WO2015107812A1 - Aln substrate - Google Patents

Aln substrate Download PDF

Info

Publication number
WO2015107812A1
WO2015107812A1 PCT/JP2014/082845 JP2014082845W WO2015107812A1 WO 2015107812 A1 WO2015107812 A1 WO 2015107812A1 JP 2014082845 W JP2014082845 W JP 2014082845W WO 2015107812 A1 WO2015107812 A1 WO 2015107812A1
Authority
WO
WIPO (PCT)
Prior art keywords
aln
substrate
less
aln substrate
group
Prior art date
Application number
PCT/JP2014/082845
Other languages
French (fr)
Japanese (ja)
Inventor
広瀬 義幸
由佳 近藤
伊藤 靖
石津 定
上西 昇
山本 剛久
Original Assignee
株式会社アライドマテリアル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アライドマテリアル filed Critical 株式会社アライドマテリアル
Priority to JP2015557738A priority Critical patent/JP6412886B2/en
Publication of WO2015107812A1 publication Critical patent/WO2015107812A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/581Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on aluminium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6021Extrusion moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/963Surface properties, e.g. surface roughness

Definitions

  • the present invention relates to an AlN substrate.
  • a heat spreader made of a material having high thermal conductivity is used to remove heat from a semiconductor element that generates heat during operation, such as a semiconductor light emitting element.
  • a base substrate that forms a bonded substrate by bonding to a semiconductor substrate can be cited (see Patent Document 1).
  • the base substrate is required not only to have high thermal conductivity as described above, but also to have a small difference in thermal expansion coefficient from the semiconductor substrate in order to prevent warpage or peeling of the bonded substrate. It is done.
  • an AlN substrate made of a sintered body of AlN is preferably used as the base substrate in order to satisfy these requirements.
  • Patent Document 3 a hot isostatic pressing process (HIP (Hot Isostatic Pressing) process) is performed after sintering to reduce the size of pores existing in the AlN substrate and reduce the number of pores. It has been proposed to limit the size of the opening appearing on the joint surface after polishing to a predetermined value or less.
  • HIP Hot Isostatic Pressing
  • a sintered body of AlN has a porous structure in which a large number of crystal grains are sintered with crystal orientations randomly oriented, and the plane orientation of individual crystal grains exposed on the substrate surface is also random. In this case, it is considered that the crystal grains that are easily cut by polishing and the crystal grains that are hard to be cut are adjacent to each other.
  • a step is generated based on a difference in polishing amount between adjacent crystal grains.
  • An object of the present invention is to provide an AlN substrate that is unlikely to generate a gap due to a step when bonded to a semiconductor substrate.
  • the present invention includes a 2A group element of 0.009% by mass or more and 0.28% by mass or less in terms of oxide, and a 3A group element of 0.02% by mass or more and 4.5% by mass or less in terms of oxide. It is made of a sintered body of AlN and has a joint surface with another member, and the joint surface is an AlN substrate having a PV value indicating surface accuracy of 300 nm or less.
  • the AlN substrate of the present invention comprises a group 2A element of 0.009% by mass to 0.28% by mass in terms of oxide, and a group 3A of 0.02% by mass to 4.5% by mass in terms of oxide. It is made of a sintered body of AlN containing an element, and has a joint surface with another member, and the joint surface has a PV value indicating surface accuracy of 300 nm or less.
  • the step generated on the joint surface can be made as small as possible. Therefore, a desired heat transfer efficiency can be achieved by eliminating a gap due to a step at the time of bonding to the semiconductor substrate, and the reliability of the semiconductor element can be improved.
  • the PV value of the bonding surface is 100 nm or less even in the above range. Preferably there is.
  • the PV value of the joint surface is preferably 10 nm or more. It is substantially difficult to make the PV value of the joint surface smaller than this range also by the manufacturing method described later.
  • the PV value of the joint surface is the maximum value of the result of measurement in a field of view of 260 ⁇ m ⁇ 190 ⁇ m using a scanning interferometer using white light at any five locations on the joint surface. Let's represent.
  • the step of the joining surface has also occurred in the past in the sintered body of AlN, but there is no particular problem in applications other than the base substrate for bonded substrates, for example, and the smoothness of the surface is, for example, a roughness curve It was only prescribed by arithmetic mean roughness Ra (Japanese Industrial Standard JIS B0601: 2001).
  • the step is not particularly taken into consideration, and the smoothness of the joint surface is defined by, for example, the arithmetic average roughness Ra of the roughness curve as described in Patent Document 3. It was only.
  • the state of the step between adjacent crystal grains is more accurately grasped from the interference pattern in the planar visual field as described above, by the PV value obtained irrespective of the step direction or the like.
  • the level difference is small, it is possible to obtain an AlN substrate that does not generate a gap when bonded to the semiconductor substrate.
  • the AlN substrate of the present invention can be suitably used for constituting the bonded substrate, and can also be used as an insulating substrate for directly bonding a semiconductor element or the like to the bonding surface.
  • the AlN substrate of the present invention has high thermal conductivity and excellent heat transfer efficiency with other members on the joint surface, so that heat from the semiconductor element is efficiently transferred to the AlN substrate. Further, it can be removed as quickly as possible through a heat radiating member connected to the AlN substrate, and it is possible to reliably prevent malfunction or damage of the semiconductor element due to heat and improve its reliability.
  • the sintered body that is the basis of the AlN substrate of the present invention is, for example, a powder of AlN, a 2A group element oxide, a 3A group oxide oxide, and other sintering aid component powders after sintering.
  • the proportion of the group element is 0.009% by mass or more and 0.28% by mass or less in terms of oxide, and the proportion of the 3A group element is 0.02% by mass or more and 4.5% by mass or less in terms of oxide. It is formed using a blended sintered material.
  • the precursor is sintered to form a sintered body.
  • HIP treatment may be performed to reduce the size of the pores contained therein and reduce the number of pores as a sintered body.
  • the group 2A element reacts with oxides on the surface of the AlN powder during sintering to promote the formation of a liquid phase together with other sintering aid components contained in the sintered material, and the group 3A element is It works to moderately adjust the viscosity of the generated liquid phase.
  • the proportion of AlN exceeds this range because the proportion of sintering aid components such as 2A group elements and 3A group elements in the sintered material is small.
  • the bonding strength between the crystal grains of AlN may exceed 300 nm.
  • the ratio of each of the above components can be determined from the result of analyzing the mirror-polished bonded surface of the AlN substrate by glow discharge mass spectrometry (GDMS).
  • GDMS glow discharge mass spectrometry
  • the bonding surface of the AlN substrate is polished using a Knoop hardness HK: 4000 kgf / mm 2 or more and an average particle size: 0.03 ⁇ m or more and 2 ⁇ m or less. It is manufactured through a step of mirror polishing under conditions of 50 g / cm 2 or more and 300 g / cm 2 or less.
  • polishing is performed when the Knoop hardness HK (Japanese Industrial Standard JIS Z2251: 2009) of the abrasive grains is less than 4000 kgf / mm 2 , the average particle diameter is less than 0.03 ⁇ m, or the polishing load is less than 50 g / cm 2. The capacity becomes insufficient, and the steps of crystal grains cannot be removed sufficiently.
  • Knoop hardness HK Japanese Industrial Standard JIS Z2251: 2009
  • the polishing ability is too strong and the surface roughness of the joint surface becomes rough.
  • the Knoop hardness HK of the abrasive grains is preferably 6000 kgf / mm 2 or more, and the average particle diameter is preferably 1 ⁇ m or less.
  • the polishing load is preferably 100 g / cm 2 or more, more preferably 200 g / cm 2 or less.
  • substrate of this invention is not limited to this, For example, it can manufacture through the following process using the following sintered material.
  • the average particle diameter of the AlN powder that is the basis of the sintered body is preferably 0.1 ⁇ m or more, and preferably 3.0 ⁇ m or less.
  • the average particle size of the 2A group element compound powder is preferably 0.2 ⁇ m or more, more preferably 5.0 ⁇ m or less.
  • the average particle size of the 3A group element compound powder is preferably 0.2 ⁇ m or more, more preferably 4.0 ⁇ m or less.
  • the average particle size of the powder of the Si compound is preferably 0.5 ⁇ m or more, and preferably 6.0 ⁇ m or less.
  • Each component other than AlN can be blended in the state of a compound such as oxide, nitride, carbide, carbonate, composite oxide or the like.
  • the blending amount may be adjusted so that the ratio of the 2A group element and the like contained in the compound is in the range described above in terms of oxide.
  • the binder either one using an organic solvent as a dispersion medium or one using water as a dispersion medium can be used.
  • examples of the binder using an organic solvent as a dispersion medium include one or more binders such as acrylic, polyvinyl butyral, and cellulose.
  • binders such as acrylic, polyvinyl butyral, and cellulose.
  • organic solvent 1 type, or 2 or more types, such as various alcohol, is mentioned, for example.
  • examples of the binder using water as a dispersion medium include one or more binders such as polyvinyl alcohol, acrylic, urethane, and vinyl acetate.
  • a dispersant or a plasticizer may be added to the slurry in order to improve the stability of the slurry, the dispersibility of the sintered material, or the flexibility of the green sheet.
  • any of a dry mixing method and a wet mixing method using a general mixing device such as a ball mill, an attritor, and a planetary mill can be employed.
  • the slurry mixed by the wet mixing method may be used to screen coarse particles using a mesh having a hole diameter of about 1 ⁇ m, for example.
  • the drying temperature is preferably 0 ° C. or higher, particularly 15 ° C. or higher, and is preferably 80 ° C. or lower, particularly 50 ° C. or lower.
  • drying temperature is less than this range, the volatilization rate of the dispersion medium from the green sheet is too slow and it takes a long time to dry, so the productivity of the AlN substrate may be reduced.
  • the drying temperature exceeds this range, the volatilization rate of the dispersion medium from the green sheet is too high, and the degree of drying tends to be uneven, and accordingly, the preform is wrinkled and warped. May be easier.
  • drying time is preferably 1 hour or more, more preferably 10 hours or more, and particularly preferably 20 hours or more.
  • the binder removal treatment may be performed in an oxidizing atmosphere such as the air in order to promote thermal decomposition of the binder, or may be performed in an inert atmosphere such as a nitrogen atmosphere.
  • the temperature is preferably 400 ° C. or higher, and preferably 600 ° C. or lower.
  • the temperature of the binder removal treatment is less than this range, the binder cannot be removed sufficiently, and in the next sintering step, sintering is hindered by the binder remaining in the precursor, or the binder is gasified. There is a risk of causing cracks in the sintered body.
  • the surface oxidation may inhibit the sintering.
  • the temperature is preferably 500 ° C. or higher, and preferably 900 ° C. or lower.
  • the temperature of the binder removal treatment is less than this range, the binder cannot be removed sufficiently, and in the next sintering step, sintering is hindered by the binder remaining in the precursor, or the binder is gasified. There is a risk of causing cracks in the sintered body.
  • the binder removal time is preferably 1 hour or more, and preferably 10 hours or less, when the binder removal treatment is performed in any atmosphere.
  • the binder removal time is less than this range, the binder cannot be sufficiently removed, and in the subsequent sintering step, sintering is hindered by the binder remaining in the precursor, or the binder is gasified. There is a risk of causing cracks in the sintered body.
  • the above precursor is sintered in an inert atmosphere such as a nitrogen atmosphere to form a sintered body.
  • the sintering temperature is preferably 1500 ° C. or higher, particularly preferably 1600 ° C. or higher, and is preferably 1900 ° C. or lower, particularly preferably 1750 ° C. or lower.
  • the sintering temperature is less than this range, the sintering is insufficient, the bonding strength between the AlN crystal grains is reduced, and it is easy to cause degranulation, etc.
  • the PV value of the bonding surface of the AlN substrate is 300 nm even after mirror polishing. May be exceeded.
  • the sintering time is less than this range, the time required for the rearrangement and bonding of crystal grains in the sintering process is short, so the density variation in the sintered body increases, and the thermal conductivity of the AlN substrate increases. There is a risk that it may decrease or the overall strength may decrease.
  • Example 1 Preparation of sintered material
  • powders of the following components were prepared.
  • AlN Average particle size 0.9 ⁇ m CaCO 3 : average particle size 6 ⁇ m Yb 2 O 3 : Average particle size 1.2 ⁇ m Nd 2 O 3 : Average particle size 3.5 ⁇ m Al 2 O 3 : Average particle size 0.3 ⁇ m SiO 2 : Average particle size 3.8 ⁇ m
  • the ratio of the powder of each component above after sintering is AlN: 97.82% by mass Ca as a 2A group element (as oxide): 0.09% by mass Yb (as oxide) as Group 3A element: 0.99% by mass Nd (as oxide) as group 3A element: 0.9% by mass Si (oxide conversion): 0.2% by mass
  • a slurry was prepared by blending a dispersion medium and a binder.
  • this slurry was formed into a sheet having a length of 260 mm ⁇ width of 260 mm ⁇ thickness of 1.2 mm by an extrusion method to produce a green sheet.
  • the temperature was 24 ⁇ 4 ° C.
  • Time A preform was produced by natural drying under conditions of 24 hours.
  • Binder removal process The prepared preform is placed on a boron nitride jig, and is subjected to binder removal treatment in the atmosphere under conditions of temperature: 500 ° C. and time: 5 hours, and is a precursor before sintering consisting only of a sintered material. Was made.
  • the polishing load in the mirror polishing step is 30 g / cm 2 (Comparative Example 1), 50 g / cm 2 (Example 2), 100 g / cm 2 (Example 3), 200 g / cm 2 (Example 4), 300 g / An AlN substrate was produced in the same manner as in Example 1 except that cm 2 (Example 5) and 400 g / cm 2 (Comparative Example 2) were used.
  • Example 8 An AlN substrate in the same manner as in Example 1 except that diamond polishing grains having a Knoop hardness of HK: 7000 kgf / mm 2 and an average particle diameter of 0.01 ⁇ m were used in the mirror polishing step, and the polishing load was 150 g / cm 2. Manufactured.
  • the Knoop hardness HK of the abrasive grains is preferably 6000 kgf / mm 2 or more, and the average particle diameter is 1 ⁇ m. It has been found that the following is preferable, the polishing load is preferably 100 g / cm 2 or more, and preferably 200 g / cm 2 or less.
  • Example 17 The temperature in the sintering process was 1500 ° C. (Example 17), 1600 ° C. (Example 18), 1750 ° C. (Example 19), 1850 ° C. (Example 20), and 1900 ° C. (Example 21).
  • An AlN substrate was manufactured in the same manner as in Example 1 except for the above.
  • Example 22 An AlN substrate was manufactured in the same manner as in Example 1 except that the time in the sintering step was 1 hour (Example 22) and 10 hours (Example 23).
  • the temperature of the sintering process is preferably 1500 ° C. or more, particularly preferably 1600 ° C. or more in order to make the PV value of the bonding surface of the AlN substrate 300 nm or less. It was found that the temperature is preferably 1900 ° C. or lower, particularly 1750 ° C. or lower, the time is preferably 1 hour or longer, and preferably 10 hours or shorter.
  • Y 2 O 3 powder having an average particle size of 0.9 ⁇ m was used as the Y sintering material.
  • Example 31 A Ti film having a thickness of 0.1 ⁇ m, a Pt film having a thickness of 0.2 ⁇ m, and an Au film having a thickness of 1.0 ⁇ m are sequentially laminated on the bonding surface of the AlN substrate manufactured in Example 1 by a sputtering method, and further a thickness of 5 ⁇ m is formed thereon.
  • a disc-shaped sapphire substrate having a diameter of 200 ⁇ 0.7 mmt was prepared, and the surface to be bonded was cleaned with 100 W RF plasma while introducing 60 sccm of N 2 gas in the same manner as described above.
  • Example 33 The AlN substrate and the sapphire substrate were bonded in the same manner as in Example 32 except that the AlN substrate manufactured in Example 6 was used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Products (AREA)
  • Structure Of Printed Boards (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

[Problem] To provide an AlN substrate in which voids do not tend to generate due to steps when bonding with a semiconductor substrate. [Solution] A semiconductor substrate which is composed of an AlN sintered body including 0.009 to 0.28 mass% of a Group 2A element as oxide and 0.02 to 4.5 mass% of a Group 3A element as oxide, and which has a PV value of 300 nm or less, the PV value being a profile irregularity of a bonding surface with another member. The semiconductor substrate can be produced through a step of mirror polishing the bonding surface of the sintered body using polishing grains having a Knoop hardness HK of 4000 kgf/mm2 or more and an average particle size of 0.03 to 2 μm and under a condition of a polishing load of 50 to 300 g/cm2.

Description

AlN基板AlN substrate
 本発明はAlN基板に関するものである。 The present invention relates to an AlN substrate.
 例えば半導体発光素子等の、動作時に発熱を伴う半導体素子からの熱を除去するために、高い熱伝導性を有する材料からなるヒートスプレッダが用いられる。 For example, a heat spreader made of a material having high thermal conductivity is used to remove heat from a semiconductor element that generates heat during operation, such as a semiconductor light emitting element.
 ヒートスプレッダとしては、例えば半導体基板と貼り合わせて貼り合わせ基板を構成する下地基板等が挙げられる(特許文献1等参照)。 As the heat spreader, for example, a base substrate that forms a bonded substrate by bonding to a semiconductor substrate can be cited (see Patent Document 1).
 かかる貼り合わせ基板においては、半導体基板側の露出した表面に単層または複層の半導体層をエピタキシャル成長させることによって半導体素子が形成される。 In such a bonded substrate, a semiconductor element is formed by epitaxially growing a single layer or multiple layers of semiconductor layers on the exposed surface of the semiconductor substrate.
 下地基板には、上記のように高い熱伝導性を有することが求められるだけでなく、貼り合わせ基板の反りや剥離等を防止するために半導体基板との熱膨張係数の差が小さいことも求められる。 The base substrate is required not only to have high thermal conductivity as described above, but also to have a small difference in thermal expansion coefficient from the semiconductor substrate in order to prevent warpage or peeling of the bonded substrate. It is done.
 例えば半導体基板としてGaN等からなるものを用いる場合、下地基板としては、これらの要求を満足するためにAlN(窒化アルミニウム)の焼結体からなるAlN基板が好適に用いられる。 For example, when a semiconductor substrate made of GaN or the like is used, an AlN substrate made of a sintered body of AlN (aluminum nitride) is preferably used as the base substrate in order to satisfy these requirements.
 しかし、特許文献2に記載されているようにAlNの焼結体には多数の欠陥(気孔)が内在している。 However, as described in Patent Document 2, a large number of defects (pores) are inherent in the sintered body of AlN.
 そのため上記焼結体からなるAlN基板の、半導体基板との間での熱伝達の効率を向上するべく、当該AlN基板の半導体基板との接合面を鏡面研磨等すると、内在していた気孔が熱伝達を妨げるボイドとして接合面において開口されて所望の熱伝達効率が得られない場合がある。 Therefore, in order to improve the efficiency of heat transfer between the sintered body of the AlN substrate and the semiconductor substrate, when the bonding surface of the AlN substrate to the semiconductor substrate is mirror-polished, the inherent pores are heated. There is a case where a desired heat transfer efficiency cannot be obtained because the void is hindered from being opened at the joint surface.
 そのため従来のAlN基板を下地基板として含む貼り合わせ基板では、半導体基板上に形成される半導体素子からの熱をAlN基板へ効率よく伝達して除去できず、かかる熱によって半導体素子が誤動作したり破損したりしやすくなって、当該半導体素子の信頼性が低下するという問題がある。 Therefore, in a bonded substrate including a conventional AlN substrate as a base substrate, heat from a semiconductor element formed on the semiconductor substrate cannot be efficiently transferred to the AlN substrate and removed, and the semiconductor element malfunctions or is damaged by the heat. There is a problem that the reliability of the semiconductor element is lowered.
 そこで特許文献3では、焼結後に熱間静水圧加圧処理〔HIP(Hot Isostatic Pressing)処理〕をしてAlN基板に内在する気孔のサイズを小径化するとともに気孔の数を減じることで、鏡面研磨後に接合面に現れる開口のサイズを所定値以下に制限することが提案されている。 Therefore, in Patent Document 3, a hot isostatic pressing process (HIP (Hot Isostatic Pressing) process) is performed after sintering to reduce the size of pores existing in the AlN substrate and reduce the number of pores. It has been proposed to limit the size of the opening appearing on the joint surface after polishing to a predetermined value or less.
 ところが、鏡面研磨後に接合面に現れる開口のサイズを上記特許文献3に記載の手法によって所定値以下に限定したとしても、接合面には鏡面研磨の工程で段差を生じることがある。 However, even if the size of the opening that appears on the joint surface after mirror polishing is limited to a predetermined value or less by the method described in Patent Document 3, a step may be formed on the joint surface in the mirror polishing process.
 これはAlNの焼結体が、結晶方位をランダムに向けた状態で多数の結晶粒を焼結させてなる多孔質構造を有し、基板表面に露出する個々の結晶粒の面方位もランダムであって、研磨によって削られやすい結晶粒と削られにくい結晶粒とが隣接したりすることが原因と考えられる。 This is because a sintered body of AlN has a porous structure in which a large number of crystal grains are sintered with crystal orientations randomly oriented, and the plane orientation of individual crystal grains exposed on the substrate surface is also random. In this case, it is considered that the crystal grains that are easily cut by polishing and the crystal grains that are hard to be cut are adjacent to each other.
 すなわち、隣接する結晶粒間で研磨量の差に基づいて段差を生じるのである。 That is, a step is generated based on a difference in polishing amount between adjacent crystal grains.
 そして接合面に段差ができると、当該段差に基づいて半導体基板との間に熱伝導を妨げる空隙を生じて所望の熱伝達効率が得られない部分が発生し、半導体素子の信頼性の低下を招く場合がある。 If a step is formed on the bonding surface, a gap that prevents heat conduction is generated between the semiconductor substrate and the semiconductor substrate based on the step, and a portion where the desired heat transfer efficiency cannot be obtained occurs, thereby reducing the reliability of the semiconductor element. May invite.
特開2008-300562号公報JP 2008-300562 A 特開2002-293637号公報JP 2002-293637 A 特許第5189712号公報Japanese Patent No. 5189712
 本発明の目的は、半導体基板との接合時に段差による空隙を生じにくいAlN基板を提供することにある。 An object of the present invention is to provide an AlN substrate that is unlikely to generate a gap due to a step when bonded to a semiconductor substrate.
 本発明は、酸化物換算で0.009質量%以上、0.28質量%以下の2A族元素、および酸化物換算で0.02質量%以上、4.5質量%以下の3A族元素を含むAlNの焼結体からなり、他部材との接合面を備え、前記接合面は、面精度を示すPV値が300nm以下であるAlN基板である。 The present invention includes a 2A group element of 0.009% by mass or more and 0.28% by mass or less in terms of oxide, and a 3A group element of 0.02% by mass or more and 4.5% by mass or less in terms of oxide. It is made of a sintered body of AlN and has a joint surface with another member, and the joint surface is an AlN substrate having a PV value indicating surface accuracy of 300 nm or less.
 本発明によれば、半導体基板との接合時に段差による空隙を生じにくいAlN基板を提供できる。 According to the present invention, it is possible to provide an AlN substrate that is unlikely to generate a gap due to a step when bonded to a semiconductor substrate.
 《AlN基板》
 本発明のAlN基板は、酸化物換算で0.009質量%以上、0.28質量%以下の2A族元素、および酸化物換算で0.02質量%以上、4.5質量%以下の3A族元素を含むAlNの焼結体からなり、他部材との接合面を備え、前記接合面は、面精度を示すPV値が300nm以下であることを特徴とする。
<AlN substrate>
The AlN substrate of the present invention comprises a group 2A element of 0.009% by mass to 0.28% by mass in terms of oxide, and a group 3A of 0.02% by mass to 4.5% by mass in terms of oxide. It is made of a sintered body of AlN containing an element, and has a joint surface with another member, and the joint surface has a PV value indicating surface accuracy of 300 nm or less.
 本発明によれば、面精度を示す接合面のPV(Peak to Valley)値を上記の範囲に限定することで当該接合面に生じる段差をできるだけ小さくできる。そのため、半導体基板との接合時に段差による空隙をなくして所望の熱伝達効率を達成でき、半導体素子の信頼性を向上できる。 According to the present invention, by limiting the PV (Peak-to-Valley) value of the joint surface showing the surface accuracy to the above range, the step generated on the joint surface can be made as small as possible. Therefore, a desired heat transfer efficiency can be achieved by eliminating a gap due to a step at the time of bonding to the semiconductor substrate, and the reliability of the semiconductor element can be improved.
 なおかかる効果をより一層向上して、半導体素子を、例えば車載用等の高い信頼性が要求される用途に使用できるようにするためには、接合面のPV値は上記の範囲でも100nm以下であるのが好ましい。 In addition, in order to further improve such an effect and allow the semiconductor element to be used for an application requiring high reliability such as in-vehicle use, the PV value of the bonding surface is 100 nm or less even in the above range. Preferably there is.
 また接合面のPV値は10nm以上であるのが好ましい。後述する製造方法等によっても、この範囲より接合面のPV値を小さくするのは実質的に困難である。 Also, the PV value of the joint surface is preferably 10 nm or more. It is substantially difficult to make the PV value of the joint surface smaller than this range also by the manufacturing method described later.
 なお接合面のPV値を、本発明では当該接合面上の任意の5か所において、白色光を用いた走査型干渉計を用いて260μm×190μmの視野内で測定した結果の最大値でもって表すこととする。 In the present invention, the PV value of the joint surface is the maximum value of the result of measurement in a field of view of 260 μm × 190 μm using a scanning interferometer using white light at any five locations on the joint surface. Let's represent.
 接合面の段差はAlNの焼結体において従来も発生していたが、例えば貼り合わせ基板用の下地基板以外の用途では特に問題になることはなく、表面の平滑性は、例えば粗さ曲線の算術平均粗さRa(日本工業規格JIS B0601:2001)等によって規定されているだけであった。 The step of the joining surface has also occurred in the past in the sintered body of AlN, but there is no particular problem in applications other than the base substrate for bonded substrates, for example, and the smoothness of the surface is, for example, a roughness curve It was only prescribed by arithmetic mean roughness Ra (Japanese Industrial Standard JIS B0601: 2001).
 また貼り合わせ基板用の下地基板でも段差については特に考慮されておらず、接合面の平滑性は、例えば特許文献3に記載のように粗さ曲線の算術平均粗さRa等で規定されているだけであった。 Further, even in the base substrate for the bonded substrate, the step is not particularly taken into consideration, and the smoothness of the joint surface is defined by, for example, the arithmetic average roughness Ra of the roughness curve as described in Patent Document 3. It was only.
 しかし算術平均粗さRa等のいわゆる表面粗さ試験によって求められる表面性状は、いずれも粗さ曲線等のごく短い距離の線上での凹凸の状態を表しているに過ぎず、接合面に並ぶ結晶粒の任意の位置で任意の方向に発生する段差の状態を把握することはできなかった。 However, the surface properties obtained by so-called surface roughness tests such as arithmetic mean roughness Ra all represent the state of irregularities on a very short distance line such as a roughness curve, and crystals aligned on the joint surface. It was impossible to grasp the state of a step generated in an arbitrary direction at an arbitrary position of the grain.
 これに対し本発明では、上記のように面状の視野内での干渉パターンから、段差の方向等に関係なく求められるPV値によって、隣接する結晶粒間の段差の状態をより的確に把握して、かかる段差が小さいため半導体基板との接合時に空隙を生じないAlN基板を得ることが可能となる。 On the other hand, in the present invention, the state of the step between adjacent crystal grains is more accurately grasped from the interference pattern in the planar visual field as described above, by the PV value obtained irrespective of the step direction or the like. Thus, since the level difference is small, it is possible to obtain an AlN substrate that does not generate a gap when bonded to the semiconductor substrate.
 本発明のAlN基板は、半導体素子からの熱をできるだけ速やかに除去するための高い熱伝導性を付与することを考慮すると、熱伝導率が80W/m・K以上であるのが好ましい。 The AlN substrate of the present invention preferably has a thermal conductivity of 80 W / m · K or more in consideration of imparting high thermal conductivity for removing heat from the semiconductor element as quickly as possible.
 また熱伝導率は、上記の範囲でも260W/m・K以下であるのが好ましい。熱伝導率は、AlNの焼結体を構成するAlNの結晶粒の粒径、焼結材料の組成等を適宜変更することで調整可能であるが、AlNの焼結体で260W/m・Kを超える高い熱伝導率を有するAlN基板を形成するのは実質的に困難である。 The thermal conductivity is preferably 260 W / m · K or less even in the above range. The thermal conductivity can be adjusted by appropriately changing the grain size of AlN crystal grains constituting the sintered body of AlN, the composition of the sintered material, etc., but 260 W / m · K for the sintered body of AlN. It is practically difficult to form an AlN substrate having a high thermal conductivity exceeding.
 また本発明のAlN基板を先に説明したように下地基板として用いて、GaN等からなる半導体基板と貼り合わせて貼り合わせ基板を構成する場合には、AlN基板と半導体基板との熱膨張係数の差が小さいことが求められる。具体的には、AlN基板の熱膨張係数は3.5×10-6/K以上であるのが好ましく、4.8×10-6/K以下であるのが好ましい。 Further, when the AlN substrate of the present invention is used as a base substrate as described above and bonded to a semiconductor substrate made of GaN or the like to form a bonded substrate, the thermal expansion coefficient of the AlN substrate and the semiconductor substrate is reduced. The difference is required to be small. Specifically, the thermal expansion coefficient of the AlN substrate is preferably 3.5 × 10 −6 / K or more, and preferably 4.8 × 10 −6 / K or less.
 なお本発明のAlN基板は、上記貼り合わせ基板を構成するために好適に用いられる他、接合面に直接に半導体素子等を接合する絶縁基板として用いることもできる。 In addition, the AlN substrate of the present invention can be suitably used for constituting the bonded substrate, and can also be used as an insulating substrate for directly bonding a semiconductor element or the like to the bonding surface.
 いずれの場合にも本発明のAlN基板は高い熱伝導性を有する上、接合面での他部材との熱伝達の効率にも優れているため、半導体素子からの熱をAlN基板へ効率よく伝達して、さらにAlN基板に接続される放熱部材等を介してできるだけ速やかに除去することができ、熱による半導体素子の誤動作や破損等を確実に防止してその信頼性を向上できる。 In any case, the AlN substrate of the present invention has high thermal conductivity and excellent heat transfer efficiency with other members on the joint surface, so that heat from the semiconductor element is efficiently transferred to the AlN substrate. Further, it can be removed as quickly as possible through a heat radiating member connected to the AlN substrate, and it is possible to reliably prevent malfunction or damage of the semiconductor element due to heat and improve its reliability.
 本発明のAlN基板を半導体基板と貼り合わせて貼り合わせ基板を形成するためには例えば直接接合法、表面活性化法等の種々の方法が採用される。 In order to form a bonded substrate by bonding the AlN substrate of the present invention to a semiconductor substrate, various methods such as a direct bonding method and a surface activation method are employed.
 また上記貼り合わせのため、本発明のAlN基板の接合面にはTi、Pt、Pd、Au、Ag、Al等の金属、Au-Sn等の半田、またはSiO2からなる少なくとも1層の膜を形成してもよい。 For the bonding, at least one layer of a metal such as Ti, Pt, Pd, Au, Ag, Al, solder such as Au—Sn, or SiO 2 is formed on the bonding surface of the AlN substrate of the present invention. It may be formed.
 膜の形成方法としては、例えば蒸着法、スパッタリング法、CVD法等の公知の方法を用いることができる。 As a method for forming the film, for example, a known method such as a vapor deposition method, a sputtering method, or a CVD method can be used.
 〈焼結体〉
 本発明のAlN基板のもとになる焼結体は、例えばAlNの粉末に、2A族元素の酸化物、3A族元素の酸化物その他の焼結助剤成分の粉末を、焼結後の2A族元素の割合が酸化物換算で0.009質量%以上、0.28質量%以下、3A族元素の割合が酸化物換算で0.02質量%以上、4.5質量%以下となるように配合した焼結材料を用いて形成される。
<Sintered body>
The sintered body that is the basis of the AlN substrate of the present invention is, for example, a powder of AlN, a 2A group element oxide, a 3A group oxide oxide, and other sintering aid component powders after sintering. The proportion of the group element is 0.009% by mass or more and 0.28% by mass or less in terms of oxide, and the proportion of the 3A group element is 0.02% by mass or more and 4.5% by mass or less in terms of oxide. It is formed using a blended sintered material.
 すなわち、かかる焼結材料によってAlN基板の前駆体を形成したのち当該前駆体を焼結して焼結体が形成される。 That is, after a precursor of the AlN substrate is formed with such a sintered material, the precursor is sintered to form a sintered body.
 また焼結後、さらに特許文献3に記載のようにHIP処理して内在する気孔のサイズを小径化するとともに気孔の数を減じたものを焼結体として使用してもよい。 Further, after sintering, as described in Patent Document 3, HIP treatment may be performed to reduce the size of the pores contained therein and reduce the number of pores as a sintered body.
 2A族元素は、焼結時にAlN粉末の表面の酸化物と反応して焼結材料中に含まれる他の焼結助剤成分とともに液相の生成を促進する働きをし、3A族元素は、生成した液相の粘性を適度に調整する働きをする。 The group 2A element reacts with oxides on the surface of the AlN powder during sintering to promote the formation of a liquid phase together with other sintering aid components contained in the sintered material, and the group 3A element is It works to moderately adjust the viscosity of the generated liquid phase.
 そのためAlNの結晶粒同士の結合力を大きくして脱粒等を生じにくくできるため、後述する条件での鏡面研磨によって接合面のPV値が300nm以下に調整されたAlN基板を得ることができる。 Therefore, since the bonding force between AlN crystal grains can be increased to make it difficult for degranulation or the like to occur, an AlN substrate in which the PV value of the bonding surface is adjusted to 300 nm or less by mirror polishing under the conditions described later can be obtained.
 2A族元素はCa、およびMgからなる群より選ばれた少なくとも1種であるのが好ましい。また3A族元素はY、およびランタノイドからなる群より選ばれた少なくとも1種であるのが好ましい。 The Group 2A element is preferably at least one selected from the group consisting of Ca and Mg. The group 3A element is preferably at least one selected from the group consisting of Y and lanthanoids.
 本発明において、焼結体における2A族元素の割合が酸化物換算で0.009質量%以上、0.28質量%以下に限定されるのは、下記の理由による。 In the present invention, the ratio of the group 2A element in the sintered body is limited to 0.009 mass% or more and 0.28 mass% or less in terms of oxide for the following reason.
 すなわち2A族元素の割合がこの範囲未満となるのは、出発原料となる焼結材料における2A族元素の割合が少ないためであり、その場合には焼結材料に2A族元素を配合することによる上記の効果が得られず、脱粒等を生じやすくなって、鏡面研磨してもAlN基板の接合面のPV値が300nmを超えてしまう場合がある。 That is, the reason why the ratio of the group 2A element is less than this range is that the ratio of the group 2A element in the sintered material that is the starting material is small, and in that case, by mixing the group 2A element into the sintered material. The above effect cannot be obtained, and it becomes easy for degranulation to occur, and the PV value of the bonding surface of the AlN substrate may exceed 300 nm even after mirror polishing.
 また2A族元素の割合が上記の範囲を超えるのは焼結材料における2A族元素の割合が多いためであり、その場合には焼結体内での焼結助剤の偏析が促進されるため接合面を均一に鏡面研磨できなくなって、PV値が部分的に300nmを超えてしまう場合がある。 Further, the reason why the ratio of the group 2A element exceeds the above range is that the ratio of the group 2A element in the sintered material is large. In this case, segregation of the sintering aid in the sintered body is promoted, so The surface cannot be mirror-polished uniformly, and the PV value may partially exceed 300 nm.
 また焼結体における3A族元素の割合が酸化物換算で0.02質量%以上、4.5質量%以下に限定されるのは、下記の理由による。 Further, the reason why the ratio of the 3A group element in the sintered body is limited to 0.02% by mass or more and 4.5% by mass or less in terms of oxide is as follows.
 すなわち3A族元素の割合がこの範囲未満となるのは、出発原料となる焼結材料における3A族元素の割合が少ないためであり、その場合には焼結材料に3A族元素を配合することによる先に説明した効果が得られず、脱粒等を生じやすくなって、鏡面研磨してもAlN基板の接合面のPV値が300nmを超えてしまう場合がある。 That is, the reason why the ratio of the group 3A element is less than this range is that the ratio of the group 3A element in the sintered material that is the starting material is small, and in that case, the ratio of the group 3A element is added to the sintered material. The effects described above cannot be obtained, and it becomes easy for degranulation and the like to occur, and the PV value of the bonding surface of the AlN substrate may exceed 300 nm even after mirror polishing.
 また3A族元素の割合が上記の範囲を超えるのは焼結材料における3A族元素の割合が多いためであり、その場合には焼結時の液相の粘性が上昇して焼結が妨げられて、製造されるAlN基板の熱伝導率が不十分になる場合がある。 Further, the reason why the ratio of the group 3A element exceeds the above range is that the ratio of the group 3A element in the sintered material is large. In this case, the viscosity of the liquid phase at the time of sintering is increased to prevent the sintering. Thus, the thermal conductivity of the manufactured AlN substrate may be insufficient.
 これに対し、焼結体における2A族元素、および3A族元素の割合がそれぞれ上記の範囲となるように焼結材料の組成を設定することで、高い熱伝導率を有し、しかも鏡面研磨によってPV値が全面で300nm以下に調整された接合面を有するAlN基板を得ることができる。 On the other hand, by setting the composition of the sintered material so that the ratio of the group 2A element and the group 3A element in the sintered body is in the above range, it has high thermal conductivity, and by mirror polishing. An AlN substrate having a joint surface with a PV value adjusted to 300 nm or less over the entire surface can be obtained.
 AlN基板は、特に直接接合法によって半導体基板と貼り合わせる際の接合性を高めるために、Siを酸化物換算で0.3質量%以下の割合で含んでいても良い。 The AlN substrate may contain Si in a proportion of 0.3% by mass or less in terms of oxide, in order to improve the bondability when bonded to the semiconductor substrate by the direct bonding method.
 Siの割合がこの範囲を超えるのは焼結材料におけるSiの割合が多いためであり、その場合にはSiAlON複合酸化物の結晶粒が生成し、当該結晶粒が鏡面研磨時に脱粒して接合面に大きな欠陥が生じるおそれがある。 The Si ratio exceeds this range because the Si ratio in the sintered material is large. In this case, SiAlON composite oxide crystal grains are formed, and the crystal grains are shed during mirror polishing, resulting in a bonded surface. There is a risk that large defects will occur.
 なおSiの割合の下限値は0質量%、すなわちSiを含んでいない場合をも含む。 The lower limit of the Si ratio includes 0% by mass, that is, the case where Si is not included.
 焼結体の残部はAlNである。 The balance of the sintered body is AlN.
 焼結体におけるAlNの割合は94.22質量%以上であるのが好ましく、99.971質量%以下であるのが好ましい。 The proportion of AlN in the sintered body is preferably 94.22% by mass or more, and preferably 99.971% by mass or less.
 AlNの割合がこの範囲未満では、AlN基板の熱伝導率が不十分になるおそれがある。 If the proportion of AlN is less than this range, the thermal conductivity of the AlN substrate may be insufficient.
 一方、AlNの割合がこの範囲を超えるのは焼結材料における2A族元素や3A族元素などの焼結助剤成分の割合が少ないためであり、その場合にはAlNの結晶粒同士の結合力が低下して脱粒等を生じやすくなって、鏡面研磨してもAlN基板の接合面のPV値が300nmを超えてしまうおそれがある。 On the other hand, the proportion of AlN exceeds this range because the proportion of sintering aid components such as 2A group elements and 3A group elements in the sintered material is small. In this case, the bonding strength between the crystal grains of AlN However, even when mirror polishing is performed, the PV value of the bonding surface of the AlN substrate may exceed 300 nm.
 上記各成分の割合は、AlN基板の、鏡面研磨した接合面を、グロー放電質量分析(GDMS)によって分析した結果から求めることができる。 The ratio of each of the above components can be determined from the result of analyzing the mirror-polished bonded surface of the AlN substrate by glow discharge mass spectrometry (GDMS).
 《AlN基板の製造方法》
 上記本発明のAlN基板は、例えば当該AlN基板の接合面を、ヌープ硬さHK:4000kgf/mm2以上、平均粒径:0.03μm以上、2μm以下の砥粒を使用して、研磨荷重:50g/cm2以上、300g/cm2以下の条件で鏡面研磨する工程を経て製造される。
<< Method of manufacturing AlN substrate >>
In the AlN substrate of the present invention, for example, the bonding surface of the AlN substrate is polished using a Knoop hardness HK: 4000 kgf / mm 2 or more and an average particle size: 0.03 μm or more and 2 μm or less. It is manufactured through a step of mirror polishing under conditions of 50 g / cm 2 or more and 300 g / cm 2 or less.
 接合面を上記の条件で鏡面研磨することにより、当該接合面のPV値が300nm以下とされた本発明のAlN基板を製造できる。 The AlN substrate of the present invention in which the PV value of the joint surface is 300 nm or less can be manufactured by mirror polishing the joint surface under the above conditions.
 すなわち砥粒のヌープ硬さHK(日本工業規格JIS Z2251:2009)が4000kgf/mm2未満であるか、平均粒径が0.03μm未満であるか、もしくは研磨荷重が50g/cm2未満では研磨能力が不十分になって、結晶粒の段差を十分に除去することができない。 That is, polishing is performed when the Knoop hardness HK (Japanese Industrial Standard JIS Z2251: 2009) of the abrasive grains is less than 4000 kgf / mm 2 , the average particle diameter is less than 0.03 μm, or the polishing load is less than 50 g / cm 2. The capacity becomes insufficient, and the steps of crystal grains cannot be removed sufficiently.
 また砥粒の平均粒径が2μmを超えるか、または研磨荷重が300g/cm2を超える場合には、逆に研磨能力が強すぎて接合面の表面粗さが粗くなってしまう。 On the other hand, when the average grain size of the abrasive grains exceeds 2 μm or the polishing load exceeds 300 g / cm 2 , the polishing ability is too strong and the surface roughness of the joint surface becomes rough.
 そのため、このいずれの場合にも、鏡面研磨によって接合面のPV値を300nm以下とすることはできない。 Therefore, in any of these cases, the PV value of the joint surface cannot be made 300 nm or less by mirror polishing.
 これに対し、ヌープ硬さHKと平均粒径が上記の範囲にある砥粒を用いて、上記範囲の研磨荷重で接合面を鏡面研磨することにより、当該接合面のPV値を300nm以下に調整できる。 On the other hand, the PV value of the bonded surface is adjusted to 300 nm or less by mirror polishing the bonded surface with a polishing load in the above range using abrasives having Knoop hardness HK and average particle size in the above range. it can.
 かかるヌープ硬さHKを満足する砥粒としては、例えばcBN(立方晶窒化ホウ素、ヌープ硬さHK:4700~4800kgf/mm2)やダイヤモンド(ヌープ硬さHK:7000~8000kgf/mm2)等が挙げられる。 Examples of abrasive grains satisfying the Knoop hardness HK include cBN (cubic boron nitride, Knoop hardness HK: 4700 to 4800 kgf / mm 2 ), diamond (Knoop hardness HK: 7000 to 8000 kgf / mm 2 ), and the like. Can be mentioned.
 なお接合面のPV値を300nm以下の範囲でもできるだけ小さくすることを考慮すると、砥粒のヌープ硬さHKは6000kgf/mm2以上であるのが好ましく、平均粒径は1μm以下であるのが好ましい。また研磨荷重は100g/cm2以上であるのが好ましく、200g/cm2以下であるのが好ましい。 In consideration of making the PV value of the bonding surface as small as possible even in the range of 300 nm or less, the Knoop hardness HK of the abrasive grains is preferably 6000 kgf / mm 2 or more, and the average particle diameter is preferably 1 μm or less. . The polishing load is preferably 100 g / cm 2 or more, more preferably 200 g / cm 2 or less.
 鏡面研磨には、機械研磨(固定砥粒、遊離砥粒)、ケミカルメカニカルポリシング等の通常の研磨方法が採用できる。いずれの研磨方法を採用した場合でも、上記の砥粒を用いて上記の研磨荷重で鏡面研磨することにより、AlN基板の接合面のPV値を300nm以下とすることが可能である。 For the mirror polishing, a normal polishing method such as mechanical polishing (fixed abrasive grains, loose abrasive grains), chemical mechanical polishing, or the like can be employed. Regardless of which polishing method is employed, the PV value of the bonding surface of the AlN substrate can be reduced to 300 nm or less by mirror polishing with the above polishing load using the above abrasive grains.
 〈焼結体の作製〉
 本発明のAlN基板のもとになる焼結体は、これに限定されないが、例えば下記の焼結材料を用いて、下記の工程を経て製造することができる。
<Preparation of sintered body>
Although the sintered compact used as the origin of the AlN board | substrate of this invention is not limited to this, For example, it can manufacture through the following process using the following sintered material.
 (焼結材料)
 焼結体のもとになるAlNの粉末の平均粒径は0.1μm以上であるのが好ましく、3.0μm以下であるのが好ましい。また2A族元素の化合物の粉末の平均粒径は0.2μm以上であるのが好ましく、5.0μm以下であるのが好ましい。3A族元素の化合物の粉末の平均粒径は0.2μm以上であるのが好ましく、4.0μm以下であるのが好ましい。さらにSiの化合物の粉末の平均粒径は0.5μm以上であるのが好ましく、6.0μm以下であるのが好ましい。
(Sintered material)
The average particle diameter of the AlN powder that is the basis of the sintered body is preferably 0.1 μm or more, and preferably 3.0 μm or less. The average particle size of the 2A group element compound powder is preferably 0.2 μm or more, more preferably 5.0 μm or less. The average particle size of the 3A group element compound powder is preferably 0.2 μm or more, more preferably 4.0 μm or less. Further, the average particle size of the powder of the Si compound is preferably 0.5 μm or more, and preferably 6.0 μm or less.
 各成分の平均粒径がそれぞれ上記の範囲未満では、粉末が嵩高くなって均一に混合するのが容易でなくなり、また必要とする焼結密度が得られないおそれがある。一方、各成分の平均粒径がそれぞれ上記の範囲を超える場合には、混合工程で各成分が十分に粉砕されないため組成が不均一になって焼結後に密度のばらつきを生じたり、鏡面研磨工程等で脱粒等を生じたり、加工後の表面粗さが大きくなったりするおそれがある。 If the average particle size of each component is less than the above range, the powder becomes bulky and it becomes difficult to mix uniformly, and the required sintered density may not be obtained. On the other hand, if the average particle size of each component exceeds the above range, each component is not sufficiently pulverized in the mixing step, resulting in a non-uniform composition, resulting in density variations after sintering, or a mirror polishing step There is a risk that graining or the like may occur due to, or the surface roughness after processing may increase.
 AlN以外の各成分は、例えば酸化物、窒化物、炭化物、炭酸塩、複合酸化物等の化合物の状態で配合できる。酸化物以外の化合物を用いる場合は、当該化合物中に含まれる2A族元素等の割合が、酸化物換算で先に説明した範囲となるように配合量を調整すればよい。 Each component other than AlN can be blended in the state of a compound such as oxide, nitride, carbide, carbonate, composite oxide or the like. When a compound other than an oxide is used, the blending amount may be adjusted so that the ratio of the 2A group element and the like contained in the compound is in the range described above in terms of oxide.
 (予備成型工程)
 上記AlNの粉末と、2A族元素の酸化物、3A族元素の酸化物その他の焼結助剤成分の粉末に、さらにバインダと分散媒とを配合してスラリーを調製し、当該スラリーをシート状に成形してグリーンシートを作製する。
(Preliminary molding process)
The above-mentioned AlN powder, group 2A element oxide, group 3A element oxide and other sintering aid component powder are further mixed with a binder and a dispersion medium to prepare a slurry, and the slurry is formed into a sheet. To form a green sheet.
 バインダとしては、有機溶媒を分散媒として用いるものと水を分散媒として用いるもののいずれも使用可能である。 As the binder, either one using an organic solvent as a dispersion medium or one using water as a dispersion medium can be used.
 このうち有機溶媒を分散媒として用いるバインダとしては、例えばアクリル系、ポリビニルブチラール系、セルロース系等のバインダの1種または2種以上が挙げられる。有機溶媒としては、例えば各種アルコール等の1種または2種以上が挙げられる。 Among these, examples of the binder using an organic solvent as a dispersion medium include one or more binders such as acrylic, polyvinyl butyral, and cellulose. As an organic solvent, 1 type, or 2 or more types, such as various alcohol, is mentioned, for example.
 また水を分散媒として用いるバインダとしては、例えばポリビニルアルコール系、アクリル系、ウレタン系、酢酸ビニル系等のバインダの1種または2種以上が挙げられる。 Also, examples of the binder using water as a dispersion medium include one or more binders such as polyvinyl alcohol, acrylic, urethane, and vinyl acetate.
 またスラリーには、当該スラリーの安定性や焼結材料の分散性、あるいはグリーンシートの柔軟性等を向上するために、例えば分散剤や可塑剤等を配合してもよい。 Further, for example, a dispersant or a plasticizer may be added to the slurry in order to improve the stability of the slurry, the dispersibility of the sintered material, or the flexibility of the green sheet.
 スラリーの混合には、例えばボールミル、アトライタ、遊星ミル等の一般的な混合装置を用いた乾式混合法、湿式混合法がいずれも採用できる。湿式混合法で混合したスラリーは、例えば穴径1μm程度のメッシュを用いて粗粒をふるい分けてもよい。 For the mixing of the slurry, any of a dry mixing method and a wet mixing method using a general mixing device such as a ball mill, an attritor, and a planetary mill can be employed. The slurry mixed by the wet mixing method may be used to screen coarse particles using a mesh having a hole diameter of about 1 μm, for example.
 スラリーをシート状に成形してグリーンシートを作製するための成形法としては、例えば押出法等が採用される。またドクターブレード法等で作製した薄いシートを複数枚重ね合わせてグリーンシートを作製してもよい。 As a forming method for forming a green sheet by forming a slurry into a sheet, for example, an extrusion method or the like is employed. Further, a green sheet may be produced by superposing a plurality of thin sheets produced by a doctor blade method or the like.
 次いでグリーンシートを乾燥させて予備成形体を得る。乾燥の温度は0℃以上、特に15℃以上であるのが好ましく、80℃以下、特に50℃以下であるのが好ましい。 Next, the green sheet is dried to obtain a preform. The drying temperature is preferably 0 ° C. or higher, particularly 15 ° C. or higher, and is preferably 80 ° C. or lower, particularly 50 ° C. or lower.
 乾燥の温度がこの範囲未満ではグリーンシート中からの分散媒の揮発速度が遅すぎて乾燥に長時間を要するため、AlN基板の生産性が低下するおそれがある。 If the drying temperature is less than this range, the volatilization rate of the dispersion medium from the green sheet is too slow and it takes a long time to dry, so the productivity of the AlN substrate may be reduced.
 一方、乾燥の温度がこの範囲を超える場合にはグリーンシート中からの分散媒の揮発速度が速すぎて乾燥の度合いに不均一を生じやすくなり、それに伴って予備成形体にシワや反りを生じやすくなるおそれがある。 On the other hand, when the drying temperature exceeds this range, the volatilization rate of the dispersion medium from the green sheet is too high, and the degree of drying tends to be uneven, and accordingly, the preform is wrinkled and warped. May be easier.
 また乾燥の時間は1時間以上、中でも10時間以上、特に20時間以上であるのが好ましい。 Further, the drying time is preferably 1 hour or more, more preferably 10 hours or more, and particularly preferably 20 hours or more.
 乾燥の時間がこの範囲未満では乾燥が十分でなく、次工程である脱バインダ工程において、予備成形体中に残存する分散媒の揮発による割れ等を生じやすくなるおそれがある。 If the drying time is less than this range, drying is not sufficient, and in the binder removal step that is the next step, cracks or the like due to volatilization of the dispersion medium remaining in the preform may easily occur.
 なおAlN基板の生産性等を考慮すると、乾燥の時間は上記の範囲でも48時間以下であるのが好ましい。 In consideration of the productivity of the AlN substrate, the drying time is preferably 48 hours or less even in the above range.
 (脱バインダ工程)
 次に上記の予備成形体を、バインダの熱分解温度以上に加熱してバインダその他の有機物を除去して焼結材料のみからなる焼結前の前駆体を作製する。
(Binder removal process)
Next, the pre-formed body is heated to a temperature equal to or higher than the thermal decomposition temperature of the binder to remove the binder and other organic substances, thereby preparing a pre-sintering precursor made of only a sintered material.
 脱バインダ処理は、バインダの熱分解を促進するために大気中等の酸化性雰囲気中で行ってもよいし、窒素雰囲気中等の不活性雰囲気中で行ってもよい。 The binder removal treatment may be performed in an oxidizing atmosphere such as the air in order to promote thermal decomposition of the binder, or may be performed in an inert atmosphere such as a nitrogen atmosphere.
 脱バインダ処理を大気中で行う場合、その温度は400℃以上であるのが好ましく、600℃以下であるのが好ましい。 When the binder removal treatment is performed in the atmosphere, the temperature is preferably 400 ° C. or higher, and preferably 600 ° C. or lower.
 脱バインダ処理の温度がこの範囲未満ではバインダを十分に除去することができず、次工程である焼結工程において、前駆体中に残存したバインダによって焼結が阻害されたり、バインダがガス化して焼結体に亀裂を生じさせたりするおそれがある。 If the temperature of the binder removal treatment is less than this range, the binder cannot be removed sufficiently, and in the next sintering step, sintering is hindered by the binder remaining in the precursor, or the binder is gasified. There is a risk of causing cracks in the sintered body.
 一方、脱バインダ処理の温度が上記の範囲を超える場合には、表面酸化によって焼結が阻害されるおそれがある。 On the other hand, if the temperature of the binder removal treatment exceeds the above range, the surface oxidation may inhibit the sintering.
 また脱バインダ処理を窒素雰囲気中で行う場合、その温度は500℃以上であるのが好ましく、900℃以下であるのが好ましい。 When the binder removal treatment is performed in a nitrogen atmosphere, the temperature is preferably 500 ° C. or higher, and preferably 900 ° C. or lower.
 脱バインダ処理の温度がこの範囲未満ではバインダを十分に除去することができず、次工程である焼結工程において、前駆体中に残存したバインダによって焼結が阻害されたり、バインダがガス化して焼結体に亀裂を生じさせたりするおそれがある。 If the temperature of the binder removal treatment is less than this range, the binder cannot be removed sufficiently, and in the next sintering step, sintering is hindered by the binder remaining in the precursor, or the binder is gasified. There is a risk of causing cracks in the sintered body.
 一方、脱バインダ処理の温度が上記の範囲を超えてもそれ以上の効果が得られないだけでなく、加熱に要するエネルギーが過大となってAlN基板の生産性が低下するおそれがある。 On the other hand, even if the temperature of the binder removal processing exceeds the above range, not only the effect is not obtained, but also the energy required for heating becomes excessive, and the productivity of the AlN substrate may be lowered.
 また脱バインダ処理の時間は、いずれの雰囲気中で脱バインダ処理を実施する場合も1時間以上であるのが好ましく、10時間以下であるのが好ましい。 Also, the binder removal time is preferably 1 hour or more, and preferably 10 hours or less, when the binder removal treatment is performed in any atmosphere.
 脱バインダ処理の時間がこの範囲未満ではバインダを十分に除去することができず、次工程である焼結工程において、前駆体中に残存したバインダによって焼結が阻害されたり、バインダがガス化して焼結体に亀裂を生じさせたりするおそれがある。 If the binder removal time is less than this range, the binder cannot be sufficiently removed, and in the subsequent sintering step, sintering is hindered by the binder remaining in the precursor, or the binder is gasified. There is a risk of causing cracks in the sintered body.
 一方、脱バインダ処理の時間が上記の範囲を超えてもそれ以上の効果が得られないだけでなく、加熱に要するエネルギーが過大となってAlN基板の生産性が低下するおそれがある。 On the other hand, even if the binder removal time exceeds the above range, not only the effect can be obtained, but also the energy required for heating becomes excessive, which may reduce the productivity of the AlN substrate.
 (焼結工程)
 次に上記の前駆体を、窒素雰囲気等の不活性雰囲気中で焼結して焼結体を形成する。
(Sintering process)
Next, the above precursor is sintered in an inert atmosphere such as a nitrogen atmosphere to form a sintered body.
 焼結の温度は1500℃以上、特に1600℃以上であるのが好ましく、1900℃以下、特に1750℃以下であるのが好ましい。 The sintering temperature is preferably 1500 ° C. or higher, particularly preferably 1600 ° C. or higher, and is preferably 1900 ° C. or lower, particularly preferably 1750 ° C. or lower.
 焼結の温度がこの範囲未満では焼結が不十分で、AlNの結晶粒同士の結合力が低下して脱粒等を生じやすくなり、鏡面研磨してもAlN基板の接合面のPV値が300nmを超えてしまうおそれがある。 If the sintering temperature is less than this range, the sintering is insufficient, the bonding strength between the AlN crystal grains is reduced, and it is easy to cause degranulation, etc. The PV value of the bonding surface of the AlN substrate is 300 nm even after mirror polishing. May be exceeded.
 一方、焼結の温度が上記の範囲を超える場合には焼結が過度に進行し、焼結体内での焼結助剤の偏析が促進されるため接合面を均一に鏡面研磨できなくなって、PV値が部分的に300nmを超えてしまうおそれがある。 On the other hand, if the sintering temperature exceeds the above range, sintering proceeds excessively, and segregation of the sintering aid in the sintered body is promoted, so that the joint surface cannot be uniformly mirror-polished, There is a possibility that the PV value partially exceeds 300 nm.
 また焼結の時間は1時間以上であるのが好ましく、10時間以下であるのが好ましい。 Also, the sintering time is preferably 1 hour or more, and preferably 10 hours or less.
 焼結の時間がこの範囲未満では、当該焼結工程において結晶粒の再配列や結合に要する時間が短いため、焼結体中での密度のばらつきが大きくなって、AlN基板の熱伝導率が低下したり、全体の強度が低下したりするおそれがある。 If the sintering time is less than this range, the time required for the rearrangement and bonding of crystal grains in the sintering process is short, so the density variation in the sintered body increases, and the thermal conductivity of the AlN substrate increases. There is a risk that it may decrease or the overall strength may decrease.
 一方、焼結の時間が上記の範囲を超える場合には焼結が過度に進行し、焼結体内での焼結助剤の偏析が促進されるため接合面を均一に鏡面研磨できなくなって、PV値が部分的に300nmを超えてしまうおそれがある。 On the other hand, if the sintering time exceeds the above range, sintering proceeds excessively, and segregation of the sintering aid in the sintered body is promoted, so that the joint surface cannot be uniformly polished. There is a possibility that the PV value partially exceeds 300 nm.
 焼結時の圧力は、1気圧(=1013.25hPa)以上であるのが好ましく、10気圧(=10132.5hPa)以下であるのが好ましい。 The pressure during sintering is preferably 1 atmosphere (= 1013.25 hPa) or more, and preferably 10 atmospheres (= 10132.5 hPa) or less.
 焼結の圧力がこの範囲未満ではAlNが分解するおそれがある。 If the sintering pressure is less than this range, AlN may be decomposed.
 一方、焼結の圧力がこの範囲を超える場合には焼結体内での焼結助剤の偏析が促進されるため接合面を均一に鏡面研磨できなくなって、PV値が部分的に300nmを超えてしまうおそれがある。 On the other hand, when the sintering pressure exceeds this range, segregation of the sintering aid in the sintered body is promoted, so that the joint surface cannot be uniformly mirror-polished, and the PV value partially exceeds 300 nm. There is a risk that.
 〈実施例1〉
 (焼結材料の準備)
 焼結材料としては、下記の各成分の粉末を準備した。
<Example 1>
(Preparation of sintered material)
As a sintering material, powders of the following components were prepared.
 AlN:平均粒径0.9μm
 CaCO3:平均粒径6μm
 Yb23:平均粒径1.2μm
 Nd23:平均粒径3.5μm
 Al23:平均粒径0.3μm
 SiO2:平均粒径3.8μm
 (スラリーの調製および予備成形体の作製)
 上記各成分の粉末を、焼結後の割合が、
 AlN:97.82質量%
 2A族元素としてのCa(酸化物換算):0.09質量%
 3A族元素としてのYb(酸化物換算):0.99質量%
 3A族元素としてのNd(酸化物換算):0.9質量%
 Si(酸化物換算):0.2質量%
となるように配合するとともに、分散媒とバインダとを配合してスラリーを調製した。
AlN: Average particle size 0.9 μm
CaCO 3 : average particle size 6 μm
Yb 2 O 3 : Average particle size 1.2 μm
Nd 2 O 3 : Average particle size 3.5 μm
Al 2 O 3 : Average particle size 0.3 μm
SiO 2 : Average particle size 3.8 μm
(Preparation of slurry and preparation of preform)
The ratio of the powder of each component above after sintering is
AlN: 97.82% by mass
Ca as a 2A group element (as oxide): 0.09% by mass
Yb (as oxide) as Group 3A element: 0.99% by mass
Nd (as oxide) as group 3A element: 0.9% by mass
Si (oxide conversion): 0.2% by mass
And a slurry was prepared by blending a dispersion medium and a binder.
 次いでこのスラリーを、押出法によって縦260mm×横260mm×厚み1.2mmのシート状に成形してグリーンシートを作製し、作製したグリーンシートを円板状に打ち抜いたのち温度:24±4℃、時間:24時間の条件で自然乾燥させて予備成形体を作製した。 Next, this slurry was formed into a sheet having a length of 260 mm × width of 260 mm × thickness of 1.2 mm by an extrusion method to produce a green sheet. After punching the produced green sheet into a disk, the temperature was 24 ± 4 ° C., Time: A preform was produced by natural drying under conditions of 24 hours.
 (脱バインダ工程)
 作製した予備成形体を窒化ホウ素製の治具上に配置し、大気中で温度:500℃、時間:5時間の条件で脱バインダ処理して、焼結材料のみからなる焼結前の前駆体を作製した。
(Binder removal process)
The prepared preform is placed on a boron nitride jig, and is subjected to binder removal treatment in the atmosphere under conditions of temperature: 500 ° C. and time: 5 hours, and is a precursor before sintering consisting only of a sintered material. Was made.
 (焼結工程)
 上記の前駆体を、窒素雰囲気中で温度:1650℃、時間:5時間、圧力:1気圧の条件で焼結させて焼結体を作製した。
(鏡面研磨工程)
 作製した焼結体の円板の片面である接合面を、ヌープ硬さHK:7000kgf/mm2、平均粒径:1μmのダイヤモンド砥粒を使用して、研磨荷重:150g/cm2の条件で、遊離砥粒によるラップ加工によって鏡面研磨して、φ200×0.7mmtの円板状のAlN基板を製造した。AlN基板の反りは0.8μm/mmであった。
(Sintering process)
The above precursor was sintered in a nitrogen atmosphere under conditions of temperature: 1650 ° C., time: 5 hours, pressure: 1 atm to produce a sintered body.
(Mirror polishing process)
The bonded surface, which is one side of the disk of the sintered body, was prepared using diamond abrasive grains having a Knoop hardness of HK: 7000 kgf / mm 2 and an average particle size of 1 μm, and a polishing load of 150 g / cm 2 . Then, it was mirror-polished by lapping with loose abrasive grains to produce a disc-shaped AlN substrate having a diameter of 200 × 0.7 mmt. The warpage of the AlN substrate was 0.8 μm / mm.
 〈実施例2~5、比較例1、2〉
 鏡面研磨工程での研磨荷重を30g/cm2(比較例1)、50g/cm2(実施例2)、100g/cm2(実施例3)、200g/cm2(実施例4)、300g/cm2(実施例5)、および400g/cm2(比較例2)としたこと以外は実施例1と同様にしてAlN基板を製造した。
<Examples 2 to 5, Comparative Examples 1 and 2>
The polishing load in the mirror polishing step is 30 g / cm 2 (Comparative Example 1), 50 g / cm 2 (Example 2), 100 g / cm 2 (Example 3), 200 g / cm 2 (Example 4), 300 g / An AlN substrate was produced in the same manner as in Example 1 except that cm 2 (Example 5) and 400 g / cm 2 (Comparative Example 2) were used.
 〈実施例6~10、比較例3、4〉
 鏡面研磨工程でヌープ硬さHK:7000kgf/mm2、平均粒径:0.03μmのダイヤモンド砥粒を使用し、研磨荷重を30g/cm2(比較例3)、50g/cm2(実施例6)、100g/cm2(実施例7)、150g/cm2(実施例8)、200g/cm2(実施例9)、300g/cm2(実施例10)、および400g/cm2(比較例4)としたこと以外は実施例1と同様にしてAlN基板を製造した。
<Examples 6 to 10, Comparative Examples 3 and 4>
In the mirror polishing process, diamond abrasive grains having Knoop hardness HK: 7000 kgf / mm 2 and average particle diameter: 0.03 μm were used, and the polishing load was 30 g / cm 2 (Comparative Example 3), 50 g / cm 2 (Example 6). ), 100 g / cm 2 (Example 7), 150 g / cm 2 (Example 8), 200 g / cm 2 (Example 9), 300 g / cm 2 (Example 10), and 400 g / cm 2 (Comparative Example) An AlN substrate was produced in the same manner as in Example 1 except that 4).
 〈実施例11~15、比較例5、6〉
 鏡面研磨工程でヌープ硬さHK:7000kgf/mm2、平均粒径:2μmのダイヤモンド砥粒を使用し、研磨荷重を30g/cm2(比較例5)、50g/cm2(実施例11)、100g/cm2(実施例12)、150g/cm2(実施例13)、200g/cm2(実施例14)、300g/cm2(実施例15)、および400g/cm2(比較例6)としたこと以外は実施例1と同様にしてAlN基板を製造した。
<Examples 11 to 15, Comparative Examples 5 and 6>
In the mirror polishing process, diamond abrasive grains having Knoop hardness HK: 7000 kgf / mm 2 and average particle diameter: 2 μm were used, and the polishing load was 30 g / cm 2 (Comparative Example 5), 50 g / cm 2 (Example 11), 100 g / cm 2 (Example 12), 150 g / cm 2 (Example 13), 200 g / cm 2 (Example 14), 300 g / cm 2 (Example 15), and 400 g / cm 2 (Comparative Example 6) An AlN substrate was manufactured in the same manner as in Example 1 except that.
 〈実施例16〉
 鏡面研磨工程でヌープ硬さHK:4800kgf/mm2、平均粒径:1μmのcBN砥粒を使用し、研磨荷重を150g/cm2としたこと以外は実施例1と同様にしてAlN基板を製造した。
<Example 16>
An AlN substrate is manufactured in the same manner as in Example 1 except that cBN abrasive grains having a Knoop hardness of HK: 4800 kgf / mm 2 and an average particle size of 1 μm are used in the mirror polishing step, and the polishing load is 150 g / cm 2. did.
 〈比較例7〉
 鏡面研磨工程でヌープ硬さHK:3200kgf/mm2、平均粒径:1μmのSiC砥粒を使用し、研磨荷重を150g/cm2としたこと以外は実施例1と同様にしてAlN基板を製造した。
<Comparative Example 7>
An AlN substrate is manufactured in the same manner as in Example 1 except that SiC abrasive grains having a Knoop hardness of HK: 3200 kgf / mm 2 and an average particle diameter of 1 μm are used in the mirror polishing process, and the polishing load is 150 g / cm 2. did.
 〈比較例8〉
 鏡面研磨工程でヌープ硬さHK:7000kgf/mm2、平均粒径:0.01μmのダイヤモンド砥粒を使用し、研磨荷重を150g/cm2としたこと以外は実施例1と同様にしてAlN基板を製造した。
<Comparative Example 8>
An AlN substrate in the same manner as in Example 1 except that diamond polishing grains having a Knoop hardness of HK: 7000 kgf / mm 2 and an average particle diameter of 0.01 μm were used in the mirror polishing step, and the polishing load was 150 g / cm 2. Manufactured.
 〈比較例9〉
 鏡面研磨工程でヌープ硬さHK:7000kgf/mm2、平均粒径:2.5μmのダイヤモンド砥粒を使用し、研磨荷重を150g/cm2としたこと以外は実施例1と同様にしてAlN基板を製造した。
<Comparative Example 9>
An AlN substrate in the same manner as in Example 1 except that diamond polishing grains having Knoop hardness HK: 7000 kgf / mm 2 and average particle diameter: 2.5 μm were used in the mirror polishing step, and the polishing load was 150 g / cm 2. Manufactured.
 〈PV値の測定〉
 各実施例、比較例で製造したAlN基板の、鏡面研磨した接合面のPV値を測定した。測定は接合面上の任意の5か所において、白色光を用いた走査型干渉計〔ZYGO社製のNewView(登録商標)7300〕を用いて260μm×190μmの視野内で実施し、測定結果の最大値でもって各実施例、比較例のAlN基板の接合面のPV値とした。
<Measurement of PV value>
The PV values of the mirror-polished joint surfaces of the AlN substrates manufactured in each Example and Comparative Example were measured. The measurement was carried out in a field of 260 μm × 190 μm using a scanning interferometer (NewView (registered trademark) 7300 manufactured by ZYGO) using white light at any five locations on the joint surface. The PV value of the bonding surface of the AlN substrate of each example and comparative example was taken as the maximum value.
 〈算術平均粗さRaの測定〉
 比較のため各実施例、比較例で製造したAlN基板の、鏡面研磨した接合面上の任意の5箇所で、非接触型の表面粗さ計を用いて0.6mm×0.5mmの視野内で測定した粗さ曲線から各々の算術平均粗さRaを求め、その平均値を算出して各実施例、比較例のAlN基板の接合面の算術平均粗さRaとした。
<Measurement of arithmetic average roughness Ra>
For comparison, each of the examples and comparative examples of the AlN substrate manufactured in the mirror polished surface at any five locations within a field of view of 0.6 mm × 0.5 mm using a non-contact type surface roughness meter Each arithmetic average roughness Ra was obtained from the roughness curve measured in step (b), and the average value was calculated as the arithmetic average roughness Ra of the bonding surfaces of the AlN substrates of the examples and comparative examples.
 以上の結果を表1~表5に示す。 The above results are shown in Tables 1 to 5.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表1~表5の実施例1~16、比較例1~9の結果より、AlN基板の接合面のPV値を300nm以下にするためには、鏡面研磨工程において、ヌープ硬さHK:4000kgf/mm2以上、平均粒径:0.03μm以上、2μm以下の砥粒を使用して、研磨荷重:50g/cm2以上、300g/cm2以下の条件で鏡面研磨する必要があることが判った。 From the results of Examples 1 to 16 and Comparative Examples 1 to 9 in Table 1 to Table 5, in order to make the PV value of the bonded surface of the AlN substrate 300 nm or less, Knoop hardness HK: 4000 kgf / mm 2 or more, average particle diameter: 0.03 .mu.m or more, using the following abrasive 2 [mu] m, polishing load: 50 g / cm 2 or more, is necessary to mirror polishing was found that at 300 g / cm 2 following conditions .
 また各実施例の結果より、接合面のPV値を300nm以下の範囲でもできるだけ小さくするためには、砥粒のヌープ硬さHKは6000kgf/mm2以上であるのが好ましく、平均粒径は1μm以下であるのが好ましいこと、研磨荷重は100g/cm2以上であるのが好ましく、200g/cm2以下であるのが好ましいことが判った。 In addition, from the results of each example, in order to make the PV value of the joint surface as small as possible even within a range of 300 nm or less, the Knoop hardness HK of the abrasive grains is preferably 6000 kgf / mm 2 or more, and the average particle diameter is 1 μm. It has been found that the following is preferable, the polishing load is preferably 100 g / cm 2 or more, and preferably 200 g / cm 2 or less.
 〈実施例17~21〉
 焼結工程での温度を1500℃(実施例17)、1600℃(実施例18)、1750℃(実施例19)、1850℃(実施例20)、および1900℃(実施例21)としたこと以外は実施例1と同様にしてAlN基板を製造した。
<Examples 17 to 21>
The temperature in the sintering process was 1500 ° C. (Example 17), 1600 ° C. (Example 18), 1750 ° C. (Example 19), 1850 ° C. (Example 20), and 1900 ° C. (Example 21). An AlN substrate was manufactured in the same manner as in Example 1 except for the above.
 〈実施例22、23〉
 焼結工程での時間を1時間(実施例22)、および10時間(実施例23)としたこと以外は実施例1と同様にしてAlN基板を製造した。
<Examples 22 and 23>
An AlN substrate was manufactured in the same manner as in Example 1 except that the time in the sintering step was 1 hour (Example 22) and 10 hours (Example 23).
 上記各実施例、比較例で製造したAlN基板のPV値、および算術平均粗さRaを、先に説明した方法によって測定した。結果を実施例1の結果と併せて表6に示す。 The PV value and arithmetic average roughness Ra of the AlN substrates manufactured in the above examples and comparative examples were measured by the method described above. The results are shown in Table 6 together with the results of Example 1.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表6の実施例1、17~23の結果より、AlN基板の接合面のPV値を300nm以下にするためには、焼結工程の温度は1500℃以上、特に1600℃以上であるのが好ましく、1900℃以下、特に1750℃以下であるのが好ましいこと、時間は1時間以上であるのが好ましく、10時間以下であるのが好ましいことが判った。 From the results of Examples 1 and 17 to 23 in Table 6, the temperature of the sintering process is preferably 1500 ° C. or more, particularly preferably 1600 ° C. or more in order to make the PV value of the bonding surface of the AlN substrate 300 nm or less. It was found that the temperature is preferably 1900 ° C. or lower, particularly 1750 ° C. or lower, the time is preferably 1 hour or longer, and preferably 10 hours or shorter.
 〈実施例24、25、比較例10、11〉
 焼結後の割合が下記表7に示す値となるように各成分を配合したいずれかの焼結材料を使用したこと以外は実施例1と同様にしてAlN基板を製造した。
<Examples 24 and 25, Comparative Examples 10 and 11>
An AlN substrate was produced in the same manner as in Example 1 except that any sintered material in which each component was blended so that the ratio after sintering was a value shown in Table 7 below.
 なおYの焼結材料としては、平均粒径0.9μmのY23の粉末を用いた。 As the Y sintering material, Y 2 O 3 powder having an average particle size of 0.9 μm was used.
 上記各実施例、比較例で製造したAlN基板のPV値、および算術平均粗さRaを、先に説明した方法によって測定した。結果を実施例1の結果と併せて表7に示す。 The PV value and arithmetic average roughness Ra of the AlN substrates manufactured in the above examples and comparative examples were measured by the method described above. The results are shown in Table 7 together with the results of Example 1.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 表7の実施例1、24、25、比較例10、11の結果より、AlN基板の接合面のPV値を300nm以下にするためには、2A族元素の割合は、酸化物換算で0.009質量%以上、0.28質量%以下である必要があることが判った。 From the results of Examples 1, 24 and 25 and Comparative Examples 10 and 11 in Table 7, in order to make the PV value of the bonding surface of the AlN substrate 300 nm or less, the ratio of the 2A group element is set to 0. It was found that the content must be 009% by mass or more and 0.28% by mass or less.
 〈実施例26~28、比較例12、13〉
 焼結後の割合が下記表8に示す値となるように各成分を配合したいずれかの焼結材料を使用したこと以外は実施例1と同様にしてAlN基板を製造した。
<Examples 26 to 28, Comparative Examples 12 and 13>
An AlN substrate was produced in the same manner as in Example 1 except that any sintered material in which each component was blended so that the ratio after sintering was a value shown in Table 8 below.
 上記各実施例、比較例で製造したAlN基板のPV値、および算術平均粗さRaを、先に説明した方法によって測定した。結果を実施例1の結果と併せて表8に示す。 The PV value and arithmetic average roughness Ra of the AlN substrates manufactured in the above examples and comparative examples were measured by the method described above. The results are shown in Table 8 together with the results of Example 1.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 表8の実施例1、26~28、比較例12、13の結果より、AlN基板の接合面のPV値を300nm以下にするためには、3A族元素の割合は、酸化物換算で0.02質量%以上、4.5質量%以下である必要があることが判った。 From the results of Examples 1, 26 to 28 and Comparative Examples 12 and 13 in Table 8, in order to make the PV value of the bonding surface of the AlN substrate 300 nm or less, the ratio of the group 3A element is set to 0. It was found that it was necessary to be 02 mass% or more and 4.5 mass% or less.
 〈実施例29、30、比較例14〉
 焼結後の割合が下記表9に示す値となるように各成分を配合したいずれかの焼結材料を使用したこと以外は実施例1と同様にしてAlN基板を製造した。
<Examples 29 and 30, Comparative Example 14>
An AlN substrate was manufactured in the same manner as in Example 1 except that any sintered material in which each component was blended so that the ratio after sintering was a value shown in Table 9 below.
 上記各実施例、比較例で製造したAlN基板のPV値、および算術平均粗さRaを、先に説明した方法によって測定した。結果を実施例1の結果と併せて表9に示す。 The PV value and arithmetic average roughness Ra of the AlN substrates manufactured in the above examples and comparative examples were measured by the method described above. The results are shown in Table 9 together with the results of Example 1.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 表9の実施例1、29、30、比較例14の結果より、AlN基板の接合面のPV値を300nm以下にするためには、先に説明したように2A族元素の割合が、酸化物換算で0.009質量%以上、0.28質量%以下、3A族元素の割合が、酸化物換算で0.02質量%以上、4.5質量%以下であるとともに、AlNの割合が99.971質量%以下であるのが好ましいことが判った。 From the results of Examples 1, 29, 30 and Comparative Example 14 in Table 9, in order to make the PV value of the bonding surface of the AlN substrate 300 nm or less, the proportion of the 2A group element is oxide as described above. The ratio of the group 3A element is 0.009% by mass or more and 0.28% by mass or less in terms of oxide, and 0.02% by mass or more and 4.5% by mass or less in terms of oxide, and the ratio of AlN is 99.99%. It was found that the content was preferably 971% by mass or less.
 また上記各表の実施例1~30、比較例1~14のPV値と算術平均粗さRaとを比較したところ、PV値の大きさと算術平均粗さRaの大きさとは必ずしも比例関係になく、大小関係が逆転しているものなども見られた。 Further, when the PV values of Examples 1 to 30 and Comparative Examples 1 to 14 in the above tables were compared with the arithmetic average roughness Ra, the magnitude of the PV value and the arithmetic average roughness Ra were not necessarily proportional. There were also cases where the magnitude relationship was reversed.
 そしてこのことから、本発明で規定したPV値によれば段差の状態をより正確に把握できることが判った。 From this, it was found that the level of the step can be grasped more accurately according to the PV value defined in the present invention.
 〈実施例31〉
 実施例1で製造したAlN基板の接合面にスパッタリング法によって厚み0.1μmのTi膜、厚み0.2μmのPt膜、および厚み1.0μmのAu膜を順に積層し、さらにその上に厚み5μmのAu-Sn半田膜(組成比Au:Sn=70:30)を成膜した。
<Example 31>
A Ti film having a thickness of 0.1 μm, a Pt film having a thickness of 0.2 μm, and an Au film having a thickness of 1.0 μm are sequentially laminated on the bonding surface of the AlN substrate manufactured in Example 1 by a sputtering method, and further a thickness of 5 μm is formed thereon. An Au—Sn solder film (composition ratio Au: Sn = 70: 30) was formed.
 またφ200×0.7mmtの円板状のサファイア基板を用意し、その片面である被接合面に上記と同様にして厚み0.1μmのTi膜、厚み0.2μmのPt膜、および厚み1.0μmのAu膜を順に積層した。 Further, a disc-shaped sapphire substrate having a diameter of 200 × 0.7 mmt is prepared, and a Ti film having a thickness of 0.1 μm, a Pt film having a thickness of 0.2 μm, and a thickness of 1. A 0 μm Au film was laminated in order.
 次いで上記AlN基板をAu-Sn半田膜を上にして設置した上に、サファイア基板をAu膜が上記Au-Sn半田膜と密着するように重ね合わせた状態で、窒素雰囲気中で320℃に加熱して両基板を半田接合させた。 Next, the AlN substrate is placed with the Au—Sn solder film on top, and the sapphire substrate is overlaid so that the Au film is in close contact with the Au—Sn solder film, and heated to 320 ° C. in a nitrogen atmosphere. Both substrates were soldered together.
 そして半田接合させたAlN基板とサファイア基板を円板のほぼ中央で積層方向に沿って切断して切断面の全体を走査型電子顕微鏡(SEM)によって倍率1000倍で観察したところ、接合面にはボイドは見られなかった。 Then, the solder-bonded AlN substrate and sapphire substrate were cut along the stacking direction at almost the center of the disk, and the entire cut surface was observed with a scanning electron microscope (SEM) at a magnification of 1000 times. There were no voids.
 〈実施例32〉
 実施例1で製造したAlN基板の接合面にCVD法によって厚み0.1μmのSiO2膜を成膜した後、当該AlN基板をチャンバー内に設置して60sccmのN2ガスを導入しながら100WのRFプラズマによって上記SiO2膜の表面を清浄面化した。
<Example 32>
After a SiO 2 film having a thickness of 0.1 μm was formed on the bonding surface of the AlN substrate manufactured in Example 1 by CVD, the AlN substrate was placed in the chamber and 100 W of 100 W was introduced while introducing 60 sccm of N 2 gas. The surface of the SiO 2 film was cleaned with RF plasma.
 またφ200×0.7mmtの円板状のサファイア基板を用意し、その片面である被接合面を上記と同様に60sccmのN2ガスを導入しながら100WのRFプラズマによって清浄面化した。 Also, a disc-shaped sapphire substrate having a diameter of 200 × 0.7 mmt was prepared, and the surface to be bonded was cleaned with 100 W RF plasma while introducing 60 sccm of N 2 gas in the same manner as described above.
 次いで上記AlN基板をSiO2膜を上にして設置した上に、サファイア基板を、清浄面化した被接合面が上記SiO2膜と密着するように重ね合わせた状態で300℃に加熱して両基板を接合させた。 Next, the AlN substrate is placed with the SiO 2 film on top, and the sapphire substrate is heated to 300 ° C. with the cleaned surface to be bonded so as to be in close contact with the SiO 2 film. The substrates were joined.
 そして接合させたAlN基板とサファイア基板の全体をサファイア基板側から金属顕微鏡によって倍率1000倍で観察したところ、接合面にはボイドは見られなかった。 Then, when the entire bonded AlN substrate and sapphire substrate were observed from the sapphire substrate side with a metal microscope at a magnification of 1000 times, no void was found on the bonded surface.
 〈実施例33〉
 実施例6で製造したAlN基板を用いたこと以外は実施例32と同様にして、当該AlN基板とサファイア基板とを接合させた。
<Example 33>
The AlN substrate and the sapphire substrate were bonded in the same manner as in Example 32 except that the AlN substrate manufactured in Example 6 was used.
 そして接合させたAlN基板とサファイア基板の全体をサファイア基板側から金属顕微鏡によって倍率1000倍で観察したところ、接合面に10個のボイドが見られたが、それ以外の領域は貼り合わせ基板として使用できると判断した。 And when the whole of the bonded AlN substrate and the sapphire substrate was observed with a metal microscope from the sapphire substrate side at a magnification of 1000 times, 10 voids were found on the bonding surface, but the other areas were used as bonded substrates Judged that it was possible.
 〈比較例15〉
 比較例3で製造したAlN基板を用いたこと以外は実施例32と同様にして、当該AlN基板とサファイア基板とを接合させた。
<Comparative Example 15>
The AlN substrate and the sapphire substrate were bonded in the same manner as in Example 32 except that the AlN substrate manufactured in Comparative Example 3 was used.
 そして接合させたAlN基板とサファイア基板の全体をサファイア基板側から金属顕微鏡によって倍率1000倍で観察したところ、接合面の全面に1000個以上のボイドが認められ、貼り合わせ基板として使用できる領域を見出すことはできなかった。 When the entire bonded AlN substrate and sapphire substrate were observed from the sapphire substrate side with a metal microscope at a magnification of 1000 times, 1000 or more voids were observed on the entire bonding surface, and an area that could be used as a bonded substrate was found. I couldn't.

Claims (4)

  1.  酸化物換算で0.009質量%以上、0.28質量%以下の2A族元素、および酸化物換算で0.02質量%以上、4.5質量%以下の3A族元素を含むAlNの焼結体からなり、他部材との接合面を備え、前記接合面は、面精度を示すPV値が300nm以下であるAlN基板。 Sintering of AlN containing 0.009% by mass or more and 0.28% by mass or less of 2A group element in terms of oxide, and 0.02% by mass or more and 4.5% by mass or less of 3A group element in terms of oxide An AlN substrate comprising a body and having a joint surface with another member, and the joint surface has a PV value indicating surface accuracy of 300 nm or less.
  2.  前記2A族元素はCa、およびMgからなる群より選ばれた少なくとも1種である請求項1に記載のAlN基板。 The AlN substrate according to claim 1, wherein the 2A group element is at least one selected from the group consisting of Ca and Mg.
  3.  前記3A族元素はY、およびランタノイドからなる群より選ばれた少なくとも1種である請求項1又は請求項2に記載のAlN基板。 3. The AlN substrate according to claim 1, wherein the 3A group element is at least one selected from the group consisting of Y and a lanthanoid.
  4.  前記接合面には、Ti、Pt、Pd、Au、Ag、およびAlからなる群より選ばれた少なくとも1種の金属、Au-Sn、またはSiO2からなる少なくとも1層の膜が形成されている請求項1~請求項3のいずれか1項に記載のAlN基板。 At least one layer made of at least one metal selected from the group consisting of Ti, Pt, Pd, Au, Ag, and Al, Au—Sn, or SiO 2 is formed on the bonding surface. The AlN substrate according to any one of claims 1 to 3.
PCT/JP2014/082845 2014-01-14 2014-12-11 Aln substrate WO2015107812A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015557738A JP6412886B2 (en) 2014-01-14 2014-12-11 AlN substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014004550 2014-01-14
JP2014-004550 2014-01-14

Publications (1)

Publication Number Publication Date
WO2015107812A1 true WO2015107812A1 (en) 2015-07-23

Family

ID=53542715

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/082845 WO2015107812A1 (en) 2014-01-14 2014-12-11 Aln substrate

Country Status (2)

Country Link
JP (1) JP6412886B2 (en)
WO (1) WO2015107812A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06308294A (en) * 1993-04-28 1994-11-04 Kyocera Corp X-ray reflecting mirror
JPH0925186A (en) * 1995-07-14 1997-01-28 Sumitomo Electric Ind Ltd Ceramic substrate and its production
JP2002201072A (en) * 2000-12-27 2002-07-16 Toshiba Corp AlN SINTERED COMPACT AND AlN CIRCUIT SUBSTRATE USING IT
JP2004250318A (en) * 2002-12-27 2004-09-09 Hitachi Ltd AlN SINTERED COMPACT AND SUBSTRATE FOR ELECTRONIC DEVICE
JP2011181651A (en) * 2010-03-01 2011-09-15 Panasonic Corp Heat dissipation substrate and method for manufacturing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06308294A (en) * 1993-04-28 1994-11-04 Kyocera Corp X-ray reflecting mirror
JPH0925186A (en) * 1995-07-14 1997-01-28 Sumitomo Electric Ind Ltd Ceramic substrate and its production
JP2002201072A (en) * 2000-12-27 2002-07-16 Toshiba Corp AlN SINTERED COMPACT AND AlN CIRCUIT SUBSTRATE USING IT
JP2004250318A (en) * 2002-12-27 2004-09-09 Hitachi Ltd AlN SINTERED COMPACT AND SUBSTRATE FOR ELECTRONIC DEVICE
JP2011181651A (en) * 2010-03-01 2011-09-15 Panasonic Corp Heat dissipation substrate and method for manufacturing the same

Also Published As

Publication number Publication date
JPWO2015107812A1 (en) 2017-03-23
JP6412886B2 (en) 2018-10-24

Similar Documents

Publication Publication Date Title
US8178455B2 (en) Alumina sintered body, method for manufacturing the same, and semiconductor manufacturing apparatus member
KR101483921B1 (en) Cooling plate, method for manufacturing the same, and member for semiconductor manufacturing apparatus
JP5339214B2 (en) Method for manufacturing silicon nitride substrate and silicon nitride substrate
JP2002201075A (en) Silicon nitride ceramic substrate and silicon nitride ceramic circuit substrate using it and its manufacturing method
CN105190839B (en) Processing substrate of composite substrate for semiconductor
JP7062229B2 (en) Plate-shaped silicon nitride sintered body and its manufacturing method
JP3830382B2 (en) Ceramic sintered body and method for producing the same
WO2019188148A1 (en) Composite sintered body, semiconductor manufacturing device member, and method for manufacturing composite sintered body
JP5406565B2 (en) Aluminum oxide sintered body, manufacturing method thereof, and semiconductor manufacturing apparatus member
JP5189712B2 (en) AlN substrate and manufacturing method thereof
JPWO2019235594A1 (en) Plate-shaped silicon nitride sintered body and its manufacturing method
JP7272370B2 (en) Silicon nitride substrate manufacturing method and silicon nitride substrate
JP2012111671A (en) Method for producing aluminum nitride sintered compact workpiece
JP7211549B2 (en) silicon nitride substrate
JP6412886B2 (en) AlN substrate
JP5092135B2 (en) Porous material and method for producing the same
JP7278326B2 (en) Manufacturing method of silicon nitride sintered body
WO2004110957A1 (en) Aluminum nitride conjugate body and method of producing the same
TWI764320B (en) Composite sintered body and method of manufacturing composite sintered body
JP7278325B2 (en) Silicon nitride sintered body
JP7339980B2 (en) Manufacturing method of silicon nitride sintered body
JP7339979B2 (en) Manufacturing method of silicon nitride sintered body
JP7318835B2 (en) silicon nitride substrate
TW200415693A (en) Wafer holder for semiconductor manufacturing device and semiconductor manufacturing device in which it is installed
JP7211476B2 (en) silicon nitride substrate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14878667

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015557738

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14878667

Country of ref document: EP

Kind code of ref document: A1