다(S830). 만약 선택된 셀이 적절한 E-UTRAN 셀이라고 판단된 경우, 단말은 해당 셀로 RRC 연결 재확립 요청 메시지(RRC connection reestablishment request message)를 전송한다(S840).
한편, RRC 연결 재확립 절차를 수행하기 위한 셀 선택 절차를 통하여 선택된 셀이 E-UTRAN 이외의 다른 RAT을 사용하는 셀이라고 판단된 경우, RRC 연결 재확립 절차를 중단되고, 단말은 RRC 아이들 상태로 진입한다(S850).
단말은 셀 선택 절차 및 선택한 셀의 시스템 정보 수신을 통하여 셀의 적절성 확인은 제한된 시간 내에 마치도록 구현될 수 있다. 이를 위해 단말은 RRC 연결 재확립 절차를 개시함에 따라 타이머를 구동시킬 수 있다. 타이머는 단말이 적합한 셀을 선택하였다고 판단된 경우 중단될 수 있다. 타이머가 만료된 경우 단말은 RRC 연결 재확립 절차가 실패하였음을 간주하고 RRC 아이들 상태로 진입할 수 있다. 이 타이머를 이하에서 무선 링크 실패 타이머라고 언급하도록 한다. LTE 스펙 TS 36.331에서는 T311이라는 이름의 타이머가 무선 링크 실패 타이머로 활용될 수 있다. 단말은 이 타이머의 설정 값을 서빙 셀의 시스템 정보로부터 획득할 수 있다.
단말로부터 RRC 연결 재확립 요청 메시지를 수신하고 요청을 수락한 경우, 셀은 단말에게 RRC 연결 재확립 메시지(RRC connection reestablishment message)를 전송한다.
셀로부터 RRC 연결 재확립 메시지를 수신한 단말은 SRB1에 대한 PDCP 부계층과 RLC 부계층을 재구성한다. 또한 보안 설정과 관련된 각종 키 값들을 다시 계산하고, 보안을 담당하는 PDCP 부계층을 새로 계산한 보안키 값들로 재구성한다. 이를 통해 단말과 셀간 SRB 1이 개방되고 RRC 제어 메시지를 주고 받을 수 있게 된다. 단말은 SRB1의 재개를 완료하고, 셀로 RRC 연결 재확립 절차가 완료되었다는 RRC 연결 재확립 완료 메시지(RRC connection reestablishment complete message)를 전송한다(S860).
반면, 단말로부터 RRC 연결 재확립 요청 메시지를 수신하고 요청을 수락하지 않은 경우, 셀은 단말에게 RRC 연결 재확립 거절 메시지(RRC connection reestablishment reject message)를 전송한다.
RRC 연결 재확립 절차가 성공적으로 수행되면, 셀과 단말은 RRC 연결 재설정 절차를 수행한다. 이를 통하여 단말은 RRC 연결 재확립 절차를 수행하기 전의 상태를 회복하고, 서비스의 연속성을 최대한 보장한다.
이하에서 측정 및 측정 보고에 대하여 설명한다.
이동 통신 시스템에서 단말의 이동성(mobility) 지원은 필수적이다. 따라서, 단말은 현재 서비스를 제공하는 서빙 셀(serving cell)에 대한 품질 및 이웃셀에 대한 품질을 지속적으로 측정한다. 단말은 측정 결과를 적절한 시간에 네트워크에게 보고하고, 네트워크는 핸드오버 등을 통해 단말에게 최적의 이동성을 제공한다. 흔히 이러한 목적의 측정을 무선 자원 관리 측정 (RRM(radio resource management) measurement)라고 일컫는다.
단말은 이동성 지원의 목적 이외에 사업자가 네트워크를 운영하는데 도움이 될 수 있는 정보를 제공하기 위해, 네트워크가 설정하는 특정한 목적의 측정을 수행하고, 그 측정 결과를 네트워크에게 보고할 수 있다. 예를 들어, 단말이 네트워크가 정한 특정 셀의 브로드캐스트 정보를 수신한다. 단말은 상기 특정 셀의 셀 식별자(Cell Identity)(이를 광역(Global) 셀 식별자라고도 함), 상기 특정 셀이 속한 위치 식별 정보(예를 들어, Tracking Area Code) 및/또는 기타 셀 정보(예를 들어, CSG(Closed Subscriber Group) 셀의 멤버 여부)를 서빙 셀에게 보고할 수 있다.
이동 중의 단말은 특정 지역의 품질이 매우 나쁘다는 것을 측정을 통해 확인한 경우, 품질이 나쁜 셀들에 대한 위치 정보 및 측정 결과를 네트워크에 보고할 수 있다. 네트워크는 네크워크의 운영을 돕는 단말들의 측정 결과의 보고를 바탕으로 네트워크의 최적화를 꾀할 수 있다.
주파수 재사용(Frequency reuse factor)이 1인 이동 통신 시스템에서는, 이동성이 대부분 동일한 주파수 밴드에 있는 서로 다른 셀 간에 이루어진다. 따라서, 단말의 이동성을 잘 보장하기 위해서는, 단말은 서빙 셀의 중심 주파수와 동일한 중심 주파수를 갖는 주변 셀들의 품질 및 셀 정보를 잘 측정할 수 있어야 한다. 이와 같이 서빙 셀의 중심 주파수와 동일한 중심 주파수를 갖는 셀에 대한 측정을 인트라-주파수 측정(intra-frequency measurement)라고 부른다. 단말은 인트라-주파수 측정을 수행하여 측정 결과를 네트워크에게 적절한 시간에 보고하여, 해당되는 측정 결과의 목적이 달성되도록 한다.
이동 통신 사업자는 복수의 주파수 밴드를 사용하여 네트워크를 운용할 수도 있다. 복수의 주파수 밴드를 통해 통신 시스템의 서비스가 제공되는 경우, 단말에게 최적의 이동성을 보장하기 위해서는, 단말은 서빙 셀의 중심 주파수와 다른 중심 주파수를 갖는 주변 셀들의 품질 및 셀 정보를 잘 측정할 수 있어야 한다. 이와 같이, 서빙 셀의 중심 주파수와 다른 중심 주파수를 갖는 셀에 대한 측정을 인터-주파수 측정(inter-frequency measurement)라고 부른다. 단말은 인터-주파수 측정을 수행하여 측정 결과를 네트워크에게 적절한 시간에 보고할 수 있어야 한다.
단말이 다른 RAT을 기반으로 한 네트워크에 대한 측정을 지원할 경우, 기지국 설정에 의해 해당 네크워크의 셀에 대한 측정을 할 수도 있다. 이러한, 측정을 인터-라디오 접근 방식(inter-RAT(Radio Access Technology)) 측정이라고 한다. 예를 들어, RAT는 3GPP 표준 규격을 따르는 UTRAN(UMTS Terrestrial Radio Access Network) 및 GERAN(GSM EDGE Radio Access Network)을 포함할 수 있으며, 3GPP2 표준 규격을 따르는 CDMA 2000 시스템 역시 포함할 수 있다.
도 9는 기존의 측정 수행 방법을 나타낸 흐름도이다.
단말은 기지국으로부터 측정 설정(measurement configuration) 정보를 수신한다(S910). 측정 설정 정보를 포함하는 메시지를 측정 설정 메시지라 한다. 단말은 측정 설정 정보를 기반으로 측정을 수행한다(S920). 단말은 측정 결과가 측정 설정 정보 내의 보고 조건을 만족하면, 측정 결과를 기지국에게 보고한다(S930). 측정 결과를 포함하는 메시지를 측정 보고 메시지라 한다.
측정 설정 정보는 다음과 같은 정보를 포함할 수 있다.
(1) 측정 대상(Measurement object) 정보: 단말이 측정을 수행할 대상에 관한 정보이다. 측정 대상은 셀내 측정의 대상인 인트라-주파수 측정 대상, 셀간 측정의 대상인 인터-주파수 측정 대상, 및 인터-RAT 측정의 대상인 인터-RAT 측정 대상 중 적어도 어느 하나를 포함한다. 예를 들어, 인트라-주파수 측정 대상은 서빙 셀과 동일한 주파수 밴드를 갖는 주변 셀을 지시하고, 인터-주파수 측정 대상은 서빙 셀과 다른 주파수 밴드를 갖는 주변 셀을 지시하고, 인터-RAT 측정 대상은 서빙 셀의 RAT와 다른 RAT의 주변 셀을 지시할 수 있다.
(2) 보고 설정(Reporting configuration) 정보: 단말이 측정 결과를 전송하는 것을 언제 보고하는지에 관한 보고 조건 및 보고 타입(type)에 관한 정보이다. 보고 설정 정보는 보고 설정의 리스트로 구성될 수 있다. 각 보고 설정은 보고 기준(reporting criterion) 및 보고 포맷(reporting format)을 포함할 수 있다. 보고 기준은 단말이 측정 결과를 전송하는 것을 트리거하는 기준이다. 보고 기준은 측정 보고의 주기 또는 측정 보고를 위한 단일 이벤트일 수 있다. 보고 포맷은 단말이 측정 결과를 어떤 타입으로 구성할 것인지에 관한 정보이다.
(3) 측정 식별자(Measurement identity) 정보: 측정 대상과 보고 설정을 연관시켜, 단말이 어떤 측정 대상에 대해 언제 어떤 타입으로 보고할 것인지를 결정하도록 하는 측정 식별자에 관한 정보이다. 측정 식별자 정보는 측정 보고 메시지에 포함되어, 측정 결과가 어떤 측정 대상에 대한 것이며, 측정 보고가 어떤 보고 조건으로 발생하였는지를 나타낼 수 있다.
(4) 양적 설정(Quantity configuration) 정보: 측정 단위, 보고 단위 및/또는 측정 결과값의 필터링을 설정하기 위한 파라미터에 관한 정보이다.
(5) 측정 갭(Measurement gap) 정보: 하향링크 전송 또는 상향링크 전송이 스케쥴링되지 않아, 단말이 서빙 셀과의 데이터 전송에 대한 고려 없이 오직 측정을 하는데 사용될 수 있는 구간인 측정 갭에 관한 정보이다.
단말은 측정 절차를 수행하기 위해, 측정 대상 리스트, 측정 보고 설정 리스트 및 측정 식별자 리스트를 가지고 있다.
3GPP LTE에서 기지국은 단말에게 하나의 주파수 밴드에 대해 하나의 측정 대상만을 설정할 수 있다. 3GPP TS 36.331 V8.5.0 (2009-03) "Evolved Universal Terrestrial Radio Access (E-UTRA) Radio Resource Control (RRC); Protocol specification (Release 8)"의 5.5.4절에 의하면, 다음 표와 같은 측정 보고가 유발되는 이벤트들이 정의되어 있다.
이벤트 보고 조건
Event A1 Serving becomes better than threshold
Event A2 Serving becomes worse than threshold
Event A3 Neighbour becomes offset better than serving
Event A4 Neighbour becomes better than threshold
Event A5 Serving becomes worse than threshold1 and neighbour becomes better than threshold2
Event B1 Inter RAT neighbour becomes better than threshold
Event B2 Serving becomes worse than threshold1 and inter RAT neighbour becomes better than threshold2
단말의 측정 결과가 설정된 이벤트를 만족하면, 단말은 측정 보고 메시지를 기지국으로 전송한다.
도 10은 단말에게 설정된 측정 설정의 일 예를 나타낸다.
먼저, 측정 식별자 1(1001)은 인트라-주파수 측정 대상과 보고 설정 1을 연결하고 있다. 단말은 셀내 측정(intra frequency measurement)을 수행하며, 보고 설정 1이 측정 결과 보고의 기준 및 보고 타입을 결정하는데 사용된다.
측정 식별자 2(1002)는 측정 식별자 1(1001)과 마찬가지로 인트라-주파수 측정 대상과 연결되어 있지만, 인트라-주파수 측정 대상을 보고 설정 2에 연결하고 있다. 단말은 측정을 수행하며, 보고 설정 2이 측정 결과 보고의 기준 및 보고 타입를 결정하는데 사용된다.
측정 식별자 1(1001)과 측정 식별자 2(1002)에 의해, 단말은 인트라-주파수 측정 대상에 대한 측정 결과가 보고 설정 1 및 보고 설정 2 중 어느 하나를 만족하더라도 측정 결과를 전송한다.
측정 식별자 3(1003)은 인터-주파수 측정 대상 1과 보고 설정 3을 연결하고 있다. 단말은 인터-주파수 측정 대상 1에 대한 측정 결과가 보고 설정 1에 포함된 보고 조건을 만족하면 측정 결과를 보고한다.
측정 식별자 4(1004)은 인터-주파수 측정 대상 2과 보고 설정 2을 연결하고 있다. 단말은 인터-주파수 측정 대상 2에 대한 측정 결과가 보고 설정 2에 포함된 보고 조건을 만족하면 측정 결과를 보고한다.
한편, 측정 대상, 보고 설정 및/또는 측정 식별자는 추가, 변경 및/또는 삭제가 가능하다. 이는 기지국이 단말에게 새로운 측정 설정 메시지를 보내거나, 측정 설정 변경 메시지를 보냄으로써 지시할 수 있다.
도 11은 측정 식별자를 삭제하는 예를 나타낸다. 측정 식별자 2(1002)가 삭제되면, 측정 식별자 2(1002)와 연관된 측정 대상에 대한 측정이 중단되고, 측정 보고도 전송되지 않는다. 삭제된 측정 식별자와 연관된 측정 대상이나 보고 설정은 변경되지 않을 수 있다.
도 12는 측정 대상을 삭제하는 예를 나타낸다. 인터-주파수 측정 대상 1이 삭제되면, 단말은 연관된 측정 식별자 3(1003)도 또한 삭제한다. 인터-주파수 측정 대상 1에 대한 측정이 중단되고, 측정 보고도 전송되지 않는다. 그러나, 삭제된 인터-주파수 측정 대상 1에 연관된 보고 설정은 변경 또는 삭제되지 않을 수 있다.
보고 설정이 제거되면, 단말은 연관된 측정 식별자 역시 제거한다. 단말은 연관된 측정 식별자에 의해 연관된 측정 대상에 대한 측정을 중단한다. 그러나, 삭제된 보고 설정에 연관된 측정 대상은 변경 또는 삭제되지 않을 수 있다.
측정 보고는 측정 식별자, 서빙셀의 측정된 품질 및 주변 셀(neighboring cell)의 측정 결과를 포함할 수 있다. 측정 식별자는 측정 보고가 트리거된 측정 대상을 식별한다. 주변 셀의 측정 결과는 주변 셀의 셀 식별자 및 측정된 품질을 포함할 수 있다. 측정된 품질은 RSRP(Reference Signal Received Power) 및 RSRQ(Reference Signal Received Quality) 중 적어도 하나를 포함할 수 있다.
이하에서는 RRC 연결 거절과 관련된 단말 및 네트워크의 운영에 대하여 설명하도록 한다.
통신 환경의 혼잡 등과 같이 특정 주파수 및/또는 특정 RAT에서 단말에 정상적인 서비스를 제공하지 못하는 등의 현상이 발생하면, 네트워크는 해당 주파수 및/또는 해당 RAT의 모든 주파수에 대하여 셀 재선택을 위한 최저 우선순위를 적용하도록 설정할 수 있다.
네트워크에 의하여 설정된 최저 우선순위 적용은 단말의 RRC 연결 확립 절차에도 영향을 준다. RRC 아이들 상태의 단말은 셀 선택 과정을 통해 타겟 셀을 선택하고, 해당 셀과의 RRC 연결 확립을 시도한다. 타겟 셀이 혼잡 등으로 인해 단말에 정상적인 서비스를 제공하지 못하는 등의 이유로 타겟 셀은 단말로부터 수신한 RRC 연결 요청을 거절할 수 있으며, 이에 따라 타겟 셀은 단말에 RRC 연결 거절 메시지를 전송할 수 있다.
타겟 셀은 단말로 하여금 셀 재선택을 수행함에 있어서 해당 주파수 및/또는 해당 RAT의 모든 주파수에 대하여 최저 우선순위를 적용할 것을 지시하는 최저 우선순위 요청 정보를 RRC 연결 거절 메시지에 포함시킬 수 있다. 최저 우선순위 요청 정보는 최저 우선순위가 적용되는 타입을 지시하는 최저 우선순위 타입 정보 및 최저 우선순위의 적용 지속시간인 최저 우선순위 타이머 정보를 포함할 수 있다. 최저 우선순위 타입 정보는 RRC 연결 거절 메시지를 전송한 셀의 주파수에 대하여 최저 우선순위를 적용할 것을 지시하거나, 또는 해당 셀의 RAT의 모든 주파수에 대하여 최저 우선순위를 적용할 것을 지시하도록 설정될 수 있다.
단말은 최저 우선순위 요청 정보가 포함된 RRC 연결 거절 메시지를 수신하면, 최저 우선순위 적용 지속시간으로 설정된 타이머를 개시시키고, 최저 우선순위 타입 정보에 의해 지시된 대상에 대하여 최저 우선순위를 적용하여 셀 재선택을 수행할 수 있다.
전술한 바와 같이 네트워크 운영상 최저 우선순위 적용을 설정하여 운영되고 있는 경우, 특정 네트워크 노드는 최저 우선순위 적용 상황에 대하여 인지하고 있지만, 다른 네트워크 노드는 최저 우선순위 적용 상황에 대하여 인지하고 있지 못할 수 있다. 이와 같은 무선 통신 환경에서 단말이 이동 중인 경우 단말은 서비스를 제공 받기 위해 적합한 셀을 선택하고 접근하지 못하는 문제가 발생할 수 있다. 하기 도 13을 참조하여 발생할 수 있는 문제에 대하여 설명하도록 한다.
도 13은 단말의 이동 측면에 있어서 발생할 수 있는 문제의 예시를 나타내는 도면이다.
도 13을 참조하면, 네트워크 상에 E-UTRAN의 LTE 셀들이 전개되어 있으며, 이와 함께 UTRAN의 UMTS 셀들이 전개되어 있다. 단말은 특정 방향으로 이동중임을 가정한다. 또한, E-UTRAN의 혼잡 상황으로 인하여 E-UTRAN의 모든 주파수에 대하여 최저 우선순위가 적용되고 있는 환경을 가정한다. 또한 E-UTRAN의 셀들와 UTRAN의 셀들은 서로 상호 조직화되어 있지 않은(uncoordinated) 상황으로, UMTS 셀들은 최저 우선순위가 설정되어 적용되고 있는 것을 인지하지 못하는 상황을 가정한다.
단말은 먼저 LTE 셀과의 RRC 연결 확립을 시도할 수 있다. 이에 따라 단말은 RRC 연결 요청 메시지를 LTE 셀로 전송한다(S1310). 혼잡으로 인하여 LTE 셀은 단말의 연결 확립을 허용하지 못할 수 있으며, 이에 따라 LTE 셀은 단말로 RRC 연결 거절 메시지를 전송할 수 있다(S1320). RRC 연결 거절 메시지에는 최저 우선순위 요청 정보가 포함될 수 있다.
단말은 셀 재선택을 통해 UMTS 셀을 타겟 셀로 선택하고, RRC 연결 확립을 시도할 수 있다. 이에 따라 단말은 RRC 연결 요청 메시지를 UMTS 셀로 전송한다(S1330). 한편, UMTS 셀들은 단말에 보다 효율적으로 서비스를 제공할 수 있으며, 단말이 보다 선호하는 LTE 셀로 단말을 이동시키고자 할 수 있다. 따라서, UMTS 셀은 단말의 연결 확립을 허용하지 않고, 단말은 LTE 셀로 전향(redirection)시킬 수 있다. 이에 따라 UMTS 셀은 단말의 LTE 셀로의 전향을 위해 RRC 연결 거절 메시지를 전송할 수 있다(S1340).
UMTS 셀로부터 연결 요청이 거절당한 단말은 다시 셀 재선택을 수행하여 LTE 셀을 선택할 수 있다. 다만, E-UTRAN의 혼잡이 해소되지 않은 경우, LTE 셀은 단말의 연결 확립을 지속적으로 허용하지 않을 수 있다. 또한, E-UTRAN의 혼잡 및/또는 E-UTRAN 주파수에 대한 최저 우선순위 적용에 대해 알지 못하는 UMTS 셀은 단말의 LTE 셀로의 전향을 위해 단말의 연결 확립을 지속적으로 허용하지 않을 수 있다. 이에 따라, 단말이 E-UTRAN 및 UTRAN에서도 RRC 연결을 확립시키지 못하고, E-UTRAN 및 UTRAN 사이를 왔다 갔다하는 문제를 발생시킬 수 있다.
도 13을 참조하여 설명한 셀 재선택과 관련된 단말의 이동 이외에도, 핸드오버와 관련된 단말의 이동에 있어서도 문제가 발생할 수 있다.
소스 셀에서의 혼잡으로 인해 단말이 소스 셀 및/또는 소스 셀의 주파수상에서 정상적인 서비스를 제공받지 못하는 상황에서, 단말은 핸드오버를 통해 타겟 셀로 이동할 수 있다. 한편, 타겟 셀은 핸드 오버 이전의 소스 셀에서의 무선 통신 환경에 대해서 인지하지 못하는 경우, 타겟 셀은 단말에 대하여 이전 소스 셀의 주파수를 측정 대상으로 설정하게 된다. 따라서, 단말은 실제 이동할 수 없는 이전의 소스 셀이나 해당 주파수에 대한 측정 및 보고를 수행하는 등의 불필요한 동작을 수행하게될 수 있다. 또한, 단말은 해당 셀이나 해당 주파수 상에서 정상적으로 서비스를 제공받을 수 없거나 또는 해당 셀로 이동할 수 없지만, 측정 결과에 따라 네트워크 및/또는 단말은 불필요하게 핸드오버 관련된 동작을 수행하게 될 수 있다. 이와 같이 단말 및/또는 네트워크의 불필요한 동작에 의해 무선 자원이 점유되어 네트워크 운용 측면상 효율성이 저하될 수 있으며, 단말의 파워 효율이 저하될 수 있다.
위와 같은 문제점을 방지하고, 단말 및 네트워크가 보다 효율적인 동작을 수행하도록 하기 위해, 본 발명의 실시예에서는 네트워크 노드가 다른 네트워크 노드로 최저 우선순위 정보를 포함하는 이동성 제한 정보를 제공하는 방법을 제안한다.
도 14는 본 발명의 실시예에 따른 이동성 제한 정보 기반 통신 방법을 나타내는 도면이다.
도 14에 도시된 이동성 제한 정보 기반 통신 방법에 있어서, 이동성 제한 정보를 제공하는 네트워크 노드 1은 단말 또는 기지국일 수 있다. 기지국인 경우 E-UTRAN의 eBN 또는 UTRAN의 노드 B일 수 있다. 네트워크 노드 2는 기지국일 수 있다. 즉, 이동성 제한 정보는 특정 기지국으로부터 다른 기지국으로 전송되거나 또는 단말로부터 기지국으로 전송되는 시나리오가 고려될 수 있다.
도 14를 참조하면, 네트워크 노드 1은 최저 우선순위 정보를 획득하고, 이동성 제한 정보를 설정한다(S1410). 최저 우선순위 정보를 획득하고, 이동성 제한 정보를 설정하는 것은 네트워크 노드 1이 eNB 또는 노드B와 같은 기지국인지 또는 단말인지 여부에 따라 다르게 구현될 수 있다.
1) 네트워크 노드 1이 기지국인 경우
eBN 또는 노드 B가 최저 우선순위 정보를 획득하는 것은 하나 이상의 주파수 및/또는 특정 RAT의 모든 주파수에 대하여 최저 우선순위를 적용하기로 설정하고 이와 관련된 정보를 생성하는 것을 포함할 수 있다. 최저 우선순위 정보는 최저 우선순위가 적용되거나 또는 적용될 예정인 하나 이상의 주파수 리스트 및/또는 RAT 리스트를 포함할 수 있다. 또는, 최저 우선순위 정보는 최저 우선순위가 적용되지 않는 하나 이상의 주파수 리스트 및/또는 RAT 리스트를 포함할 수 있다. 또는, 두 가지 타입의 리스트를 모두 포함할 수 있다.
eNB 또는 노드 B는 최저 우선순위 정보를 포함하는 이동성 제한 정보를 설정한다. eNB 또는 노드 B가 최저 우선순위를 적용함에 있어서 적용 지속시간을 별도로 설정한 경우, 이동성 제한 정보는 최저 우선순위를 적용하는 시간 구간을 지시하는 최저 우선순위 지속시간 정보를 더 포함할 수 있다. 또는, 이동성 제한 정보는 최저 우선순위 정보를 기반으로 한 운영의 지속 시간을 지시하는 최저 우선순위 지속시간 정보를 더 포함할 수 있다.
2) 네트워크 노드 1이 단말인 경우
단말이 최저 우선순위 정보를 획득하는 것은 단말이 기지국으로부터 최저 우선순위 요청 정보를 획득하는 것을 포함할 수 있다. 이는 단말이 RRC 연결 확립 절차 중에 최저 우선순위 요청 정보를 포함하는 RRC 연결 거절 메시지를 수신하는 것을 통해 수행될 수 있다. 최저 우선순위 정보는 최저 우선순위가 적용되거나 또는 적용될 예정인 하나 이상의 주파수 리스트 및/또는 RAT 리스트를 포함할 수 있다. 또는, 최저 우선순위 정보는 최저 우선순위가 적용되지 않는 하나 이상의 주파수 리스트 및/또는 RAT 리스트를 포함할 수 있다. 또는, 두 가지 타입의 리스트를 모두 포함할 수 있다.
이동성 제어 정보는 최저 우선순위 지속시간 정보를 더 포함할 수 있다. 이 경우, 최저 우선순위 지속시간 정보는 단말이 수신한 최저 우선순위 요청 정보 내 최저 우선순위 타이머의 설정값에 따라 최저 우선순위 적용의 지속시간을 지시하도록 설정될 수 있다.
단말은 최저 우선순위 정보를 포함하는 이동성 제한 정보를 설정한다. 추가적으로, 이동성 제한 정보는 연결 거절 정보를 더 포함할 수 있다. 연결 거절 정보는 단말이 네트워크로부터 거절된 연결 확립 시도와 관련된 정보를 포함할 수 있다. 연결 거절 정보는 아래와 같은 정보를 포함하도록 구현될 수 있다.
- 연결 거절 카운터(rejected connection counter)
연결 거절 카운터는 단말이 연결 확립을 시도하였지만 네트워크로부터 거절 당한 횟수를 지시하도록 설정될 수 있다. 연결 확립 시도의 거절 횟수는 고정된 특정 시간 또는 네트워크로부터 설정된 특정 시간 내에 거절된 횟수로 구현될 수 있다. 연결 확립 시도의 거절 횟수는 네트워크와의 RRC 연결이 해제된 후, 즉 단말이 RRC 아이들 상태로 진입한 시점부터 카운트된 연결 확립 시도의 거절 횟수로 구현될 수 있다. 단말은 연결 확립을 시도하였으나 네트워크로부터 거절당한 경우, 연결 거절 카운트를 증가시킬 수 있다.
연결 거절 카운트는 네트워크와의 RRC 연결 확립이 허용되면 리셋될 수 있다. 예를 들어, 단말의 연결 확립 시도가 네트워크로부터 허용되어 단말이 네트워크로부터 RRC 연결 설정 메시지를 수신함에 따라 연결 거절 카운트가 리셋될 수 있다.
- 연결 거절 타이머(rejected connection timer)
연결 거절 타이머는 단말의 연결 확립 시도가 거절되고부터 경과된 시간 구간을 지시하도록 설정될 수 있다.
연결 거절 타이머는 단말의 연결 확립 시도가 네트워크에 의해 거절됨에 따라 개시될 수 있다. 즉, 단말이 네트워크로부터 RRC 연결 거절 메시지를 수신하면, 단말은 연결 거절 타이머를 개시시킬 수 있다.
연결 거절 타이머는 네트워크와의 RRC 연결 확립이 허용되면 리셋될 수 있다. 예를 들어, 단말의 연결 확립 시도가 네트워크로부터 허용되어 단말이 네트워크로부터 RRC 연결 설정 메시지를 수신하면 연결 거절 타이머는 리셋될 수 있다.
- 연결 거절 용인 정보(rejected connection tolerance information)
연결 거절 용인 정보는 더 이상 단말의 연결 확립 시도가 거절되는 것이 용인될 수 있는지 여부를 지시하도록 설정될 수 있다. 단말에 대하여 지속적으로 연결이 거절된 경우 단말은 서비스 제공받기 위해 더 이상의 연결 거절을 용인하지 못할 수 있으며, 이를 네트워크에 알리기 위하여 연결 거절 용인 정보가 네트워크로 제공될 수 있다.
연결 거절 용인 정보는 전술한 연결 거절 카운터 및/또는 연결 거절 타이머를 기반으로 결정될 수 있다. 연결 거절 카운터는 단말에 의한 연결 확립 시도가 몇번 거절당했는지에 대한 정보이며, 연결 거절 타이머는 단말이 네트워크와 RRC 연결 확립을 하지 못한 시간에 대한 정보이므로, 두 정보를 기반으로 단말은 이후에도 연결 확립 시도에 대한 거절이 가능한지 또는 불가능한지 여부를 결정할 수 있다. 보다 구체적으로, 연결 거절 카운터가 특정 임계값을 초과하는 경우, 연결 거절 용인 정보는 더 이상 연결 거절을 용인하지 않음을 지시하도록 설정될 수 있다. 또는, 연결 거절 타이머가 특정 임계값을 초과하는 경우, 연결 거절 용인 정보는 더 이상 연결 거절을 용인하지 않음을 지시하도록 설정될 수 있다.
다시 도 14를 참조하면, 네트워크 노드 1은 이동성 제한 정보를 네트워크 노드 2로 전송한다(S1420).
네트워크 노드 1이 eNB 또는 노드 B인 경우, 이동성 제한 정보는 X2 인터페이스를 통해 네트워크 노드 2로 전송될 수 있다. 네트워크 노드 1이 네트워크 노드 2로 이동성 제한 정보를 전송하는 것은, 네트워크 노드 1이 최저 우선순위 적용을 설정함에 따라 수행될 수 있다. 즉, 이동성 제한 정보는 다른 네트워크 노드에 의한 요청 없이 네트워크 노드 1의 최저 우선순위 설정에 의해 자동적으로 트리거될 수 있다. 또한, 네트워크 노드 1이 네트워크 노드 2로 이동성 제한 정보를 전송하는 것은, 네트워크 노드 2의 요청에 의한 응답으로서 수행될 수 있다.
네트워크 노드 1이 eNB 또는 노드 B인 경우, 이동성 제한 정보는 핸드오버 절차중에 네트워크 노드 2로 전송될 수 있다. 이 경우, 이동성 제한 정보는 X2 인터페이스를 통해 핸드오버 준비 메시지에 포함되어 네트워크 노드 2로 전송될 수 있다. 즉, 소스 셀의 네트워크 노드 1과 타겟 셀의 네트워크 노드 2 사이의 핸드오버 준비 절차 중에 소스 셀은 핸드오버 준비 메시지에 이동성 제한 정보를 포함시켜 네트워크 노드 2로 전송할 수 있다.
네트워크 노드 1이 단말인 경우, 이동성 제한 정보는 RRC 연결 확립 절차중에 네트워크 노드 2로 전송될 수 있다. 예를 들어, 이동성 제한 정보는 RRC 연결 확립 요청을 위해 전송되는 RRC 연결 확립 요청 메시지나 RRC 연결 확립 절차를 종료시키는 RRC 연결 확립 종료 메시지에 포함되어 네트워크 노드 2로 전송될 수 있다. 또한, 이동성 제한 정보는 네트워크 노드 2의 요청에 대한 응답으로 전송될 수 있다.
한편, 단말은 이동성 제한 정보에 이동 트리거 정보를 더 포함시킬 수 있다. 이동 트리거 정보는 단말의 가장 최근 이동이 어떠한 이동 트리거에 의해 개시된 것인지를 지시할 수 있다. 이동 트리거는 전향(redirection), 셀 재선택, 최저 우선순위 설정, PLMN 선택, 핸드오버 및 MBMS 서비스 등 단말의 이동을 발생시킨 트리거를 지시할 수 있다. 이동 트리거로서 셀 재선택은 시그널링된 우선순위를 기반으로 하는 셀 재선택인지 또는 시그널링과 관련없는 우선순위를 기반으로 한 셀 재선택인지 여부가 구별되어 지시될 수 있다.
이동성 제한 정보를 수신한 네트워크 노드 2는 수신된 정보를 기반으로 운영한다(S1430). 네트워크 노드 2는 이동성 제한 정보에 포함된 최저 우선순위 정보와 관련된 하나 이상의 주파수 또는 특정 RAT으로 단말이 다시 이동하는 것을 방지하도록 운영할 수 있다.
네트워크 노드 2가 네트워크 노드 1로부터 이동성 제한 정보를 수신한 경우, 네트워크 노드 2는 최저 우선순위가 적용되거나 또는 적용될 하나 이상의 주파수 및/또는 RAT으로부터 이동한 단말의 RRC 연결 확립을 허용하도록 설정될 수 있다. 예를 들어, 단말이 선호 주파수 및/또는 RAT을 지시하는 사전 전향 정보(pre redirection information)를 RRC 연결 요청 메시지에 포함시켜 네트워크 노드 2로 전송하였으며, 선호 주파수 및/또는 RAT이 최저 우선순위가 적용되거나 적용되고 있을 수 있다. 이 경우, 네트워크 노드 2는 단말의 선호 주파수 및/또는 RAT으로의 전향을 방지하기 위하여 RRC 연결 요청을 거절하지 않을 수 있다.
핸드오버 준비 메시지를 통해 네트워크 노드 1로부터 이동성 제한 정보가 수신된 경우, 네트워크 노드 2는 핸드오버 대상 단말이 최저 우선순위가 적용되거나 또는 적용이 예정되는 하나 이상의 주파수 및/또는 RAT으로 이동하는 것을 방지하기 위한 RRC 설정을 단말에 제공할 수 있다. RRC 설정은 핸드오버 절차 중 또는 핸드오버 절차 완료 후에 단말로 제공될 수 있다. 예를 들어, 네트워크 노드 2는 핸드오버를 통해 RRC 연결을 확립한 단말이 최저 우선순위가 적용되거나 또는 적용될 주파수 및/또는 RAT을 측정 대상에서 배제하는 측정 설정을 단말에 제공할 수 있다.
한편, 이동성 제한 정보가 최저 우선순위 지속시간 정보를 포함하고 있는 경우, 네트워크 노드 2는 최저 우선순위 지속시간 정보에 의해 지시되는 시간 구간 동안 이동성 제한 정보를 기반으로 운영을 수행할 수 있다. 시간 구간이 만료된 경우, 네트워크 노드 2는 이동성 제한 정보를 고려하지 않고, 단말의 RRC 연결 확립, RRC 설정, 핸드오버 등의 운영을 수행할 수 있다. 또한, 최저 우선순위 지속 시간 정보에 따른 시간 구간이 만료된 경우, 네트워크 노드 2는 수신한 이동성 제한 정보를 폐기할 수 있다.
추가적으로, 네트워크 노드 1은 이동성 제한 정보를 생성함에 있어서 최저 우선순위 적용이 해제되었음을 지시하는 최저 우선순위 해제 정보를 포함시킬 수 있다. 네트워크 노드 1이 기지국인 경우, 네트워크 혼잡이 해소되어 특정 주파수 또는 특정 RAT에 대하여 더 이상 최저 우선순위를 적용할 필요 없다고 판단한 기지국은 최저 우선순위 적용을 중단하고 최저 우선순위 해제 정보를 이동성 제한 정보에 포함시킬 수 있다. 네트워크 노드 1이 단말인 경우, 최저 우선순위 타이머가 만료되면 최저 우선순위 해제 정보를 이동성 제한 정보에 포함시킬 수 있다.
네트워크 노드 1로부터 최저 우선순위 해제 정보를 수신한 네트워크 노드 2는 이전에 수신한 이동성 제한 정보 기반 운영을 중단할 수 있다. 네트워크 노드 2가 이전에 최저 우선순위 지속시간 정보를 수신하였고, 이후에 최저 우선순위 해제 정보를 수신한 경우, 지속시간 정보에 의한 지속시간 만료시에 이동성 제한 정보 기반 운영을 중단할지 또는 최저 우선순위 해제 정보 수신시에 이동성 제한 정보 기반 운영을 중단할지는 구현에 따를 수 있다.
이하에서 도면을 참조하여 본 발명의 실시예에 대하여 보다 상세하게 설명하도록 한다.
도 15는 본 발명의 실시예에 따른 이동성 제한 정보 기반 통신 방법의 일례를 나타내는 도면이다.
도 15의 예시에 있어서, 단말은 RRC 아이들 상태에 있고, 셀 1은 LTE 셀이고, 셀 2는 UMTS 셀인 것을 가정한다. 또한, 셀 1 및 셀 2는 상호 조직화되지 않는 것을 가정한다.
셀 1은 혼잡 등의 이유로 인하여 셀 재선택 우선순위 제어를 통해 최저 우선순위를 설정한다(S1510). 셀 1은 E-UTRAN의 모든 주파수에 대하여 최저 우선순위를 적용하기로 설정할 수 있다.
셀 1은 최저 우선순위를 설정함에 따라 이동성 제한 정보를 셀 2로 전송한다(S1520). 이동성 제한 정보는 셀 1 및 셀 2간 X2 인터페이스를 통해 전송될 수 있다. 이동성 제한 정보는 최저 우선순위 정보를 포함할 수 있다. 최저 우선순위 정보는 E-UTRAN의 모든 주파수에 대하여 최저 우선순위가 적용되는 것을 지시하도록 설정될 수 있다.
셀 2는 이동성 제한 정보를 수신하면, 이동성 제한 정보를 기반으로 운영할 수 있다. 이동성 제한 정보 기반 운영은 셀 2로 접근을 시도하거나 또는 셀 2로 접근한 단말이 최저 우선순위가 적용되는 주파수 또는 RAT상의 셀로 이동하는 것을 막도록 운영하는 것일 수 있다. 셀 2의 이동성 제한 정보 기반 운영은 특정 시간 구간(TP)동안 지속되는 것으로 구현될 수 있다. 일례로, 셀 2는 이동성 제한 정보를 수신하면 미리 정해진 특정 시간 구간동안 이동성 제한 정보 기반 운영을 수행할 수 있다. 또 다른 예시로, 이동성 제한 정보는 최저 우선순위 지속시간 정보를 포함할 수 있으며, 셀 2는 지시되는 시간 구간(TP) 동안 이동성 제한 정보 기반 운영을 수행할 수 있다.
단말은 셀 1과 RRC 연결을 확립하기 위하여 RRC 연결 요청 메시지를 셀 1로 전송한다(S1531). 단말은 현재 E-UTRAN의 모든 주파수에 대하여 최저 우선순위가 적용되는 것을 알 수 없으므로, 셀 1로 접근하기 위해 RRC 연결 확립을 시도할 수 있다.
셀 1은 단말의 연결 확립 시도를 거절할 수 있으며, 이에 따라 셀 1은 RRC 연결 거절 메시지를 단말로 전송한다(S1532). RRC 연결 거절 메시지는 최저 우선순위 요청 정보를 포함할 수 있으며, 최저 우선순위 요청은 E-UTRAN의 모든 주파수에 대하여 최저 우선순위가 적용되는 것을 지시할 수 있다.
단말은 셀 재선택을 수행한다(S1540). E-UTRAN의 모든 주파수에 대하여 최저 우선순위가 적용되므로, 단말은 셀 재선택을 통해 UTRAN의 셀을 타겟 셀로 선택할 수 있다. 본 예시에서 단말은 UMTS 셀인 셀 2를 타겟 셀로 선택하는 것을 예시로 한다.
단말은 셀 2와 RRC 연결을 확립하기 위하여 RRC 연결 요청 메시지를 셀 2로 전송한다(S1551). 단말은 RRC 연결 요청 메시지에 사전 전향 정보를 포함시킬 수 있으며, 사전 전향 정보는 단말이 선호하는 RAT으로 E-UTRAN을 지시하도록 설정될 수 있다.
셀 2는 단말로부터 RRC 연결 요청 메시지를 수신하고, 단말의 RRC 연결 허용 여부를 결정할 수 있다.
기존과 같이, 셀 2가 E-UTRAN의 모든 주파수에 대하여 최저 우선순위가 적용되고 있음을 인지하지 못하고 RRC 연결 요청 메시지에 사전 전향 정보가 E-UTRAN을 지시하는 경우, 셀 2는 단말은 단말이 E-UTRAN의 셀과 RRC 연결을 확립하고 해당 셀로부터 서비스를 받는 것이 바람직한 것으로 판단하고, 전향을 위한 RRC 연결 거절 메시지를 단말로 전송할 수 있다.
반면, 본 발명의 실시예에 따르면, 셀 2는 셀 1로부터 이동성 제한 정보를 수신하여 현재 E-UTRAN의 모든 주파수에 대하여 최저 우선순위가 적용되고 있음을 인지하고 있으므로, 단말이 E-UTRAN의 셀로 이동하는 것을 방지하도록 운영할 수 있다. 이를 위해 셀 2는 단말의 RRC 연결 요청을 허용하기로 결정할 수 있으며, RRC 연결 설정 메시지를 단말로 전송한다(S1552).
단말은 RRC 연결 설정 메시지에 대한 응답으로 RRC 연결 확립을 완료하기 위하여 RRC 연결 설정 완료 메시지를 셀 2로 전송한다(S1553).
도 15의 예시에서, 이동성 제한 정보가 최저 우선순위 지속시간 정보를 포함하는 경우, 셀 2는 최저 우선순위 지속시간 정보에 의해 지시되는 시간 구간(TP)동안 위와 같은 이동성 제한 정보 기반 운영을 수행할 수 있다. 단말이 셀 2와의 RRC연결 상태가 확립된 상태에서 시간 구간(TP)이 만료될 경우, 셀 2는 E-UTRAN의 주파수에 대하여 최저 우선순위가 더 이상 적용되지 않는 것으로 간주하고, 단말이 E-UTRAN의 셀로부터 서비스를 제공받는 것이 바람직한 것으로 판단할 수 있다. 따라서, 셀 2는 단말이 E-UTRAN의 셀로 접근하도록 하기 위하여 단말과의 RRC 연결을 해제하기로 결정하고, RRC 연결 해제 메시지를 단말로 전송할 수 있다(S1560).
또한, 최저 우선순위 지속시간 정보에 의해 지시되는 시간 구간(TP)의 만료 이후 셀 2가 단말로부터 RRC 연결 요청 메시지를 수신한 경우, 셀 2는 단말이 E-UTRAN의 셀과 RRC 연결을 확립하고 서비스를 제공 받는 것이 바람직할 수 있다. 따라서, 셀 2는 단말의 E-UTRAN으로의 전향을 위한 RRC 연결 거절 메시지를 단말로 전송하거나 단말의 RRC 연결 요청을 수락한 이후 단말을 E-UTRAN에 접속하도록 하는 명령을 단말로 전송할 수 있다.
도 16은 본 발명의 실시예에 따른 이동성 제한 정보 기반 통신 방법의 다른 일례를 나타내는 도면이다.
도 16의 예시에 있어서, 단말은 RRC 연결 상태에 있고, 셀 1을 서빙셀로 하여 동작하는 것을 가정한다. 셀 1은 주파수 f1상에서 운영하는 LTE 셀이고, 셀 2는 주파수 f2상에서 운영하는 LTE 셀인 것을 가정한다. 셀 1 및 셀 2는 상호 조직화되지 않은 것을 가정한다. 단말은 LTE 상의 주파수들에 대한 측정 및 보고를 수행하도록 설정될 수 있다.
셀 1은 혼잡 등의 이유로 인하여 셀 재선택 우선순위 제어를 통해 최저 우선순위를 설정한다(S1610). 셀 1은 주파수 f1에 대하여 최저 우선순위를 적용하기로 설정할 수 있다.
단말은 측정 결과를 셀 1로 보고한다(S1621). 측정 결과는 서빙 셀인 셀 1에 대한 측정 결과 및 이웃 셀인 셀 2에 대한 측정 결과를 포함하는 것을 결정할 수 있다.
셀 1은 단말의 측정 결과를 기반으로 단말을 셀 2로 핸드오버 시키기로 결정할 수 있다. 이에 따라 셀 1은 셀 2와 핸드오버 준비 절차를 수행할 수 있다. 셀 1은 셀 2와의 핸드오버 준비 절차를 위해 전송하는 핸드오버 준비 메시지에 이동성 제한 정보를 포함시켜 셀 2로 전송한다(S1622). 이동성 제한 정보는 최저 우선순위 정보를 포함할 수 있다. 최저 우선순위 정보는 E-UTRAN의 주파수 f1에 대하여 최저 우선순위 적용을 지시하도록 설정될 수 있다. 이를 통해 셀 2는 주파수 f1에 대하여 최저 우선순위가 적용되고 있음을 인지할 수 있다.
셀 2는 핸드오버 준비 메시지에 대한 응답으로 핸드오버 준비 ACK 메시지를 셀 1로 전송한다(S1623).
셀 1은 단말의 셀 2로의 핸드오버 수행을 지시하기 위해 핸드오버 지시 메시지를 단말로 전송한다(S1624).
단말은 핸드오버 지시 메시지 수신에 따라 셀 2와 핸드오버 절차를 수행한다(S1630).
S1622 단계를 통해 이동성 제한 정보를 획득한 셀 2는 이동성 제한 정보 기반 운영을 수행할 수 있다. 본 예시에서, 이동성 제한 정보 기반 운영은 핸드 오버를 통해 셀 2로 접근한 단말이 주파수 f1상의 셀로 다시 이동하는 것을 방지하는 것일 수 있다. 이를 위하여, 셀 2는 새로운 RRC 설정을 제공하기 위하여 RRC 연결 재설정 메시지를 단말에 전송할 수 있다(S1640).
RRC 연결 재설정 메시지에는 단말의 측정 및 보고 동작을 위한 측정 설정이 포함될 수 있다. 예를 들어, 측정 설정은 주파수 f1을 측정 대상에서 배제하도록 설정될 수 있다. 단말이 S1640 단계에서 수신한 측정 설정에 따라 측정 및 보고를 수행하는 경우, 단말은 주파수 f1에 대한 인터-주파수 측정을 수행하지 않고, 셀 2는 주파수 f1에 대한 측정 결과를 획득하지 못하므로 핸드오버를 통한 f1상의 셀로의 단말의 이동이 방지될 수 있다.
도 16의 예시에서, 이동성 제한 정보가 최저 우선순위 지속시간 정보를 포함하는 경우, 셀 2는 이동성 제한 정보를 수신한 시점으로부터 최저 우선순위 지속시간 정보에 의해 지시되는 시간 구간(TP) 동안 위와 같은 이동성 제한 정보 기반 운영을 수행할 수 있다.
시간 구간(TP)이 만료되면, 셀 2는 단말이 주파수 f1상의 셀로 이동하는 것을 더 이상 막지 않기로 결정할 수 있으며, 이를 위하여 단말에 새로운 RRC 설정을 제공하기 위하여 RRC 연결 재설정 메시지를 단말에 전송할 수 있다(S1650). 예를 들어, RRC 연결 재설정 메시지에는 주파수 f1을 측정 대상에 포함하도록 설정된 측정 설정이 포함될 수 있다. 이와 같은 측정 설정을 수신한 단말은 주파수 f1에 대한 측정 결과를 획득하여 보고할 수 있으며, 핸드오버 결과에 따라 주파수 f1상의 셀로 이동할 수 있다.
도 17은 본 발명의 실시예에 따른 이동성 제한 정보 기반 통신 방법의 또 다른 일례를 나타내는 도면이다.
도 17의 예시에 있어서, 단말은 RRC 아이들 상태에 있고, 셀 1은 LTE 셀이고, 셀 2는 UMTS 셀인 것을 가정한다. 또한, 셀 1 및 셀 2는 상호 조직화되지 않은 것을 가정한다.
셀 1은 혼잡 등의 이유로 인하여 셀 재선택 우선순위 제어를 통해 최저 우선순위를 설정한다(S1710). 셀 1은 E-UTRAN의 모든 주파수에 대하여 최저 우선순위를 적용하기로 설정할 수 있다.
단말은 셀 1과 RRC 연결을 확립하기 위하여 RRC 연결 요청 메시지를 셀 1로 전송한다(S1721). 단말은 현재 E-UTRAN의 모든 주파수에 대하여 최저 우선순위가 적용되는 것을 알 수 없으므로, 셀 1로 접근하기 위해 RRC 연결 확립을 시도할 수 있다.
셀 1은 단말의 연결 확립 시도를 거절할 수 있으며, 이에 따라 셀 1은 RRC 연결 거절 메시지를 단말로 전송한다(S1722). RRC 연결 거절 메시지는 최저 우선순위 요청 정보를 포함할 수 있으며, 최저 우선순위 요청은 E-UTRAN의 모든 주파수에 대하여 최저 우선순위가 적용되는 것을 지시할 수 있다. 최저 우선순위 요청 정보는 최저 우선순위 타이머를 포함할 수 있다.
단말은 셀 재선택을 수행한다(S1723). E-UTRAN의 모든 주파수에 대하여 최저 우선순위가 적용되므로, 단말은 셀 재선택을 통해 E-UTRAN이 아닌 UTRAN의 셀을 타겟 셀로 선택할 수 있다. 본 예시에서 단말은 UMTS 셀인 셀 2를 타겟 셀로 선택하는 것을 예시로 한다.
단말은 셀 2과 RRC 연결을 확립하기 위하여 RRC 연결 요청 메시지를 셀 2로 전송한다(S1551). 단말은 RRC 연결 요청 메시지에 이동성 제한 정보를 포함시킬 수 있다. 이동성 제한 정보는 최저 우선순위 정보 및 사전 전향 정보를 포함할 수 있다.
최저 우선순위 정보는 E-UTRAN의 모든 주파수에 대하여 최저 우선순위가 적용됨을 지시하도록 설정될 수 있다. 사전 전향 정보는 단말이 선호하는 RAT으로 E-UTRAN을 지시하도록 설정될 수 있다. 추가적으로 이동성 제한 정보는 최저 우선순위 지속시간 정보를 더 포함할 수 있다. 최저 우선순위 지속 시간 정보는 단말이 RRC 연결 거절 메시지를 통해 획득한 최저 우선수위 요청 정보의 최저 우선순위 타이머를 기반으로 지속시간을 지시하도록 설정되거나, 또는 독립적으로 특정 지속시간을 지시하도록 설정될 수 있다.
셀 2는 이동성 제한 정보를 수신하고 이동성 제한 정보 기반 운영을 수행할 수 있다. 이동성 제한 정보 기반 운영은 셀 2로 접근을 시도하거나 또는 셀 2로 접근한 단말이 최저 우선순위가 적용되는 주파수 또는 RAT상의 셀로 이동하는 것을 막도록 운영하는 것일 수 있다. 셀 2의 이동성 제한 정보 기반 운영은 특정 시간 구간(TP)동안 지속되는 것으로 구현될 수 있다. 일례로, 셀 2는 이동성 제한 정보를 수신하면 미리 정해진 특정 시간 구간동안 이동성 제한 정보 기반 운영을 수행할 수 있다. 또 다른 예시로, 이동성 제한 정보에 최저 우선순위 지속시간 정보가 포함되어 있는 경우, 셀 2는 지시되는 시간 구간(TP) 동안 이동성 제한 정보 기반 운영을 수행할 수 있다.
이동성 제한 정보를 기반으로 운영하는 셀 2는 단말로부터 RRC 연결 요청 메시지를 수신하고, 단말의 RRC 연결 허용 여부를 결정함에 있어서 이동성 제한 정보를 고려할 수 있다.
기존과 같이, 셀 2가 E-UTRAN의 모든 주파수에 대하여 최저 우선순위가 적용되고 있음을 인지하지 못하고 RRC 연결 요청 메시지에 사전 전향 정보가 E-UTRAN을 지시하는 경우, 셀 2는 단말은 단말이 E-UTRAN의 셀과 RRC 연결을 확립하고 해당 셀로부터 서비스를 받는 것이 바람직한 것으로 판단하고, 전향을 위한 RRC 연결 거절 메시지를 단말로 전송할 수 있다.
반면, 본 발명의 실시예에 따르면, 셀 2는 셀 1로부터 이동성 제한 정보를 수신하여 현재 E-UTRAN의 모든 주파수에 대하여 최저 우선순위가 적용되고 있음을 인지하고 있으므로, 단말이 E-UTRAN의 셀로 이동하는 것을 방지하도록 운영할 수 있다. 이를 위해 셀 2는 단말의 RRC 연결 요청을 허용하기로 결정할 수 있으며, RRC 연결 설정 메시지를 단말로 전송한다(S1732).
단말은 RRC 연결 설정 메시지에 대한 응답으로 RRC 연결 확립을 완료하기 위하여 RRC 연결 설정 완료 메시지를 셀 2로 전송한다(S1734).
도 17의 예시에서, 이동성 제한 정보가 최저 우선순위 지속시간 정보를 포함하는 경우, 셀 2는 최저 우선순위 지속시간 정보에 의해 지시되는 시간 구간(TP)동안 위와 같은 이동성 제한 정보 기반 운영을 수행할 수 있다. 단말이 셀 2와의 RRC연결 상태가 확립된 상태에서 시간 구간(TP)이 만료될 경우, 셀 2는 E-UTRAN의 주파수에 대하여 최저 우선순위가 더 이상 적용되지 않는 것으로 간주하고, 단말이 E-UTRAN의 셀로부터 서비스를 제공받는 것이 바람직한 것으로 판단할 수 있다. 따라서, 셀 2는 단말이 E-UTRAN의 셀로 접근하도록 하기 위하여 단말과의 RRC 연결을 해제하기로 결정하고, RRC 연결 해제 메시지를 단말로 전송할 수 있다(S1740).
또한, 최저 우선순위 지속시간 정보에 의해 지시되는 시간 구간(TP)의 만료 이후 셀 2가 단말로부터 RRC 연결 요청 메시지를 수신한 경우, 셀 2는 단말이 E-UTRAN의 셀과 RRC 연결을 확립하고 서비스를 제공 받는 것이 바람직할 수 있다. 따라서, 셀 2는 단말의 E-UTRAN으로의 전향을 위한 RRC 연결 거절 메시지를 단말로 전송할 수 있다.
본 발명의 실시예에 따르면, 이동성 제한 정보가 타겟 네트워크 노드로 제공됨으로써 타겟 네트워크 노드는 단말의 이동을 위한 최저 우선순위 설정에 대하여 알 수 있다. 타겟 네트워크 노드는 수신한 이동성 제한 정보를 기반으로 단말의 RRC 연결 확립, 핸드 오버, RRC 설정 등의 네트워크 운영을 수행할 있다. 이를 통해 단말은 서비스 제공 측면 상 보다 적합한 셀로 이동하여 보다 효율적인 서비스를 제공 받을 수 있다. 또한, 단말 및 네트워크간 및/또는 네트워크 및 네트워크간 불필요한 시그널링을 방지하여 네트워크 운용 측면상 효율성을 보다 향상시킬 수 있다.
도 18은 본 발명의 실시예가 구현되는 무선 장치를 나타낸 블록도이다. 이 장치는 도 14 내지 17을 참조하여 상술한 본 발명의 실시예에 따른 이동성 제한 정보 기반 운영 방법을 구현하도록 설정될 수 있다.
도 18을 참조하면, 무선 장치(1800)는 프로세서(1810), 메모리(1820) 및 RF부(radio frequency unit, 1830)을 포함한다. 프로세서(1810)는 제안된 기능, 과정 및/또는 방법을 구현한다. 이동성 제한 정보를 설정하도록 설정될 수 있다. 프로세서(1810)는 이동성 제한 정보를 송수신하도록 설정될 수 있다. 프로세서(1810)는 이동성 제한 정보를 기반으로 단말의 이동성을 제어하도록 설정될 수 있다. 프로세서(1810)는 도 14 내지 도 17에 따른 본 발명의 실시예를 구현하도록 설정될 수 있다.
RF부(1830)은 프로세서(1810)와 연결되어 무선 신호를 송신 및 수신한다.
프로세서는 ASIC(application-specific integrated circuit), 다른 칩셋, 논리 회로 및/또는 데이터 처리 장치를 포함할 수 있다. 메모리는 ROM(read-only memory), RAM(random access memory), 플래쉬 메모리, 메모리 카드, 저장 매체 및/또는 다른 저장 장치를 포함할 수 있다. RF부는 무선 신호를 처리하기 위한 베이스밴드 회로를 포함할 수 있다. 실시예가 소프트웨어로 구현될 때, 상술한 기법은 상술한 기능을 수행하는 모듈(과정, 기능 등)로 구현될 수 있다. 모듈은 메모리에 저장되고, 프로세서에 의해 실행될 수 있다. 메모리는 프로세서 내부 또는 외부에 있을 수 있고, 잘 알려진 다양한 수단으로 프로세서와 연결될 수 있다.
상술한 예시적인 시스템에서, 방법들은 일련의 단계 또는 블록으로써 순서도를 기초로 설명되고 있지만, 본 발명은 단계들의 순서에 한정되는 것은 아니며, 어떤 단계는 상술한 바와 다른 단계와 다른 순서로 또는 동시에 발생할 수 있다. 또한, 당업자라면 순서도에 나타낸 단계들이 배타적이지 않고, 다른 단계가 포함되거나 순서도의 하나 또는 그 이상의 단계가 본 발명의 범위에 영향을 미치지 않고 삭제될 수 있음을 이해할 수 있을 것이다.

Claims (13)

  1. 무선 통신 시스템에서 제1 기지국에 의해 수행되는 통신 방법에 있어서, 상기 방법은,
    단말의 이동 제어와 관련된 이동성 제한 정보를 생성하고; 및
    상기 이동성 제한 정보를 제2 기지국으로 전송하는 것;을 포함하되,
    상기 이동성 제한 정보는 상기 제1 기지국 및 상기 제2 기지국간 X2 인터페이스를 통해 전송되는 것을 특징으로 하는 통신 방법.
  2. 제 1항에 있어서,
    상기 이동성 제한 정보는 최저 우선순위 정보를 포함하고,
    상기 최저 우선순위 정보는 적어도 하나의 주파수 또는 특정 RAT(Radio Access Technology)에 대하여 최저 우선순위가 적용됨을 지시함을 특징으로 하는 통신 방법.
  3. 제 2항에 있어서,
    상기 최저 우선순위 정보는 상기 최저 우선순위가 적용되는 상기 적어도 하나의 주파수에 대한 주파수 리스트를 포함함을 특징으로 하는 통신 방법.
  4. 제 2항에 있어서,
    상기 최저 우선순위 정보는 상기 최저 우선순위가 적용되지 않는 주파수에 대한 주파수 리스트를 포함함을 특징으로 하는 통신 방법.
  5. 제 2항에 있어서,
    상기 이동성 제한 정보는 최저 우선순위 지속시간 정보를 더 포함하고, 및
    상기 최저 우선순위 지속시간 정보는 상기 최저 우선순위 정보에 따른 상기 최저 우선순위가 적용되는 지속 시간을 지시함을 특징으로 하는 통신 방법.
  6. 제 2항에 있어서,
    상기 이동성 제한 정보는 최저 우선순위 지속시간 정보를 더 포함하고, 및
    상기 최저 우선순위 지속시간 정보는 상기 최저 우선순위 정보를 기반으로 한 네트워크 운영의 지속 시간을 지시함을 특징으로 하는 통신 방법.
  7. 제 1항에 있어서,
    상기 이동성 제한 정보는 하나 이상의 주파수에 또는 특정 RAT(Radio Access Technology)에 대하여 최저 우선순위 적용이 해제되었음을 지시하는 최저 우선순위 해제 정보를 포함하는 것을 특징으로 하는 통신 방법.
  8. 제 1항에 있어서,
    상기 이동성 제한 정보는 단말의 상기 제1 기지국으로부터 상기 제2 기지국으로 핸드오버를 위한 핸드오버 준비 절차 중에 전송되는 핸드오버 준비 메시지에 포함되어 전송됨을 특징으로 하는 통신 방법.
  9. 제 1항에 있어서, 상기 통신 방법은,
    상기 제2 기지국으로부터 상기 이동성 제한 정보 전송을 요청 받는 것을 더 포함하되,
    상기 이동성 제한 정보는 상기 요청에 대한 응답으로 전송되는 것을 특징으로 하는 통신 방법.
  10. 제 1항에 있어서,
    상기 제1 기지국은 E-UTRAN(Evolved-UMTS Terrestrial Radio Access Network)의 eNB(evolved Node B)이고, 및
    상기 제2 기지국은 UTRAN의 노드 B(Node B)인 것을 특징으로 하는 통신 방법.
  11. 제 1항에 있어서, 상기 이동성 제한 정보는 상기 제2 기지국의 운영 기반이 되는 것을 특징으로 하는 통신 방법.
  12. 무선 통신 시스템에서 동작하는 무선 장치에 있어서, 상기 무선 장치는,
    무선 신호를 송신 및 수신하는 RF(Radio Frequency) 부; 및
    상기 RF부와 기능적으로 결합된 프로세서;를 포함하되, 상기 프로세서는,
    단말의 이동 제어와 관련된 이동성 제한 정보를 생성하고, 및
    상기 이동성 제한 정보를 네트워크 노드로 전송하도록 설정되되,
    상기 이동성 제한 정보는 상기 무선 장치 및 상기 네트워크 노드간 X2 인터페이스를 통해 전송되는 것을 특징으로 하는 무선 장치.
  13. 제 12에 있어서,
    상기 이동성 제한 정보는 최저 우선순위 정보를 포함하고,
    상기 최저 우선순위 정보는 적어도 하나의 주파수 또는 특정 RAT(Radio Access Technology)에 대하여 최저 우선순위가 적용됨을 지시함을 특징으로 하는 무선 장치.
PCT/KR2014/000514 2014-01-17 2014-01-17 무선 통신 시스템에서 최저 우선순위 정보를 기반으로 한 통신 방법 및 이를 지원하는 장치 WO2015108215A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/KR2014/000514 WO2015108215A1 (ko) 2014-01-17 2014-01-17 무선 통신 시스템에서 최저 우선순위 정보를 기반으로 한 통신 방법 및 이를 지원하는 장치
US15/112,005 US20160330654A1 (en) 2014-01-17 2014-01-17 Communication method on basis of lowest priority information in wireless communication system and device for supporting same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2014/000514 WO2015108215A1 (ko) 2014-01-17 2014-01-17 무선 통신 시스템에서 최저 우선순위 정보를 기반으로 한 통신 방법 및 이를 지원하는 장치

Publications (1)

Publication Number Publication Date
WO2015108215A1 true WO2015108215A1 (ko) 2015-07-23

Family

ID=53543094

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/000514 WO2015108215A1 (ko) 2014-01-17 2014-01-17 무선 통신 시스템에서 최저 우선순위 정보를 기반으로 한 통신 방법 및 이를 지원하는 장치

Country Status (2)

Country Link
US (1) US20160330654A1 (ko)
WO (1) WO2015108215A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107849356A (zh) * 2015-08-03 2018-03-27 纳美仕有限公司 高性能、导热表面安装(晶片粘贴)粘结剂

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016010563A1 (en) * 2014-07-18 2016-01-21 Ruckus Wireless, Inc. Remedial action based on monitored wireless throughput
BR112017009498A2 (pt) * 2014-11-06 2017-12-19 Huawei Tech Co Ltd método e aparelho de seleção e resseleção de célula
FR3033224A1 (fr) * 2015-02-27 2016-09-02 Orange Selection de reseau d'acces pour un terminal multi-acces, basee sur un signal pheromonal
EP3094119B1 (en) * 2015-05-13 2019-08-28 Telia Company AB Session management
WO2017132997A1 (zh) 2016-02-05 2017-08-10 广东欧珀移动通信有限公司 用于切换的资源配置的方法、网络接入点以及移动台
JP6801713B2 (ja) * 2016-08-29 2020-12-16 日本電気株式会社 基地局装置、基地局管理装置、通信制御方法及び通信制御システム
US11096080B2 (en) * 2017-04-27 2021-08-17 Lg Electronics Inc. Method and device for configuring and reporting measurement for LTE/NR interworking in wireless communication system
US10341927B2 (en) * 2017-07-20 2019-07-02 GM Global Technology Operations LLC Vehicle wireless unit and method of operating the same
US11570682B2 (en) * 2019-10-14 2023-01-31 Lg Electronics Inc. Method and apparatus for mobility handling in wireless communication system
KR20210045164A (ko) * 2019-10-16 2021-04-26 삼성전자주식회사 셀 선택을 수행하는 전자 장치 및 그 방법
CN114980229B (zh) * 2022-05-13 2024-04-26 深圳市佳贤通信科技股份有限公司 一种基于plmn的小区公共重选优先级广播方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012135994A1 (en) * 2011-04-02 2012-10-11 Qualcomm Incorporated Systems and methods for inter-radio access technology (rat) mobility
KR20130084773A (ko) * 2012-01-18 2013-07-26 삼성전자주식회사 무선 통신 시스템에서 단말이 동적으로 액세스 네트워크를 선택하는 방법 및 장치
KR20140005073A (ko) * 2012-07-04 2014-01-14 삼성전자주식회사 이종 이동 통신 시스템 간 리디렉션을 제어하기 위한 방법 및 장치

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101119715B1 (ko) * 2007-10-05 2012-03-23 엘지전자 주식회사 무선통신 시스템에서 셀 재선택 수행 방법
CN101926200B (zh) * 2008-01-25 2015-09-16 爱立信电话股份有限公司 用于蜂窝通信中的频率接入限制的方法和设备
US20110134831A1 (en) * 2009-12-03 2011-06-09 Nokia Corporation Architecture Providing Multi-System Carrier Aggregation
EP2594095B1 (en) * 2010-07-13 2014-10-01 Telefonaktiebolaget LM Ericsson (publ) Method and arrangement for managing mobility control information in a radio communication system
WO2012124113A1 (ja) * 2011-03-17 2012-09-20 富士通株式会社 無線基地局装置、無線基地局装置における無線通信方法、及び無線通信システム
US20150257067A1 (en) * 2012-10-02 2015-09-10 Sharp Kabushiki Kaisha Mobile communication system, second base station, mobile station, and communication method for mobile communication system
CN104885514B (zh) * 2012-11-01 2019-05-21 英特尔公司 在LTE-A网络中发送QoS要求以及UE功率偏好的信号
US9955397B2 (en) * 2014-01-08 2018-04-24 Huawei Device (Dongguan) Co., Ltd. Cell handover method and terminal

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012135994A1 (en) * 2011-04-02 2012-10-11 Qualcomm Incorporated Systems and methods for inter-radio access technology (rat) mobility
KR20130084773A (ko) * 2012-01-18 2013-07-26 삼성전자주식회사 무선 통신 시스템에서 단말이 동적으로 액세스 네트워크를 선택하는 방법 및 장치
KR20140005073A (ko) * 2012-07-04 2014-01-14 삼성전자주식회사 이종 이동 통신 시스템 간 리디렉션을 제어하기 위한 방법 및 장치

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107849356A (zh) * 2015-08-03 2018-03-27 纳美仕有限公司 高性能、导热表面安装(晶片粘贴)粘结剂
CN107849356B (zh) * 2015-08-03 2021-05-07 纳美仕有限公司 高性能、导热表面安装粘结剂及使用其的制品和方法

Also Published As

Publication number Publication date
US20160330654A1 (en) 2016-11-10

Similar Documents

Publication Publication Date Title
US9942802B2 (en) Common configuration-based operating method in wireless communication system and apparatus supporting same
US9713069B2 (en) Method for steering traffic in wireless communications system and apparatus for supporting same
US9838953B2 (en) Method for steering traffic in wireless communication system and device using same
RU2621072C2 (ru) Способ осуществления связи в системе беспроводной связи, поддерживающий сеть множественного доступа, и поддерживающее это устройство
KR101641004B1 (ko) 무선 통신 시스템에서 슈프림 우선순위를 적용하는 셀 재선택 방법 및 이를 지원하는 장치
KR101849869B1 (ko) 무선 통신 시스템에서 단말에 의해 수행되는 무선 링크 실패 선언 방법 및 상기 방법을 이용하는 단말
EP2953397B1 (en) Method for steering traffic in wireless communications system and apparatus for supporting same
WO2015108215A1 (ko) 무선 통신 시스템에서 최저 우선순위 정보를 기반으로 한 통신 방법 및 이를 지원하는 장치
US9980120B2 (en) Method and apparatus for steering traffic in wireless communication system
WO2014014286A1 (ko) 무선 통신 시스템에서 시그널링 방법 및 이를 지원하는 장치
WO2014098506A1 (ko) 다중 액세스 네트워크를 지원하는 무선 통신 시스템에서 통신 방법 및 이를 지원하는 장치
WO2014073940A1 (ko) 무선 통신 시스템에서 셀 재선택 방법 및 이를 지원하는 장치
WO2014098531A1 (ko) 무선 통신 시스템에서 이동 방법 및 이를 지원하는 장치
WO2014069961A1 (ko) 무선 통신 시스템에서 관심 서비스 기반 셀 재선택 방법 및 이를 지원하는 장치
WO2014182106A1 (ko) 무선 통신 시스템에서 긴급 호출 처리 방법 및 이를 지원하는 장치
WO2014098535A1 (ko) 무선 통신 시스템에서 통신 방법 및 이를 지원하는 장치
WO2014017811A1 (ko) 무선 통신 시스템에서 csi-rs 측정 및 보고 방법과 이를 지원하는 장치
WO2015069091A1 (ko) 단말의 셀에 대한 rrc 연결 확립 방법 및 이를 이용하는 단말
EP2950585B1 (en) Priority handling-based operation method in wireless communication system and apparatus supporting same
WO2015072752A1 (ko) 무선 통신 시스템에서 트래픽 조종 방법 및 이를 지원하는 장치
WO2013180447A1 (ko) 무선 통신 시스템에서 이동성 정보 보고 방법 및 이를 지원하는 장치
WO2014035154A1 (ko) 무선 통신 시스템에서 자율적 서빙 셀 관리를 기반으로 한 통신 방법 및 이를 지원하는 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14879008

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15112005

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14879008

Country of ref document: EP

Kind code of ref document: A1