WO2015108066A1 - Information processing device, map matching device, information processing method, and program - Google Patents

Information processing device, map matching device, information processing method, and program Download PDF

Info

Publication number
WO2015108066A1
WO2015108066A1 PCT/JP2015/050781 JP2015050781W WO2015108066A1 WO 2015108066 A1 WO2015108066 A1 WO 2015108066A1 JP 2015050781 W JP2015050781 W JP 2015050781W WO 2015108066 A1 WO2015108066 A1 WO 2015108066A1
Authority
WO
WIPO (PCT)
Prior art keywords
anchor
information processing
anchor position
user
processing apparatus
Prior art date
Application number
PCT/JP2015/050781
Other languages
French (fr)
Japanese (ja)
Inventor
士朗 小林
正宏 譽田
優子 赤木
Original Assignee
旭化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成株式会社 filed Critical 旭化成株式会社
Publication of WO2015108066A1 publication Critical patent/WO2015108066A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/20Instruments for performing navigational calculations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/28Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network with correlation of data from several navigational instruments
    • G01C21/30Map- or contour-matching

Definitions

  • the present invention relates to an information processing device, a map matching device, an information processing method, and a program.
  • Patent Document 1 JP 2012-117974 A
  • Patent Document 1 in order to accurately estimate the position coordinates of the user, a point where the user is assumed to change the azimuth is set as an anchor point, and a rotation point (rotation point R) where the user's rotation motion is detected is estimated. The anchor point closest to the estimated rotation point is determined, and the determined anchor point is set as the current position of the user.
  • Patent Document 1 is a technique on the assumption that the difference between the estimated rotation point R and the actual user position is small, and when the estimated rotation point R is significantly different from the actual user position.
  • an anchor point that is significantly different from the actual user position is selected.
  • the sensor signal acquisition unit that acquires the sensor signal of the sensor mounted on the device
  • the anchor position acquisition unit that acquires a plurality of anchor positions
  • Direction detection unit for detecting a change in the position, a first anchor position among a plurality of anchor positions, and an estimation in which a change in the movement direction of the apparatus is detected from the estimated position of the apparatus corresponding to the first anchor position
  • An information processing apparatus, an information processing method, and a program are provided that include a determination unit that determines a second anchor position among a plurality of anchor positions based on a moving distance to a position.
  • the information processing apparatus of the first aspect a map information storage unit that stores map information including a plurality of anchor positions, and an estimated position of a device output from the information processing apparatus
  • a map matching device including a position determining unit that determines a position on a map of a user holding a device according to an anchor position to be performed.
  • FIG. 10 An example of the apparatus 10 which concerns on this embodiment is shown.
  • the structural example of the information processing apparatus 100 which concerns on this embodiment is shown with the sensor 20 and the anchor position memory
  • FIG. The operation
  • the 1st anchor position which concerns on this embodiment, and the 1st example of the 2nd anchor position which the determination part 170 determines are shown.
  • the 2nd example of the 1st anchor position which concerns on this embodiment, and the 2nd anchor position which the determination part 170 determines is shown.
  • the modification of the information processing apparatus 100 which concerns on this embodiment is shown with the sensor 20 and the anchor position memory
  • the 3rd example of the 1st anchor position which concerns on this embodiment, and the 2nd anchor position which the determination part 170 determines is shown.
  • the 4th example of the 1st anchor position which concerns on this embodiment, and the 2nd anchor position which the determination part 170 determines is shown.
  • the 5th example of the 1st anchor position which concerns on this embodiment, and the 2nd anchor position which the determination part 170 determines is shown.
  • the structural example of the map matching apparatus 200 which concerns on this embodiment is shown. 2 shows an example of a hardware configuration of a computer 1900 that functions as the information processing apparatus 100 according to the present embodiment.
  • FIG. 1 shows an example of a device 10 according to the present embodiment.
  • the device 10 includes a plurality of sensors, and detects the movement, holding state, position, and the like of the device 10 as an example.
  • the device 10 includes an autonomous navigation system that displays a current position of the device 10 and a route to the destination according to the output of a sensor or the like mounted on the device 10.
  • the device 10 may further include a map matching function and function as a map matching device.
  • the device 10 includes, for example, a communication function for connecting to an external device and the Internet, a data processing function for executing a program, and the like.
  • the device 10 is, for example, a smartphone, a mobile phone, a tablet PC (Personal Computer), a portable GPS (Global Positioning System) device, or a small PC.
  • the device 10 includes a display unit 12.
  • the display unit 12 displays, for example, a screen for operating an Internet web page, e-mail, map, document / music / moving image / image data, and the like according to a user instruction.
  • the display unit 12 is, for example, a touch panel display to which a user instruction is input, and the user instruction is input to an operation screen of software such as a browser by a touch input from the user.
  • the device 10 may receive a user instruction by gesture input.
  • the device 10 may be input with a user instruction by an input device such as a keyboard, a mouse, and / or a joystick.
  • a plane parallel to the display surface of the display unit 12 is an xy plane and a direction perpendicular to the display surface is a z-axis.
  • the display unit 12 has a vertically long rectangular shape. Of the two pairs of opposing sides of the rectangle, the direction along the shorter side (horizontal direction) is the x axis, and the direction along the longer side (vertical direction) is the y axis.
  • the horizontal direction is substantially parallel to the x axis
  • the vertical direction in which the user stands ie, the gravity direction
  • the traveling direction facing the user and the xy plane are substantially parallel
  • the plane perpendicular to the traveling direction and the z axis are substantially parallel. It becomes.
  • the device 10 displays the position information of the user holding the device 10 on the display unit 12 using a plurality of positioning method systems. For example, when the device 10 can receive transmission signals from a plurality of GPS satellites, the device 10 displays the position information of the user using the GPS function. If the device 10 cannot receive transmission signals from a plurality of GPS satellites, the device 10 switches from the GPS to the autonomous navigation system, uses the position information acquired by the GPS as the user's initial position, and continues to estimate the user's position information. May be displayed.
  • the device 10 may start an autonomous navigation system in response to a user input.
  • the device 10 may acquire information on the initial position of the user by the user's input.
  • the apparatus 10 may perform map matching and display a user's positional information with map information.
  • FIG. 2 shows a configuration example of the information processing apparatus 100 according to this embodiment together with the sensor 20 and the anchor position storage unit 30.
  • the sensor 20 may include at least one of an angular velocity sensor, an acceleration sensor, and a geomagnetic sensor mounted on the device 10, or may be a combination thereof.
  • the sensor 20 outputs, for example, acceleration, angular velocity, and / or geomagnetism detection results for at least two of the three xyz axes of the orthogonal coordinate system with the mounted mobile device as the origin.
  • the anchor position storage unit 30 stores a plurality of anchor positions in advance.
  • An anchor position is a position estimated that the apparatus 10 or the user holding the apparatus 10 passes.
  • the anchor position is set to a position where the user is assumed to change the moving direction.
  • a corner of a road or a passage can be considered. Corners include intersections and branches.
  • the anchor position storage unit 30 sets the position estimated by the device 10 or the user holding the device 10 as the anchor position.
  • the anchor position is determined, for example, at a position where the user is assumed to change the moving direction.
  • the anchor position may be determined corresponding to the road through which the user passes, and is determined in each of the directions that the user can pass, such as an intersection or a branch, in order to determine which direction the user has passed. May be.
  • the anchor position may be determined for each floor in the building and in the building, and may be determined for lifting means for moving between the floors.
  • the anchor position is set, for example, on a road where a user walks, a passage, an intersection, a pedestrian crossing, a staircase, an escalator, a landing such as a staircase, an elevator, or the like.
  • the information processing apparatus 100 estimates the position of the user holding the device 10 and determines an anchor position corresponding to the estimated position.
  • the information processing apparatus 100 includes a sensor signal acquisition unit 110, a storage unit 120, a movement direction change detection unit 130, a movement distance calculation unit 140, an anchor position acquisition unit 160, and a determination unit 170.
  • the sensor signal acquisition unit 110 is connected to the plurality of sensors 20 and acquires sensor signals of the sensors mounted on the device 10.
  • the sensor signal acquisition unit 110 acquires a sensor signal from the sensor 20 according to the user's progress state such as movement and stationary of the device 10.
  • the sensor signal acquisition unit 110 stores the acquired sensor signal in the storage unit 120.
  • the storage unit 120 is connected to the sensor signal acquisition unit 110 and stores the sensor signal received from the sensor signal acquisition unit 110.
  • the storage unit 120 supplies the stored sensor signal information to the request source in response to requests from each unit such as the movement direction change detection unit 130 and the movement distance calculation unit 140, for example.
  • the movement direction change detection unit 130 is connected to the storage unit 120 and detects a change in the movement direction of the device 10 based on the acquired sensor signal. For example, the movement direction change detection unit 130 turns to the right (left) when the user holding the device 10 changes the course to one of the branch roads, starts to go up / down the stairs, rides on an escalator / Changes in the direction of travel, such as getting off, reversing at a landing, and getting on / off an elevator, are detected. The movement direction change detection unit 130 supplies the detection result to the movement distance calculation unit 140 and the determination unit 170 in response to detecting the change in the movement direction.
  • the movement direction change detection unit 130 may detect a change in the movement direction of the device 10 from a time-series change in the position coordinates of the device 10 based on the acquired sensor signal. Specifically, the movement direction change detection unit 130 estimates the position coordinates of the device 10 at a predetermined time interval, sets a difference between the position coordinates of adjacent time intervals as a direction vector, and changes the direction vector with time. When the value exceeds a predetermined threshold, it is detected that the moving direction has changed. In this case, the movement direction change detection unit 130 determines the time of the direction vector at the time when the direction vector changes in time after the predetermined time has elapsed after the time in which the direction vector changes over time. You may detect the time when it became the direction opposite to the direction of a target change as the time when the change of the moving direction of the apparatus 10 was complete
  • the movement direction change detection unit 130 may detect that the movement direction of the device 10 has changed (for example, bent) based on the change in the direction vector. In this case, the movement direction change detection unit 130 may adjust a predetermined time interval before the actual operation of the information processing apparatus 100, thereby reducing the influence of the error and changing the movement direction of the device 10. Can be detected. The movement direction change detection unit 130 may supply the detection result to the movement distance calculation unit 140 and the determination unit 170.
  • the movement distance calculation unit 140 calculates the distance moved by the user.
  • the movement distance calculation unit 140 may include a user who holds the device 10 after the movement direction change detection unit 130 detects a change in the movement direction of the device 10 until a change in the next movement direction is detected. Calculate the distance traveled.
  • the movement distance calculation unit 140 may calculate the movement distance based on the movement speed and the movement time of the user, or may calculate the movement distance based on the number of steps and the step length of the user instead.
  • the movement distance calculation unit 140 supplies the calculated movement distance to the determination unit 170.
  • the anchor position acquisition unit 160 is connected to the anchor position storage unit 30 that stores a plurality of anchor positions, and acquires a plurality of anchor positions.
  • the anchor position acquisition unit 160 supplies the acquired anchor position information to the determination unit 170.
  • the determining unit 170 moves the first anchor position among the plurality of anchor positions and the estimated position where the change in the movement direction of the device 10 is detected from the estimated position of the device 10 corresponding to the first anchor position. And determining a second anchor position among the plurality of anchor positions. For example, the determination unit 170 determines an anchor position corresponding to the estimated position of the device 10 among a plurality of anchor positions based on a change in the moving direction of the device 10. The determination unit 170 sets the position where the movement direction of the device 10 detected by the movement direction change detection unit 130 is changed as an estimated position where the user holding the device 10 has changed the traveling direction. The determination unit 170 determines the second anchor position based on the movement distance from the estimated position of the device 10 when the first anchor position is determined to the estimated position where the change in the movement direction of the device 10 is detected next. You may decide.
  • the determining unit 170 sequentially determines the corresponding anchor positions in response to the detection by the movement direction change detecting unit 130. That is, every time the user holding the device 10 changes the traveling direction, the information processing apparatus 100 according to the present embodiment associates the position of the user with a predetermined anchor position, and an error in the position estimation of the user occurs. Prevent accumulation. In addition, the information processing apparatus 100 associates the estimated position of the user with consideration of the distance moved by the user and the moving direction of the user. The operation of the information processing apparatus 100 will be described with reference to FIG.
  • FIG. 3 shows an operation flow of the information processing apparatus 100 according to the present embodiment.
  • the information processing apparatus 100 associates the estimated position according to the movement of the user carrying the mobile device 10 with a predetermined anchor position by executing the operation flow shown in FIG.
  • the anchor position acquisition unit 160 acquires a plurality of anchor positions from the anchor position storage unit 30 connected to the information processing apparatus 100 (S310).
  • the anchor position acquisition unit 160 may be connected to the storage unit 120 and store the acquired anchor position information in the storage unit 120.
  • the information processing apparatus 100 sets an initial position (S320).
  • the information processing apparatus 100 sets an anchor position (for example, the closest anchor position) corresponding to the predetermined position as an initial position.
  • the information processing apparatus 100 may use the position information acquired by the GPS, and the anchor position corresponding to the position information may be used. Set as the user's initial position.
  • the information processing apparatus 100 may set the initial position of the user by designating the current position by the user.
  • the information processing apparatus 100 sets an anchor position corresponding to the user's initial position between different anchor positions when there is no anchor position corresponding to the user's initial position at a plurality of predetermined anchor positions. May be.
  • the sensor signal acquisition unit 110 acquires outputs from the plurality of sensors 20 connected to the information processing apparatus 100 (S330).
  • the sensor signal acquisition unit 110 stores the acquired sensor signal in the storage unit 120.
  • the sensor signal acquisition unit 110 may continuously execute the acquisition of the sensor signal and the storage in the storage unit 120 in synchronization with the output timing of the sensor signal of the sensor 20, instead of being predetermined.
  • the acquisition of the sensor signal and the storage in the storage unit 120 may be continuously executed at a predetermined cycle.
  • the movement direction change detection unit 130 detects a change in the movement direction of the device 10 (S340). For example, the movement direction change detection unit 130 detects a change in the movement direction of the device 10 according to a predetermined timing or a clock signal. The movement direction change detection unit 130 detects a change in the movement direction of the device 10 based on sensor signals such as an acceleration sensor, an angular velocity sensor, and / or a magnetic sensor.
  • the moving direction change detection unit 130 calculates, for example, the rotation amount around the gravity axis from the sensor signals of three angular velocity sensors corresponding to the xyz axes of the device 10. For example, the movement direction change detection unit 130 changes the movement direction according to whether or not the amount of rotation about the direction of gravity perpendicular to the traveling direction of the user holding the device 10 is equal to or greater than a predetermined angle. Detect.
  • the movement direction change detection unit 130 detects a change in acceleration in the horizontal direction perpendicular to the traveling direction of the user holding the device 10 from the sensor signals of the three acceleration sensors corresponding to the xyz axes of the device 10. May be.
  • the movement direction change detection unit 130 may detect a change in acceleration with respect to the direction of gravity perpendicular to the traveling direction of the user holding the device 10.
  • the change of the acceleration may be detected from the sensor signal of the geomagnetic sensor of the device 10, and instead of this, it may be detected from the sensor signal of the geomagnetic sensor and the sensor signal of the acceleration sensor.
  • the movement direction change detection unit 130 performs signal analysis or pattern matching on the sensor signal to acquire a pattern signal that accompanies the user's walking, detects a change in the traveling direction dependency of the pattern signal, and holds the device 10 It is also possible to detect a change in the moving direction of the user.
  • the movement direction change detection unit 130 may detect a change in the movement direction based on a movement direction (a direct movement direction or a movement direction calculated from time-series data of position coordinates) obtained by processing such as autonomous navigation. Good.
  • the movement direction change detection unit 130 may detect a change in the movement direction of the user by a known traveling direction estimation method used as autonomous navigation, as described in Patent Documents 1 and 2, for example.
  • the information processing apparatus 100 repeats the detection of the change in the movement direction until the movement direction change detection unit 130 detects the change in the movement direction or until the end of the process is instructed (S350: No, S380: No, S340). That is, the movement direction change detection unit 130 reads the next acquired sensor signal stored in the storage unit 120 and detects a change in the movement direction of the device 10.
  • the movement direction change detection unit 130 detects a change in the movement direction (S350: Yes)
  • the movement distance calculation unit 140 calculates the distance moved by the user (S360).
  • the movement distance calculation unit 140 calculates the movement distance from the estimated position of the device 10 when the first anchor position is determined to the estimated position where the change in the movement direction of the device 10 is detected.
  • the first anchor position is information on the latest anchor position determined by the determination unit 170. That is, the first anchor position is an initial position that is set at the start stage of processing, and is an anchor position that is sequentially determined by executing the processing.
  • the movement distance calculation unit 140 calculates the movement distance from the initial position to the estimated position where the change in the movement direction of the device 10 is detected at the start of processing. For example, when the user changes the movement direction from the first anchor position after the user passes the plurality of anchor positions, the movement distance calculation unit 140 exceeds the plurality of anchor positions from the first anchor position, and The movement distance to the estimated position where the change in the movement direction is detected is calculated.
  • the movement distance calculation unit 140 acquires the movement speed V of the device 10, determines the movement speed V and the first anchor position, and then determines the time t until a change in the movement direction of the device 10 is detected. Accordingly, the moving distance L of the device 10 is calculated.
  • the movement distance calculation unit 140 counts the number of steps of the user holding the device 10 based on the sensor signal, and after the first anchor position is determined, a change in the movement direction of the device 10 is detected.
  • the movement distance L of the device 10 is calculated according to the user's step count N and the user's stride W.
  • the determination unit 170 determines the position through which the device 10 has passed when the movement direction change detection unit 130 detects a change in the movement direction of the device 10 as the second anchor position (S370).
  • the determination unit 170 determines the second anchor position based on the first anchor position and the movement distance of the device 10.
  • an operation in which the determination unit 170 determines the second anchor position will be described with reference to FIG.
  • FIG. 4 shows a first example of the first anchor position according to the present embodiment and the second anchor position determined by the determination unit 170.
  • FIG. 4 shows roads through which a user holding the device 10 passes and anchor positions A, B, and C preset at the intersections of the roads.
  • the anchor position C is set as the first anchor position.
  • the first anchor position is the initial position of the user.
  • FIG. 4 further shows an example of the user's actual walking route PQ and the user's trajectory pq calculated using a technique such as autonomous navigation. Since the movement direction change detection unit 130 detects a change in the movement direction of the device 10, it detects the R1 point and the R2 point on the user's trajectory pq sequentially.
  • FIG. 4 is a stage in which the determination unit 170 determines the R1 point as the first anchor position in association with the anchor position C, and determines the second anchor position corresponding to the next detected R2 point. Show.
  • the actual walking route PQ coincides with the calculated user trajectory pq.
  • the calculated user trajectory pq does not coincide with the walking route PQ due to a detection error or the like, and may not overlap the road on which the user passes. Arise.
  • the anchor position A that does not correspond to the user's actual walking route may be selected. It will occur.
  • the wrong road is selected, and when there is no road to the west side from the anchor position A (example in FIG. 4), walking cannot be continued. Will collapse.
  • the user's trajectory pq by autonomous navigation accumulates errors from the initial position, so that errors also occur in the anchor position selection. May end up.
  • the user's trajectory pq is based on the detection of the direction of travel of the device 10 held by the user, errors are likely to occur due to shaking of the user's body, meandering, hand shaking, and the like.
  • the determination unit 170 of the present embodiment detects the change in the moving direction of the device 10 from the estimated position (point R1) immediately before the device 10 when the first anchor position is determined. Based on the moving distance to the position (point R2), the second anchor position is determined. That is, errors accumulate at the estimated positions of the device 10, but the influence of the accumulation of the errors is reduced in detecting the movement distance between the estimated positions. Therefore, the determination unit 170 more accurately determines the anchor position. You can choose.
  • the movement distance calculation unit 140 detects the movement distance L according to the time t from the detection of the R1 point to the detection of the R2 point and the movement speed V of the device 10, or the detection of the R2 point from the detection of the R1 point.
  • the movement distance L corresponding to the number of steps N of the user and the step width W of the user is calculated and supplied to the determination unit 170.
  • the determination part 170 makes the anchor position located in the distance corresponding to the said movement distance L the 2nd anchor position.
  • the determination unit 170 compares the distance L CA from the anchor position C to the anchor position A, the distance L CB from the anchor position C to the anchor position B, and the movement distance L. Then, the determination unit 170 determines that the closest L CB corresponds to the distance L moved by the user, and sets the anchor position B as the second anchor position. In this case, the determination unit 170 may further determine the second anchor position when the absolute value of LL CB is equal to or smaller than a predetermined distance. Accordingly, the determination unit 170 can select an anchor position corresponding to the user's actual walking route. The second anchor position determined by the determination unit 170 is output to and stored in the passing anchor position storage unit that stores the anchor position through which the device 10 has passed.
  • the determination unit 170 may determine the second anchor position including the moving direction of the device 10. For example, the determination unit 170 selects the second anchor position and the movement direction from the second anchor position based on the movement direction of the device 10 among the movement direction candidates at the second anchor position (that is, the road to be passed). ).
  • the determination unit 170 when determining the anchor position B as the second anchor position, extracts the BN, BE, and BW directions as candidates for the movement direction from the second anchor position, An angle with the direction from the anchor position C to the anchor position B (that is, the north direction) is calculated. For example, the determination unit 170 calculates 0, +90, and ⁇ 90 degrees corresponding to the BN, BE, and BW directions, respectively. The determination unit 170 acquires the angle or the like of the direction changed by the device 10 by autonomous navigation, and determines the corresponding movement direction by comparing with the calculated angle.
  • the determination unit 170 is approximately 90 degrees counterclockwise at the R2 point with respect to the direction from the R1 point to the R2 point (for example, approximately 25 degrees clockwise with respect to the northward direction).
  • the closest BW direction ( ⁇ 90 degrees direction) is determined as the moving direction of the device 10 according to the changed detection result.
  • the determination unit 170 can select an anchor position and a passage corresponding to the actual walking route of the user. In addition, by selecting a path from the anchor position in this way, it may be possible to detect an anchor position selection error. For example, in FIG. 4, when the error ⁇ L is superimposed on the movement distance L due to detection with low reliability or the like, the determination unit 170 determines that the closest LCB corresponds to the distance L moved by the user.
  • the anchor position A is set as the second anchor position.
  • the determination unit 170 extracts AN and AE as candidates for the moving direction from the anchor position A, if a detection result changed approximately 90 degrees counterclockwise at the point R2 is acquired, there is no corresponding passage. Therefore, it can be determined that the anchor position is selected incorrectly. Then, the determination unit 170 may determine that the L CA that is the next closest distance corresponds to the distance L that the user has moved, and determine the anchor position A as the second anchor position.
  • the determination unit 170 may use the change in the movement direction of the device 10 to select the anchor position with high accuracy even when the error ⁇ L is superimposed on the movement distance L.
  • the determination unit 170 may use a change ratio, a ratio, or the like for the purpose of detecting a change in the moving distance and / or moving direction.
  • the determination unit 170 for example, a ratio of a movement distance (estimated movement distance) from the estimated position (R1 point) immediately before the device 10 to the current estimated position (point R2) and the distance between anchors
  • the second anchor position may be determined based on (distance ratio). Instead of or in addition to this, the determination unit 170 determines the second anchor position based on the ratio (direction ratio) between the moving direction of the device 10 (assumed to be an estimated direction change) and the angle between the anchors. You may decide.
  • the determination unit 170 may determine the anchor position having the smallest sum of the distance ratio and the direction ratio as the second anchor position. In this case, the determination unit 170 may calculate the sum after multiplying the distance ratio and the direction ratio by a predetermined coefficient. In this case, a plurality of sets of coefficients for multiplying the distance ratio and the direction ratio are determined in advance, and the determination unit 170 determines the predetermined set of coefficients according to the case where the movement distance is prioritized or the movement direction is prioritized. It may be changed.
  • the determination unit 170 determines the distance estimated during the period of low reliability.
  • the ratio of the distance may be calculated without including. For example, when the posture of the device 10 has changed significantly (stumbling of the user holding the device 10, behavior to avoid from collision, congestion, etc., falling), the change in the rotation direction of the device 10 has changed more than a predetermined angle. In some cases (such as turning a corner while looking left and right, turning while turning), the reliability of the estimated traveling direction may be low.
  • FIG. 5 shows a second example of the first anchor position according to the present embodiment and the second anchor position determined by the determination unit 170.
  • FIG. 5 shows roads on which a user holding the device 10 passes and anchor positions A, B, C, and D preset on the roads.
  • the anchor position A is set as the first anchor position.
  • FIG. 5 further shows an example of the user's actual walking route PQ and the user's trajectory pq calculated using a technique such as autonomous navigation. Since the movement direction change detection unit 130 detects a change in the movement direction of the device 10, it detects the R1 point and the R2 point on the user's trajectory pq sequentially. FIG. 5 shows an example in which the determination unit 170 determines the R1 point as the first anchor position in association with the anchor position C, and determines the second anchor position corresponding to the next detected R2 point. Show.
  • the section P′-Q in the user's walking route PQ is a section in which the user moves while greatly fluctuating, and is a section in which the reliability in the traveling direction is low. That is, of the user's trajectory pq calculated using a technique such as autonomous navigation, the section of the trajectory p'-q is a case where there is a deviation from the actual user's walking route P'-Q. Show. As described above, when the user's trajectory pq different from the actual user's walking route is used, the determination unit 170 determines the anchor position D as the second anchor position according to the moving direction and the estimated moving distance of the device 10. Will be decided as.
  • the determination unit 170 determines that the reliability in the traveling direction has decreased in response to the change in the movement direction of the device 10 being greater than a predetermined threshold. . Then, the determination unit 170 maintains the traveling direction immediately before passing through the point P ′, and the travel distance (referred to as the distance A) estimated during the period until the user moves in the section P′ ⁇ Q is Without using it, the second anchor position is determined.
  • the distance ratio may be calculated using (estimated movement distance ⁇ distance A ⁇ inter-anchor distance) / inter-anchor distance).
  • the determination unit 170 determines the second anchor position as the point C. Accordingly, the determination unit 170 selects the anchor position C existing on the actual user's walking route PQ without selecting the anchor position in the section of the trajectory p′-q deviated from the actual user's walking route. You can choose. Therefore, the determination unit 170 can prevent the failure of the operation after the anchor position deviated from the walking route, and can continue the operation from the anchor position C on the actual user's walking route PQ.
  • the determination unit 170 determines the correct anchor position based on the estimated moving distance moved during the period when the reliability in the traveling direction is low and the moving direction of the user at point Q when the reliability in the traveling direction is restored. Guess.
  • the determination unit 170 may continue the operation with the anchor position C as the correct second anchor position.
  • the determination unit 170 acquires the second anchor position stored in the passing anchor position storage unit.
  • the information processing apparatus 100 uses the second anchor position determined by the determination unit 170 as the first anchor position until the processing is completed, and returns to the stage of detecting the movement report change by the movement direction change detection unit 130.
  • the next second anchor position determination operation corresponding to the user's walking operation is continued. (S380: No, S340).
  • the information processing apparatus 100 ends the process in response to the user inputting the end of the autonomous navigation (S380: Yes). Further, the information processing apparatus 100 may end the processing in response to switching to another positioning method system or the like.
  • the information processing apparatus 100 calculates the distance that the user moves before the estimated position of the device 10 is detected, determines the anchor position based on the movement distance, The selection error of the anchor position is reduced. Thereby, the information processing apparatus 100 can reduce an estimation error of the current position of the user by autonomous navigation.
  • the determination unit 170 of the information processing apparatus 100 determines that the second anchor position is determined by comparing the movement distance L calculated by the movement distance calculation unit 140 with the distance between the anchor positions. did. In addition to this, the determination unit 170 may update the moving speed V or the stride W of the user according to the determination of the second anchor position.
  • the determination unit 170 may store a parameter for estimating the moving speed V instead of the moving speed V of the user.
  • the parameter for estimating the moving speed V may include a moving speed calculated based on the distance between the anchor positions, or may include a physical quantity representing the user's action between the anchor positions.
  • the determination unit 170 includes, as a physical quantity representing a user's motion between anchor positions, an average value of amplitude values of angular velocities in the gravity axis direction between anchor positions calculated based on sensor signals.
  • the moving distance calculation unit 140 can estimate the moving speed V of the user more accurately from the parameter updated in consideration of the user's action. Specifically, the movement distance calculation unit 140 estimates the movement speed V of the user based on the relationship between the acceleration amplitude value in the gravity axis direction and the movement speed. In this case, the movement distance calculation unit 140 may have a linear relationship between the acceleration amplitude value in the gravity axis direction and the movement speed.
  • the determination unit 170 moves the device 10 based on the distance between the anchor positions determined that the device 10 has passed. Update speed.
  • the updated moving speed V new is stored in the storage unit 120.
  • the determination unit 170 updates the user's moving speed V or the stride W based on the distance that the user has moved immediately before, the determination of the next moving distance by the moving distance calculation unit 140 is more accurate. Can be calculated. In addition, even if the user's walking speed increases or decreases depending on the physical condition of the user, other luggage, and the degree of congestion on the walking road, the movement distance calculation unit 140 calculates a more accurate movement distance. can do.
  • the determination unit 170 may update the moving speed of the user and / or the stride of the user using the distance between the two or more anchor positions. If the distance LCB between anchor positions is about 5 m or less, for example, the user will pass in several steps, and an error may occur in the calculation of the user's moving speed and step length. Therefore, for example, the determination unit 170 uses a distance between two or more anchor positions that is equal to or greater than a predetermined distance in order to use a distance that allows the user to walk about 10 steps or more.
  • the determination unit 170 cannot cope with a change in the user's way of walking and the average moving speed and step length influenced by past actions. May be calculated. Therefore, when the distance between the plurality of anchor positions is used, the determination unit 170 may update the user's moving speed and / or stride using a distance that is equal to or less than a predetermined upper limit value. In this case, it is desirable that the determination unit 170 calculates the moving speed and the stride without using data such as a section with a low reliability.
  • the sensor signal acquisition unit 110 acquires a sensor signal from at least one of an acceleration sensor, an angular velocity sensor, and a geomagnetic sensor has been described.
  • the sensor signal acquisition unit 110 may acquire a sensor signal of a sensor including an atmospheric pressure sensor mounted on the device 10.
  • the atmospheric pressure sensor detects a change in atmospheric pressure around the device 10 in response to the user holding the device 10 moving up and down by any elevator, escalator, stairs, or slope.
  • the determination unit 170 determines the second anchor position based on the movement distance from the estimated position of the device 10 when the first anchor position is determined to the estimated position where the atmospheric pressure change around the device 10 is detected. To decide.
  • the movement direction change detection unit 130 detects that the movement direction of the user has been changed by the lifting / lowering means if a change in atmospheric pressure is detected even if a change in the movement direction of the user by the acceleration sensor or the like is not detected. .
  • the movement direction change detection unit 130 detects, for example, that the user has got on the lifting / lowering means such as an escalator and got off the lifting / lowering means.
  • the movement direction change detection unit 130 may detect walking of elevating means such as stairs and escalators, and stop of the walking. That is, the movement direction change detection unit 130 may detect both a change in the movement direction of the user and a change in atmospheric pressure around the device 10.
  • the movement distance calculation unit 140 can acquire the movement speed V of the user by comparing the temporal change of the atmospheric pressure with the data of the height and the atmospheric pressure difference for each floor. That is, the information processing apparatus 100 can determine whether the user is on an elevator or an escalator. Therefore, the movement distance calculation unit 140 can calculate the movement distance L that is moved by the lifting means or the like even when the user is not walking.
  • storage part 120 may memorize
  • the information processing apparatus 100 can detect the user's walking state by analyzing the sensor signal from the acceleration sensor, the user walks on the escalator even if the time variation of substantially the same atmospheric pressure is detected. It is possible to determine whether the vehicle is on the elevator or on the elevator. Similarly, the information processing apparatus 100 can determine whether the user is walking on the stairs or on an escalator.
  • the determination unit 170 can determine an anchor position corresponding to the actual walking route of the user. That is, the information processing apparatus 100 can reduce the estimation error of the current position of the user by autonomous navigation even when the user moves between floors in the building. In this case, since the information processing apparatus 100 determines the anchor position based on the change in atmospheric pressure around the device 10, the information processing apparatus 100 can determine the anchor position even when the user is not walking.
  • the information processing apparatus 100 can be a floor on which the user walks based on a change in atmospheric pressure.
  • Anchor positions can be determined.
  • FIG. 6 shows a modification of the information processing apparatus 100 according to this embodiment together with the sensor 20 and the anchor position storage unit 30.
  • the same reference numerals are given to the substantially same operations as those of the information processing apparatus 100 according to the present embodiment illustrated in FIG.
  • the information processing apparatus 100 according to this modification further includes a movement direction detection unit 150.
  • the moving direction detection unit 150 is connected to the storage unit 120 and detects the moving direction of the device 10 based on the sensor signal. For example, the movement direction detection unit 150 detects the movement direction of the device 10 according to a predetermined timing or a clock signal.
  • the movement direction detection unit 150 may accumulate the detected movement direction of the device 10 in the storage unit 120, and may calculate a locus of movement of the user holding the device 10 based on the accumulated movement direction. That is, the moving direction detection unit 150 can calculate the user's trajectory pq shown in the example of FIG. 4 by accumulating the moving direction of the device 10. The movement direction detection unit 150 supplies the detected movement direction and / or the calculated trajectory to the determination unit 170.
  • the determination unit 170 of this modification determines the second anchor position based on the first anchor position, the movement distance of the device 10, and the movement direction.
  • the determination unit 170 may not be able to determine the second anchor position only by comparing the distances. Therefore, the determination unit 170 determines the anchor position that exists in the direction depending on whether the user holding the device 10 has moved from the first anchor position in the left, right, east-west, north-south, or up-down direction.
  • the second anchor position is determined.
  • the determination unit 170 determines the second anchor position based on the first anchor position and the movement distance
  • the direction of the second anchor position with respect to the first anchor position indicates that the user has moved It is determined whether the direction is substantially the same as the direction. Then, when the direction of the second anchor position is different from the moving direction of the user, the determination unit 170 excludes the determined second anchor position and newly sets the second anchor position from among other anchor positions. You may decide.
  • the determination unit 170 sets an anchor position that is substantially in the same direction as the moving direction of the user among the plurality of anchor positions as a second anchor position candidate, and selects the first anchor position and the anchor position from the candidates.
  • the second anchor position may be determined based on the movement distance.
  • the information processing apparatus 100 according to the present modification determines the second anchor position in consideration of the moving direction of the user, so that the selection error of the anchor position can be further reduced.
  • the determination unit 170 may determine the second anchor position by giving priority to the moving direction of the device 10. The operation of the determination unit 170 in this case will be described with reference to FIG.
  • FIG. 7 shows a third example of the first anchor position according to the present embodiment and the second anchor position determined by the determination unit 170.
  • the same reference numerals are given to substantially the same parts as those of the first anchor position and the second anchor position according to the present embodiment shown in FIG.
  • the movement distance calculation unit 140 calculates the movement distance of the user in a range close to the initial position or the first anchor position, the calculated movement distance may include a large error.
  • the user's trajectory pq calculated by the moving direction detection unit 150 also has a large error.
  • the movement distance calculation unit 140 and the movement direction detection unit 150 tend to calculate the movement distance largely. For example, in the case of FIG. 7, even if the distance L CA from the anchor position C to the anchor position A and the distance L CB from the anchor position C to the anchor position B are compared with the movement distance L, the movement distance L Are substantially the same, and it becomes impossible to determine which one should be selected.
  • the determination unit 170 prioritizes the moving direction of the device 10 and determines the second anchor position. That is, the decision unit 170 detects that the user's moving direction has already changed and the point R2 has been detected before reaching the anchor position A, and the user's trajectory pq has changed to the east in the figure. The user determines that the moving direction has been changed to the east at the anchor position B. Thus, the determination unit 170 gives priority to the change and sets the anchor position B as the second anchor position. Thereby, the information processing apparatus 100 can reduce the selection error of the second anchor position that occurs when the distance between the different anchor positions is shorter than the predetermined distance.
  • the determination unit 170 detects a change in the movement direction of the device 10 and cannot determine the second anchor position for a predetermined time or more, the determination unit 170 moves the first anchor position and the device 10.
  • a second anchor position may be determined based on the direction.
  • the movement direction change detection unit 130 detects a change in the movement direction of the device 10 and the movement distance calculation unit 140 calculates the movement distance L of the device 10
  • the movement distance calculation unit 140 calculates the movement distance L of the device 10
  • FIG. 8 shows a fourth example of the first anchor position according to the present embodiment and the second anchor position determined by the determination unit 170.
  • the same reference numerals are given to substantially the same parts as those of the first anchor position and the second anchor position according to the present embodiment shown in FIG.
  • the movement distance calculation unit 140 includes an error.
  • the movement distance L is calculated.
  • the determination unit 170 may not be able to determine the second anchor position corresponding to the movement distance L and may get stuck.
  • the moving direction detection unit 150 can sequentially calculate the user's trajectory pq (or p′ ⁇ q ′) although it includes an error.
  • the determination unit 170 determines that the user is moving in the east direction.
  • the anchor position A corresponding to the road that can move in the east direction is determined as the second anchor position.
  • the determination unit 170 may determine the corresponding anchor position closest to the point R2 as the second anchor position. Thereby, the information processing apparatus 100 can prevent a deadlock due to the anchor position not being determined.
  • the determination unit 170 determines the first anchor position, the movement distance of the device 10, and the predetermined position.
  • the second anchor position is determined based on the moving direction of the device 10 in a period longer than the predetermined time. For example, when the user gently changes the movement direction, the movement direction change detection unit 130 may not be able to detect the change in the movement direction.
  • FIG. 9 shows a fifth example of the first anchor position according to the present embodiment and the second anchor position determined by the determination unit 170.
  • the same reference numerals are given to substantially the same parts as those of the first anchor position and the second anchor position according to the present embodiment shown in FIG.
  • the movement direction change detection unit 130 when a user walks on a road having a relatively wide road, when the user travels in the oblique direction, the movement direction change detection unit 130 cannot detect the change in the movement direction. .
  • the movement direction change detection unit 130 may not be able to detect a change from the first travel direction to the second travel direction and / or a change from the second travel direction to the third travel direction. Then, the movement direction detection unit 150 sequentially calculates the trajectory pq corresponding to the user's walk.
  • the movement direction detection unit 150 calculates the movement direction of the device 10 in a period longer than a predetermined time based on the calculated trajectory pq corresponding to the user's walk.
  • the movement direction detection unit 150 sets a period longer than a predetermined time to be longer than the time during which the movement direction change detection unit 130 detects the movement direction.
  • the movement direction detection unit 150 may set the period as a period during which the user walks two steps or more, and preferably sets the period as four steps or more.
  • the moving direction detection unit 150 detects the traveling direction as the traveling direction of the user.
  • the moving direction detection unit 150 may store the detected traveling direction in the storage unit 120.
  • the moving direction detection unit 150 sequentially detects and stores a first traveling direction, a second traveling direction, and a third traveling direction in the drawing.
  • the moving direction detection unit 150 sequentially stores such traveling directions, and the traveling direction stored immediately before and the traveling direction stored this time change more than a predetermined angle, and If the movement direction change detection unit 130 does not detect a change in the movement direction during the change in the movement direction, it detects that the movement direction has changed. Accordingly, the moving direction detection unit 150 can detect a change from the first traveling direction to the second traveling direction and a change from the second traveling direction to the third traveling direction, respectively.
  • the moving direction detection unit 150 supplies the detection result of the change in the traveling direction to the determination unit 170, and the determination unit 170 determines the anchor position according to the change in the traveling direction.
  • the determination unit 170 determines an estimated position (point R1) of the device 10 in a period between a period in which the first traveling direction is detected and a period in which the second traveling direction is detected, for example.
  • the anchor position A corresponding to the position (for example, closest) is set as the second anchor position.
  • the determination unit 170 may set an intermediate point of a period between the period in which the first traveling direction is detected and the period in which the second traveling direction is detected on the user's trajectory as the estimated position.
  • the determination part 170 determines the estimated position (R2 point) of the apparatus 10 in the period between the period when the 2nd advancing direction was detected, and the period when the 3rd advancing direction was detected, for example, and the said estimated position
  • the anchor position C corresponding to is set as the next second anchor position. In this manner, the information processing apparatus 100 can determine the anchor position by detecting the change in the traveling direction even when the user gently changes the traveling direction.
  • the information processing apparatus 100 may further include a device position acquisition unit that acquires the position of the device 10.
  • the device position acquisition unit acquires the position of the device 10 obtained by an external device or the like.
  • the device position acquisition unit acquires the position information of the device 10 obtained by positioning means such as GPS.
  • the device position acquisition unit may receive and measure a standardized wireless LAN signal such as Wi-Fi (Wireless Fidelity) and acquire the position information of the device 10 obtained.
  • Wi-Fi Wireless Fidelity
  • the device position acquisition unit may acquire the position information of the device 10 obtained by receiving radio waves or electromagnetic waves such as infrared rays emitted from a beacon provided at a predetermined position.
  • the device position acquisition unit may acquire the position information of the device 10 from an external device or the like that supplies the absolute position of the device 10 or calculates the absolute position regardless of radio waves and electromagnetic waves.
  • the device position acquisition unit supplies the acquired position of the device 10 to the determination unit 170.
  • the determination unit 170 preferentially determines the anchor position closest to the position of the device 10 as the second anchor position in response to the device position acquisition unit acquiring the position of the device 10. In this way, when the information processing apparatus 100 can estimate the position of the device 10 with higher accuracy than the autonomous navigation, the information processing device 100 preferentially adopts the position of the device 10 estimated with the high accuracy, and the corresponding anchor position. Is the second anchor position. Thereby, the information processing apparatus 100 can reduce the influence of the position error accumulated by the autonomous navigation.
  • the information processing apparatus 100 may register in advance the corresponding anchor position on the walking route as the second anchor position candidate.
  • the determination unit 170 may determine the second anchor position from the registered second anchor position candidates when a change in the moving direction of the user is detected.
  • the movement direction detection unit 150 calculates the trajectory pq corresponding to the user's walk. In addition to this, the movement direction detection unit 150 may correct the calculated trajectory pq according to the determination unit 170 determining the second anchor position.
  • the determination unit 170 stores the determined second anchor position in the storage unit 120. Then, the movement direction detection unit 150 corrects the corresponding portion of the calculated trajectory pq in accordance with the update of the second anchor position. As a result, the information processing apparatus 100 can calculate the user's path pq with higher accuracy.
  • the movement direction change detection unit 130 detects a change in the movement direction of the device 10 and the movement direction detection unit 150 detects the movement direction of the device 10 has been described.
  • the movement direction detection unit 150 can detect a change in the movement direction of the device 10 by further detecting a temporal change in the movement direction of the detected device 10
  • the movement direction detection unit 150 The operation of the change detection unit 130 may be executed. That is, in this case, the movement direction change detection unit 130 and the movement direction detection unit 150 may be the same member.
  • FIG. 10 shows a configuration example of the map matching apparatus 200 according to the present embodiment.
  • the same reference numerals are assigned to substantially the same operations as those of the information processing apparatus 100 according to the present embodiment shown in FIGS. 2 and 6, and the description thereof is omitted.
  • the map matching apparatus 200 further includes an input unit 210, a map information storage unit 220, and a position determination unit 230.
  • the input unit 210 inputs the initial position of the user.
  • the input unit 210 may input an instruction to start processing of the map matching function.
  • the map matching apparatus 200 may display the map information on the display unit 12 of the mobile device 10 and allow the user to specify the current position, thereby inputting the user's initial position and starting the map matching function.
  • the input unit 210 may be an input device such as a touch panel combined with the display unit 12 as an example.
  • the storage unit 120 may store the initial position of the user input from the input unit 210.
  • the map information storage unit 220 stores map information including a plurality of anchor positions. Further, the map information storage unit 220 stores map information including a correspondence relationship between a plurality of anchor positions and position coordinates on the map. The map information storage unit 220 may store map information to be displayed on the display unit 12.
  • the position determination unit 230 determines the position on the map of the user holding the device 10 according to the anchor position corresponding to the estimated position of the device 10 output from the information processing apparatus 100. Since the information processing apparatus 100 can output the anchor position corresponding to the estimated position of the user with reduced error, the position determination unit 230 can accurately determine the position of the user on the map.
  • the position determination unit 230 causes the display unit 12 to display the determined user position together with the map information. Further, the position determination unit 230 may cause the display unit 12 to display the user trajectory calculated by the movement direction detection unit 150. Thereby, the user can confirm the position on the map of the user himself / herself by autonomous navigation with reduced error.
  • the position determination unit 230 can determine the correct position on the map of the user by map matching, the position determination unit 230 can also calculate a more accurate distance that the user has moved. Therefore, the position determination unit 230 may be connected to the movement distance calculation unit 140 and supply the calculated movement distance to the movement distance calculation unit 140. Accordingly, the movement distance calculation unit 140 can calculate the more accurate movement speed of the user based on the accurate distance obtained from the map matching and the walking time obtained from the autonomous navigation. Furthermore, the parameter regarding the moving speed estimated in autonomous navigation can be updated to an appropriate one according to the obtained accurate moving speed and the physical quantity obtained from the autonomous navigation.
  • FIG. 11 shows an example of a hardware configuration of a computer 1900 that functions as the information processing apparatus 100 according to the present embodiment.
  • a computer 1900 according to the present embodiment is mounted inside the device 10, for example.
  • the computer 1900 may be provided outside the device 10, receive a sensor output from the device 10, and transmit an anchor position determination result or the like to the device 10. In this case, the computer 1900 transmits and receives wirelessly to and from the device 10 as an example.
  • a computer 1900 is connected to a CPU peripheral unit having a CPU 2000, a RAM 2020, a graphic controller 2075, and a display device 2080 that are connected to each other by a host controller 2082, and to the host controller 2082 by an input / output controller 2084.
  • a communication interface 2030 a storage unit 2040, an input / output unit 2060, a ROM 2010, a card slot 2050, and an input / output chip 2070.
  • the host controller 2082 connects the RAM 2020 to the CPU 2000 and the graphic controller 2075 that access the RAM 2020 at a high transfer rate.
  • the CPU 2000 operates based on programs stored in the ROM 2010 and the RAM 2020 and controls each unit.
  • the graphic controller 2075 acquires image data generated by the CPU 2000 or the like on a frame buffer provided in the RAM 2020 and displays it on the display device 2080.
  • the graphic controller 2075 may include a frame buffer for storing image data generated by the CPU 2000 or the like.
  • the input / output controller 2084 connects the host controller 2082 to the communication interface 2030, the storage unit 2040, and the input / output unit 2060 which are relatively high-speed input / output devices.
  • the communication interface 2030 communicates with other devices via a network.
  • Storage unit 2040 stores programs and data used by CPU 2000 in computer 1900.
  • the storage unit 2040 is a nonvolatile memory, such as a flash memory or a hard disk.
  • the input / output unit 2060 is connected to the connector 2095, transmits / receives a program or data to / from the outside, and provides the storage unit 2040 via the RAM 2020.
  • the input / output unit 2060 may transmit / receive to / from the outside with a standardized connector and communication method.
  • the input / output unit 2060 is a standard such as USB, IEEE 1394, HDMI (registered trademark), or Thunderbolt (registered trademark). May be used.
  • the input / output unit 2060 may transmit and receive with the outside using a wireless communication standard such as Bluetooth (registered trademark).
  • the ROM 2010, the card slot 2050, and the relatively low-speed input / output device of the input / output chip 2070 are connected to the input / output controller 2084.
  • the ROM 2010 stores a boot program that the computer 1900 executes at startup and / or a program that depends on the hardware of the computer 1900.
  • the card slot 2050 reads a program or data from the memory card 2090 and provides it to the storage unit 2040 via the RAM 2020.
  • the input / output chip 2070 connects the card slot 2050 to the input / output controller 2084 and, for example, various input / output devices via the parallel port, serial port, keyboard port, mouse port, etc. You may connect to.
  • the program provided to the storage unit 2040 via the RAM 2020 is provided by the user via the input / output unit 2060 or stored in a recording medium such as the memory card 2090.
  • the program is read from the recording medium, installed in the storage unit 2040 in the computer 1900 via the RAM 2020, and executed by the CPU 2000.
  • the program is installed in the computer 1900, and the computer 1900 includes the sensor signal acquisition unit 110, the storage unit 120, the movement direction change detection unit 130, the movement distance calculation unit 140, the movement direction detection unit 150, the anchor position acquisition unit 160, and the determination unit. It functions as 170 or the like.
  • the information processing described in the program is read into the computer 1900, whereby the sensor signal acquisition unit 110, the storage unit 120, and the movement direction change, which are specific means in which the software and the various hardware resources described above cooperate. It functions as a detection unit 130, a movement distance calculation unit 140, a movement direction detection unit 150, an anchor position acquisition unit 160, a determination unit 170, and the like. And the specific information processing apparatus 100 according to the intended use is constructed
  • the CPU 2000 executes a communication program loaded on the RAM 2020 and executes a communication interface based on the processing content described in the communication program.
  • a communication process is instructed to 2030.
  • the communication interface 2030 receives transmission data stored in a transmission buffer area provided on a storage device connected via the RAM 2020, the storage unit 2040, the memory card 2090, or the input / output unit 2060 under the control of the CPU 2000.
  • the data is read and transmitted to the network, or the received data received from the network is written into a reception buffer area or the like provided on the storage device.
  • the communication interface 2030 may transfer transmission / reception data to / from the storage device by the DMA (Direct Memory Access) method. Instead, the CPU 2000 transfers the storage device or the communication interface 2030 as the transfer source.
  • the transmission / reception data may be transferred by reading the data from the data and writing the data to the communication interface 2030 or the storage device of the transfer destination.
  • the CPU 2000 uses the RAM 2020 to transfer all or necessary portions from among files or databases stored in the storage unit 2040, the memory card 2090, or a storage device connected via the input / output unit 2060 by DMA transfer or the like. And various processes are performed on the data on the RAM 2020. Then, CPU 2000 writes the processed data back to the storage device by DMA transfer or the like.
  • the RAM 2020 can be regarded as temporarily holding the contents of the storage device, in the present embodiment, the RAM 2020 and the storage device are collectively referred to as a memory, a storage unit, or a storage device.
  • Various types of information such as various programs, data, tables, and databases in the present embodiment are stored on such a storage device and are subjected to information processing.
  • the CPU 2000 can also store a part of the RAM 2020 in the cache memory and perform reading and writing on the cache memory. Even in such a form, the cache memory bears a part of the function of the RAM 2020. Therefore, in the present embodiment, the cache memory is also included in the RAM 2020, the memory, and / or the storage device unless otherwise indicated. To do.
  • the CPU 2000 performs various operations, such as various operations, information processing, condition determination, information search / replacement, etc., described in the present embodiment, specified for the data read from the RAM 2020 by the instruction sequence of the program. Is written back to the RAM 2020. For example, when performing the condition determination, the CPU 2000 determines whether the various variables shown in the present embodiment satisfy the conditions such as large, small, above, below, equal, etc., compared to other variables or constants. When the condition is satisfied (or not satisfied), the program branches to a different instruction sequence or calls a subroutine.
  • the CPU 2000 can search for information stored in a file or database in the storage device. For example, in the case where a plurality of entries in which the attribute value of the second attribute is associated with the attribute value of the first attribute are stored in the storage device, the CPU 2000 displays the plurality of entries stored in the storage device. The entry that matches the condition in which the attribute value of the first attribute is specified is retrieved, and the attribute value of the second attribute that is stored in the entry is read, thereby associating with the first attribute that satisfies the predetermined condition The attribute value of the specified second attribute can be obtained.
  • the programs or modules shown above may be stored in an external recording medium.
  • an optical recording medium such as a DVD, Blu-ray (registered trademark) or CD
  • a magneto-optical recording medium such as an MO
  • a tape medium such as an IC card, or the like
  • a semiconductor memory such as an IC card, or the like
  • a storage device such as a hard disk or a RAM provided in a server system connected to a dedicated communication network or the Internet may be used as a recording medium, and the program may be provided to the computer 1900 via the network.

Abstract

 An autonomous navigation method that reduces errors when estimating the current position of a user. Provided are an information processing device, an information processing method, and a program, the information processing device being equipped with: a sensor signal acquisition unit that acquires sensor signals from a sensor mounted in an apparatus; an anchor position acquisition unit that acquires a plurality of anchor positions; a trajectory variation detection unit that detects variations in the trajectory of the apparatus on the basis of the sensor signals; and a determination unit that determines a second anchor position from among the plurality of anchor positions on the basis of a first anchor position among the plurality of anchor positions, and the travel distance from the estimated position of the apparatus corresponding to the first anchor position to an estimated position at which a variation in the trajectory of the device was detected.

Description

情報処理装置、マップマッチング装置、情報処理方法、およびプログラムInformation processing apparatus, map matching apparatus, information processing method, and program
 本発明は、情報処理装置、マップマッチング装置、情報処理方法、およびプログラムに関する。 The present invention relates to an information processing device, a map matching device, an information processing method, and a program.
 従来、携帯機器等に搭載されたセンサ等の出力に基づき、当該携帯機器を保持するユーザの位置座標を推定する自律航法等が知られていた(例えば、特許文献1参照)。
 [特許文献1] 特開2012-117974号公報
Conventionally, autonomous navigation or the like for estimating the position coordinates of a user holding the portable device based on the output of a sensor or the like mounted on the portable device or the like has been known (for example, see Patent Document 1).
[Patent Document 1] JP 2012-117974 A
 特許文献1は、ユーザの位置座標を正確に推定すべく、ユーザが方位を変更すると想定される地点をアンカーポイントとして設定し、ユーザの回転動作を検出した回転地点(回転地点R)を推定し、推定した回転地点に最も近いアンカーポイントを決定し、決定したアンカーポイントを当該ユーザの現在位置としていた。しかし、特許文献1は、推定された回転地点Rと実際のユーザの位置との差が小さいことを前提とした技術であり、推定された回転地点Rが実際のユーザの位置と大きく異なる場合に、実際のユーザの位置と大きく異なるアンカーポイントを選択してしまうという問題があった。 In Patent Document 1, in order to accurately estimate the position coordinates of the user, a point where the user is assumed to change the azimuth is set as an anchor point, and a rotation point (rotation point R) where the user's rotation motion is detected is estimated. The anchor point closest to the estimated rotation point is determined, and the determined anchor point is set as the current position of the user. However, Patent Document 1 is a technique on the assumption that the difference between the estimated rotation point R and the actual user position is small, and when the estimated rotation point R is significantly different from the actual user position. However, there is a problem that an anchor point that is significantly different from the actual user position is selected.
 本発明の第1の態様においては、機器に搭載されたセンサのセンサ信号を取得するセンサ信号取得部と、複数のアンカー位置を取得するアンカー位置取得部と、センサ信号に基づき、機器の移動方向の変化を検知する移動方向変化検知部と、複数のアンカー位置のうちの第1のアンカー位置と、第1のアンカー位置に対応する機器の推定位置から機器の移動方向の変化が検出された推定位置までの移動距離と、に基づき、複数のアンカー位置のうちの第2のアンカー位置を決定する決定部と、を備える情報処理装置、情報処理方法、およびプログラムを提供する。 In the first aspect of the present invention, the sensor signal acquisition unit that acquires the sensor signal of the sensor mounted on the device, the anchor position acquisition unit that acquires a plurality of anchor positions, and the movement direction of the device based on the sensor signal Direction detection unit for detecting a change in the position, a first anchor position among a plurality of anchor positions, and an estimation in which a change in the movement direction of the apparatus is detected from the estimated position of the apparatus corresponding to the first anchor position An information processing apparatus, an information processing method, and a program are provided that include a determination unit that determines a second anchor position among a plurality of anchor positions based on a moving distance to a position.
 本発明の第2の態様においては、第1の態様の情報処理装置と、複数のアンカー位置を含む地図情報を記憶する地図情報記憶部と、情報処理装置から出力される機器の推定位置に対応するアンカー位置に応じて、機器を保持するユーザの地図上の位置を決定する位置決定部とを備えるマップマッチング装置を提供する。 In the second aspect of the present invention, the information processing apparatus of the first aspect, a map information storage unit that stores map information including a plurality of anchor positions, and an estimated position of a device output from the information processing apparatus There is provided a map matching device including a position determining unit that determines a position on a map of a user holding a device according to an anchor position to be performed.
 なお、上記の発明の概要は、本発明の必要な特徴の全てを列挙したものではない。また、これらの特徴群のサブコンビネーションもまた、発明となりうる。 Note that the above summary of the invention does not enumerate all the necessary features of the present invention. In addition, a sub-combination of these feature groups can also be an invention.
本実施形態に係る機器10の一例を示す。An example of the apparatus 10 which concerns on this embodiment is shown. 本実施形態に係る情報処理装置100の構成例をセンサ20およびアンカー位置記憶部30と共に示す。The structural example of the information processing apparatus 100 which concerns on this embodiment is shown with the sensor 20 and the anchor position memory | storage part 30. FIG. 本実施形態に係る情報処理装置100の動作フローを示す。The operation | movement flow of the information processing apparatus 100 which concerns on this embodiment is shown. 本実施形態に係る第1のアンカー位置と、決定部170が決定する第2のアンカー位置の第1の例を示す。The 1st anchor position which concerns on this embodiment, and the 1st example of the 2nd anchor position which the determination part 170 determines are shown. 本実施形態に係る第1のアンカー位置と、決定部170が決定する第2のアンカー位置の第2の例を示す。The 2nd example of the 1st anchor position which concerns on this embodiment, and the 2nd anchor position which the determination part 170 determines is shown. 本実施形態に係る情報処理装置100の変形例をセンサ20およびアンカー位置記憶部30と共に示す。The modification of the information processing apparatus 100 which concerns on this embodiment is shown with the sensor 20 and the anchor position memory | storage part 30. FIG. 本実施形態に係る第1のアンカー位置と、決定部170が決定する第2のアンカー位置の第3の例を示す。The 3rd example of the 1st anchor position which concerns on this embodiment, and the 2nd anchor position which the determination part 170 determines is shown. 本実施形態に係る第1のアンカー位置と、決定部170が決定する第2のアンカー位置の第4の例を示す。The 4th example of the 1st anchor position which concerns on this embodiment, and the 2nd anchor position which the determination part 170 determines is shown. 本実施形態に係る第1のアンカー位置と、決定部170が決定する第2のアンカー位置の第5の例を示す。The 5th example of the 1st anchor position which concerns on this embodiment, and the 2nd anchor position which the determination part 170 determines is shown. 本実施形態に係るマップマッチング装置200の構成例を示す。The structural example of the map matching apparatus 200 which concerns on this embodiment is shown. 本実施形態に係る情報処理装置100として機能するコンピュータ1900のハードウェア構成の一例を示す。2 shows an example of a hardware configuration of a computer 1900 that functions as the information processing apparatus 100 according to the present embodiment.
 以下、発明の実施の形態を通じて本発明を説明するが、以下の実施形態は請求の範囲にかかる発明を限定するものではない。また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。 Hereinafter, the present invention will be described through embodiments of the invention. However, the following embodiments do not limit the invention according to the claims. In addition, not all the combinations of features described in the embodiments are essential for the solving means of the invention.
 図1は、本実施形態に係る機器10の一例を示す。機器10は、複数のセンサを搭載し、一例として、当該機器10の動き、保持状態、および位置等を検出する。機器10は、自身に搭載されたセンサ等の出力に応じて、当該機器10の現在位置および目的地までの経路等を表示する自律航法システムを備える。これに加えて、機器10は、マップマッチング機能を更に備え、マップマッチング装置として機能してもよい。 FIG. 1 shows an example of a device 10 according to the present embodiment. The device 10 includes a plurality of sensors, and detects the movement, holding state, position, and the like of the device 10 as an example. The device 10 includes an autonomous navigation system that displays a current position of the device 10 and a route to the destination according to the output of a sensor or the like mounted on the device 10. In addition, the device 10 may further include a map matching function and function as a map matching device.
 機器10は、一例として、外部の装置およびインターネット等に接続するための通信機能、ならびにプログラムを実行するためのデータ処理機能等を備える。機器10は、例えば、スマートフォン、携帯電話、タブレット型PC(Personal Computer)、携帯型GPS(Global Positioning System)装置、または小型PC等である。機器10は、表示部12を備える。 The device 10 includes, for example, a communication function for connecting to an external device and the Internet, a data processing function for executing a program, and the like. The device 10 is, for example, a smartphone, a mobile phone, a tablet PC (Personal Computer), a portable GPS (Global Positioning System) device, or a small PC. The device 10 includes a display unit 12.
 表示部12は、例えば、インターネットのWEBページ、電子メール、地図、文書・音楽・動画・画像データ等を操作する画面を、ユーザの指示に応じて表示する。また、表示部12は、例えば、ユーザの指示が入力されるタッチパネルディスプレイであり、ユーザからのタッチ入力によってブラウザ等のソフトウェアの操作画面にユーザの指示が入力される。これに代えて、機器10は、ジェスチャ入力でユーザの指示が入力されてもよい。これに代えて、機器10は、キーボード、マウス、および/またはジョイスティック等の入力デバイスによってユーザの指示が入力されてもよい。 The display unit 12 displays, for example, a screen for operating an Internet web page, e-mail, map, document / music / moving image / image data, and the like according to a user instruction. The display unit 12 is, for example, a touch panel display to which a user instruction is input, and the user instruction is input to an operation screen of software such as a browser by a touch input from the user. Instead of this, the device 10 may receive a user instruction by gesture input. Alternatively, the device 10 may be input with a user instruction by an input device such as a keyboard, a mouse, and / or a joystick.
 ここで、本実施形態に係る機器10において、表示部12の表示面と平行な面をxy平面とし、当該表示面に対して垂直方向をz軸とする例を説明する。また、本実施形態に係る機器10において、表示部12が縦長の長方形の形状を有する例を説明する。そして、当該長方形の2組の向かい合う辺のうち、短い方の辺に沿う方向(横方向)をx軸とし、長い方の辺に沿う方向(縦方向)をy軸とする。 Here, in the device 10 according to the present embodiment, an example will be described in which a plane parallel to the display surface of the display unit 12 is an xy plane and a direction perpendicular to the display surface is a z-axis. In the device 10 according to the present embodiment, an example in which the display unit 12 has a vertically long rectangular shape will be described. Of the two pairs of opposing sides of the rectangle, the direction along the shorter side (horizontal direction) is the x axis, and the direction along the longer side (vertical direction) is the y axis.
 即ち、ユーザが機器10を手に保持して表示部12を見た場合、水平方向はx軸と略平行となり、ユーザが立つ鉛直方向(即ち、重力方向)はyz平面と略平行となる例を説明する。この場合、ユーザが機器10を電話として用い、耳に当てて通話する場合、ユーザが向く進行方向とxy平面とは略平行となり、当該進行方向に対して垂直な面とz軸とが略平行となる。 That is, when the user holds the device 10 in his / her hand and looks at the display unit 12, the horizontal direction is substantially parallel to the x axis, and the vertical direction in which the user stands (ie, the gravity direction) is substantially parallel to the yz plane. Will be explained. In this case, when the user uses the device 10 as a telephone and makes a call by placing it on his / her ear, the traveling direction facing the user and the xy plane are substantially parallel, and the plane perpendicular to the traveling direction and the z axis are substantially parallel. It becomes.
 このような本実施形態の機器10は、複数の測位方法システムを用いて、当該機器10を保持するユーザの位置情報を表示部12に表示する。機器10は、例えば、複数のGPS衛星からの送信信号を受信できる場合、GPS機能を用いて、ユーザの位置情報を表示する。また、機器10は、複数のGPS衛星からの送信信号を受信できない場合、GPSから自律航法システムに切り替えて、GPSで取得した位置情報をユーザの初期位置として用い、ユーザの位置情報の推定を継続して表示してもよい。 The device 10 according to the present embodiment displays the position information of the user holding the device 10 on the display unit 12 using a plurality of positioning method systems. For example, when the device 10 can receive transmission signals from a plurality of GPS satellites, the device 10 displays the position information of the user using the GPS function. If the device 10 cannot receive transmission signals from a plurality of GPS satellites, the device 10 switches from the GPS to the autonomous navigation system, uses the position information acquired by the GPS as the user's initial position, and continues to estimate the user's position information. May be displayed.
 これに代えて、機器10は、ユーザの入力に応じて自律航法システムを開始してもよい。この場合、機器10は、ユーザの初期位置の情報も当該ユーザの入力によって取得してよい。また、機器10は、マップマッチングを実行して、地図情報と共にユーザの位置情報を表示してよい。 Alternatively, the device 10 may start an autonomous navigation system in response to a user input. In this case, the device 10 may acquire information on the initial position of the user by the user's input. Moreover, the apparatus 10 may perform map matching and display a user's positional information with map information.
 図2は、本実施形態に係る情報処理装置100の構成例をセンサ20およびアンカー位置記憶部30と共に示す。センサ20は、機器10に搭載された、角速度センサ、加速度センサ、および地磁気センサのうち、少なくとも1つを含んでよく、また、これらの組み合わせであってもよい。センサ20は、例えば、搭載された携帯機器を原点とした直交座標系の3つのxyz軸のうち少なくとも2軸に対して、加速度、角速度、および/または地磁気の検出結果を出力する。 FIG. 2 shows a configuration example of the information processing apparatus 100 according to this embodiment together with the sensor 20 and the anchor position storage unit 30. The sensor 20 may include at least one of an angular velocity sensor, an acceleration sensor, and a geomagnetic sensor mounted on the device 10, or may be a combination thereof. The sensor 20 outputs, for example, acceleration, angular velocity, and / or geomagnetism detection results for at least two of the three xyz axes of the orthogonal coordinate system with the mounted mobile device as the origin.
 また、アンカー位置記憶部30は、複数のアンカー位置を予め記憶する。アンカー位置は、機器10または機器10を保持するユーザが通過すると推定される位置である。アンカー位置は、例えば、ユーザが移動方向を変更すると推定される位置に定められる。ユーザが移動方向を変更すると推定される位置としては、例えば、道路や通路のコーナー等が考えられる。コーナーには交差点や分岐等が含まれる。 The anchor position storage unit 30 stores a plurality of anchor positions in advance. An anchor position is a position estimated that the apparatus 10 or the user holding the apparatus 10 passes. For example, the anchor position is set to a position where the user is assumed to change the moving direction. As the position where the user is assumed to change the moving direction, for example, a corner of a road or a passage can be considered. Corners include intersections and branches.
 アンカー位置記憶部30は、機器10または機器10を保持するユーザが通過すると推定される位置をアンカー位置とする。ここで、アンカー位置は、例えば、ユーザが移動方向を変更すると推定される位置に定められる。アンカー位置は、ユーザが通行する道路に対応して定められてよく、また、当該ユーザがいずれの方向を通過したかを判別すべく、交差点または分岐等の当該ユーザが通行できる方向のそれぞれに定められてよい。 The anchor position storage unit 30 sets the position estimated by the device 10 or the user holding the device 10 as the anchor position. Here, the anchor position is determined, for example, at a position where the user is assumed to change the moving direction. The anchor position may be determined corresponding to the road through which the user passes, and is determined in each of the directions that the user can pass, such as an intersection or a branch, in order to determine which direction the user has passed. May be.
 また、アンカー位置は、建物内および建物内のフロア毎に定められてよく、また、フロア間を移動する昇降手段にも定められてよい。アンカー位置は、例えば、ユーザが歩行する道路、通路、交差点、横断歩道、階段、エスカレータ、階段等の踊り場、エレベータ等にそれぞれ設定される。 Also, the anchor position may be determined for each floor in the building and in the building, and may be determined for lifting means for moving between the floors. The anchor position is set, for example, on a road where a user walks, a passage, an intersection, a pedestrian crossing, a staircase, an escalator, a landing such as a staircase, an elevator, or the like.
 情報処理装置100は、機器10を保持するユーザの位置を推定し、推定した位置に対応するアンカー位置を決定する。情報処理装置100は、センサ信号取得部110と、記憶部120と、移動方向変化検知部130と、移動距離算出部140と、アンカー位置取得部160と、決定部170とを備える。 The information processing apparatus 100 estimates the position of the user holding the device 10 and determines an anchor position corresponding to the estimated position. The information processing apparatus 100 includes a sensor signal acquisition unit 110, a storage unit 120, a movement direction change detection unit 130, a movement distance calculation unit 140, an anchor position acquisition unit 160, and a determination unit 170.
 センサ信号取得部110は、複数のセンサ20に接続され、機器10に搭載されたセンサのセンサ信号を取得する。センサ信号取得部110は、機器10の移動および静止といったユーザの進行状態に応じたセンサ20からのセンサ信号を取得する。センサ信号取得部110は、取得したセンサ信号を、記憶部120に記憶する。 The sensor signal acquisition unit 110 is connected to the plurality of sensors 20 and acquires sensor signals of the sensors mounted on the device 10. The sensor signal acquisition unit 110 acquires a sensor signal from the sensor 20 according to the user's progress state such as movement and stationary of the device 10. The sensor signal acquisition unit 110 stores the acquired sensor signal in the storage unit 120.
 記憶部120は、センサ信号取得部110に接続され、当該センサ信号取得部110から受け取ったセンサ信号を記憶する。記憶部120は、例えば、移動方向変化検知部130および移動距離算出部140等の各部の要求に応じて、記憶したセンサ信号の情報を要求元に供給する。 The storage unit 120 is connected to the sensor signal acquisition unit 110 and stores the sensor signal received from the sensor signal acquisition unit 110. The storage unit 120 supplies the stored sensor signal information to the request source in response to requests from each unit such as the movement direction change detection unit 130 and the movement distance calculation unit 140, for example.
 移動方向変化検知部130は、記憶部120に接続され、取得したセンサ信号に基づき、機器10の移動方向の変化を検知する。移動方向変化検知部130は、例えば、機器10を保持するユーザが右(左)に曲がった、分岐路の一方に進路を変えた、階段を上り始めた/降り始めた、エスカレータに乗った/降りた、踊り場で反転した、およびエレベータに乗った/降りた等の進行方向の変化を検知する。移動方向変化検知部130は、移動方向の変化を検知したことに応じて、当該検知結果を移動距離算出部140および決定部170に供給する。 The movement direction change detection unit 130 is connected to the storage unit 120 and detects a change in the movement direction of the device 10 based on the acquired sensor signal. For example, the movement direction change detection unit 130 turns to the right (left) when the user holding the device 10 changes the course to one of the branch roads, starts to go up / down the stairs, rides on an escalator / Changes in the direction of travel, such as getting off, reversing at a landing, and getting on / off an elevator, are detected. The movement direction change detection unit 130 supplies the detection result to the movement distance calculation unit 140 and the determination unit 170 in response to detecting the change in the movement direction.
 また、移動方向変化検知部130は、取得したセンサ信号に基づき、推定し機器10の位置座標の時系列的な変化から、機器10の移動方向の変化を検知してよい。具体的には、移動方向変化検知部130は、予め定められた時間間隔で機器10の位置座標を推定し、隣り合う時間間隔の位置座標の差を方向ベクトルとし、当該方向ベクトルの時間的変化が予め定められた閾値を超えた場合に、移動方向が変化したことを検知する。この場合、移動方向変化検知部130は、当該方向ベクトルが時間的に変化する方向が当該閾値を超えてから予め定められた時間が経過した後に、当該閾値を超えた時点の当該方向ベクトルの時間的変化の方向と逆方向になった時点を、機器10の移動方向の変化が終了した時点として検知してよい。 Also, the movement direction change detection unit 130 may detect a change in the movement direction of the device 10 from a time-series change in the position coordinates of the device 10 based on the acquired sensor signal. Specifically, the movement direction change detection unit 130 estimates the position coordinates of the device 10 at a predetermined time interval, sets a difference between the position coordinates of adjacent time intervals as a direction vector, and changes the direction vector with time. When the value exceeds a predetermined threshold, it is detected that the moving direction has changed. In this case, the movement direction change detection unit 130 determines the time of the direction vector at the time when the direction vector changes in time after the predetermined time has elapsed after the time in which the direction vector changes over time. You may detect the time when it became the direction opposite to the direction of a target change as the time when the change of the moving direction of the apparatus 10 was complete | finished.
 このように、移動方向変化検知部130は、方向ベクトルの変化に基づき、機器10の移動方向が変化した(例えば、曲がった)ことを検知してよい。この場合、移動方向変化検知部130は、情報処理装置100の実動作の前に予め定められた時間間隔を調整してよく、これにより、誤差の影響を低減させて機器10の移動方向の変化を検知することができる。移動方向変化検知部130は、当該検知結果を移動距離算出部140および決定部170に供給してもよい。 As described above, the movement direction change detection unit 130 may detect that the movement direction of the device 10 has changed (for example, bent) based on the change in the direction vector. In this case, the movement direction change detection unit 130 may adjust a predetermined time interval before the actual operation of the information processing apparatus 100, thereby reducing the influence of the error and changing the movement direction of the device 10. Can be detected. The movement direction change detection unit 130 may supply the detection result to the movement distance calculation unit 140 and the determination unit 170.
 移動距離算出部140は、ユーザが移動した距離を算出する。移動距離算出部140は、一例として、移動方向変化検知部130が機器10の移動方向の変化を検知してから、次の移動方向の変化を検知するまでに、当該機器10を保持するユーザが移動した距離を算出する。移動距離算出部140は、ユーザの移動速度および移動時間に基づいて移動距離を算出してよく、これに代えて、ユーザの歩数および歩幅に基づいて移動距離を算出してもよい。移動距離算出部140は、算出した移動距離を決定部170に供給する。 The movement distance calculation unit 140 calculates the distance moved by the user. As an example, the movement distance calculation unit 140 may include a user who holds the device 10 after the movement direction change detection unit 130 detects a change in the movement direction of the device 10 until a change in the next movement direction is detected. Calculate the distance traveled. The movement distance calculation unit 140 may calculate the movement distance based on the movement speed and the movement time of the user, or may calculate the movement distance based on the number of steps and the step length of the user instead. The movement distance calculation unit 140 supplies the calculated movement distance to the determination unit 170.
 アンカー位置取得部160は、複数のアンカー位置を記憶するアンカー位置記憶部30に接続され、複数のアンカー位置を取得する。アンカー位置取得部160は、取得したアンカー位置の情報を決定部170に供給する。 The anchor position acquisition unit 160 is connected to the anchor position storage unit 30 that stores a plurality of anchor positions, and acquires a plurality of anchor positions. The anchor position acquisition unit 160 supplies the acquired anchor position information to the determination unit 170.
 決定部170は、複数のアンカー位置のうちの第1のアンカー位置と、第1のアンカー位置に対応する機器10の推定位置から機器10の移動方向の変化が検出された推定位置までの移動距離と、に基づき、複数のアンカー位置のうちの第2のアンカー位置を決定する。決定部170は、例えば、機器10の移動方向の変化に基づき、複数のアンカー位置のうち、機器10の推定位置に対応するアンカー位置を決定する。決定部170は、移動方向変化検知部130が検知した機器10の移動方向が変化した位置を、機器10を保持するユーザが進行方向を変化させた推定位置とする。決定部170は、第1のアンカー位置を決定したときの機器10の推定位置から、次に機器10の移動方向の変化が検出された推定位置までの移動距離に基づき、第2のアンカー位置を決定してよい。 The determining unit 170 moves the first anchor position among the plurality of anchor positions and the estimated position where the change in the movement direction of the device 10 is detected from the estimated position of the device 10 corresponding to the first anchor position. And determining a second anchor position among the plurality of anchor positions. For example, the determination unit 170 determines an anchor position corresponding to the estimated position of the device 10 among a plurality of anchor positions based on a change in the moving direction of the device 10. The determination unit 170 sets the position where the movement direction of the device 10 detected by the movement direction change detection unit 130 is changed as an estimated position where the user holding the device 10 has changed the traveling direction. The determination unit 170 determines the second anchor position based on the movement distance from the estimated position of the device 10 when the first anchor position is determined to the estimated position where the change in the movement direction of the device 10 is detected next. You may decide.
 決定部170は、移動方向変化検知部130が検知したことに応じて、対応するアンカー位置を順次決定する。即ち、本実施形態の情報処理装置100は、機器10を保持するユーザが進行方向を変更する毎に、当該ユーザの位置を予め定められたアンカー位置に対応付け、当該ユーザの位置推定の誤差が累積することを防止する。また、情報処理装置100は、ユーザが移動した距離およびユーザの移動方向を加味して、当該ユーザの推定位置を対応付ける。情報処理装置100の動作については、図3で説明する。 The determining unit 170 sequentially determines the corresponding anchor positions in response to the detection by the movement direction change detecting unit 130. That is, every time the user holding the device 10 changes the traveling direction, the information processing apparatus 100 according to the present embodiment associates the position of the user with a predetermined anchor position, and an error in the position estimation of the user occurs. Prevent accumulation. In addition, the information processing apparatus 100 associates the estimated position of the user with consideration of the distance moved by the user and the moving direction of the user. The operation of the information processing apparatus 100 will be described with reference to FIG.
 図3は、本実施形態に係る情報処理装置100の動作フローを示す。情報処理装置100は、図3に示す動作フローを実行することにより、携帯機器10を所持するユーザの移動に応じた推定位置を予め定められたアンカー位置に対応付ける。 FIG. 3 shows an operation flow of the information processing apparatus 100 according to the present embodiment. The information processing apparatus 100 associates the estimated position according to the movement of the user carrying the mobile device 10 with a predetermined anchor position by executing the operation flow shown in FIG.
 まず、アンカー位置取得部160は、情報処理装置100に接続されたアンカー位置記憶部30から、複数のアンカー位置を取得する(S310)。ここで、アンカー位置取得部160は、記憶部120に接続され、取得したアンカー位置の情報を記憶部120に記憶してもよい。 First, the anchor position acquisition unit 160 acquires a plurality of anchor positions from the anchor position storage unit 30 connected to the information processing apparatus 100 (S310). Here, the anchor position acquisition unit 160 may be connected to the storage unit 120 and store the acquired anchor position information in the storage unit 120.
 次に、情報処理装置100は、初期位置を設定する(S320)。ここで、情報処理装置100は、予め定められた位置からユーザが歩行を開始する場合は、当該予め定められた位置に対応するアンカー位置(例えば、最も近いアンカー位置)を初期位置として設定する。また、情報処理装置100は、GPS等の機器10の位置情報を取得するシステムから自律航法システムに切り替わった場合、当該GPSで取得した位置情報を用いてよく、当該位置情報に対応するアンカー位置をユーザの初期位置として設定する。 Next, the information processing apparatus 100 sets an initial position (S320). Here, when the user starts walking from a predetermined position, the information processing apparatus 100 sets an anchor position (for example, the closest anchor position) corresponding to the predetermined position as an initial position. Further, when the information processing apparatus 100 is switched from the system that acquires the position information of the device 10 such as GPS to the autonomous navigation system, the information processing apparatus 100 may use the position information acquired by the GPS, and the anchor position corresponding to the position information may be used. Set as the user's initial position.
 また、情報処理装置100は、ユーザによる現在位置の指定により、ユーザの初期位置を設定してもよい。また、情報処理装置100は、予め定められた複数のアンカー位置において、ユーザの初期位置に対応するアンカー位置が存在しない場合、異なるアンカー位置の間にユーザの初期位置に対応するアンカー位置を設定してもよい。 Further, the information processing apparatus 100 may set the initial position of the user by designating the current position by the user. The information processing apparatus 100 sets an anchor position corresponding to the user's initial position between different anchor positions when there is no anchor position corresponding to the user's initial position at a plurality of predetermined anchor positions. May be.
 次に、センサ信号取得部110は、情報処理装置100に接続された複数のセンサ20からの出力を取得する(S330)。センサ信号取得部110は、取得したセンサ信号を記憶部120に記憶する。センサ信号取得部110は、センサ20のセンサ信号の出力タイミングに同期して、当該センサ信号の取得と記憶部120への記憶とを継続して実行してよく、これに代えて、予め定められた周期で、当該センサ信号の取得と記憶部120への記憶とを継続して実行してもよい。 Next, the sensor signal acquisition unit 110 acquires outputs from the plurality of sensors 20 connected to the information processing apparatus 100 (S330). The sensor signal acquisition unit 110 stores the acquired sensor signal in the storage unit 120. The sensor signal acquisition unit 110 may continuously execute the acquisition of the sensor signal and the storage in the storage unit 120 in synchronization with the output timing of the sensor signal of the sensor 20, instead of being predetermined. The acquisition of the sensor signal and the storage in the storage unit 120 may be continuously executed at a predetermined cycle.
 次に、移動方向変化検知部130は、機器10の移動方向の変化を検知する(S340)。移動方向変化検知部130は、一例として、予め定められたタイミングまたはクロック信号に応じて、機器10の移動方向の変化を検知する。移動方向変化検知部130は、加速度センサ、角速度センサ、および/または磁気センサ等のセンサ信号に基づき、機器10の移動方向の変化を検知する。 Next, the movement direction change detection unit 130 detects a change in the movement direction of the device 10 (S340). For example, the movement direction change detection unit 130 detects a change in the movement direction of the device 10 according to a predetermined timing or a clock signal. The movement direction change detection unit 130 detects a change in the movement direction of the device 10 based on sensor signals such as an acceleration sensor, an angular velocity sensor, and / or a magnetic sensor.
 移動方向変化検知部130は、例えば、機器10のxyz軸に対応する3つの角速度センサのセンサ信号から重力軸周りの回転量を算出する。移動方向変化検知部130は、一例として、機器10を保持するユーザの進行方向に対して垂直な重力方向回りの回転量が、予め定められた角度以上か否かに応じて移動方向の変化を検知する。 The moving direction change detection unit 130 calculates, for example, the rotation amount around the gravity axis from the sensor signals of three angular velocity sensors corresponding to the xyz axes of the device 10. For example, the movement direction change detection unit 130 changes the movement direction according to whether or not the amount of rotation about the direction of gravity perpendicular to the traveling direction of the user holding the device 10 is equal to or greater than a predetermined angle. Detect.
 また、移動方向変化検知部130は、機器10のxyz軸に対応する3つの加速度センサのセンサ信号から、機器10を保持するユーザの進行方向に対して垂直な水平方向の加速度の変化を検知してもよい。また、移動方向変化検知部130は、機器10を保持するユーザの進行方向に対して垂直な重力方向に対する加速度の変化を検知してもよい。この場合、機器10の地磁気センサのセンサ信号から当該加速度の変化を検知してよく、これに代えて、地磁気センサのセンサ信号および加速度センサのセンサ信号から検知してもよい。 Further, the movement direction change detection unit 130 detects a change in acceleration in the horizontal direction perpendicular to the traveling direction of the user holding the device 10 from the sensor signals of the three acceleration sensors corresponding to the xyz axes of the device 10. May be. In addition, the movement direction change detection unit 130 may detect a change in acceleration with respect to the direction of gravity perpendicular to the traveling direction of the user holding the device 10. In this case, the change of the acceleration may be detected from the sensor signal of the geomagnetic sensor of the device 10, and instead of this, it may be detected from the sensor signal of the geomagnetic sensor and the sensor signal of the acceleration sensor.
 移動方向変化検知部130は、センサ信号を信号解析またはパターンマッチング等を施してユーザの歩行に伴うパターン信号を取得し、当該パターン信号の進行方向依存性の変化を検出して、機器10を保持するユーザの移動方向の変化を検知してもよい。移動方向変化検知部130は、自律航法等の処理により得られる移動方向(直接的な進行方向または位置座標の時系列データから算出した進行方向)に基づき、当該移動方向の変化を検知してもよい。移動方向変化検知部130は、例えば特許文献1および2に記載されているような、自律航法として用いられる既知の進行方向推定方法によって、ユーザの移動方向の変化を検出してよい。 The movement direction change detection unit 130 performs signal analysis or pattern matching on the sensor signal to acquire a pattern signal that accompanies the user's walking, detects a change in the traveling direction dependency of the pattern signal, and holds the device 10 It is also possible to detect a change in the moving direction of the user. The movement direction change detection unit 130 may detect a change in the movement direction based on a movement direction (a direct movement direction or a movement direction calculated from time-series data of position coordinates) obtained by processing such as autonomous navigation. Good. The movement direction change detection unit 130 may detect a change in the movement direction of the user by a known traveling direction estimation method used as autonomous navigation, as described in Patent Documents 1 and 2, for example.
 情報処理装置100は、移動方向変化検知部130が移動方向の変化を検出するまで、または、処理の終了を指示されるまで、移動方向の変化の検出を繰り返す(S350:No、S380:No、S340)。即ち、移動方向変化検知部130は、記憶部120に記憶されている次に取得されたセンサ信号を読み出し、機器10の移動方向の変化を検知する。そして、移動方向変化検知部130が移動方向の変化を検出した場合(S350:Yes)、移動距離算出部140は、ユーザが移動した距離を算出する(S360)。 The information processing apparatus 100 repeats the detection of the change in the movement direction until the movement direction change detection unit 130 detects the change in the movement direction or until the end of the process is instructed (S350: No, S380: No, S340). That is, the movement direction change detection unit 130 reads the next acquired sensor signal stored in the storage unit 120 and detects a change in the movement direction of the device 10. When the movement direction change detection unit 130 detects a change in the movement direction (S350: Yes), the movement distance calculation unit 140 calculates the distance moved by the user (S360).
 移動距離算出部140は、第1のアンカー位置を決定したときの機器10の推定位置から、機器10の移動方向の変化が検出された推定位置までの移動距離を算出する。ここで、第1のアンカー位置は、決定部170が決定した最新のアンカー位置の情報である。即ち、第1のアンカー位置は、処理の開始段階では設定された初期位置であり、処理の実行によって順次決定されるアンカー位置である。 The movement distance calculation unit 140 calculates the movement distance from the estimated position of the device 10 when the first anchor position is determined to the estimated position where the change in the movement direction of the device 10 is detected. Here, the first anchor position is information on the latest anchor position determined by the determination unit 170. That is, the first anchor position is an initial position that is set at the start stage of processing, and is an anchor position that is sequentially determined by executing the processing.
 したがって、移動距離算出部140は、処理の開始段階においては、初期位置から機器10の移動方向の変化が検出された推定位置までの移動距離を算出することになる。例えば、移動距離算出部140は、第1のアンカー位置から、ユーザが複数のアンカー位置を通過してから移動方向を変えた場合、第1のアンカー位置から、複数のアンカー位置を超えて、当該移動方向の変化が検出された推定位置までの移動距離を算出する。 Therefore, the movement distance calculation unit 140 calculates the movement distance from the initial position to the estimated position where the change in the movement direction of the device 10 is detected at the start of processing. For example, when the user changes the movement direction from the first anchor position after the user passes the plurality of anchor positions, the movement distance calculation unit 140 exceeds the plurality of anchor positions from the first anchor position, and The movement distance to the estimated position where the change in the movement direction is detected is calculated.
 移動距離算出部140は、例えば、機器10の移動速度Vを取得し、当該移動速度Vと第1のアンカー位置を決定してから機器10の移動方向の変化が検出されるまでの時間tとに応じて、機器10の移動距離Lを算出する。ここで、移動距離算出部140は、加速度センサのセンサ信号の時間積分等から、移動速度Vを取得してよい。また、移動距離算出部140は、センサ信号を解析してユーザの歩行に伴うパターン信号を取得し、ユーザの単位時間当たりの歩数から、機器10を保持するユーザの移動速度Vを算出してもよい。この場合、移動距離算出部140は、移動速度Vに時間tを乗じて移動距離L(=Vt)を算出する。 For example, the movement distance calculation unit 140 acquires the movement speed V of the device 10, determines the movement speed V and the first anchor position, and then determines the time t until a change in the movement direction of the device 10 is detected. Accordingly, the moving distance L of the device 10 is calculated. Here, the movement distance calculation unit 140 may acquire the movement speed V from time integration of the sensor signal of the acceleration sensor or the like. Further, the moving distance calculation unit 140 analyzes the sensor signal to acquire a pattern signal accompanying the user's walking, and calculates the moving speed V of the user holding the device 10 from the number of steps per unit time of the user. Good. In this case, the movement distance calculation unit 140 calculates the movement distance L (= Vt) by multiplying the movement speed V by the time t.
 これに代えて、移動距離算出部140は、センサ信号に基づいて機器10を保持するユーザの歩数をカウントし、第1のアンカー位置を決定してから機器10の移動方向の変化が検出されるまでの間のユーザの歩数Nと、ユーザの歩幅Wとに応じて、機器10の移動距離Lを算出する。この場合、移動距離算出部140は、一例として、センサ信号を解析してユーザの歩行に伴うパターン信号を取得し、ユーザの歩数Nをカウントする。また、情報処理装置100は、ユーザに予め自身の歩幅Wを入力させ、記憶部120に記憶してもよい。この場合、移動距離算出部140は、歩数Nに歩幅Wを乗じて移動距離L(=NW)を算出する。 Instead, the movement distance calculation unit 140 counts the number of steps of the user holding the device 10 based on the sensor signal, and after the first anchor position is determined, a change in the movement direction of the device 10 is detected. The movement distance L of the device 10 is calculated according to the user's step count N and the user's stride W. In this case, as an example, the movement distance calculation unit 140 analyzes the sensor signal, acquires a pattern signal associated with the user's walk, and counts the number of steps N of the user. Further, the information processing apparatus 100 may cause the user to input his / her own stride W in advance and store it in the storage unit 120. In this case, the movement distance calculation unit 140 calculates the movement distance L (= NW) by multiplying the number of steps N by the step length W.
 次に、決定部170は、第2のアンカー位置として、移動方向変化検知部130が機器10の移動方向の変化を検知したときに当該機器10が通過した位置を決定する(S370)。決定部170は、第1のアンカー位置および機器10の移動距離に基づき、第2のアンカー位置を決定する。ここで、決定部170が第2のアンカー位置を決定する動作を図4を用いて説明する。 Next, the determination unit 170 determines the position through which the device 10 has passed when the movement direction change detection unit 130 detects a change in the movement direction of the device 10 as the second anchor position (S370). The determination unit 170 determines the second anchor position based on the first anchor position and the movement distance of the device 10. Here, an operation in which the determination unit 170 determines the second anchor position will be described with reference to FIG.
 図4は、本実施形態に係る第1のアンカー位置と、決定部170が決定する第2のアンカー位置の第1の例を示す。図4は、機器10を保持するユーザが通行する道路と、道路の交差点に予め設定されたアンカー位置A、B、およびCを示す。ここで、アンカー位置Cを第1のアンカー位置とする。ここで、情報処理装置100が処理を開始した段階においては、第1のアンカー位置は、ユーザの初期位置となる。 FIG. 4 shows a first example of the first anchor position according to the present embodiment and the second anchor position determined by the determination unit 170. FIG. 4 shows roads through which a user holding the device 10 passes and anchor positions A, B, and C preset at the intersections of the roads. Here, the anchor position C is set as the first anchor position. Here, at the stage where the information processing apparatus 100 starts processing, the first anchor position is the initial position of the user.
 図4は、更に、ユーザの実際の歩行経路P-Qと、自律航法等の手法を用いて算出されるユーザの軌跡p-qの一例を示す。移動方向変化検知部130は、機器10の移動方向の変化を検出するので、ユーザの軌跡p-q上のR1点およびR2点等を順に検出することになる。図4は、決定部170がR1点をアンカー位置Cに対応付けて第1のアンカー位置と決定した段階であり、次に検出されたR2点に対応する第2のアンカー位置を決定する例を示す。 FIG. 4 further shows an example of the user's actual walking route PQ and the user's trajectory pq calculated using a technique such as autonomous navigation. Since the movement direction change detection unit 130 detects a change in the movement direction of the device 10, it detects the R1 point and the R2 point on the user's trajectory pq sequentially. FIG. 4 is a stage in which the determination unit 170 determines the R1 point as the first anchor position in association with the anchor position C, and determines the second anchor position corresponding to the next detected R2 point. Show.
 理想的には、実際の歩行経路P-Qと、算出されるユーザの軌跡p-qとが一致することが望ましい。しかしながら、図4に示す例のように、算出されるユーザの軌跡p-qは、検出誤差等により歩行経路P-Qとは一致せず、また、ユーザが通行する道路上に重ならない場合が生じる。そして、検出されたR2点に対応する第2のアンカー位置として、例えば、R2点に最も近いアンカー位置を決定すると、ユーザの実際の歩行経路には対応しないアンカー位置Aを選択してしまう場合が生じてしまう。ここで、アンカー位置Aより西側への道がある場合は、間違えた道を選択することになり、アンカー位置Aより西側への道がない場合(図4の例)は、歩行を続行できずに破綻してしまうことになる。 Ideally, it is desirable that the actual walking route PQ coincides with the calculated user trajectory pq. However, as in the example shown in FIG. 4, the calculated user trajectory pq does not coincide with the walking route PQ due to a detection error or the like, and may not overlap the road on which the user passes. Arise. Then, as the second anchor position corresponding to the detected R2 point, for example, when the anchor position closest to the R2 point is determined, the anchor position A that does not correspond to the user's actual walking route may be selected. It will occur. Here, when there is a road to the west side from the anchor position A, the wrong road is selected, and when there is no road to the west side from the anchor position A (example in FIG. 4), walking cannot be continued. Will collapse.
 このように、自律航法によるユーザの軌跡p-qは、GPS等による逐次的な座標検出および座標補正とは異なり、初期位置からの誤差が累積するので、アンカー位置の選択にも誤差が生じてしまうことがある。特に、ユーザの軌跡p-qは、ユーザが所持する機器10の進行方向の検出に基づいているので、ユーザの身体の揺れ、蛇行、および手の振り等によって誤差が生じやすい。 Thus, unlike the sequential coordinate detection and correction using GPS or the like, the user's trajectory pq by autonomous navigation accumulates errors from the initial position, so that errors also occur in the anchor position selection. May end up. In particular, since the user's trajectory pq is based on the detection of the direction of travel of the device 10 held by the user, errors are likely to occur due to shaking of the user's body, meandering, hand shaking, and the like.
 そこで、本実施形態の決定部170は、第1のアンカー位置を決定したときの機器10の1つ前の推定位置(R1点)から、機器10の移動方向の変化が検出された今回の推定位置(R2点)までの移動距離に基づき、第2のアンカー位置を決定する。即ち、機器10の推定位置にはそれぞれ誤差が累積するが、推定位置間の移動距離の検出には、当該誤差の累積の影響が低減されるので、決定部170は、アンカー位置をより正確に選択することができる。 Accordingly, the determination unit 170 of the present embodiment detects the change in the moving direction of the device 10 from the estimated position (point R1) immediately before the device 10 when the first anchor position is determined. Based on the moving distance to the position (point R2), the second anchor position is determined. That is, errors accumulate at the estimated positions of the device 10, but the influence of the accumulation of the errors is reduced in detecting the movement distance between the estimated positions. Therefore, the determination unit 170 more accurately determines the anchor position. You can choose.
 具体的には、移動距離算出部140が、R1点の検出からR2点の検出までの時間tおよび機器10の移動速度Vに応じた移動距離L、または、R1点の検出からR2点の検出までのユーザの歩数Nおよびユーザの歩幅Wに応じた移動距離Lを算出して決定部170に供給する。そして、決定部170は、当該移動距離Lに対応する距離に位置するアンカー位置を第2のアンカー位置とする。 Specifically, the movement distance calculation unit 140 detects the movement distance L according to the time t from the detection of the R1 point to the detection of the R2 point and the movement speed V of the device 10, or the detection of the R2 point from the detection of the R1 point. The movement distance L corresponding to the number of steps N of the user and the step width W of the user is calculated and supplied to the determination unit 170. And the determination part 170 makes the anchor position located in the distance corresponding to the said movement distance L the 2nd anchor position.
 決定部170は、例えば、アンカー位置Cからアンカー位置Aまでの距離LCA、およびアンカー位置Cからアンカー位置Bまでの距離LCBと、移動距離Lとをそれぞれ比較する。そして、決定部170は、最も近い距離となるLCBがユーザの移動した距離Lに対応する判断して、アンカー位置Bを第2のアンカー位置とする。また、この場合、決定部170は、更に、L-LCBの絶対値が、予め定められた距離以下の場合に、第2のアンカー位置と決定してもよい。これによって、決定部170は、ユーザの実際の歩行経路に対応するアンカー位置を選択することができる。決定部170が決定した第2のアンカー位置は、機器10が通過したアンカー位置を記憶する通過アンカー位置記憶部に出力され、記憶される。 For example, the determination unit 170 compares the distance L CA from the anchor position C to the anchor position A, the distance L CB from the anchor position C to the anchor position B, and the movement distance L. Then, the determination unit 170 determines that the closest L CB corresponds to the distance L moved by the user, and sets the anchor position B as the second anchor position. In this case, the determination unit 170 may further determine the second anchor position when the absolute value of LL CB is equal to or smaller than a predetermined distance. Accordingly, the determination unit 170 can select an anchor position corresponding to the user's actual walking route. The second anchor position determined by the determination unit 170 is output to and stored in the passing anchor position storage unit that stores the anchor position through which the device 10 has passed.
 また、決定部170は、第2のアンカー位置を決定する場合において、機器10の移動方向を含めて、第2のアンカー位置を決定してもよい。決定部170は、例えば、第2のアンカー位置における移動方向の候補のうち、機器10の移動方向に基づいて、第2のアンカー位置および第2のアンカー位置からの移動方向(即ち通行すべき道)を決定する。 Further, when determining the second anchor position, the determination unit 170 may determine the second anchor position including the moving direction of the device 10. For example, the determination unit 170 selects the second anchor position and the movement direction from the second anchor position based on the movement direction of the device 10 among the movement direction candidates at the second anchor position (that is, the road to be passed). ).
 図4において、決定部170は、例えば、第2のアンカー位置として、アンカー位置Bを決定する場合に、第2のアンカー位置からの移動方向の候補としてBN、BE、およびBW方向を抽出し、アンカー位置Cからアンカー位置Bまでの方向(即ち、北向きの方向)との角度を算出する。決定部170は、一例として、BN、BE、およびBW方向に対応して、0、+90、および-90度とそれぞれ算出する。決定部170は、機器10が変更した方向の角度等を自律航法によって取得し、算出した角度と比較して対応する移動方向を決定する。決定部170は、一例として、R2点において、R1点からR2点に向かう方向(例えば、北向きの方向に対して時計回りに略25度の方向)に対して、反時計周りに略90度変更した検出結果に応じて、もっとも近い方向(-90度方向)のBW方向を、機器10の移動方向として決定する。 In FIG. 4, for example, when determining the anchor position B as the second anchor position, the determination unit 170 extracts the BN, BE, and BW directions as candidates for the movement direction from the second anchor position, An angle with the direction from the anchor position C to the anchor position B (that is, the north direction) is calculated. For example, the determination unit 170 calculates 0, +90, and −90 degrees corresponding to the BN, BE, and BW directions, respectively. The determination unit 170 acquires the angle or the like of the direction changed by the device 10 by autonomous navigation, and determines the corresponding movement direction by comparing with the calculated angle. As an example, the determination unit 170 is approximately 90 degrees counterclockwise at the R2 point with respect to the direction from the R1 point to the R2 point (for example, approximately 25 degrees clockwise with respect to the northward direction). The closest BW direction (−90 degrees direction) is determined as the moving direction of the device 10 according to the changed detection result.
 このように、決定部170は、ユーザの実際の歩行経路に対応するアンカー位置および通路を選択することができる。また、このようにアンカー位置からの通路を選択することにより、アンカー位置の選択ミスを検出できる場合がある。例えば、図4において、信頼性の低い検出等により、移動距離Lに誤差ΔLが重畳した場合、決定部170は、最も近い距離となるLCBがユーザの移動した距離Lに対応する判断して、アンカー位置Aを第2のアンカー位置としてしまう。この場合において、決定部170は、アンカー位置Aからの移動方向の候補としてANおよびAEを抽出するので、R2点において反時計回りに略90度変更した検出結果を取得すると、対応する通路が無いので、アンカー位置の選択ミスと判断できる。そして、決定部170は、次に近い距離となるLCAがユーザの移動した距離Lに対応する判断して、アンカー位置Aを第2のアンカー位置として決定してよい。 Thus, the determination unit 170 can select an anchor position and a passage corresponding to the actual walking route of the user. In addition, by selecting a path from the anchor position in this way, it may be possible to detect an anchor position selection error. For example, in FIG. 4, when the error ΔL is superimposed on the movement distance L due to detection with low reliability or the like, the determination unit 170 determines that the closest LCB corresponds to the distance L moved by the user. The anchor position A is set as the second anchor position. In this case, since the determination unit 170 extracts AN and AE as candidates for the moving direction from the anchor position A, if a detection result changed approximately 90 degrees counterclockwise at the point R2 is acquired, there is no corresponding passage. Therefore, it can be determined that the anchor position is selected incorrectly. Then, the determination unit 170 may determine that the L CA that is the next closest distance corresponds to the distance L that the user has moved, and determine the anchor position A as the second anchor position.
 以上のように、決定部170は、移動距離Lに誤差ΔLが重畳する場合が生じても、精度良くアンカー位置を選択すべく、機器10の移動方向の変化を用いてよい。決定部170は、移動距離および/または移動方向の変化を検出する目的で、変化の割合、比率等を用いてよい。 As described above, the determination unit 170 may use the change in the movement direction of the device 10 to select the anchor position with high accuracy even when the error ΔL is superimposed on the movement distance L. The determination unit 170 may use a change ratio, a ratio, or the like for the purpose of detecting a change in the moving distance and / or moving direction.
 決定部170は、例えば、機器10の1つ前の推定位置(R1点)から、今回の推定位置(R2点)までの移動距離(推定移動距離とする)と、アンカー間の距離との割合(距離割合)に基づき、第2のアンカー位置を決定してよい。これに代えて、またはこれに加えて、決定部170は、機器10の移動方向(推定方向変化とする)と、アンカー間の角度との割合(方向割合)に基づき、第2のアンカー位置を決定してよい。 The determination unit 170, for example, a ratio of a movement distance (estimated movement distance) from the estimated position (R1 point) immediately before the device 10 to the current estimated position (point R2) and the distance between anchors The second anchor position may be determined based on (distance ratio). Instead of or in addition to this, the determination unit 170 determines the second anchor position based on the ratio (direction ratio) between the moving direction of the device 10 (assumed to be an estimated direction change) and the angle between the anchors. You may decide.
 決定部170は、例えば、第2のアンカー位置の候補に対して、距離割合(=(推定移動距離-アンカー間距離)/アンカー間距離)をそれぞれ算出し、当該距離割合が最も小さくなるアンカー位置を第2のアンカー位置と決定する。また、決定部170は、第2のアンカー位置の候補に対して、方向割合(=(推定方向変化-アンカー間角度)/アンカー間角度)をそれぞれ算出し、当該方向割合が最も小さくなるアンカー位置を第2のアンカー位置と決定してもよい。なお、距離割合および方向割合は、絶対値として算出されてよい。 For example, the determination unit 170 calculates a distance ratio (= (estimated movement distance−anchor distance) / anchor distance) for each second anchor position candidate, and the anchor position where the distance ratio becomes the smallest is calculated. Is determined as the second anchor position. Further, the determination unit 170 calculates a direction ratio (= (estimated direction change−anchor angle) / anchor angle) for each second anchor position candidate, and the anchor position at which the direction ratio is the smallest. May be determined as the second anchor position. Note that the distance ratio and the direction ratio may be calculated as absolute values.
 また、決定部170は、距離割合および方向割合の和が最も小さくなるアンカー位置を第2のアンカー位置と決定してもよい。この場合、決定部170は、距離割合および方向割合にそれぞれ予め定められた係数を乗じてから和を算出してよい。この場合、距離割合および方向割合に乗じる係数の組を予め複数定め、決定部170は、移動距離を優先する場合、移動方向を優先する場合等に応じて、当該予め定められた係数の組を変更してもよい。 Further, the determination unit 170 may determine the anchor position having the smallest sum of the distance ratio and the direction ratio as the second anchor position. In this case, the determination unit 170 may calculate the sum after multiplying the distance ratio and the direction ratio by a predetermined coefficient. In this case, a plurality of sets of coefficients for multiplying the distance ratio and the direction ratio are determined in advance, and the determination unit 170 determines the predetermined set of coefficients according to the case where the movement distance is prioritized or the movement direction is prioritized. It may be changed.
 また、自律航法から出力される進行方向の信頼度が低い場合、推定された位置座標の信頼度が低いと判断される場合等において、決定部170は、信頼度が低い期間に推定される距離を含めずに距離の割合を算出してもよい。例えば、機器10の姿勢が大きく変動した(機器10を保持するユーザのつまずき、衝突、混雑等から避ける行動、転倒等)場合、機器10の回転方向の変動が予め定められた角度以上に変動した(左右を見ながら角を曲がる、回りながら曲がる)場合等は、推定される進行方向の信頼度が低くなることがある。 In addition, when the reliability of the traveling direction output from the autonomous navigation is low, or when it is determined that the reliability of the estimated position coordinates is low, the determination unit 170 determines the distance estimated during the period of low reliability. The ratio of the distance may be calculated without including. For example, when the posture of the device 10 has changed significantly (stumbling of the user holding the device 10, behavior to avoid from collision, congestion, etc., falling), the change in the rotation direction of the device 10 has changed more than a predetermined angle. In some cases (such as turning a corner while looking left and right, turning while turning), the reliability of the estimated traveling direction may be low.
 そこで、決定部170は、進行方向の信頼度が低くなる可能性があることを当該変動の大きさから検知した場合、検知する直前の進行方向を維持し、かつ、当該変動が正常に回復するまでの期間に推定される移動距離は用いずに第2のアンカー位置を決定してよい。図5は、本実施形態に係る第1のアンカー位置と、決定部170が決定する第2のアンカー位置の第2の例を示す。図5は、機器10を保持するユーザが通行する道路と、道路に予め設定されたアンカー位置A、B、CおよびDを示す。ここで、アンカー位置Aを第1のアンカー位置とする。 Therefore, when the determination unit 170 detects from the magnitude of the change that the reliability of the traveling direction may be low, the determination unit 170 maintains the traveling direction immediately before detection, and the fluctuation is recovered normally. The second anchor position may be determined without using the movement distance estimated during the period until. FIG. 5 shows a second example of the first anchor position according to the present embodiment and the second anchor position determined by the determination unit 170. FIG. 5 shows roads on which a user holding the device 10 passes and anchor positions A, B, C, and D preset on the roads. Here, the anchor position A is set as the first anchor position.
 図5は、更に、ユーザの実際の歩行経路P-Qと、自律航法等の手法を用いて算出されるユーザの軌跡p-qの一例を示す。移動方向変化検知部130は、機器10の移動方向の変化を検出するので、ユーザの軌跡p-q上のR1点およびR2点等を順に検出することになる。図5は、決定部170がR1点をアンカー位置Cに対応付けて第1のアンカー位置と決定した段階であり、次に検出されたR2点に対応する第2のアンカー位置を決定する例を示す。 FIG. 5 further shows an example of the user's actual walking route PQ and the user's trajectory pq calculated using a technique such as autonomous navigation. Since the movement direction change detection unit 130 detects a change in the movement direction of the device 10, it detects the R1 point and the R2 point on the user's trajectory pq sequentially. FIG. 5 shows an example in which the determination unit 170 determines the R1 point as the first anchor position in association with the anchor position C, and determines the second anchor position corresponding to the next detected R2 point. Show.
 なお、ユーザの歩行経路P-QにおけるP'-Qの区間は、ユーザが大きく変動しつつ移動した区間であり、進行方向の信頼度が低くなった区間である。即ち、自律航法等の手法を用いて算出されるユーザの軌跡p-qのうち、軌跡p'-qの区間は、実際のユーザの歩行経路P'-Qとは乖離が生じている場合を示す。このように、実際のユーザの歩行経路とは異なるユーザの軌跡p-qを用いると、決定部170は、機器10の移動方向および推定移動距離に応じて、アンカー位置Dを第2のアンカー位置として決定してしまうことになる。 It should be noted that the section P′-Q in the user's walking route PQ is a section in which the user moves while greatly fluctuating, and is a section in which the reliability in the traveling direction is low. That is, of the user's trajectory pq calculated using a technique such as autonomous navigation, the section of the trajectory p'-q is a case where there is a deviation from the actual user's walking route P'-Q. Show. As described above, when the user's trajectory pq different from the actual user's walking route is used, the determination unit 170 determines the anchor position D as the second anchor position according to the moving direction and the estimated moving distance of the device 10. Will be decided as.
 そこで、決定部170は、例えば、P'点において、機器10の移動方向の変化が予め定められた閾値よりも大きくなったことに応じて、進行方向の信頼度が低くなったことを判断する。そして、決定部170は、P'点を通過する直前の進行方向を維持し、かつ、P'-Qの区間をユーザが移動するまでの期間に推定される移動距離(距離Aとする)は用いずに、第2のアンカー位置を決定する。ここで、決定部170が距離割合を用いて第2のアンカー位置を決定する場合、距離割合は、(推定移動距離-距離A-アンカー間距離)/アンカー間距離)を用いて算出してよい。 Therefore, for example, at the point P ′, the determination unit 170 determines that the reliability in the traveling direction has decreased in response to the change in the movement direction of the device 10 being greater than a predetermined threshold. . Then, the determination unit 170 maintains the traveling direction immediately before passing through the point P ′, and the travel distance (referred to as the distance A) estimated during the period until the user moves in the section P′−Q is Without using it, the second anchor position is determined. Here, when the determination unit 170 determines the second anchor position using the distance ratio, the distance ratio may be calculated using (estimated movement distance−distance A−inter-anchor distance) / inter-anchor distance). .
 以上のようにして、決定部170は、第2のアンカー位置をC点と決定する。これにより、決定部170は、実際のユーザの歩行経路から乖離した軌跡p'-qの区間におけるアンカー位置を選択することなく、実際のユーザの歩行経路P-Q上に存在するアンカー位置Cを選択できる。したがって、決定部170は、歩行経路から乖離したアンカー位置以降の動作の破綻を防止し、実際のユーザの歩行経路P-Q上のアンカー位置Cから動作を継続することができる。 As described above, the determination unit 170 determines the second anchor position as the point C. Accordingly, the determination unit 170 selects the anchor position C existing on the actual user's walking route PQ without selecting the anchor position in the section of the trajectory p′-q deviated from the actual user's walking route. You can choose. Therefore, the determination unit 170 can prevent the failure of the operation after the anchor position deviated from the walking route, and can continue the operation from the anchor position C on the actual user's walking route PQ.
 決定部170は、例えば、進行方向の信頼度が低くなった期間に移動した推定移動距離と、進行方向の信頼度が回復した時点であるQ点のユーザの移動方向とに基づき、正しいアンカー位置を推測する。また、これに代えて、決定部170は、アンカー位置Cを正しい第2のアンカー位置として、動作を継続してもよい。 For example, the determination unit 170 determines the correct anchor position based on the estimated moving distance moved during the period when the reliability in the traveling direction is low and the moving direction of the user at point Q when the reliability in the traveling direction is restored. Guess. Alternatively, the determination unit 170 may continue the operation with the anchor position C as the correct second anchor position.
 決定部170は、通過アンカー位置記憶部に記憶される第2のアンカー位置を取得する。情報処理装置100は、処理が終了するまで、決定部170が決定した第2のアンカー位置を第1のアンカー位置とし、移動方向変化検知部130による移動報告の変化を検出する段階に戻って、ユーザの歩行動作に対応する次の第2のアンカー位置の決定動作を継続する。(S380:No、S340)。 The determination unit 170 acquires the second anchor position stored in the passing anchor position storage unit. The information processing apparatus 100 uses the second anchor position determined by the determination unit 170 as the first anchor position until the processing is completed, and returns to the stage of detecting the movement report change by the movement direction change detection unit 130. The next second anchor position determination operation corresponding to the user's walking operation is continued. (S380: No, S340).
 情報処理装置100は、ユーザが自律航法の終了を入力したことに応じて、処理を終了させる(S380:Yes)。また、情報処理装置100は、他の測位方法システム等に切り替わったことに応じて、処理を終了させてもよい。 The information processing apparatus 100 ends the process in response to the user inputting the end of the autonomous navigation (S380: Yes). Further, the information processing apparatus 100 may end the processing in response to switching to another positioning method system or the like.
 以上のように、本実施形態における情報処理装置100は、機器10の推定位置が検出されるまでの間にユーザが移動する距離を算出し、当該移動距離に基づいてアンカー位置を決定して、当該アンカー位置の選択誤差を低減させる。これによって、情報処理装置100は、自律航法によるユーザの現在位置の推定誤差を低減させることができる。 As described above, the information processing apparatus 100 according to the present embodiment calculates the distance that the user moves before the estimated position of the device 10 is detected, determines the anchor position based on the movement distance, The selection error of the anchor position is reduced. Thereby, the information processing apparatus 100 can reduce an estimation error of the current position of the user by autonomous navigation.
 以上の本実施形態における情報処理装置100の決定部170は、移動距離算出部140が算出した移動距離Lと、アンカー位置間の距離を比較して、第2のアンカー位置を決定することを説明した。これに加えて、決定部170は、第2のアンカー位置の決定に応じて、ユーザの移動速度Vまたは歩幅Wを更新してもよい。 The determination unit 170 of the information processing apparatus 100 according to the present embodiment described above determines that the second anchor position is determined by comparing the movement distance L calculated by the movement distance calculation unit 140 with the distance between the anchor positions. did. In addition to this, the determination unit 170 may update the moving speed V or the stride W of the user according to the determination of the second anchor position.
 また、決定部170は、ユーザの移動速度Vに代えて、移動速度Vを推定するパラメータを記憶してもよい。ここで、移動速度Vを推定するパラメータは、アンカー位置間の距離に基づいて算出された移動速度を含んでよく、また、アンカー位置間のユーザの動作を表わす物理量を含んでもよい。決定部170は、一例として、アンカー位置間のユーザの動作を表わす物理量として、センサ信号に基づいて算出されるアンカー位置間の重力軸方向における角速度の振幅値の平均値を当該パラメータに含める。 Further, the determination unit 170 may store a parameter for estimating the moving speed V instead of the moving speed V of the user. Here, the parameter for estimating the moving speed V may include a moving speed calculated based on the distance between the anchor positions, or may include a physical quantity representing the user's action between the anchor positions. As an example, the determination unit 170 includes, as a physical quantity representing a user's motion between anchor positions, an average value of amplitude values of angular velocities in the gravity axis direction between anchor positions calculated based on sensor signals.
 移動距離算出部140は、ユーザの動作を考慮して更新されたパラメータから、ユーザの移動速度Vをより正確に推定することができる。具体的には、移動距離算出部140は、重力軸方向の加速度振幅値と移動速度の関係に基づき、ユーザの移動速度Vを推定する。この場合、移動距離算出部140は、重力軸方向の加速度振幅値と移動速度とが線形の関係にあるとしてよい。 The moving distance calculation unit 140 can estimate the moving speed V of the user more accurately from the parameter updated in consideration of the user's action. Specifically, the movement distance calculation unit 140 estimates the movement speed V of the user based on the relationship between the acceleration amplitude value in the gravity axis direction and the movement speed. In this case, the movement distance calculation unit 140 may have a linear relationship between the acceleration amplitude value in the gravity axis direction and the movement speed.
 一例として、移動距離算出部140が取得したユーザの移動速度Vを記憶部120に記憶する場合、決定部170は、機器10が通過したと判断したアンカー位置間の距離に基づき、機器10の移動速度を更新する。図4の例において、決定部170は、アンカー位置間の距離LCBがユーザが時間tの間に移動した距離に対応するので、ユーザの移動速度をVnew=LCB/tと算出して更新し、当該更新した移動速度Vnewを記憶部120に記憶する。 As an example, when the movement speed V of the user acquired by the movement distance calculation unit 140 is stored in the storage unit 120, the determination unit 170 moves the device 10 based on the distance between the anchor positions determined that the device 10 has passed. Update speed. In the example of FIG. 4, since the distance L CB between anchor positions corresponds to the distance that the user has moved during time t, the determination unit 170 calculates the moving speed of the user as V new = L CB / t. The updated moving speed V new is stored in the storage unit 120.
 また、記憶部120がユーザの歩幅を記憶する場合、決定部170は、機器10が通過したアンカー位置間の距離に基づき、ユーザの歩幅の情報を更新する。図4の例において、決定部170は、アンカー位置間の距離LCBが歩数Nでユーザが移動した距離に対応するので、ユーザの歩幅をWnew=LCB/Nと算出して更新し、当該更新した歩幅Wnewを記憶部120に記憶する。 Further, when the storage unit 120 stores the user's stride, the determination unit 170 updates the user stride information based on the distance between the anchor positions through which the device 10 has passed. In the example of FIG. 4, since the distance L CB between the anchor positions corresponds to the distance moved by the user with the number of steps N, the determination unit 170 calculates and updates the user's stride as W new = L CB / N, The updated stride W new is stored in the storage unit 120.
 このように、決定部170は、ユーザが直前に移動した距離に基づいてユーザの移動速度Vまたは歩幅Wを更新するので、移動距離算出部140の次の移動距離の算出において、より正確な距離を算出することができる。また、ユーザの体調、他に持っている荷物、および歩行している道路の混雑の度合い等により、ユーザの歩行速度が増減しても、移動距離算出部140は、より正確な移動距離を算出することができる。 Thus, since the determination unit 170 updates the user's moving speed V or the stride W based on the distance that the user has moved immediately before, the determination of the next moving distance by the moving distance calculation unit 140 is more accurate. Can be calculated. In addition, even if the user's walking speed increases or decreases depending on the physical condition of the user, other luggage, and the degree of congestion on the walking road, the movement distance calculation unit 140 calculates a more accurate movement distance. can do.
 なお、決定部170は、2以上のアンカー位置間の距離を用いて、ユーザの移動速度および/またはユーザの歩幅を更新してもよい。アンカー位置間の距離LCBが例えば5m以下程度である場合、ユーザは数歩で通過してしまうことになり、ユーザの移動速度および歩幅の算出に誤差が生じることがある。そこで、例えば、ユーザが10歩程度以上歩いて通過する程度の距離を用いるべく、決定部170は、予め定められた距離以上の2以上のアンカー位置間の距離を用いる。 Note that the determination unit 170 may update the moving speed of the user and / or the stride of the user using the distance between the two or more anchor positions. If the distance LCB between anchor positions is about 5 m or less, for example, the user will pass in several steps, and an error may occur in the calculation of the user's moving speed and step length. Therefore, for example, the determination unit 170 uses a distance between two or more anchor positions that is equal to or greater than a predetermined distance in order to use a distance that allows the user to walk about 10 steps or more.
 また、決定部170は、ユーザが数百歩を歩いた距離を用いると、ユーザの歩き方等が変化した場合に対応することができず、過去の動作に影響された平均の移動速度および歩幅を算出する場合がある。そこで、決定部170は、複数のアンカー位置間の距離を用いる場合、予め定められた上限値以下の距離を用いてユーザの移動速度および/または歩幅を更新してよい。この場合、決定部170は、信頼度が低くなった区間等のデータは用いずに、移動速度および歩幅を算出することが望ましい。 In addition, when the distance that the user has walked several hundred steps is used, the determination unit 170 cannot cope with a change in the user's way of walking and the average moving speed and step length influenced by past actions. May be calculated. Therefore, when the distance between the plurality of anchor positions is used, the determination unit 170 may update the user's moving speed and / or stride using a distance that is equal to or less than a predetermined upper limit value. In this case, it is desirable that the determination unit 170 calculates the moving speed and the stride without using data such as a section with a low reliability.
 以上の本実施形態における情報処理装置100は、センサ信号取得部110が、加速度センサ、角速度センサ、および地磁気センサのうちの少なくとも1つのセンサからセンサ信号を取得する例を説明した。これに加えて、センサ信号取得部110は、機器10に搭載された気圧センサを含むセンサのセンサ信号を取得してもよい。 In the information processing apparatus 100 according to the present embodiment described above, an example in which the sensor signal acquisition unit 110 acquires a sensor signal from at least one of an acceleration sensor, an angular velocity sensor, and a geomagnetic sensor has been described. In addition to this, the sensor signal acquisition unit 110 may acquire a sensor signal of a sensor including an atmospheric pressure sensor mounted on the device 10.
 ここで、気圧センサは、機器10を保持するユーザがエレベータ、エスカレータ、階段、およびスロープのいずれかの昇降手段によって昇降したことに応じて当該機器10の周囲の気圧変化を検出する。この場合、決定部170は、第1のアンカー位置を決定したときの機器10の推定位置から、機器10の周囲の気圧変化が検出された推定位置までの移動距離に基づき、第2のアンカー位置を決定する。 Here, the atmospheric pressure sensor detects a change in atmospheric pressure around the device 10 in response to the user holding the device 10 moving up and down by any elevator, escalator, stairs, or slope. In this case, the determination unit 170 determines the second anchor position based on the movement distance from the estimated position of the device 10 when the first anchor position is determined to the estimated position where the atmospheric pressure change around the device 10 is detected. To decide.
 この場合、移動方向変化検知部130は、加速度センサ等によるユーザの移動方向の変化が検知されなくても、気圧の変化が検出されれば、ユーザの移動方向が昇降手段によって変化したと検知する。移動方向変化検知部130は、例えば、ユーザがエスカレータ等の昇降手段に乗ったこと、当該昇降手段から降りたことを検知する。また、移動方向変化検知部130は、階段、エスカレータ等の昇降手段等を歩行すること、および当該歩行の停止を検知してもよい。即ち、移動方向変化検知部130は、ユーザの移動方向の変化および機器10の周囲の気圧変化の両方を検知してよい。 In this case, the movement direction change detection unit 130 detects that the movement direction of the user has been changed by the lifting / lowering means if a change in atmospheric pressure is detected even if a change in the movement direction of the user by the acceleration sensor or the like is not detected. . The movement direction change detection unit 130 detects, for example, that the user has got on the lifting / lowering means such as an escalator and got off the lifting / lowering means. In addition, the movement direction change detection unit 130 may detect walking of elevating means such as stairs and escalators, and stop of the walking. That is, the movement direction change detection unit 130 may detect both a change in the movement direction of the user and a change in atmospheric pressure around the device 10.
 また、移動距離算出部140は、気圧の時間的な変化と、フロア毎の高さと気圧差のデータ等を比較することにより、ユーザの移動速度Vを取得することができる。即ち、情報処理装置100は、ユーザがエレベータに乗っているのか、エスカレータに乗っているのかを判別することもできる。したがって、移動距離算出部140は、ユーザが歩行動作をしていなくても、昇降手段等によって移動する移動距離Lを算出することができる。ここで、記憶部120は、予めフロア毎の高さと気圧差のデータ等を記憶してよい。 Further, the movement distance calculation unit 140 can acquire the movement speed V of the user by comparing the temporal change of the atmospheric pressure with the data of the height and the atmospheric pressure difference for each floor. That is, the information processing apparatus 100 can determine whether the user is on an elevator or an escalator. Therefore, the movement distance calculation unit 140 can calculate the movement distance L that is moved by the lifting means or the like even when the user is not walking. Here, the memory | storage part 120 may memorize | store the data of the height and atmospheric | air pressure difference for every floor, etc. previously.
 また、情報処理装置100は、加速度センサからのセンサ信号を解析することで、ユーザの歩行状態を検出することができるので、略同一の気圧の時間変動を検出しても、ユーザがエスカレータを歩行しているのかエレベータに乗っているのかを判別することができる。同様に、情報処理装置100は、ユーザが階段を歩行しているのかエスカレータに乗っているのかを判別することもできる。 In addition, since the information processing apparatus 100 can detect the user's walking state by analyzing the sensor signal from the acceleration sensor, the user walks on the escalator even if the time variation of substantially the same atmospheric pressure is detected. It is possible to determine whether the vehicle is on the elevator or on the elevator. Similarly, the information processing apparatus 100 can determine whether the user is walking on the stairs or on an escalator.
 このように、移動方向変化検知部130が気圧の変化に基づくユーザの昇降手段等による移動方向の変化を検知し、移動距離算出部140が移動距離Lを算出することができるので、決定部170は、ユーザの実際の歩行経路に対応するアンカー位置を決定することができる。即ち、情報処理装置100は、ユーザが建物内のフロア間を移動しても、自律航法によるユーザの現在位置の推定誤差を低減させることができる。また、この場合、情報処理装置100は、機器10の周囲の気圧変化に基づいてアンカー位置を決定するので、ユーザが歩行していなくてもアンカー位置を決定することができる。 Thus, since the movement direction change detection unit 130 detects a change in the movement direction by the user's lifting means based on the change in atmospheric pressure and the movement distance calculation unit 140 can calculate the movement distance L, the determination unit 170. Can determine an anchor position corresponding to the actual walking route of the user. That is, the information processing apparatus 100 can reduce the estimation error of the current position of the user by autonomous navigation even when the user moves between floors in the building. In this case, since the information processing apparatus 100 determines the anchor position based on the change in atmospheric pressure around the device 10, the information processing apparatus 100 can determine the anchor position even when the user is not walking.
 また、建物内の異なるフロアで、かつ、第1のアンカー位置からの距離が略等距離にあるアンカー位置が複数存在しても、情報処理装置100は、気圧変化に基づいてユーザが歩行するフロアのアンカー位置を決定することができる。 In addition, even if there are a plurality of anchor positions that are different floors in the building and that are substantially equidistant from the first anchor position, the information processing apparatus 100 can be a floor on which the user walks based on a change in atmospheric pressure. Anchor positions can be determined.
 図6は、本実施形態に係る情報処理装置100の変形例をセンサ20およびアンカー位置記憶部30と共に示す。本変形例の情報処理装置100において、図2に示された本実施形態に係る情報処理装置100の動作と略同一のものには同一の符号を付け、説明を省略する。本変形例の情報処理装置100は、移動方向検出部150を更に備える。 FIG. 6 shows a modification of the information processing apparatus 100 according to this embodiment together with the sensor 20 and the anchor position storage unit 30. In the information processing apparatus 100 according to the present modification, the same reference numerals are given to the substantially same operations as those of the information processing apparatus 100 according to the present embodiment illustrated in FIG. The information processing apparatus 100 according to this modification further includes a movement direction detection unit 150.
 移動方向検出部150は、記憶部120に接続され、センサ信号に基づき、機器10の移動方向を検出する。移動方向検出部150は、一例として、予め定められたタイミングまたはクロック信号に応じて、機器10の移動方向を検出する。 The moving direction detection unit 150 is connected to the storage unit 120 and detects the moving direction of the device 10 based on the sensor signal. For example, the movement direction detection unit 150 detects the movement direction of the device 10 according to a predetermined timing or a clock signal.
 移動方向検出部150は、検出した機器10の移動方向を記憶部120に蓄積してよく、蓄積した移動方向に基づき、機器10を保持するユーザが移動した軌跡を算出してもよい。即ち、移動方向検出部150は、機器10の移動方向を累積することにより、図4の例に示したユーザの軌跡p-q等を算出することができる。移動方向検出部150は、検出した移動方向および/または算出した軌跡を決定部170に供給する。 The movement direction detection unit 150 may accumulate the detected movement direction of the device 10 in the storage unit 120, and may calculate a locus of movement of the user holding the device 10 based on the accumulated movement direction. That is, the moving direction detection unit 150 can calculate the user's trajectory pq shown in the example of FIG. 4 by accumulating the moving direction of the device 10. The movement direction detection unit 150 supplies the detected movement direction and / or the calculated trajectory to the determination unit 170.
 本変形例の決定部170は、第1のアンカー位置、機器10の移動距離、および移動方向に基づき、第2のアンカー位置を決定する。ここで例えば、アンカー位置間の距離が略同一の複数のアンカー位置が存在すると、決定部170は、距離の比較だけでは第2のアンカー位置を決定できない場合がある。そこで、決定部170は、機器10を保持するユーザが、第1のアンカー位置から、左右、東西南北、および上下方向のいずれの方向に移動したかに応じて、当該方向に存在するアンカー位置を第2のアンカー位置と決定する。 The determination unit 170 of this modification determines the second anchor position based on the first anchor position, the movement distance of the device 10, and the movement direction. Here, for example, when there are a plurality of anchor positions having substantially the same distance between the anchor positions, the determination unit 170 may not be able to determine the second anchor position only by comparing the distances. Therefore, the determination unit 170 determines the anchor position that exists in the direction depending on whether the user holding the device 10 has moved from the first anchor position in the left, right, east-west, north-south, or up-down direction. The second anchor position is determined.
 また、決定部170は、例えば、第1のアンカー位置および移動距離に基づいて第2のアンカー位置を決定した場合に、第1のアンカー位置に対する当該第2のアンカー位置の方向が、ユーザの移動方向と略同一方向か否かを判定する。そして、決定部170は、第2のアンカー位置の方向がユーザの移動方向と異なる場合、決定した当該第2のアンカー位置を除外して、他のアンカー位置の中から第2のアンカー位置を新たに決定してよい。 For example, when the determination unit 170 determines the second anchor position based on the first anchor position and the movement distance, the direction of the second anchor position with respect to the first anchor position indicates that the user has moved It is determined whether the direction is substantially the same as the direction. Then, when the direction of the second anchor position is different from the moving direction of the user, the determination unit 170 excludes the determined second anchor position and newly sets the second anchor position from among other anchor positions. You may decide.
 これに代えて、決定部170は、複数のアンカー位置のうち、ユーザの移動方向と略同一方向にあるアンカー位置を第2のアンカー位置候補とし、当該候補の中から、第1のアンカー位置および移動距離に基づいて第2のアンカー位置を決定してもよい。このように、本変形例の情報処理装置100は、ユーザの移動方向も考慮して第2のアンカー位置を決定するので、当該アンカー位置の選択誤差を更に低減することができる。 Instead, the determination unit 170 sets an anchor position that is substantially in the same direction as the moving direction of the user among the plurality of anchor positions as a second anchor position candidate, and selects the first anchor position and the anchor position from the candidates. The second anchor position may be determined based on the movement distance. As described above, the information processing apparatus 100 according to the present modification determines the second anchor position in consideration of the moving direction of the user, so that the selection error of the anchor position can be further reduced.
 また、決定部170は、異なるアンカー位置の間の距離が、予め定められた基準距離よりも短い場合、機器10の移動方向を優先して第2のアンカー位置を決定してもよい。この場合の決定部170の動作を、図7を用いて説明する。 In addition, when the distance between different anchor positions is shorter than a predetermined reference distance, the determination unit 170 may determine the second anchor position by giving priority to the moving direction of the device 10. The operation of the determination unit 170 in this case will be described with reference to FIG.
 図7は、本実施形態に係る第1のアンカー位置と、決定部170が決定する第2のアンカー位置の第3の例を示す。本例において、図4に示された本実施形態に係る第1のアンカー位置および第2のアンカー位置の例と略同一のものには同一の符号を付け、説明を省略する。 FIG. 7 shows a third example of the first anchor position according to the present embodiment and the second anchor position determined by the determination unit 170. In this example, the same reference numerals are given to substantially the same parts as those of the first anchor position and the second anchor position according to the present embodiment shown in FIG.
 ユーザが歩行動作を開始した直後、または移動方向を変更した直後は、ユーザの動作が安定していない場合がある。したがって、移動距離算出部140が、初期位置または第1のアンカー位置に近接する範囲でユーザの移動距離を算出すると、算出した当該移動距離には大きな誤差が含まれてしまう場合がある。 -Immediately after the user starts walking or immediately after changing the movement direction, the user's movement may not be stable. Therefore, if the movement distance calculation unit 140 calculates the movement distance of the user in a range close to the initial position or the first anchor position, the calculated movement distance may include a large error.
 図7に示すように、移動方向検出部150が算出するユーザの軌跡p-qも、同様に、誤差が大きくなってしまう。また、このような場合、移動距離算出部140および移動方向検出部150は、移動距離を大きく算出する傾向にある。例えば図7の場合、アンカー位置Cからアンカー位置Aまでの距離LCA、およびアンカー位置Cからアンカー位置Bまでの距離LCBと、移動距離Lとをそれぞれ比較しても、当該移動距離Lとの差が略同一となってしまい、いずれを選択すべきかを決定できなくなってしまう。 As shown in FIG. 7, the user's trajectory pq calculated by the moving direction detection unit 150 also has a large error. In such a case, the movement distance calculation unit 140 and the movement direction detection unit 150 tend to calculate the movement distance largely. For example, in the case of FIG. 7, even if the distance L CA from the anchor position C to the anchor position A and the distance L CB from the anchor position C to the anchor position B are compared with the movement distance L, the movement distance L Are substantially the same, and it becomes impossible to determine which one should be selected.
 そこで、決定部170は、機器10の移動方向を優先して、第2のアンカー位置を決定する。即ち、決定部170は、アンカー位置Aに到達する前に既にユーザの移動方向が変化してR2点が検出され、ユーザの軌跡p-qは図中の東方向へと変化していることから、ユーザはアンカー位置Bで東へと移動方向を変化させたと判断する。このように、決定部170は、当該変化を優先させて、アンカー位置Bを第2のアンカー位置とする。これによって、情報処理装置100は、異なるアンカー位置間の距離が予め定められた距離よりも短い場合に生じる、第2アンカー位置の選択誤差を低減させることができる。 Therefore, the determination unit 170 prioritizes the moving direction of the device 10 and determines the second anchor position. That is, the decision unit 170 detects that the user's moving direction has already changed and the point R2 has been detected before reaching the anchor position A, and the user's trajectory pq has changed to the east in the figure. The user determines that the moving direction has been changed to the east at the anchor position B. Thus, the determination unit 170 gives priority to the change and sets the anchor position B as the second anchor position. Thereby, the information processing apparatus 100 can reduce the selection error of the second anchor position that occurs when the distance between the different anchor positions is shorter than the predetermined distance.
 また、決定部170は、機器10の移動方向の変化を検出しているにもかかわらず、第2のアンカー位置を予め定められた時間以上決定できない場合、第1のアンカー位置および機器10の移動方向に基づき、第2のアンカー位置を決定してもよい。ここで例えば、移動方向変化検知部130が機器10の移動方向の変化を検出し、移動距離算出部140が機器10の移動距離Lを算出しても、第1のアンカー位置から当該距離Lだけ離れた位置に対応するアンカー位置が存在しない場合がある。 If the determination unit 170 detects a change in the movement direction of the device 10 and cannot determine the second anchor position for a predetermined time or more, the determination unit 170 moves the first anchor position and the device 10. A second anchor position may be determined based on the direction. Here, for example, even if the movement direction change detection unit 130 detects a change in the movement direction of the device 10 and the movement distance calculation unit 140 calculates the movement distance L of the device 10, only the distance L from the first anchor position is calculated. There may be no anchor position corresponding to the distant position.
 図8は、本実施形態に係る第1のアンカー位置と、決定部170が決定する第2のアンカー位置の第4の例を示す。本例において、図4に示された本実施形態に係る第1のアンカー位置および第2のアンカー位置の例と略同一のものには同一の符号を付け、説明を省略する。 FIG. 8 shows a fourth example of the first anchor position according to the present embodiment and the second anchor position determined by the determination unit 170. In this example, the same reference numerals are given to substantially the same parts as those of the first anchor position and the second anchor position according to the present embodiment shown in FIG.
 例えば、足踏み、蛇行、および回転動作等の通常の歩行とは異なるユーザの動作により、ユーザの実際の移動速度、歩数、および歩幅等に変動が生じた場合、移動距離算出部140は誤差を含む移動距離Lを算出してしまう。この場合、決定部170は、移動距離Lに対応する第2のアンカー位置を決定できずに行き詰まってしまう場合がある。ここで、移動方向検出部150は、図8に示すように、誤差を含んではいるものの、ユーザの軌跡p-q(またはp'-q')を順次算出することはできる。 For example, when the user's actual movement speed, the number of steps, the step length, and the like vary due to the user's movements different from normal walking such as stepping, meandering, and rotation, the movement distance calculation unit 140 includes an error. The movement distance L is calculated. In this case, the determination unit 170 may not be able to determine the second anchor position corresponding to the movement distance L and may get stuck. Here, as shown in FIG. 8, the moving direction detection unit 150 can sequentially calculate the user's trajectory pq (or p′−q ′) although it includes an error.
 そこで、決定部170は、ユーザの移動方向が変化したR2点と、アンカー位置Aとが予め定められた距離よりも離れていても、ユーザが東方向に移動していることに応じて、当該東方向に移動できる道路に対応するアンカー位置Aを、第2のアンカー位置として決定する。この場合において、決定部170は、東方向に行くことのできる道路が複数ある場合は、R2点から最も近い対応するアンカー位置を第2のアンカー位置として決定してよい。これにより、情報処理装置100は、アンカー位置が定まらないことによる行き詰まりを防止することができる。 Therefore, even if the R2 point where the movement direction of the user has changed and the anchor position A are separated from each other by a predetermined distance, the determination unit 170 determines that the user is moving in the east direction. The anchor position A corresponding to the road that can move in the east direction is determined as the second anchor position. In this case, when there are a plurality of roads that can go in the east direction, the determination unit 170 may determine the corresponding anchor position closest to the point R2 as the second anchor position. Thereby, the information processing apparatus 100 can prevent a deadlock due to the anchor position not being determined.
 また、決定部170は、予め定められた領域内のアンカー位置のうち、機器10の推定位置に対応するアンカー位置を決定する場合、第1のアンカー位置、機器10の移動距離、および予め定められた時間以上の期間における機器10の移動方向に基づき、第2のアンカー位置を決定する。例えば、ユーザが移動方向を緩やかに変化させると、移動方向変化検知部130が当該移動方向の変化を検知できない場合が生じる。 Further, when determining the anchor position corresponding to the estimated position of the device 10 among the anchor positions in a predetermined region, the determination unit 170 determines the first anchor position, the movement distance of the device 10, and the predetermined position. The second anchor position is determined based on the moving direction of the device 10 in a period longer than the predetermined time. For example, when the user gently changes the movement direction, the movement direction change detection unit 130 may not be able to detect the change in the movement direction.
 図9は、本実施形態に係る第1のアンカー位置と、決定部170が決定する第2のアンカー位置の第5の例を示す。本例において、図4に示された本実施形態に係る第1のアンカー位置および第2のアンカー位置の例と略同一のものには同一の符号を付け、説明を省略する。 FIG. 9 shows a fifth example of the first anchor position according to the present embodiment and the second anchor position determined by the determination unit 170. In this example, the same reference numerals are given to substantially the same parts as those of the first anchor position and the second anchor position according to the present embodiment shown in FIG.
 図9の例に示すように、道幅が比較的広い道路等をユーザが歩行する場合、ユーザが当該道路を斜め方向に進行すると、移動方向変化検知部130は、当該移動方向の変化を検知できない。例えば、移動方向変化検知部130は、第1進行方向から第2進行方向への変化、および/または第2進行方向から第3進行方向への変化を検知できない場合が生じる。そして、移動方向検出部150は、ユーザの歩行に対応する軌跡p-qを順次算出することになる。 As shown in the example of FIG. 9, when a user walks on a road having a relatively wide road, when the user travels in the oblique direction, the movement direction change detection unit 130 cannot detect the change in the movement direction. . For example, the movement direction change detection unit 130 may not be able to detect a change from the first travel direction to the second travel direction and / or a change from the second travel direction to the third travel direction. Then, the movement direction detection unit 150 sequentially calculates the trajectory pq corresponding to the user's walk.
 そこで、移動方向検出部150は、算出したユーザの歩行に対応する軌跡p-qに基づき、予め定められた時間以上の期間における機器10の移動方向を算出する。ここで、移動方向検出部150は、予め定められた時間以上の期間を、移動方向変化検知部130が移動方向を検知する時間よりも長い時間に設定する。移動方向検出部150は、例えば、当該期間を、ユーザが2歩以上歩く期間としてよく、また、4歩以上歩く期間とするのが好ましい。 Therefore, the movement direction detection unit 150 calculates the movement direction of the device 10 in a period longer than a predetermined time based on the calculated trajectory pq corresponding to the user's walk. Here, the movement direction detection unit 150 sets a period longer than a predetermined time to be longer than the time during which the movement direction change detection unit 130 detects the movement direction. For example, the movement direction detection unit 150 may set the period as a period during which the user walks two steps or more, and preferably sets the period as four steps or more.
 移動方向検出部150は、例えば、ユーザが進行方向を変えずに予め定められた時間以上歩行した場合、当該進行方向をユーザの進行方向として検出する。この場合、移動方向検出部150は、記憶部120に検出した進行方向を記憶してよい。移動方向検出部150は、例えば、図中の第1進行方向、第2進行方向、および第3進行方向を順次検出して記憶する。 For example, when the user walks for a predetermined time or longer without changing the traveling direction, the moving direction detection unit 150 detects the traveling direction as the traveling direction of the user. In this case, the moving direction detection unit 150 may store the detected traveling direction in the storage unit 120. For example, the moving direction detection unit 150 sequentially detects and stores a first traveling direction, a second traveling direction, and a third traveling direction in the drawing.
 そして、移動方向検出部150は、このような進行方向を順次記憶し、一つ前に記憶した進行方向と今回記憶する進行方向が、予め定められた角度以上に変化する場合で、かつ、当該進行方向の変化の間に移動方向変化検知部130が移動方向の変化を検知しなかった場合、進行方向に変化があったことを検出する。これによって、移動方向検出部150は、第1進行方向から第2進行方向への変化、および第2進行方向から第3進行方向への変化をそれぞれ検出することができる。 The moving direction detection unit 150 sequentially stores such traveling directions, and the traveling direction stored immediately before and the traveling direction stored this time change more than a predetermined angle, and If the movement direction change detection unit 130 does not detect a change in the movement direction during the change in the movement direction, it detects that the movement direction has changed. Accordingly, the moving direction detection unit 150 can detect a change from the first traveling direction to the second traveling direction and a change from the second traveling direction to the third traveling direction, respectively.
 移動方向検出部150は、このような進行方向の変化の検出結果を決定部170に供給し、決定部170は、当該進行方向の変化に応じて、アンカー位置を決定する。ここで、決定部170は、例えば、第1進行方向が検出された期間と、第2進行方向が検出された期間の間の期間に、機器10の推定位置(R1点)を定め、当該推定位置に対応する(例えば最も近い)アンカー位置Aを、第2アンカー位置とする。ここで、決定部170は、ユーザの軌跡上における、第1進行方向が検出された期間と第2進行方向が検出された期間との間の期間の中間点を、推定位置としてよい。 The moving direction detection unit 150 supplies the detection result of the change in the traveling direction to the determination unit 170, and the determination unit 170 determines the anchor position according to the change in the traveling direction. Here, the determination unit 170 determines an estimated position (point R1) of the device 10 in a period between a period in which the first traveling direction is detected and a period in which the second traveling direction is detected, for example. The anchor position A corresponding to the position (for example, closest) is set as the second anchor position. Here, the determination unit 170 may set an intermediate point of a period between the period in which the first traveling direction is detected and the period in which the second traveling direction is detected on the user's trajectory as the estimated position.
 そして、決定部170は、例えば、第2進行方向が検出された期間と、第3進行方向が検出された期間の間の期間に、機器10の推定位置(R2点)を定め、当該推定位置に対応するアンカー位置Cを、次の第2アンカー位置とする。このようにして、情報処理装置100は、ユーザが緩やかに進行方向を変化させても、当該進行方向の変化を検出してアンカー位置を決定することができる。 And the determination part 170 determines the estimated position (R2 point) of the apparatus 10 in the period between the period when the 2nd advancing direction was detected, and the period when the 3rd advancing direction was detected, for example, and the said estimated position The anchor position C corresponding to is set as the next second anchor position. In this manner, the information processing apparatus 100 can determine the anchor position by detecting the change in the traveling direction even when the user gently changes the traveling direction.
 また、情報処理装置100は、当該機器10の位置を取得する機器位置取得部を更に備えてもよい。ここで、機器位置取得部は、外部の装置等によって得られた機器10の位置を取得する。機器位置取得部は、例えば、GPS等の測位手段によって得られる機器10の位置情報を取得する。また、機器位置取得部は、Wi-Fi(Wireless Fidelity)等の規格化された無線LAN信号等を受信して測位し、得られる機器10の位置情報を取得してもよい。 The information processing apparatus 100 may further include a device position acquisition unit that acquires the position of the device 10. Here, the device position acquisition unit acquires the position of the device 10 obtained by an external device or the like. The device position acquisition unit acquires the position information of the device 10 obtained by positioning means such as GPS. In addition, the device position acquisition unit may receive and measure a standardized wireless LAN signal such as Wi-Fi (Wireless Fidelity) and acquire the position information of the device 10 obtained.
 また、機器位置取得部は、予め定められた位置に設けられたビーコン(Beacon)から照射される電波または赤外線等の電磁波を受信することによって得られる機器10の位置情報を取得してもよい。また、機器位置取得部は、電波および電磁波によらず、機器10の絶対位置を供給する、または絶対位置を算出する外部の装置等から、機器10の位置情報を取得してよい。機器位置取得部は、取得した機器10の位置を決定部170に供給する。 Further, the device position acquisition unit may acquire the position information of the device 10 obtained by receiving radio waves or electromagnetic waves such as infrared rays emitted from a beacon provided at a predetermined position. In addition, the device position acquisition unit may acquire the position information of the device 10 from an external device or the like that supplies the absolute position of the device 10 or calculates the absolute position regardless of radio waves and electromagnetic waves. The device position acquisition unit supplies the acquired position of the device 10 to the determination unit 170.
 この場合、決定部170は、機器位置取得部が当該機器10の位置を取得したことに応じて、当該機器10の位置に最も近いアンカー位置を第2のアンカー位置として優先的に決定する。このようにして、情報処理装置100は、自律航法よりも高い確度で機器10の位置を推定できる場合は、当該高い確度で推定された機器10の位置を優先的に採用し、対応するアンカー位置を第2のアンカー位置とする。これによって、情報処理装置100は、自律航法によって累積される位置誤差の影響を低減させることができる。 In this case, the determination unit 170 preferentially determines the anchor position closest to the position of the device 10 as the second anchor position in response to the device position acquisition unit acquiring the position of the device 10. In this way, when the information processing apparatus 100 can estimate the position of the device 10 with higher accuracy than the autonomous navigation, the information processing device 100 preferentially adopts the position of the device 10 estimated with the high accuracy, and the corresponding anchor position. Is the second anchor position. Thereby, the information processing apparatus 100 can reduce the influence of the position error accumulated by the autonomous navigation.
 また、情報処理装置100は、予めユーザが歩行する歩行ルートが定められている場合、当該歩行ルート上に対応するアンカー位置を第2のアンカー位置候補として予め登録してもよい。決定部170は、ユーザの移動方向の変化が検知された場合、当該登録された第2のアンカー位置候補の中から、第2のアンカー位置を決定してよい。 Further, when a walking route for the user to walk is determined in advance, the information processing apparatus 100 may register in advance the corresponding anchor position on the walking route as the second anchor position candidate. The determination unit 170 may determine the second anchor position from the registered second anchor position candidates when a change in the moving direction of the user is detected.
 以上の情報処理装置100において、移動方向検出部150は、ユーザの歩行に対応する軌跡p-qを算出することを説明した。これに加えて、移動方向検出部150は、決定部170が第2のアンカー位置を決定したことに応じて、算出した軌跡p-qを補正してもよい。 In the information processing apparatus 100 described above, it has been described that the movement direction detection unit 150 calculates the trajectory pq corresponding to the user's walk. In addition to this, the movement direction detection unit 150 may correct the calculated trajectory pq according to the determination unit 170 determining the second anchor position.
 この場合、決定部170は、第2のアンカー位置を決定する毎に、記憶部120に当該決定した第2のアンカー位置を記憶する。そして、移動方向検出部150は、第2のアンカー位置が更新されることに応じて、算出した軌跡p-qの対応する部分を補正する。これによって、情報処理装置100は、より精度の高いユーザの軌跡p-qを算出することができる。 In this case, every time the determination unit 170 determines the second anchor position, the determination unit 170 stores the determined second anchor position in the storage unit 120. Then, the movement direction detection unit 150 corrects the corresponding portion of the calculated trajectory pq in accordance with the update of the second anchor position. As a result, the information processing apparatus 100 can calculate the user's path pq with higher accuracy.
 以上の情報処理装置100において、移動方向変化検知部130は機器10の移動方向の変化を検知し、移動方向検出部150は機器10の移動方向を検出する例を説明した。ここで、移動方向検出部150が、検出した機器10の移動方向の時間的な変化を更に検出することで、機器10の移動方向の変化を検知できる場合、移動方向検出部150は、移動方向変化検知部130の動作を実行してもよい。即ち、この場合、移動方向変化検知部130および移動方向検出部150は、同一の部材であってもよい。 In the information processing apparatus 100 described above, the example in which the movement direction change detection unit 130 detects a change in the movement direction of the device 10 and the movement direction detection unit 150 detects the movement direction of the device 10 has been described. Here, when the movement direction detection unit 150 can detect a change in the movement direction of the device 10 by further detecting a temporal change in the movement direction of the detected device 10, the movement direction detection unit 150 The operation of the change detection unit 130 may be executed. That is, in this case, the movement direction change detection unit 130 and the movement direction detection unit 150 may be the same member.
 図10は、本実施形態に係るマップマッチング装置200の構成例を示す。本実施形態のマップマッチング装置200において、図2および6に示された本実施形態に係る情報処理装置100の動作と略同一のものには同一の符号を付け、説明を省略する。マップマッチング装置200は、入力部210と、地図情報記憶部220と、位置決定部230とを更に備える。 FIG. 10 shows a configuration example of the map matching apparatus 200 according to the present embodiment. In the map matching apparatus 200 of the present embodiment, the same reference numerals are assigned to substantially the same operations as those of the information processing apparatus 100 according to the present embodiment shown in FIGS. 2 and 6, and the description thereof is omitted. The map matching apparatus 200 further includes an input unit 210, a map information storage unit 220, and a position determination unit 230.
 入力部210は、ユーザの初期位置を入力する。また、入力部210は、マップマッチング機能の処理を開始する指示を入力してもよい。マップマッチング装置200は、一例として、携帯機器10の表示部12に地図情報を表示させ、ユーザに現在位置を指定させることにより、ユーザの初期位置の入力およびマップマッチング機能の開始を入力させてよい。この場合、入力部210は、一例として、表示部12と組み合わされたタッチパネル等の入力デバイスであってよい。また、記憶部120は、入力部210から入力されたユーザの初期位置を記憶してよい。 The input unit 210 inputs the initial position of the user. In addition, the input unit 210 may input an instruction to start processing of the map matching function. As an example, the map matching apparatus 200 may display the map information on the display unit 12 of the mobile device 10 and allow the user to specify the current position, thereby inputting the user's initial position and starting the map matching function. . In this case, the input unit 210 may be an input device such as a touch panel combined with the display unit 12 as an example. The storage unit 120 may store the initial position of the user input from the input unit 210.
 地図情報記憶部220は、複数のアンカー位置を含む地図情報を記憶する。また、地図情報記憶部220は、複数のアンカー位置と地図上の位置座標との対応関係を含めた地図情報を記憶する。また、地図情報記憶部220は、表示部12に表示させる地図情報を記憶してよい。 The map information storage unit 220 stores map information including a plurality of anchor positions. Further, the map information storage unit 220 stores map information including a correspondence relationship between a plurality of anchor positions and position coordinates on the map. The map information storage unit 220 may store map information to be displayed on the display unit 12.
 位置決定部230は、情報処理装置100から出力される機器10の推定位置に対応するアンカー位置に応じて、機器10を保持するユーザの地図上の位置を決定する。情報処理装置100は、誤差を低減させたユーザの推定位置に対応するアンカー位置を出力することができるので、位置決定部230は、当該ユーザの地図上の位置を正確に決定することができる。 The position determination unit 230 determines the position on the map of the user holding the device 10 according to the anchor position corresponding to the estimated position of the device 10 output from the information processing apparatus 100. Since the information processing apparatus 100 can output the anchor position corresponding to the estimated position of the user with reduced error, the position determination unit 230 can accurately determine the position of the user on the map.
 位置決定部230は、決定したユーザの位置を、地図情報と共に表示部12に表示させる。また、位置決定部230は、移動方向検出部150が算出したユーザの軌跡を表示部12に表示させてもよい。これによって、ユーザは、誤差を低減させた自律航法によって、ユーザ自身の地図上の位置を確認することができる。 The position determination unit 230 causes the display unit 12 to display the determined user position together with the map information. Further, the position determination unit 230 may cause the display unit 12 to display the user trajectory calculated by the movement direction detection unit 150. Thereby, the user can confirm the position on the map of the user himself / herself by autonomous navigation with reduced error.
 また、位置決定部230は、マップマッチングによってユーザの地図上の正しい位置を決定することができるので、ユーザが移動したより正確な距離を算出することもできる。そこで、位置決定部230は、移動距離算出部140に接続され、算出した移動距離を当該移動距離算出部140に供給してもよい。これによって、移動距離算出部140は、マップマッチングから得られる正確な距離と自律航法から得られる歩行時間をもとにユーザのより正確な移動速度を算出することができる。さらに、得られた正確な移動速度と自律航法から得られる物理量等に応じて、自律航法において推定される移動速度に関するパラメータを適切なものに更新することができる。 Also, since the position determination unit 230 can determine the correct position on the map of the user by map matching, the position determination unit 230 can also calculate a more accurate distance that the user has moved. Therefore, the position determination unit 230 may be connected to the movement distance calculation unit 140 and supply the calculated movement distance to the movement distance calculation unit 140. Accordingly, the movement distance calculation unit 140 can calculate the more accurate movement speed of the user based on the accurate distance obtained from the map matching and the walking time obtained from the autonomous navigation. Furthermore, the parameter regarding the moving speed estimated in autonomous navigation can be updated to an appropriate one according to the obtained accurate moving speed and the physical quantity obtained from the autonomous navigation.
 図11は、本実施形態に係る情報処理装置100として機能するコンピュータ1900のハードウェア構成の一例を示す。本実施形態に係るコンピュータ1900は、例えば、機器10の内部に搭載される。これに代えて、コンピュータ1900は、機器10の外部に備えられ、機器10からのセンサ出力を受信して、アンカー位置の決定結果等を機器10に送信してもよい。この場合、コンピュータ1900は、一例として、機器10と無線で送受信する。 FIG. 11 shows an example of a hardware configuration of a computer 1900 that functions as the information processing apparatus 100 according to the present embodiment. A computer 1900 according to the present embodiment is mounted inside the device 10, for example. Instead of this, the computer 1900 may be provided outside the device 10, receive a sensor output from the device 10, and transmit an anchor position determination result or the like to the device 10. In this case, the computer 1900 transmits and receives wirelessly to and from the device 10 as an example.
 本実施形態に係るコンピュータ1900は、ホスト・コントローラ2082により相互に接続されるCPU2000、RAM2020、グラフィック・コントローラ2075、および表示装置2080を有するCPU周辺部と、入出力コントローラ2084によりホスト・コントローラ2082に接続される通信インターフェイス2030、記憶部2040、入出力部2060と、ROM2010と、カードスロット2050と、入出力チップ2070とを備える。 A computer 1900 according to this embodiment is connected to a CPU peripheral unit having a CPU 2000, a RAM 2020, a graphic controller 2075, and a display device 2080 that are connected to each other by a host controller 2082, and to the host controller 2082 by an input / output controller 2084. A communication interface 2030, a storage unit 2040, an input / output unit 2060, a ROM 2010, a card slot 2050, and an input / output chip 2070.
 ホスト・コントローラ2082は、RAM2020と、高い転送レートでRAM2020をアクセスするCPU2000およびグラフィック・コントローラ2075とを接続する。CPU2000は、ROM2010およびRAM2020に格納されたプログラムに基づいて動作し、各部の制御を行う。グラフィック・コントローラ2075は、CPU2000等がRAM2020内に設けたフレーム・バッファ上に生成する画像データを取得し、表示装置2080上に表示させる。これに代えて、グラフィック・コントローラ2075は、CPU2000等が生成する画像データを格納するフレーム・バッファを、内部に含んでもよい。 The host controller 2082 connects the RAM 2020 to the CPU 2000 and the graphic controller 2075 that access the RAM 2020 at a high transfer rate. The CPU 2000 operates based on programs stored in the ROM 2010 and the RAM 2020 and controls each unit. The graphic controller 2075 acquires image data generated by the CPU 2000 or the like on a frame buffer provided in the RAM 2020 and displays it on the display device 2080. Instead of this, the graphic controller 2075 may include a frame buffer for storing image data generated by the CPU 2000 or the like.
 入出力コントローラ2084は、ホスト・コントローラ2082と、比較的高速な入出力装置である通信インターフェイス2030、記憶部2040、入出力部2060を接続する。通信インターフェイス2030は、ネットワークを介して他の装置と通信する。記憶部2040は、コンピュータ1900内のCPU2000が使用するプログラムおよびデータを格納する。記憶部2040は、不揮発性メモリであり、例えば、フラッシュメモリまたはハードディスク等である。 The input / output controller 2084 connects the host controller 2082 to the communication interface 2030, the storage unit 2040, and the input / output unit 2060 which are relatively high-speed input / output devices. The communication interface 2030 communicates with other devices via a network. Storage unit 2040 stores programs and data used by CPU 2000 in computer 1900. The storage unit 2040 is a nonvolatile memory, such as a flash memory or a hard disk.
 入出力部2060は、コネクタ2095と接続され、外部とプログラムまたはデータを送受信し、RAM2020を介して記憶部2040に提供する。入出力部2060は、規格化されたコネクタおよび通信方式で外部と送受信してよく、この場合、入出力部2060は、USB、IEEE1394、HDMI(登録商標)、またはThunderbolt(登録商標)等の規格を用いてよい。また、入出力部2060は、Bluetooth(登録商標)等の無線通信規格を用いて外部と送受信してもよい。 The input / output unit 2060 is connected to the connector 2095, transmits / receives a program or data to / from the outside, and provides the storage unit 2040 via the RAM 2020. The input / output unit 2060 may transmit / receive to / from the outside with a standardized connector and communication method. In this case, the input / output unit 2060 is a standard such as USB, IEEE 1394, HDMI (registered trademark), or Thunderbolt (registered trademark). May be used. Further, the input / output unit 2060 may transmit and receive with the outside using a wireless communication standard such as Bluetooth (registered trademark).
 また、入出力コントローラ2084には、ROM2010と、カードスロット2050、および入出力チップ2070の比較的低速な入出力装置とが接続される。ROM2010は、コンピュータ1900が起動時に実行するブート・プログラム、および/または、コンピュータ1900のハードウェアに依存するプログラム等を格納する。カードスロット2050は、メモリカード2090からプログラムまたはデータを読み取り、RAM2020を介して記憶部2040に提供する。入出力チップ2070は、カードスロット2050を入出力コントローラ2084へと接続すると共に、例えばパラレル・ポート、シリアル・ポート、キーボード・ポート、マウス・ポート等を介して各種の入出力装置を入出力コントローラ2084へと接続してもよい。 Also, the ROM 2010, the card slot 2050, and the relatively low-speed input / output device of the input / output chip 2070 are connected to the input / output controller 2084. The ROM 2010 stores a boot program that the computer 1900 executes at startup and / or a program that depends on the hardware of the computer 1900. The card slot 2050 reads a program or data from the memory card 2090 and provides it to the storage unit 2040 via the RAM 2020. The input / output chip 2070 connects the card slot 2050 to the input / output controller 2084 and, for example, various input / output devices via the parallel port, serial port, keyboard port, mouse port, etc. You may connect to.
 RAM2020を介して記憶部2040に提供されるプログラムは、入出力部2060を介して、またはメモリカード2090等の記録媒体に格納されて利用者によって提供される。プログラムは、記録媒体から読み出され、RAM2020を介してコンピュータ1900内の記憶部2040にインストールされ、CPU2000において実行される。 The program provided to the storage unit 2040 via the RAM 2020 is provided by the user via the input / output unit 2060 or stored in a recording medium such as the memory card 2090. The program is read from the recording medium, installed in the storage unit 2040 in the computer 1900 via the RAM 2020, and executed by the CPU 2000.
 プログラムは、コンピュータ1900にインストールされ、コンピュータ1900をセンサ信号取得部110、記憶部120、移動方向変化検知部130、移動距離算出部140、移動方向検出部150、アンカー位置取得部160、および決定部170等として機能させる。 The program is installed in the computer 1900, and the computer 1900 includes the sensor signal acquisition unit 110, the storage unit 120, the movement direction change detection unit 130, the movement distance calculation unit 140, the movement direction detection unit 150, the anchor position acquisition unit 160, and the determination unit. It functions as 170 or the like.
 プログラムに記述された情報処理は、コンピュータ1900に読込まれることにより、ソフトウェアと上述した各種のハードウェア資源とが協働した具体的手段であるセンサ信号取得部110、記憶部120、移動方向変化検知部130、移動距離算出部140、移動方向検出部150、アンカー位置取得部160、および決定部170等として機能する。そして、この具体的手段によって、本実施形態におけるコンピュータ1900の使用目的に応じた情報の演算または加工を実現することにより、使用目的に応じた特有の情報処理装置100が構築される。 The information processing described in the program is read into the computer 1900, whereby the sensor signal acquisition unit 110, the storage unit 120, and the movement direction change, which are specific means in which the software and the various hardware resources described above cooperate. It functions as a detection unit 130, a movement distance calculation unit 140, a movement direction detection unit 150, an anchor position acquisition unit 160, a determination unit 170, and the like. And the specific information processing apparatus 100 according to the intended use is constructed | assembled by implement | achieving the calculation or processing of the information according to the intended use of the computer 1900 in this embodiment by this concrete means.
 一例として、コンピュータ1900と外部の装置等との間で通信を行う場合には、CPU2000は、RAM2020上にロードされた通信プログラムを実行し、通信プログラムに記述された処理内容に基づいて、通信インターフェイス2030に対して通信処理を指示する。通信インターフェイス2030は、CPU2000の制御を受けて、RAM2020、記憶部2040、メモリカード2090、または入出力部2060を介して接続される記憶装置上に設けた送信バッファ領域等に記憶された送信データを読み出してネットワークへと送信し、もしくは、ネットワークから受信した受信データを記憶装置上に設けた受信バッファ領域等へと書き込む。このように、通信インターフェイス2030は、DMA(ダイレクト・メモリ・アクセス)方式により記憶装置との間で送受信データを転送してもよく、これに代えて、CPU2000が転送元の記憶装置または通信インターフェイス2030からデータを読み出し、転送先の通信インターフェイス2030または記憶装置へとデータを書き込むことにより送受信データを転送してもよい。 As an example, when communication is performed between the computer 1900 and an external device or the like, the CPU 2000 executes a communication program loaded on the RAM 2020 and executes a communication interface based on the processing content described in the communication program. A communication process is instructed to 2030. The communication interface 2030 receives transmission data stored in a transmission buffer area provided on a storage device connected via the RAM 2020, the storage unit 2040, the memory card 2090, or the input / output unit 2060 under the control of the CPU 2000. The data is read and transmitted to the network, or the received data received from the network is written into a reception buffer area or the like provided on the storage device. As described above, the communication interface 2030 may transfer transmission / reception data to / from the storage device by the DMA (Direct Memory Access) method. Instead, the CPU 2000 transfers the storage device or the communication interface 2030 as the transfer source. The transmission / reception data may be transferred by reading the data from the data and writing the data to the communication interface 2030 or the storage device of the transfer destination.
 また、CPU2000は、記憶部2040、メモリカード2090、または入出力部2060を介して接続される記憶装置等に格納されたファイルまたはデータベース等の中から、全部または必要な部分をDMA転送等によりRAM2020へと読み込ませ、RAM2020上のデータに対して各種の処理を行う。そして、CPU2000は、処理を終えたデータを、DMA転送等により記憶装置へと書き戻す。このような処理において、RAM2020は、記憶装置の内容を一時的に保持するものとみなせるから、本実施形態においてはRAM2020および記憶装置等をメモリ、記憶部、または記憶装置等と総称する。本実施形態における各種のプログラム、データ、テーブル、データベース等の各種の情報は、このような記憶装置上に格納されて、情報処理の対象となる。なお、CPU2000は、RAM2020の一部をキャッシュメモリに保持し、キャッシュメモリ上で読み書きを行うこともできる。このような形態においても、キャッシュメモリはRAM2020の機能の一部を担うから、本実施形態においては、区別して示す場合を除き、キャッシュメモリもRAM2020、メモリ、および/または記憶装置に含まれるものとする。 In addition, the CPU 2000 uses the RAM 2020 to transfer all or necessary portions from among files or databases stored in the storage unit 2040, the memory card 2090, or a storage device connected via the input / output unit 2060 by DMA transfer or the like. And various processes are performed on the data on the RAM 2020. Then, CPU 2000 writes the processed data back to the storage device by DMA transfer or the like. In such processing, since the RAM 2020 can be regarded as temporarily holding the contents of the storage device, in the present embodiment, the RAM 2020 and the storage device are collectively referred to as a memory, a storage unit, or a storage device. Various types of information such as various programs, data, tables, and databases in the present embodiment are stored on such a storage device and are subjected to information processing. Note that the CPU 2000 can also store a part of the RAM 2020 in the cache memory and perform reading and writing on the cache memory. Even in such a form, the cache memory bears a part of the function of the RAM 2020. Therefore, in the present embodiment, the cache memory is also included in the RAM 2020, the memory, and / or the storage device unless otherwise indicated. To do.
 また、CPU2000は、RAM2020から読み出したデータに対して、プログラムの命令列により指定された、本実施形態中に記載した各種の演算、情報の加工、条件判断、情報の検索・置換等を含む各種の処理を行い、RAM2020へと書き戻す。例えば、CPU2000は、条件判断を行う場合においては、本実施形態において示した各種の変数が、他の変数または定数と比較して、大きい、小さい、以上、以下、等しい等の条件を満たすかどうかを判断し、条件が成立した場合(または不成立であった場合)に、異なる命令列へと分岐し、またはサブルーチンを呼び出す。 In addition, the CPU 2000 performs various operations, such as various operations, information processing, condition determination, information search / replacement, etc., described in the present embodiment, specified for the data read from the RAM 2020 by the instruction sequence of the program. Is written back to the RAM 2020. For example, when performing the condition determination, the CPU 2000 determines whether the various variables shown in the present embodiment satisfy the conditions such as large, small, above, below, equal, etc., compared to other variables or constants. When the condition is satisfied (or not satisfied), the program branches to a different instruction sequence or calls a subroutine.
 また、CPU2000は、記憶装置内のファイルまたはデータベース等に格納された情報を検索することができる。例えば、第1属性の属性値に対し第2属性の属性値がそれぞれ対応付けられた複数のエントリが記憶装置に格納されている場合において、CPU2000は、記憶装置に格納されている複数のエントリの中から第1属性の属性値が指定された条件と一致するエントリを検索し、そのエントリに格納されている第2属性の属性値を読み出すことにより、所定の条件を満たす第1属性に対応付けられた第2属性の属性値を得ることができる。 Further, the CPU 2000 can search for information stored in a file or database in the storage device. For example, in the case where a plurality of entries in which the attribute value of the second attribute is associated with the attribute value of the first attribute are stored in the storage device, the CPU 2000 displays the plurality of entries stored in the storage device. The entry that matches the condition in which the attribute value of the first attribute is specified is retrieved, and the attribute value of the second attribute that is stored in the entry is read, thereby associating with the first attribute that satisfies the predetermined condition The attribute value of the specified second attribute can be obtained.
 以上に示したプログラムまたはモジュールは、外部の記録媒体に格納されてもよい。記録媒体としては、メモリカード2090の他に、DVD、Blu-ray(登録商標)、またはCD等の光学記録媒体、MO等の光磁気記録媒体、テープ媒体、ICカード等の半導体メモリ等を用いることができる。また、専用通信ネットワークまたはインターネットに接続されたサーバシステムに設けたハードディスクまたはRAM等の記憶装置を記録媒体として使用し、ネットワークを介してプログラムをコンピュータ1900に提供してもよい。 The programs or modules shown above may be stored in an external recording medium. As the recording medium, in addition to the memory card 2090, an optical recording medium such as a DVD, Blu-ray (registered trademark) or CD, a magneto-optical recording medium such as an MO, a tape medium, a semiconductor memory such as an IC card, or the like is used. be able to. Further, a storage device such as a hard disk or a RAM provided in a server system connected to a dedicated communication network or the Internet may be used as a recording medium, and the program may be provided to the computer 1900 via the network.
 以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施の形態に、多様な変更または改良を加えることが可能であることが当業者に明らかである。その様な変更または改良を加えた形態も本発明の技術的範囲に含まれ得ることが、請求の範囲の記載から明らかである。 As mentioned above, although this invention was demonstrated using embodiment, the technical scope of this invention is not limited to the range as described in the said embodiment. It will be apparent to those skilled in the art that various modifications or improvements can be added to the above-described embodiment. It is apparent from the scope of the claims that the embodiments added with such changes or improvements can be included in the technical scope of the present invention.
 請求の範囲、明細書、および図面中において示した装置、システム、プログラム、および方法における動作、手順、ステップ、および段階等の各処理の実行順序は、特段「より前に」、「先立って」等と明示しておらず、また、前の処理の出力を後の処理で用いるのでない限り、任意の順序で実現しうることに留意すべきである。請求の範囲、明細書、および図面中の動作フローに関して、便宜上「まず、」、「次に、」等を用いて説明したとしても、この順で実施することが必須であることを意味するものではない。 The execution order of each process such as operations, procedures, steps, and stages in the apparatus, system, program, and method shown in the claims, the description, and the drawings is particularly “before” or “prior”. It should be noted that they can be implemented in any order unless the output of the previous process is used in the subsequent process. Regarding the operation flow in the claims, the description, and the drawings, even if it is described using “first”, “next”, etc. for the sake of convenience, it means that it is essential to carry out in this order. is not.
10 機器、12 表示部、20 センサ、30 アンカー位置記憶部、100 情報処理装置、110 センサ信号取得部、120 記憶部、130 移動方向変化検知部、140 移動距離算出部、150 移動方向検出部、160 アンカー位置取得部、170 決定部、200 マップマッチング装置、210 入力部、220 地図情報記憶部、230 位置決定部、1900 コンピュータ、2000 CPU、2010 ROM、2020 RAM、2030 通信インターフェイス、2040 記憶部、2050 カードスロット、2060 入出力部、2070 入出力チップ、2075 グラフィック・コントローラ、2080 表示装置、2082 ホスト・コントローラ、2084 入出力コントローラ、2090 メモリカード、2095 コネクタ 10 devices, 12 display units, 20 sensors, 30 anchor position storage units, 100 information processing devices, 110 sensor signal acquisition units, 120 storage units, 130 movement direction change detection units, 140 movement distance calculation units, 150 movement direction detection units, 160 anchor position acquisition unit, 170 determination unit, 200 map matching device, 210 input unit, 220 map information storage unit, 230 position determination unit, 1900 computer, 2000 CPU, 2010 ROM, 2020 RAM, 2030 communication interface, 2040 storage unit, 2050 card slot, 2060 input / output unit, 2070 input / output chip, 2075 graphic controller, 2080 display device, 2082, host controller, 2084 input / output controller, 2090 Memory card, 2095 connector

Claims (26)

  1.  機器に搭載されたセンサのセンサ信号を取得するセンサ信号取得部と、
     複数のアンカー位置を取得するアンカー位置取得部と、
     前記センサ信号に基づき、前記機器の移動方向の変化を検知する移動方向変化検知部と、
     前記複数のアンカー位置のうちの第1のアンカー位置と、前記第1のアンカー位置に対応する前記機器の推定位置から前記機器の移動方向の変化が検出された推定位置までの移動距離と、に基づき、前記複数のアンカー位置のうちの第2のアンカー位置を決定する決定部と、
     を備える情報処理装置。
    A sensor signal acquisition unit for acquiring a sensor signal of a sensor mounted on the device;
    An anchor position acquisition unit for acquiring a plurality of anchor positions;
    Based on the sensor signal, a movement direction change detection unit that detects a change in the movement direction of the device;
    A first anchor position of the plurality of anchor positions and a movement distance from an estimated position of the device corresponding to the first anchor position to an estimated position where a change in the movement direction of the device is detected; A determination unit for determining a second anchor position among the plurality of anchor positions;
    An information processing apparatus comprising:
  2.  前記決定部は、前記第2のアンカー位置として、前記移動方向変化検知部が前記機器の移動方向の変化を検知したときに前記機器が通過した位置を決定する請求項1に記載の情報処理装置。 The information processing apparatus according to claim 1, wherein the determination unit determines a position through which the device has passed when the movement direction change detection unit detects a change in the movement direction of the device as the second anchor position. .
  3.  前記第1のアンカー位置は、前記機器が通過したアンカー位置である請求項1または2に記載の情報処理装置。 The information processing apparatus according to claim 1 or 2, wherein the first anchor position is an anchor position through which the device has passed.
  4.  前記センサ信号に基づき、前記機器の移動方向を検出する移動方向検出部を備え、
     前記決定部は、前記第1のアンカー位置、前記機器の移動距離、および前記移動方向に基づき、前記第2のアンカー位置を決定する請求項1から3のいずれか1項に記載の情報処理装置。
    Based on the sensor signal, comprising a moving direction detector for detecting the moving direction of the device,
    The information processing apparatus according to any one of claims 1 to 3, wherein the determination unit determines the second anchor position based on the first anchor position, a movement distance of the device, and the movement direction. .
  5.  前記第1のアンカー位置を決定したときの前記機器の推定位置から、前記機器の移動方向の変化が検出された推定位置までの前記移動距離を算出する移動距離算出部を備える請求項1から4のいずれか1項に記載の情報処理装置。 5. A movement distance calculation unit that calculates the movement distance from an estimated position of the device when the first anchor position is determined to an estimated position where a change in the movement direction of the device is detected. The information processing apparatus according to any one of the above.
  6.  前記移動距離算出部は、前記機器の移動速度を取得し、当該移動速度と前記第1のアンカー位置を決定してから前記機器の移動方向の変化が検出されるまでの時間とに応じて、前記機器の移動距離を算出する請求項5に記載の情報処理装置。 The movement distance calculation unit obtains the movement speed of the device, and according to the time from the determination of the movement speed and the first anchor position until a change in the movement direction of the device is detected, The information processing apparatus according to claim 5, wherein a movement distance of the device is calculated.
  7.  前記機器の移動速度に関する情報を記憶する記憶部を更に備え、
     前記決定部は、前記機器が通過したアンカー位置間の距離に基づき、前記機器の移動速度に関する情報を更新する請求項6に記載の情報処理装置。
    A storage unit for storing information on the moving speed of the device;
    The information processing apparatus according to claim 6, wherein the determination unit updates information related to a moving speed of the device based on a distance between anchor positions through which the device has passed.
  8.  前記機器の移動速度に関する情報は、前記機器の移動速度または移動速度を推定するパラメータである請求項7に記載の情報処理装置。 The information processing apparatus according to claim 7, wherein the information related to the moving speed of the device is a moving speed of the device or a parameter for estimating the moving speed.
  9.  前記決定部は、前記移動方向変化検知部の出力に基づいて、前記機器が通過したアンカー位置間を前記機器が移動するのに要した時間を算出し、該算出した時間と前記機器が通過したアンカー位置間の距離に基づき、前記機器の移動速度に関する情報を更新する請求項7または8に記載の情報処理装置。 The determination unit calculates a time required for the device to move between anchor positions that the device has passed based on an output of the movement direction change detection unit, and the calculated time and the device have passed. The information processing apparatus according to claim 7 or 8, wherein information on a moving speed of the device is updated based on a distance between anchor positions.
  10.  前記移動距離算出部は、前記センサ信号に基づいて前記機器を保持するユーザの歩数をカウントし、前記第1のアンカー位置を決定してから前記機器の移動方向の変化が検出されるまでの間の前記ユーザの歩数と、前記ユーザの歩幅とに応じて、前記機器の移動距離を算出する請求項5に記載の情報処理装置。 The moving distance calculation unit counts the number of steps of the user holding the device based on the sensor signal, and determines from the first anchor position until a change in the moving direction of the device is detected. The information processing apparatus according to claim 5, wherein the movement distance of the device is calculated according to the number of steps of the user and the step length of the user.
  11.  前記ユーザの歩幅を記憶する記憶部を更に備え、
     前記決定部は、前記機器が通過したアンカー位置間の距離に基づき、前記ユーザの歩幅の情報を更新する請求項10に記載の情報処理装置。
    A storage unit for storing the user's stride;
    The information processing apparatus according to claim 10, wherein the determination unit updates information on a stride of the user based on a distance between anchor positions through which the device has passed.
  12.  前記決定部は、前記機器が通過したアンカー位置間を前記ユーザが移動するのに要した歩数と、前記機器が通過したアンカー位置間の距離に基づき、前記ユーザの歩幅の情報を更新する請求項11に記載の情報処理装置。 The determination unit updates the step information of the user based on the number of steps required for the user to move between anchor positions through which the device has passed and the distance between anchor positions through which the device has passed. 11. The information processing apparatus according to 11.
  13.  前記センサ信号取得部は、加速度センサ、角速度センサ、および地磁気センサのうちの少なくとも1つのセンサからセンサ信号を取得する請求項1から12のいずれか一項に記載の情報処理装置。 The information processing apparatus according to any one of claims 1 to 12, wherein the sensor signal acquisition unit acquires a sensor signal from at least one of an acceleration sensor, an angular velocity sensor, and a geomagnetic sensor.
  14.  前記アンカー位置取得部は、複数のアンカー位置を記憶するアンカー位置記憶部に接続される請求項1から13のいずれか一項に記載の情報処理装置。 The information processing apparatus according to any one of claims 1 to 13, wherein the anchor position acquisition unit is connected to an anchor position storage unit that stores a plurality of anchor positions.
  15.  前記第1のアンカー位置の情報は、前記決定部が決定した最新のアンカー位置の情報である請求項1から14のいずれか一項に記載の情報処理装置。 The information processing apparatus according to any one of claims 1 to 14, wherein the information on the first anchor position is information on a latest anchor position determined by the determination unit.
  16.  機器に搭載された気圧センサを含むセンサのセンサ信号を取得するセンサ信号取得部と、
     複数のアンカー位置を取得するアンカー位置取得部と、
     前記複数のアンカー位置のうちの第1のアンカー位置と、前記第1のアンカー位置に対応する前記機器の推定位置から前記機器の周囲の気圧変化が検出された推定位置までの移動距離と、に基づき、前記複数のアンカー位置のうちの第2のアンカー位置を決定する決定部と、
     を備える情報処理装置。
    A sensor signal acquisition unit for acquiring a sensor signal of a sensor including an atmospheric pressure sensor mounted on the device;
    An anchor position acquisition unit for acquiring a plurality of anchor positions;
    A first anchor position of the plurality of anchor positions, and a movement distance from an estimated position of the device corresponding to the first anchor position to an estimated position where a change in atmospheric pressure around the device is detected. A determination unit for determining a second anchor position among the plurality of anchor positions;
    An information processing apparatus comprising:
  17.  前記気圧センサは、前記機器を保持するユーザがエレベータ、エスカレータ、階段、およびスロープのいずれかの昇降手段によって昇降したことに応じて当該機器の周囲の気圧変化を検出する請求項16に記載の情報処理装置。 The information according to claim 16, wherein the atmospheric pressure sensor detects a change in atmospheric pressure around the device in response to a user holding the device being lifted or lowered by any one of an elevator, an escalator, a staircase, and a slope. Processing equipment.
  18.  前記センサ信号に基づき、前記機器の移動方向を検出する移動方向検出部を備え、
     前記決定部は、前記第1のアンカー位置、前記機器の移動距離、および前記移動方向に基づき、前記第2のアンカー位置を決定する請求項16または17に記載の情報処理装置。
    Based on the sensor signal, comprising a moving direction detector for detecting the moving direction of the device,
    The information processing apparatus according to claim 16 or 17, wherein the determination unit determines the second anchor position based on the first anchor position, a movement distance of the device, and the movement direction.
  19.  前記決定部は、異なるアンカー位置の間の距離が、予め定められた基準距離よりも短い場合、前記機器の移動方向を優先して前記第2のアンカー位置を決定する請求項4または18に記載の情報処理装置。 19. The determination unit according to claim 4 or 18, wherein when the distance between different anchor positions is shorter than a predetermined reference distance, the second anchor position is determined with priority given to a moving direction of the device. Information processing device.
  20.  前記決定部は、前記機器の移動方向の変化を検出しているにもかかわらず、前記第2のアンカー位置を予め定められた時間以上決定できない場合、前記第1のアンカー位置および前記機器の移動方向に基づき、前記第2のアンカー位置を決定する請求項4または18に記載の情報処理装置。 When the determination unit cannot determine the second anchor position for a predetermined time or more despite detecting a change in the movement direction of the device, the determination unit moves the first anchor position and the device. The information processing apparatus according to claim 4, wherein the second anchor position is determined based on a direction.
  21.  前記決定部は、予め定められた領域内のアンカー位置のうち、前記機器の推定位置に対応するアンカー位置を決定する場合、前記第1のアンカー位置、前記機器の移動距離、および予め定められた時間以上の期間における前記機器の移動方向に基づき、前記第2のアンカー位置を決定する請求項4または18に記載の情報処理装置。 When determining the anchor position corresponding to the estimated position of the device among the anchor positions in a predetermined region, the determining unit determines the first anchor position, the movement distance of the device, and the predetermined position. The information processing apparatus according to claim 4 or 18, wherein the second anchor position is determined based on a moving direction of the device over a period of time or more.
  22.  当該機器の位置を取得する機器位置取得部を更に備え、
     前記決定部は、前記機器位置取得部が当該機器の位置を取得したことに応じて、当該機器の位置に最も近いアンカー位置を前記第2のアンカー位置として優先的に決定する請求項1から21のいずれか1項に記載の情報処理装置。
    It further comprises a device position acquisition unit that acquires the position of the device,
    The determination unit preferentially determines an anchor position closest to the position of the device as the second anchor position in response to the device position acquisition unit acquiring the position of the device. The information processing apparatus according to any one of the above.
  23.  前記アンカー位置はコーナーの位置である請求項1から22のいずれか1項に記載の情報処理装置。 The information processing apparatus according to any one of claims 1 to 22, wherein the anchor position is a corner position.
  24.  請求項1から23のいずれか一項に記載の情報処理装置と、
     複数のアンカー位置を含む地図情報を記憶する地図情報記憶部と、
     前記情報処理装置から出力される前記機器の推定位置に対応するアンカー位置に応じて、前記機器を保持するユーザの地図上の位置を決定する位置決定部と
     を備えるマップマッチング装置。
    The information processing apparatus according to any one of claims 1 to 23;
    A map information storage unit for storing map information including a plurality of anchor positions;
    A map matching device comprising: a position determination unit that determines a position on a map of a user holding the device according to an anchor position corresponding to the estimated position of the device output from the information processing device.
  25.  機器に搭載されたセンサのセンサ信号を取得することと、
     複数のアンカー位置を取得することと、
     前記センサ信号に基づき、前記機器の移動方向の変化を検知することと、
     前記複数のアンカー位置のうちの第1のアンカー位置と、前記第1のアンカー位置に対応する前記機器の推定位置から前記機器の移動方向の変化が検出された推定位置までの移動距離と、に基づき、前記複数のアンカー位置のうちの第2のアンカー位置を決定することと、
     を備える情報処理方法。
    Obtaining a sensor signal of a sensor mounted on the device;
    Obtaining multiple anchor positions;
    Detecting a change in the direction of movement of the device based on the sensor signal;
    A first anchor position of the plurality of anchor positions and a movement distance from an estimated position of the device corresponding to the first anchor position to an estimated position where a change in the movement direction of the device is detected; Based on, determining a second anchor position of the plurality of anchor positions;
    An information processing method comprising:
  26.  コンピュータを、請求項1から23のいずれか一項に記載の情報処理装置として機能させるプログラム。 A program that causes a computer to function as the information processing apparatus according to any one of claims 1 to 23.
PCT/JP2015/050781 2014-01-15 2015-01-14 Information processing device, map matching device, information processing method, and program WO2015108066A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014004812A JP2017044470A (en) 2014-01-15 2014-01-15 Information processing device, map matching device, information processing method, and program
JP2014-004812 2014-01-15

Publications (1)

Publication Number Publication Date
WO2015108066A1 true WO2015108066A1 (en) 2015-07-23

Family

ID=53542954

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/050781 WO2015108066A1 (en) 2014-01-15 2015-01-14 Information processing device, map matching device, information processing method, and program

Country Status (2)

Country Link
JP (1) JP2017044470A (en)
WO (1) WO2015108066A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018028480A (en) * 2016-08-18 2018-02-22 株式会社ゼンリンデータコム Information processing apparatus, information processing method, and program
WO2018116476A1 (en) * 2016-12-22 2018-06-28 富士通株式会社 Information processing device, information processing method, and information processing program
CN110095126A (en) * 2019-05-07 2019-08-06 北京百度网讯科技有限公司 Map-matching method, device, equipment and medium

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6398379B2 (en) * 2014-06-30 2018-10-03 カシオ計算機株式会社 Information processing apparatus, information processing method, and program
WO2022190662A1 (en) * 2021-03-11 2022-09-15 ソニーグループ株式会社 Information processing device, information processing method, and program

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6311813A (en) * 1986-07-02 1988-01-19 Pioneer Electronic Corp Recognition of present location for vehicle
JPH02140615A (en) * 1988-11-21 1990-05-30 Nippon Denso Co Ltd Display device for traveling position of vehicle
JP2009150724A (en) * 2007-12-19 2009-07-09 Sumitomo Electric Ind Ltd Direction determiner, localization device, computer program, and direction determining method
JP2012117975A (en) * 2010-12-02 2012-06-21 Ntt Docomo Inc Mobile terminal, system and method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6311813A (en) * 1986-07-02 1988-01-19 Pioneer Electronic Corp Recognition of present location for vehicle
JPH02140615A (en) * 1988-11-21 1990-05-30 Nippon Denso Co Ltd Display device for traveling position of vehicle
JP2009150724A (en) * 2007-12-19 2009-07-09 Sumitomo Electric Ind Ltd Direction determiner, localization device, computer program, and direction determining method
JP2012117975A (en) * 2010-12-02 2012-06-21 Ntt Docomo Inc Mobile terminal, system and method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018028480A (en) * 2016-08-18 2018-02-22 株式会社ゼンリンデータコム Information processing apparatus, information processing method, and program
WO2018116476A1 (en) * 2016-12-22 2018-06-28 富士通株式会社 Information processing device, information processing method, and information processing program
JPWO2018116476A1 (en) * 2016-12-22 2019-07-18 富士通株式会社 INFORMATION PROCESSING APPARATUS, INFORMATION PROCESSING METHOD, AND INFORMATION PROCESSING PROGRAM
CN110095126A (en) * 2019-05-07 2019-08-06 北京百度网讯科技有限公司 Map-matching method, device, equipment and medium
CN110095126B (en) * 2019-05-07 2021-03-12 北京百度网讯科技有限公司 Map matching method, apparatus, device and medium

Also Published As

Publication number Publication date
JP2017044470A (en) 2017-03-02

Similar Documents

Publication Publication Date Title
JP6783751B2 (en) Methods and equipment to use portable navigation with improved quality of map information assistance
WO2015108066A1 (en) Information processing device, map matching device, information processing method, and program
JP2014224715A (en) Travelling direction estimation device, method and program
US20190170521A1 (en) Method and system for fingerprinting survey
WO2017112414A1 (en) Method and system for using offline map information aided enhanced portable navigation
US9632107B2 (en) Movement amount estimation system, movement amount estimation method and mobile terminal
US10247558B2 (en) Travel direction determination apparatus, map matching apparatus, travel direction determination method, and computer readable medium
CN113819910A (en) Method and device for identifying overpass zone in vehicle navigation
US10197402B2 (en) Travel direction information output apparatus, map matching apparatus, travel direction information output method, and computer readable medium
JP7197973B2 (en) Mobile terminal, current location correction system and program
KR20200124622A (en) Indoor positioning paths mapping tool
JP6494552B2 (en) Position estimating apparatus, program and method capable of correcting position based on transition between floors
JP6329915B2 (en) Positioning system
CN114299192A (en) Method, device, equipment and medium for positioning and mapping
CN112405522A (en) Cross-floor map switching method and device, robot and storage medium
JP6653151B2 (en) Heading direction estimation system
JP6796985B2 (en) Information processing equipment, information processing methods and programs
CN113375667B (en) Navigation method, device, equipment and storage medium
JP5738102B2 (en) Mobile terminal and method
TWI620704B (en) Processing method of elevator information and processing system thereof
JP6480238B2 (en) Information processing apparatus, information processing method, and program
JP6906287B2 (en) Information processing equipment, information processing methods and programs
CN115808982A (en) Method and device for acquiring cursor position and storage medium
JP6553915B2 (en) INFORMATION PROCESSING APPARATUS, INFORMATION PROCESSING METHOD, AND PROGRAM
JP2011209167A (en) Navigation system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15737775

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 15737775

Country of ref document: EP

Kind code of ref document: A1