WO2015106462A1 - 一种无人机载成像高光谱几何校正的方法及系统 - Google Patents

一种无人机载成像高光谱几何校正的方法及系统 Download PDF

Info

Publication number
WO2015106462A1
WO2015106462A1 PCT/CN2014/071250 CN2014071250W WO2015106462A1 WO 2015106462 A1 WO2015106462 A1 WO 2015106462A1 CN 2014071250 W CN2014071250 W CN 2014071250W WO 2015106462 A1 WO2015106462 A1 WO 2015106462A1
Authority
WO
WIPO (PCT)
Prior art keywords
imaging
hyperspectral
attitude information
information
attitude
Prior art date
Application number
PCT/CN2014/071250
Other languages
English (en)
French (fr)
Inventor
杨贵军
赵春江
于海洋
杨小冬
徐新刚
顾晓鹤
冯海宽
杨浩
闫华
Original Assignee
北京农业信息技术研究中心
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京农业信息技术研究中心 filed Critical 北京农业信息技术研究中心
Priority to US15/314,681 priority Critical patent/US10204402B2/en
Publication of WO2015106462A1 publication Critical patent/WO2015106462A1/zh

Links

Classifications

    • G06T5/80
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/50Depth or shape recovery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/64Computer-aided capture of images, e.g. transfer from script file into camera, check of taken image quality, advice or proposal for image composition or decision on when to take image
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/80Camera processing pipelines; Components thereof
    • H04N23/81Camera processing pipelines; Components thereof for suppressing or minimising disturbance in the image signal generation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10032Satellite or aerial image; Remote sensing
    • G06T2207/10036Multispectral image; Hyperspectral image

Definitions

  • the present invention relates to the field of image processing technologies, and in particular, to a method and system for unmanned aerial imaging high-spectral geometric correction. Background technique
  • Positioning system P0S sensor is used to collect position and attitude information.
  • the digital elevation model of DEM (Digital Elevation Model) is a virtual representation of the topography. It can be acquired by photogrammetry according to aerial or satellite imagery. As the basic data of orthorectification of digital image, DEM is a collinear equation for photogrammetry. Necessary conditions.
  • imaging hyperspectral remote sensing technology has promoted the quantitative development of agricultural remote sensing with the combination of maps, high spatial and spectral resolution, and has great application potential.
  • the satellite remote sensing platform is limited by the orbit, and the time of over-the-top is fixed every day, and emergency observation cannot be realized.
  • the cost of acquiring image data by manned aerial remote sensing is high and is greatly affected by weather conditions.
  • the new remote sensing technology with UAV as the near-ground flight platform equipped with Earth observation sensors has been rapidly developed, especially the micro-mini UAV has good maneuverability, short operating cycle and timeliness. Good, low maintenance cost, economical and practical, etc., it is very suitable for carrying small-scale imaging hyperspectral equipment to achieve low-altitude remote sensing observation of agriculture, which has important research and application value.
  • the UAV's own load platform has low stability and is greatly affected by the airflow velocity.
  • Most imaging hyperspectral instruments use the line array sensor to push the imaging mode.
  • the linear array spectral position and time change which makes the imaging spectrum data have obvious geometry. distortion.
  • In the imaging spectrometer push imaging process tens to hundreds of line array spectra are acquired every second, and subsequent data geometric correction requires high-precision sensor position and attitude information.
  • the UAV's own load is small, it cannot be equipped with a conventional large-scale high-precision POS system. It is impossible to synchronously acquire high-precision sensor position and attitude information during the push-broom imaging process, and only obtains low-precision installation of the drone itself.
  • POS data, resulting in unmanned aerial imaging of hyperspectral image geometric distortion is difficult to recover, geometric accuracy correction has become a bottleneck that hinders the widespread application of UAV imaging hyperspectral imaging. Summary of the invention
  • the technical problems to be solved by the present invention are as follows:
  • the drone platform has poor stability and is susceptible to airflow.
  • the unmanned aerial imaging of the aircraft is usually driven by a line array sensor, and the positional posture of the line array changes significantly during the imaging process, resulting in a spectral image. More serious geometric distortion; unmanned aerial imaging has a small coverage of hyperspectral single line array, difficulty in feature extraction, low overlap between line arrays, difficulty in matching adjacent line array features, and inability to effectively extract DEM from the survey area;
  • the man-machine load capacity is low, and it is usually impossible to carry a high-precision imaging POS system to obtain high-precision imaging hyperspectral line array position and attitude information.
  • the geometric correction of the hyperspectral imaging of the unmanned aerial vehicle is solved.
  • the present invention proposes a method for hyperspectral geometry correction of unmanned aircraft imaging, comprising the following steps:
  • a hyperspectral image is generated according to the high-precision linear array position and posture information and the DEM to generate a hyperspectral image, and the hyperspectral geometric correction of the unmanned aerial imaging is realized.
  • the method further includes:
  • the digital camera, the imaging hyperspectrometer and the drone low-precision POS sensor are placed in adjacent positions on the same plane, so that the position information of the three sensors is consistent;
  • the sampling frequency V HiS of the imaging hyperspectrometer is set according to the acquisition frequency v De of the digital camera.
  • the setting frequency V De of the digital camera is set as follows:
  • the sampling frequency of the imaging hyperspectrometer is set according to the acquisition frequency of the digital camera HIS, specifically:
  • S is the flight speed of the drone
  • H is the flight altitude of the drone
  • /FOV HiS is the angle of view corresponding to a single probe on the line of the imaging spectrometer.
  • the parsing the precise photographing center position and posture information of the digital photo according to the position and posture information is specifically:
  • the aerial photo triangulation method is used to analyze the precise camera center position and posture information of the digital photo.
  • the correcting the position and attitude data corresponding to the plurality of imaging hyperspectral scan lines between the photographing centers of the adjacent digital photographs according to the accurate photographing center position and posture information comprises:
  • the position and attitude information of the current UAV low-precision POS sensor collected in real time is matched with the plurality of imaging hyperspectral scan lines between the photographing centers of the adjacent digital photographs, and the position and posture corresponding to the scan lines of the imaging hyperspectral are obtained.
  • the position and orientation data corresponding to the plurality of imaging hyperspectral scan lines are corrected according to the accurate photographing center position and posture information.
  • the invention also provides a system for UAV aircraft imaging hyperspectral geometric correction, comprising: an acquisition module, an analysis module, a correction module and a generation module;
  • the acquisition module is configured to collect the position and attitude information of the current low-precision POS sensor of the UAV in real time;
  • the parsing module is configured to parse the photographing center position and posture information of the digital photo according to the position and posture information collected by the collecting module, and according to the The central position and posture information generates a DEM of the image coverage area
  • the correction module is configured to correct the position and attitude data corresponding to the plurality of imaging hyperspectral scan lines between the photographing centers of the adjacent digital photographs according to the photographing center position and posture information, Obtaining line position and attitude information of the plurality of imaging hyperspectral scan lines;
  • the system further includes a setting module
  • a setting module configured to set a digital camera, an imaging hyperspectrometer, and a drone low-precision POS sensor in adjacent positions on the same plane to make the three sensor posture position information consistent; the setting module is further configured to set the digital camera The acquisition frequency and the sampling frequency of the imaging hyperspectrometer are set according to the acquisition frequency of the digital camera.
  • the correction module comprises: a matching unit and a correction unit; a matching unit, configured to time-match the position and posture information of the current UAV low-precision POS sensor collected in real time with the plurality of imaging hyperspectral scan lines between the photographing centers of the adjacent digital photos to obtain an imaging hyperspectral scan line. Corresponding position and attitude data;
  • a correcting unit configured to correct the position and posture data corresponding to the imaging hyperspectral scan line according to the accurate photographing center position and posture information.
  • the high-precision POS information calculated by the unmanned aerial mirror digital imaging data is used to optimize the low-precision POS data of the drone,
  • the imaging hyperspectral instrument is accurately corrected by scan line geometry, which provides technical support for the wide application of UAV imaging hyperspectral.
  • FIG. 1 is a flow chart of a method for hyperspectral geometric correction of unmanned aerial vehicle imaging according to the present invention
  • FIG. 2 is a schematic diagram of imaging position information of a digital camera and an imaging hyperspectrometer according to an embodiment of the present invention
  • FIG. 3 is a system block diagram of a hyperspectral geometric correction of an unmanned aerial vehicle imaging according to the present invention.
  • the invention provides a method and a system for hyperspectral geometric correction of unmanned aerial vehicle imaging, and integrates a high-resolution area array imaging digital camera (DC, Digital Camera) and an image of a UAV remote sensing platform and an imaging hyperspectral imaging feature.
  • Line array push-scan imaging hyperspectral imaging HIS, Hyperspectral Imaging System
  • POS Position and Orientation System
  • the measurement method is used to solve the POS information of the high-precision digital photo photography center and the DEM of the measurement area.
  • Polynomial fitting is performed on the POS data corresponding to each scanning line of the imaging hyperspectral imaging center of the adjacent digital photo photography center, and then the solved high-precision digital photo shooting center POS information is substituted into the polynomial equation to obtain high-precision scan-by-scan POS information. Finally, the collinear equation is established by combining the DEM of the survey area and the high-precision scan-by-scan POS information to realize the geometric correction of the hyperspectral data of the unmanned aerial image.
  • Embodiment 1 of the present invention proposes a method for hyperspectral geometric correction of unmanned aerial vehicle imaging, as shown in FIG. 1, which includes the following steps:
  • Step 101 Collect position and attitude information of a current low-precision POS sensor of the drone in real time; Step 102, analyzing the precise camera center position and posture information of the digital photo according to the position and posture information, and generating a DEM of the photo coverage area;
  • Step 103 Correct the position and attitude data corresponding to the plurality of imaging hyperspectral scan lines between the photographing centers of the adjacent digital photographs according to the accurate photographing center position and posture information, and obtain the high precision of the plurality of imaging hyperspectral scan lines. Line position and attitude information;
  • Step 104 Construct a hyperspectral image according to the high-precision linear array position and posture information and the DEM to generate a hyperspectral image, and implement hyperspectral geometric correction of the unmanned aerial imaging.
  • the method further includes:
  • the digital camera, the imaging hyperspectrometer and the drone low-precision POS sensor are placed in adjacent positions on the same plane, so that the position information of the three sensors is consistent;
  • the sampling frequency V HiS of the imaging hyperspectrometer is set according to the acquisition frequency v De of the digital camera.
  • the setting frequency V De of the digital camera is set as follows:
  • S is the flight speed of the drone
  • is the flying height of the drone
  • FOV ⁇ is the angle of view of the digital camera
  • r is the overlap of the images required for spatial triangulation.
  • the sampling frequency of the imaging hyperspectrometer is set according to the acquisition frequency of the digital camera
  • S is the flight speed of the drone, and the flying height of the drone, /FOV fflS is the angle of view corresponding to a single probe on the line of the imaging spectrometer.
  • the parsing the precise photographing center position and posture information of the digital photo according to the position and posture information is specifically:
  • the aerial photo triangulation method is used to analyze the precise camera center position and posture information of the digital photo.
  • the Canon 5D Mark II digital camera (DC) and the self-developed imaging hyperspectral instrument are integrated.
  • HIS UAV POS system sampling frequency up to 100Hz
  • positioning is measured by GPS receiver
  • attitude is measured by IMU sensor
  • IMU sensor measures roll ( ), pitch ("), heading precision
  • the degree is ⁇ 1.0 °
  • the GPS receiver plane (X/Y) accuracy is 2/2.5m
  • the elevation (Z) accuracy is 5m.
  • the imaging hyperspectral instrument has 200 imaging bands. The above three sensors are deployed on the same plane, and the positions are adjacent, and the position information of the POS sensor is ensured to be consistent with the sensor.
  • the digital camera acquisition frequency Vdc HZ is calculated according to the UAV flight altitude, flight speed, and digital camera observation field of view (FOVDC). Based on this, the digital camera sampling frequency is calculated.
  • S is the flight speed (m/s) of the drone
  • flying height (m) of the drone F0V DC is the angle of view of the digital camera (radian)
  • r is the overlap of the images required for spatial triangulation (%).
  • V ⁇ (2) Wish V DC *2*H*ig(IFOV HIS /2)
  • IF0V H IS is the angle of view (in radians) corresponding to a single probe on the line of the imaging spectrometer.
  • V ⁇ is at least 200 times, that is, the ⁇ dish is much larger than ⁇ . Therefore, in the imaging process of the digital camera adjacent to two times, the imaging spectrometer is carried out. The second line of the sweep.
  • the drone POS sensor performs continuous data measurement at the highest level and saves the POS data. According to the overlapping degree of digital camera shooting, the same point on the ground can be imaged on multiple images.
  • the traditional photographic measurement and aerial triangulation method can be used to accurately solve the accurate POS information of each photo shooting position.
  • the correcting the position and attitude data corresponding to the plurality of imaging hyperspectral scan lines between the photographing centers of the adjacent digital photographs according to the accurate photographing center position and posture information comprises:
  • the position and attitude information of the current UAV low-precision POS sensor collected in real time is matched with the plurality of imaging hyperspectral scan lines between the photographing centers of the adjacent digital photographs, and the position and posture corresponding to the scan lines of the imaging hyperspectral are obtained.
  • the position and orientation data corresponding to the plurality of imaging hyperspectral scan lines are corrected according to the accurate photographing center position and posture information.
  • the position and attitude data corresponding to the plurality of imaging hyperspectral scan lines are corrected according to the accurate photographing center position and posture information, which is specifically:
  • the imaging hyperspectral scan-by-scan line POS data is corrected: as shown in FIG. 2, taking S 2 as an example, firstly, the digital camera is scanned in the S Sz imaging time interval, that is, the L111-Lln scan of the imaging hyperspectral apparatus. Polynomial fitting is performed on the POS data corresponding to the scan lines.
  • the high-precision POS information calculated by taking a picture with a digital camera that is, the components corresponding to POS sl are respectively input into the above-mentioned fitted polynomial equations, respectively, and the time t can be calculated separately.
  • the high-precision POS information corresponding to the line of the imaging spectrometer is the position information of the line array:
  • a 3 - ⁇ ⁇ 1 ⁇ cos .
  • c 3 cos ⁇ cos .
  • ( ⁇ , y) is the coordinates of each pixel on the imaging hyperspectral scan line;
  • ( X P, , Z P) is the geometric coordinate after geometric correction;
  • f is the focal length of the imaging spectrometer.
  • the second embodiment of the present invention also proposes a system for unmanned aerial imaging hyperspectral geometric correction, as shown in FIG. 3, comprising: an acquisition module 1, an analysis module 2, a correction module 3, and a generation module 4;
  • the acquisition module 1 is configured to collect the position and attitude information of the current low-precision POS sensor of the UAV in real time;
  • the parsing module 2 is configured to parse the position information of the photographing center of the digital photo according to the position and posture information collected by the collecting module, and according to The central position and posture information generates a DEM of the image coverage area;
  • the correction module 3 is configured to, according to the photographing center position and posture information, position and attitude data corresponding to the plurality of imaging hyperspectral scan lines between the photographing centers of the adjacent digital photographs. Performing correction to obtain line position and attitude information of the plurality of imaging hyperspectral scan lines;
  • the generating module 4 generates a hyperspectral image according to the line position and posture information and the DEM to construct a collinear equation.
  • the system further includes a setting module
  • a setting module configured to set a digital camera, an imaging hyperspectrometer, and a drone low-precision POS sensor in adjacent positions on the same plane to make the three sensor posture position information consistent; the setting module is further configured to set the digital camera The acquisition frequency and the sampling frequency of the imaging hyperspectrometer are set according to the acquisition frequency of the digital camera.
  • the correction module comprises 3: a matching unit and a correction unit; a matching unit, configured to time-match the position and posture information of the current UAV low-precision POS sensor collected in real time with the plurality of imaging hyperspectral scan lines between the photographing centers of the adjacent digital photos to obtain an imaging hyperspectral scan line. Corresponding position and attitude data;
  • a correcting unit configured to correct the position and posture data corresponding to the imaging hyperspectral scan line according to the accurate photographing center position and posture information.
  • the high-precision POS information calculated by the unmanned aerial mirror digital imaging data is used to optimize the low-precision POS data of the drone,
  • the imaging hyperspectral instrument is accurately corrected by scan line geometry, which provides technical support for the wide application of UAV imaging hyperspectral.

Abstract

涉及一种无人机载成像高光谱几何校正的方法及系统,包括:实时采集当前无人机低精度POS传感器的位置姿态信息;根据所述位置姿态信息解析数码像片精确的摄影中心位置姿态信息,生成像片覆盖区域的DEM;根据所述精确的摄影中心位置姿态信息对相邻数码像片的摄影中心间多条成像高光谱扫描线对应的位置姿态数据进行校正,得到所述多条成像高光谱扫描线的高精度线阵位置姿态信息;根据所述高精度线阵位置姿态信息和DEM建立共线方程,生成高光谱图像;利用无人机面阵数码成像数据解算出的高精度POS信息,对无人机低精度POS数据进行优化,实现成像高光谱仪逐扫描线几何精确校正,为无人机成像高光谱广泛应用提供了技术支撑。

Description

一种无人机载成像高光谱几何校正的方法及系统
技术领域 本发明涉及图像处理技术领域,尤其涉及一种无人机载成像高光谱几何校正 的方法及系统。 背景技术
POS (position and orientation system) 定位定向系统, P0S传感器用于采集位 置和姿态信息。
DEM(Digital Elevation Model)数字高程模型, 是对地貌形态的虚拟表示, 可 根据航空或卫星影像, 通过摄影测量途径获取, 作为数字影像正射校正的基础数 据, DEM是摄影测量中构建共线方程的必要条件。
近年来, 成像高光谱遥感技术以图谱合一, 空间和光谱分辨率高等特点推进 了农业遥感定量化发展, 具有巨大的应用潜力。然而, 卫星遥感平台受轨道的限 制, 每天过顶的时间固定, 无法实现应急观测; 有人驾驶的航空遥感获取影像数 据成本较高, 且受天气条件影响较大。 随着无人机技术的发展, 以无人机为近地 飞行平台搭载对地观测传感器的新型遥感探测技术得到快速发展,尤其微小型无 人机具有机动灵活性好、作业周期短、时效性好、维护成本低、经济实用等特点, 非常适合搭载微小型成像高光谱设备实现农业低空遥感观测,具有重要的研究和 应用价值。
无人机自身载荷平台稳定性较低, 受气流风速影响较大, 大多数成像高光谱 仪采用线阵传感器推扫成像模式, 成像过程中线阵光谱位置姿态时刻变化, 使得 成像光谱数据发生明显的几何畸变。在成像光谱仪推扫成像过程中, 每秒钟采集 几十到几百条线阵光谱, 后续数据几何校正需要高精度的传感器位置及姿态信 息。 但由于无人机自身载荷较小无法搭载常规大型的高精度 POS系统, 无法在 推扫成像过程中同步采集高精度的传感器位置及姿态信息,只能获取到无人机自 身安装简易的低精度 POS数据, 导致无人机载成像高光谱图像几何畸变难以恢 复, 几何精确校正成为阻碍无人机成像高光谱广泛应用的瓶颈问题。 发明内容
(一) 要解决的技术问题 本发明所要解决的技术问题是: 无人机平台稳定性较差, 易受气流影响, 无 人机载成像高光谱通常采用线阵传感器推扫, 成像过程中线阵位置姿态变化明 显, 导致光谱图像较为严重的几何畸变; 无人机载成像高光谱单条线阵覆盖范围 小, 特征提取难度大, 线阵间重叠度低, 相邻线阵特征匹配难度大, 无法有效提 取测区 DEM; 而且无人机载荷能力较低, 通常无法搭载高精度 POS系统获取高 精度成像高光谱线阵位置姿态信息。针对上述条件, 解决无人机载成像高光谱的 几何校正。
(二) 技术方案
为此目的, 本发明提出了一种无人机载成像高光谱几何校正的方法, 包括以 下步骤:
实时采集当前无人机低精度 POS传感器的位置姿态信息;
根据所述位置姿态信息解析数码像片精确的摄影中心位置姿态信息,并生成 像片覆盖区域的 DEM;
根据所述精确的摄影中心位置姿态信息对相邻数码像片的摄影中心间多条 成像高光谱扫描线对应的位置姿态数据进行校正,得到所述多条成像高光谱扫描 线高精度的线阵位置姿态信息;
根据所述高精度线阵位置姿态信息和所述 DEM构建共线方程, 生成高光谱 图像, 实现无人机载成像高光谱几何校正。
优选地,所述实时采集当前无人机低精度 POS传感器的位置姿态信息之前, 还包括:
将数码相机, 成像高光谱仪及无人机低精度 POS传感器设置于同一平面的 相邻位置, 使三种传感器姿态位置信息一致;
设置所述数码相机的采集频率 vDe
根据数码相机的采集频率 vDe设置成像高光谱仪的采样频率 VHiS
优选地, 所述设定所述数码相机的采集频率 VDe, 具体为:
根据无人机飞行高度、 飞行速度和所述数码相机观测视场角 FOVDC, 设定 数码相机的采集频率 VDe :
V =
°° 2*H *t<?( O DC /2) *(l-r)
其中, S 为无人机飞行速度, Η 为无人机飞行高度, FOV^为数码相机视 场角大小, r为空间三角测量所需的像片重叠度。 优选地, 所述根据数码相机的采集频率^"∞设置成像高光谱仪的采样频率 HIS , 具体为:
VDC * 2 * H * tg(IFOVHIS / 2)
其中, S为无人机飞行速度, H为无人机飞行高度, /FOVHiS为成像光谱仪 线阵上单个探元对应的视场角。
优选地,所述根据所述位置姿态信息解析数码像片精确的摄影中心位置姿态 信息, 具体为:
根据实时采集的当前无人机低精度 POS传感器的位置姿态信息和数码像片 采用空中三角测量方法解析所述数码像片精确的摄影中心位置姿态信息。
优选地,所述根据所述精确的摄影中心位置姿态信息对相邻数码像片的摄影 中心间多条成像高光谱扫描线对应的位置姿态数据进行校正, 具体包括:
将实时采集的当前无人机低精度 POS传感器的位置姿态信息与所述相邻数 码像片的摄影中心间多条成像高光谱扫描线进行时间匹配,得到成像高光谱各扫 描线对应的位置姿态数据;
根据所述精确的摄影中心位置姿态信息对所述多条成像高光谱扫描线对应 的位置姿态数据进行校正。
本发明还提供了一种无人机载成像高光谱几何校正的系统, 包括: 采集模块、 解析模块、 校正模块和生成模块;
采集模块, 用于实时采集当前无人机低精度 POS传感器的位置姿态信息; 解析模块,用于根据采集模块采集的所述位置姿态信息解析数码像片的摄影 中心位置姿态信息, 并根据所述中心位置姿态信息生成像片覆盖区域的 DEM; 校正模块,用于根据所述摄影中心位置姿态信息对相邻数码像片的摄影中心 间多条成像高光谱扫描线对应的位置姿态数据进行校正,得到所述多条成像高光 谱扫描线的线阵位置姿态信息;
生成模块, 根据所述线阵位置姿态信息和所述 DEM构建共线方程, 生成高 光谱图像。
优选地, 所述系统还包括设置模块;
设置模块, 用于将数码相机, 成像高光谱仪及无人机低精度 POS传感器设 置于同一平面的相邻位置, 使三种传感器姿态位置信息一致; 所述设置模块还用 于设置所述数码相机的采集频率并根据数码相机的采集频率设置成像高光谱仪 的采样频率。
优选地, 所述校正模块包括: 匹配单元和校正单元; 匹配单元, 用于将实时采集的当前无人机低精度 POS传感器的位置姿态信 息与所述相邻数码像片的摄影中心间多条成像高光谱扫描线进行时间匹配,得到 成像高光谱扫描线对应的位置姿态数据;
校正单元,用于根据所述精确的摄影中心位置姿态信息对所述成像高光谱扫 描线对应的位置姿态数据进行校正。
(三) 有益效果
通过采用本发明公开的一种无人机载成像高光谱几何校正的方法及系统,利 用无人机面阵数码成像数据解算出的高精度 POS信息, 对无人机低精度 POS数 据进行优化, 实现成像高光谱仪逐扫描线几何精确校正, 为无人机成像高光谱广 泛应用提供了技术支撑。 附图说明
通过参考附图会更加清楚的理解本发明的特征和优点,附图是示意性的而不 应理解为对本发明进行任何限制, 在附图中:
图 1是本发明一种无人机载成像高光谱几何校正的方法流程图;
图 2是本发明实施例中数码相机和成像高光谱仪成像位置信息的示意图; 图 3是本发明一种无人机载成像高光谱几何校正的系统模块图。 具体实施方式 下面将结合附图对本发明的实施例进行详细描述。
本发明提出了一种无人机载成像高光谱几何校正的方法及系统,针对无人机 遥感平台特点及成像高光谱成像特点, 集成高分辨率面阵成像数码相机 (DC, Digital Camera)和线阵推扫成像高光谱仪 (HIS,Hyperspectral Imaging System), 利 用数码像片、地面控制点、无人机自身携带低精度的 POS (Position and Orientation System)传感器同步采集位置和姿态信息, 采用空中三角测量方法, 解算高精度 数码像片摄影中心 POS信息以及测区 DEM。对相邻数码像片摄影中心间成像高 光谱仪各扫描线对应的 POS数据进行多项式拟合, 然后将解算的高精度数码像 片摄影中心 POS信息代入多项式方程, 得到高精度逐扫描线 POS信息, 最后, 结合测区 DEM及高精度逐扫描线 POS信息建立共线方程,实现无人机载成像高 光谱数据的几何校正。
本发明实施例一提出了一种无人机载成像高光谱几何校正的方法,如图 1所 示, 包括以下步骤:
步骤 101, 实时采集当前无人机低精度 POS传感器的位置姿态信息; 步骤 102, 根据所述位置姿态信息解析数码像片精确的摄影中心位置姿态信 息, 并生成像片覆盖区域的 DEM;
步骤 103, 根据所述精确的摄影中心位置姿态信息对相邻数码像片的摄影中 心间多条成像高光谱扫描线对应的位置姿态数据进行校正,得到所述多条成像高 光谱扫描线高精度的线阵位置姿态信息;
步骤 104,根据所述高精度的线阵位置姿态信息和所述 DEM构建共线方程, 生成高光谱图像, 实现无人机载成像高光谱几何校正。
优选地,所述实时采集当前无人机低精度 POS传感器的位置姿态信息之前, 还包括:
将数码相机, 成像高光谱仪及无人机低精度 POS传感器设置于同一平面的 相邻位置, 使三种传感器姿态位置信息一致;
设置所述数码相机的采集频率 vDe
根据数码相机的采集频率 vDe设置成像高光谱仪的采样频率 VHiS
优选地, 所述设定所述数码相机的采集频率 VDe, 具体为:
根据无人机飞行高度、 飞行速度和所述数码相机观测视场角 FOVDC , 设定 数码相机的采集频率 vDe :
V =
°° 2*H *t<?( O DC /2)*(l-r)
其中, S 为无人机飞行速度, Η 为无人机飞行高度, FOV^为数码相机视 场角大小, r为空间三角测量所需的像片重叠度。
优选地, 所述根据数码相机的采集频率 设置成像高光谱仪的采样频率
VDC * 2 * H * tg(IFOVHIS / 2)
其中, S为无人机飞行速度, Η为无人机飞行高度, /FOVfflS为成像光谱仪 线阵上单个探元对应的视场角。
优选地,所述根据所述位置姿态信息解析数码像片精确的摄影中心位置姿态 信息, 具体为:
根据实时采集的当前无人机低精度 POS传感器的位置姿态信息和数码像片 采用空中三角测量方法解析所述数码像片精确的摄影中心位置姿态信息。
本实施例中集成佳能 5D Mark II 数码相机 (DC)及自主研发成像高光谱仪
(HIS)o 无人机 POS系统采样频率可达 100Hz, 定位由 GPS接收器测量, 姿态由 IMU传感器测量, 其中 IMU传感器测量横滚 ( )、 俯仰 (《)、 航向 精 度达 ±1.0 ° , GPS接收器平面 (X/Y)精度为 2/2.5m, 高程 (Z)精度为 5m。 成像高 光谱仪具有 200个成像波段。将上述三种传感器部署于同一平面, 位置相邻, 并 保证 POS传感器测量姿态位置信息与传感器一致。
为了满足后续空间三角测量需要, 根据无人机飞行高度、 飞行速度、数码相 机观测视场角 (FOVDC) 大小, 计算出数码相机采集频率 Vdc (HZ); 在此基础 上再根据数码相机采样频率、成像光谱仪瞬时视场角 (IFOV)确定成像光谱仪的采 样频率 (Hz v = - (1)
DC 2*H* CFOVDC/2)*(l_r)
其中, S为无人机飞行速度 (m/s), 为无人机飞行高度 (m), F0VDC为数码 相机视场角大小 (弧度), r为空间三角测量所需的像片重叠度 (%)。
V = ^ (2) 愿 VDC*2*H*ig(IFOVHIS/2)
其中 IF0VHIS为成像光谱仪线阵上单个探元对应的视场角 (弧度)。
以无人机飞行 15 米 /秒 ,飞行高度为 300米为例, V ^至少是 的 200倍, 即^皿远大于^ 所以, 在数码相机相邻两次成像过程中, 成像光谱仪进行了 多次的线阵推扫。
无人机 POS传感器按照最高 ΙΟΟΗζ进行连续数据测量, 并保存 POS数据。 根据数码相机拍摄重叠度, 地面同一点可以在多张像片上成像, 可采用传统 摄影测量及空中三角测量方法, 精确求解出各张像片拍摄位置的精确 POS信息
(POSsi, POSS2〜POSSn), 并在此基础上生成像片覆盖区域 DEM。
优选地,所述根据所述精确的摄影中心位置姿态信息对相邻数码像片的摄影 中心间多条成像高光谱扫描线对应的位置姿态数据进行校正, 具体包括:
将实时采集的当前无人机低精度 POS传感器的位置姿态信息与所述相邻数 码像片的摄影中心间多条成像高光谱扫描线进行时间匹配,得到成像高光谱各扫 描线对应的位置姿态数据;
根据所述精确的摄影中心位置姿态信息对所述多条成像高光谱扫描线对应 的位置姿态数据进行校正。
本实施例中,根据所述精确的摄影中心位置姿态信息对所述多条成像高光谱 扫描线对应的位置姿态数据进行校正, 具体为:
对相邻数码像片摄影中心间成像高光谱仪各扫描线对应的位置姿态数据进 行多项式拟合, 将所述精确的摄影中心位置姿态信息代入多项式方程, 得到高精 度逐扫描线 POS信息。
本实施例中, 成像高光谱逐扫描线 POS数据校正: 如图 2所示, 以 S2 为例,首先对数码相机在 S Sz成像时间间隔内,即成像高光谱仪扫描的 Lll-Lln 共 n条扫描线对应的 POS数据进行多项式拟合。 拟合时以 Si为参考点, 按照公 式(3 )将各时刻(t=tl,t2, tn)测量的 POS位置与姿态分量(》, Yt, Zt; ^ t, ω1, t)分别减去 31成像时刻 POS分量值(XS1,YS1,ZS1;
Figure imgf000009_0001
到各时刻 POS分量相对于 Si的变化量:
Figure imgf000009_0004
Figure imgf000009_0002
然后利用多项式法对计算出的变化量(AXt sl, Δ^1, Αφ^1, Δί^, 进 行拟合:
i、
Figure imgf000009_0003
像时间间隔内各扫描线 POS测量 (Χ,Υ,Ζ ) 坐标的多项式拟合方程系数; 为成像高光谱仪在 Si、 S2成像时间间隔内各扫描线 POS测
Figure imgf000010_0001
9 ,ω ,κ )姿态的多项式拟合方程系数; τ=
为各扫描线时间权矩阵( t 最后, 将利用数码相机拍摄像片计算出的 Si高精度 POS信息, 即 POSsl对应 的各分量分别输入上述拟合的多项式方程, 即可分别计算出 t时刻成像光谱仪描 线对应的高精度 POS信息即线阵位置姿态信息:
Figure imgf000010_0003
Figure imgf000010_0004
其中, ( ½, ,,2 ½),( ,,^¾,,/^,)为根据多项式方程预测出的31、 S2成 像时间间隔内第 (Ln, L12...Lln ) 扫描线处高精度 POS信息;
(X S1,F S1'Z s) '人 ΦΡ。^,ω S、,K sl)为利用数码相机像片计算出 31处 摄影中心位置姿态信息。 同理, 对对 S2、 S3; S3、 S4等依次重复上述计算, 直到
Figure imgf000010_0002
sn为止。 这样 最终就得到了 31至 3„时间间隔内成像光谱仪所有扫描线的线阵位置姿态信息。 利用得到的高精度阵位置姿态信息, 结合生成的 DEM数据, 根据成像几何共线 方程即公式 (6) 即可实现成像高光谱影像的逐扫描线几何精确校正, 生成高光 谱图像。
Figure imgf000011_0001
ax = cos cos κ . - sin sin ω . sin κ .
a2 =-οο&φ1] sin ATl - sin sin a>L cos/^
a3 =-ύ φ cos .
bx = cos sin ATL
Figure imgf000011_0002
cx = sin cos KLI + cos sin ω . sin ΛΓ^
c2 =- sin <Lr sin KLI. + cos <L sin ω . cos ΛΓ^
c3 = cos^ cos . 其中 (χ, y)为成像高光谱扫描线上各像素坐标; (XP, ,ZP)为几何校正后 地理坐标; f为成像光谱仪焦距。
本发明实施例二还提出了一种无人机载成像高光谱几何校正的系统, 如图 3 所示, 包括: 采集模块 1、 解析模块 2、 校正模块 3和生成模块 4;
采集模块 1, 用于实时采集当前无人机低精度 POS传感器的位置姿态信息; 解析模块 2, 用于根据采集模块采集的所述位置姿态信息解析数码像片的摄 影中心位置姿态信息,并根据所述中心位置姿态信息生成像片覆盖区域的 DEM; 校正模块 3, 用于根据所述摄影中心位置姿态信息对相邻数码像片的摄影中 心间多条成像高光谱扫描线对应的位置姿态数据进行校正,得到所述多条成像高 光谱扫描线的线阵位置姿态信息;
生成模块 4, 根据所述线阵位置姿态信息和所述 DEM构建共线方程, 生成 高光谱图像。
优选地, 所述系统还包括设置模块;
设置模块, 用于将数码相机, 成像高光谱仪及无人机低精度 POS传感器设 置于同一平面的相邻位置, 使三种传感器姿态位置信息一致; 所述设置模块还用 于设置所述数码相机的采集频率并根据数码相机的采集频率设置成像高光谱仪 的采样频率。
优选地, 所述校正模块包括 3: 匹配单元和校正单元; 匹配单元, 用于将实时采集的当前无人机低精度 POS传感器的位置姿态信 息与所述相邻数码像片的摄影中心间多条成像高光谱扫描线进行时间匹配,得到 成像高光谱扫描线对应的位置姿态数据;
校正单元,用于根据所述精确的摄影中心位置姿态信息对所述成像高光谱扫 描线对应的位置姿态数据进行校正。
通过采用本发明公开的一种无人机载成像高光谱几何校正的方法及系统,利 用无人机面阵数码成像数据解算出的高精度 POS信息, 对无人机低精度 POS数据 进行优化, 实现成像高光谱仪逐扫描线几何精确校正, 为无人机成像高光谱广泛 应用提供了技术支撑。
以上所述仅为本发明的实施例, 并非因此限制本发明的专利范围, 凡是利用 本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在 其他相关的技术领域, 均同理包括在本发明的专利保护范围内。

Claims

权 利 要 求
1、 一种无人机载成像高光谱几何校正的方法, 其特征在于, 包括以下步骤: 实时采集当前无人机低精度 POS传感器的位置姿态信息;
根据所述位置姿态信息解析数码像片精确的摄影中心位置姿态信息,并生成 像片覆盖区域的 DEM;
根据所述精确的摄影中心位置姿态信息对相邻数码像片的摄影中心间多条 成像高光谱扫描线对应的位置姿态数据进行校正,得到所述多条成像高光谱扫描 线高精度的线阵位置姿态信息;
根据所述高精度线阵位置姿态信息和所述 DEM构建共线方程, 生成高光谱 图像, 实现无人机载成像高光谱几何校正。
2、 根据权利要求 1所述的方法, 其特征在于, 所述实时采集当前无人机低 精度 POS传感器的位置姿态信息之前, 还包括:
将数码相机, 成像高光谱仪及无人机低精度 POS传感器设置于同一平面的 相邻位置, 使三种传感器姿态位置信息一致;
设置所述数码相机的采集频率 V∞;
根据数码相机的采集频率 V∞设置成像高光谱仪的采样频率^ 。
3、 根据权利要求 2所述的方法, 其特征在于, 所述设定所述数码相机的采 集频率 V^, 具体为:
根据无人机飞行高度、 飞行速度和所述数码相机观测视场角 FOVDC, 设定 数码相机的采集频率
V = S-
°° 2*H *t<?( O DC /2) *(l-r) 其中, S为无人机飞行速度, 为无人机飞行高度, 为数码相机视 场角大小, r为空间三角测量所需的像片重叠度。
4、 根据权利要求 2所述的方法, 其特征在于, 所述根据数码相机的采集频 率 Vdc设置成像高光谱仪的采样频率^"皿, 具体为:
VDC * 2 * H * (HWH / 2)
其中, S为无人机飞行速度, W为无人机飞行高度, 皿为成像光谱仪 线阵上单个探元对应的视场角。
5、 根据权利要求 1所述的方法, 其特征在于, 所述根据所述位置姿态信息 解析数码像片精确的摄影中心位置姿态信息, 具体为:
根据实时采集的当前无人机低精度 POS传感器的位置姿态信息和数码像片 采用空中三角测量方法解析所述数码像片精确的摄影中心位置姿态信息。
6、 根据权利要求 1所述的方法, 其特征在于, 所述根据所述精确的摄影中 心位置姿态信息对相邻数码像片的摄影中心间多条成像高光谱扫描线对应的位 置姿态数据进行校正, 具体包括:
将实时采集的当前无人机低精度 POS传感器的位置姿态信息与所述相邻数 码像片的摄影中心间多条成像高光谱扫描线进行时间匹配,得到成像高光谱各扫 描线对应的位置姿态数据;
根据所述精确的摄影中心位置姿态信息对所述多条成像高光谱扫描线对应 的位置姿态数据进行校正。
7、 一种无人机载成像高光谱几何校正的系统, 其特征在于, 包括: 采集模 块、 解析模块、 校正模块和生成模块;
采集模块, 用于实时采集当前无人机低精度 POS传感器的位置姿态信息; 解析模块,用于根据采集模块采集的所述位置姿态信息解析数码像片的摄影 中心位置姿态信息, 并根据所述中心位置姿态信息生成像片覆盖区域的 DEM; 校正模块,用于根据所述摄影中心位置姿态信息对相邻数码像片的摄影中心 间多条成像高光谱扫描线对应的位置姿态数据进行校正,得到所述多条成像高光 谱扫描线的线阵位置姿态信息;
生成模块, 根据所述线阵位置姿态信息和所述 DEM构建共线方程, 生成高 光谱图像。
8、 根据权利要求 7所述的系统, 其特征在于, 所述系统还包括设置模块; 设置模块, 用于将数码相机, 成像高光谱仪及无人机低精度 POS传感器设 置于同一平面的相邻位置, 使三种传感器姿态位置信息一致; 所述设置模块还用 于设置所述数码相机的采集频率并根据数码相机的采集频率设置成像高光谱仪 的采样频率。
9、 根据权利要求 7所述的系统, 其特征在于, 所述校正模块包括: 匹配单 元和校正单元;
匹配单元, 用于将实时采集的当前无人机低精度 POS传感器的位置姿态信 息与所述相邻数码像片的摄影中心间多条成像高光谱扫描线进行时间匹配,得到 成像高光谱扫描线对应的位置姿态数据;
校正单元,用于根据所述精确的摄影中心位置姿态信息对所述成像高光谱扫 描线对应的位置姿态数据进行校正。
PCT/CN2014/071250 2014-01-15 2014-01-23 一种无人机载成像高光谱几何校正的方法及系统 WO2015106462A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/314,681 US10204402B2 (en) 2014-01-15 2014-01-23 Drone-mounted imaging hyperspectral geometric correction method and system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410017463.9A CN103810701B (zh) 2014-01-15 2014-01-15 一种无人机载成像高光谱几何校正的方法及系统
CN201410017463.9 2014-01-15

Publications (1)

Publication Number Publication Date
WO2015106462A1 true WO2015106462A1 (zh) 2015-07-23

Family

ID=50707422

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/071250 WO2015106462A1 (zh) 2014-01-15 2014-01-23 一种无人机载成像高光谱几何校正的方法及系统

Country Status (3)

Country Link
US (1) US10204402B2 (zh)
CN (1) CN103810701B (zh)
WO (1) WO2015106462A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101619836B1 (ko) 2016-02-05 2016-05-11 (주)아세아항측 드론을 이용한 초분광 원격모니터링 시스템
CN108605098A (zh) * 2016-05-20 2018-09-28 深圳市大疆创新科技有限公司 用于卷帘快门校正的系统和方法
CN110503604A (zh) * 2019-07-31 2019-11-26 武汉大学 一种基于高精度pos的航空面阵影像实时正射拼接方法
CN115858519A (zh) * 2023-02-27 2023-03-28 航天宏图信息技术股份有限公司 一种dem平整方法和装置

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016023224A1 (en) * 2014-08-15 2016-02-18 SZ DJI Technology Co., Ltd. System and method for automatic sensor calibration
CN104180794B (zh) * 2014-09-02 2016-03-30 西安煤航信息产业有限公司 数字正射影像拉花区域的处理方法
US10410289B1 (en) 2014-09-22 2019-09-10 State Farm Mutual Automobile Insurance Company Insurance underwriting and re-underwriting implementing unmanned aerial vehicles (UAVS)
CN104778679B (zh) * 2014-12-22 2019-07-12 中国科学院遥感与数字地球研究所 一种基于高分一号卫星数据的控制点图元快速匹配方法
CN104618689B (zh) * 2015-01-19 2018-08-28 环境保护部卫星环境应用中心 基于无人机的近海溢油监测方法及系统
CN104700367B (zh) * 2015-03-05 2017-11-21 清华大学 一种艇载高光谱推帚成像数据的几何校正方法
CN105067116B (zh) * 2015-07-15 2017-06-30 北京农业信息技术研究中心 一种画幅式成像光谱数据的拼接方法及系统
US10565577B2 (en) * 2015-12-16 2020-02-18 Samsung Electronics Co., Ltd. Guided positional tracking
CN105608670B (zh) * 2015-12-30 2018-11-02 首都师范大学 一种航空视频图像的无鬼影横向条带式快速拼接方法
CN105763859A (zh) * 2016-05-11 2016-07-13 北京迈凯飞工程技术有限公司 一种提高无人机航测精度的方法、系统及无人机
CN106127697B (zh) * 2016-06-07 2018-12-11 哈尔滨工业大学 无人机机载成像高光谱几何校正方法
CN106504189A (zh) * 2016-11-29 2017-03-15 福建四创软件有限公司 一种基于gis的海洋受灾面积提取方法
CN106846277B (zh) * 2017-02-16 2020-03-20 中国科学院遥感与数字地球研究所 一种线推扫成像的高光谱遥感图像错行纠正方法及装置
CN106767712A (zh) * 2017-02-27 2017-05-31 广西翼界科技有限公司 航测用外方位数据辅助获取模块
CN106871875A (zh) * 2017-02-27 2017-06-20 广西翼界科技有限公司 一种航测相机外方位数据同步获取装置
CN106871874A (zh) * 2017-02-27 2017-06-20 广西翼界科技有限公司 一种应用于无人机航测的pos管理系统
CN107330927B (zh) * 2017-06-01 2020-06-26 西南电子技术研究所(中国电子科技集团公司第十研究所) 机载可见光图像定位方法
CN107798668B (zh) * 2017-11-23 2020-07-10 北京依锐思遥感技术有限公司 基于rgb影像的无人机成像高光谱几何校正的方法及系统
CN108051407A (zh) * 2018-01-12 2018-05-18 四川双利合谱科技有限公司 基于高光谱相机和面阵相机及pos系统的高光谱成像系统
WO2020040715A2 (en) * 2018-06-30 2020-02-27 Havelsan Hava Elektronik Sanayi Ve Ticaret Anonim Sirketi Airborne surveillance system with multiple cameras
CN109118443A (zh) * 2018-07-23 2019-01-01 安徽创谱仪器科技有限公司 基于图像处理技术的高光谱遥感数据几何校正方法
GB201817092D0 (en) * 2018-10-19 2018-12-05 Cancer Research Tech Ltd Apparatus and method for wide-field hyperspectral imaging
CN109493298B (zh) * 2018-11-13 2019-08-30 中国国土资源航空物探遥感中心 一种机载摆扫式高光谱数据快速几何校正方法
CN110096997B (zh) * 2019-04-29 2020-04-14 宁波大学 一种集成多源遥感数据的海岸带精细分类方法
CN110308104B (zh) * 2019-06-25 2022-06-10 生态环境部卫星环境应用中心 一种大气污染物no2浓度监测方法及系统
US11532155B1 (en) * 2019-07-09 2022-12-20 ACME Atronomatic, LLC Methods and devices for earth remote sensing using stereoscopic hyperspectral imaging in the visible (VIS) and infrared (IR) bands
CN110837839B (zh) * 2019-11-04 2023-09-26 嘉兴职业技术学院 一种高精度无人机正射影像制作及数据采集方法
CN113008206B (zh) * 2021-03-29 2022-08-23 深圳飞马机器人科技有限公司 空中三角测量成图方法、装置、飞行器及计算机可读存储介质
CN114092534B (zh) * 2021-11-19 2022-08-30 哈尔滨工业大学 高光谱图像与激光雷达数据配准方法及配准系统
CN114544006B (zh) * 2022-01-07 2023-12-05 上海同繁勘测工程科技有限公司 一种基于环境光照条件的低空遥感影像校正系统及方法
CN114485573B (zh) * 2022-03-04 2024-03-08 甘肃工业职业技术学院 一种消费级无人机摄影测量飞行稳定性评价方法
CN116503269B (zh) * 2023-03-27 2023-12-19 中山大学 一种sar图像的校正方法及装置
CN117110214A (zh) * 2023-09-01 2023-11-24 河北华厚天成环保技术有限公司 一种基于无人机高光谱成像的水质分析系统及方法
CN117392127B (zh) * 2023-12-11 2024-04-12 深圳精智达技术股份有限公司 一种显示面板边框的检测方法、装置和电子设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102243299A (zh) * 2011-04-02 2011-11-16 段连飞 无人机载sar图像正射纠正装置
CN102506824A (zh) * 2011-10-14 2012-06-20 航天恒星科技有限公司 一种城市低空无人机系统生成数字正射影像图的方法
CN102866393A (zh) * 2012-10-12 2013-01-09 中国测绘科学研究院 一种基于pos与dem数据的sar多普勒参数估计方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4679753A (en) * 1984-08-21 1987-07-14 Hughes Aircraft Company Surveying satellite incorporating star-sensing attitude determination subsystem
US6757445B1 (en) * 2000-10-04 2004-06-29 Pixxures, Inc. Method and apparatus for producing digital orthophotos using sparse stereo configurations and external models
CN101900550A (zh) * 2010-07-20 2010-12-01 同济大学 一种基于卫星影像的建筑物高程定位控制与精度评价方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102243299A (zh) * 2011-04-02 2011-11-16 段连飞 无人机载sar图像正射纠正装置
CN102506824A (zh) * 2011-10-14 2012-06-20 航天恒星科技有限公司 一种城市低空无人机系统生成数字正射影像图的方法
CN102866393A (zh) * 2012-10-12 2013-01-09 中国测绘科学研究院 一种基于pos与dem数据的sar多普勒参数估计方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101619836B1 (ko) 2016-02-05 2016-05-11 (주)아세아항측 드론을 이용한 초분광 원격모니터링 시스템
CN108605098A (zh) * 2016-05-20 2018-09-28 深圳市大疆创新科技有限公司 用于卷帘快门校正的系统和方法
US10771699B2 (en) 2016-05-20 2020-09-08 SZ DJI Technology Co., Ltd. Systems and methods for rolling shutter correction
CN108605098B (zh) * 2016-05-20 2020-12-11 深圳市大疆创新科技有限公司 用于卷帘快门校正的系统和方法
CN110503604A (zh) * 2019-07-31 2019-11-26 武汉大学 一种基于高精度pos的航空面阵影像实时正射拼接方法
CN110503604B (zh) * 2019-07-31 2022-04-29 武汉大学 一种基于高精度pos的航空面阵影像实时正射拼接方法
CN115858519A (zh) * 2023-02-27 2023-03-28 航天宏图信息技术股份有限公司 一种dem平整方法和装置

Also Published As

Publication number Publication date
US10204402B2 (en) 2019-02-12
CN103810701A (zh) 2014-05-21
CN103810701B (zh) 2017-07-25
US20170200259A1 (en) 2017-07-13

Similar Documents

Publication Publication Date Title
WO2015106462A1 (zh) 一种无人机载成像高光谱几何校正的方法及系统
JP7251474B2 (ja) 情報処理装置、情報処理方法、情報処理プログラム、画像処理装置および画像処理システム
EP2247094B1 (en) Orthophotographic image creating method and imaging device
CN107886531B (zh) 一种基于激光测距以及物方匹配的虚拟控制点获取方法
US20100328499A1 (en) Dual-Swath Imaging System
KR101771492B1 (ko) 복수의 센서를 탑재한 무인 비행체를 이용하는 매핑 방법 및 시스템
Mader et al. UAV-based acquisition of 3D point cloud–a comparison of a low-cost laser scanner and SFM-tools
CN107798668B (zh) 基于rgb影像的无人机成像高光谱几何校正的方法及系统
JP2017201261A (ja) 形状情報生成システム
KR101224830B1 (ko) 지리 참조 영상 획득을 위한 휴대용 멀티센서 시스템 및 그 방법
Tahar et al. Aerial mapping using autonomous fixed-wing unmanned aerial vehicle
Speyerer et al. In-flight geometric calibration of the lunar reconnaissance orbiter camera
Kraft et al. Introduction of a photogrammetric camera system for rpas with highly accurate gnss/imu information for standardized workflows
CN103776426A (zh) 一种旋转平台农田成像几何校正方法
Wang et al. Geometric calibration for the aerial line scanning camera Gfxj
Rau et al. Development of a large-format uas imaging system with the construction of a one sensor geometry from a multicamera array
Chen et al. A rigorous laboratory calibration method for interior orientation of an airborne linear push-broom camera
Markelin et al. Geometric processing workflow for vertical and oblique hyperspectral frame images collected using UAV
Wang et al. A method for generating true digital orthophoto map of UAV platform push-broom hyperspectral scanners assisted by lidar
Leonardo Filho et al. Geometric calibration of an aerial multihead camera system for direct georeferencing applications
Hasler et al. Direct georeferencing for Hyperspectral Imaging of ocean surface
Jhan et al. A modified projective transformation scheme for mosaicking multi-camera imaging system equipped on a large payload fixed-wing UAS
Liu et al. An approach of system calibration for UAV photogrammetry
Dong et al. ADHHI airborne hyperspectral imager: camera structure and geometric correction
Zheng et al. Geometric calibration and accuracy assessment of a multispectral imager on UAVs

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14879045

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15314681

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 14879045

Country of ref document: EP

Kind code of ref document: A1